1
|
Sun H, Chen Y, Ma L. MDVarP: modifier ~ disease-causing variant pairs predictor. BioData Min 2024; 17:39. [PMID: 39379981 PMCID: PMC11460193 DOI: 10.1186/s13040-024-00392-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 09/28/2024] [Indexed: 10/10/2024] Open
Abstract
BACKGROUND Modifiers significantly impact disease phenotypes by modulating the effects of disease-causing variants, resulting in varying disease manifestations among individuals. However, identifying genetic interactions between modifier and disease-causing variants is challenging. RESULTS We developed MDVarP, an ensemble model comprising 1000 random forest predictors, to identify modifier ~ disease-causing variant combinations. MDVarP achieves high accuracy and precision, as verified using an independent dataset with published evidence of genetic interactions. We identified 25 novel modifier ~ disease-causing variant combinations and obtained supporting evidence for these associations. MDVarP outputs a class label ("Associated-pair" or "Nonrelevant-pair") and two prediction scores indicating the probability of a true association. CONCLUSIONS MDVarP prioritizes variant pairs associated with phenotypic modulations, enabling more effective mapping of functional contributions from disease-causing and modifier variants. This framework interprets genetic interactions underlying phenotypic variations in human diseases, with potential applications in personalized medicine and disease prevention.
Collapse
Affiliation(s)
- Hong Sun
- Shanghai Engineering Research Center for Big Data in Pediatric Precision Medicine, Center for Biomedical Informatics, School of Medicine, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai, 200062, China.
| | - Yunqin Chen
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, Shanghai Institute for Biomedical and Pharmaceutical Technologies (SIBPT), Shanghai, 200237, China
| | - Liangxiao Ma
- Bio-Med Big Data Center, CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, Chinese Academy of Science, Shanghai, 200031, China
| |
Collapse
|
2
|
Yadav S, Couch FJ, Domchek SM. Germline Genetic Testing for Hereditary Breast and Ovarian Cancer: Current Concepts in Risk Evaluation. Cold Spring Harb Perspect Med 2024; 14:a041318. [PMID: 38151326 PMCID: PMC11293548 DOI: 10.1101/cshperspect.a041318] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2023]
Abstract
Our understanding of hereditary breast and ovarian cancer has significantly improved over the past two decades. In addition to BRCA1/2, pathogenic variants in several other DNA-repair genes have been shown to increase the risks of breast and ovarian cancer. The magnitude of cancer risk is impacted not only by the gene involved, but also by family history of cancer, polygenic risk scores, and, in certain genes, pathogenic variant type or location. While estimates of breast and ovarian cancer risk associated with pathogenic variants are available, these are predominantly based on studies of high-risk populations with young age at diagnosis of cancer, multiple primary cancers, or family history of cancer. More recently, breast cancer risk for germline pathogenic variant carriers has been estimated from population-based studies. Here, we provide a review of the field of germline genetic testing and risk evaluation for hereditary breast and ovarian cancers in high-risk and population-based settings.
Collapse
Affiliation(s)
- Siddhartha Yadav
- Department of Oncology, Mayo Clinic, Rochester, Minnesota 55905, USA
| | - Fergus J Couch
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota 55901, USA
| | - Susan M Domchek
- Basser Center for BRCA, Abramson Cancer Center, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| |
Collapse
|
3
|
Koyama S, Wang Y, Paruchuri K, Uddin MM, Cho SMJ, Urbut SM, Haidermota S, Hornsby WE, Green RC, Daly MJ, Neale BM, Ellinor PT, Smoller JW, Lebo MS, Karlson EW, Martin AR, Natarajan P. Decoding Genetics, Ancestry, and Geospatial Context for Precision Health. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.10.24.23297096. [PMID: 37961173 PMCID: PMC10635180 DOI: 10.1101/2023.10.24.23297096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Mass General Brigham, an integrated healthcare system based in the Greater Boston area of Massachusetts, annually serves 1.5 million patients. We established the Mass General Brigham Biobank (MGBB), encompassing 142,238 participants, to unravel the intricate relationships among genomic profiles, environmental context, and disease manifestations within clinical practice. In this study, we highlight the impact of ancestral diversity in the MGBB by employing population genetics, geospatial assessment, and association analyses of rare and common genetic variants. The population structures captured by the genetics mirror the sequential immigration to the Greater Boston area throughout American history, highlighting communities tied to shared genetic and environmental factors. Our investigation underscores the potency of unbiased, large-scale analyses in a healthcare-affiliated biobank, elucidating the dynamic interplay across genetics, immigration, structural geospatial factors, and health outcomes in one of the earliest American sites of European colonization.
Collapse
Affiliation(s)
- Satoshi Koyama
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Cardiovascular Research Center and Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Ying Wang
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Kaavya Paruchuri
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Cardiovascular Research Center and Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Md Mesbah Uddin
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Cardiovascular Research Center and Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - So Mi J. Cho
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Cardiovascular Research Center and Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
- Integrative Research Center for Cerebrovascular and Cardiovascular Diseases, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Sarah M. Urbut
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Cardiovascular Research Center and Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Sara Haidermota
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Cardiovascular Research Center and Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Whitney E. Hornsby
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Cardiovascular Research Center and Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Robert C. Green
- Department of Medicine, Harvard Medical School, Boston, MA, USA
- Department of Medicine (Genetics), MassGeneralBrigham, Boston, MA, USA
- Broad Institute and Ariadne Labs, Boston, MA, USA
| | - Mark J. Daly
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Institute for Molecular Medicine Finland (FIMM), Finland
- University of Helsinki, Helsinki, Finland
| | - Benjamin M. Neale
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Patrick T. Ellinor
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Cardiovascular Research Center and Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Jordan W. Smoller
- Department of Medicine, Harvard Medical School, Boston, MA, USA
- Psychiatric and Neurodevelopmental Genetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
- Center for Precision Psychiatry, Department of Psychiatry, Massachusetts General Hospital, Boston, MA, USA
| | - Matthew S. Lebo
- Department of Medicine, Harvard Medical School, Boston, MA, USA
- Mass General Brigham Personalized Medicine, Cambridge, MA, USA
- Department of Pathology, Brigham and Women’s Hospital, Boston, MA, USA
| | - Elizabeth W. Karlson
- Department of Medicine, Harvard Medical School, Boston, MA, USA
- Mass General Brigham Personalized Medicine, Cambridge, MA, USA
- Division of Rheumatology, Inflammation and Immunity, Department of Medicine, Brigham and Women’s Hospital., Boston, MA, USA
| | - Alicia R. Martin
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Pradeep Natarajan
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Cardiovascular Research Center and Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
4
|
Lisbjerg K, Bertelsen M, Grønskov K, Kessel L. Clinical characterization of patients with PRPF31-related retinitis pigmentosa and asymptomatic carriers: a cross-sectional study. Ophthalmic Genet 2023; 44:456-464. [PMID: 37293790 DOI: 10.1080/13816810.2023.2219732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 04/27/2023] [Accepted: 05/25/2023] [Indexed: 06/10/2023]
Abstract
BACKGROUND/AIM To describe the clinical phenotype of retinitis pigmentosa (RP) caused by PRPF31-variants and clinical characterization of asymptomatic PRPF31 carriers. MATERIALS AND METHODS We conducted a descriptive cross-sectional deep phenotyping study. We included subjects with PRPF31 variants predicted to be disease-causing, both individuals with RP and asymptomatic carriers. Participants underwent a comprehensive clinical examination of standard visual function parameters (visual acuity, contrast sensitivity, Goldmann visual field), full-field stimulus threshold (FST), full-field electroretinogram (ff-ERG), and a structural investigation with slit lamp and multimodal imaging. We used Spearman correlation analyses to evaluate associations between quantitative outcomes. RESULTS We included 21 individuals with disease-causing PRPF31-variants: 16 symptomatic and 5 asymptomatic subjects. The symptomatic subjects demonstrated a typical RP phenotype with constricted visual fields, extinguished ff-ERG, and disrupted outer retinal anatomy. FST was impaired and correlated significantly with other outcome measures in RP subjects. Structure-function correlations with Spearman correlation analysis showed moderate correlation coefficients due to a few outliers in each analysis. The asymptomatic individuals had normal best-corrected visual acuity and visual fields, but showed reduced ff-ERG amplitudes, borderline FST sensitivity, and structural abnormalities on OCT and fundoscopy. CONCLUSIONS RP11 has a typical RP phenotype but varies in terms of severity. FST measurements correlated well with other functional and structural metrics and may be a reliable outcome measure in future trials as it is sensitive to a broad range of disease severities. Asymptomatic carriers showed sub-clinical disease manifestations, and our findings underline that reported non-penetrance in PRPF31-related RP is not an all-or-none phenomenon.
Collapse
Affiliation(s)
- Kristian Lisbjerg
- Department of Ophthalmology, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | - Mette Bertelsen
- Department of Clinical Genetics, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | - Karen Grønskov
- Department of Clinical Genetics, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | - Line Kessel
- Department of Ophthalmology, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
5
|
Lisbjerg K, Grønskov K, Bertelsen M, Møller LB, Kessel L. Genetic Modifiers of Non-Penetrance and RNA Expression Levels in PRPF31-Associated Retinitis Pigmentosa in a Danish Cohort. Genes (Basel) 2023; 14:435. [PMID: 36833363 PMCID: PMC9956082 DOI: 10.3390/genes14020435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 02/03/2023] [Accepted: 02/07/2023] [Indexed: 02/11/2023] Open
Abstract
(1) Background/aims: To examine potential genetic modifiers of disease penetrance in PRPF31-associated retinitis pigmentosa 11 (RP11). (2) Methods: Blood samples from individuals (n = 37) with PRPF31 variants believed to be disease-causing were used for molecular genetic testing and, in some cases (n = 23), also for mRNA expression analyses. Medical charts were used to establish if individuals were symptomatic (RP) or asymptomatic non-penetrant carriers (NPC). RNA expression levels of PRPF31 and CNOT3 were measured on peripheral whole blood using quantitative real-time PCR normalized to GAPDH. Copy number variation of minisatellite repeat element 1 (MSR1) was performed with DNA fragment analysis. (3) Results: mRNA expression analyses on 22 individuals (17 with RP and 5 non-penetrant carriers) revealed no statistically significant differences in PRPF31 or CNOT3 mRNA expression levels between individuals with RP and non-penetrant carriers. Among 37 individuals, we found that all three carriers of a 4-copy MSR1 sequence on their wild-type (WT) allele were non-penetrant carriers. However, copy number variation of MSR1 is not the sole determinant factor of non-penetrance, as not all non-penetrant carriers carried a 4-copy WT allele. A 4-copy MSR1 mutant allele was not associated with non-penetrance. (4) Conclusions: In this Danish cohort, a 4-copy MSR1 WT allele was associated with non-penetrance of retinitis pigmentosa caused by PRPF31 variants. The level of PRPF31 mRNA expression in peripheral whole blood was not a useful indicator of disease status.
Collapse
Affiliation(s)
- Kristian Lisbjerg
- Department of Ophthalmology, Copenhagen University Hospital-Rigshospitalet, 2600 Glostrup, Denmark
| | - Karen Grønskov
- Department of Clinical Genetics, Copenhagen University Hospital-Rigshospitalet, 2100 Copenhagen, Denmark
| | - Mette Bertelsen
- Department of Clinical Genetics, Copenhagen University Hospital-Rigshospitalet, 2100 Copenhagen, Denmark
| | - Lisbeth Birk Møller
- Department of Clinical Genetics, Copenhagen University Hospital-Rigshospitalet, 2100 Copenhagen, Denmark
| | - Line Kessel
- Department of Ophthalmology, Copenhagen University Hospital-Rigshospitalet, 2600 Glostrup, Denmark
- Department of Clinical Medicine, University of Copenhagen, 2200 Copenhagen, Denmark
| |
Collapse
|
6
|
Panneman DM, Hitti-Malin RJ, Holtes LK, de Bruijn SE, Reurink J, Boonen EGM, Khan MI, Ali M, Andréasson S, De Baere E, Banfi S, Bauwens M, Ben-Yosef T, Bocquet B, De Bruyne M, de la Cerda B, Coppieters F, Farinelli P, Guignard T, Inglehearn CF, Karali M, Kjellström U, Koenekoop R, de Koning B, Leroy BP, McKibbin M, Meunier I, Nikopoulos K, Nishiguchi KM, Poulter JA, Rivolta C, Rodríguez de la Rúa E, Saunders P, Simonelli F, Tatour Y, Testa F, Thiadens AAHJ, Toomes C, Tracewska AM, Tran HV, Ushida H, Vaclavik V, Verhoeven VJM, van de Vorst M, Gilissen C, Hoischen A, Cremers FPM, Roosing S. Cost-effective sequence analysis of 113 genes in 1,192 probands with retinitis pigmentosa and Leber congenital amaurosis. Front Cell Dev Biol 2023; 11:1112270. [PMID: 36819107 PMCID: PMC9936074 DOI: 10.3389/fcell.2023.1112270] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 01/20/2023] [Indexed: 02/05/2023] Open
Abstract
Introduction: Retinitis pigmentosa (RP) and Leber congenital amaurosis (LCA) are two groups of inherited retinal diseases (IRDs) where the rod photoreceptors degenerate followed by the cone photoreceptors of the retina. A genetic diagnosis for IRDs is challenging since >280 genes are associated with these conditions. While whole exome sequencing (WES) is commonly used by diagnostic facilities, the costs and required infrastructure prevent its global applicability. Previous studies have shown the cost-effectiveness of sequence analysis using single molecule Molecular Inversion Probes (smMIPs) in a cohort of patients diagnosed with Stargardt disease and other maculopathies. Methods: Here, we introduce a smMIPs panel that targets the exons and splice sites of all currently known genes associated with RP and LCA, the entire RPE65 gene, known causative deep-intronic variants leading to pseudo-exons, and part of the RP17 region associated with autosomal dominant RP, by using a total of 16,812 smMIPs. The RP-LCA smMIPs panel was used to screen 1,192 probands from an international cohort of predominantly RP and LCA cases. Results and discussion: After genetic analysis, a diagnostic yield of 56% was obtained which is on par with results from WES analysis. The effectiveness and the reduced costs compared to WES renders the RP-LCA smMIPs panel a competitive approach to provide IRD patients with a genetic diagnosis, especially in countries with restricted access to genetic testing.
