1
|
Li ZY, Nagao S, Inoue D, Ike M. Different bioaugmentation regimes that mitigate ammonium/salt inhibition in repeated batch anaerobic digestion: Generic converging trend of microbial communities. BIORESOURCE TECHNOLOGY 2024; 413:131481. [PMID: 39277054 DOI: 10.1016/j.biortech.2024.131481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 09/08/2024] [Accepted: 09/10/2024] [Indexed: 09/17/2024]
Abstract
Bioaugmentation regimes (i.e., dosage, repetition, and timing) in AD must be optimized to ensure their effectiveness. Although previous studies have investigated these aspects, most have focused exclusively on short-term effects, with some reporting conflicting conclusions. Here, AD experiments of three consecutive repeated batches were conducted to determine the effect of bioaugmentation regimes under ammonium/salt inhibition conditions. A positive correlation between reactor performance and inoculum dosage was confirmed in the first batch, which diminished in subsequent batches for both inhibitors. Moreover, a diminishing marginal effect was observed with repeated inoculum introduction. While the bacterial community largely influenced the reactor performance, the archaeal community exhibited only a minor impact. Prediction of the key enzyme abundances suggested an overall decline in different AD steps. Overall, repeated batch experiments revealed that a homogeneous bacterial community deteriorated the AD process during long-term operation. Thus, a balanced bacterial community is key for efficient methane production.
Collapse
Affiliation(s)
- Zi-Yan Li
- Division of Sustainable Energy and Environmental Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Shintaro Nagao
- Division of Sustainable Energy and Environmental Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Daisuke Inoue
- Division of Sustainable Energy and Environmental Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Michihiko Ike
- Division of Sustainable Energy and Environmental Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan.
| |
Collapse
|
2
|
Bottura B, Rooney L, Feeney M, Hoskisson PA, McConnell G. Quantifying the fractal complexity of nutrient transport channels in Escherichia coli biofilms under varying cell shape and growth environment. MICROBIOLOGY (READING, ENGLAND) 2024; 170. [PMID: 39499556 DOI: 10.1099/mic.0.001511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2024]
Abstract
Recent mesoscopic characterization of nutrient-transporting channels in Escherichia coli has allowed the identification and measurement of individual channels in whole mature colony biofilms. However, their complexity under different physiological and environmental conditions remains unknown. Analysis of confocal micrographs of colony biofilms formed by cell shape mutants of E. coli shows that channels have high fractal complexity, regardless of cell phenotype or growth medium. In particular, colony biofilms formed by the mutant strain ΔompR, which has a wide-cell phenotype, have a higher fractal dimension when grown on rich medium than when grown on minimal medium, with channel complexity affected by glucose and agar concentrations in the medium. Osmotic stress leads to a dramatic reduction in the ΔompR cell size but has a limited effect on channel morphology. This work shows that fractal image analysis is a powerful tool to quantify the effect of phenotypic mutations and growth environment on the morphological complexity of internal E. coli biofilm structures. If applied to a wider range of mutant strains, this approach could help elucidate the genetic determinants of channel formation in E. coli colony biofilms.
Collapse
Affiliation(s)
- Beatrice Bottura
- Department of Physics, SUPA, University of Strathclyde, G4 0NG, Glasgow, UK
- Present address: Cancer Research UK Scotland Institute, Garscube Estate, Switchback Road, G61 1BD, Glasgow, UK
| | - Liam Rooney
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, G4 0RE, Glasgow, UK
| | - Morgan Feeney
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, G4 0RE, Glasgow, UK
| | - Paul A Hoskisson
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, G4 0RE, Glasgow, UK
| | - Gail McConnell
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, G4 0RE, Glasgow, UK
| |
Collapse
|
3
|
Krzyżek P, Migdał P, Krzyżanowska B, Duda-Madej A. Optimization of Helicobacter pylori Biofilm Formation in In Vitro Conditions Mimicking Stomach. Int J Mol Sci 2024; 25:9839. [PMID: 39337326 PMCID: PMC11432336 DOI: 10.3390/ijms25189839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 08/31/2024] [Accepted: 09/04/2024] [Indexed: 09/30/2024] Open
Abstract
Helicobacter pylori is one of the most common bacterial pathogens worldwide and the main etiological agent of numerous gastric diseases. The frequency of multidrug resistance of H. pylori is growing and the leading factor related to this phenomenon is its ability to form biofilm. Therefore, the establishment of a proper model to study this structure is of critical need. In response to this, the aim of this original article is to validate conditions of the optimal biofilm development of H. pylori in monoculture and co-culture with a gastric cell line in media simulating human fluids. Using a set of culture-based and microscopic techniques, we proved that simulated transcellular fluid and simulated gastric fluid, when applied in appropriate concentrations, stimulate autoaggregation and biofilm formation of H. pylori. Additionally, using a co-culture system on semi-permeable membranes in media imitating the stomach environment, we were able to obtain a monolayer of a gastric cell line with H. pylori biofilm on its surface. We believe that the current model for H. pylori biofilm formation in monoculture and co-culture with gastric cells in media containing host-mimicking fluids will constitute a platform for the intensification of research on H. pylori biofilms in in vitro conditions that simulate the human body.
Collapse
Affiliation(s)
- Paweł Krzyżek
- Department of Microbiology, Faculty of Medicine, Wroclaw Medical University, 50-368 Wroclaw, Poland; (B.K.); (A.D.-M.)
| | - Paweł Migdał
- Department of Bees Breeding, Institute of Animal Husbandry, Wroclaw University of Environmental and Life Sciences, 51-630 Wroclaw, Poland;
| | - Barbara Krzyżanowska
- Department of Microbiology, Faculty of Medicine, Wroclaw Medical University, 50-368 Wroclaw, Poland; (B.K.); (A.D.-M.)
| | - Anna Duda-Madej
- Department of Microbiology, Faculty of Medicine, Wroclaw Medical University, 50-368 Wroclaw, Poland; (B.K.); (A.D.-M.)
| |
Collapse
|
4
|
Kruk M, Lalowski P, Hoffmann M, Trząskowska M, Jaworska D. Probiotic Bacteria Survival and Shelf Life of High Fibre Plant Snack - Model Study. PLANT FOODS FOR HUMAN NUTRITION (DORDRECHT, NETHERLANDS) 2024; 79:586-593. [PMID: 38797802 PMCID: PMC11410916 DOI: 10.1007/s11130-024-01196-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 05/18/2024] [Indexed: 05/29/2024]
Abstract
The study aimed to develop plant-based model snacks that are high in fibre, contain probiotic bacteria and are convenient for long-term storage. The research focused on selecting a suitable form of probiotic bacteria (active biomass, microencapsulated, freeze-dried), inoculation method (in the base mass or in the filling of a snack) and appropriate storage conditions (4°Cor 20 °C). The potential synbiotic properties were evaluated. The microencapsulated bacteria had the highest survival rate at 4 °C, while the freeze-dried bacteria showed better survival rates at 20 °C. Probiotics had a higher survival rate when enclosed inside snacks with a low water activity (aw = 0.27) peanut butter filling than in snacks without filling (aw = 0.53). Enclosing the probiotics in a low aw filling ensures their survival at ambient temperature for 5 months at a count higher than 6 log CFU/g. The snacks exhibited high antioxidant capacity (average 300 mg ascorbic acid equivalent/100 g), polyphenol content (average 357 mg gallic acid equivalent/100 g) and high fibre content (average 10.2 g/100 g). The sensory analysis showed a high overall quality of the snacks (average 7.1/10 of the conventional units). Furthermore, after six months of storage, significant changes were observed in the antioxidant properties, polyphenol content and texture of the snacks, while their sensory quality remained unchanged. Moreover, a potential synbiotic effect was observed. The method used to assess bacterial growth indicated significantly higher values in the model snacks compared to a control sample. Therefore, this study has effectively addressed the gap in knowledge regarding the survival of probiotics in snacks of this nature.
Collapse
Affiliation(s)
- Marcin Kruk
- Institute of Human Nutrition Sciences, Warsaw University of Life Sciences (WULS-SGGW), Nowoursynowska 159c, 02-776, Warsaw, Poland.
| | - Piotr Lalowski
- Faculty of Human Nutrition, Warsaw University of Life Sciences (WULS-SGGW), Nowoursynowska 159c, 02-776, Warsaw, Poland
| | - Monika Hoffmann
- Institute of Human Nutrition Sciences, Warsaw University of Life Sciences (WULS-SGGW), Nowoursynowska 159c, 02-776, Warsaw, Poland
| | - Monika Trząskowska
- Institute of Human Nutrition Sciences, Warsaw University of Life Sciences (WULS-SGGW), Nowoursynowska 159c, 02-776, Warsaw, Poland
| | - Danuta Jaworska
- Institute of Human Nutrition Sciences, Warsaw University of Life Sciences (WULS-SGGW), Nowoursynowska 159c, 02-776, Warsaw, Poland
| |
Collapse
|
5
|
Iyer A, Frallicciardi J, le Paige UBA, Narasimhan S, Luo Y, Sieiro PA, Syga L, van den Brekel F, Tran BM, Tjioe R, Schuurman-Wolters G, Stuart MCA, Baldus M, van Ingen H, Poolman B. The Structure and Function of the Bacterial Osmotically Inducible Protein Y. J Mol Biol 2024; 436:168668. [PMID: 38908784 DOI: 10.1016/j.jmb.2024.168668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 06/14/2024] [Accepted: 06/14/2024] [Indexed: 06/24/2024]
Abstract
The ability to adapt to osmotically diverse and fluctuating environments is critical to the survival and resilience of bacteria that colonize the human gut and urinary tract. Environmental stress often provides cross-protection against other challenges and increases antibiotic tolerance of bacteria. Thus, it is critical to understand how E. coli and other microbes survive and adapt to stress conditions. The osmotically inducible protein Y (OsmY) is significantly upregulated in response to hypertonicity. Yet its function remains unknown for decades. We determined the solution structure and dynamics of OsmY by nuclear magnetic resonance spectroscopy, which revealed that the two Bacterial OsmY and Nodulation (BON) domains of the protein are flexibly linked under low- and high-salinity conditions. In-cell solid-state NMR further indicates that there are no gross structural changes in OsmY as a function of osmotic stress. Using cryo-electron and super-resolution fluorescence microscopy, we show that OsmY attenuates plasmolysis-induced structural changes in E. coli and improves the time to growth resumption after osmotic upshift. Structure-guided mutational and functional studies demonstrate that exposed hydrophobic residues in the BON1 domain are critical for the function of OsmY. We find no evidence for membrane interaction of the BON domains of OsmY, contrary to current assumptions. Instead, at high ionic strength, we observe an interaction with the water channel, AqpZ. Thus, OsmY does not play a simple structural role in E. coli but may influence a cascade of osmoregulatory functions of the cell.
Collapse
Affiliation(s)
- Aditya Iyer
- Department of Biochemistry, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 4, 9747 AG Groningen, the Netherlands.
| | - Jacopo Frallicciardi
- Department of Biochemistry, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 4, 9747 AG Groningen, the Netherlands
| | - Ulric B A le Paige
- NMR Spectroscopy, Bijvoet Center for Biomolecular Research, Utrecht University, Padualaan 8, 3584 CH Utrecht, the Netherlands
| | - Siddarth Narasimhan
- NMR Spectroscopy, Bijvoet Center for Biomolecular Research, Utrecht University, Padualaan 8, 3584 CH Utrecht, the Netherlands
| | - Yanzhang Luo
- NMR Spectroscopy, Bijvoet Center for Biomolecular Research, Utrecht University, Padualaan 8, 3584 CH Utrecht, the Netherlands
| | - Patricia Alvarez Sieiro
- Department of Biochemistry, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 4, 9747 AG Groningen, the Netherlands
| | - Lukasz Syga
- Department of Biochemistry, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 4, 9747 AG Groningen, the Netherlands
| | - Floris van den Brekel
- Department of Biochemistry, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 4, 9747 AG Groningen, the Netherlands
| | - Buu Minh Tran
- Department of Biochemistry, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 4, 9747 AG Groningen, the Netherlands
| | - Rendy Tjioe
- Department of Biochemistry, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 4, 9747 AG Groningen, the Netherlands
| | - Gea Schuurman-Wolters
- Department of Biochemistry, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 4, 9747 AG Groningen, the Netherlands
| | - Marc C A Stuart
- Department of Biochemistry, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 4, 9747 AG Groningen, the Netherlands
| | - Marc Baldus
- NMR Spectroscopy, Bijvoet Center for Biomolecular Research, Utrecht University, Padualaan 8, 3584 CH Utrecht, the Netherlands
| | - Hugo van Ingen
- NMR Spectroscopy, Bijvoet Center for Biomolecular Research, Utrecht University, Padualaan 8, 3584 CH Utrecht, the Netherlands.
| | - Bert Poolman
- Department of Biochemistry, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 4, 9747 AG Groningen, the Netherlands.
| |
Collapse
|
6
|
Foster AJ, van den Noort M, Poolman B. Bacterial cell volume regulation and the importance of cyclic di-AMP. Microbiol Mol Biol Rev 2024; 88:e0018123. [PMID: 38856222 PMCID: PMC11332354 DOI: 10.1128/mmbr.00181-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2024] Open
Abstract
SUMMARYNucleotide-derived second messengers are present in all domains of life. In prokaryotes, most of their functionality is associated with general lifestyle and metabolic adaptations, often in response to environmental fluctuations of physical parameters. In the last two decades, cyclic di-AMP has emerged as an important signaling nucleotide in many prokaryotic lineages, including Firmicutes, Actinobacteria, and Cyanobacteria. Its importance is highlighted by the fact that both the lack and overproduction of cyclic di-AMP affect viability of prokaryotes that utilize cyclic di-AMP, and that it generates a strong innate immune response in eukaryotes. In bacteria that produce the second messenger, most molecular targets of cyclic di-AMP are associated with cell volume control. Besides, other evidence links the second messenger to cell wall remodeling, DNA damage repair, sporulation, central metabolism, and the regulation of glycogen turnover. In this review, we take a biochemical, quantitative approach to address the main cellular processes that are directly regulated by cyclic di-AMP and show that these processes are very connected and require regulation of a similar set of proteins to which cyclic di-AMP binds. Altogether, we argue that cyclic di-AMP is a master regulator of cell volume and that other cellular processes can be connected with cyclic di-AMP through this core function. We further highlight important directions in which the cyclic di-AMP field has to develop to gain a full understanding of the cyclic di-AMP signaling network and why some processes are regulated, while others are not.
