1
|
Chen J, Wu X, Xu Q, Ding T, Chen G, Chen H, Zou Y, Huang J, Zhang Z, Tian L, Zhao Y, Duan R, Li Z, Wu Q, Liu Y. Clinical application of polar body-based preimplantation genetic testing for maternal mutations in women with a limited number of oocytes. Orphanet J Rare Dis 2025; 20:152. [PMID: 40170048 PMCID: PMC11963276 DOI: 10.1186/s13023-025-03659-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 03/07/2025] [Indexed: 04/03/2025] Open
Abstract
BACKGROUND Trophectoderm (TE) cell biopsy at the blastocyst stage is currently the most common method used in preimplantation genetic testing for monogenic disorders (PGT-M). However, this approach may result in the wasting of some genetically unaffected embryos because only a proportion of zygotes develop to the blastocyst stage. Unaffected embryos, which degenerated during blastomere-blastocyst transformation, may give birth if transferred before the blastocyst stage and may be of great value to women with a low oocyte count. This study sought to investigate the potential application of polar-body (PB) biopsy in saving more genetically unaffected embryos for women with disease-causing mutations and a limited number of oocytes during PGT-M. METHODS Three couples with female partners who had autosomal dominant or X-linked mutations in IRF6, FMR1, and EDA were recruited. The number of retrieved oocytes was limited to six per cycle. The first and second PBs (PB1 and PB2) of each oocyte were biopsied separately and subjected to multiple displacement amplification (MDA). The genotype of each embryo was determined by analyzing the MDA products of the corresponding PB1 and PB2 using a novel approach that combined direct mutation testing and single nucleotide polymorphism linkage analysis. Mutation-free embryos cryopreserved before the blastocyst stage were chosen for transfer. RESULTS In total, four cycles were performed, resulting in the retrieval of 15 oocytes for three couples. The genotype of each embryo was successfully determined. Seven mutation-free embryos were discovered. Three of them were transferred, resulting in two clinical pregnancies, and the birth of two healthy infants. The accuracy of the embryo genotypes was validated by genetic testing of fetuses in the second trimester or at birth. CONCLUSIONS The PB-based strategy is feasible and effective for determining the mutation-carrier statuses of embryos in PGT-M for maternal mutations. Compared to blastocyst stage detection, this method may save a greater number of genetically unaffected embryos for patients. Further clinical trials are needed to determine whether PB biopsy is more beneficial than TE cell biopsy for women with disease-causing mutations and a limited number of oocytes in PGT-M.
Collapse
Affiliation(s)
- Jia Chen
- Reproductive Medicine Center, Jiangxi Maternal and Child Health Hospital, 508 West Station Street, Nanchang, Jiangxi, 330006, China
- Jiangxi Key Laboratory of Reproductive Health, Jiangxi Maternal and Child Health Hospital, Nanchang, Jiangxi, 330006, China
| | - Xingwu Wu
- Reproductive Medicine Center, Jiangxi Maternal and Child Health Hospital, 508 West Station Street, Nanchang, Jiangxi, 330006, China
- Jiangxi Key Laboratory of Reproductive Health, Jiangxi Maternal and Child Health Hospital, Nanchang, Jiangxi, 330006, China
| | - Qiang Xu
- Reproductive Medicine Center, Jiangxi Maternal and Child Health Hospital, 508 West Station Street, Nanchang, Jiangxi, 330006, China
| | - Tao Ding
- Reproductive Medicine Center, Jiangxi Maternal and Child Health Hospital, 508 West Station Street, Nanchang, Jiangxi, 330006, China
| | - Ge Chen
- Central Laboratory, Jiangxi Maternal and Child Health Hospital, Nanchang, Jiangxi, 330006, China
| | - Houyang Chen
- Reproductive Medicine Center, Jiangxi Maternal and Child Health Hospital, 508 West Station Street, Nanchang, Jiangxi, 330006, China
- Jiangxi Key Laboratory of Reproductive Health, Jiangxi Maternal and Child Health Hospital, Nanchang, Jiangxi, 330006, China
| | - Yongyi Zou
- Medical Genetics Center, Jiangxi Maternal and Child Health Hospital, 508 West Station Street, Nanchang, Jiangxi, 330006, China
| | - Jialyu Huang
- Reproductive Medicine Center, Jiangxi Maternal and Child Health Hospital, 508 West Station Street, Nanchang, Jiangxi, 330006, China
- Jiangxi Key Laboratory of Reproductive Health, Jiangxi Maternal and Child Health Hospital, Nanchang, Jiangxi, 330006, China
| | - Ziyu Zhang
- Jiangxi Key Laboratory of Reproductive Health, Jiangxi Maternal and Child Health Hospital, Nanchang, Jiangxi, 330006, China
- Jiangxi Provincial Clinical Medical Research Center for Obstetrics and Gynecology, Jiangxi Maternal and Child Health Hospital, Nanchang, Jiangxi, 330006, China
| | - Lifeng Tian
- Reproductive Medicine Center, Jiangxi Maternal and Child Health Hospital, 508 West Station Street, Nanchang, Jiangxi, 330006, China
| | - Yan Zhao
- Reproductive Medicine Center, Jiangxi Maternal and Child Health Hospital, 508 West Station Street, Nanchang, Jiangxi, 330006, China
| | - Ranhui Duan
- Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, 410028, China
| | - Zengming Li
- Jiangxi Key Laboratory of Reproductive Health, Jiangxi Maternal and Child Health Hospital, Nanchang, Jiangxi, 330006, China
- Jiangxi Provincial Clinical Medical Research Center for Obstetrics and Gynecology, Jiangxi Maternal and Child Health Hospital, Nanchang, Jiangxi, 330006, China
| | - Qiongfang Wu
- Reproductive Medicine Center, Jiangxi Maternal and Child Health Hospital, 508 West Station Street, Nanchang, Jiangxi, 330006, China.
| | - Yanqiu Liu
- Medical Genetics Center, Jiangxi Maternal and Child Health Hospital, 508 West Station Street, Nanchang, Jiangxi, 330006, China.
| |
Collapse
|
2
|
Xing L, Qi X, Liu Y, Wu J, Jiang B. Ectodysplasin-A deficiency exacerbates TMJOA by upregulating ATF4/Ihh signaling in mice. Osteoarthritis Cartilage 2025:S1063-4584(25)00865-9. [PMID: 40139647 DOI: 10.1016/j.joca.2025.02.789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 01/24/2025] [Accepted: 02/13/2025] [Indexed: 03/29/2025]
Abstract
OBJECTIVE Ectodysplasin-A (EDA) has been reported to be involved in mouse condylar development, but the specific functions of EDA in maintaining homeostasis of the temporomandibular joint (TMJ) remain unclear. This study aims to explore the underlying roles and related mechanisms of EDA in temporomandibular joint osteoarthritis (TMJOA). METHOD The TMJOA mouse model was established by unilateral discectomy and the alteration of EDA expression was detected. EDA knockout male mice and their wild-type male littermates were used to clarify the effect of EDA on TMJOA. Mouse condylar chondrocytes were extracted to explore the potential mechanisms. The effects of local injection of supplementary EDA on condyles were also evaluated morphologically and histologically. RESULTS The expression of EDA was downregulated in condylar cartilage after TMJOA modeling. EDA deficiency aggravated degeneration and inflammation of condylar cartilage in TMJOA mice. In vitro studies, EDA deficiency upregulated the expression of inflammatory cytokines, while supplementary EDA exhibited anticatabolic and anti-inflammatory effects on tumor necrosis factor-α (TNFα)-treated mouse condylar chondrocytes. Mechanistically, EDA deficiency efficiently activated activating transcription factor 4 (ATF4) to upregulate Indian hedgehog (Ihh) signaling pathway and thereby aggravated the inflammation. Inhibition of ATF4 resulted in blocking of Ihh signaling. The selective pharmacological inhibition of Ihh signaling attenuated TNF-α-induced chondrocyte destruction and the release of inflammatory cytokines. Furthermore, intra-articular application of EDA significantly alleviated the osteoarthritic cartilage destruction after discectomy. CONCLUSION EDA deficiency aggravated TMJOA by modulating ATF4/Ihh pathway, which confirming the essential role of EDA in maintaining TMJ cartilage homeostasis and its potential application in TMJOA treatment.
Collapse
Affiliation(s)
- Ludan Xing
- Shanghai Engineering Research Center of Tooth Restoration and Regeneration & Tongji Research Institute of Stomatology & Department of Pediatric Dentistry, Shanghai Tongji Stomatological Hospital and Dental School, Tongji University, Shanghai 200072, China
| | - Xin Qi
- Department of Stomatology, Shanghai Fifth People's Hospital, Fudan University, Shanghai, China
| | - Yuan Liu
- Shanghai Engineering Research Center of Tooth Restoration and Regeneration & Tongji Research Institute of Stomatology & Department of Pediatric Dentistry, Shanghai Tongji Stomatological Hospital and Dental School, Tongji University, Shanghai 200072, China
| | - Jiayan Wu
- Shanghai Engineering Research Center of Tooth Restoration and Regeneration & Tongji Research Institute of Stomatology & Department of Pediatric Dentistry, Shanghai Tongji Stomatological Hospital and Dental School, Tongji University, Shanghai 200072, China
| | - Beizhan Jiang
- Shanghai Engineering Research Center of Tooth Restoration and Regeneration & Tongji Research Institute of Stomatology & Department of Pediatric Dentistry, Shanghai Tongji Stomatological Hospital and Dental School, Tongji University, Shanghai 200072, China.
| |
Collapse
|
3
|
Xing Q, Zhou Q, Li H, Wang Z, Li S, Wu J, Zhu H, Liang D, Li Z, Wu L. Identification of six novel mutations in EDA from 20 hypohidrotic ectodermal dysplasia families. Oral Dis 2024; 30:4608-4619. [PMID: 38129747 DOI: 10.1111/odi.14838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 10/28/2023] [Accepted: 12/05/2023] [Indexed: 12/23/2023]
Abstract
OBJECTIVE To investigate the genetic causes of 22 patients with clinically high suspicion of X-linked hypohidrotic ectodermal dysplasia from 20 unrelated Chinese families, expand the spectrum of ectodysplasin-A mutations, and provide more evidence for variants of uncertain significance. SUBJECTS AND METHODS Whole-exome sequencing was performed and potentially pathogenic variants were verified by Sanger sequencing. Western blotting, real-time PCR and immunofluorescence analyses were performed to investigate the preliminary functions of the candidate variants. RESULTS Nineteen ectodysplasin-A variants were identified, six of which were not previously reported. Among these variants, we identified a patient who carried two mutations in ectodysplasin-A and exhibited more severe phenotypes. Additionally, mutant protein expression levels decreased, whereas mRNA transcription levels increased. Cellular sublocalisation of the variants located in the tumour necrosis factor homologous domain showed that the proteins accumulated in the nucleus, whereas wild-type proteins remained in the cell membrane. A rare indel variant and two classical splicing variants that lead to exon 7 skipping were detected. CONCLUSIONS This study provides definitive diagnoses for 20 families with suspected X-linked hypohidrotic ectodermal dysplasia and additional information on clinical heterogeneity and genotype-phenotype relationships.
Collapse
Affiliation(s)
- Qin Xing
- Center for Medical Genetics, Hunan Key Laboratory of Medical Genetics & Hunan Key Laboratory of Animal Models for Human Diseases, School of Life Sciences, Key Laboratory of Rare Pediatric Diseases, Ministry of Education, Central South University, Changsha, China
| | - Qimin Zhou
- Center for Medical Genetics, Hunan Key Laboratory of Medical Genetics & Hunan Key Laboratory of Animal Models for Human Diseases, School of Life Sciences, Key Laboratory of Rare Pediatric Diseases, Ministry of Education, Central South University, Changsha, China
| | - Hongyan Li
- Center for Medical Genetics, Hunan Key Laboratory of Medical Genetics & Hunan Key Laboratory of Animal Models for Human Diseases, School of Life Sciences, Key Laboratory of Rare Pediatric Diseases, Ministry of Education, Central South University, Changsha, China
| | - Zhongjie Wang
- Center for Medical Genetics, Hunan Key Laboratory of Medical Genetics & Hunan Key Laboratory of Animal Models for Human Diseases, School of Life Sciences, Key Laboratory of Rare Pediatric Diseases, Ministry of Education, Central South University, Changsha, China
| | - Shun Li
- Center for Medical Genetics, Hunan Key Laboratory of Medical Genetics & Hunan Key Laboratory of Animal Models for Human Diseases, School of Life Sciences, Key Laboratory of Rare Pediatric Diseases, Ministry of Education, Central South University, Changsha, China
| | - Jiayu Wu
- Center for Medical Genetics, Hunan Key Laboratory of Medical Genetics & Hunan Key Laboratory of Animal Models for Human Diseases, School of Life Sciences, Key Laboratory of Rare Pediatric Diseases, Ministry of Education, Central South University, Changsha, China
| | - Huimin Zhu
- Center for Medical Genetics, Hunan Key Laboratory of Medical Genetics & Hunan Key Laboratory of Animal Models for Human Diseases, School of Life Sciences, Key Laboratory of Rare Pediatric Diseases, Ministry of Education, Central South University, Changsha, China
| | - Desheng Liang
- Center for Medical Genetics, Hunan Key Laboratory of Medical Genetics & Hunan Key Laboratory of Animal Models for Human Diseases, School of Life Sciences, Key Laboratory of Rare Pediatric Diseases, Ministry of Education, Central South University, Changsha, China
- Laboratory of Molecular Genetics, Hunan Jiahui Genetics Hospital, Changsha, Hunan, China
| | - Zhuo Li
- Center for Medical Genetics, Hunan Key Laboratory of Medical Genetics & Hunan Key Laboratory of Animal Models for Human Diseases, School of Life Sciences, Key Laboratory of Rare Pediatric Diseases, Ministry of Education, Central South University, Changsha, China
| | - Lingqian Wu
- Center for Medical Genetics, Hunan Key Laboratory of Medical Genetics & Hunan Key Laboratory of Animal Models for Human Diseases, School of Life Sciences, Key Laboratory of Rare Pediatric Diseases, Ministry of Education, Central South University, Changsha, China
- Laboratory of Molecular Genetics, Hunan Jiahui Genetics Hospital, Changsha, Hunan, China
| |
Collapse
|
4
|
Rietmann SJ, Cochet-Faivre N, Dropsy H, Jagannathan V, Chevallier L, Leeb T. EDA Missense Variant in a Cat with X-Linked Hypohidrotic Ectodermal Dysplasia. Genes (Basel) 2024; 15:854. [PMID: 39062633 PMCID: PMC11276485 DOI: 10.3390/genes15070854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 06/12/2024] [Accepted: 06/26/2024] [Indexed: 07/28/2024] Open
Abstract
Hypohidrotic ectodermal dysplasia is a developmental defect characterized by sparse or absent hair, missing or malformed teeth and defects in eccrine glands. Loss-of-function variants in the X-chromosomal EDA gene have been reported to cause hypohidrotic ectodermal dysplasia in humans, mice, dogs and cattle. We investigated a male cat exhibiting diffuse truncal alopecia with a completely absent undercoat. The cat lacked several teeth, and the remaining teeth had an abnormal conical shape. Whole-genome sequencing revealed a hemizygous missense variant in the EDA gene, XM_011291781.3:c.1042G>A or XP_011290083.1:p.(Ala348Thr). The predicted amino acid exchange is located in the C-terminal TNF signaling domain of the encoded ectodysplasin. The corresponding missense variant in the human EDA gene, p.Ala349Thr, has been reported as a recurring pathogenic variant in several human patients with X-linked hypohidrotic ectodermal dysplasia. The identified feline variant therefore represents the likely cause of the hypohidrotic ectodermal dysplasia in the investigated cat, and the genetic investigation confirmed the suspected clinical diagnosis. This is the first report of an EDA-related hypohidrotic ectodermal dysplasia in cats.
