1
|
Manville RW, Yoshimura RF, Yeromin AV, Hogenkamp D, van der Horst J, Zavala A, Chinedu S, Arena G, Lasky E, Fisher M, Tracy CR, Othy S, Jepps TA, Cahalan MD, Abbott GW. Polymodal K + channel modulation contributes to dual analgesic and anti-inflammatory actions of traditional botanical medicines. Commun Biol 2024; 7:1059. [PMID: 39198706 PMCID: PMC11358443 DOI: 10.1038/s42003-024-06752-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 08/19/2024] [Indexed: 09/01/2024] Open
Abstract
Pain and inflammation contribute immeasurably to reduced quality of life, yet modern analgesic and anti-inflammatory therapeutics can cause dependence and side effects. Here, we screened 1444 plant extracts, prepared primarily from native species in California and the United States Virgin Islands, against two voltage-gated K+ channels - T-cell expressed Kv1.3 and nociceptive-neuron expressed Kv7.2/7.3. A subset of extracts both inhibits Kv1.3 and activates Kv7.2/7.3 at hyperpolarized potentials, effects predicted to be anti-inflammatory and analgesic, respectively. Among the top dual hits are witch hazel and fireweed; polymodal modulation of multiple K+ channel types by hydrolysable tannins contributes to their dual anti-inflammatory, analgesic actions. In silico docking and mutagenesis data suggest pore-proximal extracellular linker sequence divergence underlies opposite effects of hydrolysable tannins on different Kv1 isoforms. The findings provide molecular insights into the enduring, widespread medicinal use of witch hazel and fireweed and demonstrate a screening strategy for discovering dual anti-inflammatory, analgesic small molecules.
Collapse
Affiliation(s)
- Rían W Manville
- Bioelectricity Laboratory, Department of Physiology and Biophysics, School of Medicine, University of California, Irvine, CA, USA
| | - Ryan F Yoshimura
- Bioelectricity Laboratory, Department of Physiology and Biophysics, School of Medicine, University of California, Irvine, CA, USA
| | - Andriy V Yeromin
- Department of Physiology and Biophysics, School of Medicine, University of California, Irvine, CA, USA
| | - Derk Hogenkamp
- Bioelectricity Laboratory, Department of Physiology and Biophysics, School of Medicine, University of California, Irvine, CA, USA
| | - Jennifer van der Horst
- Department of Biomedical Sciences, Vascular Biology Group, Panum Institute, University of Copenhagen, Copenhagen, Denmark
| | - Angel Zavala
- Department of Physiology and Biophysics, School of Medicine, University of California, Irvine, CA, USA
| | - Sonia Chinedu
- Bioelectricity Laboratory, Department of Physiology and Biophysics, School of Medicine, University of California, Irvine, CA, USA
| | - Grey Arena
- Redwood Creek Vegetation Team, National Park Service, Sausalito, CA, USA
| | - Emma Lasky
- Redwood Creek Vegetation Team, National Park Service, Sausalito, CA, USA
| | - Mark Fisher
- Philip L. Boyd Deep Canyon Desert Research Center, University of California Natural Reserve System, Indian Wells, CA, USA
| | - Christopher R Tracy
- Philip L. Boyd Deep Canyon Desert Research Center, University of California Natural Reserve System, Indian Wells, CA, USA
| | - Shivashankar Othy
- Department of Physiology and Biophysics, School of Medicine, University of California, Irvine, CA, USA
| | - Thomas A Jepps
- Department of Biomedical Sciences, Vascular Biology Group, Panum Institute, University of Copenhagen, Copenhagen, Denmark
| | - Michael D Cahalan
- Department of Physiology and Biophysics, School of Medicine, University of California, Irvine, CA, USA
| | - Geoffrey W Abbott
- Bioelectricity Laboratory, Department of Physiology and Biophysics, School of Medicine, University of California, Irvine, CA, USA.