Collapse
Affiliation(s)
- Alexander J. Foster
- Department of Biochemistry, Groningen Biomolecular Science and Biotechnology Institute, University of Groningen, Groningen, the Netherlands
| | - Marco van den Noort
- Department of Biochemistry, Groningen Biomolecular Science and Biotechnology Institute, University of Groningen, Groningen, the Netherlands
| | - Bert Poolman
- Department of Biochemistry, Groningen Biomolecular Science and Biotechnology Institute, University of Groningen, Groningen, the Netherlands
| |
Collapse
|
7
|
Müller N, Kollert M, Trampuz A, Gonzalez Moreno M. Efficacy of different bioactive glass S53P4 formulations in biofilm eradication and the impact of pH and osmotic pressure. Colloids Surf B Biointerfaces 2024; 239:113940. [PMID: 38744081 DOI: 10.1016/j.colsurfb.2024.113940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 04/16/2024] [Accepted: 04/30/2024] [Indexed: 05/16/2024]
Abstract
AIM The challenging properties of biofilm-associated infections and the rise of multidrug-resistant bacteria are prompting the exploration of alternative treatment options. This study investigates the efficacy of different bioactive glass (BAG) formulations - alone or combined with vancomycin - to eradicate biofilm. Further, we study the influence of BAG on pH and osmotic pressure as important factors limiting bacterial growth. METHOD Different BAG S53P4 formulations were used for this study, including (a) powder (<45 μm), (b) granules (500-800 µm), (c) a cone-shaped scaffold and (d) two putty formulations containing granules with no powder (putty A) or with additional powder (putty B) bound together by a synthetic binder. Inert glass beads (1.0-1.3 mm) were included as control. All formulations were tested in a concentration of 1750 mg/ml in Müller-Hinton-Broth against methicillin-resistant Staphylococcus aureus (MRSA) and methicillin-resistant Staphylococcus epidermidis (MRSE). Vancomycin was tested at the minimum-inhibitory concentration for each strain. Changes in pH and osmolality over time were assessed at 0 h, 24 h, 72 h and 168 h. RESULTS All tested BAG formulations showed antibiofilm activity against MRSA and MRSE. Powder and putty B were the most effective formulations suppressing biofilm leading to its complete eradication after up to 168 h of co-incubation, followed by granules, scaffold and putty A. In general, MRSE appeared to be more susceptible to bioactive glass compared to MRSA. The addition of vancomycin had no substantial impact on biofilm eradication. We observed a positive correlation between a higher pH and higher antibiofilm activity. CONCLUSIONS BAG S53P4 has demonstrated efficient biofilm antibiofilm activity against MRSA and MRSE, especially in powder-containing formulations, resulting in complete eradication of biofilm. Our data indicate neither remarkable increase nor decrease in antimicrobial efficacy with addition of vancomycin. Moreover, high pH appears to have a direct antimicrobial impact; the role of high osmolality needs further investigation.
Collapse
Affiliation(s)
- Nele Müller
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, BIH Center for Regenerative Therapies (BCRT), Charitéplatz 1, Berlin 10117, Germany
| | - Matthias Kollert
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, BIH Center for Regenerative Therapies (BCRT), Charitéplatz 1, Berlin 10117, Germany; Department of Health Sciences and Technology, ETH Zurich, Zurich 8092, Switzerland; Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Julius Wolff Institute, Augustenburger Platz 1, Berlin 13353, Germany
| | - Andrej Trampuz
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, BIH Center for Regenerative Therapies (BCRT), Charitéplatz 1, Berlin 10117, Germany; Center for Musculoskeletal Surgery, Charité-Universitätsmedizin Berlin, corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Augustenburger Platz 1, Berlin 13353, Germany.
| | - Mercedes Gonzalez Moreno
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, BIH Center for Regenerative Therapies (BCRT), Charitéplatz 1, Berlin 10117, Germany; Center for Musculoskeletal Surgery, Charité-Universitätsmedizin Berlin, corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Augustenburger Platz 1, Berlin 13353, Germany
| |
Collapse
|
8
|
Yang L, Canarini A, Zhang W, Lang M, Chen Y, Cui Z, Kuzyakov Y, Richter A, Chen X, Zhang F, Tian J. Microbial life-history strategies mediate microbial carbon pump efficacy in response to N management depending on stoichiometry of microbial demand. GLOBAL CHANGE BIOLOGY 2024; 30:e17311. [PMID: 38742695 DOI: 10.1111/gcb.17311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 03/22/2024] [Accepted: 04/16/2024] [Indexed: 05/16/2024]
Abstract
The soil microbial carbon pump (MCP) is increasingly acknowledged as being directly linked to soil organic carbon (SOC) accumulation and stability. Given the close coupling of carbon (C) and nitrogen (N) cycles and the constraints imposed by their stoichiometry on microbial growth, N addition might affect microbial growth strategies with potential consequences for necromass formation and carbon stability. However, this topic remains largely unexplored. Based on two multi-level N fertilizer experiments over 10 years in two soils with contrasting soil fertility located in the North (Cambisol, carbon-poor) and Southwest (Luvisol, carbon-rich), we hypothesized that different resource demands of microorganism elicit a trade-off in microbial growth potential (Y-strategy) and resource-acquisition (A-strategy) in response to N addition, and consequently on necromass formation and soil carbon stability. We combined measurements of necromass metrics (MCP efficacy) and soil carbon stability (chemical composition and mineral associated organic carbon) with potential changes in microbial life history strategies (assessed via soil metagenomes and enzymatic activity analyses). The contribution of microbial necromass to SOC decreased with N addition in the Cambisol, but increased in the Luvisol. Soil microbial life strategies displayed two distinct responses in two soils after N amendment: shift toward A-strategy (Cambisol) or Y-strategy (Luvisol). These divergent responses are owing to the stoichiometric imbalance between microbial demands and resource availability for C and N, which presented very distinct patterns in the two soils. The partial correlation analysis further confirmed that high N addition aggravated stoichiometric carbon demand, shifting the microbial community strategy toward resource-acquisition which reduced carbon stability in Cambisol. In contrast, the microbial Y-strategy had the positive direct effect on MCP efficacy in Luvisol, which greatly enhanced carbon stability. Such findings provide mechanistic insights into the stoichiometric regulation of MCP efficacy, and how this is mediated by site-specific trade-offs in microbial life strategies, which contribute to improving our comprehension of soil microbial C sequestration and potential optimization of agricultural N management.
Collapse
Affiliation(s)
- Liyang Yang
- State Key Laboratory of Nutrient Use and Management, College of Resources and Environmental Sciences, China Agricultural University, Beijing, China
| | - Alberto Canarini
- Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria
| | - Wushuai Zhang
- College of Resources and Environment, Academy of Agricultural Science, Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, Southwest University, Chongqing, China
| | - Ming Lang
- College of Resources and Environment, Academy of Agricultural Science, Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, Southwest University, Chongqing, China
| | - Yuanxue Chen
- College of Resources and Environment, Sichuan Agricultural University, Chengdu, China
| | - Zhenling Cui
- State Key Laboratory of Nutrient Use and Management, College of Resources and Environmental Sciences, China Agricultural University, Beijing, China
| | - Yakov Kuzyakov
- Department of Soil Science of Temperate Ecosystems, University of Göttingen, Göttingen, Germany
| | - Andreas Richter
- Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria
| | - Xinping Chen
- College of Resources and Environment, Academy of Agricultural Science, Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, Southwest University, Chongqing, China
| | - Fusuo Zhang
- State Key Laboratory of Nutrient Use and Management, College of Resources and Environmental Sciences, China Agricultural University, Beijing, China
| | - Jing Tian
- State Key Laboratory of Nutrient Use and Management, College of Resources and Environmental Sciences, China Agricultural University, Beijing, China
| |
Collapse
|
9
|
Yeo J, Jeon YW. Impact of Polyethylene-Glycol-Induced Water Potential on Methane Yield and Microbial Consortium Dynamics in the Anaerobic Degradation of Glucose. Bioengineering (Basel) 2024; 11:433. [PMID: 38790299 PMCID: PMC11117670 DOI: 10.3390/bioengineering11050433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 04/17/2024] [Accepted: 04/24/2024] [Indexed: 05/26/2024] Open
Abstract
This study investigated the relationship between water potential (Ψ) and the cation-induced inhibition of methane production in anaerobic digesters. The Ψ around methanogens was manipulated using polyethylene glycol (PEG) in a batch anaerobic reactor, ranging from -0.92 to -5.10 MPa. The ultimate methane potential (Bu) decreased significantly from 0.293 to 0.002 Nm3 kg-1-VSadded as Ψ decreased. When Ψ lowered from -0.92 MPa to -1.48 MPa, the community distribution of acetoclastic Methanosarcina decreased from 59.62% to 40.44%, while those of hydrogenotrophic Methanoculleus and Methanobacterium increased from 17.70% and 1.30% to 36.30% and 18.07%, respectively. These results mirrored changes observed in methanogenic communities affected by cation inhibition with KCl. Our findings strongly indicate that the inhibitory effect of cations on methane production may stem more from the water stress induced by cations than from their direct toxic effects. This study highlights the importance of considering Ψ dynamics in understanding cation-mediated inhibition in anaerobic digesters, providing insights into optimizing microbial processes for enhanced methane production from organic substrates.
Collapse
Affiliation(s)
- Jin Yeo
- Biogas Research Center, Hankyong National University, Anseong 17579, Republic of Korea;
| | - Yong-Woo Jeon
- Environmental Technology Division, Korea Testing Laboratory, Seoul 08389, Republic of Korea
| |
Collapse
|
10
|
Yamashige Y, Kikuchi S, Hosoki R, Kawada K, Izawa K, Harata M, Ogawa Y. Fluorine materials scavenge excess carbon dioxide and promote Escherichia coli growth. J Microbiol Methods 2024; 219:106898. [PMID: 38360297 DOI: 10.1016/j.mimet.2024.106898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Accepted: 02/12/2024] [Indexed: 02/17/2024]
Abstract
Fluorinated solvents have been used as oxygen carriers in closed microbial cultures to sustain aerobic conditions. However, the growth-promoting effects of fluorinated solvents remain unclear. Therefore, this study aimed to elucidate the mechanism by which fluorinated solvents promote microbial growth and to explore alternative materials that can be easily isolated after culture. Escherichia coli and HFE-7200, a fluorinated solvent, were used to explore factors other than oxygen released by fluorinated solvents that promote microbial growth. E. coli growth was promoted in gas-permeable cultures, and HFE-7200 alleviated medium acidification. Gas chromatography confirmed that HFE-7200 functioned as a scavenger of carbon dioxide produced by E. coli metabolism. Because fluorinated solvents can dissolve various gases, they could scavenge metabolically produced toxic gases from microbial cultures. Furthermore, using polytetrafluoroethylene, a solid fluorine material, results in enhanced bacterial growth. Such solid materials can be easily isolated and reused for microbial culture, suggesting their potential as valuable technologies in food production and biotechnology.
Collapse
Affiliation(s)
- Yoshihisa Yamashige
- Graduate School of Agriculture, Kyoto University, Kitashirakawa-oiwake, Sakyo, Kyoto 606-8502, Japan; School of Platforms, Kyoto University, Yoshida-Honmachi, Sakyo-ku, Kyoto 606-8501, Japan; Japan Society for the Promotion of Science, 5-3-1 Kouji-machi, Chiyoda-ku, Tokyo 102-0083, Japan.
| | - Shojiro Kikuchi
- Institute for Advanced Medical Sciences, Hyogo Medical University, 1-1 Mukogawacho, Nishinomiya, Hyogo 663-8501, Japan.
| | - Ryosuke Hosoki
- Graduate School of Agricultural Science, Tohoku University, 468-1 Aoba-ku, Sendai 980-0845, Japan.
| | - Koji Kawada
- Graduate School of Agricultural Science, Tohoku University, 468-1 Aoba-ku, Sendai 980-0845, Japan.
| | - Katsuaki Izawa
- Graduate School of Agricultural Science, Tohoku University, 468-1 Aoba-ku, Sendai 980-0845, Japan.
| | - Masahiko Harata
- Graduate School of Agricultural Science, Tohoku University, 468-1 Aoba-ku, Sendai 980-0845, Japan; International Center for Synchrotron Radiation Innovation Smart, Tohoku University, 468-1 Aoba-ku, Sendai 980-0845, Japan.
| | - Yuichi Ogawa
- Graduate School of Agriculture, Kyoto University, Kitashirakawa-oiwake, Sakyo, Kyoto 606-8502, Japan.
| |
Collapse
|
11
|
Nguyen PT, Nguyen-Thi TU, Nguyen HT, Pham MN, Nguyen TT. Halophilic lactic acid bacteria - Play a vital role in the fermented food industry. Folia Microbiol (Praha) 2024; 69:305-321. [PMID: 38372951 DOI: 10.1007/s12223-024-01149-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 02/06/2024] [Indexed: 02/20/2024]
Abstract
Halophilic lactic acid bacteria have been widely found in various high-salt fermented foods. The distribution of these species in salt-fermented foods contributes significantly to the development of the product's flavor. Besides, these bacteria also have the ability to biosynthesize bioactive components which potentially apply to different areas. In this review, insights into the metabolic properties, salt stress responses, and potential applications of these bacteria have been have been elucidated. The purpose of this review highlights the important role of halophilic lactic acid bacteria in improving the quality and safety of salt-fermented products and explores the potential application of these bacteria.
Collapse
Affiliation(s)
- Phu-Tho Nguyen
- An Giang University, An Giang, Vietnam
- Vietnam National University Ho Chi Minh City (VNU-HCM), Ho Chi Minh City, Vietnam
| | | | - Huu-Thanh Nguyen
- An Giang University, An Giang, Vietnam
- Vietnam National University Ho Chi Minh City (VNU-HCM), Ho Chi Minh City, Vietnam
| | - Minh-Nhut Pham
- Hutech Institute of Applied Science, HUTECH University, Ho Chi Minh City, Vietnam
| | - Thi-Tho Nguyen
- Hutech Institute of Applied Science, HUTECH University, Ho Chi Minh City, Vietnam.
| |
Collapse
|
12
|
Banchi E, Corre E, Del Negro P, Celussi M, Malfatti F. Genome-resolved metagenomics of Venice Lagoon surface sediment bacteria reveals high biosynthetic potential and metabolic plasticity as successful strategies in an impacted environment. MARINE LIFE SCIENCE & TECHNOLOGY 2024; 6:126-142. [PMID: 38433960 PMCID: PMC10902248 DOI: 10.1007/s42995-023-00192-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 09/05/2023] [Indexed: 03/05/2024]
Abstract
Bacteria living in sediments play essential roles in marine ecosystems and deeper insights into the ecology and biogeochemistry of these largely unexplored organisms can be obtained from 'omics' approaches. Here, we characterized metagenome-assembled-genomes (MAGs) from the surface sediment microbes of the Venice Lagoon (northern Adriatic Sea) in distinct sub-basins exposed to various natural and anthropogenic pressures. MAGs were explored for biodiversity, major marine metabolic processes, anthropogenic activity-related functions, adaptations at the microscale, and biosynthetic gene clusters. Starting from 126 MAGs, a non-redundant dataset of 58 was compiled, the majority of which (35) belonged to (Alpha- and Gamma-) Proteobacteria. Within the broad microbial metabolic repertoire (including C, N, and S metabolisms) the potential to live without oxygen emerged as one of the most important features. Mixotrophy was also found as a successful lifestyle. Cluster analysis showed that different MAGs encoded the same metabolic patterns (e.g., C fixation, sulfate oxidation) thus suggesting metabolic redundancy. Antibiotic and toxic compounds resistance genes were coupled, a condition that could promote the spreading of these genetic traits. MAGs showed a high biosynthetic potential related to antimicrobial and biotechnological classes and to organism defense and interactions as well as adaptive strategies for micronutrient uptake and cellular detoxification. Our results highlighted that bacteria living in an impacted environment, such as the surface sediments of the Venice Lagoon, may benefit from metabolic plasticity as well as from the synthesis of a wide array of secondary metabolites, promoting ecosystem resilience and stability toward environmental pressures. Supplementary Information The online version contains supplementary material available at 10.1007/s42995-023-00192-z.