Collapse
Affiliation(s)
- Stefan J. Rietmann
- Institute of Genetics, Vetsuisse Faculty, University of Bern, 3001 Bern, Switzerland; (S.J.R.); (V.J.)
- Dermfocus, University of Bern, 3001 Bern, Switzerland
| | - Noëlle Cochet-Faivre
- Unité de Dermatologie, CHUV-Animaux de Compagnie, Ecole Nationale Vétérinaire d’Alfort, 94700 Maisons-Alfort, France; (N.C.-F.); (H.D.)
- BIPAR, Laboratoire de Santé Animale, INRAE, Ecole Nationale Vétérinaire d’Alfort, 94700 Maisons-Alfort, France
| | - Helene Dropsy
- Unité de Dermatologie, CHUV-Animaux de Compagnie, Ecole Nationale Vétérinaire d’Alfort, 94700 Maisons-Alfort, France; (N.C.-F.); (H.D.)
| | - Vidhya Jagannathan
- Institute of Genetics, Vetsuisse Faculty, University of Bern, 3001 Bern, Switzerland; (S.J.R.); (V.J.)
| | - Lucie Chevallier
- U955-IMRB, Team 10-Biology of the Neuromuscular System, INSERM, UPEC, Ecole Nationale Vétérinaire d’Alfort, 94700 Maisons-Alfort, France;
| | - Tosso Leeb
- Institute of Genetics, Vetsuisse Faculty, University of Bern, 3001 Bern, Switzerland; (S.J.R.); (V.J.)
- Dermfocus, University of Bern, 3001 Bern, Switzerland
| |
Collapse
|
5
|
Faria-Teixeira MC, Tordera C, Salvado E Silva F, Vaz-Carneiro A, Iglesias-Linares A. Craniofacial syndromes and class III phenotype: common genotype fingerprints? A scoping review and meta-analysis. Pediatr Res 2024; 95:1455-1475. [PMID: 38347173 PMCID: PMC11126392 DOI: 10.1038/s41390-023-02907-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 10/03/2023] [Accepted: 10/12/2023] [Indexed: 02/18/2024]
Abstract
Skeletal Class III (SCIII) is among the most challenging craniofacial dysmorphologies to treat. There is, however, a knowledge gap regarding which syndromes share this clinical phenotype. The aims of this study were to: (i) identify the syndromes affected by the SCIII phenotype; (ii) clarify the involvement of maxillary and/or mandibular structures; (iii) explore shared genetic/molecular mechanisms. A two-step strategy was designed: [Step#1] OMIM, MHDD, HPO, GeneReviews and MedGen databases were explored; [Step#2]: Syndromic conditions indexed in [Step#1] were explored in Medline, Pubmed, Scopus, Cochrane Library, WOS and OpenGrey. Eligibility criteria were defined. Individual studies were assessed for risk of bias using the New Ottawa Scale. For quantitative analysis, a meta-analysis was conducted. This scoping review is a hypothesis-generating research. Twenty-two studies met the eligibility criteria. Eight syndromes affected by the SCIII were targeted: Apert syndrome, Crouzon syndrome, achondroplasia, X-linked hypohidrotic ectodermal dysplasia (XLED), tricho-dento-osseous syndrome, cleidocranial dysplasia, Klinefelter and Down syndromes. Despite heterogeneity between studies [p < 0.05], overall effects showed that midface components were affected in Apert and Down Syndromes, lower face in Klinefelter Syndrome and midface and lower face components in XLED. Our review provides new evidence on the craniofacial characteristics of genetically confirmed syndromes exhibiting the SCIII phenotype. Four major regulatory pathways might have a modulatory effect on this phenotype. IMPACT: What does this review add to the existing literature? To date, there is no literature exploring which particular syndromes exhibit mandibular prognathism as a common trait. Through this research, it was possibly to identify the particular syndromes that share the skeletal Class III phenotype (mandibular prognathism) as a common trait highlighting the common genetic and molecular pathways between different syndromes acknowledging their impact in craniofacial development.
Collapse
Affiliation(s)
- Maria Cristina Faria-Teixeira
- Complutense University of Madrid, School of Dentistry, 28040, Madrid, Spain
- University of Lisbon, School of Medicine, University Clinic of Stomatology, 1200, Lisbon, Portugal
| | - Cristina Tordera
- Complutense University of Madrid, School of Dentistry, 28040, Madrid, Spain
| | | | | | - Alejandro Iglesias-Linares
- Complutense University of Madrid, School of Dentistry, 28040, Madrid, Spain.
- BIOCRAN (Craniofacial Biology) Research Group, Complutense University, 28040, Madrid, Spain.
| |
Collapse
|
6
|
Reinartz S, Weiß C, Heppelmann M, Hewicker-Trautwein M, Hellige M, Willen L, Feige K, Schneider P, Distl O. A Missense Mutation in the Collagen Triple Helix of EDA Is Associated with X-Linked Recessive Hypohidrotic Ectodermal Dysplasia in Fleckvieh Cattle. Genes (Basel) 2023; 15:8. [PMID: 38275590 PMCID: PMC10815684 DOI: 10.3390/genes15010008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 12/13/2023] [Accepted: 12/15/2023] [Indexed: 01/27/2024] Open
Abstract
Mutations within the ectodysplasin A (EDA) gene have been associated with congenital hypotrichosis and anodontia (HAD/XHED) in humans, mice, dogs and cattle. We identified a three-generation family of Fleckvieh cattle with male calves exhibiting clinical and histopathological signs consistent with an X-linked recessive HAD (XHED). Whole genome and Sanger sequencing of cDNA showed a perfect association of the missense mutation g.85716041G>A (ss2019497443, rs1114816375) within the EDA gene with all three cases following an X-linked recessive inheritance, but normal EDAR and EDARADD. This mutation causes an exchange of glycine (G) with arginine (R) at amino acid position 227 (p.227G>R) in the second collagen triple helix repeat domain of EDA. The EDA variant was associated with a significant reduction and underdevelopment of hair follicles along with a reduced outgrowth of hairs, a complete loss of seromucous nasolabial and mucous tracheal and bronchial glands and a malformation of and reduction in number of teeth. Thermostability of EDA G227R was reduced, consistent with a relatively mild hair and tooth phenotype. However, incisors and canines were more severely affected in one of the calves, which correlated with the presence of a homozygous missense mutation of RNF111 (g.51306765T>G), a putative candidate gene possibly associated with tooth number in EDA-deficient Fleckvieh calves.
Collapse
Affiliation(s)
- Sina Reinartz
- Institute for Animal Breeding and Genetics, University of Veterinary Medicine, 30559 Hannover, Germany;
| | - Christine Weiß
- Clinic for Swine, Ludwig-Maximilians-Universität München, 80539 Munich, Germany;
| | - Maike Heppelmann
- Clinic for Cattle, University of Veterinary Medicine, 30173 Hannover, Germany;
| | | | - Maren Hellige
- Clinic for Horses, University of Veterinary Medicine, 30559 Hannover, Germany; (M.H.); (K.F.)
| | - Laure Willen
- Department of Immunobiology, University of Lausanne, 1066 Epalinges, Switzerland; (L.W.); (P.S.)
| | - Karsten Feige
- Clinic for Horses, University of Veterinary Medicine, 30559 Hannover, Germany; (M.H.); (K.F.)
| | - Pascal Schneider
- Department of Immunobiology, University of Lausanne, 1066 Epalinges, Switzerland; (L.W.); (P.S.)
| | - Ottmar Distl
- Institute for Animal Breeding and Genetics, University of Veterinary Medicine, 30559 Hannover, Germany;
| |
Collapse
|
7
|
Rencuzogullari E, Ezer BG. A new variant of the ectodysplasin A receptor death domain gene associated with anhidrotic ectodermal dysplasia in a Turkish family and its simple diagnosis by restriction fragment length polymorphism. Genes Genet Syst 2023; 98:171-178. [PMID: 37673591 DOI: 10.1266/ggs.22-00138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/08/2023] Open
Abstract
Ectodermal dysplasia (ED), which exhibits a wide range of clinical symptoms, may be classified into three major types: hypohidrotic, anhidrotic, and hidrotic. A male child (proband) showing anhidrotic dysplasia was used as the subject of this study. The biopsy of the big toe revealed that the male child had no sweat glands. Genetic analysis of the patient revealed a mutation caused by a homozygous nucleotide substitution in the EDAR-associated death domain (EDARADD) (rs114632254) gene c.439G>A (p.Gly147Arg). Phenotypically, his teeth were sharp, but eight teeth were missing (oligodontia). The patient had normal nails with dry skin, sparse hair, everted lower lip vermilion, hyperpigmented eyelids, and abnormal nasal bridge morphology around the eyes. There is also a homozygous dominant (healthy) female and a heterozygous male in this family, who are cousins (aunt children) to the heterozygous parents. The daughter of the patient was also heterozygous. This mutation represents homozygous recessive inheritance, which we describe for the first time. Furthermore, we demonstrated that this genetic disorder can be readily diagnosed using the restriction fragment length polymorphism (RFLP) method after digestion with MnII restriction endonuclease.
Collapse
Affiliation(s)
| | - Banu Guven Ezer
- Department of Biology, Institute of Graduate Education, Adiyaman University
| |
Collapse
|
8
|
Gao Y, Jiang X, Wei Z, Long H, Lai W. The EDA/EDAR/NF-κB pathway in non-syndromic tooth agenesis: A genetic perspective. Front Genet 2023; 14:1168538. [PMID: 37077539 PMCID: PMC10106650 DOI: 10.3389/fgene.2023.1168538] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 03/23/2023] [Indexed: 04/05/2023] Open
Abstract
Non-syndromic tooth agenesis (NSTA) is one of the most common dental developmental malformations affected by genetic factors predominantly. Among all 36 candidate genes reported in NSTA individuals, EDA, EDAR, and EDARADD play essential roles in ectodermal organ development. As members of the EDA/EDAR/NF-κB signaling pathway, mutations in these genes have been implicated in the pathogenesis of NSTA, as well as hypohidrotic ectodermal dysplasia (HED), a rare genetic disorder that affects multiple ectodermal structures, including teeth. This review provides an overview of the current knowledge on the genetic basis of NSTA, with a focus on the pathogenic effects of the EDA/EDAR/NF-κB signaling pathway and the role of EDA, EDAR, and EDARADD mutations in developmental tooth defects. We also discuss the phenotypic overlap and genetic differences between NSTA and HED. Ultimately, this review highlights the importance of genetic analysis in diagnosing and managing NSTA and related ectodermal disorders, and the need for ongoing research to improve our understanding of these conditions.
Collapse
Affiliation(s)
- Yanzi Gao
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xiaohui Jiang
- Human Sperm Bank, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Zhi Wei
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Hu Long
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Wenli Lai
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- *Correspondence: Wenli Lai,
| |
Collapse
|
9
|
Schweikl C, Maier-Wohlfart S, Schneider H, Park J. Ectodysplasin A1 Deficiency Leads to Osteopetrosis-like Changes in Bones of the Skull Associated with Diminished Osteoclastic Activity. Int J Mol Sci 2022; 23:12189. [PMID: 36293046 PMCID: PMC9603288 DOI: 10.3390/ijms232012189] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 09/30/2022] [Accepted: 10/10/2022] [Indexed: 08/30/2023] Open
Abstract
Pathogenic variants of the gene Eda cause X-linked hypohidrotic ectodermal dysplasia (XLHED), which is characterized by structural abnormalities or lack of ectodermal appendages. Signs of dysplasia are not restricted to derivatives of the ectodermal layer, but mesodermal abnormalities, such as craniofacial dysmorphism, are also frequently observed, suggesting close reciprocal interactions between the ectoderm and mesoderm; however, a causal link has remained unsubstantiated. We investigated the functional impact of defective ectodysplasin A1 (Eda1) signaling on postnatal bone homeostasis in Eda1-deficient Tabby mice. Interestingly, Eda1 was detected in wild-type mouse calvariae throughout postnatal lifetime. In calvariae, bone-lining Osterix (Osx)+ osteoblasts stained positive for Eda1, and osteoclasts were revealed as Eda receptor (Edar)-positive. Moreover, adult Eda1-deficient calvarial bone showed osteopetrosis-like changes with significantly diminished marrow space, which was maintained during adulthood. Concomitantly with osteopetrosis-like changes, Tabby calvarial bone and Tabby bone marrow-derived osteoclasts had far less osteoclastic activity-associated co-enzymes including cathepsin K, Mmp9, Trap, and Tcirg1 (V-type proton ATPase a3 subunit) compared with wild-type calvariae in vivo or osteoclasts in vitro, indicating that Eda1 deficiency may affect the activity of osteoclasts. Finally, we confirmed that nuclear Nfatc1-positive osteoclasts were strongly diminished during mature osteoclastic differentiation under M-CSF and RANKL in the Tabby model, while Fc-EDA treatment of Tabby-derived osteoclasts significantly increased nuclear translocation of Nfatc1. Furthermore, we identified enhanced Nfatc1 and NF-κB transcriptional activity following Fc-EDA treatment in vitro using luciferase assays. Overall, the results indicate that diminished expressions of osteoclastic activity-associated co-enzymes may lead to disturbed bone homeostasis in Tabby calvariae postnatally.
