1
|
Catterall WA, Gamal El-Din TM, Wisedchaisri G. The chemistry of electrical signaling in sodium channels from bacteria and beyond. Cell Chem Biol 2024; 31:1405-1421. [PMID: 39151407 DOI: 10.1016/j.chembiol.2024.07.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 06/27/2024] [Accepted: 07/22/2024] [Indexed: 08/19/2024]
Abstract
Electrical signaling is essential for all fast processes in biology, but its molecular mechanisms have been uncertain. This review article focuses on studies of bacterial sodium channels in order to home in on the essential molecular and chemical mechanisms underlying transmembrane ion conductance and voltage-dependent gating without the overlay of complex protein interactions and regulatory mechanisms in mammalian sodium channels. This minimalist approach has yielded a nearly complete picture of sodium channel function at the atomic level that are mostly conserved in mammalian sodium channels, including sodium selectivity and conductance, voltage sensing and activation, electromechanical coupling to pore opening and closing, slow inactivation, and pathogenic dysfunction in a debilitating channelopathy. Future studies of nature's simplest sodium channels may continue to yield key insights into the fundamental molecular and chemical principles of their function and further elucidate the chemical basis of electrical signaling.
Collapse
Affiliation(s)
- William A Catterall
- Department of Pharmacology, University of Washington, Seattle WA 98195-7280, USA.
| | - Tamer M Gamal El-Din
- Department of Pharmacology, University of Washington, Seattle WA 98195-7280, USA.
| | - Goragot Wisedchaisri
- Department of Pharmacology, University of Washington, Seattle WA 98195-7280, USA.
| |
Collapse
|
2
|
Ben Abu Y, Wolfson I. Short-term plasticity as 'energetic memory' of ion channel components of action potential. ROYAL SOCIETY OPEN SCIENCE 2024; 11:231420. [PMID: 39100146 PMCID: PMC11296076 DOI: 10.1098/rsos.231420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 03/10/2024] [Accepted: 04/03/2024] [Indexed: 08/06/2024]
Abstract
Information transfer in the nervous system is traditionally understood by the transmission of action potentials along neuronal dendrites, with ion channels in the membrane as the basic unit operator for their creation and propagation. We present here a new model for the multiphysics behaviour of ion channels and the action potential dynamics in nervous and other signal-transmitting systems. This model is based on the long-term suppression of an action potential as a response to mechanical input. While other models focus on electrical aspects of the action potential, an increasing body of experiments highlights its electro-mechanical nature and points in particular towards an alteration of the action potential when subjected to a mechanical input. Here, we propose a new phenomenological framework able to capture the mechanical aspect of ion channel dynamics and the resulting effect on the overall electrophysiology of the membrane. The model is introduced here through a set of coupled differential equations that describe the system while agreeing with the general findings of the experiments that support an electro-mechanical model. It also confirms that transient quasi-static mechanical loads reversibly affect the amplitude and rate of change of neuronal action potentials, which are smaller and slower under indentation loading conditions. Changes after the loading release are also reversible, albeit on a different time scale.
Collapse
Affiliation(s)
- Yuval Ben Abu
- Physics Unit, Sapir Academic College, Sderot, Hof Ashkelon79165, Israel
- Department of Physics, Clarendon Laboratory, University of Oxford, OxfordOX1 3PU, UK
| | - Ira Wolfson
- Department of Physics, International School for Advanced Studies (SISSA), Data Science Excellence Group, Via Bonomea 265, Trieste34136, Italy
| |
Collapse
|
3
|
Tolbatov I, Marrone A, Shepard W, Chiaverini L, Upadhyay Kahaly M, La Mendola D, Marzo T, Ciccone L. Inorganic Drugs as a Tool for Protein Structure Solving and Studies on Conformational Changes. Chemistry 2023; 29:e202202937. [PMID: 36477932 DOI: 10.1002/chem.202202937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 12/07/2022] [Accepted: 12/07/2022] [Indexed: 12/12/2022]
Abstract
Inorganic drugs are capable of tight interactions with proteins through coordination towards aminoacidic residues, and this feature is recognized as a key aspect for their pharmacological action. However, the "protein metalation process" is exploitable for solving the phase problem and structural resolution. In fact, the use of inorganic drugs bearing specific metal centers and ligands capable to drive the binding towards the desired portions of the protein target could represent a very intriguing and fruitful strategy. In this context, a theoretical approach may further contribute to solve protein structures and their refinement. Here, we delineate the main features of a reliable experimental-theoretical integrated approach, based on the use of metallodrugs, for protein structure solving.
Collapse
Affiliation(s)
- Iogann Tolbatov
- Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology, Avgda. Països Catalans, 16, 43007, Tarragona, Spain
| | - Alessandro Marrone
- Department of Pharmacy, University "G. D'Annunzio" Chieti-Pescara, Via dei Vestini, 31, 66100, Chieti, Italy
| | - William Shepard
- Department PROXIMA2 A, Synchrotron SOLEIL, L'Orme des Merisiers, Saint-Aubin, BP 48, 91192, Gif-sur-Yvette, France
| | - Lorenzo Chiaverini
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126, Pisa, Italy
| | | | - Diego La Mendola
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126, Pisa, Italy
| | - Tiziano Marzo
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126, Pisa, Italy
| | - Lidia Ciccone
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126, Pisa, Italy
- Department PROXIMA2 A, Synchrotron SOLEIL, L'Orme des Merisiers, Saint-Aubin, BP 48, 91192, Gif-sur-Yvette, France
| |
Collapse
|
4
|
Nawafleh S, Qaswal AB, Alali O, Zayed FM, Al-Azzam AM, Al-Kharouf K, Ali MB, Albliwi MA, Al-Hamarsheh R, Iswaid M, Albanna A, Enjadat A, Al-Adwan MAO, Dibbeh K, Shareah EAA, Hamdan A, Suleiman A. Quantum Mechanical Aspects in the Pathophysiology of Neuropathic Pain. Brain Sci 2022; 12:brainsci12050658. [PMID: 35625044 PMCID: PMC9140023 DOI: 10.3390/brainsci12050658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Revised: 05/08/2022] [Accepted: 05/12/2022] [Indexed: 11/17/2022] Open
Abstract
Neuropathic pain is a challenging complaint for patients and clinicians since there are no effective agents available to get satisfactory outcomes even though the pharmacological agents target reasonable pathophysiological mechanisms. This may indicate that other aspects in these mechanisms should be unveiled to comprehend the pathogenesis of neuropathic pain and thus find more effective treatments. Therefore, in the present study, several mechanisms are chosen to be reconsidered in the pathophysiology of neuropathic pain from a quantum mechanical perspective. The mathematical model of the ions quantum tunneling model is used to provide quantum aspects in the pathophysiology of neuropathic pain. Three major pathophysiological mechanisms are revisited in the context of the quantum tunneling model. These include: (1) the depolarized membrane potential of neurons; (2) the cross-talk or the ephaptic coupling between the neurons; and (3) the spontaneous neuronal activity and the emergence of ectopic action potentials. We will show mathematically that the quantum tunneling model can predict the occurrence of neuronal membrane depolarization attributed to the quantum tunneling current of sodium ions. Moreover, the probability of inducing an ectopic action potential in the axons of neurons will be calculated and will be shown to be significant and influential. These ectopic action potentials are generated due to the formation of quantum synapses which are assumed to be the mechanism behind the ephaptic transmission. Furthermore, the spontaneous neuronal activity and the emergence of ectopic action potentials independently from any adjacent stimulated neurons are predicted to occur according to the quantum tunneling model. All these quantum mechanical aspects contribute to the overall hyperexcitability of the neurons and to the pathogenesis of neuropathic pain. Additionally, providing a new perspective in the pathophysiology of neuropathic pain may improve our understanding of how the neuropathic pain is generated and maintained and may offer new effective agents that can improve the overall clinical outcomes of the patients.
Collapse
Affiliation(s)
- Sager Nawafleh
- Department of Anesthesia and Intensive Care Unit, The Hashemite University, Zarqa 13115, Jordan;
| | - Abdallah Barjas Qaswal
- School of Medicine, The University of Jordan, Amman 11942, Jordan; (F.M.Z.); (M.B.A.); (M.A.A.); (R.A.-H.); (M.I.); (A.A.); (M.A.O.A.-A.)
- Correspondence:
| | - Obada Alali
- Department of Anesthesia and Intensive Care, Alabdali Clemenceau Hospital, Amman 11190, Jordan;
| | - Fuad Mohammed Zayed
- School of Medicine, The University of Jordan, Amman 11942, Jordan; (F.M.Z.); (M.B.A.); (M.A.A.); (R.A.-H.); (M.I.); (A.A.); (M.A.O.A.-A.)
| | | | - Khaled Al-Kharouf
- Southampton Orthopedics: Centre for Arthroplasty and Revision Surgery, University Hospital Southampton, Tremona Road, Southampton SO16 6YD, UK;
| | - Mo’ath Bani Ali
- School of Medicine, The University of Jordan, Amman 11942, Jordan; (F.M.Z.); (M.B.A.); (M.A.A.); (R.A.-H.); (M.I.); (A.A.); (M.A.O.A.-A.)
| | - Moath Ahmad Albliwi
- School of Medicine, The University of Jordan, Amman 11942, Jordan; (F.M.Z.); (M.B.A.); (M.A.A.); (R.A.-H.); (M.I.); (A.A.); (M.A.O.A.-A.)
| | - Rawan Al-Hamarsheh
- School of Medicine, The University of Jordan, Amman 11942, Jordan; (F.M.Z.); (M.B.A.); (M.A.A.); (R.A.-H.); (M.I.); (A.A.); (M.A.O.A.-A.)
| | - Mohammad Iswaid
- School of Medicine, The University of Jordan, Amman 11942, Jordan; (F.M.Z.); (M.B.A.); (M.A.A.); (R.A.-H.); (M.I.); (A.A.); (M.A.O.A.-A.)
| | - Ahmad Albanna
- School of Medicine, The University of Jordan, Amman 11942, Jordan; (F.M.Z.); (M.B.A.); (M.A.A.); (R.A.-H.); (M.I.); (A.A.); (M.A.O.A.-A.)
| | - Ahmad Enjadat
- Department of Internship Program, Jordan University Hospital, Amman 11942, Jordan;
| | - Mohammad Abu Orabi Al-Adwan
- School of Medicine, The University of Jordan, Amman 11942, Jordan; (F.M.Z.); (M.B.A.); (M.A.A.); (R.A.-H.); (M.I.); (A.A.); (M.A.O.A.-A.)