Collapse
Affiliation(s)
- Elisa Banchi
- National Institute of Oceanography and Applied Geophysics OGS, Trieste, Italy
| | - Erwan Corre
- FR2424, Station Biologique de Roscoff, Plateforme ABiMS (Analysis and Bioinformatics for Marine Science), Sorbonne Université CNRS, 29680 Roscoff, France
| | - Paola Del Negro
- National Institute of Oceanography and Applied Geophysics OGS, Trieste, Italy
| | - Mauro Celussi
- National Institute of Oceanography and Applied Geophysics OGS, Trieste, Italy
| | - Francesca Malfatti
- National Institute of Oceanography and Applied Geophysics OGS, Trieste, Italy
- Department of Life Sciences, University of Trieste, Trieste, Italy
| |
Collapse
|
13
|
Egas RA, Sahonero-Canavesi DX, Bale NJ, Koenen M, Yildiz Ç, Villanueva L, Sousa DZ, Sánchez-Andrea I. Acetic acid stress response of the acidophilic sulfate reducer Acididesulfobacillus acetoxydans. Environ Microbiol 2024; 26:e16565. [PMID: 38356112 DOI: 10.1111/1462-2920.16565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 12/12/2023] [Indexed: 02/16/2024]
Abstract
Acid mine drainage (AMD) waters are a severe environmental threat, due to their high metal content and low pH (pH <3). Current technologies treating AMD utilize neutrophilic sulfate-reducing microorganisms (SRMs), but acidophilic SRM could offer advantages. As AMDs are low in organics these processes require electron donor addition, which is often incompletely oxidized into organic acids (e.g., acetic acid). At low pH, acetic acid is undissociated and toxic to microorganisms. We investigated the stress response of the acetotrophic Acididesulfobacillus acetoxydans to acetic acid. A. acetoxydans was cultivated in bioreactors at pH 5.0 (optimum). For stress experiments, triplicate reactors were spiked until 7.5 mM of acetic acid and compared with (non-spiked) triplicate reactors for physiological, transcriptomic, and membrane lipid changes. After acetic acid spiking, the optical density initially dropped, followed by an adaptation phase during which growth resumed at a lower growth rate. Transcriptome analysis revealed a downregulation of genes involved in glutamate and aspartate synthesis following spiking. Membrane lipid analysis revealed a decrease in iso and anteiso fatty acid relative abundance; and an increase of acetyl-CoA as a fatty acid precursor. These adaptations allow A. acetoxydans to detoxify acetic acid, creating milder conditions for other microorganisms in AMD environments.
Collapse
Affiliation(s)
- Reinier A Egas
- Laboratory of Microbiology, Wageningen University & Research, Wageningen, The Netherlands
| | - Diana X Sahonero-Canavesi
- Department of Marine Microbiology and Biogeochemistry, Royal Netherlands Institute for Sea Research (NIOZ), Texel, Den Burg, The Netherlands
| | - Nicole J Bale
- Department of Marine Microbiology and Biogeochemistry, Royal Netherlands Institute for Sea Research (NIOZ), Texel, Den Burg, The Netherlands
| | - Michel Koenen
- Department of Marine Microbiology and Biogeochemistry, Royal Netherlands Institute for Sea Research (NIOZ), Texel, Den Burg, The Netherlands
| | - Çağlar Yildiz
- Laboratory of Microbiology, Wageningen University & Research, Wageningen, The Netherlands
| | - Laura Villanueva
- Department of Marine Microbiology and Biogeochemistry, Royal Netherlands Institute for Sea Research (NIOZ), Texel, Den Burg, The Netherlands
- Department of Earth Sciences, Utrecht University, Utrecht, The Netherlands
| | - Diana Z Sousa
- Laboratory of Microbiology, Wageningen University & Research, Wageningen, The Netherlands
- Centre for Living Technologies, Alliance TU/e, WUR, UU, UMC Utrecht, Utrecht, The Netherlands
| | - Irene Sánchez-Andrea
- Laboratory of Microbiology, Wageningen University & Research, Wageningen, The Netherlands
- Environmental Sciences and Sustainability Department, Science & Technology School, IE University, Segovia, Spain
| |
Collapse
|
14
|
Cylke A, Serbanescu D, Banerjee S. Energy allocation theory for bacterial growth control in and out of steady state. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.09.574890. [PMID: 38260684 PMCID: PMC10802433 DOI: 10.1101/2024.01.09.574890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Efficient allocation of energy resources to key physiological functions allows living organisms to grow and thrive in diverse environments and adapt to a wide range of perturbations. To quantitatively understand how unicellular organisms utilize their energy resources in response to changes in growth environment, we introduce a theory of dynamic energy allocation which describes cellular growth dynamics based on partitioning of metabolizable energy into key physiological functions: growth, division, cell shape regulation, energy storage and loss through dissipation. By optimizing the energy flux for growth, we develop the equations governing the time evolution of cell morphology and growth rate in diverse environments. The resulting model accurately captures experimentally observed dependencies of bacterial cell size on growth rate, superlinear scaling of metabolic rate with cell size, and predicts nutrient-dependent trade-offs between energy expended for growth, division, and shape maintenance. By calibrating model parameters with available experimental data for the model organism E. coli, our model is capable of describing bacterial growth control in dynamic conditions, particularly during nutrient shifts and osmotic shocks. The model captures these perturbations with minimal added complexity and our unified approach predicts the driving factors behind a wide range of observed morphological and growth phenomena.
Collapse
Affiliation(s)
- Arianna Cylke
- Department of Physics, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Diana Serbanescu
- Department of Physics and Astronomy, University College London, London WC1E 6BT, UK
- Institute for the Physics of Living Systems, University College London, London WC1E 6BT, UK
| | - Shiladitya Banerjee
- Department of Physics, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| |
Collapse
|
15
|
Scales NC, Huynh KT, Weihe C, Martiny JBH. Desiccation induces varied responses within a soil bacterial genus. Environ Microbiol 2023; 25:3075-3086. [PMID: 37664956 DOI: 10.1111/1462-2920.16494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 08/02/2023] [Indexed: 09/05/2023]
Abstract
Desiccation impacts a suite of physiological processes in microbes by elevating levels of damaging reactive oxygen species and inducing DNA strand breaks. In response to desiccation-induced stress, microbes have evolved specialized mechanisms to help them survive. Here, we performed a 128-day lab desiccation experiment on nine strains from three clades of an abundant soil bacterium, Curtobacterium. We sequenced RNA from each strain at three time points to investigate their response. Curtobacterium was highly resistant to desiccation, outlasting both Escherichia coli and a famously DNA damage-resistant bacterium, Deinococcus radiodurans. However, within the genus, there were also 10-fold differences in survival rates among strains. Transcriptomic profiling revealed responses shared within the genus including up-regulation of genes involved in DNA damage repair, osmolyte production, and efflux pumps, but also up-regulation of pathways and genes unique to the three clades. For example, trehalose synthesis gene otsB, the chaperone groEL, and the oxygen scavenger katA were all found in either one or two clades but not the third. Here, we provide evidence of considerable variation in closely related strains, and further elucidation of the phylogenetic conservation of desiccation tolerance remains an important goal for microbial ecologists.
Collapse
Affiliation(s)
- N C Scales
- Department of Ecology and Evolutionary Biology, University of California, Irvine, California, USA
| | - K T Huynh
- Department of Ecology and Evolutionary Biology, University of California, Irvine, California, USA
| | - C Weihe
- Department of Ecology and Evolutionary Biology, University of California, Irvine, California, USA
| | - J B H Martiny
- Department of Ecology and Evolutionary Biology, University of California, Irvine, California, USA
| |
Collapse
|
16
|
Liu Y, Zou X, Chen HYH, Delgado-Baquerizo M, Wang C, Zhang C, Ruan H. Fungal necromass is reduced by intensive drought in subsoil but not in topsoil. GLOBAL CHANGE BIOLOGY 2023; 29:7159-7172. [PMID: 37830780 DOI: 10.1111/gcb.16978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 09/13/2023] [Accepted: 09/23/2023] [Indexed: 10/14/2023]
Abstract
The frequency and intensity of droughts worldwide are challenging the conservation of soil organic carbon (SOC) pool. Microbial necromass is a key component of SOC, but how it responds to drought at specific soil depths remains largely unknown. Here, we conducted a 3-year field experiment in a forest plantation to investigate the impacts of drought intensities under three treatments (ambient control [CK], moderate drought [30% throughfall removal], and intensive drought [50% throughfall removal]) on soil microbial necromass pools (i.e., bacterial necromass carbon, fungal necromass carbon, and total microbial necromass carbon). We showed that the effects of drought on microbial necromass depended on microbial groups, soil depth, and drought intensity. While moderate drought increased total (+9.1% ± 3.3%) and fungal (+13.5% ± 4.9%) necromass carbon in the topsoil layer (0-15 cm), intensive drought reduced total (-31.6% ± 3.7%) and fungal (-43.6% ± 4.0%) necromass in the subsoil layer (15-30 cm). In contrast, both drought treatments significantly increased the BNC in the topsoil and subsoil. Our results suggested that the effects of drought on the microbial necromass of the subsoil were more pronounced than those of the topsoil. This study highlights the complex responses of microbial necromass to drought events depending on microbial community structure, drought intensity and soil depth with global implications when forecasting carbon cycling under climate change.
Collapse
Affiliation(s)
- Yuwei Liu
- Department of Ecology, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| | - Xiaoming Zou
- Department of Environmental Science, College of Natural Sciences, University of Puerto Rico, San Juan, Puerto Rico, USA
| | - Han Y H Chen
- Faculty of Natural Resources Management, Lakehead University, Thunder Bay, Ontario, Canada
| | - Manuel Delgado-Baquerizo
- Laboratorio de Biodiversidad y Funcionamiento Ecosistémico, Instituto de Recursos Naturales y Agrobiología de Sevilla (IRNAS), CSIC, Sevilla, Spain
| | - Cuiting Wang
- Department of Ecology, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| | - Chen Zhang
- Department of Ecology, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| | - Honghua Ruan
- Department of Ecology, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| |
Collapse
|
17
|
Elston R, Mulligan C, Thomas GH. Flipping the switch: dynamic modulation of membrane transporter activity in bacteria. MICROBIOLOGY (READING, ENGLAND) 2023; 169. [PMID: 37948297 DOI: 10.1099/mic.0.001412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2023]
Abstract
The controlled entry and expulsion of small molecules across the bacterial cytoplasmic membrane is essential for efficient cell growth and cellular homeostasis. While much is known about the transcriptional regulation of genes encoding transporters, less is understood about how transporter activity is modulated once the protein is functional in the membrane, a potentially more rapid and dynamic level of control. In this review, we bring together literature from the bacterial transport community exemplifying the extensive and diverse mechanisms that have evolved to rapidly modulate transporter function, predominantly by switching activity off. This includes small molecule feedback, inhibition by interaction with small peptides, regulation through binding larger signal transduction proteins and, finally, the emerging area of controlled proteolysis. Many of these examples have been discovered in the context of metal transport, which has to finely balance active accumulation of elements that are essential for growth but can also quickly become toxic if intracellular homeostasis is not tightly controlled. Consistent with this, these transporters appear to be regulated at multiple levels. Finally, we find common regulatory themes, most often through the fusion of additional regulatory domains to transporters, which suggest the potential for even more widespread regulation of transporter activity in biology.
Collapse
Affiliation(s)
- Rory Elston
- Department of Biology, University of York, York, UK
| | | | | |
Collapse
|
18
|
Li G, Huang J, Cai Q, Wei Z, Pen G, Li Z, Wang J, Zhai L. Analysis of Osmotic Tolerance, Physiological Characteristics, and Gene Expression of Salmonella enterica subsp . enterica Serotype Derby. ACS OMEGA 2023; 8:36088-36099. [PMID: 37810736 PMCID: PMC10551921 DOI: 10.1021/acsomega.3c04257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 08/22/2023] [Indexed: 10/10/2023]
Abstract
Salmonella is an important foodborne pathogen, and recent epidemiological studies have shown high infection rates of Salmonella enterica subsp. enterica serotype Derby (S.Derby) in poultry in western China and other regions. S.Derby presents increasing concerns with the development of resistance to hypertonic environments; however, there are few reports investigating the mechanism of resistance. Therefore, in this study, we examined hypertonic adaptation in S.Derby at the physiological and molecular levels. The K-B paper method, wiping glass bead method, crystal violet staining, and RT-PCR combined with comparative genomics analysis were employed to characterize virulence, drug resistance, biofilm formation, and changes in gene expression of genes related to hypertonic adaptation in S.Derby. Hypertonic-adapted S.Derby exhibited resistance to OXA, AMP, PEN, and CEP antibiotics, and biofilm-forming ability was 1.25 times that of nonadapted S.Derby. RT-PCR results showed that compared with nonadapted S.Derby, the expression of virulence-related genes in hypertonic-adapted S.Derby increased by 2-3 times, that of biofilm-related genes increased by 2-4 times, and that of OXA, AMP, PEN, and CEP-related drug resistance genes was relatively high. Four hypertonic tolerance-related genes (otsA, proV, proW, omsV) were preliminarily identified in S.Derby. The expression of proW was always relatively high in hypertonic-adapted S.Derby, the expression of otsA gradually became higher than that of proW with increasing time of osmotic stress, and the expression of proV and omsV was only high in non-hypertonic-adapted S.Derby.