Collapse
Affiliation(s)
- Christine Schweikl
- Department of Pediatrics, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, 91054 Erlangen, Germany
- Center for Ectodermal Dysplasias, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Sigrun Maier-Wohlfart
- Department of Pediatrics, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, 91054 Erlangen, Germany
- Center for Ectodermal Dysplasias, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Holm Schneider
- Department of Pediatrics, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, 91054 Erlangen, Germany
- Center for Ectodermal Dysplasias, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Jung Park
- Department of Pediatrics, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, 91054 Erlangen, Germany
- Center for Ectodermal Dysplasias, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, 91054 Erlangen, Germany
| |
Collapse
|
10
|
Liu H, Su L, Liu H, Zheng J, Feng H, Liu Y, Yu M, Han D. Rare X-Linked Hypohidrotic Ectodermal Dysplasia in Females Associated with Ectodysplasin-A Variants and the X-Chromosome Inactivation Pattern. Diagnostics (Basel) 2022; 12:diagnostics12102300. [PMID: 36291989 PMCID: PMC9600026 DOI: 10.3390/diagnostics12102300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 09/18/2022] [Accepted: 09/20/2022] [Indexed: 11/16/2022] Open
Abstract
The goal of this study was to identify the pathogenic gene variants in female patients with severe X-linked hypohidrotic ectodermal dysplasia (XLHED). Whole-exome sequencing (WES) and Sanger sequencing were used to screen for the pathogenic gene variants. The harmfulness of these variations was predicted by bioinformatics. Then, skewed X-chromosome inactivation (XCI) was measured by PCR analysis of the CAG repeat region in the human androgen receptor (AR) gene in peripheral blood cells. Two novel Ectodysplasin-A (EDA) heterozygous variants (c.588_606del19bp and c.837G>A) and one heterozygous variant (c.1045G>A, rs132630317) were identified in the three female XLHED patients. The bioinformatics analysis showed that these variants might be pathogenic. The tertiary structure analysis showed that these variants could cause structural damage to EDA proteins. Analysis of the skewed X-chromosome inactivation revealed that extreme skewed X-chromosome inactivation was found in patient #35 (98:2), whereas it was comparatively moderate in patients #347 and #204 (21:79 and 30:70). Our results broaden the variation spectrum of EDA and the phenotype spectrum of XLHED, which could help with clinical diagnosis, treatment, and genetic counseling.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Miao Yu
- Correspondence: (M.Y.); (D.H.); Fax: +86-10-8210-5259 (M.Y.); +86-10-6217-3402 (D.H.)
| | - Dong Han
- Correspondence: (M.Y.); (D.H.); Fax: +86-10-8210-5259 (M.Y.); +86-10-6217-3402 (D.H.)
| |
Collapse
|
11
|
Yu K, Dou J, Huang W, Wang F, Wu Y. Expanding the genetic spectrum of tooth agenesis using whole-exome sequencing. Clin Genet 2022; 102:503-516. [PMID: 36071541 DOI: 10.1111/cge.14225] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 08/31/2022] [Accepted: 09/01/2022] [Indexed: 11/28/2022]
Abstract
BACKGROUND Tooth agenesis is a high genetic heterogeneous disorder with more than eighty genes identified as associated molecular causes. The present study aimed to detect the possible pathogenic variants in a cohort of well-characterized probands with a clinical diagnosis of tooth agenesis. METHODS We performed whole-exome sequencing (WES) in 131 tooth agenesis patients with no previously identified molecular diagnosis. All the potential pathogenic variants were verified by Sanger sequencing in patients and their family members. Results Seventy-three patients were genetically diagnosed in 131 unrelated Chinese patients with tooth agenesis, providing a positive molecular diagnostic rate of 55.7%, including 53.8% (49/91) in the non-syndromic tooth agenesis (NSTA) group, and 60.0% (24/40) in syndromic tooth agenesis (STA) group. A total of 75 variants from 13 different genes were identified, including 33 novel variants, and WNT10A and EDA are the most common causative genes associated with non-syndromic and syndromic tooth agenesis, respectively. CONCLUSIONS This study further extends the variant spectrum and clinical profiles of tooth agenesis, which has a positive significance for clinical practice, genetic diagnosis, prenatal counseling and future treatment.
Collapse
Affiliation(s)
- Kang Yu
- Department of Second Dental Center, Ninth People's Hospital Affiliated with Shanghai Jiao Tong University, School of Medicine, Shanghai Key Laboratory of Stomatology, National Clinical Research Center of Stomatology, Shanghai, China
| | - Jiaqi Dou
- Department of Second Dental Center, Ninth People's Hospital Affiliated with Shanghai Jiao Tong University, School of Medicine, Shanghai Key Laboratory of Stomatology, National Clinical Research Center of Stomatology, Shanghai, China
| | - Wei Huang
- Department of Second Dental Center, Ninth People's Hospital Affiliated with Shanghai Jiao Tong University, School of Medicine, Shanghai Key Laboratory of Stomatology, National Clinical Research Center of Stomatology, Shanghai, China
| | - Feng Wang
- Department of Oral Implantology, Ninth People's Hospital Affiliated with Shanghai Jiao Tong University, School of Medicine, Shanghai Key Laboratory of Stomatology, National Clinical Research Center of Stomatology, Shanghai, China
| | - Yiqun Wu
- Department of Second Dental Center, Ninth People's Hospital Affiliated with Shanghai Jiao Tong University, School of Medicine, Shanghai Key Laboratory of Stomatology, National Clinical Research Center of Stomatology, Shanghai, China
| |
Collapse
|
12
|
Extended Overview of Ocular Phenotype with Recent Advances in Hypohidrotic Ectodermal Dysplasia. CHILDREN 2022; 9:children9091357. [PMID: 36138666 PMCID: PMC9497858 DOI: 10.3390/children9091357] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/30/2022] [Accepted: 09/02/2022] [Indexed: 11/17/2022]
Abstract
The term ectodermal dysplasias (EDs) describes a heterogeneous group of inherited developmental disorders that affect several tissues of ectodermal origin. The most common form of EDs is hypohidrotic ectodermal dysplasia (HED), which is characterized by hypodontia, hypotrichosis, and partial or total eccrine sweat gland deficiency. HED is estimated to affect at least 1 in 17,000 people worldwide. Patients with HED have characteristic facies with periorbital hyperpigmentation, depressed nasal bridge, malar hypoplasia, and absent or sparse eyebrows and eyelashes. The common ocular features of HED include madarosis, trichiasis, and ocular chronic surface disease due to dry eye syndrome, which manifests clinically with discomfort, photophobia, and redness. Dry eye is common in HED and results from a combination of ocular surface defects: mucus abnormalities (abnormal conjunctival mucinous glands), aqueous tear deficiency (abnormalities in the lacrimal gland) and lipid deficiency (due to the partial or total absence of the meibomian glands; modified sebaceous glands with the tarsal plate). Sight-threatening complications result from ocular surface disease, including corneal ulceration and perforation with subsequent corneal scarring and neovascularization. Rare ocular features have been reported and include bilateral or unilateral congenital cataracts, bilateral glaucoma, chorioretinal atrophy and atresia of the nasolacrimal duct. Recognition of the ocular manifestations of HED is required to perform clinical surveillance, instigate supportive and preventative treatment, and manage ocular complications.
Collapse
|
13
|
Liu L, Wu Y, Ye K, Cai M, Zhuang G, Wang J. Antibody-Targeted TNFRSF Activation for Cancer Immunotherapy: The Role of FcγRIIB Cross-Linking. Front Pharmacol 2022; 13:924197. [PMID: 35865955 PMCID: PMC9295861 DOI: 10.3389/fphar.2022.924197] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 05/30/2022] [Indexed: 12/19/2022] Open
Abstract
Co-stimulation signaling in various types of immune cells modulates immune responses in physiology and disease. Tumor necrosis factor receptor superfamily (TNFRSF) members such as CD40, OX40 and CD137/4-1BB are expressed on myeloid cells and/or lymphocytes, and they regulate antigen presentation and adaptive immune activities. TNFRSF agonistic antibodies have been evaluated extensively in preclinical models, and the robust antitumor immune responses and efficacy have encouraged continued clinical investigations for the last two decades. However, balancing the toxicities and efficacy of TNFRSF agonistic antibodies remains a major challenge in the clinical development. Insights into the co-stimulation signaling biology, antibody structural roles and their functionality in immuno-oncology are guiding new advancement of this field. Leveraging the interactions between antibodies and the inhibitory Fc receptor FcγRIIB to optimize co-stimulation agonistic activities dependent on FcγRIIB cross-linking selectively in tumor microenvironment represents the current frontier, which also includes cross-linking through tumor antigen binding with bispecific antibodies. In this review, we will summarize the immunological roles of TNFRSF members and current clinical studies of TNFRSF agonistic antibodies. We will also cover the contribution of different IgG structure domains to these agonistic activities, with a focus on the role of FcγRIIB in TNFRSF cross-linking and clustering bridged by agonistic antibodies. We will review and discuss several Fc-engineering approaches to optimize Fc binding ability to FcγRIIB in the context of proper Fab and the epitope, including a cross-linking antibody (xLinkAb) model and its application in developing TNFRSF agonistic antibodies with improved efficacy and safety for cancer immunotherapy.
Collapse
Affiliation(s)
| | - Yi Wu
- Lyvgen Biopharma, Shanghai, China
| | - Kaiyan Ye
- State Key Laboratory of Oncogenes and Related Genes, Department of Obstetrics and Gynecology, Ren Ji Hospital, Shanghai Cancer Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Gynecologic Oncology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Meichun Cai
- State Key Laboratory of Oncogenes and Related Genes, Department of Obstetrics and Gynecology, Ren Ji Hospital, Shanghai Cancer Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Gynecologic Oncology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Guanglei Zhuang
- State Key Laboratory of Oncogenes and Related Genes, Department of Obstetrics and Gynecology, Ren Ji Hospital, Shanghai Cancer Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Gynecologic Oncology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | | |
Collapse
|
14
|
Apgar TL, Sanders CR. Compendium of causative genes and their encoded proteins for common monogenic disorders. Protein Sci 2022; 31:75-91. [PMID: 34515378 PMCID: PMC8740837 DOI: 10.1002/pro.4183] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 08/29/2021] [Accepted: 08/31/2021] [Indexed: 01/19/2023]
Abstract
A compendium is presented of inherited monogenic disorders that have a prevalence of >1:20,000 in the human population, along with their causative genes and encoded proteins. "Simple" monogenic diseases are those for which the clinical features are caused by mutations impacting a single gene, usually in a manner that alters the sequence of the encoded protein. Of course, for a given "monogenic disorder", there is sometimes more than one potential disease gene, mutations in any one of which is sufficient to cause phenotypes of that disorder. Disease-causing mutations for monogenic disorders are usually passed on from generation to generation in a Mendelian fashion, and originate from spontaneous (de novo) germline founder mutations. In the past monogenic disorders have often been written off as targets for drug discovery because they sometimes are assumed to be rare disorders, for which the meager projected financial payoff of drug discovery and development has discouraged investment. However, not all monogenic diseases are rare. Here, we report that that currently available data identifies 72 disorders with a prevalence of at least 1 in 20,000 humans. For each, we tabulate the gene(s) for which mutations cause the spectrum of phenotypes associated with that disorder. We also identify the gene and protein that most commonly causes each disease. 34 of these disorders are caused exclusively by mutations in only a single gene and encoded protein.
Collapse
Affiliation(s)
- Tucker L. Apgar
- Department of Biochemistry and Center for Structural BiologyVanderbilt University School of Medicine Basic SciencesNashvilleTennesseeUSA
| | - Charles R. Sanders
- Department of Biochemistry and Center for Structural BiologyVanderbilt University School of Medicine Basic SciencesNashvilleTennesseeUSA
| |
Collapse
|
15
|
Abstract
Fluid secretion by exocrine glandular organs is essential to the survival of mammals. Each glandular unit within the body is uniquely organized to carry out its own specific functions, with failure to establish these specialized structures resulting in impaired organ function. Here, we review glandular organs in terms of shared and divergent architecture. We first describe the structural organization of the diverse glandular secretory units (the end-pieces) and their fluid transporting systems (the ducts) within the mammalian system, focusing on how tissue architecture corresponds to functional output. We then highlight how defects in development of end-piece and ductal architecture impacts secretory function. Finally, we discuss how knowledge of exocrine gland structure-function relationships can be applied to the development of new diagnostics, regenerative approaches and tissue regeneration.