| | - Khaled Dibbeh
- Leicester University Hospitals, P.O. Box 7853, Leicester LE1 9WW, UK;
| | - Ez-Aldeen Abu Shareah
- Accident and Emergency Department, The Princess Alexandra Hospital NHS Trust, Hamstel Road, Harlow CM20 1QX, UK;
| | - Anas Hamdan
- Department of Anesthesia and Intensive Care Unit, Istishari Hospital, Amman 11184, Jordan;
| | - Aiman Suleiman
- Department of Anesthesia, Intensive Care and Pain Management, Harvard Medical School, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA;
| |
Collapse
|
5
|
The Quantum Tunneling of Ions Model Can Explain the Pathophysiology of Tinnitus. Brain Sci 2022; 12:brainsci12040426. [PMID: 35447958 PMCID: PMC9025927 DOI: 10.3390/brainsci12040426] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 03/16/2022] [Accepted: 03/19/2022] [Indexed: 02/04/2023] Open
Abstract
Tinnitus is a well-known pathological entity in clinical practice. However, the pathophysiological mechanisms behind tinnitus seem to be elusive and cannot provide a comprehensive understanding of its pathogenesis and clinical manifestations. Hence, in the present study, we explore the mathematical model of ions’ quantum tunneling to propose an original pathophysiological mechanism for the sensation of tinnitus. The present model focuses on two major aspects: The first aspect is the ability of ions, including sodium, potassium, and calcium, to depolarize the membrane potential of inner hair cells and the neurons of the auditory pathway. This membrane depolarization is induced via the quantum tunneling of ions through closed voltage-gated channels. The state of membrane depolarization can be a state of hyper-excitability or hypo-excitability, depending on the degree of depolarization. Both of these states aid in understanding the pathophysiology of tinnitus. The second aspect is the quantum tunneling signals between the demyelinated neurons of the auditory pathway. These signals are mediated via the quantum tunneling of potassium ions, which exit to the extracellular fluid during an action potential event. These quantum signals can be viewed as a “quantum synapse” between neurons. The formation of quantum synapses results in hyper-excitability among the demyelinated neurons of the auditory pathway. Both of these aspects augment and amplify the electrical signals in the auditory pathway and result in a loss of the spatiotemporal fidelity of sound signals going to the brain centers. The brain interprets this hyper-excitability and loss of spatiotemporal fidelity as tinnitus. Herein, we show mathematically that the quantum tunneling of ions can depolarize the membrane potential of the inner hair cells and neurons of the auditory pathway. Moreover, we calculate the probability of action potential induction in the neurons of the auditory pathway generated by the quantum tunneling signals of potassium ions.
Collapse
|
6
|
Tikhonov DB, Zhorov BS. P-Loop Channels: Experimental Structures, and Physics-Based and Neural Networks-Based Models. MEMBRANES 2022; 12:membranes12020229. [PMID: 35207150 PMCID: PMC8876033 DOI: 10.3390/membranes12020229] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 02/09/2022] [Accepted: 02/09/2022] [Indexed: 01/27/2023]
Abstract
The superfamily of P-loop channels includes potassium, sodium, and calcium channels, as well as TRP channels and ionotropic glutamate receptors. A rapidly increasing number of crystal and cryo-EM structures have revealed conserved and variable elements of the channel structures. Intriguing differences are seen in transmembrane helices of channels, which may include π-helical bulges. The bulges reorient residues in the helices and thus strongly affect their intersegment contacts and patterns of ligand-sensing residues. Comparison of the experimental structures suggests that some π-bulges are dynamic: they may appear and disappear upon channel gating and ligand binding. The AlphaFold2 models represent a recent breakthrough in the computational prediction of protein structures. We compared some crystal and cryo-EM structures of P-loop channels with respective AlphaFold2 models. Folding of the regions, which are resolved experimentally, is generally similar to that predicted in the AlphaFold2 models. The models also reproduce some subtle but significant differences between various P-loop channels. However, patterns of π-bulges do not necessarily coincide in the experimental and AlphaFold2 structures. Given the importance of dynamic π-bulges, further studies involving experimental and theoretical approaches are necessary to understand the cause of the discrepancy.
Collapse
|
7
|
Ababneh O, Qaswal AB, Alelaumi A, Khreesha L, Almomani M, Khrais M, Khrais O, Suleihat A, Mutleq S, Al-olaimat Y, Nawafleh S. Proton Quantum Tunneling: Influence and Relevance to Acidosis-Induced Cardiac Arrhythmias/Cardiac Arrest. PATHOPHYSIOLOGY 2021; 28:400-436. [PMID: 35366283 PMCID: PMC8830476 DOI: 10.3390/pathophysiology28030027] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 08/23/2021] [Accepted: 08/31/2021] [Indexed: 01/10/2023] Open
Abstract
Acidosis and its associated pathologies predispose patients to develop cardiac arrhythmias and even cardiac arrest. These arrhythmias are assumed to be the result of membrane depolarization, however, the exact mechanism of depolarization during acidosis is not well defined. In our study, the model of quantum tunneling of protons is used to explain the membrane depolarization that occurs during acidosis. It is found that protons can tunnel through closed activation and inactivation gates of voltage-gated sodium channels Nav1.5 that are present in the membrane of cardiac cells. The quantum tunneling of protons results in quantum conductance, which is evaluated to assess its effect on membrane potential. The quantum conductance of extracellular protons is higher than that of intracellular protons. This predicts an inward quantum current of protons through the closed sodium channels. Additionally, the values of quantum conductance are influential and can depolarize the membrane potential according to the quantum version of the GHK equation. The quantum mechanism of depolarization is distinct from other mechanisms because the quantum model suggests that protons can directly depolarize the membrane potential, and not only through indirect effects as proposed by other mechanisms in the literature. Understanding the pathophysiology of arrhythmias mediated by depolarization during acidosis is crucial to treat and control them and to improve the overall clinical outcomes of patients.
Collapse
Affiliation(s)
- Omar Ababneh
- Department of Anesthesia and Intensive Care, School of Medicine, The University of Jordan, Amman 11942, Jordan;
| | - Abdallah Barjas Qaswal
- Department of Internal Medicine, School of Medicine, The University of Jordan, Amman 11942, Jordan
| | - Ahmad Alelaumi
- Department of Orthopedic Surgery, School of Medicine, The University of Jordan, Amman 11942, Jordan;
| | - Lubna Khreesha
- Department of Special Surgery, School of Medicine, The University of Jordan, Amman 11942, Jordan;
| | - Mujahed Almomani
- Department of General Surgery, School of Medicine, The University of Jordan, Amman 11942, Jordan; (M.A.); (M.K.); (O.K.); (A.S.)
| | - Majdi Khrais
- Department of General Surgery, School of Medicine, The University of Jordan, Amman 11942, Jordan; (M.A.); (M.K.); (O.K.); (A.S.)
| | - Oweiss Khrais
- Department of General Surgery, School of Medicine, The University of Jordan, Amman 11942, Jordan; (M.A.); (M.K.); (O.K.); (A.S.)
| | - Ahmad Suleihat
- Department of General Surgery, School of Medicine, The University of Jordan, Amman 11942, Jordan; (M.A.); (M.K.); (O.K.); (A.S.)
| | - Shahed Mutleq
- Department of Family Medicine, School of Medicine, The University of Jordan, Amman 11942, Jordan;
| | - Yazan Al-olaimat
- Department of Neurosurgery, School of Medicine, The University of Jordan, Amman 11942, Jordan;
| | - Sager Nawafleh
- Department of Anesthesia and Intensive Care Unit, The Hashemite University, Zarqa 13115, Jordan;
| |
Collapse
|
8
|
Mantegazza M, Cestèle S, Catterall WA. Sodium channelopathies of skeletal muscle and brain. Physiol Rev 2021; 101:1633-1689. [PMID: 33769100 DOI: 10.1152/physrev.00025.2020] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Voltage-gated sodium channels initiate action potentials in nerve, skeletal muscle, and other electrically excitable cells. Mutations in them cause a wide range of diseases. These channelopathy mutations affect every aspect of sodium channel function, including voltage sensing, voltage-dependent activation, ion conductance, fast and slow inactivation, and both biosynthesis and assembly. Mutations that cause different forms of periodic paralysis in skeletal muscle were discovered first and have provided a template for understanding structure, function, and pathophysiology at the molecular level. More recent work has revealed multiple sodium channelopathies in the brain. Here we review the well-characterized genetics and pathophysiology of the periodic paralyses of skeletal muscle and then use this information as a foundation for advancing our understanding of mutations in the structurally homologous α-subunits of brain sodium channels that cause epilepsy, migraine, autism, and related comorbidities. We include studies based on molecular and structural biology, cell biology and physiology, pharmacology, and mouse genetics. Our review reveals unexpected connections among these different types of sodium channelopathies.
Collapse
Affiliation(s)
- Massimo Mantegazza
- Université Cote d'Azur, Valbonne-Sophia Antipolis, France.,CNRS UMR7275, Institut de Pharmacologie Moléculaire et Cellulaire, Valbonne-Sophia Antipolis, France.,INSERM, Valbonne-Sophia Antipolis, France
| | - Sandrine Cestèle
- Université Cote d'Azur, Valbonne-Sophia Antipolis, France.,CNRS UMR7275, Institut de Pharmacologie Moléculaire et Cellulaire, Valbonne-Sophia Antipolis, France
| | | |
Collapse
|
9
|
Zheng W, Wen H. Predicting lipid and ligand binding sites in TRPV1 channel by molecular dynamics simulation and machine learning. Proteins 2021; 89:966-977. [PMID: 33739482 DOI: 10.1002/prot.26075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 02/25/2021] [Accepted: 03/15/2021] [Indexed: 11/06/2022]
Abstract
As a key cellular sensor, the TRPV1 channel undergoes a gating transition from a closed state to an open state in response to many physical and chemical stimuli. This transition is regulated by small-molecule ligands including lipids and various agonists/antagonists, but the underlying molecular mechanisms remain obscure. Thanks to recent revolution in cryo-electron microscopy, a growing list of new structures of TRPV1 and other TRPV channels have been solved in complex with various ligands including lipids. Toward elucidating how ligand binding correlates with TRPV1 gating, we have performed extensive molecular dynamics simulations (with cumulative time of 20 μs), starting from high-resolution structures of TRPV1 in both the closed and open states. By comparing between the open and closed state ensembles, we have identified state-dependent binding sites for small-molecule ligands in general and lipids in particular. We further use machine learning to predict top ligand-binding sites as important features to classify the closed vs open states. The predicted binding sites are thoroughly validated by matching homologous sites in all structures of TRPV channels bound to lipids and other ligands, and with previous functional/mutational studies of ligand binding in TRPV1. Taken together, this study has integrated rich structural, dynamic, and functional data to inform future design of small-molecular drugs targeting TRPV1.