Collapse
Affiliation(s)
- Daan M. Panneman
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, Netherlands,Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, Netherlands,*Correspondence: Daan M. Panneman,
| | - Rebekkah J. Hitti-Malin
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, Netherlands,Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, Netherlands
| | - Lara K. Holtes
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, Netherlands
| | - Suzanne E. de Bruijn
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, Netherlands,Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, Netherlands
| | - Janine Reurink
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, Netherlands,Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, Netherlands
| | - Erica G. M. Boonen
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, Netherlands
| | - Muhammad Imran Khan
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, Netherlands
| | - Manir Ali
- Division of Molecular Medicine, Leeds Institute of Medical Research, St. James’s University Hospital, University of Leeds, Leeds, United Kingdom
| | - Sten Andréasson
- Department of Ophthalmology and Clinical Sciences Lund, Lund University, Skane University Hospital, Lund, Sweden
| | - Elfride De Baere
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium,Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium
| | - Sandro Banfi
- Telethon Institute of Genetics and Medicine, Pozzuoli, Italy,Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, Naples, Italy
| | - Miriam Bauwens
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium,Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium
| | - Tamar Ben-Yosef
- Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Béatrice Bocquet
- National Reference Centre for Inherited Sensory Diseases, University of Montpellier, Montpellier University Hospital, Sensgene Care Network, ERN-EYE Network, Montpellier, France,Institute for Neurosciences of Montpellier (INM), L’Institut National de la Santé et de la Recherche Médicale, University of Montpellier, L’Institut National de la Santé et de la Recherche Médicale, Montpellier, France
| | - Marieke De Bruyne
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium,Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium
| | - Berta de la Cerda
- Andalusian Center for Molecular Biology and Regenerative Medicine (CABIMER), Seville, Spain
| | - Frauke Coppieters
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium,Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium,Department of Pharmaceutics, Ghent University, Ghent, Belgium
| | - Pietro Farinelli
- Department of Computational Biology, Unit of Medical Genetics, University of Lausanne, Lausanne, Switzerland
| | - Thomas Guignard
- Chromosomal Genetics Unit, University Hospital of Montpellier, Montpellier, France
| | - Chris F. Inglehearn
- Division of Molecular Medicine, Leeds Institute of Medical Research, St. James’s University Hospital, University of Leeds, Leeds, United Kingdom
| | - Marianthi Karali
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, Naples, Italy,Eye Clinic, Multidisciplinary Department of Medical, Surgical and Dental Sciences, University of Campania Luigi Vanvitelli, Naples, Italy
| | - Ulrika Kjellström
- Department of Ophthalmology and Clinical Sciences Lund, Lund University, Skane University Hospital, Lund, Sweden
| | - Robert Koenekoop
- McGill University Health Center (MUHC) Research Institute, Montreal, QC, Canada,Departments of Paediatric Surgery, Human Genetics, and Adult Ophthalmology, McGill University Health Center, Montreal, QC, Canada
| | - Bart de Koning
- Department of Clinical Genetics, Maastricht University Medical Center+ (MUMC+), Maastricht, Netherlands
| | - Bart P. Leroy
- Department of Ophthalmology, Ghent University Hospital, Ghent, Belgium,Department of Head & Skin, Ghent University, Ghent, Belgium,Division of Ophthalmology & Center for Cellular & Molecular Therapeutics, Children’s Hospital of Philadelphia, Philadelphia, PA, United States,Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium
| | - Martin McKibbin
- Division of Molecular Medicine, Leeds Institute of Medical Research, St. James’s University Hospital, University of Leeds, Leeds, United Kingdom,Department of Ophthalmology, St. James’s University Hospital, Leeds, United Kingdom
| | - Isabelle Meunier
- National Reference Centre for Inherited Sensory Diseases, University of Montpellier, Montpellier University Hospital, Sensgene Care Network, ERN-EYE Network, Montpellier, France,Institute for Neurosciences of Montpellier (INM), L’Institut National de la Santé et de la Recherche Médicale, University of Montpellier, L’Institut National de la Santé et de la Recherche Médicale, Montpellier, France
| | | | - Koji M. Nishiguchi
- Department of Ophthalmology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - James A. Poulter
- Division of Molecular Medicine, Leeds Institute of Medical Research, St. James’s University Hospital, University of Leeds, Leeds, United Kingdom
| | - Carlo Rivolta
- Institute of Molecular and Clinical Ophthalmology Basel, Basel, Switzerland,Department of Ophthalmology, University of Basel, Basel, Switzerland,Department of Genetics and Genome Biology, University of Leicester, Leicester, United Kingdom
| | - Enrique Rodríguez de la Rúa
- Department of Ophthalmology, Retics Patologia Ocular, OFTARED, Instituto de Salud Carlos III, University Hospital Virgen Macarena, Madrid, Spain
| | | | - Francesca Simonelli
- Eye Clinic, Multidisciplinary Department of Medical, Surgical and Dental Sciences, University of Campania Luigi Vanvitelli, Naples, Italy
| | - Yasmin Tatour
- Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Francesco Testa
- Eye Clinic, Multidisciplinary Department of Medical, Surgical and Dental Sciences, University of Campania Luigi Vanvitelli, Naples, Italy
| | | | - Carmel Toomes
- Division of Molecular Medicine, Leeds Institute of Medical Research, St. James’s University Hospital, University of Leeds, Leeds, United Kingdom
| | - Anna M. Tracewska
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, Netherlands
| | - Hoai Viet Tran
- Oculogenetic Unit, University Eye Hospital Jules Gonin, Geneva, Switzerland
| | - Hiroaki Ushida
- Department of Ophthalmology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Veronika Vaclavik
- Oculogenetic Unit, University Eye Hospital Jules Gonin, Geneva, Switzerland
| | - Virginie J. M. Verhoeven
- Department of Ophthalmology, Erasmus, Rotterdam, Netherlands,Department of Clinical Genetics, Erasmus, Rotterdam, Netherlands
| | - Maartje van de Vorst
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, Netherlands
| | - Christian Gilissen
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, Netherlands,Radboud Institute of Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - Alexander Hoischen
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, Netherlands,Radboud Institute of Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands,Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, Netherlands
| | - Frans P. M. Cremers
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, Netherlands,Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, Netherlands
| | - Susanne Roosing
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, Netherlands,Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, Netherlands
| |
Collapse
|
7
|
A 69 kb Deletion in chr19q13.42 including PRPF31 Gene in a Chinese Family Affected with Autosomal Dominant Retinitis Pigmentosa. J Clin Med 2022; 11:jcm11226682. [PMID: 36431159 PMCID: PMC9695658 DOI: 10.3390/jcm11226682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 10/20/2022] [Accepted: 11/08/2022] [Indexed: 11/16/2022] Open
Abstract
We aimed to identify the genetic cause of autosomal dominant retinitis pigmentosa (adRP) and characterize the underlying molecular mechanisms of incomplete penetrance in a Chinese family affected with adRP. All enrolled family members underwent ophthalmic examinations. Whole-genome sequencing (WGS), multiplex ligation-dependent probe amplification (MLPA), linkage analysis and haplotype construction were performed in all participants. RNA-seq was performed to analyze the regulating mechanism of incomplete penetrance among affected patients, mutation carriers and healthy controls. In the studied family, 14 individuals carried a novel heterozygous large deletion of 69 kilobase (kb) in 19q13.42 encompassing exon 1 of the PRPF31 gene and five upstream genes: TFPT, OSCAR, NDUFA3, TARM1, and VSTM1. Three family members were sequenced and diagnosed as non-penetrant carriers (NPCs). RNA-seq showed significant differential expression of genes in deletion between mutation carriers and healthy control. The RP11 pedigree in this study was the largest pedigree compared to other reported RP11 pedigrees with large deletions. Early onset in all affected members in this pedigree was considered to be a special phenotype and was firstly reported in a RP11 family for the first time. Differential expression of PRPF31 between affected and unaffected subjects indicates a haploinsufficiency to cause the disease in the family. The other genes with significant differential expression might play a cooperative effect on the penetrance of RP11.
Collapse
|
8
|
Li J, Zhao B, Huang T, Qin Z, Wang SM. Human BRCA pathogenic variants were originated during recent human history. Life Sci Alliance 2022; 5:5/5/e202101263. [PMID: 35165121 PMCID: PMC8860097 DOI: 10.26508/lsa.202101263] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 01/25/2022] [Accepted: 01/26/2022] [Indexed: 01/05/2023] Open
Abstract
BRCA1 and BRCA2 (BRCA) play essential roles in maintaining genome stability. BRCA germline pathogenic variants increase cancer risk. However, the evolutionary origin of human BRCA pathogenic variants remains largely elusive. We tested the 2,972 human BRCA1 and 3,652 human BRCA2 pathogenic variants from ClinVar database in 100 vertebrates across eight clades, but failed to find evidence to show cross-species evolution conservation as the origin; we searched the variants in 2,792 ancient human genome data, and identified 28 BRCA1 and 22 BRCA2 pathogenic variants in 44 cases dated from 45,000 to 300 yr ago; we analyzed the haplotype-dated human BRCA pathogenic founder variants, and observed that they were mostly arisen within the past 3,000 yr; we traced ethnic distribution of human BRCA pathogenic variants, and found that the majority were present in single or a few ethnic populations. Based on the data, we propose that human BRCA pathogenic variants were highly likely arisen in recent human history after the latest out-of-Africa migration, and the expansion of modern human population could largely increase the variation spectrum.
Collapse
Affiliation(s)
- Jiaheng Li
- MoE Frontiers Science Center for Precision Oncology, Cancer Center and Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Macau, China
| | - Bojin Zhao
- MoE Frontiers Science Center for Precision Oncology, Cancer Center and Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Macau, China
| | - Teng Huang
- MoE Frontiers Science Center for Precision Oncology, Cancer Center and Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Macau, China
| | - Zixin Qin
- MoE Frontiers Science Center for Precision Oncology, Cancer Center and Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Macau, China
| | - San Ming Wang
- MoE Frontiers Science Center for Precision Oncology, Cancer Center and Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Macau, China
| |
Collapse
|
9
|
Schneider N, Sundaresan Y, Gopalakrishnan P, Beryozkin A, Hanany M, Levanon EY, Banin E, Ben-Aroya S, Sharon D. Inherited retinal diseases: Linking genes, disease-causing variants, and relevant therapeutic modalities. Prog Retin Eye Res 2021; 89:101029. [PMID: 34839010 DOI: 10.1016/j.preteyeres.2021.101029] [Citation(s) in RCA: 84] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 11/11/2021] [Accepted: 11/16/2021] [Indexed: 12/11/2022]
Abstract
Inherited retinal diseases (IRDs) are a clinically complex and heterogenous group of visual impairment phenotypes caused by pathogenic variants in at least 277 nuclear and mitochondrial genes, affecting different retinal regions, and depleting the vision of affected individuals. Genes that cause IRDs when mutated are unique by possessing differing genotype-phenotype correlations, varying inheritance patterns, hypomorphic alleles, and modifier genes thus complicating genetic interpretation. Next-generation sequencing has greatly advanced the identification of novel IRD-related genes and pathogenic variants in the last decade. For this review, we performed an in-depth literature search which allowed for compilation of the Global Retinal Inherited Disease (GRID) dataset containing 4,798 discrete variants and 17,299 alleles published in 31 papers, showing a wide range of frequencies and complexities among the 194 genes reported in GRID, with 65% of pathogenic variants being unique to a single individual. A better understanding of IRD-related gene distribution, gene complexity, and variant types allow for improved genetic testing and therapies. Current genetic therapeutic methods are also quite diverse and rely on variant identification, and range from whole gene replacement to single nucleotide editing at the DNA or RNA levels. IRDs and their suitable therapies thus require a range of effective disease modelling in human cells, granting insight into disease mechanisms and testing of possible treatments. This review summarizes genetic and therapeutic modalities of IRDs, provides new analyses of IRD-related genes (GRID and complexity scores), and provides information to match genetic-based therapies such as gene-specific and variant-specific therapies to the appropriate individuals.
