1
|
Kobirumaki-Shimozawa F, Oyama K, Nakanishi T, Ishiwata S, Fukuda N. Asynchronous movement of sarcomeres in myocardium under living conditions: role of titin. Front Physiol 2024; 15:1426545. [PMID: 39156829 PMCID: PMC11327019 DOI: 10.3389/fphys.2024.1426545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 07/15/2024] [Indexed: 08/20/2024] Open
Affiliation(s)
| | - Kotaro Oyama
- Department of Cell Physiology, The Jikei University School of Medicine, Minato-ku, Tokyo, Japan
- Takasaki Institute for Advanced Quantum Science, National Institutes for Quantum Science and Technology, Takasaki-shi, Gunma, Japan
| | - Tomohiro Nakanishi
- Department of Cell Physiology, The Jikei University School of Medicine, Minato-ku, Tokyo, Japan
- Department of Anesthesiology, The Jikei University School of Medicine, Minato-ku, Tokyo, Japan
| | - Shin’ichi Ishiwata
- Department of Physics, Faculty of Science and Engineering, Waseda University, Shinjuku-ku, Tokyo, Japan
| | - Norio Fukuda
- Department of Cell Physiology, The Jikei University School of Medicine, Minato-ku, Tokyo, Japan
| |
Collapse
|
2
|
Shintani SA. Observation of sarcomere chaos induced by changes in calcium concentration in cardiomyocytes. Biophys Physicobiol 2024; 21:e210006. [PMID: 38803332 PMCID: PMC11128306 DOI: 10.2142/biophysico.bppb-v21.0006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 01/10/2024] [Indexed: 05/29/2024] Open
Abstract
Heating cardiomyocytes to 38-42°C induces hyperthermal sarcomeric oscillations (HSOs), which combine chaotic instability and homeostatic stability. These properties are likely important for achieving periodic and rapid ventricular expansion during the diastole phase of the heartbeat. Compared with spontaneous oscillatory contractions in cardiomyocytes, which are sarcomeric oscillations induced in the presence of a constant calcium concentration, we found that calcium concentration fluctuations cause chaotic instability during HSOs. We believe that the experimental fact that sarcomeres, autonomously oscillating, exhibit such instability due to the action of calcium concentration changes is important for understanding the physiological function of sarcomeres. Therefore, we have named this chaotic sarcomere instability that appears under conditions involving changes in calcium concentration as Sarcomere Chaos with Changes in Calcium Concentration (S4C). Interestingly, sarcomere instability that could be considered S4C has also been observed in the relaxation dynamics of EC coupling. Unlike ADP-SPOCs and Cell-SPOCs under constant calcium concentration conditions, fluctuations in oscillation amplitude indistinguishable from HSOs were observed. Additionally, like HSO, a positive Lyapunov exponent was measured. S4C is likely a crucial sarcomeric property supporting the rapid and flexible ventricular diastole with each heartbeat of the heart.
Collapse
Affiliation(s)
- Seine A. Shintani
- Department of Biomedical Sciences, College of Life and Health Sciences, Chubu University, Kasugai, Aichi 487-8501, Japan
- Center for Mathematical Science and Artificial Intelligence, Chubu University, Kasugai, Aichi 487-8501, Japan
- Institute for Advanced Research, Nagoya University, Nagoya, Aichi 464-8601, Japan
| |
Collapse
|
3
|
Shintani SA. Hole behavior captured by analysis of instantaneous amplitude and phase of sarcosynced oscillations reveals wave characteristics of sarcomeric oscillations. Biochem Biophys Res Commun 2024; 691:149339. [PMID: 38039837 DOI: 10.1016/j.bbrc.2023.149339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 11/24/2023] [Indexed: 12/03/2023]
Abstract
In this study, we performed signal analysis based on instantaneous amplitude and phase of sarcomeric oscillations, which are generated by skeletal muscle under constant calcium concentration conditions and in which sarcomeres repeatedly contract and relax autonomously. In addition to the changes in sarcomere length that have been attracting attention, we named the Z-line oscillations that partition sarcomeres sarcosynced oscillations, and analyzed their instantaneous amplitude and phase. As a result, the behavior of pairs of sarcosynced oscillations and sarcomeric oscillations, which are produced when propagating waves propagate in one direction or collide, was clearly visualized. By focusing on the behavior of the hole, which is a dip in the instantaneous amplitude accompanied by a sudden jump in the instantaneous phase in sarcosynced oscillations, we were able to discern the wave characteristics. Transient disruption occurred in the propagating waves even when they traveled in one direction. Its properties were captured by the sarcomeric defect hole (SD hole), a dip in the instantaneous amplitude accompanied by a jump in the instantaneous phase in sarcosynced oscillations. When propagating waves collide, the collision site, its persistence, movement, and disappearance process are captured as sarcomeric collision holes (SC holes) of sarcosynced oscillations. These holes are important indicators for understanding the oscillation properties of sarcomeres. In conclusion, although sarcosynced oscillations and sarcomeric oscillations are closely related, they exhibit different oscillations, and the study of the SD holes and SC holes caused by them will contribute to a detailed understanding of the muscle characteristics of sarcomeres. This finding has important implications for improving our understanding of the efficiency of muscle function and its regulatory mechanisms.
Collapse
Affiliation(s)
- Seine A Shintani
- Department of Biomedical Sciences, College of Life and Health Sciences, Chubu University, Kasugai, Aichi, 487-8501, Japan; Center for Mathematical Science and Artificial Intelligence, Chubu University, Kasugai, Aichi, 487-8501, Japan; Institute for Advanced Research, Nagoya University, Furo-cho, Chikusa-ku, Nagoya-shi, 464-8601, Japan.
| |
Collapse
|
4
|
Lookin O, Boulali N, Cazorla O, de Tombe P. Impact of stretch on sarcomere length variability in isolated fully relaxed rat cardiac myocytes. Pflugers Arch 2023; 475:1203-1210. [PMID: 37603101 DOI: 10.1007/s00424-023-02848-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 07/24/2023] [Accepted: 08/05/2023] [Indexed: 08/22/2023]
Abstract
The contractility of cardiac muscle is greatly affected by preload via the Frank-Starling mechanism (FSM). It is based on preload-dependent activation of sarcomeres-the elementary contractile units in muscle cells. Recent findings show a natural variability in sarcomere length (SL) in resting cardiomyocytes that, moreover, is altered in an actively contracting myocyte. SL variability may contribute to the FSM, but it remains unresolved whether the change in the SL variability is regulated by activation process per se or simply by changes in cell stretch, i.e., average SL. To separate the roles of activation and SL, we characterized SL variability in isolated, fully relaxed rat ventricular cardiomyocytes (n = 12) subjected to a longitudinal stretch with the carbon fiber (CF) technique. Each cell was tested in three states: without CF attachment (control, no preload), with CF attachment without stretch, and with CF attachment and ~ 10% stretch of initial SL. The cells were imaged by transmitted light microscopy to retrieve and analyze individual SL and SL variability off-line by multiple quantitative measures such as coefficient of variation or median absolute deviation. We found that CF attachment without stretch did not affect the extent of SL variability nor average SL. In stretched myocytes, the averaged SL significantly increased, while the SL variability remained unchanged. This result clearly indicates that the non-uniformity of individual SL is not sensitive to the average SL itself in fully relaxed myocytes. We conclude that SL variability per se does not contribute to the FSM in the heart.
Collapse
Affiliation(s)
| | - Najlae Boulali
- Laboratoire "Physiologie Et Médecine Expérimentale du Coeur Et Des Muscles," Phymedexp, INSERM, CNRS, Montpellier University, CHU Arnaud de Villeneuve, 34295, Montpellier, France
| | - Olivier Cazorla
- Laboratoire "Physiologie Et Médecine Expérimentale du Coeur Et Des Muscles," Phymedexp, INSERM, CNRS, Montpellier University, CHU Arnaud de Villeneuve, 34295, Montpellier, France
| | - Pieter de Tombe
- Laboratoire "Physiologie Et Médecine Expérimentale du Coeur Et Des Muscles," Phymedexp, INSERM, CNRS, Montpellier University, CHU Arnaud de Villeneuve, 34295, Montpellier, France.
- Physiology and Biophysics, University of Illinois at Chicago, Chicago, IL, 60612, USA.
| |
Collapse
|
5
|
Li J, Sundnes J, Hou Y, Laasmaa M, Ruud M, Unger A, Kolstad TR, Frisk M, Norseng PA, Yang L, Setterberg IE, Alves ES, Kalakoutis M, Sejersted OM, Lanner JT, Linke WA, Lunde IG, de Tombe PP, Louch WE. Stretch Harmonizes Sarcomere Strain Across the Cardiomyocyte. Circ Res 2023; 133:255-270. [PMID: 37401464 PMCID: PMC10355805 DOI: 10.1161/circresaha.123.322588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 06/07/2023] [Accepted: 06/22/2023] [Indexed: 07/05/2023]
Abstract
BACKGROUND Increasing cardiomyocyte contraction during myocardial stretch serves as the basis for the Frank-Starling mechanism in the heart. However, it remains unclear how this phenomenon occurs regionally within cardiomyocytes, at the level of individual sarcomeres. We investigated sarcomere contractile synchrony and how intersarcomere dynamics contribute to increasing contractility during cell lengthening. METHODS Sarcomere strain and Ca2+ were simultaneously recorded in isolated left ventricular cardiomyocytes during 1 Hz field stimulation at 37 °C, at resting length and following stepwise stretch. RESULTS We observed that in unstretched rat cardiomyocytes, differential sarcomere deformation occurred during each beat. Specifically, while most sarcomeres shortened during the stimulus, ≈10% to 20% of sarcomeres were stretched or remained stationary. This nonuniform strain was not traced to regional Ca2+ disparities but rather shorter resting lengths and lower force production in systolically stretched sarcomeres. Lengthening of the cell recruited additional shortening sarcomeres, which increased contractile efficiency as less negative, wasted work was performed by stretched sarcomeres. Given the known role of titin in setting sarcomere dimensions, we next hypothesized that modulating titin expression would alter intersarcomere dynamics. Indeed, in cardiomyocytes from mice with titin haploinsufficiency, we observed greater variability in resting sarcomere length, lower recruitment of shortening sarcomeres, and impaired work performance during cell lengthening. CONCLUSIONS Graded sarcomere recruitment directs cardiomyocyte work performance, and harmonization of sarcomere strain increases contractility during cell stretch. By setting sarcomere dimensions, titin controls sarcomere recruitment, and its lowered expression in haploinsufficiency mutations impairs cardiomyocyte contractility.
Collapse
Affiliation(s)
- Jia Li
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Norway (J.L., Y.H., M.L., M.R., T.R.K., M.F., P.A.N., I.E.S., O.M.S., I.G.L., W.E.L.)
- KG Jebsen Center for Cardiac Research, University of Oslo, Norway (J.L., Y.H., M.L., M.R., T.R.K., M.F., I.E.S., O.M.S., I.G.L., W.E.L.)
| | | | - Yufeng Hou
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Norway (J.L., Y.H., M.L., M.R., T.R.K., M.F., P.A.N., I.E.S., O.M.S., I.G.L., W.E.L.)
- KG Jebsen Center for Cardiac Research, University of Oslo, Norway (J.L., Y.H., M.L., M.R., T.R.K., M.F., I.E.S., O.M.S., I.G.L., W.E.L.)
| | - Martin Laasmaa
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Norway (J.L., Y.H., M.L., M.R., T.R.K., M.F., P.A.N., I.E.S., O.M.S., I.G.L., W.E.L.)
- KG Jebsen Center for Cardiac Research, University of Oslo, Norway (J.L., Y.H., M.L., M.R., T.R.K., M.F., I.E.S., O.M.S., I.G.L., W.E.L.)
| | - Marianne Ruud
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Norway (J.L., Y.H., M.L., M.R., T.R.K., M.F., P.A.N., I.E.S., O.M.S., I.G.L., W.E.L.)
- KG Jebsen Center for Cardiac Research, University of Oslo, Norway (J.L., Y.H., M.L., M.R., T.R.K., M.F., I.E.S., O.M.S., I.G.L., W.E.L.)
| | - Andreas Unger
- Institute of Physiology II, University of Münster, Germany (A.U., W.A.L.)
| | - Terje R. Kolstad
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Norway (J.L., Y.H., M.L., M.R., T.R.K., M.F., P.A.N., I.E.S., O.M.S., I.G.L., W.E.L.)
- KG Jebsen Center for Cardiac Research, University of Oslo, Norway (J.L., Y.H., M.L., M.R., T.R.K., M.F., I.E.S., O.M.S., I.G.L., W.E.L.)
| | - Michael Frisk
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Norway (J.L., Y.H., M.L., M.R., T.R.K., M.F., P.A.N., I.E.S., O.M.S., I.G.L., W.E.L.)
- KG Jebsen Center for Cardiac Research, University of Oslo, Norway (J.L., Y.H., M.L., M.R., T.R.K., M.F., I.E.S., O.M.S., I.G.L., W.E.L.)
| | - Per Andreas Norseng
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Norway (J.L., Y.H., M.L., M.R., T.R.K., M.F., P.A.N., I.E.S., O.M.S., I.G.L., W.E.L.)
| | | | - Ingunn E. Setterberg
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Norway (J.L., Y.H., M.L., M.R., T.R.K., M.F., P.A.N., I.E.S., O.M.S., I.G.L., W.E.L.)
- KG Jebsen Center for Cardiac Research, University of Oslo, Norway (J.L., Y.H., M.L., M.R., T.R.K., M.F., I.E.S., O.M.S., I.G.L., W.E.L.)
| | - Estela S. Alves
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden (E.S.A., M.K., J.T.L.)
| | - Michaeljohn Kalakoutis
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden (E.S.A., M.K., J.T.L.)
| | - Ole M. Sejersted
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Norway (J.L., Y.H., M.L., M.R., T.R.K., M.F., P.A.N., I.E.S., O.M.S., I.G.L., W.E.L.)
- KG Jebsen Center for Cardiac Research, University of Oslo, Norway (J.L., Y.H., M.L., M.R., T.R.K., M.F., I.E.S., O.M.S., I.G.L., W.E.L.)
| | - Johanna T. Lanner
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden (E.S.A., M.K., J.T.L.)
| | - Wolfgang A. Linke
- Institute of Physiology II, University of Münster, Germany (A.U., W.A.L.)
| | - Ida G. Lunde
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Norway (J.L., Y.H., M.L., M.R., T.R.K., M.F., P.A.N., I.E.S., O.M.S., I.G.L., W.E.L.)