Collapse
Affiliation(s)
- Sameed Khan
- Department of Obstetrics Gynecology and Reproductive Biology, Michigan State University, East Lansing, MI 48824, USA
- Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI 48824, USA
| | - Sarah Fitch
- Department of Obstetrics Gynecology and Reproductive Biology, Michigan State University, East Lansing, MI 48824, USA
- Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI 48824, USA
| | - Sarah Knox
- Department of Cell and Tissue Biology, University of California, San Francisco, CA 94143, USA
| | - Ripla Arora
- Department of Obstetrics Gynecology and Reproductive Biology, Michigan State University, East Lansing, MI 48824, USA
- Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
16
|
Inazawa-Terada M, Namiki T, Omigawa C, Fujimoto T, Munetsugu T, Ugajin T, Shimomura Y, Ohshima Y, Yoshida K, Niizeki H, Hayashi R, Nakano H, Yokozeki H. An epidemiological survey of anhidrotic/hypohidrotic ectodermal dysplasia in Japan: High prevalence of allergic diseases. J Dermatol 2021; 49:422-431. [PMID: 34897795 DOI: 10.1111/1346-8138.16278] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 11/04/2021] [Accepted: 11/19/2021] [Indexed: 11/29/2022]
Abstract
Anhidrotic/hypohidrotic ectodermal dysplasia (A/HED) is a congenital disorder characterized by anhidrosis/hypohidrosis and inadequate hair and dental dysplasia. Large-scale case studies of patients with A/HED have already been conducted overseas, while there has been no large-scale study, but only a few case reports in Japan. Furthermore, an epidemiological study of this disease has not been conducted in Japan to date. The purpose of this study was to investigate the clinical characteristics of A/HED patients, the status of genetic aberrations and complications of A/HED in Japan. Initially, we conducted a physician-initiated questionnaire survey of A/HED patients who visited medical institutions across Japan to investigate their backgrounds, clinical symptoms, genotypes, diagnostic methods and complications of A/HED. We also investigated the presence or absence of various allergic diseases (atopic dermatitis-like skin manifestations, bronchial asthma and food allergies). Questionnaires were also obtained from 26 patients with ectodermal dysplasia (ED) who visited four medical institutions. We compared the incidence of allergic diseases in healthy controls in a similar study to that of patients. Twenty-four of those patients were considered to have A/HED, of which 18 had a confirmed genetic diagnosis and were genotyped. All patients had anhidrosis or hypohidrosis, hair and dental dysplasia, and unique facial appearance; 23 patients had several cutaneous manifestations and seven patients had periorbital pigmentation. In addition, there was a significantly higher incidence of atopic dermatitis-like cutaneous manifestations, bronchial asthma and food allergies in the A/HED patients than in healthy controls. We report the results from a questionnaire survey of 24 patients with A/HED. This is the first report of a large number of A/HED patients in Japan. This study clarifies the status of clinical diagnosis and genetic testing of A/HED patients in Japan, as well as the characteristics of their skin symptoms and allergic complications.
Collapse
Affiliation(s)
- Minako Inazawa-Terada
- Department of Dermatology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Takeshi Namiki
- Department of Dermatology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Chika Omigawa
- Department of Dermatology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Tomoko Fujimoto
- Department of Dermatology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Takichi Munetsugu
- Department of Dermatology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Tsukasa Ugajin
- Department of Dermatology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Yutaka Shimomura
- Department of Dermatology, Yamaguchi University Graduate School of Medicine, Ube, Japan
| | - Yuichiro Ohshima
- Department of Dermatology, Aichi Medical University School of Medicine, Nagakute, Japan
| | - Kazue Yoshida
- Division of Dermatology, National Center for Child Health and Development, Tokyo, Japan
| | - Hironori Niizeki
- Division of Dermatology, National Center for Child Health and Development, Tokyo, Japan
| | - Ryota Hayashi
- Division of Dermatology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Hajime Nakano
- Department of Dermatology, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Hiroo Yokozeki
- Department of Dermatology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| |
Collapse
|
17
|
Chaudhary AK, Gholse A, Nagarajaram HA, Dalal AB, Gupta N, Dutta AK, Danda S, Gupta R, Sankar HV, Bhavani GS, Girisha KM, Phadke SR, Ranganath P, Bashyam MD. Ectodysplasin pathogenic variants affecting the furin-cleavage site and unusual clinical features define X-linked hypohidrotic ectodermal dysplasia in India. Am J Med Genet A 2021; 188:788-805. [PMID: 34863015 DOI: 10.1002/ajmg.a.62579] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 09/20/2021] [Accepted: 11/02/2021] [Indexed: 11/09/2022]
Abstract
Hypohidrotic ectodermal dysplasia (HED) is a rare genetic disorder caused by mutational inactivation of a developmental pathway responsible for generation of tissues of ectodermal origin. The X-linked form accounts for the majority of HED cases and is caused by Ectodysplasin (EDA) pathogenic variants. We performed a combined analysis of 29 X-linked hypohidrotic ectodermal dysplasia (XLHED) families (including 12 from our previous studies). In addition to the classical triad of symptoms including loss (or reduction) of ectodermal structures, such as hair, teeth, and sweat glands, we detected additional HED-related clinical features including facial dysmorphism and hyperpigmentation in several patients. Interestingly, global developmental delay was identified as an unusual clinical symptom in many patients. More importantly, we identified 22 causal pathogenic variants that included 15 missense, four small in-dels, and one nonsense, splice site, and large deletion each. Interestingly, we detected 12 unique (India-specific) pathogenic variants. Of the 29 XLHED families analyzed, 11 (38%) harbored pathogenic variant localized to the furin cleavage site. A comparison with HGMD revealed significant differences in the frequency of missense pathogenic variants; involvement of specific exons and/or protein domains and transition/transversion ratios. A significantly higher proportion of missense pathogenic variants (33%) localized to the EDA furin cleavage when compared to HGMD (7%), of which p.R155C, p.R156C, and p.R156H were detected in three families each. Therefore, the first comprehensive analysis of XLHED from India has revealed several unique features including unusual clinical symptoms and high frequency of furin cleavage site pathogenic variants.
Collapse
Affiliation(s)
- Ajay Kumar Chaudhary
- Laboratory of Molecular Oncology, Centre for DNA Fingerprinting and Diagnostics, Hyderabad, India
| | - Aishwarya Gholse
- Laboratory of Computational Biology, Department of Systems and Computational Biology, School of Life Sciences, University of Hyderabad, Hyderabad, India
| | - Hampapathalu Adimurthy Nagarajaram
- Laboratory of Computational Biology, Department of Systems and Computational Biology, School of Life Sciences, University of Hyderabad, Hyderabad, India
| | - Ashwin Bhikaji Dalal
- Diagnostics Division, Centre for DNA Fingerprinting and Diagnostics, Hyderabad, India
| | - Neerja Gupta
- Division of Genetics, Department of Pediatrics, All India Institute of Medical Sciences, New Delhi, India
| | - Atanu Kumar Dutta
- Department of Clinical Genetics, Christian Medical College and Hospital, Vellore, India
| | - Sumita Danda
- Department of Clinical Genetics, Christian Medical College and Hospital, Vellore, India
| | - Rekha Gupta
- Department of Medical Genetics, Mahatma Gandhi Medical College and Hospital, Jaipur, India
| | - Hariharan V Sankar
- Department of Pediatrics, SAT Hospital, Medical College, Trivandrum, India
| | - Gandham SriLakshmi Bhavani
- Department of Medical Genetics, Kasturba Medical College, Manipal Academy of Higher Education, Manipal, India
| | - Katta M Girisha
- Department of Medical Genetics, Kasturba Medical College, Manipal Academy of Higher Education, Manipal, India
| | - Shubha Rao Phadke
- Department of Medical Genetics, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, India
| | - Prajnya Ranganath
- Diagnostics Division, Centre for DNA Fingerprinting and Diagnostics, Hyderabad, India.,Department of Medical Genetics, Nizam's Institute of Medical Sciences, Hyderabad, India
| | - Murali Dharan Bashyam
- Laboratory of Molecular Oncology, Centre for DNA Fingerprinting and Diagnostics, Hyderabad, India
| |
Collapse
|
18
|
Alksere B, Kornejeva L, Grinfelde I, Dzalbs A, Enkure D, Conka U, Andersone S, Blumberga A, Nikitina-Zake L, Kangare L, Radovica-Spalvina I, Vasiljeva I, Gailite L, Erenpreiss J, Fodina V. A novel EDA variant causing X-linked hypohidrotic ectodermal dysplasia: Case report. Mol Genet Metab Rep 2021; 29:100796. [PMID: 34584847 PMCID: PMC8453221 DOI: 10.1016/j.ymgmr.2021.100796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 08/22/2021] [Accepted: 08/22/2021] [Indexed: 11/12/2022] Open
Abstract
Hereditary ectodermal dysplasias are a complex group of inherited disorders characterised by abnormalities in two or more ectodermal derivatives (skin, nails, sweat glands, etc.). There are two main types of these disorders – hidrotic and hypohidrotic/anhidrotic ectodermal dysplasias. Hypohidrotic ectodermal dysplasia (HED) or Christ-Siemens-Touraine syndrome (OMIM: 305100) occurs in 1 out of 5000–10,000 births [19] and has an X-linked recessive inheritance pattern (X-linked hypohydrotic ectodermal dysplasia – XLHED) [2]. The main cause of XLHED is a broad range of pathogenic variants in the EDA gene (HGNC:3157, Xq12-13) which encodes the transmembrane protein ectodysplasin-A [4]. We report here the case of a patient with a novel inherited allelic variant in the EDA gene – NM_001399.5:c.337C>T (p.Gln113*) – in the heterozygous state. Targeted family member screening was conducted and other carriers of this EDA gene pathogenic variant were identified and phenotypically characterised. The patient subsequently underwent in vitro fertilisation with preimplantation genetic testing for monogenic diseases (PGT-M).
Collapse
Affiliation(s)
- Baiba Alksere
- iVF Riga Clinic, Latvia.,Riga Stradins University, Latvia
| | | | - Ieva Grinfelde
- iVF Riga Clinic, Latvia.,Children's Clinical University Hospital, Latvia
| | - Aigars Dzalbs
- iVF Riga Clinic, Latvia.,Children's Clinical University Hospital, Latvia
| | - Dace Enkure
- iVF Riga Clinic, Latvia.,Children's Clinical University Hospital, Latvia
| | - Una Conka
- iVF Riga Clinic, Latvia.,Riga Stradins University, Latvia
| | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Wang F, Tao B, Shen Y, Li C, Huang W, Sun Y, Wu Y. A single-arm clinical trial investigating the feasibility of the zygomatic implant quad approach for Cawood and Howell Class 4 edentulous maxilla: An option for immediate loading. Clin Implant Dent Relat Res 2021; 23:800-808. [PMID: 34580991 DOI: 10.1111/cid.13046] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 08/06/2021] [Accepted: 08/30/2021] [Indexed: 12/31/2022]
Abstract
INTRODUCTION The traditional way to treat maxillary edentulous Cawood and Howell Class 4 (CH4) patients who exhibit the knife-edge ridge form of edentulous jaws that are adequate in height and inadequate in width is extensive autologous bone grafting for conventional implant placement. PURPOSE To evaluate the feasibility of the zygomatic implant (ZI) quad approach in edentulous CH4 patients who presented a knife-edge ridge form in the anterior maxilla for immediate loading. MATERIAL AND METHODS Eligible patients with maxillary CH4 edentulism treated with the ZI quad approach were enrolled. Bone reduction and implant placement were performed under the guidance of a navigation system according to preoperative planning. The outcome variable was the implant survival rate, and additional variables were the ratio of immediate loading, complications and the relationship of the zygomatic implant path to the sinus wall. Statistical analysis was performed with the SAS statistical package. RESULTS Fifteen patients (3 men, 12 women; age range, 19-71 years; average age 47.2 years) eligible for the study received the ZI quad approach from January 2017 through January 2020. All ZIs achieved osseointegration, with no implant loss after early healing and a mean follow-up of 17.2 ± 6.2 months. Thirteen of 15 patients (86.7%) received immediate loading. No critical anatomic structure injuries occurred during surgery. Most mesially placed implants (23/30, 76.6%) presented ZAGA 2 and 3, and most distally placed implants were distributed in ZAGA 0 (20/30, 66.7%). DISCUSSION In terms of realizing immediate loading in CH4 patients with a knife-edge ridge form in the anterior maxilla, quad approaches have advantages over other grafting methods. At the same time, it seems the survival rate of zygomatic implants is comparable with that of other indications. With the limitations of this study, the quad approach might be a feasible option to realize edentulous maxillary reconstruction and to make immediate loading possible.
Collapse
Affiliation(s)
- Feng Wang
- Department of Oral Implantology, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,National Center for Stomatology, Shanghai, China.,National Clinical Research Center for Oral Diseases, Shanghai, China.,Shanghai Key Laboratory of Stomatology, Shanghai, China.,Research Unit of Oral and Maxillofacial Regenerative Medicine, Chinese Academy of Medical Sciences, Shanghai, China
| | - Baoxin Tao
- National Center for Stomatology, Shanghai, China.,National Clinical Research Center for Oral Diseases, Shanghai, China.,Shanghai Key Laboratory of Stomatology, Shanghai, China.,Research Unit of Oral and Maxillofacial Regenerative Medicine, Chinese Academy of Medical Sciences, Shanghai, China.,Department of Second Dental Center, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yihan Shen
- National Center for Stomatology, Shanghai, China.,National Clinical Research Center for Oral Diseases, Shanghai, China.,Shanghai Key Laboratory of Stomatology, Shanghai, China.,Research Unit of Oral and Maxillofacial Regenerative Medicine, Chinese Academy of Medical Sciences, Shanghai, China.,Department of Second Dental Center, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chaolun Li
- National Center for Stomatology, Shanghai, China.,National Clinical Research Center for Oral Diseases, Shanghai, China.,Shanghai Key Laboratory of Stomatology, Shanghai, China.,Research Unit of Oral and Maxillofacial Regenerative Medicine, Chinese Academy of Medical Sciences, Shanghai, China.,Department of Second Dental Center, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wei Huang
- Department of Oral Implantology, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,National Center for Stomatology, Shanghai, China.,National Clinical Research Center for Oral Diseases, Shanghai, China.,Shanghai Key Laboratory of Stomatology, Shanghai, China.,Research Unit of Oral and Maxillofacial Regenerative Medicine, Chinese Academy of Medical Sciences, Shanghai, China
| | - Yuanyuan Sun
- National Center for Stomatology, Shanghai, China.,National Clinical Research Center for Oral Diseases, Shanghai, China.,Shanghai Key Laboratory of Stomatology, Shanghai, China.,Research Unit of Oral and Maxillofacial Regenerative Medicine, Chinese Academy of Medical Sciences, Shanghai, China.,Department of Second Dental Center, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yiqun Wu
- National Center for Stomatology, Shanghai, China.,National Clinical Research Center for Oral Diseases, Shanghai, China.,Shanghai Key Laboratory of Stomatology, Shanghai, China.,Research Unit of Oral and Maxillofacial Regenerative Medicine, Chinese Academy of Medical Sciences, Shanghai, China.,Department of Second Dental Center, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
20
|
Gene Mutations of the Three Ectodysplasin Pathway Key Players ( EDA, EDAR, and EDARADD) Account for More than 60% of Egyptian Ectodermal Dysplasia: A Report of Seven Novel Mutations. Genes (Basel) 2021; 12:genes12091389. [PMID: 34573371 PMCID: PMC8468066 DOI: 10.3390/genes12091389] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 08/30/2021] [Accepted: 09/03/2021] [Indexed: 12/22/2022] Open
Abstract
Ectodermal dysplasia (ED) is a diverse group of genetic disorders caused by congenital defects of two or more ectodermal-derived body structures, namely, hair, teeth, nails, and some glands, e.g., sweat glands. Molecular pathogenesis of ED involves mutations of genes encoding key proteins of major developmental pathways, including ectodysplasin (EDA) and wingless-type (WNT) pathways. The most common ED phenotype is hypohidrotic/anhidrotic ectodermal dysplasia (HED) featuring hypotrichosis, hypohidrosis/anhidrosis, and hypodontia. Molecular diagnosis is fundamental for disease management and emerging treatments. We used targeted next generation sequencing to study EDA, EDAR, EDARADD, and WNT10A genes in 45 Egyptian ED patients with or without hypohidrosis. We present genotype and phenotype data of 28 molecularly-characterized patients demonstrating genetic heterogeneity, variable expressivity, and intrafamilial phenotypic variability. Thirteen mutations were reported, including four novel EDA mutations, two novel EDARADD, and one novel EDAR mutations. Identified mutations congregated in exons encoding key functional domains. EDA is the most common gene contributing to 85% of the identified Egyptian ED genetic spectrum, followed by EDARADD (10%) and EDAR (5%). Our cohort represents the first and largest cohort from North Africa where more than 60% of ED patients were identified emphasizing the need for exome sequencing to explore unidentified cases.