Collapse
Affiliation(s)
- Nina Schneider
- Department of Ophthalmology, Hadassah Medical Center, Faculty of Medicine, The Hebrew University of Jerusalem, 91120, Israel
| | - Yogapriya Sundaresan
- Department of Ophthalmology, Hadassah Medical Center, Faculty of Medicine, The Hebrew University of Jerusalem, 91120, Israel
| | - Prakadeeswari Gopalakrishnan
- Department of Ophthalmology, Hadassah Medical Center, Faculty of Medicine, The Hebrew University of Jerusalem, 91120, Israel
| | - Avigail Beryozkin
- Department of Ophthalmology, Hadassah Medical Center, Faculty of Medicine, The Hebrew University of Jerusalem, 91120, Israel
| | - Mor Hanany
- Department of Ophthalmology, Hadassah Medical Center, Faculty of Medicine, The Hebrew University of Jerusalem, 91120, Israel
| | - Erez Y Levanon
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, 5290002, Israel
| | - Eyal Banin
- Department of Ophthalmology, Hadassah Medical Center, Faculty of Medicine, The Hebrew University of Jerusalem, 91120, Israel
| | - Shay Ben-Aroya
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, 5290002, Israel
| | - Dror Sharon
- Department of Ophthalmology, Hadassah Medical Center, Faculty of Medicine, The Hebrew University of Jerusalem, 91120, Israel.
| |
Collapse
|
10
|
Determinants of Disease Penetrance in PRPF31-Associated Retinopathy. Genes (Basel) 2021; 12:genes12101542. [PMID: 34680937 PMCID: PMC8535263 DOI: 10.3390/genes12101542] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Revised: 09/25/2021] [Accepted: 09/27/2021] [Indexed: 11/17/2022] Open
Abstract
Retinitis pigmentosa 11 (RP11) is caused by dominant mutations in PRPF31, however a significant proportion of mutation carriers do not develop retinopathy. Here, we investigated the relationship between CNOT3 polymorphism, MSR1 repeat copy number and disease penetrance in RP11 patients and non-penetrant carriers (NPCs). We further characterized PRPF31 and CNOT3 expression in fibroblasts from eight RP11 patients and one NPC from a family carrying the c.1205C>T variant. Retinal organoids (ROs) and retinal pigment epithelium (RPE) were differentiated from induced pluripotent stem cells derived from RP11 patients, an NPC and a control subject. All RP11 patients were homozygous for the 3-copy MSR1 repeat in the PRPF31 promoter, while 3/5 NPCs carried a 4-copy MSR1 repeat. The CNOT3 rs4806718 genotype did not correlate with disease penetrance. PRFP31 expression declined with age in adult cadaveric retina. PRPF31 and CNOT3 expression was reduced in RP11 fibroblasts, RO and RPE compared with controls. Both RP11 and NPC RPE displayed shortened primary cilia compared with controls, however a subpopulation of cells with normal cilia lengths was present in NPC RPE monolayers. Our results indicate that RP11 non-penetrance is associated with the inheritance of a 4-copy MSR1 repeat, but not with CNOT3 polymorphisms.
Collapse
|
11
|
Yang C, Georgiou M, Atkinson R, Collin J, Al-Aama J, Nagaraja-Grellscheid S, Johnson C, Ali R, Armstrong L, Mozaffari-Jovin S, Lako M. Pre-mRNA Processing Factors and Retinitis Pigmentosa: RNA Splicing and Beyond. Front Cell Dev Biol 2021; 9:700276. [PMID: 34395430 PMCID: PMC8355544 DOI: 10.3389/fcell.2021.700276] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Accepted: 07/09/2021] [Indexed: 12/20/2022] Open
Abstract
Retinitis pigmentosa (RP) is the most common inherited retinal disease characterized by progressive degeneration of photoreceptors and/or retinal pigment epithelium that eventually results in blindness. Mutations in pre-mRNA processing factors (PRPF3, 4, 6, 8, 31, SNRNP200, and RP9) have been linked to 15–20% of autosomal dominant RP (adRP) cases. Current evidence indicates that PRPF mutations cause retinal specific global spliceosome dysregulation, leading to mis-splicing of numerous genes that are involved in a variety of retina-specific functions and/or general biological processes, including phototransduction, retinol metabolism, photoreceptor disk morphogenesis, retinal cell polarity, ciliogenesis, cytoskeleton and tight junction organization, waste disposal, inflammation, and apoptosis. Importantly, additional PRPF functions beyond RNA splicing have been documented recently, suggesting a more complex mechanism underlying PRPF-RPs driven disease pathogenesis. The current review focuses on the key RP-PRPF genes, depicting the current understanding of their roles in RNA splicing, impact of their mutations on retinal cell’s transcriptome and phenome, discussed in the context of model species including yeast, zebrafish, and mice. Importantly, information on PRPF functions beyond RNA splicing are discussed, aiming at a holistic investigation of PRPF-RP pathogenesis. Finally, work performed in human patient-specific lab models and developing gene and cell-based replacement therapies for the treatment of PRPF-RPs are thoroughly discussed to allow the reader to get a deeper understanding of the disease mechanisms, which we believe will facilitate the establishment of novel and better therapeutic strategies for PRPF-RP patients.
Collapse
Affiliation(s)
- Chunbo Yang
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Maria Georgiou
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Robert Atkinson
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Joseph Collin
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Jumana Al-Aama
- Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | | | - Colin Johnson
- Leeds Institute of Molecular Medicine, University of Leeds, Leeds, United Kingdom
| | - Robin Ali
- King's College London, London, United Kingdom
| | - Lyle Armstrong
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Sina Mozaffari-Jovin
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Medical Genetics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Cellular Biochemistry, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Majlinda Lako
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| |
Collapse
|
12
|
Martin-Merida I, Avila-Fernandez A, Del Pozo-Valero M, Blanco-Kelly F, Zurita O, Perez-Carro R, Aguilera-Garcia D, Riveiro-Alvarez R, Arteche A, Trujillo-Tiebas MJ, Tahsin-Swafiri S, Rodriguez-Pinilla E, Lorda-Sanchez I, Garcia-Sandoval B, Corton M, Ayuso C. Genomic Landscape of Sporadic Retinitis Pigmentosa: Findings from 877 Spanish Cases. Ophthalmology 2019; 126:1181-1188. [PMID: 30902645 DOI: 10.1016/j.ophtha.2019.03.018] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Revised: 03/11/2019] [Accepted: 03/12/2019] [Indexed: 10/27/2022] Open
Abstract
PURPOSE We aimed to unravel the molecular basis of sporadic retinitis pigmentosa (sRP) in the largest cohort reported to date. DESIGN Case series. PARTICIPANTS A cohort of 877 unrelated Spanish sporadic cases with a clinical diagnosis of retinitis pigmentosa (RP) and negative family history. METHODS The cohort was studied by classic genotyping or targeted next-generation sequencing (NGS). Multiplex ligation-dependent probe amplification (MLPA) and array-based comparative genomic hybridization were performed to confirm copy number variations detected by NGS. Quantitative fluorescent polymerase chain reaction was assessed in sRP cases carrying de novo variants to confirm paternity. MAIN OUTCOME MEASURES The study of the sRP cohort showed a high proportion of causal autosomal dominant (AD) and X-linked (XL) variants, most of them being de novo. RESULTS Causative variants were identified in 38% of the patients studied, segregating recessively in 84.5% of the solved cases. Biallelic variants detected in only 6 different autosomal recessive genes explained 50% of the cases characterized. Causal AD and XL variants were found in 7.6% and 7.9% of cases, respectively. Remarkably, 20 de novo variants were confirmed after trio analysis, explaining 6% of the cases. In addition, 17% of the solved sRP cases were reclassified to a different retinopathy phenotype. CONCLUSIONS This study highlights the clinical utility of NGS testing for sRP cases, expands the mutational spectrum, and provides accurate prevalence of mutated genes. Our findings evidence the underestimated role of de novo variants in the etiology of RP, emphasizing the importance of segregation analysis as well as comprehensive screening of genes carrying XL and AD variants in sporadic cases. Such in-depth study is essential for accurate family counseling and future enrollment in gene therapy-based treatments.
Collapse
Affiliation(s)
- Inmaculada Martin-Merida
- Department of Genetics, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital-Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid, Spain; Center for Biomedical Network Research on Rare Diseases (CIBERER), ISCIII, Madrid, Spain
| | - Almudena Avila-Fernandez
- Department of Genetics, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital-Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid, Spain; Center for Biomedical Network Research on Rare Diseases (CIBERER), ISCIII, Madrid, Spain
| | - Marta Del Pozo-Valero
- Department of Genetics, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital-Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid, Spain
| | - Fiona Blanco-Kelly
- Department of Genetics, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital-Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid, Spain; Center for Biomedical Network Research on Rare Diseases (CIBERER), ISCIII, Madrid, Spain
| | - Olga Zurita
- Department of Genetics, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital-Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid, Spain; Center for Biomedical Network Research on Rare Diseases (CIBERER), ISCIII, Madrid, Spain
| | - Raquel Perez-Carro
- Department of Genetics, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital-Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid, Spain; Center for Biomedical Network Research on Rare Diseases (CIBERER), ISCIII, Madrid, Spain
| | - Domingo Aguilera-Garcia
- Department of Genetics, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital-Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid, Spain
| | - Rosa Riveiro-Alvarez
- Department of Genetics, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital-Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid, Spain; Center for Biomedical Network Research on Rare Diseases (CIBERER), ISCIII, Madrid, Spain
| | - Ana Arteche
- Department of Genetics, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital-Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid, Spain
| | - Maria Jose Trujillo-Tiebas
- Department of Genetics, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital-Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid, Spain; Center for Biomedical Network Research on Rare Diseases (CIBERER), ISCIII, Madrid, Spain
| | - Saoud Tahsin-Swafiri
- Department of Genetics, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital-Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid, Spain
| | - Elvira Rodriguez-Pinilla
- Department of Genetics, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital-Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid, Spain
| | - Isabel Lorda-Sanchez
- Department of Genetics, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital-Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid, Spain
| | - Blanca Garcia-Sandoval
- Department of Ophthalmology, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital-Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid, Spain
| | - Marta Corton
- Department of Genetics, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital-Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid, Spain; Center for Biomedical Network Research on Rare Diseases (CIBERER), ISCIII, Madrid, Spain
| | - Carmen Ayuso
- Department of Genetics, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital-Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid, Spain; Center for Biomedical Network Research on Rare Diseases (CIBERER), ISCIII, Madrid, Spain.
| |
Collapse
|
13
|
A novel mutation in the PRPF31 in a North Indian adRP family with incomplete penetrance. Doc Ophthalmol 2018; 137:103-119. [PMID: 30099644 DOI: 10.1007/s10633-018-9654-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Accepted: 08/03/2018] [Indexed: 12/27/2022]
Abstract
PURPOSE To identify the underlying genetic defect for non-syndromic autosomal dominant retinitis pigmentosa (adRP) with incomplete penetrance in a North Indian family. METHODS Family history and clinical data were collected. Linkage analysis using 72 fluorescently labeled microsatellite markers flanking all the 26 candidate genes known for adRP was performed. Mutation screening in candidate gene at the mapped region was performed by bi-directional DNA sequencing. RESULTS Positive two-point lod scores > 1.0 (θ = 0.000) suggestive of linkage were obtained with markers D19S572, D19S927 and D19S926 at 19q13.42, in the vicinity of PRPF31 gene. Mutation screening in all the 14 exonic regions and intron-exon boundaries of PRPF31 revealed a novel change, i.e. c.896G>A (p.Cys299Tyr) in exon eight. The observed change segregated in heterozygous form in all the six affected members and in three carriers, consistent with incomplete penetrance. This substitution was not observed in tested 15 unaffected members and in 200 ethnically matched controls. CONCLUSION Present study describes mapping of a locus for non-syndromic adRP with incomplete penetrance at 19q13.42 in a North Indian family and identifies a novel missense mutation (p.Cys299Tyr) in PRPF31 localized at the mapped interval. The observed substitution lies in the NOP domain of PRPF31 that exhibit RNA and protein binding surfaces and thus may interfere in the formation of spliceosome complex. Due to p.Cys299Tyr substitution hydrogen bonds are generated, which may result in conformational changes and PRPF31 protein deformity. Present findings further substantiate the role of PRPF31 in adRP with incomplete penetrance and expand the mutation spectrum of PRPF31.