- KG Jebsen Center for Cardiac Research, University of Oslo, Norway (J.L., Y.H., M.L., M.R., T.R.K., M.F., I.E.S., O.M.S., I.G.L., W.E.L.)
| | - Pieter P. de Tombe
- Department of Physiology and Biophysics, University of Illinois at Chicago (P.P.d.T.)
- Phymedexp, Université de Montpellier, INSERM, CNRS, France (P.P.d.T.)
| | - William E. Louch
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Norway (J.L., Y.H., M.L., M.R., T.R.K., M.F., P.A.N., I.E.S., O.M.S., I.G.L., W.E.L.)
- KG Jebsen Center for Cardiac Research, University of Oslo, Norway (J.L., Y.H., M.L., M.R., T.R.K., M.F., I.E.S., O.M.S., I.G.L., W.E.L.)
| |
Collapse
|
6
|
Robinson P, Sparrow AJ, Psaras Y, Steeples V, Simon JN, Broyles CN, Chang YF, Brook FA, Wang YJ, Blease A, Zhang X, Abassi YA, Geeves MA, Toepfer CN, Watkins H, Redwood C, Daniels MJ. Comparing the effects of chemical Ca 2+ dyes and R-GECO on contractility and Ca 2+ transients in adult and human iPSC cardiomyocytes. J Mol Cell Cardiol 2023; 180:44-57. [PMID: 37127261 PMCID: PMC10659987 DOI: 10.1016/j.yjmcc.2023.04.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 04/13/2023] [Accepted: 04/28/2023] [Indexed: 05/03/2023]
Abstract
We compared commonly used BAPTA-derived chemical Ca2+ dyes (fura2, Fluo-4, and Rhod-2) with a newer genetically encoded indicator (R-GECO) in single cell models of the heart. We assessed their performance and effects on cardiomyocyte contractility, determining fluorescent signal-to-noise ratios and sarcomere shortening in primary ventricular myocytes from adult mouse and guinea pig, and in human iPSC-derived cardiomyocytes. Chemical Ca2+ dyes displayed dose-dependent contractile impairment in all cell types, and we observed a negative correlation between contraction and fluorescence signal-to-noise ratio, particularly for fura2 and Fluo-4. R-GECO had no effect on sarcomere shortening. BAPTA-based dyes, but not R-GECO, inhibited in vitro acto-myosin ATPase activity. The presence of fura2 accentuated or diminished changes in contractility and Ca2+ handling caused by small molecule modulators of contractility and intracellular ionic homeostasis (mavacamten, levosimendan, and flecainide), but this was not observed when using R-GECO in adult guinea pig left ventricular cardiomyocytes. Ca2+ handling studies are necessary for cardiotoxicity assessments of small molecules intended for clinical use. Caution should be exercised when interpreting small molecule studies assessing contractile effects and Ca2+ transients derived from BAPTA-like chemical Ca2+ dyes in cellular assays, a common platform for cardiac toxicology testing and mechanistic investigation of cardiac disease physiology and treatment.
Collapse
Affiliation(s)
- Paul Robinson
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK; BHF Centre of Research Excellence, University of Oxford, Oxford, UK.
| | - Alexander J Sparrow
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK; BHF Centre of Research Excellence, University of Oxford, Oxford, UK
| | - Yiangos Psaras
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK; BHF Centre of Research Excellence, University of Oxford, Oxford, UK
| | - Violetta Steeples
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK; BHF Centre of Research Excellence, University of Oxford, Oxford, UK
| | - Jillian N Simon
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK; BHF Centre of Research Excellence, University of Oxford, Oxford, UK
| | - Connor N Broyles
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK; BHF Centre of Research Excellence, University of Oxford, Oxford, UK
| | - Yu-Fen Chang
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK; BHF Centre of Research Excellence, University of Oxford, Oxford, UK
| | - Frances A Brook
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK; BHF Centre of Research Excellence, University of Oxford, Oxford, UK
| | - Ying-Jie Wang
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK; BHF Centre of Research Excellence, University of Oxford, Oxford, UK
| | - Andrew Blease
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK; BHF Centre of Research Excellence, University of Oxford, Oxford, UK
| | - Xiaoyu Zhang
- Agilent Biosciences, Inc., San Diego, CA 92121, USA
| | | | | | - Christopher N Toepfer
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK; BHF Centre of Research Excellence, University of Oxford, Oxford, UK; Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Hugh Watkins
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK; BHF Centre of Research Excellence, University of Oxford, Oxford, UK; Department of Cardiology, Oxford University NHS Hospitals Trust, Oxford, UK
| | - Charles Redwood
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK; BHF Centre of Research Excellence, University of Oxford, Oxford, UK
| | - Matthew J Daniels
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK; BHF Centre of Research Excellence, University of Oxford, Oxford, UK; Department of Cardiology, Oxford University NHS Hospitals Trust, Oxford, UK; Department of Cardiovascular Sciences, University of Manchester, Manchester, UK.
| |
Collapse
|
7
|
Lookin O, Boulali N, Cazorla O, Tombe P. Impact of stretch on sarcomere length variability in isolated fully relaxed rat cardiac myocytes. RESEARCH SQUARE 2023:rs.3.rs-3043911. [PMID: 37398289 PMCID: PMC10312908 DOI: 10.21203/rs.3.rs-3043911/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
The contractility of cardiac muscle is greatly affected by preload via the Frank-Starling Mechanism (FSM). It is based on the preload-dependent activation of sarcomeres - the elementary contractile units in muscle cells. Recent findings show a natural variability in sarcomere length (SL) in resting cardiomyocytes that, moreover, is altered in an actively contracting myocyte. SL variability may contribute to the FSM but it remains unresolved whether the change in the SL variability is regulated by activation process per se or simply by changes in cell stretch, i.e. average SL. To separate the roles of activation and SL, we characterized SL variability in isolated fully relaxed rat ventricular cardiomyocytes ( n = 12) subjected to a longitudinal stretch with the carbon fiber (CF) technique. Each cell was tested in three states: without CF attachment (control, no preload), with CF attachment without stretch, and with CF attachment and ~ 10% stretch of initial SL. The cells were imaged by transmitted light microscopy to retrieve and analyze individual SL and SL variability off-line by multiple quantitative measures like coefficient of variation or median absolute deviation. We found that CF attachment without stretch did not affect the extent of SL variability and averaged SL. In stretched myocytes, the averaged SL significantly increased while the SL variability remained unchanged. This result clearly indicates that the non-uniformity of individual SL is not sensitive to the average SL itself in fully relaxed myocytes. We conclude that SL variability per se does not contribute to the FSM in the heart.
Collapse
Affiliation(s)
| | - Najlae Boulali
- Université de Montpellier, INSERM, CNRS, CHU Arnaud de Villeneuve
| | - Olivier Cazorla
- Université de Montpellier, INSERM, CNRS, CHU Arnaud de Villeneuve
| | - Pieter Tombe
- Université de Montpellier, INSERM, CNRS, CHU Arnaud de Villeneuve
| |
Collapse
|
8
|
Lookin O, de Tombe P, Boulali N, Gergely C, Cloitre T, Cazorla O. Cardiomyocyte sarcomere length variability: Membrane fluorescence versus second harmonic generation myosin imaging. J Gen Physiol 2023; 155:213827. [PMID: 36695814 PMCID: PMC9930136 DOI: 10.1085/jgp.202213289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 12/07/2022] [Accepted: 01/10/2023] [Indexed: 01/26/2023] Open
Abstract
Sarcomere length (SL) and its variation along the myofibril strongly regulate integrated coordinated myocyte contraction. It is therefore important to obtain individual SL properties. Optical imaging by confocal fluorescence (for example, using ANEPPS) or transmitted light microscopy is often used for this purpose. However, this allows for the visualization of structures related to Z-disks only. In contrast, second-harmonic generation (SHG) microscopy visualizes A-band sarcomeric structures directly. Here, we compared averaged SL and its variability in isolated relaxed rat cardiomyocytes by imaging with ANEPPS and SHG. We found that SL variability, evaluated by several absolute and relative measures, is two times smaller using SHG vs. ANEPPS, while both optical methods give the same average (median) SL. We conclude that optical methods with similar optical spatial resolution provide valid estimations of average SL, but the use of SHG microscopy for visualization of sarcomeric A-bands may be the "gold standard" for evaluation of SL variability due to the absence of optical interference between the sarcomere center and non-sarcomeric structures. This contrasts with sarcomere edges where t-tubules may not consistently colocalize to Z-disks. The use of SHG microscopy instead of fluorescent imaging can be a prospective tool to map sarcomere variability both in vitro and in vivo conditions and to reveal its role in the functional behavior of living myocardium.
Collapse
Affiliation(s)
- Oleg Lookin
- Institute of Immunology and Physiology , Ural Branch of Russian Academy of Sciences , Yekaterinburg, Russia
| | - Pieter de Tombe
- Laboratory "Physiologie et Médecine Expérimentale du Coeur et des Muscles", Phymedexp, INSERM, CNRS, Montpellier University , Montpellier, France.,Physiology and Biophysics, University of Illinois at Chicago , Chicago, IL, USA
| | - Najlae Boulali
- Laboratory "Physiologie et Médecine Expérimentale du Coeur et des Muscles", Phymedexp, INSERM, CNRS, Montpellier University , Montpellier, France
| | - Csilla Gergely
- L2C, University of Montpellier , CNRS , Montpellier, France
| | | | - Olivier Cazorla
- Laboratory "Physiologie et Médecine Expérimentale du Coeur et des Muscles", Phymedexp, INSERM, CNRS, Montpellier University , Montpellier, France
| |
Collapse
|
9
|
Fukuda N, Granzier H, Ishiwata S, Morimoto S. Editorial: Recent Advances on Myocardium Physiology, Volume II. Front Physiol 2023; 14:1170396. [PMID: 37008018 PMCID: PMC10053225 DOI: 10.3389/fphys.2023.1170396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 02/27/2023] [Indexed: 03/14/2023] Open
Affiliation(s)
- Norio Fukuda
- Department of Cell Physiology, The Jikei University School of Medicine, Tokyo, Japan
- *Correspondence: Norio Fukuda,
| | - Henk Granzier
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ, United States
| | - Shin’ichi Ishiwata
- Department of Physics, Faculty of Science and Engineering, Waseda University, Tokyo, Japan
| | - Sachio Morimoto
- School of Health Sciences at Fukuoka, International University of Health and Welfare, Fukuoka, Japan
| |
Collapse
|
10
|
Shintani SA, Yamaguchi S, Takadama H. Real-Time Scanning Electron Microscopy of Unfixed Tissue in Solution using a Deformable and Electron-Transmissive Film. Microscopy (Oxf) 2022; 71:297-301. [PMID: 35711152 PMCID: PMC9535786 DOI: 10.1093/jmicro/dfac030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 06/08/2022] [Accepted: 06/14/2022] [Indexed: 11/14/2022] Open
Abstract
It is difficult to use scanning electron microscopy to observe the structure and movement of biological tissue immersed in the solution. To enable such observations, we created a highly deformable and electron-transmissive polyimide film that can withstand the pressure difference between the high-vacuum electron column and the atmospheric-pressure sample chamber. With this film, we used scanning electron microscopy to measure the intrinsic fine structure and movement of the contractile fibers of excised mouse heart immersed in physiological solutions. Our measurements revealed that the excised heart is a dynamic tissue that undergoes relaxation oscillation based on a three-dimensional force balance.
Collapse
Affiliation(s)
- Seine A Shintani
- Department of Biomedical Sciences, College of Life and Health Sciences, Chubu University, Kasugai, Aichi 487-8501, Japan
| | - Seiji Yamaguchi
- Department of Biomedical Sciences, College of Life and Health Sciences, Chubu University, Kasugai, Aichi 487-8501, Japan
| | - Hiroaki Takadama
- Department of Biomedical Sciences, College of Life and Health Sciences, Chubu University, Kasugai, Aichi 487-8501, Japan
| |
Collapse
|
11
|
Shintani SA. Hyperthermal sarcomeric oscillations generated in warmed cardiomyocytes control amplitudes with chaotic properties while keeping cycles constant. Biochem Biophys Res Commun 2022; 611:8-13. [DOI: 10.1016/j.bbrc.2022.04.055] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Accepted: 04/12/2022] [Indexed: 11/02/2022]
|
12
|
Lookin O, Khokhlova A, Myachina T, Butova X, Cazorla O, de Tombe P. Contractile State Dependent Sarcomere Length Variability in Isolated Guinea-Pig Cardiomyocytes. Front Physiol 2022; 13:857471. [PMID: 35444559 PMCID: PMC9013801 DOI: 10.3389/fphys.2022.857471] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 03/11/2022] [Indexed: 11/13/2022] Open
Abstract
Cardiomyocytes contract keeping their sarcomere length (SL) close to optimal values for force generation. Transmural heterogeneity in SL across the ventricular wall coordinates the contractility of the whole-ventricle. SL heterogeneity (variability) exists not only at the tissue (macroscale) level, but also presents at the level of a single cardiomyocyte (microscale level). However, transmural differences in intracellular SL variability and its possible dependence on the state of contraction (e.g. end-diastole or end-systole) have not been previously reported. In the present study, we studied three aspects of sarcomere-to-sarcomere variability in intact cardiomyocytes isolated from the left ventricle of healthy guinea-pig: 1) transmural differences in SL distribution between subepi- (EPI) and subendocardial (ENDO) cardiomyocytes; 2) the dependence of intracellular variability in SL upon the state of contraction; 3) local differences in SL variability, comparing SL distributions between central and peripheral regions within the cardiomyocyte. To characterize the intracellular variability of SL, we used different normality tests for the assessment of SL distributions, as well as nonparametric coefficients to quantify the variability. We found that individual SL values in the end-systolic state of contraction followed a normal distribution to a lesser extent as compared to the end-diastolic state of contraction (∼1.3-fold and ∼1.6-fold in ENDO and EPI, respectively). The relative and absolute coefficients of sarcomere-to-sarcomere variability in end-systolic SL were significantly greater (∼1.3-fold) as compared to end-diastolic SL. This was independent of both the transmural region across the left ventricle and the intracellular region within the cardiomyocyte. We conclude that the intracellular variability in SL, which exists in normal intact guinea-pig cardiomyocytes, is affected by the contractile state of the myocyte. This phenomenon may play a role in inter-sarcomere communication in the beating heart.