| |
Collapse
|
2
|
Dynes JL, Yeromin AV, Cahalan MD. Photoswitching alters fluorescence readout of jGCaMP8 Ca 2+ indicators tethered to Orai1 channels. Proc Natl Acad Sci U S A 2023; 120:e2309328120. [PMID: 37729200 PMCID: PMC10523504 DOI: 10.1073/pnas.2309328120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 08/15/2023] [Indexed: 09/22/2023] Open
Abstract
We used electrophysiology and Ca2+ channel tethering to evaluate the performance of jGCaMP8 genetically encoded Ca2+ indicators (GECIs). Orai1 Ca2+ channel-jGCaMP8 fusions were transfected into HEK 293A cells and jGCaMP8 fluorescence responses recorded by simultaneous total internal reflection fluorescence microscopy and whole-cell patch clamp electrophysiology. Noninactivating currents from the Orai1 Y80E mutant provided a steady flux of Ca2+ controlled on a millisecond time scale by step changes in membrane potential. Test pulses to -100 mV produced Orai1 Y80E-jGCaMP8f fluorescence traces that unexpectedly declined by ~50% over 100 ms before reaching a stable plateau. Testing of Orai1-jGCaMP8f using unroofed cells further demonstrated that rapid and partial fluorescence inactivation is a property of the indicator itself, rather than channel function. Photoinactivation spontaneously recovered over 5 min in the dark, and recovery was accelerated in the absence of Ca2+. Mutational analysis of residues near the tripeptide fluorophore of jGCaMP8f pointed to a mechanism: Q69M/C70V greatly increased (~90%) photoinactivation, reminiscent of fluorescent protein fluorophore cis-trans photoswitching. Indeed, 405-nm illumination of jGCaMP8f or 8m/8s/6f led to immediate photorecovery, and simultaneous illumination with 405 and 488-nm light blocked photoinactivation. Subsequent mutagenesis produced a variant, V203Y, that lacks photoinactivation but largely preserves the desirable properties of jGCaMP8f. Our results point to caution in interpreting rapidly changing Ca2+ signals using jGCaMP8 and earlier series GECIs, suggest strategies to avoid photoswitching, and serve as a starting point to produce more photostable, and thus more accurate, GECI derivatives.
Collapse
Affiliation(s)
- Joseph L. Dynes
- Department of Physiology and Biophysics, University of California, Irvine, CA92697
| | - Andriy V. Yeromin
- Department of Physiology and Biophysics, University of California, Irvine, CA92697
| | - Michael D. Cahalan
- Department of Physiology and Biophysics, University of California, Irvine, CA92697
- Institute for Immunology, University of California, Irvine, CA92697
| |
Collapse
|
3
|
Sun W, Hu J, Li M, Huo J, Zhu X. Stormorken syndrome caused by STIM1 mutation: A case report and literature review. MEDICINE INTERNATIONAL 2022; 2:29. [PMID: 36698909 PMCID: PMC9829216 DOI: 10.3892/mi.2022.54] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 09/16/2022] [Indexed: 06/17/2023]
Abstract
The aim of the present case study was to identify the genetic cause of a patient with a clinical presentation of tubular aggregate myopathy (TAM)/Stormorken syndrome (STRMK) and review the published clinical data of patients with TAM/STRMK. A child with thrombocytopenia and hyperCKemia at the Children's Hospital of Soochow University were recruited in the study. Peripheral blood samples of the infant and her parents were collected, and then whole-exome sequencing was performed. Detection of the stromal interaction molecule 1 (STIM1) level of the child was performed using western blot analysis. In addition, a literature review was performed based on a thorough retrieval of published literature from the PubMed database, as well as domestic databases. In the present study, the c.326A>G mutation in a STIM1 allele (p.H109R) was identified only in the child, as opposed to the unaffected parents. The level of STIM1 was not decreased in the child. Among the mutation sites identified in previous studies, there were 46 cases across 30 families of STIM1 EF-hand mutations, 21 cases across 14 families of STIM1 CC1 mutations and 20 cases across 8 families of calcium release-activated calcium channel protein 1 mutations, in which 7 parents had the same mutation site as the patient described herein. On the whole, it is demonstrated that TAM/STRMK is an extremely rare disease with autosomal dominant inheritance. Patients often have multisystemic signs. Gene detection at an early stage is helpful for diagnosis. Long-term exercise training may also have a certain curative effect.