Collapse
|
14
|
Zheng Y, Wang HL, Li JK, Xu L, Tellier L, Li XL, Huang XY, Li W, Niu TT, Yang HM, Zhang JG, Liu DN. A novel mutation in PRPF31, causative of autosomal dominant retinitis pigmentosa, using the BGISEQ-500 sequencer. Int J Ophthalmol 2018; 11:31-35. [PMID: 29375987 DOI: 10.18240/ijo.2018.01.06] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Accepted: 09/13/2017] [Indexed: 11/23/2022] Open
Abstract
AIM To study the genes responsible for retinitis pigmentosa. METHODS A total of 15 Chinese families with retinitis pigmentosa, containing 94 sporadically afflicted cases, were recruited. The targeted sequences were captured using the Target_Eye_365_V3 chip and sequenced using the BGISEQ-500 sequencer, according to the manufacturer's instructions. Data were aligned to UCSC Genome Browser build hg19, using the Burroughs Wheeler Aligner MEM algorithm. Local realignment was performed with the Genome Analysis Toolkit (GATK v.3.3.0) IndelRealigner, and variants were called with the Genome Analysis Toolkit Haplotypecaller, without any use of imputation. Variants were filtered against a panel derived from 1000 Genomes Project, 1000G_ASN, ESP6500, ExAC and dbSNP138. In all members of Family ONE and Family TWO with available DNA samples, the genetic variant was validated using Sanger sequencing. RESULTS A novel, pathogenic variant of retinitis pigmentosa, c.357_358delAA (p.Ser119SerfsX5) was identified in PRPF31 in 2 of 15 autosomal-dominant retinitis pigmentosa (ADRP) families, as well as in one, sporadic case. Sanger sequencing was performed upon probands, as well as upon other family members. This novel, pathogenic genotype co-segregated with retinitis pigmentosa phenotype in these two families. CONCLUSION ADRP is a subtype of retinitis pigmentosa, defined by its genotype, which accounts for 20%-40% of the retinitis pigmentosa patients. Our study thus expands the spectrum of PRPF31 mutations known to occur in ADRP, and provides further demonstration of the applicability of the BGISEQ500 sequencer for genomics research.
Collapse
Affiliation(s)
- Yu Zheng
- BGI Education Center, University of Chinese Academy of Sciences, Shenzhen 518083, China.,BGI-Shenzhen, Shenzhen 518083, China.,China National GeneBank, BGI-Shenzhen, Shenzhen 518120, China
| | - Hai-Lin Wang
- The Fourth People's Hospital of Shenyang, Shenyang 110031, Liaoning Province, China
| | - Jian-Kang Li
- BGI-Shenzhen, Shenzhen 518083, China.,China National GeneBank, BGI-Shenzhen, Shenzhen 518120, China
| | - Li Xu
- The Fourth People's Hospital of Shenyang, Shenyang 110031, Liaoning Province, China
| | - Laurent Tellier
- BGI-Shenzhen, Shenzhen 518083, China.,China National GeneBank, BGI-Shenzhen, Shenzhen 518120, China
| | - Xiao-Lin Li
- The Fourth People's Hospital of Shenyang, Shenyang 110031, Liaoning Province, China
| | - Xiao-Yan Huang
- BGI Education Center, University of Chinese Academy of Sciences, Shenzhen 518083, China.,BGI-Shenzhen, Shenzhen 518083, China.,China National GeneBank, BGI-Shenzhen, Shenzhen 518120, China
| | - Wei Li
- BGI-Shenzhen, Shenzhen 518083, China.,China National GeneBank, BGI-Shenzhen, Shenzhen 518120, China
| | - Tong-Tong Niu
- The Fourth People's Hospital of Shenyang, Shenyang 110031, Liaoning Province, China
| | - Huan-Ming Yang
- BGI-Shenzhen, Shenzhen 518083, China.,James D. Watson Institute of Genome Sciences, Hangzhou 310058, China
| | - Jian-Guo Zhang
- BGI-Shenzhen, Shenzhen 518083, China.,China National GeneBank, BGI-Shenzhen, Shenzhen 518120, China
| | - Dong-Ning Liu
- The Fourth People's Hospital of Shenyang, Shenyang 110031, Liaoning Province, China
| |
Collapse
|
15
|
Meyer KJ, Anderson MG. Genetic modifiers as relevant biological variables of eye disorders. Hum Mol Genet 2017; 26:R58-R67. [PMID: 28482014 DOI: 10.1093/hmg/ddx180] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Accepted: 05/05/2017] [Indexed: 12/19/2022] Open
Abstract
From early in the study of mammalian genetics, it was clear that modifiers can have a striking influence on phenotypes. Today, several modifiers have now been studied in enough detail to allow a glimpse of how they function and influence our perspective of disease. With respect to diseases of the eye, some modifiers are an important source of phenotypic variation that can elucidate how genes function in networks to collectively shape ocular anatomy and physiology, thus influencing our understanding of basic biology. Other modifiers represent an opportunity for new therapeutic targets, whose manipulation could be used to mitigate ophthalmic disease. Here, we review progress in the study of genetic modifiers of eye disorders, with examples from mice and humans that together illustrate the ubiquitous nature of genetic modifiers and why they are relevant biological variables in experimental design. Special emphasis is given to ophthalmic modifiers in mice, especially those relevant to selection of genetic background and those that might inadvertently be a source of experimental variability. These modifiers are capable of influencing interpretations of many experiments using targeted genome manipulations such as knockouts or transgenics. Whereas there are fewer examples of modifiers of eye disorders in humans with a molecular identification, there is ample evidence that they exist and should be considered as a relevant biological variable in human genetic studies as well.
Collapse
Affiliation(s)
- Kacie J Meyer
- Department of Molecular Physiology and Biophysics.,Stephen A. Wynn Institute for Vision Research, University of Iowa, Iowa City, IA 52242, USA
| | - Michael G Anderson
- Department of Molecular Physiology and Biophysics.,Department of Ophthalmology and Visual Sciences, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA.,Stephen A. Wynn Institute for Vision Research, University of Iowa, Iowa City, IA 52242, USA.,Center for Prevention and Treatment of Visual Loss, Iowa City Veterans Administration Medical Center, Iowa City, IA 52242, USA
| |
Collapse
|
16
|
Bujakowska KM, Liu Q, Pierce EA. Photoreceptor Cilia and Retinal Ciliopathies. Cold Spring Harb Perspect Biol 2017; 9:cshperspect.a028274. [PMID: 28289063 DOI: 10.1101/cshperspect.a028274] [Citation(s) in RCA: 132] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Photoreceptors are sensory neurons designed to convert light stimuli into neurological responses. This process, called phototransduction, takes place in the outer segments (OS) of rod and cone photoreceptors. OS are specialized sensory cilia, with analogous structures to those present in other nonmotile cilia. Deficient morphogenesis and/or dysfunction of photoreceptor sensory cilia (PSC) caused by mutations in a variety of photoreceptor-specific and common cilia genes can lead to inherited retinal degenerations (IRDs). IRDs can manifest as isolated retinal diseases or syndromic diseases. In this review, we describe the structure and composition of PSC and different forms of ciliopathies with retinal involvement. We review the genetics of the IRDs, which are monogenic disorders but genetically diverse with regard to causality.
Collapse
Affiliation(s)
- Kinga M Bujakowska
- Ocular Genomics Institute, Massachusetts Eye and Ear Infirmary, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts 02114
| | - Qin Liu
- Ocular Genomics Institute, Massachusetts Eye and Ear Infirmary, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts 02114
| | - Eric A Pierce
- Ocular Genomics Institute, Massachusetts Eye and Ear Infirmary, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts 02114
| |
Collapse
|
17
|
Riordan JD, Nadeau JH. From Peas to Disease: Modifier Genes, Network Resilience, and the Genetics of Health. Am J Hum Genet 2017; 101:177-191. [PMID: 28777930 PMCID: PMC5544383 DOI: 10.1016/j.ajhg.2017.06.004] [Citation(s) in RCA: 98] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Phenotypes are rarely consistent across genetic backgrounds and environments, but instead vary in many ways depending on allelic variants, unlinked genes, epigenetic factors, and environmental exposures. In the extreme, individuals carrying the same causal DNA sequence variant but on different backgrounds can be classified as having distinct conditions. Similarly, some individuals that carry disease alleles are nevertheless healthy despite affected family members in the same environment. These genetic background effects often result from the action of so-called "modifier genes" that modulate the phenotypic manifestation of target genes in an epistatic manner. While complicating the prospects for gene discovery and the feasibility of mechanistic studies, such effects are opportunities to gain a deeper understanding of gene interaction networks that provide organismal form and function as well as resilience to perturbation. Here, we review the principles of modifier genetics and assess progress in studies of modifier genes and their targets in both simple and complex traits. We propose that modifier effects emerge from gene interaction networks whose structure and function vary with genetic background and argue that these effects can be exploited as safe and effective ways to prevent, stabilize, and reverse disease and dysfunction.
Collapse
Affiliation(s)
- Jesse D Riordan
- Pacific Northwest Research Institute, Seattle, WA 98122, USA.
| | - Joseph H Nadeau
- Pacific Northwest Research Institute, Seattle, WA 98122, USA.
| |
Collapse
|
18
|
Rose AM, Luo R, Radia UK, Bhattacharya SS. Gene of the month: PRPF31. J Clin Pathol 2017; 70:729-732. [PMID: 28663330 DOI: 10.1136/jclinpath-2016-203971] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Accepted: 06/01/2017] [Indexed: 11/04/2022]
Abstract
Pre-mRNA splicing is an essential process in eukaryotic cells where the transcribed intronic sequences are removed, prior to translation into protein. PRPF31 is a ubiquitously expressed splicing factor, which aids in the assembly of the macromolecular spliceosome. Mutations in PRPF31 cause autosomal dominant retinitis pigmentosa (adRP), a form of retinal degeneration that causes progressive visual impairment. Interestingly, mutations in PRPF31 are non-penetrant, with some mutation carriers being phenotypically unaffected. In this review, the gene organisation, protein structure and biological function of PRPF31 are discussed, and the mechanisms of non-penetrance in PRPF31-associated adRP are discussed.
Collapse
Affiliation(s)
- Anna M Rose
- Department of Genetics, UCL Institute of Ophthalmology, London, UK.,Department of Medicine, Imperial College, London, UK
| | - Rong Luo
- Department of Medicine, Imperial College, London, UK
| | - Utsav K Radia
- Department of Medicine, Imperial College, London, UK
| | | |
Collapse
|
19
|
Hafler BP, Comander J, Weigel DiFranco C, Place EM, Pierce EA. Course of Ocular Function in PRPF31 Retinitis Pigmentosa. Semin Ophthalmol 2016; 31:49-52. [PMID: 26959129 DOI: 10.3109/08820538.2015.1114856] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Mutations in pre-mRNA splicing factors are the second most common cause of autosomal dominant retinitis pigmentosa, and a major cause of vision loss. The development of gene augmentation therapy for disease caused by mutations in PRPF31 necessitates defining pretreatment characteristics and disease progression of patients with PRPF31-related retinitis pigmentosa. We show rates of decline of visual field area -6.9% per year and 30-Hz flicker cone response of -9.2% per year, which are both similar to observed rates for retinitis pigmentosa. We hypothesize that RNA splicing factor retinitis pigmentosa will be amenable to treatment by AAV-mediated gene therapy, and that understanding the clinical progression rates of PRPF31 retinitis pigmentosa will help with the design of gene therapy clinical trials.
Collapse
Affiliation(s)
- Brian P Hafler
- a Department of Ophthalmology , Massachusetts Eye and Ear Infirmary , Boston , Massachusetts , USA
| | - Jason Comander
- a Department of Ophthalmology , Massachusetts Eye and Ear Infirmary , Boston , Massachusetts , USA
| | - Carol Weigel DiFranco
- a Department of Ophthalmology , Massachusetts Eye and Ear Infirmary , Boston , Massachusetts , USA
| | - Emily M Place
- a Department of Ophthalmology , Massachusetts Eye and Ear Infirmary , Boston , Massachusetts , USA
| | - Eric A Pierce
- a Department of Ophthalmology , Massachusetts Eye and Ear Infirmary , Boston , Massachusetts , USA
| |
Collapse
|
20
|
Zhang Q, Xu M, Verriotto JD, Li Y, Wang H, Gan L, Lam BL, Chen R. Next-generation sequencing-based molecular diagnosis of 35 Hispanic retinitis pigmentosa probands. Sci Rep 2016; 6:32792. [PMID: 27596865 PMCID: PMC5011706 DOI: 10.1038/srep32792] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Accepted: 07/29/2016] [Indexed: 12/13/2022] Open
Abstract
Retinitis pigmentosa (RP) is a heterogeneous group of inherited retinal diseases. The prevalence of RP and the mutation spectrum vary across populations. Hispanic people account for approximately 17% of the United States population, and the genetic etiologies of RP of this ethnic group still remain not well defined. Utilizing next-generation sequencing (NGS), we screened mutations in known retinal disease-causing genes in an RP cohort of 35 unrelated Hispanic probands from the Miami area. We achieved a solving rate of 66% and identified 15 novel putative pathogenic mutations, including a frequent founder mutation disrupting PRPF31 splicing. Our data show that the mutation spectrum of Hispanic RP receives a significant impact from disease-causing alleles of Spanish origin and may also contain population-specific alleles.