Collapse
Affiliation(s)
- Ganghui Li
- Key Laboratory
of Food Processing
and Safety, College of Food Engineering, Anhui University of Science and Technology, Chuzhou 233100, China
| | - Ju Huang
- Key Laboratory
of Food Processing
and Safety, College of Food Engineering, Anhui University of Science and Technology, Chuzhou 233100, China
| | - Qiuhui Cai
- Key Laboratory
of Food Processing
and Safety, College of Food Engineering, Anhui University of Science and Technology, Chuzhou 233100, China
| | - Zhaohui Wei
- Key Laboratory
of Food Processing
and Safety, College of Food Engineering, Anhui University of Science and Technology, Chuzhou 233100, China
| | - Gang Pen
- Key Laboratory
of Food Processing
and Safety, College of Food Engineering, Anhui University of Science and Technology, Chuzhou 233100, China
| | - Zhen Li
- Key Laboratory
of Food Processing
and Safety, College of Food Engineering, Anhui University of Science and Technology, Chuzhou 233100, China
| | - Junying Wang
- Key Laboratory
of Food Processing
and Safety, College of Food Engineering, Anhui University of Science and Technology, Chuzhou 233100, China
| | - Ligong Zhai
- Key Laboratory
of Food Processing
and Safety, College of Food Engineering, Anhui University of Science and Technology, Chuzhou 233100, China
| |
Collapse
|
19
|
Arora S, Babele PK, Jha PN. Biochemical and metabolic signatures are fundamental to drought adaptation in PGPR Enterobacter bugandensis WRS7. Mol Omics 2023; 19:640-652. [PMID: 37338418 DOI: 10.1039/d3mo00051f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2023]
Abstract
Drought alone causes more annual loss in crop yield than the sum of all other environmental stresses. There is growing interest in harnessing the potential of stress-resilient PGPR in conferring plant resistance and enhancing crop productivity in drought-affected agroecosystems. A detailed understanding of the complex physiological and biochemical responses will open up the avenues to stress adaptation mechanisms of PGPR communities under drought. It will pave the way for rhizosphere engineering through metabolically engineered PGPR. Therefore, to reveal the physiological and metabolic networks in response to drought-mediated osmotic stress, we performed biochemical analyses and applied untargeted metabolomics to investigate the stress adaptation mechanisms of a PGPR Enterobacter bugendensis WRS7 (Eb WRS7). Drought caused oxidative stress and resulted in slower growth rates in Eb WRS7. However, Eb WRS7 could tolerate drought stress and did not show changes in cell morphology under stress conditions. Overproduction of ROS caused lipid peroxidation (increment in MDA) and eventually activated antioxidant systems and cell signalling cascades, which led to the accumulation of ions (Na+, K+, and Ca2+), osmolytes (proline, exopolysaccharides, betaine, and trehalose), and modulated lipid dynamics of the plasma membranes for osmosensing and osmoregulation, suggesting an osmotic stress adaption mechanism in PGPR Eb WRS7. Finally, GC-MS-based metabolite profiling and deregulated metabolic responses highlighted the role of osmolytes, ions, and intracellular metabolites in regulating Eb WRS7 metabolism. Our results suggest that understanding the role of metabolites and metabolic pathways can be exploited for future metabolic engineering of PGPR and developing bio inoculants for plant growth promotion under drought-affected agroecosystems.
Collapse
Affiliation(s)
- Saumya Arora
- Department of Biological Sciences, Birla Institute of Technology and Science, Pilani 333031, Rajasthan, India.
| | - Piyoosh K Babele
- College of Agriculture, Rani Lakshmi Bai Central Agricultural University, Jhansi 284003, Uttar Pradesh, India
| | - Prabhat Nath Jha
- Department of Biological Sciences, Birla Institute of Technology and Science, Pilani 333031, Rajasthan, India.
| |
Collapse
|
20
|
Zheng R, Wang C, Cai R, Shan Y, Sun C. Mechanisms of nucleic acid degradation and high hydrostatic pressure tolerance of a novel deep-sea wall-less bacterium. mBio 2023; 14:e0095823. [PMID: 37551978 PMCID: PMC10470597 DOI: 10.1128/mbio.00958-23] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Accepted: 06/26/2023] [Indexed: 08/09/2023] Open
Abstract
Wall-less bacteria are broadly distributed in diverse habitats. They evolved from a common ancestor within the Firmicutes phylum through reductive evolution. Here, we report the cultivation, characterization, and polyphasic taxonomic analysis of the novel free-living wall-less bacterium, Hujiaoplasma nucleasis zrk29. We demonstrated that strain zrk29 had a strong ability to degrade DNA and RNA both under laboratory conditions and in the deep sea. We found that nucleic acids induced strain zrk29 to release chronic bacteriophages which supported strain zrk29 and other marine bacteria to metabolize nucleic acids without lysing host cells. We also showed that strain zrk29 tolerated high hydrostatic pressure via two pathways: (i) by transporting cations into its cells to increase intracellular osmotic pressure and (ii) by adjusting the unsaturated fatty acid chain content in its cell membrane phospholipids to increase cell membrane fluidity. This study extends our understanding of free-living wall-less bacteria and provides a useful model to explore the unique adaptation mechanisms of deep-sea microbes. IMPORTANCE The unique physiology and survival strategies of the Tenericutes bacterium-a typical wall-less bacterium-have fascinated scientists and the public, especially in extreme deep-sea environments where there is high hydrostatic pressure (HHP) and limited availability of nutrients. Here, we have isolated a novel free-living Tenericutes strain from deep-sea sediment and have found that it metabolizes nucleic acids with the support of chronic bacteriophages. This Tenericutes strain tolerates HHP stress by increasing intracellular osmotic pressure and the unsaturated fatty acid chain content of phospholipids in its cell membrane. Our results provide insights into the unique physiology of deep-sea free-living Tenericutes bacteria and highlight the significant role that chronic bacteriophages play in assisting wall-less bacteria to adapt to harsh conditions.
Collapse
Affiliation(s)
- Rikuan Zheng
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology & Center of Deep Sea Research, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, Shandong, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, Shandong, China
- Center of Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, Shandong, China
| | - Chong Wang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology & Center of Deep Sea Research, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, Shandong, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, Shandong, China
- Center of Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, Shandong, China
| | - Ruining Cai
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology & Center of Deep Sea Research, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, Shandong, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, Shandong, China
- Center of Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, Shandong, China
- College of Earth Science, University of Chinese Academy of Sciences, Beijing, China
| | - Yeqi Shan
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology & Center of Deep Sea Research, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, Shandong, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, Shandong, China
- Center of Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, Shandong, China
- College of Earth Science, University of Chinese Academy of Sciences, Beijing, China
| | - Chaomin Sun
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology & Center of Deep Sea Research, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, Shandong, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, Shandong, China
- Center of Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, Shandong, China
- College of Earth Science, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
21
|
Mancini L, Pilizota T. Environmental conditions define the energetics of bacterial dormancy and its antibiotic susceptibility. Biophys J 2023; 122:3207-3218. [PMID: 37403359 PMCID: PMC10465703 DOI: 10.1016/j.bpj.2023.06.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 05/17/2023] [Accepted: 06/30/2023] [Indexed: 07/06/2023] Open
Abstract
Bacterial cells that stop growing but maintain viability and the capability to regrow are termed dormant and have been shown to transiently tolerate high concentrations of antimicrobials. Links between tolerance and cellular energetics as a possible explanation for the tolerance, have been investigated and have produced mixed and seemingly contradictory results. Because dormancy merely indicates growth arrest, which can be induced by various stimuli, we hypothesize that dormant cells may exist in a range of energetic states that depend on the environment. To energetically characterize different dormancies, we first induce them in a way that results in dormant populations and subsequently measure both of their main energy sources, the proton motive force magnitude and the concentration of ATP. We find that different types of dormancy exhibit characteristic energetic profiles that vary in level and dynamics. The energetic makeup was associated with survival to some antibiotics but not others. Our findings portray dormancy as a state that is rich in phenotypes with various stress survival capabilities. Because environmental conditions outside of the lab often halt or limit microbial growth, a typologization of dormant states may yield relevant insights on the survival and evolutionary strategies of these organisms.
Collapse
Affiliation(s)
- Leonardo Mancini
- School of Biological Sciences, Centre for Synthetic and Systems Biology, University of Edinburgh, Edinburgh, United Kingdom
| | - Teuta Pilizota
- School of Biological Sciences, Centre for Synthetic and Systems Biology, University of Edinburgh, Edinburgh, United Kingdom.
| |
Collapse
|
22
|
Saedi Y, Batista JR, Britto R, Grady D. Impacts of co-contaminants and dilution on perchlorate biodegradation using various carbon sources. Biodegradation 2023; 34:301-323. [PMID: 36598629 DOI: 10.1007/s10532-022-10013-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 12/21/2022] [Indexed: 01/05/2023]
Abstract
This research investigates the biodegradation of perchlorate in the presence of the co-contaminants nitrate and chlorate using soluble and slow-release carbon sources. In addition, the impact of bio-augmentation and dilution, which results in lower total dissolved salts (TDS) and contaminant levels, is examined. Laboratory microcosms were conducted using actual groundwater and soils from a contaminated aquifer. The results revealed that both soluble and slow-release carbon sources support biodegradation of contaminants in the sequence nitrate > chlorate > perchlorate. Degradation rates, including and excluding lag times, revealed that the overall impact of the presence of co-contaminants depends on degradation kinetics and the relative concentrations of the contaminants. When the lag time caused by the presence of the co-contaminants is considered, the degradation rates for chlorate and perchlorate were two to three times slower. The results also show that dilution causes lower initial contaminant concentrations, and consequently, slower degradation rates, which is not desirable. On the other hand, the dilution resulting from the injection of amendments to support remediation promotes desirably lower salinity levels. However, the salinity associated with the presence of sulfate does not inhibit biodegradation. The naturally occurring bacteria were able to support the degradation of all contaminants. Bio-augmentation was effective only in diluted microcosms. Proteobacteria and Firmicutes were the dominant phyla identified in the microcosms.
Collapse
Affiliation(s)
- Yasaman Saedi
- Department of Civil and Environmental Engineering and Construction, University of Nevada Las Vegas (UNLV), 4505 Maryland Parkway, Las Vegas, NV, 89154-4015, USA
| | - Jacimaria R Batista
- Department of Civil and Environmental Engineering and Construction, University of Nevada Las Vegas (UNLV), 4505 Maryland Parkway, Las Vegas, NV, 89154-4015, USA.
| | - Ronnie Britto
- Tetra Tech Inc, 720 Coleherne Road, Collierville, TN, 38017, USA
| | - Dana Grady
- Tetra Tech Inc, 720 Coleherne Road, Collierville, TN, 38017, USA
| |
Collapse
|
23
|
Boas Lichty KE, Gregory GJ, Boyd EF. NhaR, LeuO, and H-NS Are Part of an Expanded Regulatory Network for Ectoine Biosynthesis Expression. Appl Environ Microbiol 2023; 89:e0047923. [PMID: 37278653 PMCID: PMC10304999 DOI: 10.1128/aem.00479-23] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 05/11/2023] [Indexed: 06/07/2023] Open
Abstract
Bacteria accumulate compatible solutes to maintain cellular turgor pressure when exposed to high salinity. In the marine halophile Vibrio parahaemolyticus, the compatible solute ectoine is biosynthesized de novo, which is energetically more costly than uptake; therefore, tight regulation is required. To uncover novel regulators of the ectoine biosynthesis ectABC-asp_ect operon, a DNA affinity pulldown of proteins interacting with the ectABC-asp_ect regulatory region was performed. Mass spectrometry analysis identified, among others, 3 regulators: LeuO, NhaR, and the nucleoid associated protein H-NS. In-frame non-polar deletions were made for each gene and PectA-gfp promoter reporter assays were performed in exponential and stationary phase cells. PectA-gfp expression was significantly repressed in the ΔleuO mutant and significantly induced in the ΔnhaR mutant compared to wild type, suggesting positive and negative regulation, respectively. In the Δhns mutant, PectA-gfp showed increased expression in exponential phase cells, but no change compared to wild type in stationary phase cells. To examine whether H-NS interacts with LeuO or NhaR at the ectoine regulatory region, double deletion mutants were created. In a ΔleuO/Δhns mutant, PectA-gfp showed reduced expression, but significantly more than ΔleuO, suggesting H-NS and LeuO interact to regulate ectoine expression. However, ΔnhaR/Δhns had no additional effect compared to ΔnhaR, suggesting NhaR regulation is independent of H-NS. To examine leuO regulation further, a PleuO-gfp reporter analysis was examined that showed significantly increased expression in the ΔleuO, Δhns, and ΔleuO/Δhns mutants compared to wild type, indicating both are repressors. Growth pattern analysis of the mutants in M9G 6%NaCl showed growth defects compared to wild type, indicating that these regulators play an important physiological role in salinity stress tolerance outside of regulating ectoine biosynthesis gene expression. IMPORTANCE Ectoine is a commercially used compatible solute that acts as a biomolecule stabilizer because of its additional role as a chemical chaperone. A better understanding of how the ectoine biosynthetic pathway is regulated in natural bacterial producers can be used to increase efficient industrial production. The de novo biosynthesis of ectoine is essential for bacteria to survive osmotic stress when exogenous compatible solutes are absent. This study identified LeuO as a positive regulator and NhaR as a negative regulator of ectoine biosynthesis and showed that, similar to enteric species, LeuO is an anti-silencer of H-NS. In addition, defects in growth in high salinity among all the mutants suggest that these regulators play a broader role in the osmotic stress response beyond ectoine biosynthesis regulation.
Collapse
Affiliation(s)
| | - Gwendolyn J. Gregory
- Department of Biological Sciences, University of Delaware, Newark, Delaware, USA
| | - E. Fidelma Boyd
- Department of Biological Sciences, University of Delaware, Newark, Delaware, USA
| |
Collapse
|
24
|
Satari L, Iglesias A, Porcar M. The Microbiome of Things: Appliances, Machines, and Devices Hosting Artificial Niche-Adapted Microbial Communities. Microorganisms 2023; 11:1507. [PMID: 37375009 PMCID: PMC10304627 DOI: 10.3390/microorganisms11061507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 05/25/2023] [Accepted: 05/31/2023] [Indexed: 06/29/2023] Open
Abstract
As it is the case with natural substrates, artificial surfaces of man-made devices are home to a myriad of microbial species. Artificial products are not necessarily characterized by human-associated microbiomes; instead, they can present original microbial populations shaped by specific environmental-often extreme-selection pressures. This review provides a detailed insight into the microbial ecology of a range of artificial devices, machines, and appliances, which we argue are specific microbial niches that do not necessarily fit in the "build environment" microbiome definition. Instead, we propose here the Microbiome of Things (MoT) concept analogous to the Internet of Things (IoT) because we believe it may be useful to shed light on human-made, but not necessarily human-related, unexplored microbial niches.