Collapse
Affiliation(s)
- Oleg Lookin
- Institute of Immunology and Physiology, Ural Branch of Russian Academy of Sciences, Yekaterinburg, Russia
- *Correspondence: Oleg Lookin,
| | - Anastasia Khokhlova
- Institute of Immunology and Physiology, Ural Branch of Russian Academy of Sciences, Yekaterinburg, Russia
| | - Tatiana Myachina
- Institute of Immunology and Physiology, Ural Branch of Russian Academy of Sciences, Yekaterinburg, Russia
| | - Xenia Butova
- Institute of Immunology and Physiology, Ural Branch of Russian Academy of Sciences, Yekaterinburg, Russia
| | - Olivier Cazorla
- Laboratoire “Physiologie et Médecine Expérimentale du Coeur et des Muscles”, Phymedexp, INSERM—CNRS - Montpellier University, Montpellier, France
| | - Pieter de Tombe
- Laboratoire “Physiologie et Médecine Expérimentale du Coeur et des Muscles”, Phymedexp, INSERM—CNRS - Montpellier University, Montpellier, France
- Department of Physiology and Biophysics, University of Illinois at Chicago, Chicago, IL, United States
| |
Collapse
|
13
|
Shintani SA. Does the Hyperthermal Sarcomeric Oscillations Manifested by Body Temperature Support the Periodic Ventricular Dilation With Each Heartbeat? Front Physiol 2022; 13:846206. [PMID: 35418878 PMCID: PMC8996058 DOI: 10.3389/fphys.2022.846206] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 03/14/2022] [Indexed: 11/30/2022] Open
|
14
|
Kobirumaki-Shimozawa F, Shimozawa T, Oyama K, Baba S, Li J, Nakanishi T, Terui T, Louch WE, Ishiwata S, Fukuda N. Synchrony of sarcomeric movement regulates left ventricular pump function in the in vivo beating mouse heart. J Gen Physiol 2021; 153:212675. [PMID: 34605861 PMCID: PMC8493835 DOI: 10.1085/jgp.202012860] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 09/03/2021] [Indexed: 11/20/2022] Open
Abstract
Sarcomeric contraction in cardiomyocytes serves as the basis for the heart's pump functions. It has generally been considered that in cardiac muscle as well as in skeletal muscle, sarcomeres equally contribute to myofibrillar dynamics in myocytes at varying loads by producing similar levels of active and passive force. In the present study, we expressed α-actinin-AcGFP in Z-disks to analyze dynamic behaviors of sequentially connected individual sarcomeres along a myofibril in a left ventricular (LV) myocyte of the in vivo beating mouse heart. To quantify the magnitude of the contribution of individual sarcomeres to myofibrillar dynamics, we introduced the novel parameter "contribution index" (CI) to measure the synchrony in movements between a sarcomere and a myofibril (from -1 [complete asynchrony] to 1 [complete synchrony]). First, CI varied markedly between sarcomeres, with an average value of ∼0.3 during normal systole. Second, when the movements between adjacent sarcomeres were asynchronous (CI < 0), a sarcomere and the ones next to the adjacent sarcomeres and farther away moved in synchrony (CI > 0) along a myofibril. Third, when difference in LV pressure in diastole and systole (ΔLVP) was lowered to <10 mm Hg, diastolic sarcomere length increased. Under depressed conditions, the movements between adjacent sarcomeres were in marked asynchrony (CI, -0.3 to -0.4), and, as a result, average CI was linearly decreased in association with a decrease in ΔLVP. These findings suggest that in the left ventricle of the in vivo beating mouse heart, (1) sarcomeres heterogeneously contribute to myofibrillar dynamics due to an imbalance of active and passive force between neighboring sarcomeres, (2) the force imbalance is pronounced under depressed conditions coupled with a marked increase in passive force and the ensuing tug-of-war between sarcomeres, and (3) sarcomere synchrony via the distal intersarcomere interaction regulates the heart's pump function in coordination with myofibrillar contractility.
Collapse
Affiliation(s)
| | - Togo Shimozawa
- Technical Division, School of Science, The University of Tokyo, Tokyo, Japan
| | - Kotaro Oyama
- Department of Cell Physiology, The Jikei University School of Medicine, Tokyo, Japan.,Quantum Beam Science Research Directorate, National Institutes for Quantum and Radiological Science and Technology, Gunma, Japan
| | - Shunsuke Baba
- Department of Pediatrics, The Jikei University School of Medicine, Tokyo, Japan
| | - Jia Li
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - Tomohiro Nakanishi
- Department of Cell Physiology, The Jikei University School of Medicine, Tokyo, Japan
| | - Takako Terui
- Department of Anesthesiology, The Jikei University School of Medicine, Tokyo, Japan
| | - William E Louch
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway.,K.G. Jebsen Center for Cardiac Research, University of Oslo, Oslo, Norway
| | - Shin'ichi Ishiwata
- Department of Physics, Faculty of Science and Engineering, Waseda University, Tokyo, Japan
| | - Norio Fukuda
- Department of Cell Physiology, The Jikei University School of Medicine, Tokyo, Japan
| |
Collapse
|
15
|
Liang Y, Mitriashkin A, Lim TT, Goh JCH. Conductive polypyrrole-encapsulated silk fibroin fibers for cardiac tissue engineering. Biomaterials 2021; 276:121008. [PMID: 34265591 DOI: 10.1016/j.biomaterials.2021.121008] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 06/23/2021] [Accepted: 07/02/2021] [Indexed: 02/07/2023]
Abstract
Polypyrrole (PPy) has been utilized in smart scaffolds to improve the functionality of the engineered cardiac tissue. Compared to the commonly used aqueous coating, here, PPy was blended into silk fibroin (SF) solution to electrospin conductive PPy-encapsulated SF nanofibers. Combinations of various SF concentrations (5%, 7%, and 12%) and different PPy-to-SF ratios (15:85, 30:70, and 40:60) were compared. PPy reduced the fiber diameter (0.431 ± 0.060 μm), better-mimicking the myocardium fibrils. Conductive mats with 7% SF showed the closest mechanical properties (1.437 ± 0.044 MPa) to the native myocardium; meanwhile, a PPy-to-SF ratio of 15:85 exhibited sufficient electrical conductivity for cardiomyocytes (CMs). In vitro studies using three different types of CM demonstrated that the hybrid mats support CM contraction. Primary neonatal rat CMs on the mat with a PPy-to-SF ratio of 15:85 were elongated and orientated anisotropically with locally organized sarcomeric striations. By contrast, human-induced pluripotent stem cell derived-CMs on the mat with a PPy-to-SF ratio of 30:70 exhibited the strongest contractions. Contraction synchrony was further improved by external stimulation. Taken together, these findings indicated the great potential of the PPy-encapsulated SF electrospun mat for cardiac tissue engineering.
Collapse
Affiliation(s)
- Yeshi Liang
- National University of Singapore, Department of Biomedical Engineering, 4 ENGINEERING DR 3, #04-08, 117583, Singapore
| | - Aleksandr Mitriashkin
- National University of Singapore, Department of Biomedical Engineering, 4 ENGINEERING DR 3, #04-08, 117583, Singapore
| | - Ting Ting Lim
- National University of Singapore, Department of Biomedical Engineering, 4 ENGINEERING DR 3, #04-08, 117583, Singapore
| | - James Cho-Hong Goh
- National University of Singapore, Department of Biomedical Engineering, 4 ENGINEERING DR 3, #04-08, 117583, Singapore; National University of Singapore, Life Sciences Institute, Tissue Engineering Programme, DSO (Kent Ridge) Building, 27 Medical Drive, #04-01, 117510, Singapore.
| |
Collapse
|
16
|
Oyama TG, Oyama K, Kimura A, Yoshida F, Ishida R, Yamazaki M, Miyoshi H, Taguchi M. Collagen hydrogels with controllable combined cues of elasticity and topography to regulate cellular processes. Biomed Mater 2021; 16. [PMID: 34030146 DOI: 10.1088/1748-605x/ac0452] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 05/24/2021] [Indexed: 12/13/2022]
Abstract
The elasticity, topography, and chemical composition of cell culture substrates influence cell behavior. However, the cellular responses toin vivoextracellular matrix (ECM), a hydrogel of proteins (mainly collagen) and polysaccharides, remain unknown as there is no substrate that preserves the key features of native ECM. This study introduces novel collagen hydrogels that can combine elasticity, topography, and composition and reproduce the correlation between collagen concentration (C) and elastic modulus (E) in native ECM. A simple reagent-free method based on radiation-cross-linking altered ECM-derived collagen I and hydrolyzed collagen (gelatin or collagen peptide) solutions into hydrogels with tunable elastic moduli covering a broad range of soft tissues (E= 1-236 kPa) originating from the final collagen density in the hydrogels (C= 0.3%-14%) and precise microtopographies (⩾1 μm). The amino acid composition ratio was almost unchanged by this method, and the obtained collagen hydrogels maintained enzyme-mediated degradability. These collagen hydrogels enabled investigation of the responses of cell lines (fibroblasts, epithelial cells, and myoblasts) and primary cells (rat cardiomyocytes) to soft topographic cues such as thosein vivounder the positive correlation betweenCandE. These cells adhered directly to the collagen hydrogels and chose to stay atop or spontaneously migrate into them depending onE, that is, the density of the collagen network,C. We revealed that the cell morphology and actin cytoskeleton organization conformed to the topographic cues, even when they are as soft asin vivoECM. The stiffer microgrooves on collagen hydrogels aligned cells more effectively, except HeLa cells that underwent drastic changes in cell morphology. These collagen hydrogels may not only reducein vivoandin vitrocell behavioral disparity but also facilitate artificial ECM design to control cell function and fate for applications in tissue engineering and regenerative medicine.
Collapse
Affiliation(s)
- Tomoko G Oyama
- Quantum Beam Science Research Directorate, National Institutes for Quantum and Radiological Science and Technology (QST), 1233 Watanukimachi, Takasaki-shi, Gunma 370-1292, Japan
| | - Kotaro Oyama
- Quantum Beam Science Research Directorate, National Institutes for Quantum and Radiological Science and Technology (QST), 1233 Watanukimachi, Takasaki-shi, Gunma 370-1292, Japan.,PRESTO, Japan Science and Technology Agency (JST), 4-1-8 Honcho, Kawaguchi-shi, Saitama 332-0012, Japan
| | - Atsushi Kimura
- Quantum Beam Science Research Directorate, National Institutes for Quantum and Radiological Science and Technology (QST), 1233 Watanukimachi, Takasaki-shi, Gunma 370-1292, Japan
| | - Fumiya Yoshida
- Quantum Beam Science Research Directorate, National Institutes for Quantum and Radiological Science and Technology (QST), 1233 Watanukimachi, Takasaki-shi, Gunma 370-1292, Japan.,Graduate School of Science and Technology, Gunma University, 1-5-1 Tenjin-cho, Kiryu-shi, Gunma 376-0052, Japan
| | - Ryo Ishida
- Graduate School of Systems Design, Tokyo Metropolitan University, 1-1 Minami-Osawa, Hachioji-shi, Tokyo 192-0397, Japan
| | - Masashi Yamazaki
- Graduate School of Systems Design, Tokyo Metropolitan University, 1-1 Minami-Osawa, Hachioji-shi, Tokyo 192-0397, Japan
| | - Hiromi Miyoshi
- Graduate School of Systems Design, Tokyo Metropolitan University, 1-1 Minami-Osawa, Hachioji-shi, Tokyo 192-0397, Japan
| | - Mitsumasa Taguchi
- Quantum Beam Science Research Directorate, National Institutes for Quantum and Radiological Science and Technology (QST), 1233 Watanukimachi, Takasaki-shi, Gunma 370-1292, Japan
| |
Collapse
|
17
|
Shintani SA. Effects of high-pressure treatment on the structure and function of myofibrils. Biophys Physicobiol 2021; 18:85-95. [PMID: 33977006 PMCID: PMC8056150 DOI: 10.2142/biophysico.bppb-v18.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 03/23/2021] [Indexed: 12/01/2022] Open
Abstract
The effects of high pressure (40-70 MPa) on the structure and function of myofibrils were investigated by high pressure microscopy. When this pressure was applied to myofibrils immersed in relaxing solution, the sarcomere length remained almost unchanged, and the A band became shorter and wider. The higher the applied pressure, the faster the change. However, shortening and widening of the A band were not observed when pressure was applied to myofibrils immersed in a solution obtained by omitting ATP from the relaxing solution. However, even under these conditions, structural loss, such as loss of the Z-line structure, occurred. In order to evaluate the consequences of this pressure-treated myofibril, the oscillatory movement of sarcomere (sarcomeric oscillation) was evoked and observed. It was possible to induce sarcomeric oscillation even in pressure-treated myofibrils whose structure was destroyed. The pressurization reduced the total power of the sarcomeric oscillation, but did not change the average frequency. The average frequency did not change even when a pressure of about 40 MPa was applied during sarcomeric oscillation. The average frequency returned to the original when the pressure was returned to the original value after applying stronger pressure to prevent the sarcomere oscillation from being observed. This result suggests that the decrease in the number of myosin molecules forming the crossbridge does not affect the average frequency of sarcomeric oscillation. This fact will help build a mechanical hypothesis for sarcomeric oscillation. The pressurization treatment is a unique method for controlling the structure of myofibrils as described above.
Collapse
Affiliation(s)
- Seine A Shintani
- Department of Biomedical Sciences, College of Life and Health Sciences, Chubu University, Kasugai, Aichi 487-8501, Japan
| |
Collapse
|
18
|
Petersen AP, Cho N, Lyra-Leite DM, Santoso JW, Gupta D, Ariyasinghe NR, McCain ML. Regulation of calcium dynamics and propagation velocity by tissue microstructure in engineered strands of cardiac tissue. Integr Biol (Camb) 2021; 12:34-46. [PMID: 32118279 DOI: 10.1093/intbio/zyaa003] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 01/27/2020] [Accepted: 01/30/2020] [Indexed: 01/13/2023]
Abstract
Disruptions to cardiac tissue microstructure are common in diseased or injured myocardium and are known substrates for arrhythmias. However, we have a relatively coarse understanding of the relationships between myocardial tissue microstructure, propagation velocity and calcium cycling, due largely to the limitations of conventional experimental tools. To address this, we used microcontact printing to engineer strands of cardiac tissue with eight different widths, quantified several structural and functional parameters and established correlation coefficients. As strand width increased, actin alignment, nuclei density, sarcomere index and cell aspect ratio decreased with unique trends. The propagation velocity of calcium waves decreased and the rise time of calcium transients increased with increasing strand width. The decay time constant of calcium transients decreased and then slightly increased with increasing strand width. Based on correlation coefficients, actin alignment was the strongest predictor of propagation velocity and calcium transient rise time. Sarcomere index and cell aspect ratio were also strongly correlated with propagation velocity. Actin alignment, sarcomere index and cell aspect ratio were all weak predictors of the calcium transient decay time constant. We also measured the expression of several genes relevant to propagation and calcium cycling and found higher expression of the genes that encode for connexin 43 (Cx43) and a subunit of L-type calcium channels in thin strands compared to isotropic tissues. Together, these results suggest that thinner strands have higher values of propagation velocity and calcium transient rise time due to a combination of favorable tissue microstructure and enhanced expression of genes for Cx43 and L-type calcium channels. These data are important for defining how microstructural features regulate intercellular and intracellular calcium handling, which is needed to understand mechanisms of propagation in physiological situations and arrhythmogenesis in pathological situations.