Collapse
Affiliation(s)
- Qi Zhang
- College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
- Institute of Life Sciences, Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Mingchu Xu
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas, United States
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States
| | - Jennifer D. Verriotto
- Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, Florida, United States
| | - Yumei Li
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas, United States
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States
| | - Hui Wang
- Institute of Life Sciences, Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Lin Gan
- College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
- Institute of Life Sciences, Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Byron L. Lam
- Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, Florida, United States
| | - Rui Chen
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas, United States
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States
- Structural and Computational Biology and Molecular Biophysics Graduate Program, Baylor College of Medicine, Houston, Texas, USA
- The Verna and Marrs Mclean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas, USA
- Program in Developmental Biology, Baylor College of Medicine, Houston, Texas, USA
| |
Collapse
|
21
|
Rose AM, Bhattacharya SS. Variant haploinsufficiency and phenotypic non-penetrance in PRPF31-associated retinitis pigmentosa. Clin Genet 2016; 90:118-26. [PMID: 26853529 DOI: 10.1111/cge.12758] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2015] [Revised: 02/02/2016] [Accepted: 02/03/2016] [Indexed: 11/30/2022]
Abstract
Retinitis pigmentosa (RP) is a genetically heterogenous group of inherited disorders, characterized by death of the retinal photoreceptor cells, leading to progressive visual impairment. One form of RP is caused by mutations in the ubiquitously expressed splicing factor, PRPF31, this form being known as RP11. An intriguing feature of RP11 is the presence of non-penetrance, which has been observed in the majority of PRPF31 mutation-carrying families. In contrast to variable expressivity, which is highly pervasive, true non-penetrance is a very rare phenomenon in Mendelian disorders. In this article, the molecular mechanisms underlying phenotypic non-penetrance in RP11 are explored. It is an elegant example of how our understanding of monogenic disorders has evolved from studying only the disease gene, to considering a mutation on the genetic background of the individual - the logical evolution in this genomic era.
Collapse
Affiliation(s)
- A M Rose
- Department of Genetics, UCL Institute of Ophthalmology, London, UK
| | - S S Bhattacharya
- Department of Genetics, UCL Institute of Ophthalmology, London, UK
| |
Collapse
|
22
|
Rose AM, Shah AZ, Venturini G, Krishna A, Chakravarti A, Rivolta C, Bhattacharya SS. Transcriptional regulation of PRPF31 gene expression by MSR1 repeat elements causes incomplete penetrance in retinitis pigmentosa. Sci Rep 2016; 6:19450. [PMID: 26781568 PMCID: PMC4725990 DOI: 10.1038/srep19450] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Accepted: 12/14/2015] [Indexed: 11/26/2022] Open
Abstract
PRPF31-associated retinitis pigmentosa presents a fascinating enigma: some mutation carriers are blind, while others are asymptomatic. We identify the major molecular cause of this incomplete penetrance through three cardinal features: (1) there is population variation in the number (3 or 4) of a minisatellite repeat element (MSR1) adjacent to the PRPF31 core promoter; (2) in vitro, 3-copies of the MSR1 element can repress gene transcription by 50 to 115-fold; (3) the higher-expressing 4-copy allele is not observed among symptomatic PRPF31 mutation carriers and correlates with the rate of asymptomatic carriers in different populations. Thus, a linked transcriptional modifier decreases PRPF31 gene expression that leads to haploinsufficiency. This result, taken with other identified risk alleles, allows precise genetic counseling for the first time. We also demonstrate that across the human genome, the presence of MSR1 repeats in the promoters or first introns of genes is associated with greater population variability in gene expression indicating that copy number variation of MSR1s is a generic controller of gene expression and promises to provide new insights into our understanding of gene expression regulation.
Collapse
Affiliation(s)
- Anna M. Rose
- UCL Institute of Ophthalmology, University College London, London, EC1V 9EL, UK
| | - Amna Z. Shah
- UCL Institute of Ophthalmology, University College London, London, EC1V 9EL, UK
| | - Giulia Venturini
- Department of Medical Genetics, University of Lausanne, 1005 Lausanne, Switzerland
| | - Abhay Krishna
- Department of Cell Therapy and Regenerative Medicine, CABIMER, 41092 Seville, Spain
| | - Aravinda Chakravarti
- Johns Hopkins University School of Medicine, Institute of Genetic Medicine, 733 N. Broadway MRB 579 Baltimore, MD 21287, USA
| | - Carlo Rivolta
- Department of Medical Genetics, University of Lausanne, 1005 Lausanne, Switzerland
| | | |
Collapse
|
23
|
Daiger SP, Bowne SJ, Sullivan LS. Genes and Mutations Causing Autosomal Dominant Retinitis Pigmentosa. Cold Spring Harb Perspect Med 2014; 5:a017129. [PMID: 25304133 PMCID: PMC4588133 DOI: 10.1101/cshperspect.a017129] [Citation(s) in RCA: 95] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Retinitis pigmentosa (RP) has a prevalence of approximately one in 4000; 25%-30% of these cases are autosomal dominant retinitis pigmentosa (adRP). Like other forms of inherited retinal disease, adRP is exceptionally heterogeneous. Mutations in more than 25 genes are known to cause adRP, more than 1000 mutations have been reported in these genes, clinical findings are highly variable, and there is considerable overlap with other types of inherited disease. Currently, it is possible to detect disease-causing mutations in 50%-75% of adRP families in select populations. Genetic diagnosis of adRP has advantages over other forms of RP because segregation of disease in families is a useful tool for identifying and confirming potentially pathogenic variants, but there are disadvantages too. In addition to identifying the cause of disease in the remaining 25% of adRP families, a central challenge is reconciling clinical diagnosis, family history, and molecular findings in patients and families.
Collapse
Affiliation(s)
- Stephen P Daiger
- Human Genetics Center, School of Public Health, The University of Texas Health Science Center, Houston, Texas 77030
| | - Sara J Bowne
- Human Genetics Center, School of Public Health, The University of Texas Health Science Center, Houston, Texas 77030
| | - Lori S Sullivan
- Human Genetics Center, School of Public Health, The University of Texas Health Science Center, Houston, Texas 77030
| |
Collapse
|
24
|
Dong B, Chen J, Zhang X, Pan Z, Bai F, Li Y. Two novel PRP31 premessenger ribonucleic acid processing factor 31 homolog mutations including a complex insertion-deletion identified in Chinese families with retinitis pigmentosa. Mol Vis 2013; 19:2426-35. [PMID: 24319336 PMCID: PMC3850970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2013] [Accepted: 11/22/2013] [Indexed: 11/20/2022] Open
Abstract
OBJECTIVE To identify the causative mutations in two Chinese families with retinitis pigmentosa (RP), and to describe the associated phenotype. METHODS Individuals from two unrelated families underwent full ophthalmic examinations. After informed consent was obtained, genomic DNA was extracted from the venous blood of all participants. Linkage analysis was performed on the known genetic loci for autosomal dominant retinitis pigmentosa with a panel of polymorphic markers in the two families, and then all coding exons of the PRP31 premessenger ribonucleic acid processing factor 31 homolog (PRPF31) gene were screened for mutations with direct sequencing of PCR-amplified DNA fragments. Allele-specific PCR was used to validate a substitution in all available family members and 100 normal controls. A large deletion was detected with real-time quantitative PCR (RQ-PCR) using a panel of primers from regions around the PRPF31 gene. Long-range PCR, followed by DNA sequencing, was used to define the breakpoints. RESULTS Clinical examination and pedigree analysis revealed two four-generation families (RP24 and RP106) with autosomal dominant retinitis pigmentosa. A significant two-point linkage odd disequilibrium score was generated at marker D19S926 (Zmax=3.55, θ=0) for family RP24 and D19S571 (Zmax=3.21, θ=0) for family RP106, and further linkage and haplotype studies confined the disease locus to chromosome 19q13.42 where the PRPF31 gene is located. Mutation screening of the PRPF31 gene revealed a novel deletion c.1215delG (p.G405fs+7X) in family RP106. The deletion cosegregated with the family's disease phenotype, but was not found in 100 normal controls. No disease-causing mutation was detected in family RP24 with PCR-based sequencing analysis. RQ-PCR and long-range PCR analysis revealed a complex insertion-deletion (indel) in the patients of family RP24. The deletion is more than 19 kb and encompasses part of the PRPF31 gene (exons 1-3), together with three adjacent genes. CONCLUSIONS Our results further confirmed that haploinsufficiency is the main mechanism for RP11 and that genomic arrangements may be prevalent in PRPF31 mutations.
Collapse
|
25
|
Rose AM, Shah AZ, Venturini G, Rivolta C, Rose GE, Bhattacharya SS. Dominant PRPF31 mutations are hypostatic to a recessive CNOT3 polymorphism in retinitis pigmentosa: a novel phenomenon of "linked trans-acting epistasis". Ann Hum Genet 2013; 78:62-71. [PMID: 24116917 PMCID: PMC4240469 DOI: 10.1111/ahg.12042] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2013] [Accepted: 09/01/2013] [Indexed: 12/31/2022]
Abstract
Mutations in PRPF31 are responsible for autosomal dominant retinitis pigmentosa (adRP, RP11 form) and affected families show nonpenetrance. Differential expression of the wildtype PRPF31 allele is responsible for this phenomenon: coinheritance of a mutation and a higher expressing wildtype allele provide protection against development of disease. It has been suggested that a major modulating factor lies in close proximity to the wildtype PRPF31 gene on Chromosome 19, implying that a cis-acting factor directly alters PRPF31 expression. Variable expression of CNOT3 is one determinant of PRPF31 expression. This study explored the relationship between CNOT3 (a trans-acting factor) and its paradoxical cis-acting nature in relation to RP11. Linkage analysis on Chromosome 19 was performed in mutation-carrying families, and the inheritance of the wildtype PRPF31 allele in symptomatic–asymptomatic sibships was assessed—confirming that differential inheritance of wildtype chromosome 19q13 determines the clinical phenotype (P < 2.6 × 10−7). A theoretical model was constructed that explains the apparent conflict between the linkage data and the recent demonstration that a trans-acting factor (CNOT3) is a major nonpenetrance factor: we propose that this apparently cis-acting effect arises due to the intimate linkage of CNOT3 and PRPF31 on Chromosome 19q13—a novel mechanism that we have termed “linked trans-acting epistasis.”
Collapse
Affiliation(s)
- Anna M Rose
- Department of Genetics, UCL Institute of Ophthalmology, London, United Kingdom
| | | | | | | | | | | |
Collapse
|
26
|
Cooper DN, Krawczak M, Polychronakos C, Tyler-Smith C, Kehrer-Sawatzki H. Where genotype is not predictive of phenotype: towards an understanding of the molecular basis of reduced penetrance in human inherited disease. Hum Genet 2013; 132:1077-130. [PMID: 23820649 PMCID: PMC3778950 DOI: 10.1007/s00439-013-1331-2] [Citation(s) in RCA: 435] [Impact Index Per Article: 36.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2013] [Accepted: 06/15/2013] [Indexed: 02/06/2023]
Abstract
Some individuals with a particular disease-causing mutation or genotype fail to express most if not all features of the disease in question, a phenomenon that is known as 'reduced (or incomplete) penetrance'. Reduced penetrance is not uncommon; indeed, there are many known examples of 'disease-causing mutations' that fail to cause disease in at least a proportion of the individuals who carry them. Reduced penetrance may therefore explain not only why genetic diseases are occasionally transmitted through unaffected parents, but also why healthy individuals can harbour quite large numbers of potentially disadvantageous variants in their genomes without suffering any obvious ill effects. Reduced penetrance can be a function of the specific mutation(s) involved or of allele dosage. It may also result from differential allelic expression, copy number variation or the modulating influence of additional genetic variants in cis or in trans. The penetrance of some pathogenic genotypes is known to be age- and/or sex-dependent. Variable penetrance may also reflect the action of unlinked modifier genes, epigenetic changes or environmental factors. At least in some cases, complete penetrance appears to require the presence of one or more genetic variants at other loci. In this review, we summarize the evidence for reduced penetrance being a widespread phenomenon in human genetics and explore some of the molecular mechanisms that may help to explain this enigmatic characteristic of human inherited disease.
Collapse
Affiliation(s)
- David N. Cooper
- Institute of Medical Genetics, School of Medicine, Cardiff University, Heath Park, Cardiff, CF14 4XN UK
| | - Michael Krawczak
- Institute of Medical Informatics and Statistics, Christian-Albrechts University, 24105 Kiel, Germany
| | | | - Chris Tyler-Smith
- The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SA UK
| | | |
Collapse
|
27
|
Daiger SP, Sullivan LS, Bowne SJ. Genes and mutations causing retinitis pigmentosa. Clin Genet 2013; 84:132-41. [PMID: 23701314 PMCID: PMC3856531 DOI: 10.1111/cge.12203] [Citation(s) in RCA: 434] [Impact Index Per Article: 36.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2013] [Revised: 05/20/2013] [Accepted: 05/20/2013] [Indexed: 12/19/2022]
Abstract
Retinitis pigmentosa (RP) is a heterogeneous set of inherited retinopathies with many disease-causing genes, many known mutations, and highly varied clinical consequences. Progress in finding treatments is dependent on determining the genes and mutations causing these diseases, which includes both gene discovery and mutation screening in affected individuals and families. Despite the complexity, substantial progress has been made in finding RP genes and mutations. Depending on the type of RP, and the technology used, it is possible to detect mutations in 30-80% of cases. One of the most powerful approaches to genetic testing is high-throughput 'deep sequencing', that is, next-generation sequencing (NGS). NGS has identified several novel RP genes but a substantial fraction of previously unsolved cases have mutations in genes that are known causes of retinal disease but not necessarily RP. Apparent discrepancy between the molecular defect and clinical findings may warrant reevaluation of patients and families. In this review, we summarize the current approaches to gene discovery and mutation detection for RP, and indicate pitfalls and unsolved problems. Similar considerations apply to other forms of inherited retinal disease.