Collapse
Affiliation(s)
- Wenjun Zheng
- Department of Physics, State University of New York at Buffalo, Buffalo, New York, USA
| | - Han Wen
- Department of Physics, State University of New York at Buffalo, Buffalo, New York, USA
| |
Collapse
|
10
|
Qaswal AB, Ababneh O, Khreesha L, Al-Ani A, Suleihat A, Abbad M. Mathematical Modeling of Ion Quantum Tunneling Reveals Novel Properties of Voltage-Gated Channels and Quantum Aspects of Their Pathophysiology in Excitability-Related Disorders. PATHOPHYSIOLOGY 2021; 28:116-154. [PMID: 35366274 PMCID: PMC8830480 DOI: 10.3390/pathophysiology28010010] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 03/03/2021] [Accepted: 03/04/2021] [Indexed: 02/08/2023] Open
Abstract
Voltage-gated channels are crucial in action potential initiation and propagation and there are many diseases and disorders related to them. Additionally, the classical mechanics are the main mechanics used to describe the function of the voltage-gated channels and their related abnormalities. However, the quantum mechanics should be considered to unravel new aspects in the voltage-gated channels and resolve the problems and challenges that classical mechanics cannot solve. In the present study, the aim is to mathematically show that quantum mechanics can exhibit a powerful tendency to unveil novel electrical features in voltage-gated channels and be used as a promising tool to solve the problems and challenges in the pathophysiology of excitability-related diseases. The model of quantum tunneling of ions through the intracellular hydrophobic gate is used to evaluate the influence of membrane potential and gating free energy on the tunneling probability, single channel conductance, and quantum membrane conductance. This evaluation is mainly based on graphing the mathematical relationships between these variables. The obtained mathematical graphs showed that ions can achieve significant quantum membrane conductance, which can affect the resting membrane potential and the excitability of cells. In the present work, quantum mechanics reveals original electrical properties associated with voltage-gated channels and introduces new insights and implications into the pathophysiology of excitability- related disorders. In addition, the present work sets a mathematical and theoretical framework that can be utilized to conduct experimental studies in order to explore the quantum aspects of voltage-gated channels and the quantum bioelectrical property of biological membranes.
Collapse
Affiliation(s)
- Abdallah Barjas Qaswal
- Department of Internship Program, Jordan University Hospital, The University of Jordan, Amman 11942, Jordan
| | - Omar Ababneh
- Department of Anesthesia and Intensive Care, School of Medicine, The University of Jordan, Amman 11942, Jordan;
| | - Lubna Khreesha
- Department of Special Surgery, School of Medicine, The University of Jordan, Amman 11942, Jordan;
| | - Abdallah Al-Ani
- School of Medicine, The University of Jordan, Amman 11942, Jordan;
| | - Ahmad Suleihat
- Department of General Surgery, School of Medicine, The University of Jordan, Amman 11942, Jordan; (A.S.); (M.A.)
| | - Mutaz Abbad
- Department of General Surgery, School of Medicine, The University of Jordan, Amman 11942, Jordan; (A.S.); (M.A.)
| |
Collapse
|
11
|
Yates P, Koester JA, Taylor AR. Brevetoxin and Conotoxin Interactions with Single-Domain Voltage-Gated Sodium Channels from a Diatom and Coccolithophore. Mar Drugs 2021; 19:md19030140. [PMID: 33801270 PMCID: PMC8002053 DOI: 10.3390/md19030140] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 02/22/2021] [Accepted: 02/26/2021] [Indexed: 01/16/2023] Open
Abstract
The recently characterized single-domain voltage-gated ion channels from eukaryotic protists (EukCats) provide an array of novel channel proteins upon which to test the pharmacology of both clinically and environmentally relevant marine toxins. Here, we examined the effects of the hydrophilic µ-CTx PIIIA and the lipophilic brevetoxins PbTx-2 and PbTx-3 on heterologously expressed EukCat ion channels from a marine diatom and coccolithophore. Surprisingly, none of the toxins inhibited the peak currents evoked by the two EukCats tested. The lack of homology in the outer pore elements of the channel may disrupt the binding of µ-CTx PIIIA, while major structural differences between mammalian sodium channels and the C-terminal domains of the EukCats may diminish interactions with the brevetoxins. However, all three toxins produced significant negative shifts in the voltage dependence of activation and steady state inactivation, suggesting alternative and state-dependent binding conformations that potentially lead to changes in the excitability of the phytoplankton themselves.
Collapse
|
12
|
Changes in Ion Selectivity Following the Asymmetrical Addition of Charge to the Selectivity Filter of Bacterial Sodium Channels. ENTROPY 2020; 22:e22121390. [PMID: 33316962 PMCID: PMC7764494 DOI: 10.3390/e22121390] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 11/30/2020] [Accepted: 12/07/2020] [Indexed: 12/30/2022]
Abstract
Voltage-gated sodium channels (NaVs) play fundamental roles in eukaryotes, but their exceptional size hinders their structural resolution. Bacterial NaVs are simplified homologues of their eukaryotic counterparts, but their use as models of eukaryotic Na+ channels is limited by their homotetrameric structure at odds with the asymmetric Selectivity Filter (SF) of eukaryotic NaVs. This work aims at mimicking the SF of eukaryotic NaVs by engineering radial asymmetry into the SF of bacterial channels. This goal was pursued with two approaches: the co-expression of different monomers of the NaChBac bacterial channel to induce the random assembly of heterotetramers, and the concatenation of four bacterial monomers to form a concatemer that can be targeted by site-specific mutagenesis. Patch-clamp measurements and Molecular Dynamics simulations showed that an additional gating charge in the SF leads to a significant increase in Na+ and a modest increase in the Ca2+ conductance in the NavMs concatemer in agreement with the behavior of the population of random heterotetramers with the highest proportion of channels with charge -5e. We thus showed that charge, despite being important, is not the only determinant of conduction and selectivity, and we created new tools extending the use of bacterial channels as models of eukaryotic counterparts.
Collapse
|
13
|
Malak OA, Abderemane-Ali F, Wei Y, Coyan FC, Pontus G, Shaya D, Marionneau C, Loussouarn G. Up-regulation of voltage-gated sodium channels by peptides mimicking S4-S5 linkers reveals a variation of the ligand-receptor mechanism. Sci Rep 2020; 10:5852. [PMID: 32246066 PMCID: PMC7125111 DOI: 10.1038/s41598-020-62615-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Accepted: 03/12/2020] [Indexed: 11/09/2022] Open
Abstract
Prokaryotic NaV channels are tetramers and eukaryotic NaV channels consist of a single subunit containing four domains. Each monomer/domain contains six transmembrane segments (S1-S6), S1-S4 being the voltage-sensor domain and S5-S6 the pore domain. A crystal structure of NaVMs, a prokaryotic NaV channel, suggests that the S4-S5 linker (S4-S5L) interacts with the C-terminus of S6 (S6T) to stabilize the gate in the open state. However, in several voltage-gated potassium channels, using specific S4-S5L-mimicking peptides, we previously demonstrated that S4-S5L/S6T interaction stabilizes the gate in the closed state. Here, we used the same strategy on another prokaryotic NaV channel, NaVSp1, to test whether equivalent peptides stabilize the channel in the open or closed state. A NaVSp1-specific S4-S5L peptide, containing the residues supposed to interact with S6T according to the NaVMs structure, induced both an increase in NaVSp1 current density and a negative shift in the activation curve, consistent with S4-S5L stabilizing the open state. Using this approach on a human NaV channel, hNaV1.4, and testing 12 hNaV1.4 S4-S5L peptides, we identified four activating S4-S5L peptides. These results suggest that, in eukaryotic NaV channels, the S4-S5L of DI, DII and DIII domains allosterically modulate the activation gate and stabilize its open state.
Collapse
Affiliation(s)
- Olfat A Malak
- Université de Nantes, CNRS, INSERM, l'institut du thorax, F-44000, Nantes, France.,Buck Institute for Research on Aging, 8001 Redwood Blvd, Novato, California, 94945, USA
| | - Fayal Abderemane-Ali
- Université de Nantes, CNRS, INSERM, l'institut du thorax, F-44000, Nantes, France.,Cardiovascular Research Institute, University of California, San Francisco, California, 941158-9001, USA
| | - Yue Wei
- Université de Nantes, CNRS, INSERM, l'institut du thorax, F-44000, Nantes, France.,Department of Cardiology, Shanghai Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Fabien C Coyan
- Université de Nantes, CNRS, INSERM, l'institut du thorax, F-44000, Nantes, France
| | - Gilyane Pontus
- Université de Nantes, CNRS, INSERM, l'institut du thorax, F-44000, Nantes, France
| | - David Shaya
- Cardiovascular Research Institute, University of California, San Francisco, California, 941158-9001, USA
| | - Céline Marionneau
- Université de Nantes, CNRS, INSERM, l'institut du thorax, F-44000, Nantes, France
| | - Gildas Loussouarn
- Université de Nantes, CNRS, INSERM, l'institut du thorax, F-44000, Nantes, France.
| |
Collapse
|
14
|
Catterall WA, Lenaeus MJ, Gamal El-Din TM. Structure and Pharmacology of Voltage-Gated Sodium and Calcium Channels. Annu Rev Pharmacol Toxicol 2020; 60:133-154. [PMID: 31537174 DOI: 10.1146/annurev-pharmtox-010818-021757] [Citation(s) in RCA: 147] [Impact Index Per Article: 29.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Voltage-gated sodium and calcium channels are evolutionarily related transmembrane signaling proteins that initiate action potentials, neurotransmission, excitation-contraction coupling, and other physiological processes. Genetic or acquired dysfunction of these proteins causes numerous diseases, termed channelopathies, and sodium and calcium channels are the molecular targets for several major classes of drugs. Recent advances in the structural biology of these proteins using X-ray crystallography and cryo-electron microscopy have given new insights into the molecular basis for their function and pharmacology. Here we review this recent literature and integrate findings on sodium and calcium channels to reveal the structural basis for their voltage-dependent activation, fast and slow inactivation, ion conductance and selectivity, and complex pharmacology at the atomic level. We conclude with the theme that new understanding of the diseases and therapeutics of these channels will be derived from application of the emerging structural principles from these recent structural analyses.