Collapse
Affiliation(s)
- Andrew P Petersen
- Laboratory for Living Systems Engineering, Department of Biomedical Engineering, USC Viterbi School of Engineering, University of Southern California, Los Angeles, CA, USA
| | - Nathan Cho
- Laboratory for Living Systems Engineering, Department of Biomedical Engineering, USC Viterbi School of Engineering, University of Southern California, Los Angeles, CA, USA
| | - Davi M Lyra-Leite
- Laboratory for Living Systems Engineering, Department of Biomedical Engineering, USC Viterbi School of Engineering, University of Southern California, Los Angeles, CA, USA
| | - Jeffrey W Santoso
- Laboratory for Living Systems Engineering, Department of Biomedical Engineering, USC Viterbi School of Engineering, University of Southern California, Los Angeles, CA, USA
| | - Divya Gupta
- Laboratory for Living Systems Engineering, Department of Biomedical Engineering, USC Viterbi School of Engineering, University of Southern California, Los Angeles, CA, USA
| | - Nethika R Ariyasinghe
- Laboratory for Living Systems Engineering, Department of Biomedical Engineering, USC Viterbi School of Engineering, University of Southern California, Los Angeles, CA, USA
| | - Megan L McCain
- Laboratory for Living Systems Engineering, Department of Biomedical Engineering, USC Viterbi School of Engineering, University of Southern California, Los Angeles, CA, USA.,Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
19
|
Mechanism of contraction rhythm homeostasis for hyperthermal sarcomeric oscillations of neonatal cardiomyocytes. Sci Rep 2020; 10:20468. [PMID: 33235297 PMCID: PMC7687892 DOI: 10.1038/s41598-020-77443-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 11/10/2020] [Indexed: 11/08/2022] Open
Abstract
The heart rhythm is maintained by oscillatory changes in [Ca2+]. However, it has been suggested that the rapid drop in blood pressure that occurs with a slow decrease in [Ca2+] preceding early diastolic filling is related to the mechanism of rapid sarcomere lengthening associated with spontaneous tension oscillation at constant intermediate [Ca2+]. Here, we analyzed a new type of oscillation called hyperthermal sarcomeric oscillation. Sarcomeres in rat neonatal cardiomyocytes that were warmed at 38-42 °C oscillated at both slow (~ 1.4 Hz), Ca2+-dependent frequencies and fast (~ 7 Hz), Ca2+-independent frequencies. Our high-precision experimental observations revealed that the fast sarcomeric oscillation had high and low peak-to-peak amplitude at low and high [Ca2+], respectively; nevertheless, the oscillation period remained constant. Our numerical simulations suggest that the regular and fast rthythm is maintained by the unchanged cooperative binding behavior of myosin molecules during slow oscillatory changes in [Ca2+].
Collapse
|
20
|
Oyama K, Gotoh M, Hosaka Y, Oyama TG, Kubonoya A, Suzuki Y, Arai T, Tsukamoto S, Kawamura Y, Itoh H, Shintani SA, Yamazawa T, Taguchi M, Ishiwata S, Fukuda N. Single-cell temperature mapping with fluorescent thermometer nanosheets. J Gen Physiol 2020; 152:151786. [PMID: 32421782 PMCID: PMC7398143 DOI: 10.1085/jgp.201912469] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Accepted: 04/17/2020] [Indexed: 01/09/2023] Open
Abstract
Recent studies using intracellular thermometers have shown that the temperature inside cultured single cells varies heterogeneously on the order of 1°C. However, the reliability of intracellular thermometry has been challenged both experimentally and theoretically because it is, in principle, exceedingly difficult to exclude the effects of nonthermal factors on the thermometers. To accurately measure cellular temperatures from outside of cells, we developed novel thermometry with fluorescent thermometer nanosheets, allowing for noninvasive global temperature mapping of cultured single cells. Various types of cells, i.e., HeLa/HEK293 cells, brown adipocytes, cardiomyocytes, and neurons, were cultured on nanosheets containing the temperature-sensitive fluorescent dye europium (III) thenoyltrifluoroacetonate trihydrate. First, we found that the difference in temperature on the nanosheet between nonexcitable HeLa/HEK293 cells and the culture medium was less than 0.2°C. The expression of mutated type 1 ryanodine receptors (R164C or Y523S) in HEK293 cells that cause Ca2+ leak from the endoplasmic reticulum did not change the cellular temperature greater than 0.1°C. Yet intracellular thermometry detected an increase in temperature of greater than ∼2°C at the endoplasmic reticulum in HeLa cells upon ionomycin-induced intracellular Ca2+ burst; global cellular temperature remained nearly constant within ±0.2°C. When rat neonatal cardiomyocytes or brown adipocytes were stimulated by a mitochondrial uncoupling reagent, the temperature was nearly unchanged within ±0.1°C. In cardiomyocytes, the temperature was stable within ±0.01°C during contractions when electrically stimulated at 2 Hz. Similarly, when rat hippocampal neurons were electrically stimulated at 0.25 Hz, the temperature was stable within ±0.03°C. The present findings with nonexcitable and excitable cells demonstrate that heat produced upon activation in single cells does not uniformly increase cellular temperature on a global basis, but merely forms a local temperature gradient on the order of ∼1°C just proximal to a heat source, such as the endoplasmic/sarcoplasmic reticulum ATPase.
Collapse
Affiliation(s)
- Kotaro Oyama
- Quantum Beam Science Research Directorate, National Institutes for Quantum and Radiological Science and Technology, Gunma, Japan.,Precursory Research for Embryonic Science and Technology, Japan Science and Technology Agency, Saitama, Japan.,Department of Cell Physiology, The Jikei University School of Medicine, Tokyo, Japan.,Department of Physics, School of Advanced Science and Engineering, Waseda University, Tokyo, Japan
| | - Mizuho Gotoh
- Department of Cell Physiology, The Jikei University School of Medicine, Tokyo, Japan.,Department of Physics, School of Advanced Science and Engineering, Waseda University, Tokyo, Japan
| | - Yuji Hosaka
- Quantum Beam Science Research Directorate, National Institutes for Quantum and Radiological Science and Technology, Gunma, Japan
| | - Tomoko G Oyama
- Quantum Beam Science Research Directorate, National Institutes for Quantum and Radiological Science and Technology, Gunma, Japan
| | - Aya Kubonoya
- Department of Cell Physiology, The Jikei University School of Medicine, Tokyo, Japan
| | - Yuma Suzuki
- Department of Cell Physiology, The Jikei University School of Medicine, Tokyo, Japan
| | - Tomomi Arai
- Department of Cell Physiology, The Jikei University School of Medicine, Tokyo, Japan.,Department of Physics, School of Advanced Science and Engineering, Waseda University, Tokyo, Japan
| | - Seiichi Tsukamoto
- Department of Cell Physiology, The Jikei University School of Medicine, Tokyo, Japan
| | - Yuki Kawamura
- Department of Pure and Applied Physics, Graduate School of Advanced Science and Engineering, Waseda University, Tokyo, Japan
| | - Hideki Itoh
- Department of Pure and Applied Physics, Graduate School of Advanced Science and Engineering, Waseda University, Tokyo, Japan.,Epithelial Biology Laboratory, Institute of Medical Biology, Agency for Science, Technology and Research, Singapore
| | - Seine A Shintani
- Department of Biomedical Sciences, College of Life and Health Sciences, Chubu University, Aichi, Japan
| | - Toshiko Yamazawa
- Department of Molecular Physiology, The Jikei University School of Medicine, Tokyo, Japan
| | - Mitsumasa Taguchi
- Quantum Beam Science Research Directorate, National Institutes for Quantum and Radiological Science and Technology, Gunma, Japan
| | - Shin'ichi Ishiwata
- Department of Physics, Faculty of Science and Engineering, Waseda University, Tokyo, Japan
| | - Norio Fukuda
- Department of Cell Physiology, The Jikei University School of Medicine, Tokyo, Japan
| |
Collapse
|
21
|
Kagemoto T, Oyama K, Yamane M, Tsukamoto S, Kobirumaki-Shimozawa F, Li A, Dos Remedios C, Fukuda N, Ishiwata S. Sarcomeric Auto-Oscillations in Single Myofibrils From the Heart of Patients With Dilated Cardiomyopathy. Circ Heart Fail 2019; 11:e004333. [PMID: 29980594 DOI: 10.1161/circheartfailure.117.004333] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Accepted: 05/31/2018] [Indexed: 01/30/2023]
Abstract
BACKGROUND Left ventricular wall motion is depressed in patients with dilated cardiomyopathy (DCM). However, whether or not the depressed left ventricular wall motion is caused by impairment of sarcomere dynamics remains to be fully clarified. METHODS AND RESULTS We analyzed the mechanical properties of single sarcomere dynamics during sarcomeric auto-oscillations (calcium spontaneous oscillatory contractions [Ca-SPOC]) that occurred at partial activation under the isometric condition in myofibrils from donor hearts and from patients with severe DCM (New York Heart Association classification III-IV). Ca-SPOC reproducibly occurred in the presence of 1 μmol/L free Ca2+ in both nonfailing and DCM myofibrils, and sarcomeres exhibited a saw-tooth waveform along single myofibrils composed of quick lengthening and slow shortening. The period of Ca-SPOC was longer in DCM myofibrils than in nonfailing myofibrils, in association with prolonged shortening time. Lengthening time was similar in both groups. Then, we performed Tn (troponin) exchange in myofibrils with a DCM-causing homozygous mutation (K36Q) in cTnI (cardiac TnI). On exchange with the Tn complex from healthy porcine ventricles, period, shortening time, and shortening velocity in cTnI-K36Q myofibrils became similar to those in Tn-reconstituted nonfailing myofibrils. Protein kinase A abbreviated period in both Tn-reconstituted nonfailing and cTnI-K36Q myofibrils, demonstrating acceleration of cross-bridge kinetics. CONCLUSIONS Sarcomere dynamics was found to be depressed under loaded conditions in DCM myofibrils because of impairment of thick-thin filament sliding. Thus, microscopic analysis of Ca-SPOC in human cardiac myofibrils is beneficial to systematically unveil the kinetic properties of single sarcomeres in various types of heart disease.
Collapse
Affiliation(s)
- Tatsuya Kagemoto
- Department of Physics, Faculty of Science and Engineering, Waseda University, Tokyo, Japan (T.K., M.Y., S.I.)
| | - Kotaro Oyama
- Department of Cell Physiology, The Jikei University School of Medicine, Tokyo, Japan (K.O., S.T., F.K.-S., N.F.)
| | - Mitsunori Yamane
- Department of Physics, Faculty of Science and Engineering, Waseda University, Tokyo, Japan (T.K., M.Y., S.I.)
| | - Seiichi Tsukamoto
- Department of Cell Physiology, The Jikei University School of Medicine, Tokyo, Japan (K.O., S.T., F.K.-S., N.F.)
| | - Fuyu Kobirumaki-Shimozawa
- Department of Cell Physiology, The Jikei University School of Medicine, Tokyo, Japan (K.O., S.T., F.K.-S., N.F.)
| | - Amy Li
- School of Medical Sciences, Bosch Institute, The University of Sydney, Australia (A.L., C.D.R.)
| | - Cristobal Dos Remedios
- School of Medical Sciences, Bosch Institute, The University of Sydney, Australia (A.L., C.D.R.)
| | - Norio Fukuda
- Department of Cell Physiology, The Jikei University School of Medicine, Tokyo, Japan (K.O., S.T., F.K.-S., N.F.).
| | - Shin'ichi Ishiwata
- Department of Physics, Faculty of Science and Engineering, Waseda University, Tokyo, Japan (T.K., M.Y., S.I.).
| |
Collapse
|
22
|
Effect of myofibril passive elastic properties on the mechanical communication between motor proteins on adjacent sarcomeres. Sci Rep 2019; 9:9355. [PMID: 31249348 PMCID: PMC6597731 DOI: 10.1038/s41598-019-45772-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Accepted: 06/10/2019] [Indexed: 11/08/2022] Open
Abstract
Rapid sarcomere lengthening waves propagate along a single muscle myofibril during spontaneous oscillatory contraction (SPOC). In asynchronous insect flight muscles, SPOC is thought to be almost completely synchronized over the entire myofibril. This phenomenon does not require Ca2+ regulation of the dynamics of the motor proteins, and cannot be explained simply by the longitudinal mechanical equilibrium among sarcomeres in the myofibril. In the present study, we rationalize these phenomena by considering the lateral mechanical equilibrium, in which two tensions originating from the inverse relationship between sarcomere length and lattice spacing, along with the lattice alignment, play important roles in the mechanical communication between motor proteins on adjacent filaments via the Z-disc. The proposed model is capable of explaining various SPOC phenomena based on the stochastic power-stroke mechanism of motor proteins, which responds to temporal changes in longitudinal mechanical load.