Collapse
Affiliation(s)
- S P Daiger
- Human Genetics Center, School of Public Health, The University of Texas Health Science Center, Houston, TX 77030, USA.
| | | | | |
Collapse
|
28
|
Wagner AH, Taylor KR, DeLuca AP, Casavant TL, Mullins RF, Stone EM, Scheetz TE, Braun TA. Prioritization of retinal disease genes: an integrative approach. Hum Mutat 2013; 34:853-9. [PMID: 23508994 DOI: 10.1002/humu.22317] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2012] [Accepted: 03/07/2013] [Indexed: 02/03/2023]
Abstract
The discovery of novel disease-associated variations in genes is often a daunting task in highly heterogeneous disease classes. We seek a generalizable algorithm that integrates multiple publicly available genomic data sources in a machine-learning model for the prioritization of candidates identified in patients with retinal disease. To approach this problem, we generate a set of feature vectors from publicly available microarray, RNA-seq, and ChIP-seq datasets of biological relevance to retinal disease, to observe patterns in gene expression specificity among tissues of the body and the eye, in addition to photoreceptor-specific signals by the CRX transcription factor. Using these features, we describe a novel algorithm, positive and unlabeled learning for prioritization (PULP). This article compares several popular supervised learning techniques as the regression function for PULP. The results demonstrate a highly significant enrichment for previously characterized disease genes using a logistic regression method. Finally, a comparison of PULP with the popular gene prioritization tool ENDEAVOUR shows superior prioritization of retinal disease genes from previous studies. The java source code, compiled binary, assembled feature vectors, and instructions are available online at https://github.com/ahwagner/PULP.
Collapse
Affiliation(s)
- Alex H Wagner
- Department of Biomedical Engineering, University of Iowa, Iowa City, Iowa 52242, USA.
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Utz VM, Beight CD, Marino MJ, Hagstrom SA, Traboulsi EI. Autosomal dominant retinitis pigmentosa secondary to pre-mRNA splicing-factor gene PRPF31 (RP11): review of disease mechanism and report of a family with a novel 3-base pair insertion. Ophthalmic Genet 2013; 34:183-8. [PMID: 23343310 DOI: 10.3109/13816810.2012.762932] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Several forms of autosomal dominant retinitis pigmentosa (adRP) are caused by mutations in genes encoding proteins that are ubiquitously expressed and involved in the pre-mRNA spliceosome such as PRPF31. This paper provides an overview of the molecular genetics, pathophysiology, and mechanism for incomplete penetrance and retina-specific disease in pedigrees of families who harbor mutations in PRPF31 (RP11). The molecular and clinical features of a family with a novel 3-base insertion, c.914_915insTGT (p.Val305_Asp306insVal) in exon 9 of PRPF31 are described to illustrate the salient clinical features of mutations in this gene.
Collapse
Affiliation(s)
- Virginia M Utz
- Cole Eye Institute, Cleveland Clinic , Cleveland, OH , USA , and
| | | | | | | | | |
Collapse
|
30
|
|
31
|
Rodriguez S, Al-Ghamdi OA, Burrows K, Guthrie PAI, Lane JA, Davis M, Marsden G, Alharbi KK, Cox A, Hamdy FC, Neal DE, Donovan JL, Day INM. Very low PSA concentrations and deletions of the KLK3 gene. Clin Chem 2013; 59:234-44. [PMID: 23169475 DOI: 10.1373/clinchem.2012.192815] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
BACKGROUND Prostate-specific antigen (PSA), a widely used biomarker for prostate cancer (PCa), is encoded by a kallikrein gene (KLK3, kallikrein-related peptidase 3). Serum PSA concentrations vary in the population, with PCa patients generally showing higher PSA concentrations than control individuals, although a small proportion of individuals in the population display very low PSA concentrations. We hypothesized that very low PSA concentrations might reflect gene-inactivating mutations in KLK3 that lead to abnormally reduced gene expression. METHODS We have sequenced all KLK3 exons and the promoter and searched for gross deletions or duplications in KLK3 in the 30 individuals with the lowest observed PSA concentrations in a sample of approximately 85 000 men from the Prostate Testing for Cancer and Treatment (ProtecT) study. The ProtecT study examines a community-based population of men from across the UK with little prior PSA testing. RESULTS We observed no stop codons or frameshift mutations, but we did find 30 single-base genetic variants, including 3 variants not described previously. These variants included missense variants that could be functionally inactivating and splicing variants. At this stage, however, we cannot confidently conclude whether these variants markedly lower PSA concentration or activity. More importantly, we identified 3 individuals with different large heterozygous deletions that encompass all KLK3 exons. The absence of a functional copy of KLK3 in these individuals is consistent with their reduced serum PSA concentrations. CONCLUSIONS The clinical interpretation of the PSA test for individuals with KLK3 gene inactivation could lead to false-negative PSA findings used for screening, diagnosis, or monitoring of PCa.
Collapse
Affiliation(s)
- Santiago Rodriguez
- MRC Centre for Causal Analyses in Translational Epidemiology-CAiTE and Bristol Genetic Epidemiology Laboratories-BGEL, University of Bristol, Bristol, UK.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Venturini G, Rose AM, Shah AZ, Bhattacharya SS, Rivolta C. CNOT3 is a modifier of PRPF31 mutations in retinitis pigmentosa with incomplete penetrance. PLoS Genet 2012; 8:e1003040. [PMID: 23144630 PMCID: PMC3493449 DOI: 10.1371/journal.pgen.1003040] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2012] [Accepted: 09/05/2012] [Indexed: 01/23/2023] Open
Abstract
Heterozygous mutations in the PRPF31 gene cause autosomal dominant retinitis pigmentosa (adRP), a hereditary disorder leading to progressive blindness. In some cases, such mutations display incomplete penetrance, implying that certain carriers develop retinal degeneration while others have no symptoms at all. Asymptomatic carriers are protected from the disease by a higher than average expression of the PRPF31 allele that is not mutated, mainly through the action of an unknown modifier gene mapping to chromosome 19q13.4. We investigated a large family with adRP segregating an 11-bp deletion in PRPF31. The analysis of cell lines derived from asymptomatic and affected individuals revealed that the expression of only one gene among a number of candidates within the 19q13.4 interval significantly correlated with that of PRPF31, both at the mRNA and protein levels, and according to an inverse relationship. This gene was CNOT3, encoding a subunit of the Ccr4-not transcription complex. In cultured cells, siRNA–mediated silencing of CNOT3 provoked an increase in PRPF31 expression, confirming a repressive nature of CNOT3 on PRPF31. Furthermore, chromatin immunoprecipitation revealed that CNOT3 directly binds to a specific PRPF31 promoter sequence, while next-generation sequencing of the CNOT3 genomic region indicated that its variable expression is associated with a common intronic SNP. In conclusion, we identify CNOT3 as the main modifier gene determining penetrance of PRPF31 mutations, via a mechanism of transcriptional repression. In asymptomatic carriers CNOT3 is expressed at low levels, allowing higher amounts of wild-type PRPF31 transcripts to be produced and preventing manifestation of retinal degeneration. Retinitis pigmentosa (RP) is an inherited disorder of the retina that is caused by mutations in more than 50 genes. Dominant mutations in one of these, PRPF31, can be non-penetrant. That is, some carriers of mutations suffer from the disease while others do not display any symptoms. In these particular individuals, functional PRPF31 transcripts are expressed at higher levels compared to affected persons, thus compensating for the deleterious effects of the mutated allele. Up to now, the nature of such a stochastic and protective effect was unknown. In this work, we identify CNOT3 as the modifier gene responsible for penetrance of PRPF31 mutations. We show that CNOT3 is a negative regulator of PRPF31 expression and modulates PRPF31 transcription by directly binding to its promoter. In asymptomatic carriers of mutations, CNOT3 expression is lower, allowing higher amounts of PRPF31 to be produced and therefore inhibiting the development of symptoms. Finally, we find that a polymorphism within a CNOT3 intronic region is associated with the clinical manifestation of the disease.
Collapse
Affiliation(s)
- Giulia Venturini
- Department of Medical Genetics, University of Lausanne, Lausanne, Switzerland
| | - Anna M. Rose
- Department of Genetics, UCL Institute of Ophthalmology, University College London, London, United Kingdom
| | - Amna Z. Shah
- Department of Genetics, UCL Institute of Ophthalmology, University College London, London, United Kingdom
| | - Shomi S. Bhattacharya
- Department of Genetics, UCL Institute of Ophthalmology, University College London, London, United Kingdom
| | - Carlo Rivolta
- Department of Medical Genetics, University of Lausanne, Lausanne, Switzerland
- * E-mail:
| |
Collapse
|
33
|
Saini S, Robinson PN, Singh JR, Vanita V. A novel 7 bp deletion in PRPF31 associated with autosomal dominant retinitis pigmentosa with incomplete penetrance in an Indian family. Exp Eye Res 2012; 104:82-8. [DOI: 10.1016/j.exer.2012.09.010] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2012] [Revised: 09/09/2012] [Accepted: 09/24/2012] [Indexed: 01/18/2023]
|
34
|
Audo I, Bujakowska KM, Léveillard T, Mohand-Saïd S, Lancelot ME, Germain A, Antonio A, Michiels C, Saraiva JP, Letexier M, Sahel JA, Bhattacharya SS, Zeitz C. Development and application of a next-generation-sequencing (NGS) approach to detect known and novel gene defects underlying retinal diseases. Orphanet J Rare Dis 2012; 7:8. [PMID: 22277662 PMCID: PMC3352121 DOI: 10.1186/1750-1172-7-8] [Citation(s) in RCA: 130] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2011] [Accepted: 01/25/2012] [Indexed: 12/25/2022] Open
Abstract
Background Inherited retinal disorders are clinically and genetically heterogeneous with more than 150 gene defects accounting for the diversity of disease phenotypes. So far, mutation detection was mainly performed by APEX technology and direct Sanger sequencing of known genes. However, these methods are time consuming, expensive and unable to provide a result if the patient carries a new gene mutation. In addition, multiplicity of phenotypes associated with the same gene defect may be overlooked. Methods To overcome these challenges, we designed an exon sequencing array to target 254 known and candidate genes using Agilent capture. Subsequently, 20 DNA samples from 17 different families, including four patients with known mutations were sequenced using Illumina Genome Analyzer IIx next-generation-sequencing (NGS) platform. Different filtering approaches were applied to identify the genetic defect. The most likely disease causing variants were analyzed by Sanger sequencing. Co-segregation and sequencing analysis of control samples validated the pathogenicity of the observed variants. Results The phenotype of the patients included retinitis pigmentosa, congenital stationary night blindness, Best disease, early-onset cone dystrophy and Stargardt disease. In three of four control samples with known genotypes NGS detected the expected mutations. Three known and five novel mutations were identified in NR2E3, PRPF3, EYS, PRPF8, CRB1, TRPM1 and CACNA1F. One of the control samples with a known genotype belongs to a family with two clinical phenotypes (Best and CSNB), where a novel mutation was identified for CSNB. In six families the disease associated mutations were not found, indicating that novel gene defects remain to be identified. Conclusions In summary, this unbiased and time-efficient NGS approach allowed mutation detection in 75% of control cases and in 57% of test cases. Furthermore, it has the possibility of associating known gene defects with novel phenotypes and mode of inheritance.
Collapse
|
35
|
Audo I, Mohand-Saïd S, Dhaenens CM, Germain A, Orhan E, Antonio A, Hamel C, Sahel JA, Bhattacharya SS, Zeitz C. RP1 and autosomal dominant rod-cone dystrophy: Novel mutations, a review of published variants, and genotype-phenotype correlation. Hum Mutat 2011; 33:73-80. [DOI: 10.1002/humu.21640] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2011] [Accepted: 10/06/2011] [Indexed: 01/19/2023]
|
36
|
Devoto M, Specchia C, Laudenslager M, Longo L, Hakonarson H, Maris J, Mossé Y. Genome-wide linkage analysis to identify genetic modifiers of ALK mutation penetrance in familial neuroblastoma. Hum Hered 2011; 71:135-9. [PMID: 21734404 DOI: 10.1159/000324843] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Neuroblastoma (NB) is an important childhood cancer with a strong genetic component related to disease susceptibility. Approximately 1% of NB cases have a positive family history. Following a genome-wide linkage analysis and sequencing of candidate genes in the critical region, we identified ALK as the major familial NB gene. Dominant mutations in ALK are found in more than 50% of familial NB cases. However, in the families used for the linkage study, only about 50% of carriers of ALK mutations are affected by NB. METHODS To test whether genetic variation may explain the reduced penetrance of the disease phenotype, we analyzed genome-wide genotype data in ALK mutation-positive families using a model-based linkage approach with different liability classes for carriers and non-carriers of ALK mutations. RESULTS The region with the highest LOD score was located at chromosome 2p23-p24 and included the ALK locus under models of dominant and recessive inheritance. CONCLUSIONS This finding suggests that variants in the non-mutated ALK gene or another gene linked to it may affect penetrance of the ALK mutations and risk of developing NB in familial cases.