Collapse
|
21
|
Kossel CS, Wahlbuhl M, Schuepbach-Mallepell S, Park J, Kowalczyk-Quintas C, Seeling M, von der Mark K, Schneider P, Schneider H. Correction of Vertebral Bone Development in Ectodysplasin A1-Deficient Mice by Prenatal Treatment With a Replacement Protein. Front Genet 2021; 12:709736. [PMID: 34456978 PMCID: PMC8385758 DOI: 10.3389/fgene.2021.709736] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 07/19/2021] [Indexed: 11/28/2022] Open
Abstract
X-linked hypohidrotic ectodermal dysplasia with the cardinal symptoms hypodontia, hypotrichosis and hypohidrosis is caused by a genetic deficiency of ectodysplasin A1 (EDA1). Prenatal EDA1 replacement can rescue the development of skin appendages and teeth. Tabby mice, a natural animal model of EDA1 deficiency, additionally feature a striking kink of the tail, the cause of which has remained unclear. We studied the origin of this phenomenon and its response to prenatal therapy. Alterations in the distal spine could be noticed soon after birth, and kinks were present in all Tabby mice by the age of 4 months. Although their vertebral bones frequently had a disorganized epiphyseal zone possibly predisposing to fractures, cortical bone density was only reduced in vertebrae of older Tabby mice and even increased in their tibiae. Different availability of osteoclasts in the spine, which may affect bone density, was ruled out by osteoclast staining. The absence of hair follicles, a well-known niche of epidermal stem cells, and much lower bromodeoxyuridine uptake in the tail skin of 9-day-old Tabby mice rather suggest the kink being due to a skin proliferation defect that prevents the skin from growing as fast as the skeleton, so that caudal vertebrae may be squeezed and bent by a lack of skin. Early postnatal treatment with EDA1 leading to delayed hair follicle formation attenuated the kink, but did not prevent it. Tabby mice born after prenatal administration of EDA1, however, showed normal tail skin proliferation, no signs of kinking and, interestingly, a normalized vertebral bone density. Thus, our data prove the causal relationship between EDA1 deficiency and kinky tails and indicate that hair follicles are required for murine tail skin to grow fast enough. Disturbed bone development appears to be partially pre-determined in utero and can be counteracted by timely EDA1 replacement, pointing to a role of EDA1 also in osteogenesis.
Collapse
Affiliation(s)
- Clara-Sophie Kossel
- Department of Pediatrics, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany.,Center for Ectodermal Dysplasias, University Hospital Erlangen, Erlangen, Germany
| | - Mandy Wahlbuhl
- Department of Pediatrics, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany.,Center for Ectodermal Dysplasias, University Hospital Erlangen, Erlangen, Germany
| | | | - Jung Park
- Department of Pediatrics, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany.,Center for Ectodermal Dysplasias, University Hospital Erlangen, Erlangen, Germany
| | | | - Michaela Seeling
- Department of Biology, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Klaus von der Mark
- Department of Experimental Medicine I, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Pascal Schneider
- Department of Biochemistry, University of Lausanne, Epalinges, Switzerland
| | - Holm Schneider
- Department of Pediatrics, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany.,Center for Ectodermal Dysplasias, University Hospital Erlangen, Erlangen, Germany
| |
Collapse
|
22
|
Reuter MS, Chaturvedi RR, Jobling RK, Pellecchia G, Hamdan O, Sung WW, Nalpathamkalam T, Attaluri P, Silversides CK, Wald RM, Marshall CR, Williams S, Keavney BD, Thiruvahindrapuram B, Scherer SW, Bassett AS. Clinical Genetic Risk Variants Inform a Functional Protein Interaction Network for Tetralogy of Fallot. CIRCULATION. GENOMIC AND PRECISION MEDICINE 2021; 14:e003410. [PMID: 34328347 PMCID: PMC8373675 DOI: 10.1161/circgen.121.003410] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
BACKGROUND Tetralogy of Fallot (TOF)-the most common cyanotic heart defect in newborns-has evidence of multiple genetic contributing factors. Identifying variants that are clinically relevant is essential to understand patient-specific disease susceptibility and outcomes and could contribute to delineating pathomechanisms. METHODS Using a clinically driven strategy, we reanalyzed exome sequencing data from 811 probands with TOF, to identify rare loss-of-function and other likely pathogenic variants in genes associated with congenital heart disease. RESULTS We confirmed a major contribution of likely pathogenic variants in FLT4 (VEGFR3 [vascular endothelial growth factor receptor 3]; n=14) and NOTCH1 (n=10) and identified 1 to 3 variants in each of 21 other genes, including ATRX, DLL4, EP300, GATA6, JAG1, NF1, PIK3CA, RAF1, RASA1, SMAD2, and TBX1. In addition, multiple loss-of-function variants provided support for 3 emerging congenital heart disease/TOF candidate genes: KDR (n=4), IQGAP1 (n=3), and GDF1 (n=8). In total, these variants were identified in 63 probands (7.8%). Using the 26 composite genes in a STRING protein interaction enrichment analysis revealed a biologically relevant network (P=3.3×10-16), with VEGFR2 (vascular endothelial growth factor receptor 2; KDR) and NOTCH1 (neurogenic locus notch homolog protein 1) representing central nodes. Variants associated with arrhythmias/sudden death and heart failure indicated factors that could influence long-term outcomes. CONCLUSIONS The results are relevant to precision medicine for TOF. They suggest considerable clinical yield from genome-wide sequencing, with further evidence for KDR (VEGFR2) as a congenital heart disease/TOF gene and for VEGF (vascular endothelial growth factor) and Notch signaling as mechanisms in human disease. Harnessing the genetic heterogeneity of single gene defects could inform etiopathogenesis and help prioritize novel candidate genes for TOF.
Collapse
Affiliation(s)
- Miriam S. Reuter
- CGEn, Univ Health Network, Toronto, ON, Canada
- The Ctr for Applied Genomics, Univ Health Network, Toronto, ON, Canada
- Program in Genetics & Genome Biology, Univ Health Network, Toronto, ON, Canada
| | - Rajiv R. Chaturvedi
- Labatt Family Heart Ctr, Univ Health Network, Toronto, ON, Canada
- Ontario Fetal Ctr, Mt Sinai Hospital, Univ Health Network, Toronto, ON, Canada
- Ted Rogers Ctr for Heart Rsrch, Cardiac Genome Clinic, Univ Health Network, Toronto, ON, Canada
| | - Rebekah K. Jobling
- Ted Rogers Ctr for Heart Rsrch, Cardiac Genome Clinic, Univ Health Network, Toronto, ON, Canada
- Division of Clinical & Metabolic Genetics, Univ Health Network, Toronto, ON, Canada
- Genome Diagnostics, Dept of Paediatric Laboratory Medicine, The Hospital for Sick Children, Univ Health Network, Toronto, ON, Canada
| | | | - Omar Hamdan
- The Ctr for Applied Genomics, Univ Health Network, Toronto, ON, Canada
| | - Wilson W.L. Sung
- The Ctr for Applied Genomics, Univ Health Network, Toronto, ON, Canada
| | | | - Pratyusha Attaluri
- Medical Genomics Program, Dept of Molecular Genetics, Univ Health Network, Toronto, ON, Canada
| | - Candice K. Silversides
- Division of Cardiology, Toronto Congenital Cardiac Ctr for Adults at the Peter Munk Cardiac Ctr, Dept of Medicine, Univ Health Network, Toronto, ON, Canada
| | - Rachel M. Wald
- Labatt Family Heart Ctr, Univ Health Network, Toronto, ON, Canada
- Division of Cardiology, Toronto Congenital Cardiac Ctr for Adults at the Peter Munk Cardiac Ctr, Dept of Medicine, Univ Health Network, Toronto, ON, Canada
| | - Christian R. Marshall
- The Ctr for Applied Genomics, Univ Health Network, Toronto, ON, Canada
- Genome Diagnostics, Dept of Paediatric Laboratory Medicine, The Hospital for Sick Children, Univ Health Network, Toronto, ON, Canada
- Laboratory Medicine & Pathobiology, Univ Health Network, Toronto, ON, Canada
| | - Simon Williams
- Division of Cardiovascular Sciences, Faculty of Biology, Medicine & Health, The Univ of Manchester, Manchester, UK
- Manchester Univ NHS Foundation Trust, Manchester Academic Health Science Ctr, Manchester, UK
| | - Bernard D. Keavney
- Division of Cardiovascular Sciences, Faculty of Biology, Medicine & Health, The Univ of Manchester, Manchester, UK
- Manchester Univ NHS Foundation Trust, Manchester Academic Health Science Ctr, Manchester, UK
| | | | - Stephen W. Scherer
- The Ctr for Applied Genomics, Univ Health Network, Toronto, ON, Canada
- Program in Genetics & Genome Biology, Univ Health Network, Toronto, ON, Canada
- Dept of Molecular Genetics, Univ Health Network, Toronto, ON, Canada
- McLaughlin Ctr, Univ Health Network, Toronto, ON, Canada
| | - Anne S. Bassett
- Division of Cardiology, Toronto Congenital Cardiac Ctr for Adults at the Peter Munk Cardiac Ctr, Dept of Medicine, Univ Health Network, Toronto, ON, Canada
- Clinical Genetics Research Program, Ctr for Addiction & Mental Health, Toronto, ON, Canada
- The Dalglish Family 22q Clinic for Adults with 22q11.2 Deletion Syndrome, Dept of Psychiatry & Toronto General Rsrch Inst, Univ Health Network, Toronto, ON, Canada
- Dept of Psychiatry, Univ of Toronto, Univ Health Network, Toronto, ON, Canada
| |
Collapse
|
23
|
Körber L, Schneider H, Fleischer N, Maier-Wohlfart S. No evidence for preferential X-chromosome inactivation as the main cause of divergent phenotypes in sisters with X-linked hypohidrotic ectodermal dysplasia. Orphanet J Rare Dis 2021; 16:98. [PMID: 33622384 PMCID: PMC7901220 DOI: 10.1186/s13023-021-01735-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 02/09/2021] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND X-linked hypohidrotic ectodermal dysplasia (XLHED), a rare genetic disorder, affects the normal development of ectodermal derivatives, such as hair, skin, teeth, and sweat glands. It is caused by pathogenic variants of the gene EDA and defined by a triad of hypotrichosis, hypo- or anodontia, and hypo- or anhidrosis which may lead to life-threatening hyperthermia. Although female carriers are less severely affected than male patients, they display symptoms, too, with high phenotypic variability. This study aimed to elucidate whether phenotypic differences in female XLHED patients with identical EDA genotypes might be explained by deviating X-chromosome inactivation (XI) patterns. METHODS Six families, each consisting of two sisters with the same EDA variant and their parents (with either mother or father being carrier of the variant), participated in this study. XLHED-related data like sweating ability, dental status, facial dysmorphism, and skin issues were assessed. We determined the women`s individual XI patterns in peripheral blood leukocytes by the human androgen receptor assay and collated the results with phenotypic features. RESULTS The surprisingly large inter- and intrafamilial variability of symptoms in affected females was not explicable by the pathogenic variants. Our cohort showed no higher rate of nonrandom XI in peripheral blood leukocytes than the general female population. Furthermore, skewed XI patterns in favour of the mutated alleles were not associated with more severe phenotypes. CONCLUSIONS We found no evidence for preferential XI in female XLHED patients and no distinct correlation between XLHED-related phenotypic features and XI patterns. Phenotypic variability seems to be evoked by other genetic or epigenetic factors.
Collapse
Affiliation(s)
- Laura Körber
- Center for Ectodermal Dysplasias and Department of Pediatrics, University Hospital Erlangen, Loschgestr. 15, 91054, Erlangen, Germany
| | - Holm Schneider
- Center for Ectodermal Dysplasias and Department of Pediatrics, University Hospital Erlangen, Loschgestr. 15, 91054, Erlangen, Germany
| | | | - Sigrun Maier-Wohlfart
- Center for Ectodermal Dysplasias and Department of Pediatrics, University Hospital Erlangen, Loschgestr. 15, 91054, Erlangen, Germany.
| |
Collapse
|
24
|
Abstract
Genodermatoses are inherited disorders presenting with cutaneous manifestations with or without the involvement of other systems. The majority of these disorders, particularly in cases that present with a cutaneous patterning, may be explained in the context of genetic mosaicism. Despite the barriers to the genetic analysis of mosaic disorders, next-generation sequencing has led to a substantial progress in understanding their pathogenesis, which has significant implications for the clinical management and genetic counseling. Advances in paired and deep sequencing technologies in particular have made the study of mosaic disorders more feasible. In this review, we provide an overview of genetic mosaicism as well as mosaic cutaneous disorders and the techniques required to study them.