Collapse
|
23
|
Toepfer CN, Sharma A, Cicconet M, Garfinkel AC, Mücke M, Neyazi M, Willcox JA, Agarwal R, Schmid M, Rao J, Ewoldt J, Pourquié O, Chopra A, Chen CS, Seidman JG, Seidman CE. SarcTrack. Circ Res 2019; 124:1172-1183. [PMID: 30700234 PMCID: PMC6485312 DOI: 10.1161/circresaha.118.314505] [Citation(s) in RCA: 87] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 01/18/2019] [Accepted: 01/30/2019] [Indexed: 12/18/2022]
Abstract
RATIONALE Human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) in combination with CRISPR/Cas9 genome editing provide unparalleled opportunities to study cardiac biology and disease. However, sarcomeres, the fundamental units of myocyte contraction, are immature and nonlinear in hiPSC-CMs, which technically challenge accurate functional interrogation of contractile parameters in beating cells. Furthermore, existing analysis methods are relatively low-throughput, indirectly assess contractility, or only assess well-aligned sarcomeres found in mature cardiac tissues. OBJECTIVE We aimed to develop an analysis platform that directly, rapidly, and automatically tracks sarcomeres in beating cardiomyocytes. The platform should assess sarcomere content, contraction and relaxation parameters, and beat rate. METHODS AND RESULTS We developed SarcTrack, a MatLab software that monitors fluorescently tagged sarcomeres in hiPSC-CMs. The algorithm determines sarcomere content, sarcomere length, and returns rates of sarcomere contraction and relaxation. By rapid measurement of hundreds of sarcomeres in each hiPSC-CM, SarcTrack provides large data sets for robust statistical analyses of multiple contractile parameters. We validated SarcTrack by analyzing drug-treated hiPSC-CMs, confirming the contractility effects of compounds that directly activate (CK-1827452) or inhibit (MYK-461) myosin molecules or indirectly alter contractility (verapamil and propranolol). SarcTrack analysis of hiPSC-CMs carrying a heterozygous truncation variant in the myosin-binding protein C ( MYBPC3) gene, which causes hypertrophic cardiomyopathy, recapitulated seminal disease phenotypes including cardiac hypercontractility and diminished relaxation, abnormalities that normalized with MYK-461 treatment. CONCLUSIONS SarcTrack provides a direct and efficient method to quantitatively assess sarcomere function. By improving existing contractility analysis methods and overcoming technical challenges associated with functional evaluation of hiPSC-CMs, SarcTrack enhances translational prospects for sarcomere-regulating therapeutics and accelerates interrogation of human cardiac genetic variants.
Collapse
Affiliation(s)
- Christopher N. Toepfer
- From the Department of Genetics (C.N.T., A.S., A.C.G., M.N., J.A.L.W., R.A., M.S., J.R., O.P., J.G.S., C.E.S.), Harvard Medical School, Boston, MA
- Cardiovascular Medicine, Radcliffe Department of Medicine (C.N.T.), University of Oxford, United Kingdom
- Wellcome Centre for Human Genetics (C.N.T.), University of Oxford, United Kingdom
| | - Arun Sharma
- From the Department of Genetics (C.N.T., A.S., A.C.G., M.N., J.A.L.W., R.A., M.S., J.R., O.P., J.G.S., C.E.S.), Harvard Medical School, Boston, MA
| | - Marcelo Cicconet
- Image and Data Analysis Core (M.C.), Harvard Medical School, Boston, MA
| | - Amanda C. Garfinkel
- From the Department of Genetics (C.N.T., A.S., A.C.G., M.N., J.A.L.W., R.A., M.S., J.R., O.P., J.G.S., C.E.S.), Harvard Medical School, Boston, MA
| | - Michael Mücke
- Cardiovascular and Metabolic Sciences, Max Delbrück Center for Molecular Medicine, Berlin, Germany (M.M.)
- German Centre for Cardiovascular Research, Berlin, Germany (M.M.)
- Charité-Universitätsmedizin, Berlin, Germany (M.M.)
| | - Meraj Neyazi
- From the Department of Genetics (C.N.T., A.S., A.C.G., M.N., J.A.L.W., R.A., M.S., J.R., O.P., J.G.S., C.E.S.), Harvard Medical School, Boston, MA
- Hannover Medical School, Germany (M.N.)
| | - Jon A.L. Willcox
- From the Department of Genetics (C.N.T., A.S., A.C.G., M.N., J.A.L.W., R.A., M.S., J.R., O.P., J.G.S., C.E.S.), Harvard Medical School, Boston, MA
| | - Radhika Agarwal
- From the Department of Genetics (C.N.T., A.S., A.C.G., M.N., J.A.L.W., R.A., M.S., J.R., O.P., J.G.S., C.E.S.), Harvard Medical School, Boston, MA
| | - Manuel Schmid
- From the Department of Genetics (C.N.T., A.S., A.C.G., M.N., J.A.L.W., R.A., M.S., J.R., O.P., J.G.S., C.E.S.), Harvard Medical School, Boston, MA
- Deutsches Herzzentrum München, Technische Universität München, Germany (M.S.)
| | - Jyoti Rao
- From the Department of Genetics (C.N.T., A.S., A.C.G., M.N., J.A.L.W., R.A., M.S., J.R., O.P., J.G.S., C.E.S.), Harvard Medical School, Boston, MA
- Department of Pathology (J.R., O.P.), Brigham and Women’s Hospital, Boston, MA
- Harvard Stem Cell Institute, Boston, MA (J.R., O.P.)
| | - Jourdan Ewoldt
- Biomedical Engineering, Boston University, MA (J.E., A.C., C.S.C.)
- The Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA (J.E., A.C., C.S.C.)
| | - Olivier Pourquié
- From the Department of Genetics (C.N.T., A.S., A.C.G., M.N., J.A.L.W., R.A., M.S., J.R., O.P., J.G.S., C.E.S.), Harvard Medical School, Boston, MA
- Department of Pathology (J.R., O.P.), Brigham and Women’s Hospital, Boston, MA
- Harvard Stem Cell Institute, Boston, MA (J.R., O.P.)
| | - Anant Chopra
- Biomedical Engineering, Boston University, MA (J.E., A.C., C.S.C.)
- The Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA (J.E., A.C., C.S.C.)
| | - Christopher S. Chen
- Biomedical Engineering, Boston University, MA (J.E., A.C., C.S.C.)
- The Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA (J.E., A.C., C.S.C.)
| | - Jonathan G. Seidman
- From the Department of Genetics (C.N.T., A.S., A.C.G., M.N., J.A.L.W., R.A., M.S., J.R., O.P., J.G.S., C.E.S.), Harvard Medical School, Boston, MA
| | - Christine E. Seidman
- From the Department of Genetics (C.N.T., A.S., A.C.G., M.N., J.A.L.W., R.A., M.S., J.R., O.P., J.G.S., C.E.S.), Harvard Medical School, Boston, MA
- Cardiovascular Division, Department of Medicine (C.E.S.), Brigham and Women’s Hospital, Boston, MA
- Howard Hughes Medical Institute, Chevy Chase, MD (C.E.S.)
| |
Collapse
|
24
|
Optimization of Fluorescent Labeling for In Vivo Nanoimaging of Sarcomeres in the Mouse Heart. BIOMED RESEARCH INTERNATIONAL 2018; 2018:4349170. [PMID: 30211223 PMCID: PMC6126089 DOI: 10.1155/2018/4349170] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Accepted: 06/13/2018] [Indexed: 11/18/2022]
Abstract
The present study was conducted to systematically investigate the optimal viral titer as well as the volume of the adenovirus vector (ADV) that expresses α-actinin-AcGFP in the Z-disks of myocytes in the left ventricle (LV) of mice. An injection of 10 μL ADV at viral titers of 2 to 4 × 1011 viral particles per mL (VP/mL) into the LV epicardial surface consistently expressed α-actinin-AcGFP in myocytes in vivo, with the fraction of AcGFP-expressing myocytes at ~10%. Our analysis revealed that SL was ~1.90-2.15 μm upon heart arrest via deep anesthesia. Likewise, we developed a novel fluorescence labeling method of the T-tubular system by treating the LV surface with CellMask Orange (CellMask). We found that the T-tubular distance was ~2.10-2.25 μm, similar to SL, in the healthy heart in vivo. Therefore, the present high-precision visualization method for the Z-disks or the T-tubules is beneficial to unveiling the mechanisms of myocyte contraction in health and disease in vivo.
Collapse
|
25
|
Tsukamoto S, Fujii T, Oyama K, Shintani SA, Shimozawa T, Kobirumaki-Shimozawa F, Ishiwata S, Fukuda N. Simultaneous imaging of local calcium and single sarcomere length in rat neonatal cardiomyocytes using yellow Cameleon-Nano140. J Gen Physiol 2017; 148:341-55. [PMID: 27670899 PMCID: PMC5037341 DOI: 10.1085/jgp.201611604] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Accepted: 08/23/2016] [Indexed: 01/07/2023] Open
Abstract
In cardiac muscle, contraction is triggered by sarcolemmal depolarization, resulting in an intracellular Ca(2+) transient, binding of Ca(2+) to troponin, and subsequent cross-bridge formation (excitation-contraction [EC] coupling). Here, we develop a novel experimental system for simultaneous nano-imaging of intracellular Ca(2+) dynamics and single sarcomere length (SL) in rat neonatal cardiomyocytes. We achieve this by expressing a fluorescence resonance energy transfer (FRET)-based Ca(2+) sensor yellow Cameleon-Nano (YC-Nano) fused to α-actinin in order to localize to the Z disks. We find that, among four different YC-Nanos, α-actinin-YC-Nano140 is best suited for high-precision analysis of EC coupling and α-actinin-YC-Nano140 enables quantitative analyses of intracellular calcium transients and sarcomere dynamics at low and high temperatures, during spontaneous beating and with electrical stimulation. We use this tool to show that calcium transients are synchronized along the length of a myofibril. However, the averaging of SL along myofibrils causes a marked underestimate (∼50%) of the magnitude of displacement because of the different timing of individual SL changes, regardless of the absence or presence of positive inotropy (via β-adrenergic stimulation or enhanced actomyosin interaction). Finally, we find that β-adrenergic stimulation with 50 nM isoproterenol accelerated Ca(2+) dynamics, in association with an approximately twofold increase in sarcomere lengthening velocity. We conclude that our experimental system has a broad range of potential applications for the unveiling molecular mechanisms of EC coupling in cardiomyocytes at the single sarcomere level.
Collapse
Affiliation(s)
- Seiichi Tsukamoto
- Department of Cell Physiology, The Jikei University School of Medicine, Minato-ku, Tokyo 105-8461, Japan
| | - Teruyuki Fujii
- Department of Cell Physiology, The Jikei University School of Medicine, Minato-ku, Tokyo 105-8461, Japan
| | - Kotaro Oyama
- Department of Cell Physiology, The Jikei University School of Medicine, Minato-ku, Tokyo 105-8461, Japan
| | - Seine A Shintani
- Department of Physics, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Togo Shimozawa
- Department of Life Science and Medical Bioscience, School of Advanced Science and Engineering, Waseda University, Sinjuku-ku, Tokyo 162-8480, Japan
| | - Fuyu Kobirumaki-Shimozawa
- Department of Cell Physiology, The Jikei University School of Medicine, Minato-ku, Tokyo 105-8461, Japan
| | - Shin'ichi Ishiwata
- Department of Physics, Faculty of Science and Engineering, Waseda University, Shinjuku-ku, Tokyo 169-8555, Japan
| | - Norio Fukuda
- Department of Cell Physiology, The Jikei University School of Medicine, Minato-ku, Tokyo 105-8461, Japan
| |
Collapse
|
26
|
Noshadi I, Hong S, Sullivan KE, Sani ES, Portillo-Lara R, Tamayol A, Shin SR, Gao AE, Stoppel WL, Black LD, Khademhosseini A, Annabi N. In vitro and in vivo analysis of visible light crosslinkable gelatin methacryloyl (GelMA) hydrogels. Biomater Sci 2017; 5:2093-2105. [PMID: 28805830 PMCID: PMC5614854 DOI: 10.1039/c7bm00110j] [Citation(s) in RCA: 189] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Photocrosslinkable materials have been frequently used for constructing soft and biomimetic hydrogels for tissue engineering. Although ultraviolet (UV) light is commonly used for photocrosslinking such materials, its use has been associated with several biosafety concerns such as DNA damage, accelerated aging of tissues, and cancer. Here we report an injectable visible light crosslinked gelatin-based hydrogel for myocardium regeneration. Mechanical characterization revealed that the compressive moduli of the engineered hydrogels could be tuned in the range of 5-56 kPa by changing the concentrations of the initiator, co-initiator and co-monomer in the precursor formulation. In addition, the average pore sizes (26-103 μm) and swelling ratios (7-13%) were also shown to be tunable by varying the hydrogel formulation. In vitro studies showed that visible light crosslinked GelMA hydrogels supported the growth and function of primary cardiomyocytes (CMs). In addition, the engineered materials were shown to be biocompatible in vivo, and could be successfully delivered to the heart after myocardial infarction in an animal model to promote tissue healing. The developed visible light crosslinked hydrogel could be used for the repair of various soft tissues such as the myocardium and for the treatment of cardiovascular diseases with enhanced therapeutic functionality.
Collapse
Affiliation(s)
- Iman Noshadi
- Biomaterials Innovation Research Center, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, MA 02139, USA
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
| | - Seonki Hong
- Biomaterials Innovation Research Center, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, MA 02139, USA
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
- Center for Systems Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Kelly E. Sullivan
- Department of Biomedical Engineering, Tufts University, Medford, MA 02155, USA
| | - Ehsan Shirzaei Sani
- Department of Chemical Engineering, Northeastern University, Boston, MA, 02115-5000, USA
| | - Roberto Portillo-Lara
- Department of Chemical Engineering, Northeastern University, Boston, MA, 02115-5000, USA
- Centro de Biotecnología FEMSA, Tecnológico de Monterrey, Monterrey, NL, 64700, Mexico
| | - Ali Tamayol
- Biomaterials Innovation Research Center, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, MA 02139, USA
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
| | - Su Ryon Shin
- Biomaterials Innovation Research Center, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, MA 02139, USA
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
| | - Albert E. Gao
- Department of Biomedical Engineering, Tufts University, Medford, MA 02155, USA
| | - Whitney L. Stoppel
- Department of Biomedical Engineering, Tufts University, Medford, MA 02155, USA
| | - Lauren D. Black
- Department of Biomedical Engineering, Tufts University, Medford, MA 02155, USA
- Cellular, Molecular, and Developmental Biology Program, Sackler School for Graduate Biomedical Sciences, Tufts University School of Medicine, Boston, MA 02111, USA
| | - Ali Khademhosseini
- Biomaterials Innovation Research Center, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, MA 02139, USA
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
- Department of Physics, King Abdulaziz University, Jeddah 21569, Saudi Arabia
| | - Nasim Annabi
- Biomaterials Innovation Research Center, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, MA 02139, USA
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
- Department of Chemical Engineering, Northeastern University, Boston, MA, 02115-5000, USA
| |
Collapse
|
27
|
Kobirumaki-Shimozawa F, Oyama K, Shimozawa T, Mizuno A, Ohki T, Terui T, Minamisawa S, Ishiwata S, Fukuda N. Nano-imaging of the beating mouse heart in vivo: Importance of sarcomere dynamics, as opposed to sarcomere length per se, in the regulation of cardiac function. ACTA ACUST UNITED AC 2016; 147:53-62. [PMID: 26712849 PMCID: PMC4692490 DOI: 10.1085/jgp.201511484] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
¡Vive la différence! In cardiac contraction, the reduction in sarcomere length—rather than length itself—determines contractile force. Sarcomeric contraction in cardiomyocytes serves as the basis for the heart’s pump functions in mammals. Although it plays a critical role in the circulatory system, myocardial sarcomere length (SL) change has not been directly measured in vivo under physiological conditions because of technical difficulties. In this study, we developed a high speed (100–frames per second), high resolution (20-nm) imaging system for myocardial sarcomeres in living mice. Using this system, we conducted three-dimensional analysis of sarcomere dynamics in left ventricular myocytes during the cardiac cycle, simultaneously with electrocardiogram and left ventricular pressure measurements. We found that (a) the working range of SL was on the shorter end of the resting distribution, and (b) the left ventricular–developed pressure was positively correlated with the SL change between diastole and systole. The present findings provide the first direct evidence for the tight coupling of sarcomere dynamics and ventricular pump functions in the physiology of the heart.