Collapse
Affiliation(s)
- Marcella Devoto
- Division of Genetics, The Children's Hospital of Philadelphia, Pa., USA. devoto @ chop.edu
| | | | | | | | | | | | | |
Collapse
|
37
|
Audo I, Bujakowska K, Mohand-Saïd S, Lancelot ME, Moskova-Doumanova V, Waseem NH, Antonio A, Sahel JA, Bhattacharya SS, Zeitz C. Prevalence and novelty of PRPF31 mutations in French autosomal dominant rod-cone dystrophy patients and a review of published reports. BMC MEDICAL GENETICS 2010; 11:145. [PMID: 20939871 PMCID: PMC2984399 DOI: 10.1186/1471-2350-11-145] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/21/2010] [Accepted: 10/12/2010] [Indexed: 12/01/2022]
Abstract
Background Rod-cone dystrophies are heterogeneous group of inherited retinal disorders both clinically and genetically characterized by photoreceptor degeneration. The mode of inheritance can be autosomal dominant, autosomal recessive or X-linked. The purpose of this study was to identify mutations in one of the genes, PRPF31, in French patients with autosomal dominant RP, to perform genotype-phenotype correlations of those patients, to determine the prevalence of PRPF31 mutations in this cohort and to review previously identified PRPF31 mutations from other cohorts. Methods Detailed phenotypic characterization was performed including precise family history, best corrected visual acuity using the ETDRS chart, slit lamp examination, kinetic and static perimetry, full field and multifocal ERG, fundus autofluorescence imaging and optic coherence tomography. For genetic diagnosis, genomic DNA of ninety families was isolated by standard methods. The coding exons and flanking intronic regions of PRPF31 were PCR amplified, purified and sequenced in the index patient. Results We showed for the first time that 6.7% cases of a French adRP cohort have a PRPF31 mutation. We identified in total six mutations, which were all novel and not detected in ethnically matched controls. The mutation spectrum from our cohort comprises frameshift and splice site mutations. Co-segregation analysis in available family members revealed that each index patient and all affected family members showed a heterozygous mutation. In five families incomplete penetrance was observed. Most patients showed classical signs of RP with relatively preserved central vision and visual field. Conclusion Our studies extended the mutation spectrum of PRPF31 and as previously reported in other populations, it is a major cause of adRP in France.
Collapse
|
38
|
Abstract
PURPOSE The purpose of this study was to investigate the BEST1 gene mutations in Chinese patients with Best vitelliform macular dystrophy (BVMD). METHODS Twenty-six subjects from 7 Chinese families with BVMD and 100 unrelated healthy Chinese subjects without a family history of BVMD were screened for mutations in the BEST1 gene by direct sequencing. The subjects underwent complete ophthalmologic examination and BEST1 gene screening. RESULTS Six novel missense mutations (Thr2Asn, Leu75Phe, Ser144Asn, Arg255Trp, Pro297Thr, and Asp301Gly) and 1 previously reported mutation (Arg218Cys) were identified. Each family was found to have a unique BEST1 mutation that segregated with the disease. Two of the six novel mutations are located within the four previously reported common mutation clusters within the BEST1 gene. One family with patients having homozygous Leu75Phe mutations did not have the more severe BVMD phenotype. None of the patients with mutations was identified among the 100 healthy control subjects. CONCLUSION A large number of unique novel missense mutations was found in Chinese patients with BVMD, suggesting considerable interethnic differences between the mutation sites in the BEST1 gene in different populations. The few truncating BEST1 mutations and the lack of a more severe phenotype in homozygous patients suggest that the missense BEST1 mutation may produce a dominant negative effect on wild-type BEST1 gene.
Collapse
|
39
|
Crétien A, Proust A, Delaunay J, Rincé P, Leblanc T, Ducrocq R, Simansour M, Marie I, Tamary H, Meerpohl J, Niemeyer C, Gazda H, Sieff C, Ball S, Tchernia G, Mohandas N, Da Costa L. Genetic variants in the noncoding region of RPS19 gene in Diamond-Blackfan anemia: potential implications for phenotypic heterogeneity. Am J Hematol 2010; 85:111-6. [PMID: 20054847 DOI: 10.1002/ajh.21601] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Mutations in the RPS19 gene have been identified in 25% of individuals affected by Diamond-Blackfan anemia (DBA), a congenital erythroblastopenia characterized by an aregenerative anemia and a variety of malformations. More than 60 mutations in the five coding exons of RPS19 have been described to date. We previously reported a mutation (c.-1 + 26G>T) and an insertion at -631 upstream of ATG (c.-147_-146insGCCA) in the noncoding region. Because DBA phenotype is extremely heterogeneous from silent to severe and because haploinsufficiency seems to play a role in this process, it is likely that genetic variations in the noncoding regions affecting translation of RPS19 can modulate the phenotypic expression of DBA. However, to date, very few studies have addressed this question comprehensively. In this study, we performed detailed sequence analysis of the RPS19 gene in 239 patients with DBA and 110 of their relatives. We found that 6.2% of the patients with DBA carried allelic variations upstream of ATG: 3.3% with c.-1 + 26G>T; 2.5% with c.-147_-146insGCCA; and 0.4% with c.-174G>A. Interestingly, the c.-147_-146insGCCA, which has been found in a black American and French Caribbean control population, was not found in 500 Caucasian control chromosomes we studied. However, it was found in association with the same haplotype distribution of four intronic polymorphisms in our patients with DBA. Although a polymorphism, the frequency of this variant in the patients with DBA and its association with the same haplotype raises the possibility that this polymorphism and the other genetic variations in the noncoding region could play a role in DBA pathogenesis.
Collapse
|
40
|
Rio Frio T, McGee TL, Wade NM, Iseli C, Beckmann JS, Berson EL, Rivolta C. A single-base substitution within an intronic repetitive element causes dominant retinitis pigmentosa with reduced penetrance. Hum Mutat 2009; 30:1340-7. [PMID: 19618371 DOI: 10.1002/humu.21071] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
We report the study of a large American family displaying autosomal dominant retinitis pigmentosa with reduced penetrance, a form of hereditary retinal degeneration. Although the inheritance pattern and previous linkage mapping pointed to the involvement of the PRPF31 gene, extensive screening of all its exons and their boundaries failed in the past to reveal any mutation. In this work, we sequenced the entire PRPF31 genomic region by both the classical Sanger method and ultrahigh throughput (UHT) sequencing. Among the many variants identified, a single-base substitution (c.1374+654C>G) located deep within intron 13 and inside a repetitive DNA element was common to all patients and obligate asymptomatic carriers. This change created a new splice donor site leading to the synthesis of two mutant PRPF31 isoforms, degraded by nonsense-mediated mRNA decay. As a consequence, amounts of PRPF31 mRNA derived from the mutant allele were very reduced, with no evidence of mutant proteins being synthesized. Our results indicate that c.1374+654C>G causes retinitis pigmentosa via haploinsufficiency, similar to the vast majority of PRPF31 mutations described so far. We discuss the potential of UHT sequencing technologies in mutation screening and the continued identification of pathogenic splicing mutations buried deep within intronic regions.
Collapse
Affiliation(s)
- Thomas Rio Frio
- Department of Medical Genetics, University of Lausanne, Lausanne, Switzerland
| | | | | | | | | | | | | |
Collapse
|
41
|
Rio Frio T, Civic N, Ransijn A, Beckmann JS, Rivolta C. Two trans-acting eQTLs modulate the penetrance of PRPF31 mutations. Hum Mol Genet 2008; 17:3154-65. [PMID: 18640990 DOI: 10.1093/hmg/ddn212] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Dominant mutations in the gene encoding the ubiquitously-expressed splicing factor PRPF31 cause retinitis pigmentosa, a form of hereditary retinal degeneration, with reduced penetrance. We and others have previously shown that penetrance is tightly correlated with PRPF31 expression, as lymphoblastoid cell lines (LCLs) from affected patients produce less abundant PRPF31 transcripts than LCLs from their unaffected relatives carrying the same mutation. We have investigated the genetic elements determining the variable expression of PRPF31, and therefore possibly influencing the penetrance of its mutations, by quantifying PRPF31 mRNA levels in LCLs derived from 15 CEPH families (200 individuals), representative of the general population. We found that PRPF31 transcript abundance was a highly variable and highly heritable character. Moreover, by linkage analysis we showed that PRPF31 expression was significantly associated with at least one expression quantitative trait locus (eQTL), spanning a 8.2-Mb region on chromosome 14q21-23. We also investigated a previously mapped penetrance factor located near PRPF31 itself in LCLs from individuals belonging to selected families segregating PRPF31 mutations that displayed reduced penetrance. Our results indicate that, despite its constant association with the non-mutant allele, this factor was able to modulate the expression of both PRPF31 alleles. Furthermore, we showed that LCLs from affected patients have less PRPF31 RNA than those of asymptomatic patients, even at the pre-splicing stage. Altogether, these data demonstrate that PRPF31 mRNA expression and consequently the penetrance of PRPF31 mutations is managed by diffusible compounds encoded by at least two modifiers, acting in a co-regulatory system on both PRPF31 alleles during transcription.
Collapse
Affiliation(s)
- Thomas Rio Frio
- Department of Medical Genetics, University of Lausanne, Rue du Bugnon 27, Lausanne 1005, Switzerland
| | | | | | | | | |
Collapse
|
42
|
Hartzell HC, Qu Z, Yu K, Xiao Q, Chien LT. Molecular physiology of bestrophins: multifunctional membrane proteins linked to best disease and other retinopathies. Physiol Rev 2008; 88:639-72. [PMID: 18391176 DOI: 10.1152/physrev.00022.2007] [Citation(s) in RCA: 258] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
This article reviews the current state of knowledge about the bestrophins, a newly identified family of proteins that can function both as Cl(-) channels and as regulators of voltage-gated Ca(2+) channels. The founding member, human bestrophin-1 (hBest1), was identified as the gene responsible for a dominantly inherited, juvenile-onset form of macular degeneration called Best vitelliform macular dystrophy. Mutations in hBest1 have also been associated with a small fraction of adult-onset macular dystrophies. It is proposed that dysfunction of bestrophin results in abnormal fluid and ion transport by the retinal pigment epithelium, resulting in a weakened interface between the retinal pigment epithelium and photoreceptors. There is compelling evidence that bestrophins are Cl(-) channels, but bestrophins remain enigmatic because it is not clear that the Cl(-) channel function can explain Best disease. In addition to functioning as a Cl(-) channel, hBest1 also is able to regulate voltage-gated Ca(2+) channels. Some bestrophins are activated by increases in intracellular Ca(2+) concentration, but whether bestrophins are the molecular counterpart of Ca(2+)-activated Cl(-) channels remains in doubt. Bestrophins are also regulated by cell volume and may be a member of the volume-regulated anion channel family.
Collapse
Affiliation(s)
- H Criss Hartzell
- Department of Cell Biology, Center for Neurodegenerative Disease, Emory University School of Medicine, Atlanta, Georgia 30322, USA.
| | | | | | | | | |
Collapse
|
43
|
Danciger M, Ogando D, Yang H, Matthes MT, Yu N, Ahern K, Yasumura D, Williams RW, Lavail MM. Genetic modifiers of retinal degeneration in the rd3 mouse. Invest Ophthalmol Vis Sci 2008; 49:2863-9. [PMID: 18344445 DOI: 10.1167/iovs.08-1715] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
PURPOSE In previous studies of light-induced (LRD) and age-related (ageRD) retinal degeneration (RD) between the BALB/cByJ (BALB) and B6(Cg)-Tyr(c-2J)/J (B6a) albino mouse strains, RD-modifying quantitative trait loci (QTLs) were identified. After breeding BALB- and B6a-rd3/rd3 congenic strains and finding significant differences in RD, an F1 intercross to determine rd3 QTLs that influence this inherited RD was performed. METHODS N10, F2 BALB- and B6a-rd3/rd3 strains were measured for retinal outer nuclear layer (ONL) thickness from 5 to 12 weeks of age. Since 10 weeks showed significant differences in the ONL, F2 progeny from an F1 intercross were measured for ONL thickness. F2 DNAs were genotyped for SNPs by the Center for Inherited Disease Research. Correlation of genotype with phenotype was made with Map Manager QTX. RESULTS One hundred forty-eight SNPs approximately 10 cM apart were typed in the F2 progeny and analyzed. Significant QTLs were identified on chromosomes (Chrs) 17, 8, 14, and 6 (B6a alleles protective) and two on Chr 5 (BALB alleles protective). Suggestive QTLs were found as well. For the strongest QTLs, follow-up SNPs were analyzed to narrow the critical intervals. Additional studies demonstrated that rd3 disease is exacerbated by light but not protected by the absence of rhodopsin regeneration. CONCLUSIONS QTLs were identified that modulate rd3-RD. These overlapped some QTLs from previous ageRD and LRD studies. The presence of some of the same QTLs in several studies suggests partial commonality in RD pathways. Identifying natural gene/alleles that modify RDs opens avenues of study that may lead to therapies for RD diseases.