Collapse
Affiliation(s)
- Shayan Cheraghlou
- Department of Dermatology, Yale School of Medicine, New Haven, Connecticut, USA; Department of Pathology, Yale School of Medicine, New Haven, Connecticut, USA; Department of Genetics, Yale School of Medicine, New Haven, Connecticut, USA
| | - Young Lim
- Department of Dermatology, Yale School of Medicine, New Haven, Connecticut, USA; Department of Pathology, Yale School of Medicine, New Haven, Connecticut, USA; Department of Genetics, Yale School of Medicine, New Haven, Connecticut, USA
| | - Keith A Choate
- Department of Dermatology, Yale School of Medicine, New Haven, Connecticut, USA; Department of Pathology, Yale School of Medicine, New Haven, Connecticut, USA; Department of Genetics, Yale School of Medicine, New Haven, Connecticut, USA.
| |
Collapse
|
25
|
Wang X, Zhang Z, Yuan S, Ren J, Qu H, Zhang G, Chen W, Zheng S, Meng L, Bai J, Du Q, Yang D, Shen W. A novel EDA1 missense mutation in X-linked hypohidrotic ectodermal dysplasia. Medicine (Baltimore) 2020; 99:e19244. [PMID: 32176048 PMCID: PMC7220389 DOI: 10.1097/md.0000000000019244] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
A mutation in the epithelial morphogen gene ectodysplasin-A1 (EDA1) is responsible for the disorder X-linked hypohidrotic ectodermal dysplasia (XLHED), the most common form of ectodermal dysplasia. XLHED is characterized by impaired development of hair, eccrine sweat glands, and teeth. This study aimed to identify potentially pathogenic mutations in four Chinese XLHED families.Genomic DNA was extracted from the peripheral blood and sequenced. Sanger sequencing was used to carry out mutational analysis of the EDA1 gene, and the three-dimensional structure of the novel mutant residues in the EDA trimer was determined. Transcriptional activity of NF-κB was tested by Dual luciferin assay.We identified a novel EDA1 mutation (c.1046C>T) and detected 3 other previously-reported mutations (c.146T>A; c.457C>T; c.467G>A). Our findings demonstrated that novel mutation c.1046C>T (p.A349 V) resulted in XLHED. The novel mutation could cause volume repulsion in the protein due to enlargement of the amino acid side chain. Dual luciferase assay revealed that transcriptional NF-κB activation induced by XLHED EDA1 protein was significantly reduced compared with wild-type EDA1.These results extend the spectrum of EDA1 mutations in XLHED patients and suggest a functional role of the novel mutation in XLHED.
Collapse
Affiliation(s)
- Xu Wang
- Department of Prosthodontics, School and Hospital of Stomatology, Hebei Medical University and Hebei Key Laboratory of Stomatology, Shijiazhuang
| | - Zhiyu Zhang
- Department of Prosthodontics, School and Hospital of Stomatology, Hebei Medical University and Hebei Key Laboratory of Stomatology, Shijiazhuang
| | - Shuo Yuan
- Department of Prosthodontics, School and Hospital of Stomatology, Hebei Medical University and Hebei Key Laboratory of Stomatology, Shijiazhuang
| | - Jiabao Ren
- Department of Prosthodontics, School and Hospital of Stomatology, Hebei Medical University and Hebei Key Laboratory of Stomatology, Shijiazhuang
| | - Hong Qu
- College of Life Sciences, Peking University, Beijing
| | | | - Wenjing Chen
- Department of Orthodontics, School and Hospital of Stomatology, Hebei Medical University & Hebei Key Laboratory of Stomatology, Shijiazhuang
| | | | - Lingqiang Meng
- Department of Prosthodontics, School and Hospital of Stomatology, Hebei Medical University and Hebei Key Laboratory of Stomatology, Shijiazhuang
| | - Jiuping Bai
- Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Hebei Medical University and Hebei Key Laboratory of Stomatology, Shijiazhuang, PR China
| | - Qingqing Du
- College of Forensic Medicine, Hebei Medical University
| | | | - Wenjing Shen
- Department of Prosthodontics, School and Hospital of Stomatology, Hebei Medical University and Hebei Key Laboratory of Stomatology, Shijiazhuang
| |
Collapse
|
26
|
Šimčíková D, Heneberg P. Refinement of evolutionary medicine predictions based on clinical evidence for the manifestations of Mendelian diseases. Sci Rep 2019; 9:18577. [PMID: 31819097 PMCID: PMC6901466 DOI: 10.1038/s41598-019-54976-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 11/21/2019] [Indexed: 12/28/2022] Open
Abstract
Prediction methods have become an integral part of biomedical and biotechnological research. However, their clinical interpretations are largely based on biochemical or molecular data, but not clinical data. Here, we focus on improving the reliability and clinical applicability of prediction algorithms. We assembled and curated two large non-overlapping large databases of clinical phenotypes. These phenotypes were caused by missense variations in 44 and 63 genes associated with Mendelian diseases. We used these databases to establish and validate the model, allowing us to improve the predictions obtained from EVmutation, SNAP2 and PoPMuSiC 2.1. The predictions of clinical effects suffered from a lack of specificity, which appears to be the common constraint of all recently used prediction methods, although predictions mediated by these methods are associated with nearly absolute sensitivity. We introduced evidence-based tailoring of the default settings of the prediction methods; this tailoring substantially improved the prediction outcomes. Additionally, the comparisons of the clinically observed and theoretical variations led to the identification of large previously unreported pools of variations that were under negative selection during molecular evolution. The evolutionary variation analysis approach described here is the first to enable the highly specific identification of likely disease-causing missense variations that have not yet been associated with any clinical phenotype.
Collapse
Affiliation(s)
- Daniela Šimčíková
- Charles University, Third Faculty of Medicine, Prague, Czech Republic
| | - Petr Heneberg
- Charles University, Third Faculty of Medicine, Prague, Czech Republic.
| |
Collapse
|
27
|
Martínez-Romero MC, Ballesta-Martínez MJ, López-González V, Sánchez-Soler MJ, Serrano-Antón AT, Barreda-Sánchez M, Rodriguez-Peña L, Martínez-Menchon MT, Frías-Iniesta J, Sánchez-Pedreño P, Carbonell-Meseguer P, Glover-López G, Guillén-Navarro E. EDA, EDAR, EDARADD and WNT10A allelic variants in patients with ectodermal derivative impairment in the Spanish population. Orphanet J Rare Dis 2019; 14:281. [PMID: 31796081 PMCID: PMC6892193 DOI: 10.1186/s13023-019-1251-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2019] [Accepted: 11/05/2019] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Ectodermal dysplasias (ED) are a group of genetic conditions affecting the development and/or homeostasis of two or more ectodermal derivatives. An attenuated phenotype is considered a non-syndromic trait when the patient is affected by only one impaired ectodermal structure, such as in non-syndromic tooth agenesis (NSTA) disorder. Hypohidrotic ectodermal dysplasia (HED) is the most highly represented ED. X-linked hypohidrotic ectodermal dysplasia (XLHED) is the most common subtype, with an incidence of 1/50,000-100,000 males, and is associated with the EDA gene (Xq12-q13.1); the dominant and recessive subtypes involve the EDAR (2q13) and EDARADD (1q42.3) genes, respectively. The WNT10A gene (2q35) is associated more frequently with NSTA. Our goal was to determine the mutational spectrum in a cohort of 72 Spanish patients affected by one or more ectodermal derivative impairments referred to as HED (63/72) or NSTA (9 /72) to establish the prevalence of the allelic variants of the four most frequently associated genes. Sanger sequencing of the EDA, EDAR, EDARADD and WNT10A genes and multiplex ligation-dependent probe amplification (MLPA) were performed. RESULTS A total of 61 children and 11 adults, comprising 50 males and 22 females, were included. The average ages were 5.4 and 40.2 years for children and adults, respectively. A molecular basis was identified in 51/72 patients, including 47/63 HED patients, for whom EDA was the most frequently involved gene, and 4/9 NSTA patients, most of whom had variants of WNT10A. Among all the patients, 37/51 had variants of EDA, 8/51 had variants of the WNT10A gene, 4/51 had variants of EDAR and 5/51 had variants of EDARADD. In 42/51 of cases, the variants were inherited according to an X-linked pattern (27/42), with the remaining showing an autosomal dominant (10/42) or autosomal recessive (5/42) pattern. Among the NSTA patients, 3/9 carried pathogenic variants of WNT10A and 1/9 carried EDA variants. A total of 60 variants were detected in 51 patients, 46 of which were different, and out of these 46 variants, 12 were novel. CONCLUSIONS This is the only molecular study conducted to date in the Spanish population affected by ED. The EDA, EDAR, EDARADD and WNT10A genes constitute the molecular basis in 70.8% of patients with a 74.6% yield in HED and 44.4% in NSTA. Twelve novel variants were identified. The WNT10A gene has been confirmed as the second molecular candidate that has been identified and accounts for one-half of non-EDA patients and one-third of NSTA patients. Further studies using next generation sequencing (NGS) will help to identify other contributory genes in the remaining uncharacterized Spanish patients.
Collapse
Affiliation(s)
- María Carmen Martínez-Romero
- Centro de Bioquímica y Genética Clínica, Hospital Clínico Universitario Virgen de la Arrixaca, IMIB- Arrixaca. Murcia. CIBERER-ISCIII, Madrid, Spain.,Programa de doctorado en Ciencias de la Salud, Universidad Católica de Murcia (UCAM), Murcia, Spain
| | - María Juliana Ballesta-Martínez
- Sección Genética Médica. Servicio de Pediatría. Hospital Clínico Universitario Virgen de la Arrixaca. IMIB- Arrixaca, Universidad de Murcia. CIBERER-ISCIII, Madrid, Spain.,Cátedra de Genética. Facultad de Ciencias de la Salud, Universidad Católica de Murcia (UCAM), Murcia, Spain
| | - Vanesa López-González
- Sección Genética Médica. Servicio de Pediatría. Hospital Clínico Universitario Virgen de la Arrixaca. IMIB- Arrixaca, Universidad de Murcia. CIBERER-ISCIII, Madrid, Spain.,Cátedra de Genética. Facultad de Ciencias de la Salud, Universidad Católica de Murcia (UCAM), Murcia, Spain
| | - María José Sánchez-Soler
- Sección Genética Médica. Servicio de Pediatría. Hospital Clínico Universitario Virgen de la Arrixaca. IMIB- Arrixaca, Universidad de Murcia. CIBERER-ISCIII, Madrid, Spain.,Cátedra de Genética. Facultad de Ciencias de la Salud, Universidad Católica de Murcia (UCAM), Murcia, Spain
| | - Ana Teresa Serrano-Antón
- Sección Genética Médica. Servicio de Pediatría. Hospital Clínico Universitario Virgen de la Arrixaca. IMIB- Arrixaca, Universidad de Murcia. CIBERER-ISCIII, Madrid, Spain
| | - María Barreda-Sánchez
- Cátedra de Genética. Facultad de Ciencias de la Salud, Universidad Católica de Murcia (UCAM), Murcia, Spain
| | - Lidya Rodriguez-Peña
- Sección Genética Médica. Servicio de Pediatría. Hospital Clínico Universitario Virgen de la Arrixaca. IMIB- Arrixaca, Universidad de Murcia. CIBERER-ISCIII, Madrid, Spain
| | - María Teresa Martínez-Menchon
- Servicio de Dermatología. Hospital Clínico Universitario Virgen de la Arrixaca, Universidad de Murcia, Murcia, Spain
| | - José Frías-Iniesta
- Servicio de Dermatología. Hospital Clínico Universitario Virgen de la Arrixaca, Universidad de Murcia, Murcia, Spain
| | - Paloma Sánchez-Pedreño
- Servicio de Dermatología. Hospital Clínico Universitario Virgen de la Arrixaca, Universidad de Murcia, Murcia, Spain
| | - Pablo Carbonell-Meseguer
- Centro de Bioquímica y Genética Clínica, Hospital Clínico Universitario Virgen de la Arrixaca, IMIB- Arrixaca. Murcia. CIBERER-ISCIII, Madrid, Spain
| | - Guillermo Glover-López
- Centro de Bioquímica y Genética Clínica, Hospital Clínico Universitario Virgen de la Arrixaca, IMIB- Arrixaca. Murcia. CIBERER-ISCIII, Madrid, Spain
| | - Encarna Guillén-Navarro
- Departamento de Cirugía, Pediatría, Obstetricia y Ginecología. Facultad de Medicina, Universidad de Murcia, Murcia, Spain. .,Sección Genética Médica (Hospital Materno-Infantil. Planta 0), Hospital Clínico Universitario Virgen de la Arrixaca, Ctra. Madrid-Cartagena s/n, El Palmar, CP 30120, Murcia, Spain.
| | | |
Collapse
|
28
|
Liu G, Wang X, Qin M, Sun L, Zhu J. A novel missense mutation p.S305R of EDA gene causes XLHED in a Chinese family. Arch Oral Biol 2019; 107:104507. [DOI: 10.1016/j.archoralbio.2019.104507] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 07/02/2019] [Accepted: 07/23/2019] [Indexed: 02/03/2023]
|
29
|
Park JS, Ko JM, Chae JH. Novel and Private EDA Mutations and Clinical Phenotypes of Korean Patients with X-Linked Hypohidrotic Ectodermal Dysplasia. Cytogenet Genome Res 2019; 158:1-9. [PMID: 31129666 DOI: 10.1159/000500214] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/16/2018] [Indexed: 11/19/2022] Open
Abstract
X-linked hypohidrotic ectodermal dysplasia (XLHED; OMIM 305100) is the most common form of ectodermal dysplasia, presenting with the triad of hypotrichosis, hypodontia, and hypohidrosis. This disorder is caused by mutations in EDA, which encodes ectodysplasin A, a member of the tumor necrosis factor superfamily. In this study, we describe clinical and genetic characteristics of 10 Korean XLHED patients (9 males, 1 female) from 9 families. Nine out of the 10 patients manifested the cardinal triad of symptoms. Six patients had a positive family history, while 2 patients were brothers. The most common initial presentation was hypotrichosis or hypodontia, while 1 patient presented with recurrent high fever in early infancy. Sanger sequencing of the EDA gene was performed and revealed 9 different mutations. Three had been reported previously, and 6 were novel mutations. One female patient, carrying a previously reported missense mutation, might be affected by skewed X-inactivation. This is the first observational study investigating genetically confirmed XLHED patients in Korea. To provide appropriate supportive care and genetic counseling, clinicians should consider the possibility of XLHED in the differential diagnosis of recurrent fever in infants, as well as recognize the typical triad of symptoms.