Collapse
Affiliation(s)
- Fuyu Kobirumaki-Shimozawa
- Department of Cell Physiology and Department of Anesthesiology, The Jikei University School of Medicine, Minato-ku, Tokyo 105-8461, Japan
| | - Kotaro Oyama
- Department of Cell Physiology and Department of Anesthesiology, The Jikei University School of Medicine, Minato-ku, Tokyo 105-8461, Japan Department of Physics and Department of Life Science and Medical Bioscience, School of Advanced Science and Engineering, Waseda University, Shinjuku-ku, Tokyo 169-8555, Japan
| | - Togo Shimozawa
- Department of Physics and Department of Life Science and Medical Bioscience, School of Advanced Science and Engineering, Waseda University, Shinjuku-ku, Tokyo 169-8555, Japan
| | - Akari Mizuno
- Department of Physics and Department of Life Science and Medical Bioscience, School of Advanced Science and Engineering, Waseda University, Shinjuku-ku, Tokyo 169-8555, Japan
| | - Takashi Ohki
- Department of Physics and Department of Life Science and Medical Bioscience, School of Advanced Science and Engineering, Waseda University, Shinjuku-ku, Tokyo 169-8555, Japan
| | - Takako Terui
- Department of Cell Physiology and Department of Anesthesiology, The Jikei University School of Medicine, Minato-ku, Tokyo 105-8461, Japan
| | - Susumu Minamisawa
- Department of Cell Physiology and Department of Anesthesiology, The Jikei University School of Medicine, Minato-ku, Tokyo 105-8461, Japan
| | - Shin'ichi Ishiwata
- Department of Physics and Department of Life Science and Medical Bioscience, School of Advanced Science and Engineering, Waseda University, Shinjuku-ku, Tokyo 169-8555, Japan Waseda Bioscience Research Institute in Singapore, Waseda University, Helios, Singapore 138667
| | - Norio Fukuda
- Department of Cell Physiology and Department of Anesthesiology, The Jikei University School of Medicine, Minato-ku, Tokyo 105-8461, Japan
| |
Collapse
|
28
|
Nakagome K, Sato K, Shintani SA, Ishiwata S. Model simulation of the SPOC wave in a bundle of striated myofibrils. Biophys Physicobiol 2016; 13:217-226. [PMID: 27924277 PMCID: PMC5060095 DOI: 10.2142/biophysico.13.0_217] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Accepted: 08/15/2016] [Indexed: 12/01/2022] Open
Abstract
SPOC (spontaneous oscillatory contraction) is a phenomenon observed in striated muscle under intermediate activation conditions. Recently, we constructed a theoretical model of SPOC for a sarcomere, a unit sarcomere model, which explains the behavior of SPOC at each sarcomere level. We also constructed a single myofibril model, which visco-elastically connects the unit model in series, and explains the behaviors of SPOC at the myofibril level. In the present study, to understand the SPOC properties in a bundle of myofibrils, we extended the single myofibril model to a two-dimensional (2D) model and a three-dimensional (3D) model, in which myofibrils were elastically connected side-by-side through cross-linkers between the Z-lines and M-lines. These 2D and 3D myofibril models could reproduce various patterns of SPOC waves experimentally observed in a 2D sheet and a 3D bundle of myofibrils only by choosing different values of elastic constants of the cross-linkers and the external spring. The results of these 2D and 3D myofibril models provide insight into the SPOC properties of the higher-ordered assembly of myofibrils.
Collapse
Affiliation(s)
- Koutaro Nakagome
- Department of Physics, Faculty of Science and Engineering, Waseda University, Tokyo 169-8555, Japan
| | - Katsuhiko Sato
- Research Institute for Electronic Science (RIES), Hokkaido University, Sapporo, Hokkaido 001-0020, Japan
| | - Seine A Shintani
- Department of Physics, Faculty of Science, The University of Tokyo, Tokyo 113-8654, Japan
| | - Shin'ichi Ishiwata
- Department of Physics, Faculty of Science and Engineering, Waseda University, Tokyo 169-8555, Japan
| |
Collapse
|
29
|
Shimozawa T, Hirokawa E, Kobirumaki-Shimozawa F, Oyama K, Shintani SA, Terui T, Kushida Y, Tsukamoto S, Fujii T, Ishiwata S, Fukuda N. In vivo cardiac nano-imaging: A new technology for high-precision analyses of sarcomere dynamics in the heart. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2016; 124:31-40. [PMID: 27664770 DOI: 10.1016/j.pbiomolbio.2016.09.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Revised: 09/15/2016] [Accepted: 09/20/2016] [Indexed: 12/01/2022]
Abstract
The cardiac pump function is a result of a rise in intracellular Ca2+ and the ensuing sarcomeric contractions [i.e., excitation-contraction (EC) coupling] in myocytes in various locations of the heart. In order to elucidate the heart's mechanical properties under various settings, cardiac imaging is widely performed in today's clinical as well as experimental cardiology by using echocardiogram, magnetic resonance imaging and computed tomography. However, because these common techniques detect local myocardial movements at a spatial resolution of ∼100 μm, our knowledge on the sub-cellular mechanisms of the physiology and pathophysiology of the heart in vivo is limited. This is because (1) EC coupling occurs in the μm partition in a myocyte and (2) cardiac sarcomeres generate active force upon a length change of ∼100 nm on a beat-to-beat basis. Recent advances in optical technologies have enabled measurements of intracellular Ca2+ dynamics and sarcomere length displacements at high spatial and temporal resolution in the beating heart of living rodents. Future studies with these technologies are warranted to open a new era in cardiac research.
Collapse
Affiliation(s)
- Togo Shimozawa
- Department of Life Science and Medical Bioscience, School of Advanced Science and Engineering, Waseda University, 2-2 Wakamatsu-cho, Sinjuku-ku, Tokyo 162-8480, Japan
| | - Erisa Hirokawa
- Department of Cell Physiology, The Jikei University School of Medicine, 3-25-8 Nishi-shinbashi, Minato-ku, Tokyo 105-8461, Japan
| | - Fuyu Kobirumaki-Shimozawa
- Department of Cell Physiology, The Jikei University School of Medicine, 3-25-8 Nishi-shinbashi, Minato-ku, Tokyo 105-8461, Japan
| | - Kotaro Oyama
- Department of Cell Physiology, The Jikei University School of Medicine, 3-25-8 Nishi-shinbashi, Minato-ku, Tokyo 105-8461, Japan
| | - Seine A Shintani
- Department of Physics, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo Bunkyo-ku, Tokyo 113-0033, Japan
| | - Takako Terui
- Department of Anesthesiology, The Jikei University School of Medicine, 3-25-8 Nishi-shinbashi, Minato-ku, Tokyo 105-8461, Japan
| | - Yasuharu Kushida
- Department of Cell Physiology, The Jikei University School of Medicine, 3-25-8 Nishi-shinbashi, Minato-ku, Tokyo 105-8461, Japan
| | - Seiichi Tsukamoto
- Department of Cell Physiology, The Jikei University School of Medicine, 3-25-8 Nishi-shinbashi, Minato-ku, Tokyo 105-8461, Japan
| | - Teruyuki Fujii
- Department of Cell Physiology, The Jikei University School of Medicine, 3-25-8 Nishi-shinbashi, Minato-ku, Tokyo 105-8461, Japan
| | - Shin'ichi Ishiwata
- Department of Physics, Faculty of Advanced Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, Japan
| | - Norio Fukuda
- Department of Cell Physiology, The Jikei University School of Medicine, 3-25-8 Nishi-shinbashi, Minato-ku, Tokyo 105-8461, Japan.
| |
Collapse
|
30
|
Nizamutdinov D, Feng H, Gerilechaogetu F, Dostal JA, Foster DM, Glaser SS, Dostal DE. Isolated neonatal rat papillary muscles: a new model to translate neonatal rat myocyte signaling into contractile mechanics. Physiol Rep 2016; 4:4/3/e12694. [PMID: 26869681 PMCID: PMC4758931 DOI: 10.14814/phy2.12694] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Isolated cardiac tissue allows investigators to study mechanisms underlying normal and pathological conditions, which would otherwise be difficult or impossible to perform in vivo. Cultured neonatal rat ventricular cardiac myocytes (NRVM) are widely used to study signaling and growth mechanisms in the heart, primarily due to the versatility, economy, and convenience of this in vitro model. However, the lack of a well‐defined longitudinal cellular axis greatly hampers the ability to measure contractile function in these cells, and therefore to associate signaling with mechanical function. In these methods, we demonstrate that this limitation can be overcome by using papillary muscles isolated from neonatal rat hearts. In the methods we describe procedures for isolation of right ventricular papillary muscles from 3‐day‐old neonatal rats and effects of mechanical and humoral stimuli on contraction and relaxation properties of these tissues.
Collapse
Affiliation(s)
- Damir Nizamutdinov
- Department of Medical Physiology, College of Medicine Texas A&M University System Health Science Center, Temple, Texas
| | - Hao Feng
- Department of Medical Physiology, College of Medicine Texas A&M University System Health Science Center, Temple, Texas
| | - Fnu Gerilechaogetu
- Department of Ophthalmology, UT Health Science Center San Antonio, San Antonio, Texas
| | - Joseph A Dostal
- Department of Medical Physiology, College of Medicine Texas A&M University System Health Science Center, Temple, Texas
| | | | - Shannon S Glaser
- Central Texas Veterans Health Care System, Temple, Texas Division of Gastroenterology, Department of Internal Medicine, Baylor Scott & White Health Care System, Temple, Texas
| | - David E Dostal
- Department of Medical Physiology, College of Medicine Texas A&M University System Health Science Center, Temple, Texas Central Texas Veterans Health Care System, Temple, Texas
| |
Collapse
|
31
|
Nánási P, Váczi K, Papp Z. The myosin activator omecamtiv mecarbil: a promising new inotropic agent. Can J Physiol Pharmacol 2016; 94:1033-1039. [PMID: 27322915 DOI: 10.1139/cjpp-2015-0573] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Heart failure became a leading cause of mortality in the past few decades with a progressively increasing prevalence. Its current therapy is restricted largely to the suppression of the sympathetic activity and the renin-angiotensin system in combination with diuretics. This restrictive strategy is due to the potential long-term adverse effects of inotropic agents despite their effective influence on cardiac function when employed for short durations. Positive inotropes include inhibitors of the Na+/K+ pump, β-receptor agonists, and phosphodiesterase inhibitors. Theoretically, Ca2+ sensitizers may also increase cardiac contractility without resulting in Ca2+ overload; nevertheless, their mechanism of action is frequently complicated by other pleiotropic effects. Recently, a new positive inotropic agent, the myosin activator omecamtiv mecarbil, has been developed. Omecamtiv mecarbil binds directly to β-myosin heavy chain and enhances cardiac contractility by increasing the number of the active force-generating cross-bridges, presumably without major off-target effects. This review focuses on recent in vivo and in vitro results obtained with omecamtiv mecarbil, and discusses its mechanism of action at a molecular level. Based on clinical data, omecamtiv mecarbil is a promising new tool in the treatment of systolic heart failure.
Collapse
Affiliation(s)
- Péter Nánási
- a Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Krisztina Váczi
- b Department of Physiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Zoltán Papp
- c Division of Clinical Physiology, Department of Cardiology, Research Center for Molecular Medicine, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| |
Collapse
|
32
|
Pilarczyk G, Raulf A, Gunkel M, Fleischmann BK, Lemor R, Hausmann M. Tissue-Mimicking Geometrical Constraints Stimulate Tissue-Like Constitution and Activity of Mouse Neonatal and Human-Induced Pluripotent Stem Cell-Derived Cardiac Myocytes. J Funct Biomater 2016; 7:E1. [PMID: 26751484 PMCID: PMC4810060 DOI: 10.3390/jfb7010001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Revised: 12/17/2015] [Accepted: 12/18/2015] [Indexed: 12/15/2022] Open
Abstract
The present work addresses the question of to what extent a geometrical support acts as a physiological determining template in the setup of artificial cardiac tissue. Surface patterns with alternating concave to convex transitions of cell size dimensions were used to organize and orientate human-induced pluripotent stem cell (hIPSC)-derived cardiac myocytes and mouse neonatal cardiac myocytes. The shape of the cells, as well as the organization of the contractile apparatus recapitulates the anisotropic line pattern geometry being derived from tissue geometry motives. The intracellular organization of the contractile apparatus and the cell coupling via gap junctions of cell assemblies growing in a random or organized pattern were examined. Cell spatial and temporal coordinated excitation and contraction has been compared on plain and patterned substrates. While the α-actinin cytoskeletal organization is comparable to terminally-developed native ventricular tissue, connexin-43 expression does not recapitulate gap junction distribution of heart muscle tissue. However, coordinated contractions could be observed. The results of tissue-like cell ensemble organization open new insights into geometry-dependent cell organization, the cultivation of artificial heart tissue from stem cells and the anisotropy-dependent activity of therapeutic compounds.