Collapse
Affiliation(s)
- Michael Danciger
- Department of Biology, Loyola Marymount University, Los Angeles, California 90045-2659, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Daiger SP, Shankar SP, Schindler AB, Sullivan LS, Bowne SJ, King TM, Daw EW, Stone EM, Heckenlively JR. Genetic factors modifying clinical expression of autosomal dominant RP. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2007; 572:3-8. [PMID: 17249547 PMCID: PMC2581449 DOI: 10.1007/0-387-32442-9_1] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Stephen P Daiger
- Human Genetics Ctr and Dept. of Ophthalmology, Univ. of Texas, Houston, TX, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Mordes D, Yuan L, Xu L, Kawada M, Molday RS, Wu JY. Identification of photoreceptor genes affected by PRPF31 mutations associated with autosomal dominant retinitis pigmentosa. Neurobiol Dis 2007; 26:291-300. [PMID: 17350276 PMCID: PMC2014719 DOI: 10.1016/j.nbd.2006.08.026] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2006] [Revised: 07/27/2006] [Accepted: 08/14/2006] [Indexed: 10/23/2022] Open
Abstract
Several ubiquitously expressed genes encoding pre-mRNA splicing factors have been associated with autosomal dominant retinitis pigmentosa (adRP), including PRPF31, PRPF3 and PRPF8. Molecular mechanisms by which defects in pre-mRNA splicing factors cause photoreceptor degeneration are not clear. To investigate the role of pre-mRNA splicing in photoreceptor gene expression and function, we have begun to search for photoreceptor genes whose pre-mRNA splicing is affected by mutations in PRPF31. Using an immunoprecipitation-coupled-microarray method, we identified a number of transcripts associated with PRPF31-containing complexes, including peripherin/RDS, FSCN2 and other photoreceptor-expressed genes. We constructed minigenes to study the effects of PRPF31 mutations on the pre-mRNA splicing of these photoreceptor specific genes. Our experiments demonstrated that mutant PRPF31 significantly inhibited pre-mRNA splicing of RDS and FSCN2. These observations suggest a functional link between ubiquitously expressed and retina-specifically expressed adRP genes. Our results indicate that PRPF31 mutations lead to defective pre-mRNA splicing of photoreceptor-specific genes and that the ubiquitously expressed adRP gene, PRPF31, is critical for pre-mRNA splicing of a subset of photoreceptor genes. Our results provide an explanation for the photoreceptor-specific phenotype of PRPF31 mutations.
Collapse
Affiliation(s)
- Daniel Mordes
- Department of Pediatrics, John F. Kennedy Center for Research on Human Development, Vanderbilt University Medical Center, USA
| | | | | | | | | | | |
Collapse
|
46
|
Marchant D, Yu K, Bigot K, Roche O, Germain A, Bonneau D, Drouin-Garraud V, Schorderet DF, Munier F, Schmidt D, Le Neindre P, Marsac C, Menasche M, Dufier JL, Fischmeister R, Hartzell C, Abitbol M. New VMD2 gene mutations identified in patients affected by Best vitelliform macular dystrophy. J Med Genet 2007; 44:e70. [PMID: 17287362 PMCID: PMC2598027 DOI: 10.1136/jmg.2006.044511] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
PURPOSE The mutations responsible for Best vitelliform macular dystrophy (BVMD) are found in a gene called VMD2. The VMD2 gene encodes a transmembrane protein named bestrophin-1 (hBest1) which is a Ca(2+)-sensitive chloride channel. This study was performed to identify disease-specific mutations in 27 patients with BVMD. Because this disease is characterised by an alteration in Cl(-) channel function, patch clamp analysis was used to test the hypothesis that one of the VMD2 mutated variants causes the disease. METHODS Direct sequencing analysis of the 11 VMD2 exons was performed to detect new abnormal sequences. The mutant of hBest1 was expressed in HEK-293 cells and the associated Cl(-) current was examined using whole-cell patch clamp analysis. RESULTS Six new VMD2 mutations were identified, located exclusively in exons four, six and eight. One of these mutations (Q293H) was particularly severe. Patch clamp analysis of human embryonic kidney cells expressing the Q293H mutant showed that this mutant channel is non-functional. Furthermore, the Q293H mutant inhibited the function of wild-type bestrophin-1 channels in a dominant negative manner. CONCLUSIONS This study provides further support for the idea that mutations in VMD2 are a necessary factor for Best disease. However, because variable expressivity of VMD2 was observed in a family with the Q293H mutation, it is also clear that a disease-linked mutation in VMD2 is not sufficient to produce BVMD. The finding that the Q293H mutant does not form functional channels in the membrane could be explained either by disruption of channel conductance or gating mechanisms or by improper trafficking of the protein to the plasma membrane.
Collapse
Affiliation(s)
- D Marchant
- Centre de recherche thérapeutique en ophtalmologie, équipe d'accueil 2502 MENRT, Université René Descartes Paris V, Faculté de Médecine Necker-Enfants Malades, Paris, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Mordes D, Luo X, Kar A, Kuo D, Xu L, Fushimi K, Yu G, Sternberg P, Wu JY. Pre-mRNA splicing and retinitis pigmentosa. Mol Vis 2006; 12:1259-71. [PMID: 17110909 PMCID: PMC2683577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2023] Open
Abstract
Retinitis pigmentosa (RP) is a group of genetically and clinically heterogeneous retinal diseases and a common cause of blindness. Among the 12 autosomal dominant RP (adRP) genes identified, four encode ubiquitously expressed proteins involved in pre-mRNA splicing, demonstrating the important role that pre-mRNA splicing plays in the pathogenesis of retinal degeneration. This review focuses on recent progress in identifying adRP mutations in genes encoding pre-mRNA splicing factors and the potential underlying molecular mechanisms.
Collapse
Affiliation(s)
- Daniel Mordes
- Department of Pediatrics, John F. Kennedy Center for Research on Human Development, Nashville, TN, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Sullivan LS, Bowne SJ, Seaman CR, Blanton SH, Lewis RA, Heckenlively JR, Birch DG, Hughbanks-Wheaton D, Daiger SP. Genomic rearrangements of the PRPF31 gene account for 2.5% of autosomal dominant retinitis pigmentosa. Invest Ophthalmol Vis Sci 2006; 47:4579-88. [PMID: 17003455 PMCID: PMC2778205 DOI: 10.1167/iovs.06-0440] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
PURPOSE To determine whether genomic rearrangements in the PRPF31 (RP11) gene are a frequent cause of autosomal dominant retinitis pigmentosa (adRP) in a cohort of patients with adRP. METHODS In a cohort of 200 families with adRP, disease-causing mutations have previously been identified in 107 families. To determine the cause of disease in the remaining families, linkage testing was performed with markers for 13 known adRP loci. In a large American family, evidence was found of linkage to the PRPF31 gene, although DNA sequencing revealed no mutations. SNP testing throughout the genomic region was used to determine whether any part of the gene was deleted. Aberrant segregation of a SNP near exon 1 was observed, leading to the testing of additional SNPs in the region. After identifying an insertion-deletion mutation, the remaining 92 families were screened for genomic rearrangements in PRPF31 with multiplex ligation-dependent probe amplification (MLPA). RESULTS Five unique rearrangements were identified in the 93 families tested. In the large family used for linkage exclusion testing, an insertion-deletion was found that disrupts exon 1. The other four mutations identified in the cohort were deletions, ranging from 5 kb to greater than 45 kb. Two of the large deletions encompass all PRPF31 as well as several adjacent genes. The two smaller deletions involve either 5 or 10 completely deleted exons. CONCLUSIONS In an earlier long-term study of 200 families with adRP, disease-causing mutations were identified in 53% of the families. Mutation-testing by sequencing missed large-scale genomic rearrangements such as insertions or deletions. MLPA was used to identify genomic rearrangements in PRPF31 in five families, suggesting a frequency of approximately 2.5%. Mutations in PRPF31 now account for 8% of this adRP cohort.
Collapse
Affiliation(s)
- Lori S Sullivan
- Human Genetics Center, The University of Texas Health Science Center at Houston, TX 77030, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Sullivan LS, Bowne SJ, Birch DG, Hughbanks-Wheaton D, Heckenlively JR, Lewis RA, Garcia CA, Ruiz RS, Blanton SH, Northrup H, Gire AI, Seaman R, Duzkale H, Spellicy CJ, Zhu J, Shankar SP, Daiger SP. Prevalence of disease-causing mutations in families with autosomal dominant retinitis pigmentosa: a screen of known genes in 200 families. Invest Ophthalmol Vis Sci 2006; 47:3052-64. [PMID: 16799052 PMCID: PMC2585061 DOI: 10.1167/iovs.05-1443] [Citation(s) in RCA: 207] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
PURPOSE To survey families with clinical evidence of autosomal dominant retinitis pigmentosa (adRP) for mutations in genes known to cause adRP. METHODS Two hundred adRP families, drawn from a cohort of more than 400 potential families, were selected by analysis of pedigrees. Minimum criteria for inclusion in the adRP cohort included either evidence of at least three generations of affected individuals or two generations with evidence of male-to-male transmission. Probands from each family were screened for mutations in 13 genes known to cause adRP: CA4, CRX, FSCN2, IMPDH1, NRL, PRPF3 (RP18), PRPF8 (RP13), PRPF31 (RP11), RDS, RHO, ROM1, RP1, and RP9. Families without mutations in autosomal genes and in which an X-linked mode of inheritance could not be excluded were tested for mutations in ORF 15 of X-linked RPGR. Potentially pathogenic variants were evaluated based on a variety of genetic and computational criteria, to confirm or exclude pathogenicity. RESULTS A total of 82 distinct, rare (nonpolymorphic) variants were detected among the genes tested. Of these, 57 are clearly pathogenic based on multiple criteria, 10 are probably pathogenic, and 15 are probably benign. In the cohort of 200 families, 94 (47%) have one of the clearly pathogenic variants and 10 (5%) have one of the probably pathogenic variants. One family (0.5%) has digenic RDS-ROM1 mutations. Two families (1%) have a pathogenic RPGR mutation, indicating that families with apparent autosomal transmission of RP may actually have X-linked genetic disease. Thus, 107 families (53.5%) have mutations in known genes, leaving 93 whose underlying cause is still unknown. CONCLUSIONS Together, the known adRP genes account for retinal disease in approximately half of the families in this survey, mostly Americans of European origin. Among the adRP genes, IMPDH1, PRPF8, PRPF31, RDS, RHO, and RP1 each accounts for more than 2% of the total; CRX, PRPF3, and RPGR each accounts for roughly 1%. Disease-causing mutations were not found in CA4, FSCN2, NRL, or RP9. Because some mutations are frequent and some regions are more likely to harbor mutations than others, more than two thirds of the detected mutations can be found by screening less than 10% of the total gene sequences. Among the remaining families, mutations may lie in regions of known genes that were not tested, mutations may not be detectable by PCR-based sequencing, or other loci may be involved.
Collapse
Affiliation(s)
- Lori S Sullivan
- Human Genetics Center, School of Public Health, Department of Ophthalmology and Visual Science, the University of Texas Health Science Center, Houston 77030, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Rivolta C, McGee TL, Rio Frio T, Jensen RV, Berson EL, Dryja TP. Variation in retinitis pigmentosa-11 (PRPF31 or RP11) gene expression between symptomatic and asymptomatic patients with dominant RP11 mutations. Hum Mutat 2006; 27:644-53. [PMID: 16708387 DOI: 10.1002/humu.20325] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Dominant mutations in the mRNA splicing factor gene PRPF31 (RP11) cause retinitis pigmentosa with reduced penetrance. We studied the expression of RP11 in lymphoblast cell lines from 10 patients, including three who were clinically asymptomatic, with six distinct RP11 mutations. Five of the six mutations were characterized and all five created premature nonsense codons or eliminated the normal initiation codon. Semiquantitative RT-PCR indicated that an average of only 17% of the RP11 mRNA was derived from the mutant allele, likely because the mutant mRNA transcripts were degraded by nonsense-mediated decay. Gene expression levels were measured by Affymetrix and CodeLink microarrays and, for RP11 transcripts, also by real-time PCR. Combined wild-type-plus-mutant RP11 mRNA expression from symptomatic patients was 52 to 77% of that in controls (p < or = 0.0005). Clinically asymptomatic carriers had levels of RP11 mRNA similar to controls and 29-42% higher than in clinically affected patients (0.0001<p<0.05, varying according to measurement technique). Expression levels of seven housekeeping genes (4-15 exons each) and 11 single-exon histone genes showed no substantial differences between affected patients with RP11 mutations and controls. Our results indicate that penetrance of dominant RP11 mutations correlates with the expression level of the remaining wild-type RP11 allele. Because RP11 mutations are apparently null alleles and because nonpenetrance correlates with high wild-type allele expression, the phenotypic effect of RP11 mutations is likely due to haploinsufficiency. The similar mRNA expression levels from genes with and without introns suggest that there is no generalized RNA splicing abnormality in RP11 patients.
Collapse
Affiliation(s)
- Carlo Rivolta
- Ocular Molecular Genetics Institute, Department of Ophthalmology, Harvard Medical School, Massachusetts Eye and Ear Infirmary, Boston, Massachusetts 02114, USA
| | | | | | | | | | | |
Collapse
|