Collapse
Affiliation(s)
- Leila Satari
- Institute for Integrative Systems Biology (I2SysBio), Universitat de València-CSIC, 46980 Paterna, Spain
| | - Alba Iglesias
- Institute for Integrative Systems Biology (I2SysBio), Universitat de València-CSIC, 46980 Paterna, Spain
| | - Manuel Porcar
- Institute for Integrative Systems Biology (I2SysBio), Universitat de València-CSIC, 46980 Paterna, Spain
- Darwin Bioprospecting Excellence SL., Parc Científic, Universitat de València, 46980 Paterna, Spain
| |
Collapse
|
25
|
Xu G, Zhao X, Zhao S, Rogers MJ, He J. Salinity determines performance, functional populations, and microbial ecology in consortia attenuating organohalide pollutants. THE ISME JOURNAL 2023; 17:660-670. [PMID: 36765150 PMCID: PMC10119321 DOI: 10.1038/s41396-023-01377-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 01/25/2023] [Accepted: 01/31/2023] [Indexed: 02/12/2023]
Abstract
Organohalide pollutants are prevalent in coastal regions due to extensive intervention by anthropogenic activities, threatening public health and ecosystems. Gradients in salinity are a natural feature of coasts, but their impacts on the environmental fate of organohalides and the underlying microbial communities remain poorly understood. Here we report the effects of salinity on microbial reductive dechlorination of tetrachloroethene (PCE) and polychlorinated biphenyls (PCBs) in consortia derived from distinct environments (freshwater and marine sediments). Marine-derived microcosms exhibited higher halotolerance during PCE and PCB dechlorination, and a halotolerant dechlorinating culture was enriched from these microcosms. The organohalide-respiring bacteria (OHRB) responsible for PCE and PCB dechlorination in marine microcosms shifted from Dehalococcoides to Dehalobium when salinity increased. Broadly, lower microbial diversity, simpler co-occurrence networks, and more deterministic microbial community assemblages were observed under higher salinity. Separately, we observed that inhibition of dechlorination by high salinity could be attributed to suppressed viability of Dehalococcoides rather than reduced provision of substrates by syntrophic microorganisms. Additionally, the high activity of PCE dechlorinating reductive dehalogenases (RDases) in in vitro tests under high salinity suggests that high salinity likely disrupted cellular components other than RDases in Dehalococcoides. Genomic analyses indicated that the capability of Dehalobium to perform dehalogenation under high salinity was likely owing to the presence of genes associated with halotolerance in its genomes. Collectively, these mechanistic and ecological insights contribute to understanding the fate and bioremediation of organohalide pollutants in environments with changing salinity.
Collapse
Affiliation(s)
- Guofang Xu
- Department of Civil and Environmental Engineering, National University of Singapore, Singapore, 117576, Singapore
- NUS Graduate School - Integrative Sciences and Engineering Programme (ISEP), National University of Singapore, Singapore, 119077, Singapore
| | - Xuejie Zhao
- Department of Civil and Environmental Engineering, National University of Singapore, Singapore, 117576, Singapore
| | - Siyan Zhao
- Department of Civil and Environmental Engineering, National University of Singapore, Singapore, 117576, Singapore
| | - Matthew J Rogers
- Department of Civil and Environmental Engineering, National University of Singapore, Singapore, 117576, Singapore
| | - Jianzhong He
- Department of Civil and Environmental Engineering, National University of Singapore, Singapore, 117576, Singapore.
- NUS Graduate School - Integrative Sciences and Engineering Programme (ISEP), National University of Singapore, Singapore, 119077, Singapore.
| |
Collapse
|
26
|
Li J, Weinberger F, de Nys R, Thomas T, Egan S. A pathway to improve seaweed aquaculture through microbiota manipulation. Trends Biotechnol 2023; 41:545-556. [PMID: 36089422 DOI: 10.1016/j.tibtech.2022.08.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 08/13/2022] [Accepted: 08/17/2022] [Indexed: 11/19/2022]
Abstract
Eukaryotic hosts are associated with microbial communities that are critical to their function. Microbiota manipulation using beneficial microorganisms, for example, in the form of animal probiotics or plant growth-promoting microorganisms (PGPMs), can enhance host performance and health. Recently, seaweed beneficial microorganisms (SBMs) have been identified that promote the growth and development and/or improve disease resistance of seaweeds. This knowledge coincides with global initiatives seeking to expand and intensify seaweed aquaculture. Here, we provide a pathway with the potential to improve commercial cultivation of seaweeds through microbiota manipulation, highlighting that seaweed restoration practices can also benefit from further understanding SBMs and their modes of action. The challenges and opportunities of different approaches to identify and apply SBMs to seaweed aquaculture are discussed.
Collapse
Affiliation(s)
- Jiasui Li
- Centre for Marine Science and Innovation, School of Biological, Earth and Environmental Sciences, Faculty of Science, The University of New South Wales, Kensington, NSW, 2052, Australia
| | - Florian Weinberger
- Marine Ecology Division, GEOMAR Helmholtz Centre for Ocean Research Kiel, Düsternbrooker Weg 20, 24105 Kiel, Germany
| | - Rocky de Nys
- Sea Forest Limited, 488 Freestone Point Road, Triabunna, Tasmania 7190, Australia and College of Science and Engineering, James Cook University, Townsville 4810, Australia
| | - Torsten Thomas
- Centre for Marine Science and Innovation, School of Biological, Earth and Environmental Sciences, Faculty of Science, The University of New South Wales, Kensington, NSW, 2052, Australia
| | - Suhelen Egan
- Centre for Marine Science and Innovation, School of Biological, Earth and Environmental Sciences, Faculty of Science, The University of New South Wales, Kensington, NSW, 2052, Australia.
| |
Collapse
|
27
|
Park JM, Ko DS, Kim HS, Kim NH, Kim EK, Roh YH, Kim D, Kim JH, Choi KS, Kwon HJ. Rapid Screening and Comparison of Chimeric Lysins for Antibacterial Activity against Staphylococcus aureus Strains. Antibiotics (Basel) 2023; 12:antibiotics12040667. [PMID: 37107029 PMCID: PMC10135017 DOI: 10.3390/antibiotics12040667] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 03/27/2023] [Accepted: 03/27/2023] [Indexed: 03/31/2023] Open
Abstract
Chimeric lysins composed of various combinations of cell wall-lysing (enzymatic) and cell-wall-binding (CWB) domains of endolysins, autolysins, and bacteriocins have been developed as alternatives to or adjuvants of conventional antibiotics. The screening of multiple chimeric lysin candidates for activity via E. coli expression is not cost effective, and we previously reported on a simple cell-free expression system as an alternative. In this study, we sufficiently improved upon this cell-free expression system for use in screening activity via a turbidity reduction test, which is more appropriate than a colony reduction test when applied in multiple screening. Using the improved protocol, we screened and compared the antibacterial activity of chimeric lysin candidates and verified the relatively strong activity associated with the CHAP (cysteine, histidine-dependent amidohydrolase/peptidase) domain of secretory antigen SsaA-like protein (ALS2). ALS2 expressed in E. coli showed two major bands, and the smaller one (subprotein) was shown to be expressed by an innate downstream promoter and start codon (ATG). The introduction of synonymous mutations in the promoter resulted in clearly reduced expression of the subprotein, whereas missense mutations in the start codon abolished antibacterial activity as well as subprotein production. Interestingly, most of the S. aureus strains responsible for bovine mastitis were susceptible to ALS2, but those from human and chicken were less susceptible. Thus, the simple and rapid screening method can be applied to select functional chimeric lysins and define mutations affecting antibacterial activity, and ALS2 may be useful in itself and as a lead molecule to control bovine mastitis.
Collapse
Affiliation(s)
- Jin-Mi Park
- Laboratory of Poultry Medicine, College of Veterinary Medicine, Seoul National University, Seoul 08826, Republic of Korea
- Research Institute for Veterinary Science, College of Veterinary Medicine, BK21 for Veterinary Science, Seoul 08826, Republic of Korea
| | - Dae-Sung Ko
- Laboratory of Poultry Medicine, College of Veterinary Medicine, Seoul National University, Seoul 08826, Republic of Korea
- Research Institute for Veterinary Science, College of Veterinary Medicine, BK21 for Veterinary Science, Seoul 08826, Republic of Korea
| | - Hee-Soo Kim
- Laboratory of Poultry Medicine, College of Veterinary Medicine, Seoul National University, Seoul 08826, Republic of Korea
- Research Institute for Veterinary Science, College of Veterinary Medicine, BK21 for Veterinary Science, Seoul 08826, Republic of Korea
| | - Nam-Hyung Kim
- Laboratory of Poultry Medicine, College of Veterinary Medicine, Seoul National University, Seoul 08826, Republic of Korea
- Research Institute for Veterinary Science, College of Veterinary Medicine, BK21 for Veterinary Science, Seoul 08826, Republic of Korea
| | - Eun-Kyoung Kim
- Department of Farm Animal Medicine, College of Veterinary Medicine, Seoul National University, Pyeongchang-gun 25354, Republic of Korea
| | - Young-Hye Roh
- Department of Farm Animal Medicine, College of Veterinary Medicine, Seoul National University, Pyeongchang-gun 25354, Republic of Korea
| | - Danil Kim
- Department of Farm Animal Medicine, College of Veterinary Medicine, Seoul National University, Pyeongchang-gun 25354, Republic of Korea
| | - Jae-Hong Kim
- Laboratory of Poultry Medicine, College of Veterinary Medicine, Seoul National University, Seoul 08826, Republic of Korea
| | - Kang-Seuk Choi
- Research Institute for Veterinary Science, College of Veterinary Medicine, BK21 for Veterinary Science, Seoul 08826, Republic of Korea
- Laboratory of Avian Diseases, College of Veterinary Medicine, Seoul National University, Seoul 08826, Republic of Korea
- Correspondence: (K.-S.C.); (H.-J.K.); Tel.: +82-2-880-1266 (K.-S.C. & H.-J.K.)
| | - Hyuk-Joon Kwon
- Laboratory of Poultry Medicine, College of Veterinary Medicine, Seoul National University, Seoul 08826, Republic of Korea
- Research Institute for Veterinary Science, College of Veterinary Medicine, BK21 for Veterinary Science, Seoul 08826, Republic of Korea
- Correspondence: (K.-S.C.); (H.-J.K.); Tel.: +82-2-880-1266 (K.-S.C. & H.-J.K.)
| |
Collapse
|
28
|
Hu L, Wang Y, Wang L, Xiao S, Zheng Y, Yin G, Du G, Chen J, Kang Z. Construction of Osmotic Pressure Responsive Vacuole-like Bacterial Organelles with Capsular Polysaccharides as Building Blocks. ACS Synth Biol 2023; 12:750-760. [PMID: 36872621 DOI: 10.1021/acssynbio.2c00546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2023]
Abstract
Many artificial organelles or subcellular compartments have been developed to tune gene expression, regulate metabolic pathways, or endow new cell functions. Most of these organelles or compartments were built using proteins or nucleic acids as building blocks. In this study, we demonstrated that capsular polysaccharide (CPS) retained inside bacteria cytosol assembled into mechanically stable CPS compartments. The CPS compartments were able to accommodate and release protein molecules but not lipids or nucleic acids. Intriguingly, we found that the CPS compartment size responds to osmotic stress and this compartment improves cell survival under high osmotic pressures, which was similar to the vacuole functionalities. By fine-tuning the synthesis and degradation of CPS with osmotic stress-responsive promoters, we achieved dynamic regulation of the size of CPS compartments and the host cells in response to external osmotic stress. Our results shed new light on developing prokaryotic artificial organelles with carbohydrate macromolecules.
Collapse
Affiliation(s)
- Litao Hu
- The Science Center for Future Foods, Jiangnan University, Wuxi 214122, China.,The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Yang Wang
- The Science Center for Future Foods, Jiangnan University, Wuxi 214122, China.,The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Lingling Wang
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Sen Xiao
- The Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
| | - Yilin Zheng
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Guobin Yin
- The Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
| | - Guocheng Du
- The Science Center for Future Foods, Jiangnan University, Wuxi 214122, China.,The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Jian Chen
- The Science Center for Future Foods, Jiangnan University, Wuxi 214122, China.,The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Zhen Kang
- The Science Center for Future Foods, Jiangnan University, Wuxi 214122, China.,The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
29
|
Orhan F, Ceyran E, Akincioğlu A. Optimization of ectoine production from Nesterenkonia xinjiangensis and one-step ectoine purification. BIORESOURCE TECHNOLOGY 2023; 371:128646. [PMID: 36681344 DOI: 10.1016/j.biortech.2023.128646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 01/13/2023] [Accepted: 01/16/2023] [Indexed: 06/17/2023]
Abstract
In the current study, the optimization of ectoine production byNesterenkonia xinjiangensisand purification of ectoine from the bacterial cell extract were performed for the first time. Various carbon sources (glucose, sucrose, maltose, lactose, mannitol, and xylose) and nitrogen sources (ammonium nitrate, ammonium phosphate, ammonium chloride, ammonium oxalate, ammonium sulphate, and ammonium acetate), were used to optimize ectoine production. Subsequently, the effects of salt, pH and, concentrations of carbon and nitrogen source on ectoine production were optimized by response surface methodology (RSM). Ultimately, high pure (over 99%) and yield (98%) of ectoine from bacterial cells extracted was obtained by a single-step process using cation exchange chromatography. This study provides information that higher ectoine production can be achieved from this bacterial isolate by optimizing the factors influencing ectoine production and thus can be used as a new and alternative ectoine producer.
Collapse
Affiliation(s)
- Furkan Orhan
- Agri Ibrahim Cecen University, Art and Science Faculty, Department of Molecular Biology and Genetics, 4100 Agri, Turkey; Central Research and Application Laboratory, Agri Ibrahim Cecen University, Agri, Turkey.
| | - Ertuğrul Ceyran
- Central Research and Application Laboratory, Agri Ibrahim Cecen University, Agri, Turkey
| | - Akın Akincioğlu
- Central Research and Application Laboratory, Agri Ibrahim Cecen University, Agri, Turkey; Vocational School, Agri Ibrahim Cecen University, Agri, Turkey
| |
Collapse
|
30
|
Coppens L, Tschirhart T, Leary DH, Colston SM, Compton JR, Hervey WJ, Dana KL, Vora GJ, Bordel S, Ledesma-Amaro R. Vibrio natriegens genome-scale modeling reveals insights into halophilic adaptations and resource allocation. Mol Syst Biol 2023; 19:e10523. [PMID: 36847213 PMCID: PMC10090949 DOI: 10.15252/msb.202110523] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 02/07/2023] [Accepted: 02/09/2023] [Indexed: 03/01/2023] Open
Abstract
Vibrio natriegens is a Gram-negative bacterium with an exceptional growth rate that has the potential to become a standard biotechnological host for laboratory and industrial bioproduction. Despite this burgeoning interest, the current lack of organism-specific qualitative and quantitative computational tools has hampered the community's ability to rationally engineer this bacterium. In this study, we present the first genome-scale metabolic model (GSMM) of V. natriegens. The GSMM (iLC858) was developed using an automated draft assembly and extensive manual curation and was validated by comparing predicted yields, central metabolic fluxes, viable carbon substrates, and essential genes with empirical data. Mass spectrometry-based proteomics data confirmed the translation of at least 76% of the enzyme-encoding genes predicted to be expressed by the model during aerobic growth in a minimal medium. iLC858 was subsequently used to carry out a metabolic comparison between the model organism Escherichia coli and V. natriegens, leading to an analysis of the model architecture of V. natriegens' respiratory and ATP-generating system and the discovery of a role for a sodium-dependent oxaloacetate decarboxylase pump. The proteomics data were further used to investigate additional halophilic adaptations of V. natriegens. Finally, iLC858 was utilized to create a Resource Balance Analysis model to study the allocation of carbon resources. Taken together, the models presented provide useful computational tools to guide metabolic engineering efforts in V. natriegens.