Collapse
Affiliation(s)
- William A Catterall
- Department of Pharmacology and Division of General Internal Medicine, Department of Medicine, University of Washington, Seattle, Washington 98195, USA;
| | - Michael J Lenaeus
- Department of Pharmacology and Division of General Internal Medicine, Department of Medicine, University of Washington, Seattle, Washington 98195, USA;
| | - Tamer M Gamal El-Din
- Department of Pharmacology and Division of General Internal Medicine, Department of Medicine, University of Washington, Seattle, Washington 98195, USA;
| |
Collapse
|
15
|
Sun H, Zheng Z, Fedorenko OA, Roberts SK. Covalent linkage of bacterial voltage-gated sodium channels. BMC BIOPHYSICS 2019; 12:1. [PMID: 31061699 PMCID: PMC6487023 DOI: 10.1186/s13628-019-0049-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Accepted: 04/09/2019] [Indexed: 11/22/2022]
Abstract
Background Bacterial sodium channels are important models for understanding ion permeation and selectivity. However, their homotetrameric structure limits their use as models for understanding the more complex eukaryotic voltage-gated sodium channels (which have a pseudo-heterotetrameric structure formed from an oligomer composed of four domains). To bridge this gap we attempted to synthesise oligomers made from four covalently linked bacterial sodium channel monomers and thus resembling their eukaryotic counterparts. Results Western blot analyses revealed NaChBac oligomers to be inherently unstable whereas intact expression of NavMs oligomers was possible. Immunodectection using confocal microscopy and electrophysiological characterisation of NavMs tetramers confirmed plasma membrane localisation and equivalent functionality with wild type NavMs channels when expressed in human embryonic kidney cells. Conclusion This study has generated new tools for the investigation of eukaryotic channels. The successful covalent linkage of four bacterial Nav channel monomers should permit the introduction of radial asymmetry into the structure of bacterial Nav channels and enable the known structures of these channels to be used to gain unique insights into structure-function relationships of their eukaryotic counterparts. Electronic supplementary material The online version of this article (10.1186/s13628-019-0049-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Huaping Sun
- 1Division of Biomedical and Life Sciences, Faculty of Health and Medicine, Lancaster University, Lancaster, LA1 4YQ UK
| | - Zeyu Zheng
- 1Division of Biomedical and Life Sciences, Faculty of Health and Medicine, Lancaster University, Lancaster, LA1 4YQ UK
| | - Olena A Fedorenko
- 1Division of Biomedical and Life Sciences, Faculty of Health and Medicine, Lancaster University, Lancaster, LA1 4YQ UK.,2Present Address: School of Life Sciences, University of Nottingham, Nottingham, NG7 2UH UK
| | - Stephen K Roberts
- 1Division of Biomedical and Life Sciences, Faculty of Health and Medicine, Lancaster University, Lancaster, LA1 4YQ UK
| |
Collapse
|
16
|
Nguyen HX, Bursac N. Ion channel engineering for modulation and de novo generation of electrical excitability. Curr Opin Biotechnol 2019; 58:100-107. [PMID: 30776744 DOI: 10.1016/j.copbio.2019.01.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2018] [Accepted: 01/02/2019] [Indexed: 02/07/2023]
Abstract
Ion channels play essential roles in regulating electrical properties of excitable tissues. By leveraging various ion channel gating mechanisms, scientists have developed a versatile set of genetically encoded tools to modulate intrinsic tissue excitability under different experimental settings. In this article, we will review how ion channels activated by voltage, light, small chemicals, stretch, and temperature have been customized to enable control of tissue excitability both in vitro and in vivo. Advantages and limitations of each of these ion channel-engineering platforms will be discussed and notable applications will be highlighted. Furthermore, we will describe recent progress on de novo generation of excitable tissues via expression of appropriate sets of engineered voltage-gated ion channels and discuss potential therapeutic implications.
Collapse
Affiliation(s)
- Hung X Nguyen
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
| | - Nenad Bursac
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA.
| |
Collapse
|
17
|
Coates MD, Vrana KE, Ruiz-Velasco V. The influence of voltage-gated sodium channels on human gastrointestinal nociception. Neurogastroenterol Motil 2019; 31:e13460. [PMID: 30216585 DOI: 10.1111/nmo.13460] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 08/01/2018] [Accepted: 08/07/2018] [Indexed: 12/14/2022]
Abstract
BACKGROUND Abdominal pain is a frequent and persistent problem in the most common gastrointestinal disorders, including irritable bowel syndrome and inflammatory bowel disease. Pain adversely impacts quality of life, incurs significant healthcare expenditures, and remains a challenging issue to manage with few safe therapeutic options currently available. It is imperative that new methods are developed for identifying and treating this symptom. A variety of peripherally active neuroendocrine signaling elements have the capability to influence gastrointestinal pain perception. A large and growing body of evidence suggests that voltage-gated sodium channels (VGSCs) play a critical role in the development and modulation of nociceptive signaling associated with the gut. Several VGSC isoforms demonstrate significant promise as potential targets for improved diagnosis and treatment of gut-based disorders associated with hyper- and hyposensitivity to abdominal pain. PURPOSE In this article, we critically review key investigations that have evaluated the potential role that VGSCs play in visceral nociception and discuss recent advances related to this topic. Specifically, we discuss the following: (a) what is known about the structure and basic function of VGSCs, (b) the role that each VGSC plays in gut nociception, particularly as it relates to human physiology, and (c) potential diagnostic and therapeutic uses of VGSCs to manage disorders associated with chronic abdominal pain.
Collapse
Affiliation(s)
- Matthew D Coates
- Division of Gastroenterology & Hepatology, Department of Medicine, Penn State University College of Medicine, Hershey, Pennsylvania
| | - Kent E Vrana
- Department of Pharmacology, Penn State University College of Medicine, Hershey, Pennsylvania
| | - Victor Ruiz-Velasco
- Department of Anesthesiology and Perioperative Medicine, Penn State University College of Medicine, Hershey, Pennsylvania
| |
Collapse
|
18
|
Nakagawa H, Munakata T, Sunami A. Mexiletine Block of Voltage-Gated Sodium Channels: Isoform- and State-Dependent Drug-Pore Interactions. Mol Pharmacol 2018; 95:236-244. [PMID: 30593458 DOI: 10.1124/mol.118.114025] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2018] [Accepted: 12/19/2018] [Indexed: 12/24/2022] Open
Abstract
Mexiletine is a class Ib antiarrhythmic drug and is also used clinically to reduce or prevent myotonia. In addition, mexiletine has neuroprotective effects in models of brain ischemia. We compared state-dependent affinities of mexiletine for Nav1.2, Nav1.4, and Nav1.5 and examined the effects of mutations of transmembrane segment S6 residues on mexiletine block of Nav1.5. Three channel isoforms had similar affinities of mexiletine for the rested state, and Nav1.4 and Nav1.5 had similar affinities for the open and inactivated states, while Nav1.2 had lower affinity for these states than Nav1.4 and Nav1.5. Mutational studies revealed that the largest affinity change was observed for an Ala substitution of Phe in domain IV S6. In our homology modeling based on the bacterial Na+ channel, mexiletine changed its location and orientation in the pore depending on the state of the channel, irrespective of the channel isoform. Mexiletine occurred in the upper part in the pore in the open state and lower in the closed state. High-affinity binding of mexiletine in the open states of Nav1.4 and Nav1.5 was caused by a π-π interaction with Phe, whereas mexiletine was located away from Phe in the open state of Nav1.2. These results provide crucial information on the mechanism of isoform differences in state-dependent block by local anesthetics and related drugs. Mexiletine at upper locations in the open state may effectively cause an electrostatic mechanism of block.
Collapse
Affiliation(s)
- Hiroki Nakagawa
- Department of Pharmaceutical Sciences, International University of Health and Welfare, Tochigi, Japan
| | - Tatsuo Munakata
- Department of Pharmaceutical Sciences, International University of Health and Welfare, Tochigi, Japan
| | - Akihiko Sunami
- Department of Pharmaceutical Sciences, International University of Health and Welfare, Tochigi, Japan
| |
Collapse
|
19
|
Fux JE, Mehta A, Moffat J, Spafford JD. Eukaryotic Voltage-Gated Sodium Channels: On Their Origins, Asymmetries, Losses, Diversification and Adaptations. Front Physiol 2018; 9:1406. [PMID: 30519187 PMCID: PMC6259924 DOI: 10.3389/fphys.2018.01406] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Accepted: 09/14/2018] [Indexed: 12/19/2022] Open
Abstract
The appearance of voltage-gated, sodium-selective channels with rapid gating kinetics was a limiting factor in the evolution of nervous systems. Two rounds of domain duplications generated a common 24 transmembrane segment (4 × 6 TM) template that is shared amongst voltage-gated sodium (Nav1 and Nav2) and calcium channels (Cav1, Cav2, and Cav3) and leak channel (NALCN) plus homologs from yeast, different single-cell protists (heterokont and unikont) and algae (green and brown). A shared architecture in 4 × 6 TM channels include an asymmetrical arrangement of extended extracellular L5/L6 turrets containing a 4-0-2-2 pattern of cysteines, glycosylated residues, a universally short III-IV cytoplasmic linker and often a recognizable, C-terminal PDZ binding motif. Six intron splice junctions are conserved in the first domain, including a rare U12-type of the minor spliceosome provides support for a shared heritage for sodium and calcium channels, and a separate lineage for NALCN. The asymmetrically arranged pores of 4x6 TM channels allows for a changeable ion selectivity by means of a single lysine residue change in the high field strength site of the ion selectivity filter in Domains II or III. Multicellularity and the appearance of systems was an impetus for Nav1 channels to adapt to sodium ion selectivity and fast ion gating. A non-selective, and slowly gating Nav2 channel homolog in single cell eukaryotes, predate the diversification of Nav1 channels from a basal homolog in a common ancestor to extant cnidarians to the nine vertebrate Nav1.x channel genes plus Nax. A close kinship between Nav2 and Nav1 homologs is evident in the sharing of most (twenty) intron splice junctions. Different metazoan groups have lost their Nav1 channel genes altogether, while vertebrates rapidly expanded their gene numbers. The expansion in vertebrate Nav1 channel genes fills unique functional niches and generates overlapping properties contributing to redundancies. Specific nervous system adaptations include cytoplasmic linkers with phosphorylation sites and tethered elements to protein assemblies in First Initial Segments and nodes of Ranvier. Analogous accessory beta subunit appeared alongside Nav1 channels within different animal sub-phyla. Nav1 channels contribute to pace-making as persistent or resurgent currents, the former which is widespread across animals, while the latter is a likely vertebrate adaptation.
Collapse
Affiliation(s)
- Julia E Fux
- Department of Biology, University of Waterloo, Waterloo, ON, Canada
| | - Amrit Mehta
- Department of Biology, University of Waterloo, Waterloo, ON, Canada
| | - Jack Moffat
- Department of Biology, University of Waterloo, Waterloo, ON, Canada
| | - J David Spafford
- Department of Biology, University of Waterloo, Waterloo, ON, Canada
| |
Collapse
|
20
|
Abstract
Ion channels are essential for cellular signaling. Voltage-gated ion channels (VGICs) are the largest and most extensively studied superfamily of ion channels. They possess modular structural features such as voltage-sensing domains that encircle and form mechanical connections with the pore-forming domains. Such features are intimately related to their function in sensing and responding to changes in the membrane potential. In the present work, we discuss the thermodynamic mechanisms of the VGIC superfamily, including the two-state gating mechanism, sliding-rocking mechanism of the voltage sensor, subunit cooperation, lipid-infiltration mechanism of inactivation, and the relationship with their structural features.