Collapse
Affiliation(s)
- Wenqiang Sun
- Department of Neonatology, Children's Hospital of Soochow University, Suzhou, Jiangsu 215025, P.R. China
| | - Jinhui Hu
- Department of Neonatology, Children's Hospital of Soochow University, Suzhou, Jiangsu 215025, P.R. China
| | - Mengzhao Li
- Department of Neonatology, Children's Hospital of Soochow University, Suzhou, Jiangsu 215025, P.R. China
| | - Jie Huo
- Department of Neonatology, Children's Hospital of Soochow University, Suzhou, Jiangsu 215025, P.R. China
| | - Xueping Zhu
- Department of Neonatology, Children's Hospital of Soochow University, Suzhou, Jiangsu 215025, P.R. China
| |
Collapse
|
4
|
Jazbec V, Jerala R, Benčina M. Proteolytically Activated CRAC Effectors through Designed Intramolecular Inhibition. ACS Synth Biol 2022; 11:2756-2765. [PMID: 35802180 PMCID: PMC9396659 DOI: 10.1021/acssynbio.2c00151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
![]()
Highly regulated intracellular calcium entry affects
numerous cellular
physiological events. External regulation of intracellular calcium
signaling presents a great opportunity for the artificial regulation
of cellular activity. Calcium entry can be mediated by STIM proteins
interacting with Orai calcium channels; therefore, the STIM1–Orai1
pair has become a tool for artificially modulating calcium entry.
We report on an innovative genetically engineered protease-activated
Orai activator called PACE. CAD self-dimerization and activation were
inhibited with a coiled-coil forming peptide pair linked to CAD via
a protease cleavage site. PACE generated sustained calcium entry after
its activation with a reconstituted split protease. We also generated
PACE, whose transcriptional activation of NFAT was triggered by PPV
or TEV protease. Using PACE, we successfully activated the native
NFAT signaling pathway and the production of cytokines in a T-cell
line. PACE represents a useful tool for generating sustained calcium
entry to initiate calcium-dependent protein translation. PACE provides
a promising template for the construction of links between various
protease activation pathways and calcium signaling.
Collapse
Affiliation(s)
- Vid Jazbec
- Department of Synthetic Biology and Immunology, National Institute of Chemistry, Hajdrihova 19, SI-1001 Ljubljana, Slovenia.,Interfaculty Doctoral Study of Biomedicine, University of Ljubljana, SI-1000 Ljubljana, Slovenia
| | - Roman Jerala
- Department of Synthetic Biology and Immunology, National Institute of Chemistry, Hajdrihova 19, SI-1001 Ljubljana, Slovenia.,EN-FIST Centre of Excellence, Trg Osvobodilne fronte 13, SI-1000 Ljubljana, Slovenia
| | - Mojca Benčina
- Department of Synthetic Biology and Immunology, National Institute of Chemistry, Hajdrihova 19, SI-1001 Ljubljana, Slovenia.,EN-FIST Centre of Excellence, Trg Osvobodilne fronte 13, SI-1000 Ljubljana, Slovenia
| |
Collapse
|
5
|
Bais S, Norwillo A, Ruthel G, Herbert DR, Freedman BD, Greenberg RM. Schistosome TRPML channels play a role in neuromuscular activity and tegumental integrity. Biochimie 2022; 194:108-117. [PMID: 34990770 PMCID: PMC8950431 DOI: 10.1016/j.biochi.2021.12.018] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 12/16/2021] [Accepted: 12/31/2021] [Indexed: 11/02/2022]
Abstract
Schistosomiasis is a neglected tropical disease caused by parasitic flatworms of the genus Schistosoma. Mono-therapeutic treatment of this disease with the drug praziquantel, presents challenges such as inactivity against immature worms and inability to prevent reinfection. Importantly, ion channels are important targets for many current anthelmintics. Transient receptor potential (TRP) channels are important mediators of sensory signals with marked effects on cellular functions and signaling pathways. TRPML channels are a class of Ca2+-permeable TRP channels expressed on endolysosomal membranes. They regulate lysosomal function and trafficking, among other functions. Schistosoma mansoni is predicted to have a single TRPML gene (SmTRPML) with two splice variants differing by 12 amino acids. This study focuses on exploring the physiological properties of SmTRPML channels to better understand their role in schistosomes. In mammalian cells expressing SmTRPML, TRPML activators elicit a rise in intracellular Ca2+. In these cells, SmTRPML localizes both to lysosomes and the plasma membrane. These same TRPML activators elicit an increase in adult worm motility that is dependent on SmTRPML expression, indicating a role for these channels in parasite neuromuscular activity. Suppression of SmTRPML in adult worms, or exposure of adult worms to TRPML inhibitors, results in tegumental vacuolations, balloon-like surface exudates, and membrane blebbing, similar to that found following TRPML loss in other organisms. Together, these findings indicate that SmTRPML may regulate the function of the schistosome endolysosomal system. Further, the role of SmTRPML in neuromuscular activity and in parasite tegumental integrity establishes this channel as a candidate anti-schistosome drug target.