Collapse
|
30
|
Güven Y, Bal E, Altunoglu U, Yücel E, Hadj-Rabia S, Koruyucu M, Bahar Tuna E, Çıldır Ş, Aktören O, Bodemer C, Uyguner ZO, Smahi A, Kayserili H. Turkish Ectodermal Dysplasia Cohort: From Phenotype to Genotype in 17 Families. Cytogenet Genome Res 2019; 157:189-196. [DOI: 10.1159/000499325] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/07/2018] [Indexed: 11/19/2022] Open
Abstract
Hypohidrotic or anhidrotic ectodermal dysplasia (HED/EDA) is characterized by impaired development of the hair, teeth, or sweat glands. HED/EDA is inherited in an X-linked, autosomal dominant, or autosomal recessive pattern and caused by the pathogenic variants in 4 genes: EDA, EDAR, EDARADD, and WNT10A. The aim of the present study was to perform molecular screening of these 4 genes in a cohort of Turkish individuals diagnosed with HED/EDA. We screened for pathogenic variants of WNT10A, EDA, EDAR, and EDARADD through Sanger sequencing. We further assessed the clinical profiles of the affected individuals in order to establish phenotype-genotype correlation. In 17 (63%) out of 27 families, 17 pathogenic variants, 8 being novel, were detected in the 4 well-known ectodermal dysplasia genes. EDAR and EDA variants were identified in 6 families each, WNT10A variants in 4, and an EDARADD variant in 1, accounting for 35.3, 35.3, 23.5, and 5.9% of mutation-positive families, respectively. The low mutation detection rate of the cohort and the number of the EDAR pathogenic variants being as high as the EDA ones were the most noteworthy findings which could be attributed to the high consanguinity rate.
Collapse
|
31
|
He F, Wang H, Zhang X, Gao Q, Guo F, Chen C. Conservation analysis and pathogenicity prediction of mutant genes of ectodysplasin a. BMC MEDICAL GENETICS 2018; 19:209. [PMID: 30526585 PMCID: PMC6286515 DOI: 10.1186/s12881-018-0726-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2018] [Accepted: 11/27/2018] [Indexed: 03/01/2023]
Abstract
Background Hypohidrotic ectodermal dysplasia (HED) is a common recessive X-linked hereditary disease that affects the development of ectoderm. Gene mutations of ectodysplasin A (EDA) play key roles in process of this disease. In our preliminary study, three unknown mutation sites (c.878 T > G, c.663-697del and c.587-615del) were detected from the pedigrees of HED. Methods Conservation analysis of the related homologous proteins in 3 unknown EDA gene mutation sites was conducted using the University of California Santa Cruz (UCSC) Genome Browser database. SIFT and PolyPhen-2, the online gene function prediction software, were utilized to predict the pathogenicity of point mutation of c.878 T > G. Results All three unknown mutation sites were located in the highly-conserved region of EDA and possessed strong amino acid conservation among different species. In addition, the results of the pathogenicity prediction of point mutation of c.878 T > G by SIFT (P = 0.00) and PolyPhen-2 (S = 0.997) demonstrated that the mutation site had considerable pathogenicity theoretically. Conclusions The EDA mutations of c.878 T > G, c.663-697del and c.587-615del may be responsible for the pathogenesis of HED in their pedigrees.
Collapse
Affiliation(s)
- Fangqi He
- Department of Prosthodontics, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.,Department of Prosthodontics, Changsha Stomatological Hospital, Changsha, 410004, Hunan, China
| | - Hongfeng Wang
- Department of Prosthodontics, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.,Department of Prosthodontics, Changsha Stomatological Hospital, Changsha, 410004, Hunan, China
| | - Xiaoyu Zhang
- Department of Prosthodontics, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Qingping Gao
- Department of Prosthodontics, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.
| | - Feng Guo
- Department of Prosthodontics, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.
| | - Chang Chen
- Department of Prosthodontics, Changsha Stomatological Hospital, Changsha, 410004, Hunan, China
| |
Collapse
|
32
|
Zhao K, Lian M, Zou D, Huang W, Zhou W, Shen Y, Wang F, Wu Y. Novel mutations identified in patients with tooth agenesis by whole-exome sequencing. Oral Dis 2018; 25:523-534. [PMID: 30417976 DOI: 10.1111/odi.13002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 10/27/2018] [Accepted: 11/05/2018] [Indexed: 11/29/2022]
Abstract
OBJECTIVES To identify potentially pathogenic mutations for tooth agenesis by whole-exome sequencing. SUBJECTS AND METHODS Ten Chinese families including five families with ectodermal dysplasia (syndromic tooth agenesis) and five families with selective tooth agenesis were included. Whole-exome sequencing was performed using genomic DNA. Potentially pathogenic mutations were identified after data filtering and screening. The pathogenicity of novel variants was investigated by segregation analysis, in silico analysis, and functional studies. RESULTS One novel mutation (c.441_442insACTCT) and three reported mutations (c.252delT, c.463C>T, and c.1013C>T) in EDA were identified in families with ectodermal dysplasia. The novel EDA mutation was co-segregated with phenotype. A functional study revealed that NF-κB activation was compromised by the identified mutations. The secretion of active EDA was also compromised detection by western blotting. Novel Wnt10A mutations (c.521T>C and c.653T>G) and EVC2 mutation (c.1472C>T) were identified in families with selective tooth agenesis. The Wnt10A c.521T>C mutation and the EVC2 c.1472C>T mutation were considered as pathogenic for affecting highly conserved amino acids, co-segregated with phenotype and predicted to be disease-causing by SIFT and PolyPhen2. Moreover, several reported mutations in PAX9, Wnt10A, and FGFR3 were also detected. CONCLUSIONS Our study expanded our knowledge on tooth agenesis spectrum by identifying novel variants.
Collapse
Affiliation(s)
- Kai Zhao
- Second Dental Clinic, Department of Oral Implantology, Ninth People's Hospital, School of Medicine, Shanghai Key Laboratory of Stomatology, National Clinical Research Center of Stomatology, Shanghai Jiao Tong University, Shanghai, China
| | - Meifei Lian
- Department of Prosthodontics, Shanghai Ninth People's Hospital Affiliated with Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Duohong Zou
- Department of Oral Surgery, Ninth People's Hospital, School of Medicine, Shanghai Key Laboratory of Stomatology, National Clinical Research Center of Stomatology, Shanghai Jiao Tong University, Shanghai, China
| | - Wei Huang
- Department of Oral Implantology, Ninth People's Hospital, School of Medicine, Shanghai Key Laboratory of Stomatology, National Clinical Research Center of Stomatology, Shanghai Jiao Tong University, Shanghai, China
| | - Wenjie Zhou
- Second Dental Clinic, Ninth People's Hospital, School of Medicine, Shanghai Key Laboratory of Stomatology, National Clinical Research Center of Stomatology, Shanghai Jiao Tong University, Shanghai, China
| | - Yihan Shen
- Second Dental Clinic, Ninth People's Hospital, School of Medicine, Shanghai Key Laboratory of Stomatology, National Clinical Research Center of Stomatology, Shanghai Jiao Tong University, Shanghai, China
| | - Feng Wang
- Department of Oral Implantology, Ninth People's Hospital, School of Medicine, Shanghai Key Laboratory of Stomatology, National Clinical Research Center of Stomatology, Shanghai Jiao Tong University, Shanghai, China
| | - Yiqun Wu
- Second Dental Clinic, Department of Oral Implantology, Ninth People's Hospital, School of Medicine, Shanghai Key Laboratory of Stomatology, National Clinical Research Center of Stomatology, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
33
|
Liu Y, Huang Y, Hua R, Zhao X, Yang W, Liu Y, Zhang X. Mutation Screening of the EDA Gene in Seven Chinese Families with X-Linked Hypohidrotic Ectodermal Dysplasia. Genet Test Mol Biomarkers 2018; 22:487-491. [PMID: 30117778 DOI: 10.1089/gtmb.2018.0100] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND As the most common form of ectodermal dysplasia (ED), X-linked hypohidrotic ED (XLHED) is characterized by the triad of hypohidrosis, hypotrichosis, and anodontia in male patients. The gene responsible for XLHED is EDA. To date, more than 300 mutations have been identified in this gene, including point mutations, deletions, and insertions. Most of the mutations result in XLHED, while the rest cause X-linked dominant incisor hypodontia. OBJECTIVE Mutation screening was performed in seven Chinese families with XLHED. RESULTS Mutations were identified in all seven families, including four previously reported missense mutations (p.M1T, p.R156C, p.G299S, and p.A349T) and three novel mutations; missense mutation (p.Q358 L), indel (P228Tfs*52), as well as a large deletion. CONCLUSION Our results extend the mutational spectrum of EDA and can be helpful with genetic counseling and prenatal diagnosis for these families.
Collapse
Affiliation(s)
- Yanshan Liu
- 1 McKusick-Zhang Center for Genetic Medicine, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences , School of Basic Medicine Peking Union Medical College, Beijing, China
| | - Yingzhi Huang
- 1 McKusick-Zhang Center for Genetic Medicine, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences , School of Basic Medicine Peking Union Medical College, Beijing, China
| | - Rui Hua
- 2 Department of Obstetrics and Gynaecology, Nanfang Hospital, Southern Medical University , Guangzhou, China
| | - Xiuli Zhao
- 1 McKusick-Zhang Center for Genetic Medicine, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences , School of Basic Medicine Peking Union Medical College, Beijing, China
| | - Wei Yang
- 1 McKusick-Zhang Center for Genetic Medicine, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences , School of Basic Medicine Peking Union Medical College, Beijing, China
| | - Yaping Liu
- 1 McKusick-Zhang Center for Genetic Medicine, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences , School of Basic Medicine Peking Union Medical College, Beijing, China
| | - Xue Zhang
- 1 McKusick-Zhang Center for Genetic Medicine, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences , School of Basic Medicine Peking Union Medical College, Beijing, China
| |
Collapse
|
34
|
Ma X, Lv X, Liu HY, Wu X, Wang L, Li H, Chou HY. Genetic diagnosis for X-linked hypohidrotic ectodermal dysplasia family with a novel Ectodysplasin A gene mutation. J Clin Lab Anal 2018; 32:e22593. [PMID: 30006944 DOI: 10.1002/jcla.22593] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2018] [Accepted: 05/29/2018] [Indexed: 12/28/2022] Open
Abstract
AIM To make a gene diagnosis for a family with Ectodysplasin A (EDA) gene mutation as well as prenatal diagnosis, and report a novel EDA gene mutation. METHODS All coding sequences and flanking sequences of EDA gene were analyzed by Sanger sequencing in the proband, and then, according to EDA gene mutation in the proband, the EDA gene sequencing was performed on the family members. Based on the results above, the pathogenic mutation in EDA gene was finally identified, which was used for making prenatal diagnosis. RESULTS Sanger sequencing revealed c.302_303delCC [p.Pro101HisfsX11] mutation in EDA gene of the proband. This mutation induced EDA gene frame shift mutation which led to early termination of EDA gene translation because there was a termination codon TAA at the 11th codon behind the mutational site. Heterozygous deletion mutation (CC/--) at this locus was observed in the proband's mother and proband's grandmother, but the proband's aunt had no mutation at this locus. The analyses of amniotic fluid samples indicated negative sex-determining region on Y (SRY), and c.302_303delCC heterozygous deletion mutation. CONCLUSION We identified a pathogenetic mutation in EDA gene for the X-linked hypohidrotic ectodermal dysplasia family, made a prenatal diagnosis for the female carrier, and reported a novel EDA gene mutation.
Collapse
Affiliation(s)
- Xin Ma
- Department of Stomatology, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Zhengzhou, China
| | - Xue Lv
- Department of Health Management, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Zhengzhou, China
| | - Hong-Yan Liu
- Institute of Medical Genetics, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Zhengzhou, China
| | - Xing Wu
- Department of Pediatric, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Zhengzhou, China
| | - Li Wang
- Department of Gynaecology and Obstetrics, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Zhengzhou, China
| | - Hao Li
- Department of Plastic Surgery, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Zhengzhou, China
| | - Hai-Yan Chou
- Department of Plastic Surgery, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Zhengzhou, China
| |
Collapse
|
35
|
Liu G, Wang X, Qin M, Sun L, Zhu J. A novel splicing mutation of ectodysplasin A gene responsible for hypohidrotic ectodermal dysplasia. Oral Dis 2018; 24:1101-1106. [PMID: 29676859 DOI: 10.1111/odi.12874] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 03/27/2018] [Accepted: 04/05/2018] [Indexed: 12/20/2022]
Abstract
Hypohidrotic ectodermal dysplasia (HED) is characterized by hypohidrosis, hypodontia, sparse hair, and characteristic facial features. This condition is caused by an ectodysplasin A (EDA) gene mutation. In this study, we examined two HED pedigrees and investigated the molecular genetics of the defect. Direct sequencing analysis revealed a previously unidentified mutation in the EDA splice donor site (c.526 + 1G>A). The function of the mutant EDA gene was predicted through online investigations and subsequently confirmed by splicing analysis in vitro. The mutation resulted in the production of a truncated EDA-A1 protein caused by complete omission of exon 3. This novel functional skipping-splicing EDA mutation was considered to be the cause of HED in the two pedigrees reported here. Our findings, combined with those reported elsewhere, provide an improved understanding of the pathogenic mechanism of HED as well as important information for a genetic diagnosis.