Collapse
|
21
|
Guardiani C, Fedorenko OA, Roberts SK, Khovanov IA. On the selectivity of the NaChBac channel: an integrated computational and experimental analysis of sodium and calcium permeation. Phys Chem Chem Phys 2018; 19:29840-29854. [PMID: 29090695 DOI: 10.1039/c7cp05928k] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Ion channel selectivity is essential for their function, yet the molecular basis of a channel's ability to select between ions is still rather controversial. In this work, using a combination of molecular dynamics simulations and electrophysiological current measurements we analyze the ability of the NaChBac channel to discriminate between calcium and sodium. Our simulations show that a single calcium ion can access the Selectivity Filter (SF) interacting so strongly with the glutamate ring so as to remain blocked inside. This is consistent with the tiny calcium currents recorded in our patch-clamp experiments. Two reasons explain this scenario. The first is the higher free energy of ion/SF binding of Ca2+ with respect to Na+. The second is the strong electrostatic repulsion exerted by the resident ion that turns back a second potentially incoming Ca2+, preventing the knock-on permeation mechanism. Finally, we analyzed the possibility of the Anomalous Mole Fraction Effect (AMFE), i.e. the ability of micromolar Ca2+ concentrations to block Na+ currents. Current measurements in Na+/Ca2+ mixed solutions excluded the AMFE, in agreement with metadynamics simulations showing the ability of a sodium ion to by-pass and partially displace the resident calcium. Our work supports a new scenario for Na+/Ca2+ selectivity in the bacterial sodium channel, challenging the traditional notion of an exclusion mechanism strictly confining Ca2+ ions outside the channel.
Collapse
Affiliation(s)
- Carlo Guardiani
- School of Engineering, University of Warwick, Coventry CV4 7AL, UK.
| | | | | | | |
Collapse
|
22
|
Abstract
Voltage-gated sodium (Na+) channels are expressed in virtually all electrically excitable tissues and are essential for muscle contraction and the conduction of impulses within the peripheral and central nervous systems. Genetic disorders that disrupt the function of these channels produce an array of Na+ channelopathies resulting in neuronal impairment, chronic pain, neuromuscular pathologies, and cardiac arrhythmias. Because of their importance to the conduction of electrical signals, Na+ channels are the target of a wide variety of local anesthetic, antiarrhythmic, anticonvulsant, and antidepressant drugs. The voltage-gated family of Na+ channels is composed of α-subunits that encode for the voltage sensor domains and the Na+-selective permeation pore. In vivo, Na+ channel α-subunits are associated with one or more accessory β-subunits (β1-β4) that regulate gating properties, trafficking, and cell-surface expression of the channels. The permeation pore of Na+ channels is divided in two parts: the outer mouth of the pore is the site of the ion selectivity filter, while the inner cytoplasmic pore serves as the channel activation gate. The cytoplasmic lining of the permeation pore is formed by the S6 segments that include highly conserved aromatic amino acids important for drug binding. These residues are believed to undergo voltage-dependent conformational changes that alter drug binding as the channels cycle through the closed, open, and inactivated states. The purpose of this chapter is to broadly review the mechanisms of Na+ channel gating and the models used to describe drug binding and Na+ channel inhibition.
Collapse
Affiliation(s)
- M E O'Leary
- Cooper Medical School of Rowan University, Camden, NJ, USA
| | - M Chahine
- CERVO Brain Research Center, Institut universitaire en santé mentale de Québec, Quebec City, QC, Canada.
- Department of Medicine, Université Laval, Quebec City, QC, Canada.
| |
Collapse
|
23
|
Vinekar RS, Sowdhamini R. Three-dimensional Modelling of the Voltage-gated Sodium Ion Channel from Anopheles gambiae Reveals Spatial Clustering of Evolutionarily Conserved Acidic Residues at the Extracellular Sites. Curr Neuropharmacol 2017; 15:1062-1072. [PMID: 27919210 PMCID: PMC5725538 DOI: 10.2174/1567201814666161205131213] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Revised: 05/04/2016] [Accepted: 11/03/2016] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND The eukaryotic voltage-gated sodium channel(e-Nav) is a large asymmetric transmembrane protein with important functions concerning neurological function. No structure has been resolved at high resolution for this protein. METHODS A homology model of the transmembrane and extracellular regions of an Anopheles gambiae para-like channel with emphasis on the pore entrance has been constructed, based upon the templates provided by a prokaryotic sodium channel and a potassium two-pore channel. The latter provides a template for the extracellular regions, which are located above the entrance to the pore, which is likely to open at a side of a dome formed by these loops. RESULTS A model created with this arrangement shows a structure similar to low-resolution cryoelectron microscope images of a related structure. The pore entrance also shows favorable electrostatic interface. CONCLUSION Residues responsible for the negative charge around the pore have been traced in phylogeny to highlight their importance. This model is intended for the study of pore-blocking toxins.
Collapse
Affiliation(s)
- Rithvik S. Vinekar
- National Centre for Biological Sciences (TIFR), GKVK Campus, Bellary Road, Bangalore, India
| | - Ramanathan Sowdhamini
- National Centre for Biological Sciences (TIFR), GKVK Campus, Bellary Road, Bangalore, India
| |
Collapse
|
24
|
Ion channels and ion selectivity. Essays Biochem 2017; 61:201-209. [PMID: 28487397 DOI: 10.1042/ebc20160074] [Citation(s) in RCA: 85] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Revised: 02/16/2017] [Accepted: 03/01/2017] [Indexed: 12/26/2022]
Abstract
Specific macromolecular transport systems, ion channels and pumps, provide the pathways to facilitate and control the passage of ions across the lipid membrane. Ion channels provide energetically favourable passage for ions to diffuse rapidly and passively according to their electrochemical potential. Selective ion channels are essential for the excitability of biological membranes: the action potential is a transient phenomenon that reflects the rapid opening and closing of voltage-dependent Na+-selective and K+-selective channels. One of the most critical functional aspects of K+ channels is their ability to remain highly selective for K+ over Na+ while allowing high-throughput ion conduction at a rate close to the diffusion limit. Permeation through the K+ channel selectivity filter is believed to proceed as a 'knockon' mechanism, in which 2-3 K+ ions interspersed by water molecules move in a single file. Permeation through the comparatively wider and less selective Na+ channels also proceeds via a loosely coupled knockon mechanism, although the ions do not need to be fully dehydrated. While simple structural concepts are often invoked to rationalize the mechanism of ion selectivity, a deeper analysis shows that subtle effects play an important role in these flexible dynamical structures.
Collapse
|
25
|
Pryde DC, Swain NA, Stupple PA, West CW, Marron B, Markworth CJ, Printzenhoff D, Lin Z, Cox PJ, Suzuki R, McMurray S, Waldron GJ, Payne CE, Warmus JS, Chapman ML. The discovery of a potent Na v1.3 inhibitor with good oral pharmacokinetics. MEDCHEMCOMM 2017; 8:1255-1267. [PMID: 30108836 DOI: 10.1039/c7md00131b] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Accepted: 04/26/2017] [Indexed: 11/21/2022]
Abstract
In this article, we describe the discovery of an aryl ether series of potent and selective Nav1.3 inhibitors. Based on structural analogy to a similar series of compounds we have previously shown bind to the domain IV voltage sensor region of Nav channels, we propose this series binds in the same location. We describe the development of this series from a published starting point, highlighting key selectivity and potency data, and several studies designed to validate Nav1.3 as a target for pain.
Collapse
Affiliation(s)
- D C Pryde
- Worldwide Medicinal Chemistry , Pfizer Neuroscience and Pain Research Unit , Portway Building, Granta Park , Cambridge , CB21 6GS , UK .
| | - N A Swain
- Worldwide Medicinal Chemistry , Pfizer Neuroscience and Pain Research Unit , Portway Building, Granta Park , Cambridge , CB21 6GS , UK .
| | - P A Stupple
- Worldwide Medicinal Chemistry , Pfizer Neuroscience and Pain Research Unit , Portway Building, Granta Park , Cambridge , CB21 6GS , UK .
| | - C W West
- Pfizer Neuroscience and Pain Research Unit , 4222 Emperor Boulevard, Suite 350 , Durham , North Carolina NC27703 , USA
| | - B Marron
- Pfizer Neuroscience and Pain Research Unit , 4222 Emperor Boulevard, Suite 350 , Durham , North Carolina NC27703 , USA
| | - C J Markworth
- Pfizer Neuroscience and Pain Research Unit , 4222 Emperor Boulevard, Suite 350 , Durham , North Carolina NC27703 , USA
| | - D Printzenhoff
- Pfizer Neuroscience and Pain Research Unit , 4222 Emperor Boulevard, Suite 350 , Durham , North Carolina NC27703 , USA
| | - Z Lin
- Pfizer Neuroscience and Pain Research Unit , 4222 Emperor Boulevard, Suite 350 , Durham , North Carolina NC27703 , USA
| | - P J Cox
- Pfizer Neuroscience and Pain Research Unit , Portway Building, Granta Park , Cambridge , CB21 6GS , UK
| | - R Suzuki
- Pfizer Neuroscience and Pain Research Unit , Portway Building, Granta Park , Cambridge , CB21 6GS , UK
| | - S McMurray
- Pfizer Neuroscience and Pain Research Unit , Portway Building, Granta Park , Cambridge , CB21 6GS , UK
| | - G J Waldron
- Pfizer Neuroscience and Pain Research Unit , Portway Building, Granta Park , Cambridge , CB21 6GS , UK
| | - C E Payne
- Pfizer Neuroscience and Pain Research Unit , Portway Building, Granta Park , Cambridge , CB21 6GS , UK
| | - J S Warmus
- Worldwide Medicinal Chemistry , Pfizer Neuroscience and Pain Research Unit , Groton , CT , USA
| | - M L Chapman
- Pfizer Neuroscience and Pain Research Unit , 4222 Emperor Boulevard, Suite 350 , Durham , North Carolina NC27703 , USA
| |
Collapse
|
26
|
The chemical basis for electrical signaling. Nat Chem Biol 2017; 13:455-463. [PMID: 28406893 DOI: 10.1038/nchembio.2353] [Citation(s) in RCA: 125] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Accepted: 01/26/2017] [Indexed: 02/06/2023]
Abstract
Electrical signals generated by minute currents of ions moving across cell membranes are central to all rapid processes in biology. Initiation and propagation of electrical signals requires voltage-gated sodium (NaV) and calcium (CaV) channels. These channels contain a tetramer of membrane-bound subunits or domains comprising a voltage sensor and a pore module. Voltage-dependent activation occurs as membrane depolarization drives outward movements of positive gating changes in the voltage sensor via a sliding-helix mechanism, which leads to a conformational change in the pore module that opens its intracellular activation gate. A unique negatively charged site in the selectivity filter conducts hydrated Na+ or Ca2+ rapidly and selectively. Ion conductance is terminated by voltage-dependent inactivation, which causes asymmetric pore collapse. This Review focuses on recent advances in structure and function of NaV and CaV channels that expand our current understanding of the chemical basis for electrical signaling mechanisms conserved from bacteria to humans.