Collapse
Affiliation(s)
- Swarna Bais
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, USA.
| | - Abigail Norwillo
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, USA
| | - Gordon Ruthel
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, USA
| | - De'Broski R Herbert
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, USA
| | - Bruce D Freedman
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, USA
| | - Robert M Greenberg
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, USA
| |
Collapse
|
6
|
Lu F, Li Y, Lin S, Cheng H, Yang S. Spatiotemporal regulation of store-operated calcium entry in cancer metastasis. Biochem Soc Trans 2021; 49:2581-2589. [PMID: 34854917 PMCID: PMC9436031 DOI: 10.1042/bst20210307] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 11/09/2021] [Accepted: 11/12/2021] [Indexed: 01/08/2023]
Abstract
The store-operated calcium (Ca2+) entry (SOCE) is the Ca2+ entry mechanism used by cells to replenish depleted Ca2+ store. The dysregulation of SOCE has been reported in metastatic cancer. It is believed that SOCE promotes migration and invasion by remodeling the actin cytoskeleton and cell adhesion dynamics. There is recent evidence supporting that SOCE is critical for the spatial and the temporal coding of Ca2+ signals in the cell. In this review, we critically examined the spatiotemporal control of SOCE signaling and its implication in the specificity and robustness of signaling events downstream of SOCE, with a focus on the spatiotemporal SOCE signaling during cancer cell migration, invasion and metastasis. We further discuss the limitation of our current understanding of SOCE in cancer metastasis and potential approaches to overcome such limitation.
Collapse
Affiliation(s)
- Fujian Lu
- State Key Laboratory of Membrane Biology, Institute of Molecular Medicine, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, China
- Department of Cardiology, Boston Children’s Hospital, 300 Longwood Ave, Boston, MA, 02115, USA
| | - Yunzhan Li
- Department of Cellular and Molecular Physiology, Penn State College of Medicine, Hershey, PA, 17033, United States
| | - Shengchen Lin
- Department of Cellular and Molecular Physiology, Penn State College of Medicine, Hershey, PA, 17033, United States
| | - Heping Cheng
- State Key Laboratory of Membrane Biology, Institute of Molecular Medicine, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, China
| | - Shengyu Yang
- Department of Cellular and Molecular Physiology, Penn State College of Medicine, Hershey, PA, 17033, United States
| |
Collapse
|
7
|
Jairaman A, Othy S, Dynes JL, Yeromin AV, Zavala A, Greenberg ML, Nourse JL, Holt JR, Cahalan SM, Marangoni F, Parker I, Pathak MM, Cahalan MD. Piezo1 channels restrain regulatory T cells but are dispensable for effector CD4 + T cell responses. SCIENCE ADVANCES 2021; 7:7/28/eabg5859. [PMID: 34233878 PMCID: PMC8262815 DOI: 10.1126/sciadv.abg5859] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 05/24/2021] [Indexed: 05/03/2023]
Abstract
T lymphocytes encounter complex mechanical cues during an immune response. The mechanosensitive ion channel, Piezo1, drives inflammatory responses to bacterial infections, wound healing, and cancer; however, its role in helper T cell function remains unclear. In an animal model for multiple sclerosis, experimental autoimmune encephalomyelitis (EAE), we found that mice with genetic deletion of Piezo1 in T cells showed diminished disease severity. Unexpectedly, Piezo1 was not essential for lymph node homing, interstitial motility, Ca2+ signaling, T cell proliferation, or differentiation into proinflammatory T helper 1 (TH1) and TH17 subsets. However, Piezo1 deletion in T cells resulted in enhanced transforming growth factor-β (TGFβ) signaling and an expanded pool of regulatory T (Treg) cells. Moreover, mice with deletion of Piezo1 specifically in Treg cells showed significant attenuation of EAE. Our results indicate that Piezo1 selectively restrains Treg cells, without influencing activation events or effector T cell functions.