Collapse
Affiliation(s)
- Götz Pilarczyk
- Kirchhoff Institute für Physik, Im Neuenheimer Feld INF 270, Heidelberg D-69120, Germany.
| | - Alexandra Raulf
- Institut für Physiologie der Unversität Bonn, Life & Brain Center, Sigmund Freud Strasse 25, Bonn D-53127, Germany.
| | - Manuel Gunkel
- ViroQuant Cell Networks RNAi Screening Facility, BioQuant Center, Im Neuenheimer Feld INF 267, Heidelberg D-69120, Germany.
| | - Bernd K Fleischmann
- Institut für Physiologie der Unversität Bonn, Life & Brain Center, Sigmund Freud Strasse 25, Bonn D-53127, Germany.
| | - Robert Lemor
- Luxembourg Institute for Science and Technology, 5 avenue des Hauts-Fourneaux, Esch-Belval L-4362, Luxembourg.
| | - Michael Hausmann
- Kirchhoff Institute für Physik, Im Neuenheimer Feld INF 270, Heidelberg D-69120, Germany.
| |
Collapse
|
33
|
Lux M, Andrée B, Horvath T, Nosko A, Manikowski D, Hilfiker-Kleiner D, Haverich A, Hilfiker A. In vitro maturation of large-scale cardiac patches based on a perfusable starter matrix by cyclic mechanical stimulation. Acta Biomater 2016; 30:177-187. [PMID: 26546973 DOI: 10.1016/j.actbio.2015.11.006] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Revised: 09/24/2015] [Accepted: 11/03/2015] [Indexed: 11/27/2022]
Abstract
The ultimate goal of tissue engineering is the generation of implants similar to native tissue. Thus, it is essential to utilize physiological stimuli to improve the quality of engineered constructs. Numerous publications reported that mechanical stimulation of small-sized, non-perfusable, tissue engineered cardiac constructs leads to a maturation of immature cardiomyocytes like neonatal rat cardiomyocytes or induced pluripotent stem cells/embryonic stem cells derived self-contracting cells. The aim of this study was to investigate the impact of mechanical stimulation and perfusion on the maturation process of large-scale (2.5×4.5cm), implantable cardiac patches based on decellularized porcine small intestinal submucosa (SIS) or Biological Vascularized Matrix (BioVaM) and a 3-dimensional construct containing neonatal rat heart cells. Application of cyclic mechanical stretch improved contractile function, cardiomyocyte alignment along the stretch axis and gene expression of cardiomyocyte markers. The development of a complex network formed by endothelial cells within the cardiac construct was enhanced by cyclic stretch. Finally, the utilization of BioVaM enabled the perfusion of the matrix during stimulation, augmenting the beneficial influence of cyclic stretch. Thus, this study demonstrates the maturation of cardiac constructs with clinically relevant dimensions by the application of cyclic mechanical stretch and perfusion of the starter matrix. STATEMENT OF SIGNIFICANCE Considering the poor endogenous regeneration of the heart, engineering of bioartificial cardiac tissue for the replacement of infarcted myocardium is an exciting strategy. Most techniques for the generation of cardiac tissue result in relative small-sized constructs insufficient for clinical applications. Another issue is to achieve cardiomyocytes and tissue maturation in culture. Here we report, for the first time, the effect of mechanical stimulation and simultaneous perfusion on the maturation of cardiac constructs of clinical relevant dimensions, which are based on a perfusable starter matrix derived from porcine small intestine. In response to these stimuli superior organization of cardiomyocytes and vascular networks was observed in contrast to untreated controls. The study provides substantial progress towards the generation of implantable cardiac patches.
Collapse
|
34
|
Awasthi S, Izu LT, Mao Z, Jian Z, Landas T, Lerner A, Shimkunas R, Woldeyesus R, Bossuyt J, Wood BM, Chen YJ, Matthews DL, Lieu DK, Chiamvimonvat N, Lam KS, Chen-Izu Y, Chan JW. Multimodal SHG-2PF Imaging of Microdomain Ca2+-Contraction Coupling in Live Cardiac Myocytes. Circ Res 2015; 118:e19-28. [PMID: 26643875 DOI: 10.1161/circresaha.115.307919] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Accepted: 12/07/2015] [Indexed: 01/24/2023]
Abstract
RATIONALE Cardiac myocyte contraction is caused by Ca(2+) binding to troponin C, which triggers the cross-bridge power stroke and myofilament sliding in sarcomeres. Synchronized Ca(2+) release causes whole cell contraction and is readily observable with current microscopy techniques. However, it is unknown whether localized Ca(2+) release, such as Ca(2+) sparks and waves, can cause local sarcomere contraction. Contemporary imaging methods fall short of measuring microdomain Ca(2+)-contraction coupling in live cardiac myocytes. OBJECTIVE To develop a method for imaging sarcomere level Ca(2+)-contraction coupling in healthy and disease model cardiac myocytes. METHODS AND RESULTS Freshly isolated cardiac myocytes were loaded with the Ca(2+)-indicator fluo-4. A confocal microscope equipped with a femtosecond-pulsed near-infrared laser was used to simultaneously excite second harmonic generation from A-bands of myofibrils and 2-photon fluorescence from fluo-4. Ca(2+) signals and sarcomere strain correlated in space and time with short delays. Furthermore, Ca(2+) sparks and waves caused contractions in subcellular microdomains, revealing a previously underappreciated role for these events in generating subcellular strain during diastole. Ca(2+) activity and sarcomere strain were also imaged in paced cardiac myocytes under mechanical load, revealing spontaneous Ca(2+) waves and correlated local contraction in pressure-overload-induced cardiomyopathy. CONCLUSIONS Multimodal second harmonic generation 2-photon fluorescence microscopy enables the simultaneous observation of Ca(2+) release and mechanical strain at the subsarcomere level in living cardiac myocytes. The method benefits from the label-free nature of second harmonic generation, which allows A-bands to be imaged independently of T-tubule morphology and simultaneously with Ca(2+) indicators. Second harmonic generation 2-photon fluorescence imaging is widely applicable to the study of Ca(2+)-contraction coupling and mechanochemotransduction in both health and disease.
Collapse
Affiliation(s)
- Samir Awasthi
- From the Center for Biophotonics (S.A., Z.M., A.L., D.L.M., J.W.C.), Division of Cardiology (D.K.L., N.C., Y.C.-I.), Division of Hematology/Oncology, Department of Internal Medicine (K.S.L.), and Department of Pathology and Laboratory Medicine (J.W.C.), UC Davis School of Medicine, University of California, Davis, Sacramento; and Departments of Pharmacology (L.T.I., Z.J., T.L., J.B., B.W., Y.-J.C., Y.C.-I.), Biomedical Engineering (S.A., R.S., R.W., Y.C.-I.), Biochemistry and Molecular Medicine (K.S.L.), and Microsurgery Core (Y.-J.C.), University of California, Davis
| | - Leighton T Izu
- From the Center for Biophotonics (S.A., Z.M., A.L., D.L.M., J.W.C.), Division of Cardiology (D.K.L., N.C., Y.C.-I.), Division of Hematology/Oncology, Department of Internal Medicine (K.S.L.), and Department of Pathology and Laboratory Medicine (J.W.C.), UC Davis School of Medicine, University of California, Davis, Sacramento; and Departments of Pharmacology (L.T.I., Z.J., T.L., J.B., B.W., Y.-J.C., Y.C.-I.), Biomedical Engineering (S.A., R.S., R.W., Y.C.-I.), Biochemistry and Molecular Medicine (K.S.L.), and Microsurgery Core (Y.-J.C.), University of California, Davis
| | - Ziliang Mao
- From the Center for Biophotonics (S.A., Z.M., A.L., D.L.M., J.W.C.), Division of Cardiology (D.K.L., N.C., Y.C.-I.), Division of Hematology/Oncology, Department of Internal Medicine (K.S.L.), and Department of Pathology and Laboratory Medicine (J.W.C.), UC Davis School of Medicine, University of California, Davis, Sacramento; and Departments of Pharmacology (L.T.I., Z.J., T.L., J.B., B.W., Y.-J.C., Y.C.-I.), Biomedical Engineering (S.A., R.S., R.W., Y.C.-I.), Biochemistry and Molecular Medicine (K.S.L.), and Microsurgery Core (Y.-J.C.), University of California, Davis
| | - Zhong Jian
- From the Center for Biophotonics (S.A., Z.M., A.L., D.L.M., J.W.C.), Division of Cardiology (D.K.L., N.C., Y.C.-I.), Division of Hematology/Oncology, Department of Internal Medicine (K.S.L.), and Department of Pathology and Laboratory Medicine (J.W.C.), UC Davis School of Medicine, University of California, Davis, Sacramento; and Departments of Pharmacology (L.T.I., Z.J., T.L., J.B., B.W., Y.-J.C., Y.C.-I.), Biomedical Engineering (S.A., R.S., R.W., Y.C.-I.), Biochemistry and Molecular Medicine (K.S.L.), and Microsurgery Core (Y.-J.C.), University of California, Davis
| | - Trevor Landas
- From the Center for Biophotonics (S.A., Z.M., A.L., D.L.M., J.W.C.), Division of Cardiology (D.K.L., N.C., Y.C.-I.), Division of Hematology/Oncology, Department of Internal Medicine (K.S.L.), and Department of Pathology and Laboratory Medicine (J.W.C.), UC Davis School of Medicine, University of California, Davis, Sacramento; and Departments of Pharmacology (L.T.I., Z.J., T.L., J.B., B.W., Y.-J.C., Y.C.-I.), Biomedical Engineering (S.A., R.S., R.W., Y.C.-I.), Biochemistry and Molecular Medicine (K.S.L.), and Microsurgery Core (Y.-J.C.), University of California, Davis
| | - Aaron Lerner
- From the Center for Biophotonics (S.A., Z.M., A.L., D.L.M., J.W.C.), Division of Cardiology (D.K.L., N.C., Y.C.-I.), Division of Hematology/Oncology, Department of Internal Medicine (K.S.L.), and Department of Pathology and Laboratory Medicine (J.W.C.), UC Davis School of Medicine, University of California, Davis, Sacramento; and Departments of Pharmacology (L.T.I., Z.J., T.L., J.B., B.W., Y.-J.C., Y.C.-I.), Biomedical Engineering (S.A., R.S., R.W., Y.C.-I.), Biochemistry and Molecular Medicine (K.S.L.), and Microsurgery Core (Y.-J.C.), University of California, Davis
| | - Rafael Shimkunas
- From the Center for Biophotonics (S.A., Z.M., A.L., D.L.M., J.W.C.), Division of Cardiology (D.K.L., N.C., Y.C.-I.), Division of Hematology/Oncology, Department of Internal Medicine (K.S.L.), and Department of Pathology and Laboratory Medicine (J.W.C.), UC Davis School of Medicine, University of California, Davis, Sacramento; and Departments of Pharmacology (L.T.I., Z.J., T.L., J.B., B.W., Y.-J.C., Y.C.-I.), Biomedical Engineering (S.A., R.S., R.W., Y.C.-I.), Biochemistry and Molecular Medicine (K.S.L.), and Microsurgery Core (Y.-J.C.), University of California, Davis
| | - Rahwa Woldeyesus
- From the Center for Biophotonics (S.A., Z.M., A.L., D.L.M., J.W.C.), Division of Cardiology (D.K.L., N.C., Y.C.-I.), Division of Hematology/Oncology, Department of Internal Medicine (K.S.L.), and Department of Pathology and Laboratory Medicine (J.W.C.), UC Davis School of Medicine, University of California, Davis, Sacramento; and Departments of Pharmacology (L.T.I., Z.J., T.L., J.B., B.W., Y.-J.C., Y.C.-I.), Biomedical Engineering (S.A., R.S., R.W., Y.C.-I.), Biochemistry and Molecular Medicine (K.S.L.), and Microsurgery Core (Y.-J.C.), University of California, Davis
| | - Julie Bossuyt
- From the Center for Biophotonics (S.A., Z.M., A.L., D.L.M., J.W.C.), Division of Cardiology (D.K.L., N.C., Y.C.-I.), Division of Hematology/Oncology, Department of Internal Medicine (K.S.L.), and Department of Pathology and Laboratory Medicine (J.W.C.), UC Davis School of Medicine, University of California, Davis, Sacramento; and Departments of Pharmacology (L.T.I., Z.J., T.L., J.B., B.W., Y.-J.C., Y.C.-I.), Biomedical Engineering (S.A., R.S., R.W., Y.C.-I.), Biochemistry and Molecular Medicine (K.S.L.), and Microsurgery Core (Y.-J.C.), University of California, Davis
| | - Brent M Wood
- From the Center for Biophotonics (S.A., Z.M., A.L., D.L.M., J.W.C.), Division of Cardiology (D.K.L., N.C., Y.C.-I.), Division of Hematology/Oncology, Department of Internal Medicine (K.S.L.), and Department of Pathology and Laboratory Medicine (J.W.C.), UC Davis School of Medicine, University of California, Davis, Sacramento; and Departments of Pharmacology (L.T.I., Z.J., T.L., J.B., B.W., Y.-J.C., Y.C.-I.), Biomedical Engineering (S.A., R.S., R.W., Y.C.-I.), Biochemistry and Molecular Medicine (K.S.L.), and Microsurgery Core (Y.-J.C.), University of California, Davis
| | - Yi-Je Chen
- From the Center for Biophotonics (S.A., Z.M., A.L., D.L.M., J.W.C.), Division of Cardiology (D.K.L., N.C., Y.C.-I.), Division of Hematology/Oncology, Department of Internal Medicine (K.S.L.), and Department of Pathology and Laboratory Medicine (J.W.C.), UC Davis School of Medicine, University of California, Davis, Sacramento; and Departments of Pharmacology (L.T.I., Z.J., T.L., J.B., B.W., Y.-J.C., Y.C.-I.), Biomedical Engineering (S.A., R.S., R.W., Y.C.-I.), Biochemistry and Molecular Medicine (K.S.L.), and Microsurgery Core (Y.-J.C.), University of California, Davis
| | - Dennis L Matthews
- From the Center for Biophotonics (S.A., Z.M., A.L., D.L.M., J.W.C.), Division of Cardiology (D.K.L., N.C., Y.C.-I.), Division of Hematology/Oncology, Department of Internal Medicine (K.S.L.), and Department of Pathology and Laboratory Medicine (J.W.C.), UC Davis School of Medicine, University of California, Davis, Sacramento; and Departments of Pharmacology (L.T.I., Z.J., T.L., J.B., B.W., Y.-J.C., Y.C.-I.), Biomedical Engineering (S.A., R.S., R.W., Y.C.-I.), Biochemistry and Molecular Medicine (K.S.L.), and Microsurgery Core (Y.-J.C.), University of California, Davis
| | - Deborah K Lieu
- From the Center for Biophotonics (S.A., Z.M., A.L., D.L.M., J.W.C.), Division of Cardiology (D.K.L., N.C., Y.C.-I.), Division of Hematology/Oncology, Department of Internal Medicine (K.S.L.), and Department of Pathology and Laboratory Medicine (J.W.C.), UC Davis School of Medicine, University of California, Davis, Sacramento; and Departments of Pharmacology (L.T.I., Z.J., T.L., J.B., B.W., Y.-J.C., Y.C.-I.), Biomedical Engineering (S.A., R.S., R.W., Y.C.-I.), Biochemistry and Molecular Medicine (K.S.L.), and Microsurgery Core (Y.-J.C.), University of California, Davis
| | - Nipavan Chiamvimonvat
- From the Center for Biophotonics (S.A., Z.M., A.L., D.L.M., J.W.C.), Division of Cardiology (D.K.L., N.C., Y.C.-I.), Division of Hematology/Oncology, Department of Internal Medicine (K.S.L.), and Department of Pathology and Laboratory Medicine (J.W.C.), UC Davis School of Medicine, University of California, Davis, Sacramento; and Departments of Pharmacology (L.T.I., Z.J., T.L., J.B., B.W., Y.-J.C., Y.C.-I.), Biomedical Engineering (S.A., R.S., R.W., Y.C.-I.), Biochemistry and Molecular Medicine (K.S.L.), and Microsurgery Core (Y.-J.C.), University of California, Davis
| | - Kit S Lam
- From the Center for Biophotonics (S.A., Z.M., A.L., D.L.M., J.W.C.), Division of Cardiology (D.K.L., N.C., Y.C.-I.), Division of Hematology/Oncology, Department of Internal Medicine (K.S.L.), and Department of Pathology and Laboratory Medicine (J.W.C.), UC Davis School of Medicine, University of California, Davis, Sacramento; and Departments of Pharmacology (L.T.I., Z.J., T.L., J.B., B.W., Y.-J.C., Y.C.-I.), Biomedical Engineering (S.A., R.S., R.W., Y.C.-I.), Biochemistry and Molecular Medicine (K.S.L.), and Microsurgery Core (Y.-J.C.), University of California, Davis
| | - Ye Chen-Izu
- From the Center for Biophotonics (S.A., Z.M., A.L., D.L.M., J.W.C.), Division of Cardiology (D.K.L., N.C., Y.C.-I.), Division of Hematology/Oncology, Department of Internal Medicine (K.S.L.), and Department of Pathology and Laboratory Medicine (J.W.C.), UC Davis School of Medicine, University of California, Davis, Sacramento; and Departments of Pharmacology (L.T.I., Z.J., T.L., J.B., B.W., Y.-J.C., Y.C.-I.), Biomedical Engineering (S.A., R.S., R.W., Y.C.-I.), Biochemistry and Molecular Medicine (K.S.L.), and Microsurgery Core (Y.-J.C.), University of California, Davis.