Collapse
Affiliation(s)
- Lucas Coppens
- Department of Bioengineering and Imperial College Centre for Synthetic Biology, Imperial College London, London, UK
| | - Tanya Tschirhart
- US Naval Research Laboratory, Center for Bio/Molecular Science and Engineering, Washington, DC, USA
| | - Dagmar H Leary
- US Naval Research Laboratory, Center for Bio/Molecular Science and Engineering, Washington, DC, USA
| | - Sophie M Colston
- US Naval Research Laboratory, Center for Bio/Molecular Science and Engineering, Washington, DC, USA
| | - Jaimee R Compton
- US Naval Research Laboratory, Center for Bio/Molecular Science and Engineering, Washington, DC, USA
| | - William Judson Hervey
- US Naval Research Laboratory, Center for Bio/Molecular Science and Engineering, Washington, DC, USA
| | | | - Gary J Vora
- US Naval Research Laboratory, Center for Bio/Molecular Science and Engineering, Washington, DC, USA
| | - Sergio Bordel
- Department of Chemical Engineering and Environmental Technology, School of Industrial Engineering, University of Valladolid, Valladolid, Spain
| | - Rodrigo Ledesma-Amaro
- Department of Bioengineering and Imperial College Centre for Synthetic Biology, Imperial College London, London, UK
| |
Collapse
|
31
|
Ozturk TN, Coumoundouros C, Culham DE, Wood JM. Structural Determinants and Functional Significance of Dimerization for Osmosensing Transporter ProP in Escherichia coli. Biochemistry 2023; 62:118-133. [PMID: 36516499 DOI: 10.1021/acs.biochem.2c00393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Osmosensing transporter ProP forestalls cellular dehydration by detecting environments with high osmotic pressure and mediating the accumulation of organic osmolytes by bacterial cells. It is composed of 12 transmembrane helices with cytoplasmic N- and C-termini. In Escherichia coli, dimers form when the C-terminal domains of ProP molecules form homodimeric, antiparallel, α-helical coiled coils. No dominant negative effect was detected when inactive and active ProP molecules formed heterodimers in vivo. Purification of ProP in detergent dodecylmaltoside yielded monomers, which were functional after reconstitution in proteoliposomes. With other evidence, this suggests that ProP monomers function independently whether in the monomeric or dimeric state. Amino acid replacements that disrupted or reversed the coiled coil did not prevent in vivo dimerization of ProP detected with a bacterial two-hybrid system. Maleimide labeling detected no osmolality-dependent variation in the reactivities of cysteine residues introduced to transmembrane helix (TM) XII. In contrast, coarse-grained molecular dynamic simulations detected deformation of the lipid around TMs III and VI, on the lipid-exposed protein surface opposite to TM XII. This suggests that the dimer interface of ProP includes the surfaces of TMs III and VI, not of TM XII as previously suggested by crosslinking data. Homology modeling suggested that coiled-coil formation and dimerization via such an interface are not mutually exclusive. In previous work, alterations to the C-terminal coiled coil blocked co-localization of ProP with phospholipid cardiolipin at E. coli cell poles. Thus, dimerization may contribute to ProP targeting, adjust its lipid environment, and hence indirectly modify its osmotic stress response.
Collapse
Affiliation(s)
- Tugba N Ozturk
- Department of Biochemistry and Molecular Biophysics, Washington University in Saint Louis, Saint Louis, Missouri63110, United States.,Theoretical Molecular Biophysics Laboratory, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland20814, United States
| | - Chelsea Coumoundouros
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, CanadaN1G 2 W1
| | - Doreen E Culham
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, CanadaN1G 2 W1
| | - Janet M Wood
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, CanadaN1G 2 W1
| |
Collapse
|
32
|
Abu Quba AA, Goebel MO, Karagulyan M, Miltner A, Kästner M, Bachmann J, Schaumann GE, Diehl D. Changes in cell surface properties of Pseudomonas fluorescens by adaptation to NaCl induced hypertonic stress. FEMS MICROBES 2022; 4:xtac028. [PMID: 37333443 PMCID: PMC10169395 DOI: 10.1093/femsmc/xtac028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 10/26/2022] [Accepted: 12/05/2022] [Indexed: 10/12/2023] Open
Abstract
Determination of the effect of water stress on the surface properties of bacteria is crucial to study bacterial induced soil water repellency. Changes in the environmental conditions may affect several properties of bacteria such as the cell hydrophobicity and morphology. Here, we study the influence of adaptation to hypertonic stress on cell wettability, shape, adhesion, and surface chemical composition of Pseudomonas fluorescens. From this we aim to discover possible relations between the changes in wettability of bacterial films studied by contact angle and single cells studied by atomic and chemical force microscopy (AFM, CFM), which is still lacking. We show that by stress the adhesion forces of the cell surfaces towards hydrophobic functionalized probes increase while they decrease towards hydrophilic functionalized tips. This is consistent with the contact angle results. Further, cell size shrunk and protein content increased upon stress. The results suggest two possible mechanisms: Cell shrinkage is accompanied by the release of outer membrane vesicles by which the protein to lipid ratio increases. The higher protein content increases the rigidity and the number of hydrophobic nano-domains per surface area.
Collapse
Affiliation(s)
- Abd Alaziz Abu Quba
- Institute of Environmental Sciences, Rheinland-pfälzische Technische Universität Kaiserslauter-Landau, RPTU in Landau, Fortstrasse 7, 76829 Landau, Germany
| | - Marc-Oliver Goebel
- Institute of Soil Science, Leibniz Universität Hannover, Herrenhäuser Straße 2, 30419 Hannover, Germany
| | - Mariam Karagulyan
- Helmholtz Centre for Environmental Research - UFZ, Department of Environmental Biotechnology, Permoserstraße 15, 04318 Leipzig, Germany
| | - Anja Miltner
- Helmholtz Centre for Environmental Research - UFZ, Department of Environmental Biotechnology, Permoserstraße 15, 04318 Leipzig, Germany
| | - Matthias Kästner
- Helmholtz Centre for Environmental Research - UFZ, Department of Environmental Biotechnology, Permoserstraße 15, 04318 Leipzig, Germany
| | - Jörg Bachmann
- Institute of Soil Science, Leibniz Universität Hannover, Herrenhäuser Straße 2, 30419 Hannover, Germany
| | - Gabriele E Schaumann
- Institute of Environmental Sciences, Rheinland-pfälzische Technische Universität Kaiserslauter-Landau, RPTU in Landau, Fortstrasse 7, 76829 Landau, Germany
| | - Doerte Diehl
- Institute of Environmental Sciences, Rheinland-pfälzische Technische Universität Kaiserslauter-Landau, RPTU in Landau, Fortstrasse 7, 76829 Landau, Germany
| |
Collapse
|
33
|
da Silva MR, Alves de Almeida F, Coelho AÍM, da Silva FL, Vanetti MCD. Enhancing cell resistance for production of mixed microbiological reference materials with Salmonella and coliforms by freeze-drying. Braz J Microbiol 2022; 53:2107-2119. [PMID: 35962856 PMCID: PMC9679061 DOI: 10.1007/s42770-022-00808-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 07/29/2022] [Indexed: 01/13/2023] Open
Abstract
The reference material (RM) is a technical requirement for the quality assurance of analytical results and proficiency tests or interlaboratory comparisons. Microbiological RMs are most available in the dehydrated form, mainly by freeze-drying, and maintaining bacterial survival after preparation is a challenge. Thus, obtaining the most resistant cells is essential. Considering that bacteria present cross-response to dehydration after being submitted to an array of stress conditions, this study aimed to evaluate the influence of growth conditions on enterobacteria for the production of mixed microbiological RMs by freeze-drying in skim milk powder. Salmonella enterica serovar Enteritidis, Cronobacter sakazakii, Escherichia coli, and Citrobacter freundii were grown in a minimal medium with 0.5 M NaCl and 0 to 5.0 mM of manganese sulfate (MnSO4) until stationary phase. Salmonella Enteritidis presented an increased resistance to dehydration in the presence of Mn, while C. sakazakii was the most resistant to freeze-drying and further storage for 90 days. Mixed microbiological RMs were produced by freeze-drying and containing Salmonella Enteritidis and coliforms in skim milk powder with 100 mM of trehalose and the Salmonella survival rate was 91.2 to 93.6%. The mixed RM was stable after 30 days at -20 °C, and Salmonella and coliforms were detected by different methods being, the Rambach Agar the best for the bacterial differentiation. The results showed that the culture conditions applied in this study resulted in bacterial cells being more resistant to dehydration, freeze-drying, and stabilization for the production of mixed microbiological RMs more stable and homogeneous.
Collapse
Affiliation(s)
- Maria Roméria da Silva
- Department of Microbiology, Universidade Federal de Viçosa, Viçosa, MG, 36570-900, Brazil
- Department of Biochemistry and Molecular Biology, Universidade Federal de Viçosa, Viçosa, MG, 36570-900, Brazil
| | - Felipe Alves de Almeida
- Department of Nutrition, Universidade Federal de Juiz de Fora, Governador Valadares, MG, 35032-620, Brazil
| | | | - Fernanda Lopes da Silva
- Department of Food Technology, Universidade Federal de Viçosa, Viçosa, MG, 36570-900, Brazil
| | | |
Collapse
|
34
|
Chen L, Li X, Lou X, Shu W, Hai Y, Wen X, Yang H. NMR-based metabolomics reveals the antibacterial effect of electrolysed water combined with citric acid on Aeromonas spp. in barramundi (Lates calcarifer) fillets. Food Res Int 2022; 162:112046. [DOI: 10.1016/j.foodres.2022.112046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 10/03/2022] [Accepted: 10/10/2022] [Indexed: 11/15/2022]
|
35
|
Wennerström H, Sparr E, Stenhammar J. Thermal fluctuations and osmotic stability of lipid vesicles. Phys Rev E 2022; 106:064607. [PMID: 36671149 DOI: 10.1103/physreve.106.064607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 11/18/2022] [Indexed: 06/17/2023]
Abstract
Biological membranes constantly change their shape in response to external stimuli, and understanding the remodeling and stability of vesicles in heterogeneous environments is therefore of fundamental importance for a range of cellular processes. One crucial question is how vesicles respond to external osmotic stresses, imposed by differences in solute concentrations between the vesicle interior and exterior. Previous analyses of the membrane bending energy have predicted that micron-sized giant unilamellar vesicles (GUVs) should become globally deformed already for nanomolar concentration differences, in contrast to experimental findings that find deformations at much higher osmotic stresses. In this article, we analyze the mechanical stability of a spherical vesicle exposed to an external osmotic pressure in a statistical-mechanical model, including the effect of thermally excited membrane bending modes. We find that the inclusion of thermal fluctuations of the vesicle shape changes renders the vesicle deformation continuous, in contrast to the abrupt transition in the athermal picture. Crucially, however, the predicted critical pressure associated with global vesicle deformation remains the same as when thermal fluctuations are neglected, approximately six orders of magnitude smaller than the typical collapse pressure recently observed experimentally for GUVs. We conclude by discussing possible sources of this persisting dissonance between theory and experiments.
Collapse
Affiliation(s)
- Håkan Wennerström
- Division of Physical Chemistry, Lund University, P.O. Box 124, S-221 00 Lund, Sweden
| | - Emma Sparr
- Division of Physical Chemistry, Lund University, P.O. Box 124, S-221 00 Lund, Sweden
| | - Joakim Stenhammar
- Division of Physical Chemistry, Lund University, P.O. Box 124, S-221 00 Lund, Sweden
| |
Collapse
|
36
|
Shen Y, Haig SJ, Prussin AJ, LiPuma JJ, Marr LC, Raskin L. Shower water contributes viable nontuberculous mycobacteria to indoor air. PNAS NEXUS 2022; 1:pgac145. [PMID: 36712351 PMCID: PMC9802317 DOI: 10.1093/pnasnexus/pgac145] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 11/07/2022] [Indexed: 11/11/2022]
Abstract
Nontuberculous mycobacteria (NTM) are frequently present in municipal drinking water and building plumbing, and some are believed to cause respiratory tract infections through inhalation of NTM-containing aerosols generated during showering. However, the present understanding of NTM transfer from water to air is insufficient to develop NTM risk mitigation strategies. This study aimed to characterize the contribution of shower water to the abundance of viable NTM in indoor air. Shower water and indoor air samples were collected, and 16S rRNA and rpoB genes were sequenced. The sequencing results showed that running the shower impacted the bacterial community structure and NTM species composition in indoor air by transferring certain bacteria from water to air. A mass balance model combined with NTM quantification results revealed that on average 1/132 and 1/254 of NTM cells in water were transferred to air during 1 hour of showering using a rain and massage showerhead, respectively. A large fraction of the bacteria transferred from water to air were membrane-damaged, i.e. they had compromised membranes based on analysis by live/dead staining and flow cytometry. However, the damaged NTM in air were recoverable as shown by growth in a culture medium mimicking the respiratory secretions of people with cystic fibrosis, implying a potential infection risk by NTM introduced to indoor air during shower running. Among the recovered NTM, Mycobacterium mucogenicum was the dominant species as determined by rpoB gene sequencing. Overall, this study lays the groundwork for future pathogen risk management and public health protection in the built environment.
Collapse
Affiliation(s)
| | | | - Aaron J Prussin
- Department of Civil and Environmental Engineering, Virginia Tech, 418 Durham Hall, Blacksburg, VA 24061, USA
| | - John J LiPuma
- Department of Pediatrics, University of Michigan Medical School, 1500 E. Medical Center Dr., Ann Arbor, MI 48109, USA
| | - Linsey C Marr
- Department of Civil and Environmental Engineering, Virginia Tech, 418 Durham Hall, Blacksburg, VA 24061, USA
| | | |
Collapse
|
37
|
Addo KA, Li L, Li H, Yu Y, Xiao X. Osmotic stress relief antibiotic tolerance of 1,8-cineole in biofilm persister cells of Escherichia coli O157:H7 and expression of toxin-antitoxin system genes. Microb Pathog 2022; 173:105883. [DOI: 10.1016/j.micpath.2022.105883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 11/10/2022] [Accepted: 11/11/2022] [Indexed: 11/17/2022]
|
38
|
Gispert I, Hindley JW, Pilkington CP, Shree H, Barter LMC, Ces O, Elani Y. Stimuli-responsive vesicles as distributed artificial organelles for bacterial activation. Proc Natl Acad Sci U S A 2022; 119:e2206563119. [PMID: 36223394 PMCID: PMC9586261 DOI: 10.1073/pnas.2206563119] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 09/07/2022] [Indexed: 11/25/2022] Open
Abstract
Intercellular communication is a hallmark of living systems. As such, engineering artificial cells that possess this behavior has been at the heart of activities in bottom-up synthetic biology. Communication between artificial and living cells has potential to confer novel capabilities to living organisms that could be exploited in biomedicine and biotechnology. However, most current approaches rely on the exchange of chemical signals that cannot be externally controlled. Here, we report two types of remote-controlled vesicle-based artificial organelles that translate physical inputs into chemical messages that lead to bacterial activation. Upon light or temperature stimulation, artificial cell membranes are activated, releasing signaling molecules that induce protein expression in Escherichia coli. This distributed approach differs from established methods for engineering stimuli-responsive bacteria. Here, artificial cells (as opposed to bacterial cells themselves) are the design unit. Having stimuli-responsive elements compartmentalized in artificial cells has potential applications in therapeutics, tissue engineering, and bioremediation. It will underpin the design of hybrid living/nonliving systems where temporal control over population interactions can be exerted.