Collapse
|
27
|
Sand RM, Gingrich KJ, Macharadze T, Herold KF, Hemmings HC. Isoflurane modulates activation and inactivation gating of the prokaryotic Na + channel NaChBac. J Gen Physiol 2017; 149:623-638. [PMID: 28416648 PMCID: PMC5460948 DOI: 10.1085/jgp.201611600] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Revised: 09/04/2016] [Accepted: 03/15/2017] [Indexed: 02/01/2023] Open
Abstract
The pharmacological effects of inhaled anesthetics on ion channel function are poorly understood. Sand et al. analyze macroscopic gating of the prokaryotic voltage-gated sodium channel, NaChBac, using a six-state kinetic scheme and demonstrate that isoflurane modulates microscopic gating properties. Voltage-gated Na+ channels (Nav) have emerged as important presynaptic targets for volatile anesthetic (VA) effects on synaptic transmission. However, the detailed biophysical mechanisms by which VAs modulate Nav function remain unclear. VAs alter macroscopic activation and inactivation of the prokaryotic Na+ channel, NaChBac, which provides a useful structural and functional model of mammalian Nav. Here, we study the effects of the common general anesthetic isoflurane on NaChBac function by analyzing macroscopic Na+ currents (INa) in wild-type (WT) channels and mutants with impaired (G229A) or enhanced (G219A) inactivation. We use a previously described six-state Markov model to analyze empirical WT and mutant NaChBac channel gating data. The model reproduces the mean empirical gating manifest in INa time courses and optimally estimates microscopic rate constants, valences (z), and fractional electrical distances (x) of forward and backward transitions. The model also reproduces gating observed for all three channels in the absence or presence of isoflurane, providing further validation. We show using this model that isoflurane increases forward activation and inactivation rate constants at 0 mV, which are associated with estimated chemical free energy changes of approximately −0.2 and −0.7 kcal/mol, respectively. Activation is voltage dependent (z ≈ 2e0, x ≈ 0.3), inactivation shows little voltage dependence, and isoflurane has no significant effect on either. Forward inactivation rate constants are more than 20-fold greater than backward rate constants in the absence or presence of isoflurane. These results indicate that isoflurane modulates NaChBac gating primarily by increasing forward activation and inactivation rate constants. These findings support accumulating evidence for multiple sites of anesthetic interaction with the channel.
Collapse
Affiliation(s)
- Rheanna M Sand
- Department of Anesthesiology, Weill Cornell Medical College, New York, NY 10065
| | - Kevin J Gingrich
- Department of Anesthesiology, University of Texas Southwestern Medical Center, Dallas, TX 75235
| | - Tamar Macharadze
- Department of Anesthesiology, Weill Cornell Medical College, New York, NY 10065
| | - Karl F Herold
- Department of Anesthesiology, Weill Cornell Medical College, New York, NY 10065
| | - Hugh C Hemmings
- Department of Anesthesiology, Weill Cornell Medical College, New York, NY 10065 .,Department of Pharmacology, Weill Cornell Medical College, New York, NY 10065
| |
Collapse
|
28
|
Structures of closed and open states of a voltage-gated sodium channel. Proc Natl Acad Sci U S A 2017; 114:E3051-E3060. [PMID: 28348242 DOI: 10.1073/pnas.1700761114] [Citation(s) in RCA: 91] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Bacterial voltage-gated sodium channels (BacNavs) serve as models of their vertebrate counterparts. BacNavs contain conserved voltage-sensing and pore-forming domains, but they are homotetramers of four identical subunits, rather than pseudotetramers of four homologous domains. Here, we present structures of two NaVAb mutants that capture tightly closed and open states at a resolution of 2.8-3.2 Å. Introduction of two humanizing mutations in the S6 segment (NaVAb/FY: T206F and V213Y) generates a persistently closed form of the activation gate in which the intracellular ends of the four S6 segments are drawn tightly together to block ion permeation completely. This construct also revealed the complete structure of the four-helix bundle that forms the C-terminal domain. In contrast, truncation of the C-terminal 40 residues in NavAb/1-226 captures the activation gate in an open conformation, revealing the open state of a BacNav with intact voltage sensors. Comparing these structures illustrates the full range of motion of the activation gate, from closed with its orifice fully occluded to open with an orifice of ∼10 Å. Molecular dynamics and free-energy simulations confirm designation of NaVAb/1-226 as an open state that allows permeation of hydrated Na+, and these results also support a hydrophobic gating mechanism for control of ion permeation. These two structures allow completion of a closed-open-inactivated conformational cycle in a single voltage-gated sodium channel and give insight into the structural basis for state-dependent binding of sodium channel-blocking drugs.
Collapse
|
29
|
Sula A, Booker J, Ng LCT, Naylor CE, DeCaen PG, Wallace BA. The complete structure of an activated open sodium channel. Nat Commun 2017; 8:14205. [PMID: 28205548 PMCID: PMC5316852 DOI: 10.1038/ncomms14205] [Citation(s) in RCA: 105] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Accepted: 12/08/2016] [Indexed: 12/11/2022] Open
Abstract
Voltage-gated sodium channels (Navs) play essential roles in excitable tissues, with their activation and opening resulting in the initial phase of the action potential. The cycling of Navs through open, closed and inactivated states, and their closely choreographed relationships with the activities of other ion channels lead to exquisite control of intracellular ion concentrations in both prokaryotes and eukaryotes. Here we present the 2.45 Å resolution crystal structure of the complete NavMs prokaryotic sodium channel in a fully open conformation. A canonical activated conformation of the voltage sensor S4 helix, an open selectivity filter leading to an open activation gate at the intracellular membrane surface and the intracellular C-terminal domain are visible in the structure. It includes a heretofore unseen interaction motif between W77 of S3, the S4–S5 interdomain linker, and the C-terminus, which is associated with regulation of opening and closing of the intracellular gate. Voltage-gated sodium (Nav) channels are crucial for action potential initiation in excitable cells. Here the authors present the complete structure of prokaryotic NavMs in a fully open state, providing structural insight into the opening and closure of the channel's intracellular gate.
Collapse
Affiliation(s)
- Altin Sula
- Institute of Structural and Molecular Biology, Birkbeck College, University of London, Malet Street, London WC1E 7HX, UK
| | - Jennifer Booker
- Institute of Structural and Molecular Biology, Birkbeck College, University of London, Malet Street, London WC1E 7HX, UK
| | - Leo C T Ng
- Department of Pharmacology, Feinberg School of Medicine, Northwestern University, 320 E Superior, Chicago, Illinois 60611, USA
| | - Claire E Naylor
- Institute of Structural and Molecular Biology, Birkbeck College, University of London, Malet Street, London WC1E 7HX, UK
| | - Paul G DeCaen
- Department of Pharmacology, Feinberg School of Medicine, Northwestern University, 320 E Superior, Chicago, Illinois 60611, USA
| | - B A Wallace
- Institute of Structural and Molecular Biology, Birkbeck College, University of London, Malet Street, London WC1E 7HX, UK
| |
Collapse
|
30
|
Penny CJ, Rahman T, Sula A, Miles AJ, Wallace BA, Patel S. Isolated pores dissected from human two-pore channel 2 are functional. Sci Rep 2016; 6:38426. [PMID: 27941820 PMCID: PMC5150636 DOI: 10.1038/srep38426] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Accepted: 11/08/2016] [Indexed: 01/30/2023] Open
Abstract
Multi-domain voltage-gated ion channels appear to have evolved through sequential rounds of intragenic duplication from a primordial one-domain precursor. Whereas modularity within one-domain symmetrical channels is established, little is known about the roles of individual regions within more complex asymmetrical channels where the domains have undergone substantial divergence. Here we isolated and characterised both of the divergent pore regions from human TPC2, a two-domain channel that holds a key intermediate position in the evolution of voltage-gated ion channels. In HeLa cells, each pore localised to the ER and caused Ca2+ depletion, whereas an ER-targeted pore mutated at a residue that inactivates full-length TPC2 did not. Additionally, one of the pores expressed at high levels in E. coli. When purified, it formed a stable, folded tetramer. Liposomes reconstituted with the pore supported Ca2+ and Na+ uptake that was inhibited by known blockers of full-length channels. Computational modelling of the pore corroborated cationic permeability and drug interaction. Therefore, despite divergence, both pores are constitutively active in the absence of their partners and retain several properties of the wild-type pore. Such symmetrical ‘pore-only’ proteins derived from divergent channel domains may therefore provide tractable tools for probing the functional architecture of complex ion channels.