| | - James W Chan
- From the Center for Biophotonics (S.A., Z.M., A.L., D.L.M., J.W.C.), Division of Cardiology (D.K.L., N.C., Y.C.-I.), Division of Hematology/Oncology, Department of Internal Medicine (K.S.L.), and Department of Pathology and Laboratory Medicine (J.W.C.), UC Davis School of Medicine, University of California, Davis, Sacramento; and Departments of Pharmacology (L.T.I., Z.J., T.L., J.B., B.W., Y.-J.C., Y.C.-I.), Biomedical Engineering (S.A., R.S., R.W., Y.C.-I.), Biochemistry and Molecular Medicine (K.S.L.), and Microsurgery Core (Y.-J.C.), University of California, Davis.
| |
Collapse
|
35
|
Nagy L, Kovács Á, Bódi B, Pásztor ET, Fülöp GÁ, Tóth A, Édes I, Papp Z. The novel cardiac myosin activator omecamtiv mecarbil increases the calcium sensitivity of force production in isolated cardiomyocytes and skeletal muscle fibres of the rat. Br J Pharmacol 2015; 172:4506-4518. [PMID: 26140433 DOI: 10.1111/bph.13235] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Revised: 05/18/2015] [Accepted: 06/21/2015] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND AND PURPOSE Omecamtiv mecarbil (OM) is a novel cardiac myosin activator drug for inotropic support in systolic heart failure. Here we have assessed the concentration-dependent mechanical effects of OM in permeabilized cardiomyocyte-sized preparations and single skeletal muscle fibres of Wistar-Kyoto rats under isometric conditions. EXPERIMENTAL APPROACHES Ca2+ -dependent active force production (Factive ), its Ca2+ sensitivity (pCa50 ), the kinetic characteristics of Ca2+ -regulated activation and relaxation, and Ca2+ -independent passive force (Fpassive ) were monitored in Triton X-100-skinned preparations with and without OM (3nM-10 μM). KEY RESULTS In permeabilized cardiomyocytes, OM increased the Ca2+ sensitivity of force production (ΔpCa50 : 0.11 or 0.34 at 0.1 or 1 μM respectively). The concentration-response relationship of the Ca2+ sensitization was bell-shaped, with maximal effects at 0.3-1 μM OM (EC50 : 0.08 ± 0.01 μM). The kinetics of force development and relaxation slowed progressively with increasing OM concentration. Moreover, OM increased Fpassive in the cardiomyocytes with an apparent EC50 value of 0.26 ± 0.11 μM. OM-evoked effects in the diaphragm muscle fibres with intrinsically slow kinetics were largely similar to those in cardiomyocytes, while they were less apparent in muscle fibres with fast kinetics. CONCLUSIONS AND IMPLICATIONS OM acted as a Ca2+ -sensitizing agent with a downstream mechanism of action in both cardiomyocytes and diaphragm muscle fibres. The mechanism of action of OM is connected to slowed activation-relaxation kinetics and at higher OM concentrations increased Fpassive production.
Collapse
Affiliation(s)
- L Nagy
- Division of Clinical Physiology, Institute of Cardiology, Research Centre for Molecular Medicine, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Á Kovács
- Division of Clinical Physiology, Institute of Cardiology, Research Centre for Molecular Medicine, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - B Bódi
- Division of Clinical Physiology, Institute of Cardiology, Research Centre for Molecular Medicine, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - E T Pásztor
- Division of Clinical Physiology, Institute of Cardiology, Research Centre for Molecular Medicine, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - G Á Fülöp
- Division of Clinical Physiology, Institute of Cardiology, Research Centre for Molecular Medicine, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - A Tóth
- Division of Clinical Physiology, Institute of Cardiology, Research Centre for Molecular Medicine, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - I Édes
- Division of Clinical Physiology, Institute of Cardiology, Research Centre for Molecular Medicine, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Z Papp
- Division of Clinical Physiology, Institute of Cardiology, Research Centre for Molecular Medicine, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| |
Collapse
|
36
|
Kagemoto T, Li A, Dos Remedios C, Ishiwata S. Spontaneous oscillatory contraction (SPOC) in cardiomyocytes. Biophys Rev 2015; 7:15-24. [PMID: 28509984 PMCID: PMC5425754 DOI: 10.1007/s12551-015-0165-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2014] [Accepted: 01/12/2015] [Indexed: 10/24/2022] Open
Abstract
SPOC (spontaneous oscillatory contraction) is a characteristic state of the contractile system of striated (skeletal and cardiac) muscle that exists between the states of relaxation and contraction. For example, Ca-SPOCs occur at physiological Ca2+ levels (pCa ∼6.0), whereas ADP-SPOC occurs in the virtual absence of Ca2+ (pCa ≥ 8; relaxing conditions in the presence of MgATP), but in the presence of inorganic phosphate (Pi) and a high concentration of MgADP. The concentration of Mg-ADP necessary for SPOC is nearly equal to or greater than the MgATP concentration for cardiac muscle and is several times higher for skeletal muscle. Thus, the cellular conditions for SPOC are broader in cardiac muscle than in skeletal muscle. During these SPOCs, each sarcomere in a myofibril undergoes length oscillation that has a saw-tooth waveform consisting of a rapid lengthening and a slow shortening phase. The lengthening phase of one half of a sarcomere is transmitted to the adjacent half of the sarcomere successively, forming a propagating wave (termed a SPOC wave). The SPOC waves are synchronized across the cardiomyocytes resulting in a visible wave of successive contractions and relaxations termed the SPOC wave. Experimentally, the SPOC period (and therefore the velocity of SPOC wave) is observed in demembranated cardiomyocytes and can be prepared from a wide range of animal hearts. These periods correlate well with the resting heartbeats of a wide range of mammals (rat, rabbit, dog, pig and cow). Preliminary experiments showed that the SPOC properties of human cardiomyocytes are similar to the heartbeat of a large dog or a pig. This correlation suggests that SPOCs may play a fundamental role in the heart. Here, we briefly summarize a range of SPOC parameters obtained experimentally, and relate them to a theoretical model to explain those characteristics. Finally, we discuss the possible significance of these SPOC properties in each and every heartbeat.
Collapse
Affiliation(s)
- Tatsuya Kagemoto
- Department of Physics, Faculty of Science and Engineering, Waseda University, 3-4-1, Okubo, Shinjuku-ku, Tokyo, 169-8555, Japan
| | - Amy Li
- Muscle Research Unit, Discipline of Anatomy & Histology, Bosch Institute, University of Sydney, Sydney, 2006, Australia
| | - Cris Dos Remedios
- Muscle Research Unit, Discipline of Anatomy & Histology, Bosch Institute, University of Sydney, Sydney, 2006, Australia
| | - Shin'ichi Ishiwata
- Department of Physics, Faculty of Science and Engineering, Waseda University, 3-4-1, Okubo, Shinjuku-ku, Tokyo, 169-8555, Japan.
- Waseda Bioscience Research Institute in Singapore (WABIOS), 11 Biopolis Way, #05-01/02 Helios, Singapore, 138667, Singapore.
| |
Collapse
|
37
|
Shintani SA, Oyama K, Fukuda N, Ishiwata S. High-frequency sarcomeric auto-oscillations induced by heating in living neonatal cardiomyocytes of the rat. Biochem Biophys Res Commun 2014; 457:165-70. [PMID: 25545063 DOI: 10.1016/j.bbrc.2014.12.077] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Accepted: 12/15/2014] [Indexed: 10/24/2022]
Abstract
In the present study, we investigated the effects of infra-red laser irradiation on sarcomere dynamics in living neonatal cardiomyocytes of the rat. A rapid increase in temperature to >~38 °C induced [Ca(2+)]i-independent high-frequency (~5-10 Hz) sarcomeric auto-oscillations (Hyperthermal Sarcomeric Oscillations; HSOs). In myocytes with the intact sarcoplasmic reticular functions, HSOs coexisted with [Ca(2+)]i-dependent spontaneous beating in the same sarcomeres, with markedly varying frequencies (~10 and ~1 Hz for the former and latter, respectively). HSOs likewise occurred following blockade of the sarcoplasmic reticular functions, with the amplitude becoming larger and the frequency lower in a time-dependent manner. The present findings suggest that in the mammalian heart, sarcomeres spontaneously oscillate at higher frequencies than the sinus rhythm at temperatures slightly above the physiologically relevant levels.
Collapse
Affiliation(s)
- Seine A Shintani
- Department of Pure and Applied Physics, School of Advanced Science and Engineering, Waseda University, Tokyo, Japan
| | - Kotaro Oyama
- Department of Pure and Applied Physics, School of Advanced Science and Engineering, Waseda University, Tokyo, Japan
| | - Norio Fukuda
- Department of Cell Physiology, The Jikei University School of Medicine, Tokyo, Japan.
| | - Shin'ichi Ishiwata
- Department of Pure and Applied Physics, School of Advanced Science and Engineering, Waseda University, Tokyo, Japan; WASEDA Bioscience Research Institute in Singapore (WABIOS), Singapore.
| |
Collapse
|
38
|
Kobirumaki-Shimozawa F, Inoue T, Shintani SA, Oyama K, Terui T, Minamisawa S, Ishiwata S, Fukuda N. Cardiac thin filament regulation and the Frank-Starling mechanism. J Physiol Sci 2014; 64:221-32. [PMID: 24788476 PMCID: PMC4070490 DOI: 10.1007/s12576-014-0314-y] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2013] [Accepted: 03/28/2014] [Indexed: 11/06/2022]
Abstract
The heart has an intrinsic ability to increase systolic force in response to a rise in ventricular filling (the Frank-Starling law of the heart). It is widely accepted that the length dependence of myocardial activation underlies the Frank-Starling law of the heart. Recent advances in muscle physiology have enabled the identification of the factors involved in length-dependent activation, viz., titin (connectin)-based interfilament lattice spacing reduction and thin filament "on-off" regulation, with the former triggering length-dependent activation and the latter determining the number of myosin molecules recruited to thin filaments. Patients with a failing heart have demonstrated reduced exercise tolerance at least in part via depression of the Frank-Starling mechanism. Recent studies revealed that various mutations occur in the thin filament regulatory proteins, such as troponin, in the ventricular muscle of failing hearts, which consequently alter the Frank-Starling mechanism. In this article, we review the molecular mechanisms of length-dependent activation, and the influence of troponin mutations on the phenomenon.
Collapse
Affiliation(s)
- Fuyu Kobirumaki-Shimozawa
- Department of Cell Physiology, The Jikei University School of Medicine, 3-25-8 Nishi-shinbashi, Minato-ku, Tokyo, 105-8461 Japan
| | - Takahiro Inoue
- Department of Cardiac Surgery, The Jikei University School of Medicine, Tokyo, Japan
| | - Seine A. Shintani
- Department of Physics, Faculty of Science and Engineering, Waseda University, 3-14-9 Okubo, Shinjuku-ku, Tokyo, 169-0072 Japan
| | - Kotaro Oyama
- Department of Physics, Faculty of Science and Engineering, Waseda University, 3-14-9 Okubo, Shinjuku-ku, Tokyo, 169-0072 Japan
| | - Takako Terui
- Department of Anesthesiology, The Jikei University School of Medicine, Tokyo, Japan
| | - Susumu Minamisawa
- Department of Cell Physiology, The Jikei University School of Medicine, 3-25-8 Nishi-shinbashi, Minato-ku, Tokyo, 105-8461 Japan
| | - Shin’ichi Ishiwata
- Department of Physics, Faculty of Science and Engineering, Waseda University, 3-14-9 Okubo, Shinjuku-ku, Tokyo, 169-0072 Japan
- Waseda Bioscience Research Institute in Singapore (WABIOS), 11 Biopolis Way, #05-01/02 Helios, Singapore, 138667 Singapore
| | - Norio Fukuda
- Department of Cell Physiology, The Jikei University School of Medicine, 3-25-8 Nishi-shinbashi, Minato-ku, Tokyo, 105-8461 Japan
| |
Collapse
|
39
|
Shintani SA, Oyama K, Kobirumaki-Shimozawa F, Ohki T, Ishiwata S, Fukuda N. Sarcomere length nanometry in rat neonatal cardiomyocytes expressed with α-actinin–AcGFP in Z discs. J Biophys Biochem Cytol 2014. [DOI: 10.1083/jcb.2051oia71] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|