Collapse
Affiliation(s)
- Ignacio Gispert
- Department of Chemical Engineering, Imperial College London, South Kensington, London, SW7 2AZ, UK
- fabriCELL, Imperial College London, Molecular Sciences Research Hub, White City, London W12 0BZ, UK
- Department of Chemistry, Imperial College London, Molecular Sciences Research Hub, White City, London W12 0BZ, UK
- Institute of Chemical Biology, Imperial College London, Molecular Sciences Research Hub, White City, London W12 0BZ, UK
| | - James W. Hindley
- fabriCELL, Imperial College London, Molecular Sciences Research Hub, White City, London W12 0BZ, UK
- Department of Chemistry, Imperial College London, Molecular Sciences Research Hub, White City, London W12 0BZ, UK
- Institute of Chemical Biology, Imperial College London, Molecular Sciences Research Hub, White City, London W12 0BZ, UK
| | - Colin P. Pilkington
- Department of Chemical Engineering, Imperial College London, South Kensington, London, SW7 2AZ, UK
- fabriCELL, Imperial College London, Molecular Sciences Research Hub, White City, London W12 0BZ, UK
- Department of Chemistry, Imperial College London, Molecular Sciences Research Hub, White City, London W12 0BZ, UK
| | - Hansa Shree
- Department of Chemistry, Imperial College London, Molecular Sciences Research Hub, White City, London W12 0BZ, UK
| | - Laura M. C. Barter
- Department of Chemistry, Imperial College London, Molecular Sciences Research Hub, White City, London W12 0BZ, UK
- Institute of Chemical Biology, Imperial College London, Molecular Sciences Research Hub, White City, London W12 0BZ, UK
| | - Oscar Ces
- fabriCELL, Imperial College London, Molecular Sciences Research Hub, White City, London W12 0BZ, UK
- Department of Chemistry, Imperial College London, Molecular Sciences Research Hub, White City, London W12 0BZ, UK
- Institute of Chemical Biology, Imperial College London, Molecular Sciences Research Hub, White City, London W12 0BZ, UK
| | - Yuval Elani
- Department of Chemical Engineering, Imperial College London, South Kensington, London, SW7 2AZ, UK
- fabriCELL, Imperial College London, Molecular Sciences Research Hub, White City, London W12 0BZ, UK
| |
Collapse
|
39
|
Mineralogy, morphology, and reaction kinetics of ureolytic bio-cementation in the presence of seawater ions and varying soil materials. Sci Rep 2022; 12:17100. [PMID: 36224231 PMCID: PMC9556692 DOI: 10.1038/s41598-022-21268-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 09/26/2022] [Indexed: 01/04/2023] Open
Abstract
Microbially-induced calcium carbonate precipitation (MICP) is a bio-cementation process that can improve the engineering properties of granular soils through the precipitation of calcium carbonate (CaCO3) minerals on soil particle surfaces and contacts. The technology has advanced rapidly as an environmentally conscious soil improvement method, however, our understanding of the effect of changes in field-representative environmental conditions on the physical and chemical properties of resulting precipitates has remained limited. An improved understanding of the effect of subsurface geochemical and soil conditions on process reaction kinetics and the morphology and mineralogy of bio-cementation may be critical towards enabling successful field-scale deployment of the technology and improving our understanding of the long-term chemical permanence of bio-cemented soils in different environments. In this study, thirty-five batch experiments were performed to specifically investigate the influence of seawater ions and varying soil materials on the mineralogy, morphology, and reaction kinetics of ureolytic bio-cementation. During experiments, differences in reaction kinetics were quantified to identify conditions inhibiting CaCO3 precipitation and ureolysis. Following experiments, scanning electron microscopy, x-ray diffraction, and chemical composition analyses were employed to quantify differences in mineralogical compositions and material morphology. Ions present in seawater and variations in soil materials were shown to significantly influence ureolytic activity and precipitate mineralogy and morphology, however, calcite remained the predominant CaCO3 polymorph in all experiments with relative percentages exceeding 80% by mass in all precipitates.
Collapse
|
40
|
Antifungal Chitinase Production by Bacillus paramycoides B26 using Squid Pen Powder as a Carbon Source. JOURNAL OF PURE AND APPLIED MICROBIOLOGY 2022. [DOI: 10.22207/jpam.16.4.09] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
This study aimed to optimize the medium compositions and cultural conditions for improved chitinase production by a potential strain of Bacillus isolated from the marine environment and determine the antifungal activity of its chitinase against plant pathogenic fungi. Five potential isolates were cultured for chitinase production by submerged fermentation using colloidal chitin in a liquid medium. In this study, chitinase activity was determined by measuring reducing sugars, which were determined by the 3,5-dinitrosalicylic acid (DNS) assay. The most potential isolate, B26, showed similarity to Bacillus paramycoides based on the 16S rRNA gene sequence. The maximum chitinase production was achieved at 6.52±0.02 U/mL after 72 h of incubation in a medium containing 2% squid pen powder, supplemented with 0.5% sodium nitrate and 2% NaCl, with an initial pH of 7. It was observed that the optimization of cultural conditions resulted in 2.83 times higher chitinase production than an unoptimized medium. The antifungal activity of crude chitinase against phytopathogenic fungi was evaluated by a well-diffusion method. The chitinase of B. paramycoides B26 effectively inhibited the growth of Fusarium solani TISTR 3436 (83.4%) and Penicillium chrysogenum TISTR 3554 (80.12%).
Collapse
|
41
|
Wang XL, Zhou JJ, Liu S, Sun YQ, Xiu ZL. In situ carbon dioxide capture to co-produce 1,3-propanediol, biohydrogen and micro-nano calcium carbonate from crude glycerol by Clostridium butyricum. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2022; 15:91. [PMID: 36057610 PMCID: PMC9440576 DOI: 10.1186/s13068-022-02190-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 08/26/2022] [Indexed: 11/30/2022]
Abstract
Background Climate change caused by greenhouse gas emission has become a global hot topic. Although biotechnology is considered as an environmentally friendly method to produce chemicals, almost all biochemicals face carbon dioxide emission from inevitable respiration and energy metabolism of most microorganisms. To cater for the broad prospect of biochemicals, bioprocess optimization of diverse valuable products is becoming increasingly important for environmental sustainability and cleaner production. Based on Ca(OH)2 as a CO2 capture agent and pH regulator, a bioprocess was proposed for co-production of 1,3-propanediol (1,3-PDO), biohydrogen and micro-nano CaCO3 by Clostridium butyricum DL07. Results In fed-batch fermentation, the maximum concentration of 1,3-PDO reached up to 88.6 g/L with an overall productivity of 5.54 g/L/h. This productivity is 31.9% higher than the highest value previously reports (4.20 g/L/h). In addition, the ratio of H2 to CO2 in exhaust gas showed a remarkable 152-fold increase in the 5 M Ca(OH)2 group compared to 5 M NaOH as the CO2 capture agent. Green hydrogen in exhaust gas ranged between 17.2% and 20.2%, with the remainder being N2 with negligible CO2 emissions. During CO2 capture in situ, micro-nano calcite particles of CaCO3 with sizes in the range of 300 nm to 20 µm were formed simultaneously. Moreover, when compared with 5M NaOH group, the concentrations of soluble salts and proteins in the fermentation broth of 5 M Ca(OH)2 group were notably reduced by 53.6% and 44.1%, respectively. The remarkable reduction of soluble salts and proteins would contribute to the separation of 1,3-PDO. Conclusions Ca(OH)2 was used as a CO2 capture agent and pH regulator in this study to promote the production of 1,3-PDO. Meanwhile, micro-nano CaCO3 and green H2 were co-produced. In addition, the soluble salts and proteins in the fermentation broth were significantly reduced. Graphical Abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s13068-022-02190-2.
Collapse
|
42
|
Gu Y, Zhong K, Cao R, Yang Z. Aqueous lithium chloride solution as a non-toxic bactericidal and fungicidal disinfectant for air-conditioning systems: Efficacy and mechanism. ENVIRONMENTAL RESEARCH 2022; 212:113112. [PMID: 35346655 DOI: 10.1016/j.envres.2022.113112] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 03/04/2022] [Accepted: 03/09/2022] [Indexed: 06/14/2023]
Abstract
Airborne pathogenic bacteria and fungi transmitted through air-conditioning (AC) systems have been identified as a major public health risk. Air scrubbing is a promising liquid-based air disinfection technique that captures and inactivates airborne pathogens in liquid disinfectants. However, owing to the drawbacks of irritating odor and toxicity, the commonly-used chemical disinfectants cannot be employed for AC systems. This study aimed to unveil the inactivation performance and mechanism of non-toxic and chemically stable aqueous lithium chloride (LiCl) solution-the popular liquid desiccant in the AC systems-as a user-friendly disinfectant. Four prominent airborne pathogenic bacteria and fungi were exposed to the LiCl solution under various conditions. The inactivation effects were quantified with fluorescence-staining-based confocal microscopy and verified with the pathogens' membrane integrity variations, intracellular substance leakage, and morphological changes. Results showed that LiCl solution was remarkably efficient in inactivating the pathogens within 60 min, with an efficacy of 35.2-96.2%. The solution's inactivation ability was promoted by increasing the temperatures and concentrations; however, it appeared insensitive to exposure time over 30 min. We then explored the inactivation mechanism of LiCl solution by assessing cellular protein leakages and compared the inactivation rates with those of NaCl solution. The extracellular protein increased by over 470% after being exposed to LiCl solution. The inactivation rate was also considerably higher than in NaCl solution under the same osmotic pressure (24.79 MPa). We suggest that apart from osmotic pressure, the inactivation is reinforced by Li+-specific properties, including its strong water attraction that deprived the solvation shells of microbial protein and caused protein denaturation. We propose that aqueous LiCl solution may act as a user-friendly disinfectant for air-scrubbing due to its attractive characteristics, including its non-toxicity, odorless nature, and chemical stability. These findings may open up a "green" way to disinfect airborne pathogens and safeguard public health.
Collapse
Affiliation(s)
- Yuqian Gu
- Department of Civil Engineering, School of Environmental Science & Engineering, Donghua University, 201620, 2999, North Renmin Road, Songjiang District, Shanghai, China
| | - Ke Zhong
- Department of Civil Engineering, School of Environmental Science & Engineering, Donghua University, 201620, 2999, North Renmin Road, Songjiang District, Shanghai, China
| | - Rong Cao
- Department of Radiology, Shanghai General Hospital, Shanghai Jiao Tong University, China
| | - Zili Yang
- Department of Civil Engineering, School of Environmental Science & Engineering, Donghua University, 201620, 2999, North Renmin Road, Songjiang District, Shanghai, China.
| |
Collapse
|
43
|
Barcenilla C, Álvarez-Ordóñez A, López M, Alvseike O, Prieto M. Microbiological Safety and Shelf-Life of Low-Salt Meat Products-A Review. Foods 2022; 11:2331. [PMID: 35954097 PMCID: PMC9367943 DOI: 10.3390/foods11152331] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 07/25/2022] [Accepted: 07/29/2022] [Indexed: 11/16/2022] Open
Abstract
Salt is widely employed in different foods, especially in meat products, due to its very diverse and extended functionality. However, the high intake of sodium chloride in human diet has been under consideration for the last years, because it is related to serious health problems. The meat-processing industry and research institutions are evaluating different strategies to overcome the elevated salt concentrations in products without a quality reduction. Several properties could be directly or indirectly affected by a sodium chloride decrease. Among them, microbial stability could be shifted towards pathogen growth, posing a serious public health threat. Nonetheless, the majority of the literature available focuses attention on the sensorial and technological challenges that salt reduction implies. Thereafter, the need to discuss the consequences for shelf-life and microbial safety should be considered. Hence, this review aims to merge all the available knowledge regarding salt reduction in meat products, providing an assessment on how to obtain low salt products that are sensorily accepted by the consumer, technologically feasible from the perspective of the industry, and, in particular, safe with respect to microbial stability.
Collapse
Affiliation(s)
- Coral Barcenilla
- Department of Food Hygiene and Technology, Faculty of Veterinary Medicine, University of León, 24071 León, Spain
| | - Avelino Álvarez-Ordóñez
- Department of Food Hygiene and Technology, Faculty of Veterinary Medicine, University of León, 24071 León, Spain
- Institute of Food Science and Technology, University of León, 24007 León, Spain
| | - Mercedes López
- Department of Food Hygiene and Technology, Faculty of Veterinary Medicine, University of León, 24071 León, Spain
- Institute of Food Science and Technology, University of León, 24007 León, Spain
| | - Ole Alvseike
- Animalia—Norwegian Meat and Poultry Research Centre, NO-0513 Oslo, Norway
| | - Miguel Prieto
- Department of Food Hygiene and Technology, Faculty of Veterinary Medicine, University of León, 24071 León, Spain
- Institute of Food Science and Technology, University of León, 24007 León, Spain
| |
Collapse
|
44
|
Kumar M, Karthika S, Anjitha N, Varalakshmi P, Ashokkumar B. Screening for probiotic attributes of lactic acid bacteria isolated from human milk and evaluation of their anti-diabetic potentials. FOOD BIOTECHNOL 2022. [DOI: 10.1080/08905436.2022.2092494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Affiliation(s)
- Manoj Kumar
- Department of Genetic Engineering, School of Biotechnology, Madurai Kamaraj University, Madurai, India
| | - Sukumaran Karthika
- Department of Genetic Engineering, School of Biotechnology, Madurai Kamaraj University, Madurai, India
| | | | - Perumal Varalakshmi
- Department of Molecular Microbiology, School of Biotechnology, Madurai Kamaraj University, Madurai, India
| | | |
Collapse
|
45
|
Jin X, Zhou M, Chen S, Li D, Cao X, Liu B. Effects of pH alterations on stress- and aging-induced protein phase separation. Cell Mol Life Sci 2022; 79:380. [PMID: 35750966 PMCID: PMC9232405 DOI: 10.1007/s00018-022-04393-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 04/26/2022] [Accepted: 05/21/2022] [Indexed: 01/18/2023]
Abstract
Upon stress challenges, proteins/RNAs undergo liquid–liquid phase separation (LLPS) to fine-tune cell physiology and metabolism to help cells adapt to adverse environments. The formation of LLPS has been recently linked with intracellular pH, and maintaining proper intracellular pH homeostasis is known to be essential for the survival of organisms. However, organisms are constantly exposed to diverse stresses, which are accompanied by alterations in the intracellular pH. Aging processes and human diseases are also intimately linked with intracellular pH alterations. In this review, we summarize stress-, aging-, and cancer-associated pH changes together with the mechanisms by which cells regulate cytosolic pH homeostasis. How critical cell components undergo LLPS in response to pH alterations is also discussed, along with the functional roles of intracellular pH fluctuation in the regulation of LLPS. Further studies investigating the interplay of pH with other stressors in LLPS regulation and identifying protein responses to different pH levels will provide an in-depth understanding of the mechanisms underlying pH-driven LLPS in cell adaptation. Moreover, deciphering aging and disease-associated pH changes that influence LLPS condensate formation could lead to a deeper understanding of the functional roles of biomolecular condensates in aging and aging-related diseases.