Collapse
Affiliation(s)
- Christopher J Penny
- Department of Cell and Developmental Biology, University College London, London, WC1E 6BT, UK.,Institute of Structural and Molecular Biology, Birkbeck College, University of London, London, WC1E 7HX, UK
| | - Taufiq Rahman
- Department of Pharmacology, University of Cambridge, Cambridge, CB2 1PD, UK
| | - Altin Sula
- Institute of Structural and Molecular Biology, Birkbeck College, University of London, London, WC1E 7HX, UK
| | - Andrew J Miles
- Institute of Structural and Molecular Biology, Birkbeck College, University of London, London, WC1E 7HX, UK
| | - B A Wallace
- Institute of Structural and Molecular Biology, Birkbeck College, University of London, London, WC1E 7HX, UK
| | - Sandip Patel
- Department of Cell and Developmental Biology, University College London, London, WC1E 6BT, UK
| |
Collapse
|
31
|
Wen H, Qin F, Zheng W. Toward elucidating the heat activation mechanism of the TRPV1 channel gating by molecular dynamics simulation. Proteins 2016; 84:1938-1949. [PMID: 27699868 DOI: 10.1002/prot.25177] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Revised: 09/03/2016] [Accepted: 09/24/2016] [Indexed: 01/01/2023]
Abstract
As a key cellular sensor, the TRPV1 cation channel undergoes a gating transition from a closed state to an open state in response to various physical and chemical stimuli including noxious heat. Despite years of study, the heat activation mechanism of TRPV1 gating remains enigmatic at the molecular level. Toward elucidating the structural and energetic basis of TRPV1 gating, we have performed molecular dynamics (MD) simulations (with cumulative simulation time of 3 μs), starting from the high-resolution closed and open structures of TRPV1 solved by cryo-electron microscopy. In the closed-state simulations at 30°C, we observed a stably closed channel constricted at the lower gate (near residue I679), while the upper gate (near residues G643 and M644) is dynamic and undergoes flickery opening/closing. In the open-state simulations at 60°C, we found higher conformational variation consistent with a large entropy increase required for the heat activation, and both the lower and upper gates are dynamic with transient opening/closing. Through ensemble-based structural analyses of the closed state versus the open state, we revealed pronounced closed-to-open conformational changes involving the membrane proximal domain (MPD) linker, the outer pore, and the TRP helix, which are accompanied by breaking/forming of a network of closed/open-state specific hydrogen bonds. By comparing the closed-state simulations at 30°C and 60°C, we observed heat-activated conformational changes in the MPD linker, the outer pore, and the TRP helix that resemble the closed-to-open conformational changes, along with partial formation of the open-state specific hydrogen bonds. Some of the residues involved in the above key hydrogen bonds were validated by previous mutational studies. Taken together, our MD simulations have offered rich structural and dynamic details beyond the static structures of TRPV1, and promising targets for future mutagenesis and functional studies of the TRPV1 channel. Proteins 2016; 84:1938-1949. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Han Wen
- Department of Physics, State University of New York at Buffalo, Buffalo, New York, 14260
| | - Feng Qin
- Department of Physiology and Biophysical Sciences, State University of New York at Buffalo, Buffalo, New York, 14260
| | - Wenjun Zheng
- Department of Physics, State University of New York at Buffalo, Buffalo, New York, 14260
| |
Collapse
|
32
|
Nguyen HX, Kirkton RD, Bursac N. Engineering prokaryotic channels for control of mammalian tissue excitability. Nat Commun 2016; 7:13132. [PMID: 27752065 PMCID: PMC5071848 DOI: 10.1038/ncomms13132] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Accepted: 09/06/2016] [Indexed: 12/19/2022] Open
Abstract
The ability to directly enhance electrical excitability of human cells is hampered by the lack of methods to efficiently overexpress large mammalian voltage-gated sodium channels (VGSC). Here we describe the use of small prokaryotic sodium channels (BacNav) to create de novo excitable human tissues and augment impaired action potential conduction in vitro. Lentiviral co-expression of specific BacNav orthologues, an inward-rectifying potassium channel, and connexin-43 in primary human fibroblasts from the heart, skin or brain yields actively conducting cells with customizable electrophysiological phenotypes. Engineered fibroblasts ('E-Fibs') retain stable functional properties following extensive subculture or differentiation into myofibroblasts and rescue conduction slowing in an in vitro model of cardiac interstitial fibrosis. Co-expression of engineered BacNav with endogenous mammalian VGSCs enhances action potential conduction and prevents conduction failure during depolarization by elevated extracellular K+, decoupling or ischaemia. These studies establish the utility of engineered BacNav channels for induction, control and recovery of mammalian tissue excitability.
Collapse
Affiliation(s)
- Hung X Nguyen
- Department of Biomedical Engineering, Duke University, 101 Science Drive, Room 1427, Fitzpatrick CIEMAS, Durham, North Carolina 27708, USA
| | - Robert D Kirkton
- Department of Biomedical Engineering, Duke University, 101 Science Drive, Room 1427, Fitzpatrick CIEMAS, Durham, North Carolina 27708, USA
| | - Nenad Bursac
- Department of Biomedical Engineering, Duke University, 101 Science Drive, Room 1427, Fitzpatrick CIEMAS, Durham, North Carolina 27708, USA
| |
Collapse
|
33
|
Wei R, Wang X, Zhang Y, Mukherjee S, Zhang L, Chen Q, Huang X, Jing S, Liu C, Li S, Wang G, Xu Y, Zhu S, Williams AJ, Sun F, Yin CC. Structural insights into Ca(2+)-activated long-range allosteric channel gating of RyR1. Cell Res 2016; 26:977-94. [PMID: 27573175 PMCID: PMC5034117 DOI: 10.1038/cr.2016.99] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Revised: 07/31/2016] [Accepted: 08/03/2016] [Indexed: 12/12/2022] Open
Abstract
Ryanodine receptors (RyRs) are a class of giant ion channels with molecular mass over 2.2 mega-Daltons. These channels mediate calcium signaling in a variety of cells. Since more than 80% of the RyR protein is folded into the cytoplasmic assembly and the remaining residues form the transmembrane domain, it has been hypothesized that the activation and regulation of RyR channels occur through an as yet uncharacterized long-range allosteric mechanism. Here we report the characterization of a Ca2+-activated open-state RyR1 structure by cryo-electron microscopy. The structure has an overall resolution of 4.9 Å and a resolution of 4.2 Å for the core region. In comparison with the previously determined apo/closed-state structure, we observed long-range allosteric gating of the channel upon Ca2+ activation. In-depth structural analyses elucidated a novel channel-gating mechanism and a novel ion selectivity mechanism of RyR1. Our work not only provides structural insights into the molecular mechanisms of channel gating and regulation of RyRs, but also sheds light on structural basis for channel-gating and ion selectivity mechanisms for the six-transmembrane-helix cation channel family.
Collapse
Affiliation(s)
- Risheng Wei
- Department of Biophysics, The Health Science Center, Peking University, Beijing 100191, China
| | - Xue Wang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China.,College of Life Science, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yan Zhang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Saptarshi Mukherjee
- Wales Heart Research Institute, Cardiff University School of Medicine, Cardiff CF14 4XN, UK
| | - Lei Zhang
- Department of Biophysics, The Health Science Center, Peking University, Beijing 100191, China.,Electron Microscopy Analysis Laboratory, The Health Science Center, Peking University, Beijing 100191, China
| | - Qiang Chen
- Department of Biophysics, The Health Science Center, Peking University, Beijing 100191, China
| | - Xinrui Huang
- Department of Biophysics, The Health Science Center, Peking University, Beijing 100191, China
| | - Shan Jing
- Department of Biophysics, The Health Science Center, Peking University, Beijing 100191, China
| | - Congcong Liu
- Department of Biophysics, The Health Science Center, Peking University, Beijing 100191, China
| | - Shuang Li
- Department of Biophysics, The Health Science Center, Peking University, Beijing 100191, China
| | - Guangyu Wang
- Department of Biophysics, The Health Science Center, Peking University, Beijing 100191, China
| | - Yaofang Xu
- Department of Biophysics, The Health Science Center, Peking University, Beijing 100191, China
| | - Sujie Zhu
- Department of Biophysics, The Health Science Center, Peking University, Beijing 100191, China
| | - Alan J Williams
- Wales Heart Research Institute, Cardiff University School of Medicine, Cardiff CF14 4XN, UK
| | - Fei Sun
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China.,College of Life Science, University of Chinese Academy of Sciences, Beijing 100049, China.,Center for Biological Imaging, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Chang-Cheng Yin
- Department of Biophysics, The Health Science Center, Peking University, Beijing 100191, China.,Electron Microscopy Analysis Laboratory, The Health Science Center, Peking University, Beijing 100191, China.,Center for Protein Science, Peking University, Beijing 100871, China
| |
Collapse
|
34
|
Jones JM, Dionne L, Dell'Orco J, Parent R, Krueger JN, Cheng X, Dib-Hajj SD, Bunton-Stasyshyn RK, Sharkey LM, Dowling JJ, Murphy GG, Shakkottai VG, Shrager P, Meisler MH. Single amino acid deletion in transmembrane segment D4S6 of sodium channel Scn8a (Nav1.6) in a mouse mutant with a chronic movement disorder. Neurobiol Dis 2016; 89:36-45. [PMID: 26807988 PMCID: PMC4991781 DOI: 10.1016/j.nbd.2016.01.018] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Revised: 01/06/2016] [Accepted: 01/20/2016] [Indexed: 02/08/2023] Open
Abstract
Mutations of the neuronal sodium channel gene SCN8A are associated with lethal movement disorders in the mouse and with human epileptic encephalopathy. We describe a spontaneous mouse mutation, Scn8a(9J), that is associated with a chronic movement disorder with early onset tremor and adult onset dystonia. Scn8a(9J) homozygotes have a shortened lifespan, with only 50% of mutants surviving beyond 6 months of age. The 3 bp in-frame deletion removes 1 of the 3 adjacent isoleucine residues in transmembrane segment DIVS6 of Nav1.6 (p.Ile1750del). The altered helical orientation of the transmembrane segment displaces pore-lining amino acids with important roles in channel activation and inactivation. The predicted impact on channel activity was confirmed by analysis of cerebellar Purkinje neurons from mutant mice, which lack spontaneous and induced repetitive firing. In a heterologous expression system, the activity of the mutant channel was below the threshold for detection. Observations of decreased nerve conduction velocity and impaired behavior in an open field are also consistent with reduced activity of Nav1.6. The Nav1.6Δ1750 protein is only partially glycosylated. The abundance of mutant Nav1.6 is reduced at nodes of Ranvier and is not detectable at the axon initial segment. Despite a severe reduction in channel activity, the lifespan and motor function of Scn8a(9J/9J) mice are significantly better than null mutants lacking channel protein. The clinical phenotype of this severe hypomorphic mutant expands the spectrum of Scn8a disease to include a recessively inherited, chronic and progressive movement disorder.
Collapse
Affiliation(s)
- Julie M Jones
- Department of Human Genetics, University of Michigan, Ann Arbor, MI 48109, United States
| | - Louise Dionne
- The Jackson Laboratory, Bar Harbor, ME 04609, United States
| | - James Dell'Orco
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109, United States
| | - Rachel Parent
- Department of Molecular and Behavioral Neuroscience Institute, University of Michigan, Ann Arbor, MI 48109, United States
| | - Jamie N Krueger
- Department of Molecular and Behavioral Neuroscience Institute, University of Michigan, Ann Arbor, MI 48109, United States
| | - Xiaoyang Cheng
- Department of Neurology and Centre for Neuroscience and Regeneration Research, Yale University School of Medicine, New Haven, CT 06516, United States.
| | - Sulayman D Dib-Hajj
- Department of Neurology and Centre for Neuroscience and Regeneration Research, Yale University School of Medicine, New Haven, CT 06516, United States
| | | | - Lisa M Sharkey
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109, United States
| | - James J Dowling
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109, United States
| | - Geoffrey G Murphy
- Department of Molecular and Behavioral Neuroscience Institute, University of Michigan, Ann Arbor, MI 48109, United States; Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI 48109, United States
| | - Vikram G Shakkottai
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109, United States
| | - Peter Shrager
- Department of Neurobiology & Anatomy, University of Rochester Medical Center, Rochester, NY 14642, United States
| | - Miriam H Meisler
- Department of Human Genetics, University of Michigan, Ann Arbor, MI 48109, United States.
| |
Collapse
|
35
|
Oakes V, Furini S, Domene C. Voltage-Gated Sodium Channels: Mechanistic Insights From Atomistic Molecular Dynamics Simulations. CURRENT TOPICS IN MEMBRANES 2016; 78:183-214. [PMID: 27586285 DOI: 10.1016/bs.ctm.2015.12.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The permeation of ions and other molecules across biological membranes is an inherent requirement of all cellular organisms. Ion channels, in particular, are responsible for the conduction of charged species, hence modulating the propagation of electrical signals. Despite the universal physiological implications of this property, the molecular functioning of ion channels remains ambiguous. The combination of atomistic structural data with computational methodologies, such as molecular dynamics (MD) simulations, is now considered routine to investigate structure-function relationships in biological systems. A fuller understanding of conduction, selectivity, and gating, therefore, is steadily emerging due to the applicability of these techniques to ion channels. However, because their structure is known at atomic resolution, studies have consistently been biased toward K(+) channels, thus the molecular determinants of ionic selectivity, activation, and drug blockage in Na(+) channels are often overlooked. The recent increase of available crystallographic data has eminently encouraged the investigation of voltage-gated sodium (NaV) channels via computational methods. Here, we present an overview of simulation studies that have contributed to our understanding of key principles that underlie ionic conduction and selectivity in Na(+) channels, in comparison to the K(+) channel analogs.