Collapse
Affiliation(s)
- Amit Jairaman
- Department of Physiology and Biophysics, University of California, Irvine, CA 92697-4561, USA
| | - Shivashankar Othy
- Department of Physiology and Biophysics, University of California, Irvine, CA 92697-4561, USA
| | - Joseph L Dynes
- Department of Physiology and Biophysics, University of California, Irvine, CA 92697-4561, USA
| | - Andriy V Yeromin
- Department of Physiology and Biophysics, University of California, Irvine, CA 92697-4561, USA
| | - Angel Zavala
- Department of Physiology and Biophysics, University of California, Irvine, CA 92697-4561, USA
| | - Milton L Greenberg
- Department of Physiology and Biophysics, University of California, Irvine, CA 92697-4561, USA
| | - Jamison L Nourse
- Department of Physiology and Biophysics, University of California, Irvine, CA 92697-4561, USA
- Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, CA 92697, USA
| | - Jesse R Holt
- Department of Physiology and Biophysics, University of California, Irvine, CA 92697-4561, USA
- Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, CA 92697, USA
| | - Stuart M Cahalan
- Howard Hughes Medical Institute, Department of Neuroscience, The Scripps Research Institute, La Jolla, CA 92037, USA
- Vertex Pharmaceuticals, 3215 Merryfield Row, San Diego, CA 92121, USA
| | - Francesco Marangoni
- Department of Physiology and Biophysics, University of California, Irvine, CA 92697-4561, USA
| | - Ian Parker
- Department of Physiology and Biophysics, University of California, Irvine, CA 92697-4561, USA
- Department of Neurobiology and Behavior, University of California, Irvine, CA 92697, USA
| | - Medha M Pathak
- Department of Physiology and Biophysics, University of California, Irvine, CA 92697-4561, USA
- Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, CA 92697, USA
- Department of Biomedical Engineering, University of California, Irvine, CA 92697, USA
- Center for Complex Systems Biology, University of California, Irvine, CA 92697, USA
| | - Michael D Cahalan
- Department of Physiology and Biophysics, University of California, Irvine, CA 92697-4561, USA.
- Institute for Immunology, University of California, Irvine, CA 92697, USA
| |
Collapse
|
8
|
Maneshi MM, Toth AB, Ishii T, Hori K, Tsujikawa S, Shum AK, Shrestha N, Yamashita M, Miller RJ, Radulovic J, Swanson GT, Prakriya M. Orai1 Channels Are Essential for Amplification of Glutamate-Evoked Ca 2+ Signals in Dendritic Spines to Regulate Working and Associative Memory. Cell Rep 2020; 33:108464. [PMID: 33264616 PMCID: PMC7832685 DOI: 10.1016/j.celrep.2020.108464] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 09/14/2020] [Accepted: 11/10/2020] [Indexed: 11/18/2022] Open
Abstract
Store-operated Orai1 calcium channels function as highly Ca2+-selective ion channels and are broadly expressed in many tissues including the central nervous system, but their contributions to cognitive processing are largely unknown. Here, we report that many measures of synaptic, cellular, and behavioral models of learning are markedly attenuated in mice lacking Orai1 in forebrain excitatory neurons. Results with focal glutamate uncaging in hippocampal neurons support an essential role of Orai1 channels in amplifying NMDA-receptor-induced dendritic Ca2+ transients that drive activity-dependent spine morphogenesis and long-term potentiation at Schaffer collateral-CA1 synapses. Consistent with these signaling roles, mice lacking Orai1 in pyramidal neurons (but not interneurons) exhibit striking deficits in working and associative memory tasks. These findings identify Orai1 channels as essential regulators of dendritic spine Ca2+ signaling, synaptic plasticity, and cognition.
Collapse
Affiliation(s)
- Mohammad Mehdi Maneshi
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Anna B Toth
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Toshiyuki Ishii
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Kotaro Hori
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Shogo Tsujikawa
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Andrew K Shum
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Nisha Shrestha
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Megumi Yamashita
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Richard J Miller
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Jelena Radulovic
- Department of Psychiatry, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Geoffrey T Swanson
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Murali Prakriya
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA.
| |
Collapse
|