Collapse
Affiliation(s)
- Xuejiao Jin
- State Key Laboratory of Subtropical Silviculture, School of Forestry and Biotechnology, Zhejiang A&F University, Lin'an, Hangzhou, 311300, China
| | - Min Zhou
- State Key Laboratory of Subtropical Silviculture, School of Forestry and Biotechnology, Zhejiang A&F University, Lin'an, Hangzhou, 311300, China
| | - Shuxin Chen
- State Key Laboratory of Subtropical Silviculture, School of Forestry and Biotechnology, Zhejiang A&F University, Lin'an, Hangzhou, 311300, China
| | - Danqi Li
- State Key Laboratory of Subtropical Silviculture, School of Forestry and Biotechnology, Zhejiang A&F University, Lin'an, Hangzhou, 311300, China
| | - Xiuling Cao
- State Key Laboratory of Subtropical Silviculture, School of Forestry and Biotechnology, Zhejiang A&F University, Lin'an, Hangzhou, 311300, China.
| | - Beidong Liu
- State Key Laboratory of Subtropical Silviculture, School of Forestry and Biotechnology, Zhejiang A&F University, Lin'an, Hangzhou, 311300, China. .,Department of Chemistry and Molecular Biology, University of Gothenburg, Medicinaregatan 9C, 413 90, Goteborg, Sweden. .,Center for Large-Scale Cell-Based Screening, Faculty of Science, University of Gothenburg, Medicinaregatan 9C, 413 90, Goteborg, Sweden.
| |
Collapse
|
46
|
Ongenae V, Mabrouk AS, Crooijmans M, Rozen D, Briegel A, Claessen D. Reversible bacteriophage resistance by shedding the bacterial cell wall. Open Biol 2022; 12:210379. [PMID: 35673854 PMCID: PMC9174709 DOI: 10.1098/rsob.210379] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 04/26/2022] [Indexed: 01/04/2023] Open
Abstract
Phages are highly abundant in the environment and pose a major threat for bacteria. Therefore, bacteria have evolved sophisticated defence systems to withstand phage attacks. Here, we describe a previously unknown mechanism by which mono- and diderm bacteria survive infection with diverse lytic phages. Phage exposure leads to a rapid and near-complete conversion of walled cells to a cell-wall-deficient state, which remains viable in osmoprotective conditions and can revert to the walled state. While shedding the cell wall dramatically reduces the number of progeny phages produced by the host, it does not always preclude phage infection. Altogether, these results show that the formation of cell-wall-deficient cells prevents complete eradication of the bacterial population and suggest that cell wall deficiency may potentially limit the efficacy of phage therapy, especially in highly osmotic environments or when used together with antibiotics that target the cell wall.
Collapse
Affiliation(s)
- Véronique Ongenae
- Molecular Biotechnology, Institute of Biology, Leiden University, P.O. Box 9505, 2300 RA, Leiden, The Netherlands
- Centre for Microbial Cell Biology, Leiden University, Leiden, The Netherlands
| | - Adam Sidi Mabrouk
- Molecular Biotechnology, Institute of Biology, Leiden University, P.O. Box 9505, 2300 RA, Leiden, The Netherlands
- Centre for Microbial Cell Biology, Leiden University, Leiden, The Netherlands
| | - Marjolein Crooijmans
- Molecular Biotechnology, Institute of Biology, Leiden University, P.O. Box 9505, 2300 RA, Leiden, The Netherlands
- Centre for Microbial Cell Biology, Leiden University, Leiden, The Netherlands
| | - Daniel Rozen
- Molecular Biotechnology, Institute of Biology, Leiden University, P.O. Box 9505, 2300 RA, Leiden, The Netherlands
| | - Ariane Briegel
- Molecular Biotechnology, Institute of Biology, Leiden University, P.O. Box 9505, 2300 RA, Leiden, The Netherlands
- Centre for Microbial Cell Biology, Leiden University, Leiden, The Netherlands
| | - Dennis Claessen
- Molecular Biotechnology, Institute of Biology, Leiden University, P.O. Box 9505, 2300 RA, Leiden, The Netherlands
- Centre for Microbial Cell Biology, Leiden University, Leiden, The Netherlands
| |
Collapse
|
47
|
Li G, Yao Y. TorR/TorS Two-Component system resists extreme acid environment by regulating the key response factor RpoS in Escherichia coli. Gene 2022; 821:146295. [PMID: 35181503 DOI: 10.1016/j.gene.2022.146295] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 12/26/2021] [Accepted: 02/04/2022] [Indexed: 01/23/2023]
Abstract
Response to acid stress is critical for Escherichia coli to successfully complete its life-cycle. Acid resistance is an indispensable mechanism that allows neutralophilic bacteria, such as E. coli, to survive in the gastrointestinal tract. Escherichia coli acid tolerance has been extensively studied over the past decades, and most studies have focused on mechanisms of gene regulation. Bacterial two-component signal transduction systems sense and respond to external environmental changes through regulating genes expression. However, there has been little research on the mechanism of the TorR/TorS system in acid resistance, and how TorR/TorS regulate the expression ofacid-resistantgenes is still unclear. We found that TorR/TorS deletion in E. coli cells led to a growth defect in extreme acid conditions,andthis defectmightdepend on the nutritional conditionsand growth phase.TorS/TorR sensed an extremely acidic environment, and this TorR phosphorylation process might not be entirely dependent on TorS.RNA-seqand RT-qPCR results suggested that TorR regulated expressions of gadB, gadC, hdeA, gadE, mdtE, mdtF, gadX, and slp acid-resistant genes. Compared with wild-type cells, the stress response factor RpoSlevels and itsexpressions were significantly decreased in Δ torR cellsstimulated by extreme acid. And under these circumstances, the expression of iraM was significantly reduced to 0.6-fold inΔ torR cells. Electrophoreticmobility shift assay showed that TorR-His6 could interact with the rpoS promoter sequence in vitro. β-galactosidase activity assayresultsapprovedthat TorR might bind the rpoS promoter region in vivo. After the mutation of the TorR-box in the rpoS promoter region, these interactions were no longer observed. Taken together, we propose thatTorS and potential Hanks model Ser/Thr kinase received an external acid stress signal and then phosphorylated TorR, which guided the expressions of a variety of acid resistance genes. Moreover,TorRcoped with extreme acid environmentsthroughRpoS, levels of which might be maintained byIraM. Finally,TorR may confer E. coli with the abilityto resist gastric acid, allowing the bacterium to reach the surface of the terminal ileum and large intestine mucosal epithelial cells through the gastric acid barrier, andestablishcolonization and pathogenicity.
Collapse
Affiliation(s)
- Guotao Li
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, China.
| | - Yuan Yao
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, China; Department of Neurology, Inner Mongolia People's Hospital, Hohhot, China.
| |
Collapse
|
48
|
Crocker LB, Lee JH, Mital S, Mills GC, Schack S, Bistrović-Popov A, Franck CO, Mela I, Kaminski CF, Christie G, Fruk L. Tuning riboflavin derivatives for photodynamic inactivation of pathogens. Sci Rep 2022; 12:6580. [PMID: 35449377 PMCID: PMC9022420 DOI: 10.1038/s41598-022-10394-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 03/28/2022] [Indexed: 11/14/2022] Open
Abstract
The development of effective pathogen reduction strategies is required due to the rise in antibiotic-resistant bacteria and zoonotic viral pandemics. Photodynamic inactivation (PDI) of bacteria and viruses is a potent reduction strategy that bypasses typical resistance mechanisms. Naturally occurring riboflavin has been widely used in PDI applications due to efficient light-induced reactive oxygen species (ROS) release. By rational design of its core structure to alter (photo)physical properties, we obtained derivatives capable of outperforming riboflavin's visible light-induced PDI against E. coli and a SARS-CoV-2 surrogate, revealing functional group dependency for each pathogen. Bacterial PDI was influenced mainly by guanidino substitution, whereas viral PDI increased through bromination of the flavin. These observations were related to enhanced uptake and ROS-specific nucleic acid cleavage mechanisms. Trends in the derivatives' toxicity towards human fibroblast cells were also investigated to assess viable therapeutic derivatives and help guide further design of PDI agents to combat pathogenic organisms.
Collapse
Affiliation(s)
- Leander B Crocker
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Philippa Fawcett Drive, Cambridge, CB3 0AS, UK
| | - Ju Hyun Lee
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Philippa Fawcett Drive, Cambridge, CB3 0AS, UK
| | - Suraj Mital
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Philippa Fawcett Drive, Cambridge, CB3 0AS, UK
| | - Gabrielle C Mills
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Philippa Fawcett Drive, Cambridge, CB3 0AS, UK
| | - Sina Schack
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Philippa Fawcett Drive, Cambridge, CB3 0AS, UK
| | - Andrea Bistrović-Popov
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Philippa Fawcett Drive, Cambridge, CB3 0AS, UK
| | - Christoph O Franck
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Philippa Fawcett Drive, Cambridge, CB3 0AS, UK
| | - Ioanna Mela
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Philippa Fawcett Drive, Cambridge, CB3 0AS, UK
| | - Clemens F Kaminski
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Philippa Fawcett Drive, Cambridge, CB3 0AS, UK
| | - Graham Christie
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Philippa Fawcett Drive, Cambridge, CB3 0AS, UK
| | - Ljiljana Fruk
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Philippa Fawcett Drive, Cambridge, CB3 0AS, UK.
| |
Collapse
|
49
|
Evaluation of Host Depletion and Extraction Methods for Shotgun Metagenomic Analysis of Bovine Vaginal Samples. Microbiol Spectr 2022; 10:e0041221. [PMID: 35404108 PMCID: PMC9045270 DOI: 10.1128/spectrum.00412-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The reproductive tract metagenome plays a significant role in the various reproductive system functions, including reproductive cycles, health, and fertility. One of the major challenges in bovine vaginal metagenome studies is host DNA contamination, which limits the sequencing capacity for metagenomic content and reduces the accuracy of untargeted shotgun metagenomic profiling. This is the first study comparing the effectiveness of different host depletion and DNA extraction methods for bovine vaginal metagenomic samples. The host depletion methods evaluated were slow centrifugation (Soft-spin), NEBNext Microbiome DNA Enrichment kit (NEBNext), and propidium monoazide (PMA) treatment, while the extraction methods were DNeasy Blood and Tissue extraction (DNeasy) and QIAamp DNA Microbiome extraction (QIAamp). Soft-spin and QIAamp were the most effective host depletion method and extraction methods, respectively, in reducing the number of cattle genomic content in bovine vaginal samples. The reduced host-to-microbe ratio in the extracted DNA increased the sequencing depth for microbial reads in untargeted shotgun sequencing. Bovine vaginal samples extracted with QIAamp presented taxonomical profiles which closely resembled the mock microbial composition, especially for the recovery of Gram-positive bacteria. Additionally, samples extracted with QIAamp presented extensive functional profiles with deep coverage. Overall, a combination of Soft-spin and QIAamp provided the most robust representation of the vaginal microbial community in cattle while minimizing host DNA contamination. IMPORTANCE In addition to the host tissue collected during the sampling process, bovine vaginal samples are saturated with large amounts of extracellular DNA and secreted proteins that are essential for physiological purposes, including the reproductive cycle and immune defense. Due to the high host-to-microbe genome ratio, which hampers the sequencing efficacy for metagenome samples and the recovery of the actual metagenomic profiles, bovine vaginal samples cannot benefit from the full potential of shotgun sequencing. This is the first investigation on the most effective host depletion and extraction methods for bovine vaginal metagenomic samples. This study demonstrated an effective combination of host depletion and extraction methods, which harvested higher percentages of 16S rRNA genes and microbial reads, which subsequently led to a taxonomical profile that resembled the actual community and a functional profile with deeper coverage. A representative metagenomic profile is essential for investigating the role of the bovine vaginal metagenome for both reproductive function and susceptibility to infections.
Collapse
|
50
|
Interplay between Amoxicillin Resistance and Osmotic Stress in Helicobacter pylori. J Bacteriol 2022; 204:e0004522. [PMID: 35389254 DOI: 10.1128/jb.00045-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Rising antibiotic resistance rates are a growing concern for all pathogens, including Helicobacter pylori. We previously examined the association of specific mutations in PBP1 with amoxicillin resistance and fitness in H. pylori and found that V374L and N562Y mutations were associated with resistance, but also resulted in fitness defects. Furthermore, we found that hyperosmotic stress differentially altered the fitness of strains bearing these mutations; survival of the V374L strain was decreased by hyperosmotic stress, but the N562Y strain showed increased cell survival relative to that of wild-type G27. The finding that amoxicillin-resistant strains show environmentally dictated changes in fitness suggests a previously unexplored interaction between amoxicillin resistance and osmotic stress in H. pylori. Here, we further characterized the interaction between osmotic stress and amoxicillin resistance. Wild-type and isogenic PBP1 mutant strains were exposed to amoxicillin, various osmotic stressors, or combined antibiotic and osmotic stress, and viability was monitored. While subinhibitory concentrations of NaCl did not affect H. pylori viability, the combination of NaCl and amoxicillin resulted in synergistic killing; this was true even for the antibiotic-resistant strains. Moreover, similar synergy was found with other beta-lactams, but not with antibiotics that did not target the cell wall. Similar synergistic killing was also demonstrated when KCl was utilized as the osmotic stressor. Conversely, osmolar equivalent concentrations of sucrose antagonized amoxicillin-mediated killing. Taken together, our results support a previously unrecognized interaction between amoxicillin resistance and osmotic stress in H. pylori. These findings have interesting implications for the effectiveness of antibiotic therapy for this pathogen. IMPORTANCE Rising antibiotic resistance rates in H. pylori are associated with increased rates of treatment failure. Understanding how stressors impact antibiotic resistance may shed light on the development of future treatment strategies. Previous studies found that mutations in PBP1 that conferred resistance to amoxicillin were also associated with a decrease in bacterial fitness. The current study demonstrated that osmotic stress can enhance beta lactam-mediated killing of H. pylori. The source of osmotic stress was found to be important for these interactions. Given that relatively little is known about how H. pylori responds to osmotic stress, these findings fill important knowledge gaps on this topic and provide interesting implications for the effectiveness of antibiotic therapy for this pathogen.
Collapse
|