Collapse
Affiliation(s)
- V Oakes
- King's College London, London, United Kingdom
| | - S Furini
- University of Siena, Siena, Italy
| | - C Domene
- King's College London, London, United Kingdom; University of Oxford, Oxford, United Kingdom
| |
Collapse
|
36
|
Pike ACW, Garman EF, Krojer T, von Delft F, Carpenter EP. An overview of heavy-atom derivatization of protein crystals. Acta Crystallogr D Struct Biol 2016; 72:303-18. [PMID: 26960118 PMCID: PMC4784662 DOI: 10.1107/s2059798316000401] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Accepted: 01/08/2016] [Indexed: 11/11/2022] Open
Abstract
Heavy-atom derivatization is one of the oldest techniques for obtaining phase information for protein crystals and, although it is no longer the first choice, it remains a useful technique for obtaining phases for unknown structures and for low-resolution data sets. It is also valuable for confirming the chain trace in low-resolution electron-density maps. This overview provides a summary of the technique and is aimed at first-time users of the method. It includes guidelines on when to use it, which heavy atoms are most likely to work, how to prepare heavy-atom solutions, how to derivatize crystals and how to determine whether a crystal is in fact a derivative.
Collapse
Affiliation(s)
- Ashley C. W. Pike
- Structural Genomics Consortium, University of Oxford, Roosevelt Drive, Oxford OX11 9HP, England
| | - Elspeth F. Garman
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, England
| | - Tobias Krojer
- Structural Genomics Consortium, University of Oxford, Roosevelt Drive, Oxford OX11 9HP, England
| | - Frank von Delft
- Structural Genomics Consortium, University of Oxford, Roosevelt Drive, Oxford OX11 9HP, England
- Diamond Light Source Ltd, Harwell Science and Innovation Campus, Didcot OX11 0QX, England
- Department of Biochemistry, University of Johannesburg, Aukland Park 2006, South Africa
| | - Elisabeth P. Carpenter
- Structural Genomics Consortium, University of Oxford, Roosevelt Drive, Oxford OX11 9HP, England
| |
Collapse
|
37
|
Naylor CE, Bagnéris C, DeCaen PG, Sula A, Scaglione A, Clapham DE, Wallace BA. Molecular basis of ion permeability in a voltage-gated sodium channel. EMBO J 2016; 35:820-30. [PMID: 26873592 PMCID: PMC4972137 DOI: 10.15252/embj.201593285] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Accepted: 01/18/2016] [Indexed: 12/20/2022] Open
Abstract
Voltage‐gated sodium channels are essential for electrical signalling across cell membranes. They exhibit strong selectivities for sodium ions over other cations, enabling the finely tuned cascade of events associated with action potentials. This paper describes the ion permeability characteristics and the crystal structure of a prokaryotic sodium channel, showing for the first time the detailed locations of sodium ions in the selectivity filter of a sodium channel. Electrostatic calculations based on the structure are consistent with the relative cation permeability ratios (Na+ ≈ Li+ ≫ K+, Ca2+, Mg2+) measured for these channels. In an E178D selectivity filter mutant constructed to have altered ion selectivities, the sodium ion binding site nearest the extracellular side is missing. Unlike potassium ions in potassium channels, the sodium ions in these channels appear to be hydrated and are associated with side chains of the selectivity filter residues, rather than polypeptide backbones.
Collapse
Affiliation(s)
- Claire E Naylor
- Institute of Structural and Molecular Biology, Birkbeck College University of London, London, UK
| | - Claire Bagnéris
- Institute of Structural and Molecular Biology, Birkbeck College University of London, London, UK
| | - Paul G DeCaen
- Department of Cardiology, Howard Hughes Medical Institute Boston Children's Hospital, Boston, MA, USA Department of Neurobiology, Harvard Medical School, Boston, MA, USA
| | - Altin Sula
- Institute of Structural and Molecular Biology, Birkbeck College University of London, London, UK
| | - Antonella Scaglione
- Department of Cardiology, Howard Hughes Medical Institute Boston Children's Hospital, Boston, MA, USA Department of Neurobiology, Harvard Medical School, Boston, MA, USA
| | - David E Clapham
- Department of Cardiology, Howard Hughes Medical Institute Boston Children's Hospital, Boston, MA, USA Department of Neurobiology, Harvard Medical School, Boston, MA, USA
| | - B A Wallace
- Institute of Structural and Molecular Biology, Birkbeck College University of London, London, UK
| |
Collapse
|
38
|
Structural Changes Fundamental to Gating of the Cystic Fibrosis Transmembrane Conductance Regulator Anion Channel Pore. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 925:13-32. [PMID: 27311317 DOI: 10.1007/5584_2016_33] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Cystic fibrosis is caused by mutations in the cystic fibrosis transmembrane conductance regulator (CFTR), an epithelial cell anion channel. Potentiator drugs used in the treatment of cystic fibrosis act on the channel to increase overall channel function, by increasing the stability of its open state and/or decreasing the stability of its closed state. The structure of the channel in either the open state or the closed state is not currently known. However, changes in the conformation of the protein as it transitions between these two states have been studied using functional investigation and molecular modeling techniques. This review summarizes our current understanding of the architecture of the transmembrane channel pore that controls the movement of chloride and other small anions, both in the open state and in the closed state. Evidence for different kinds of changes in the conformation of the pore as it transitions between open and closed states is described, as well as the mechanisms by which these conformational changes might be controlled to regulate normal channel gating. The ways that key conformational changes might be targeted by small compounds to influence overall CFTR activity are also discussed. Understanding the changes in pore structure that might be manipulated by such small compounds is key to the development of novel therapeutic strategies for the treatment of cystic fibrosis.
Collapse
|
39
|
Kasimova M, Granata D, Carnevale V. Voltage-Gated Sodium Channels. CURRENT TOPICS IN MEMBRANES 2016; 78:261-86. [DOI: 10.1016/bs.ctm.2016.05.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
40
|
Ing C, Pomès R. Simulation Studies of Ion Permeation and Selectivity in Voltage-Gated Sodium Channels. CURRENT TOPICS IN MEMBRANES 2016; 78:215-60. [DOI: 10.1016/bs.ctm.2016.07.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
|
41
|
Gawali V, Todt H. Mechanism of Inactivation in Voltage-Gated Na+ Channels. CURRENT TOPICS IN MEMBRANES 2016; 78:409-50. [DOI: 10.1016/bs.ctm.2016.07.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
42
|
Catterall WA, Zheng N. Deciphering voltage-gated Na(+) and Ca(2+) channels by studying prokaryotic ancestors. Trends Biochem Sci 2015; 40:526-34. [PMID: 26254514 DOI: 10.1016/j.tibs.2015.07.002] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2015] [Revised: 06/25/2015] [Accepted: 07/06/2015] [Indexed: 10/23/2022]
Abstract
Voltage-gated sodium channels (NaVs) and calcium channels (CaVs) are involved in electrical signaling, contraction, secretion, synaptic transmission, and other physiological processes activated in response to depolarization. Despite their physiological importance, the structures of these closely related proteins have remained elusive because of their size and complexity. Bacterial NaVs have structures analogous to a single domain of eukaryotic NaVs and CaVs and are their likely evolutionary ancestor. Here we review recent work that has led to new understanding of NaVs and CaVs through high-resolution structural studies of their prokaryotic ancestors. New insights into their voltage-dependent activation and inactivation, ion conductance, and ion selectivity provide realistic structural models for the function of these complex membrane proteins at the atomic level.
Collapse
Affiliation(s)
- William A Catterall
- Department of Pharmacology, Box 357280, University of Washington, Seattle, WA 98195, USA.
| | - Ning Zheng
- Department of Pharmacology, Box 357280, University of Washington, Seattle, WA 98195, USA; Howard Hughes Medical Institute, Box 357280, University of Washington, Seattle, WA 98195, USA.
| |
Collapse
|
43
|
O'Leary ME, Chahine M. MTSET modification of D4S6 cysteines stabilize the fast inactivated state of Nav1.5 sodium channels. Front Pharmacol 2015; 6:118. [PMID: 26150789 PMCID: PMC4472985 DOI: 10.3389/fphar.2015.00118] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Accepted: 05/20/2015] [Indexed: 11/30/2022] Open
Abstract
The transmembrane S6 segments of Na+ sodium channels form the cytoplasmic entrance of the channel and line the internal aspects of the aqueous pore. This region of the channel has been implicated in Na+ channel permeation, gating, and pharmacology. In this study we utilized cysteine substitutions and methanethiosulfonate reagent (MTSET) to investigate the role of the S6 segment of homologous domain 4 (D4S6) in the gating of the cardiac (Nav1.5) channel. D4S6 cysteine mutants were heterologously expressed in tsA201 cells and currents recorded using whole-cell patch clamp. Internal MTSET reduced the peak Na+ currents, induced hyperpolarizing shifts in steady-state inactivation and slowed the recovery of mutant channels with cysteines inserted near the middle (F1760C, V1763C) and C-terminus (Y1767C) of the D4S6. These findings suggested a link between the MTSET inhibition and fast inactivation. This was confirmed by expressing the V1763C and Y1767C mutations in non-inactivating Nav1.5 channels. Removing inactivation abolished the MTSET inhibition of the V1763C and Y1767C mutants. The data indicate that the MTSET-induced reduction in current primarily results from slower recovery from inactivation that produces hyperpolarizing shifts in fast inactivation and decreases the steady-state availability of the channels. This contrasted with a cysteine inserted near the C-terminus of the D4S6 (I1770C) where MTSET increased the persistent Na+ current at depolarized voltages consistent with impaired fast inactivation. Covalent modification of D4S6 cysteines with MTSET adduct appears to reduce the mobility of the D4S6 segment and stabilize the channels in the fast inactivated state. These findings indicate that residues located near the middle and C-terminus of the D4S6 play an important role in fast inactivation.
Collapse
Affiliation(s)
- Michael E O'Leary
- Department of Biomedical Sciences, Cooper Medical School of Rowan University, Camden, NJ USA
| | - Mohamed Chahine
- Department of Medicine, Research Centre, Institute Universitaire en Santé Mentale de Québec, Laval University Québec, QC, Canada
| |
Collapse
|