Collapse
Affiliation(s)
- G Liu
- Department of Pediatric Dentistry, Peking University School and Hospital of Stomatology, Beijing, China
| | - X Wang
- Department of Pediatric Dentistry, Peking University School and Hospital of Stomatology, Beijing, China
| | - M Qin
- Department of Pediatric Dentistry, Peking University School and Hospital of Stomatology, Beijing, China
| | - L Sun
- Central Laboratory, Peking University School and Hospital of Stomatology, Beijing, China
| | - J Zhu
- Department of Pediatric Dentistry, Peking University School and Hospital of Stomatology, Beijing, China
| |
Collapse
|
36
|
Williams MA, Letra A. The Changing Landscape in the Genetic Etiology of Human Tooth Agenesis. Genes (Basel) 2018; 9:genes9050255. [PMID: 29772684 PMCID: PMC5977195 DOI: 10.3390/genes9050255] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Revised: 05/01/2018] [Accepted: 05/09/2018] [Indexed: 02/08/2023] Open
Abstract
Despite much progress in understanding the genetics of syndromic tooth agenesis (TA), the causes of the most common, isolated TA remain elusive. Recent studies have identified novel genes and variants contributing to the etiology of TA, and revealed new pathways in which tooth development genes belong. Further, the use of new research approaches including next-generation sequencing has provided increased evidence supporting an oligogenic inheritance model for TA, and may explain the phenotypic variability of the condition. In this review, we present current knowledge about the genetic mechanisms underlying syndromic and isolated TA in humans, and highlight the value of incorporating next-generation sequencing approaches to identify causative and/or modifier genes that contribute to the etiology of TA.
Collapse
Affiliation(s)
- Meredith A Williams
- University of Texas Health Science Center at Houston School of Dentistry, Houston, TX 77054, USA.
| | - Ariadne Letra
- Department of Diagnostic and Biomedical Sciences, University of Texas Health Science Center at Houston School of Dentistry, Houston, TX 77054, USA.
- Center for Craniofacial Research, University of Texas Health Science Center at Houston School of Dentistry, Houston, TX 77054, USA.
- Pediatric Research Center, University of Texas Health Science Center at Houston McGovern Medical School, Houston, TX 77030, USA.
| |
Collapse
|
37
|
Jia S, Zhou J, Wee Y, Mikkola ML, Schneider P, D'Souza RN. Anti-EDAR Agonist Antibody Therapy Resolves Palate Defects in Pax9 -/- Mice. J Dent Res 2017; 96:1282-1289. [PMID: 28813171 DOI: 10.1177/0022034517726073] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
To date, surgical interventions are the only means by which craniofacial anomalies can be corrected so that function, esthetics, and the sense of well-being are restored in affected individuals. Unfortunately, for patients with cleft palate-one of the most common of congenital birth defects-treatment following surgery is prolonged over a lifetime and often involves multidisciplinary regimens. Hence, there is a need to understand the molecular pathways that control palatogenesis and to translate such information for the development of noninvasive therapies that can either prevent or correct cleft palates in humans. Here, we use the well-characterized model of the Pax9-/- mouse, which displays a consistent phenotype of a secondary cleft palate, to test a novel therapeutic. Specifically, we demonstrate that the controlled intravenous delivery of a novel mouse monoclonal antibody replacement therapy, which acts as an agonist for the ectodysplasin (Eda) pathway, can resolve cleft palate defects in Pax9-/- embryos in utero. Such pharmacological interventions did not reverse the arrest in tooth, thymus, and parathyroid gland development, suggesting that the relationship of Pax9 to the Eda/Edar pathway is both unique and essential for palatogenesis. Expression analyses and unbiased gene expression profiling studies offer a molecular explanation for the resolution of palatal defects, showing that Eda and Edar-related genes are expressed in normal palatal tissues and that the Eda/Edar signaling pathway is downstream of Pax9 in palatogenesis. Taken together, our data uncover a unique relationship between Pax9 and the Eda/Edar signaling pathway that can be further exploited for the development of noninvasive, safe, and effective therapies for the treatment of cleft palate conditions and other single-gene disorders affecting the craniofacial complex.
Collapse
Affiliation(s)
- S Jia
- 1 School of Dentistry, School of Medicine, University of Utah, Salt Lake City, UT, USA
| | - J Zhou
- 1 School of Dentistry, School of Medicine, University of Utah, Salt Lake City, UT, USA
| | - Y Wee
- 1 School of Dentistry, School of Medicine, University of Utah, Salt Lake City, UT, USA
| | - M L Mikkola
- 2 Developmental Biology Program, Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - P Schneider
- 3 Department of Biochemistry, University of Lausanne, Epalinges, Switzerland
| | - R N D'Souza
- 1 School of Dentistry, School of Medicine, University of Utah, Salt Lake City, UT, USA.,4 Departments of Neurobiology & Anatomy, Pathology, School of Medicine, University of Utah, Salt Lake City, UT, USA
| |
Collapse
|
38
|
Sisto M, Lorusso L, Ingravallo G, Lisi S. Exocrine Gland Morphogenesis: Insights into the Role of Amphiregulin from Development to Disease. Arch Immunol Ther Exp (Warsz) 2017; 65:477-499. [DOI: 10.1007/s00005-017-0478-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Accepted: 06/02/2017] [Indexed: 12/12/2022]
|
39
|
Podzus J, Kowalczyk-Quintas C, Schuepbach-Mallepell S, Willen L, Staehlin G, Vigolo M, Tardivel A, Headon D, Kirby N, Mikkola ML, Schneider H, Schneider P. Ectodysplasin A in Biological Fluids and Diagnosis of Ectodermal Dysplasia. J Dent Res 2016; 96:217-224. [PMID: 28106506 DOI: 10.1177/0022034516673562] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The tumor necrosis factor (TNF) family ligand ectodysplasin A (EDA) is produced as 2 full-length splice variants, EDA1 and EDA2, that bind to EDA receptor (EDAR) and X-linked EDA receptor (XEDAR/EDA2R), respectively. Inactivating mutations in Eda or Edar cause hypohidrotic ectodermal dysplasia (HED), a condition characterized by malformations of the teeth, hair and glands, with milder deficiencies affecting only the teeth. EDA acts early during the development of ectodermal appendages-as early as the embryonic placode stage-and plays a role in adult appendage function. In this study, the authors measured EDA in serum, saliva and dried blood spots. The authors detected 3- to 4-fold higher levels of circulating EDA in cord blood than in adult sera. A receptor binding-competent form of EDA1 was the main form of EDA but a minor fraction of EDA2 was also found in fetal bovine serum. Sera of EDA-deficient patients contained either background EDA levels or low levels of EDA that could not bind to recombinant EDAR. The serum of a patient with a V262F missense mutation in Eda, which caused a milder form of X-linked HED (XLHED), contained low levels of EDA capable of binding to EDAR. In 2 mildly affected carriers, intermediate levels of EDA were detected, whereas a severely affected carrier had no active EDA in the serum. Small amounts of EDA were also detectable in normal adult saliva. Finally, EDA could be measured in spots of wild-type adult or cord blood dried onto filter paper at levels significantly higher than that measured in EDA-deficient blood. Measurement of EDA levels combined with receptor-binding assays might be of relevance to aid in the diagnosis of total or partial EDA deficiencies.
Collapse
Affiliation(s)
- J Podzus
- 1 Department of Pediatrics, University Hospital Erlangen, Germany
| | - C Kowalczyk-Quintas
- 2 Department of Biochemistry, University of Lausanne, Epalinges, Switzerland
| | | | - L Willen
- 2 Department of Biochemistry, University of Lausanne, Epalinges, Switzerland
| | - G Staehlin
- 2 Department of Biochemistry, University of Lausanne, Epalinges, Switzerland
| | - M Vigolo
- 2 Department of Biochemistry, University of Lausanne, Epalinges, Switzerland
| | - A Tardivel
- 2 Department of Biochemistry, University of Lausanne, Epalinges, Switzerland
| | - D Headon
- 3 Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, UK
| | - N Kirby
- 4 Edimer Pharmaceuticals, Cambridge, MA
| | - M L Mikkola
- 5 Developmental Biology Program, Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - H Schneider
- 1 Department of Pediatrics, University Hospital Erlangen, Germany
| | - P Schneider
- 2 Department of Biochemistry, University of Lausanne, Epalinges, Switzerland
| |
Collapse
|
40
|
Eight Mutations of Three Genes (EDA, EDAR, and WNT10A) Identified in Seven Hypohidrotic Ectodermal Dysplasia Patients. Genes (Basel) 2016; 7:genes7090065. [PMID: 27657131 PMCID: PMC5042395 DOI: 10.3390/genes7090065] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Revised: 09/01/2016] [Accepted: 09/12/2016] [Indexed: 01/03/2023] Open
Abstract
Hypohidrotic ectodermal dysplasia (HED) is characterized by abnormal development of the teeth, hair, and sweat glands. Ectodysplasin A (EDA), Ectodysplasin A receptor (EDAR), and EDAR-associated death domain (EDARADD) are candidate genes for HED, but the relationship between WNT10A and HED has not yet been validated. In this study, we included patients who presented at least two of the three ectodermal dysplasia features. The four genes were analyzed in seven HED patients by PCR and Sanger sequencing. Five EDA and one EDAR heterozygous mutations were identified in families 1–6. Two WNT10A heterozygous mutations were identified in family 7 as a compound heterozygote. c.662G>A (p.Gly221Asp) in EDA and c.354T>G (p.Tyr118*) in WNT10A are novel mutations. Bioinformatics analyses results confirmed the pathogenicity of the two novel mutations. In family 7, we also identified two single-nucleotide polymorphisms (SNPs) that were predicted to affect the splicing of EDAR. Analysis of the patient’s total RNA revealed normal splicing of EDAR. This ascertained that the compound heterozygous WNT10A mutations are the genetic defects that led to the onset of HED. Our data revealed the genetic basis of seven HED patients and expended the mutational spectrum. Interestingly, we confirmed WNT10A as a candidate gene of HED and we propose WNT10A to be tested in EDA-negative HED patients.
Collapse
|
41
|
Malmgren B, Andersson K, Lindahl K, Kindmark A, Grigelioniene G, Zachariadis V, Dahllöf G, Åström E. Tooth agenesis in osteogenesis imperfecta related to mutations in the collagen type I genes. Oral Dis 2016; 23:42-49. [DOI: 10.1111/odi.12568] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Revised: 07/25/2016] [Accepted: 08/05/2016] [Indexed: 02/03/2023]
Affiliation(s)
- B Malmgren
- Division of Pediatric Dentistry; Department of Dental Medicine; Karolinska Institutet; Stockholm Sweden
| | - K Andersson
- Division of Pediatric Dentistry; Department of Dental Medicine; Karolinska Institutet; Stockholm Sweden
| | - K Lindahl
- Department of Medical Sciences; Uppsala University; Uppsala Sweden
| | - A Kindmark
- Department of Medical Sciences; Uppsala University; Uppsala Sweden
| | - G Grigelioniene
- Department of Clinical Genetics; Karolinska University Hospital; Stockholm Sweden
- Department of Molecular Medicine and Surgery; Karolinska Institutet; Stockholm Sweden
| | - V Zachariadis
- Department of Molecular Medicine and Surgery; Karolinska Institutet; Stockholm Sweden
| | - G Dahllöf
- Division of Pediatric Dentistry; Department of Dental Medicine; Karolinska Institutet; Stockholm Sweden
| | - E Åström
- Neuropediatric unit; Karolinska University Hospital; Stockholm Sweden
- Department of Women's and Children's Health; Karolinska Institutet; Stockholm Sweden
| |
Collapse
|
42
|
Mutational spectrum in 101 patients with hypohidrotic ectodermal dysplasia and breakpoint mapping in independent cases of rare genomic rearrangements. J Hum Genet 2016; 61:891-897. [PMID: 27305980 DOI: 10.1038/jhg.2016.75] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Revised: 05/09/2016] [Accepted: 05/11/2016] [Indexed: 11/08/2022]
Abstract
Hypohidrotic ectodermal dysplasia (HED), a rare and heterogeneous hereditary disorder, is characterized by deficient development of multiple ectodermal structures including hair, sweat glands and teeth. If caused by mutations in the genes EDA, EDA1R or EDARADD, phenotypes are often very similar as the result of a common signaling pathway. Single-nucleotide polymorphisms (SNPs) affecting any gene product in this pathway may cause inter- and intrafamilial variability. In a cohort of 124 HED patients, genotyping was attempted by Sanger sequencing of EDA, EDA1R, EDARADD, TRAF6 and EDA2R and by multiplex ligation-dependent probe amplification (MLPA). Pathogenic mutations were detected in 101 subjects with HED, affecting EDA, EDA1R and EDARADD in 88%, 9% and 3% of the cases, respectively, and including 23 novel mutations. MLPA revealed exon copy-number variations in five unrelated HED families (two deletions and three duplications). In four of them, the genomic breakpoints could be localized. The EDA1R variant rs3827760 (p.Val370Ala), known to lessen HED-related symptoms, was found only in a single individual of Asian origin, but in none of the 123 European patients. Another SNP, rs1385699 (p.Arg57Lys) in EDA2R, however, appeared to have some impact on the hair phenotype of European subjects with EDA mutations.
Collapse
|
43
|
Miyake T, Kiniwa Y, Kosho T, Nakano H, Okuyama R. Hypohidrotic ectodermal dysplasia: A report of two cases. J Dermatol 2016; 44:479-481. [DOI: 10.1111/1346-8138.13479] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Tomomi Miyake
- Departments of Dermatology; Shinshu University School of Medicine; Matsumoto Japan
| | - Yukiko Kiniwa
- Departments of Dermatology; Shinshu University School of Medicine; Matsumoto Japan
| | - Tomoki Kosho
- Departments of Medical Genetics; Shinshu University School of Medicine; Matsumoto Japan
| | - Hajime Nakano
- Department of Dermatology; Hirosaki University School of Medicine; Hirosaki Japan
| | - Ryuhei Okuyama
- Departments of Dermatology; Shinshu University School of Medicine; Matsumoto Japan
| |
Collapse
|
44
|
Shen W, Wang Y, Liu Y, Liu H, Zhao H, Zhang G, Snead ML, Han D, Feng H. Functional Study of Ectodysplasin-A Mutations Causing Non-Syndromic Tooth Agenesis. PLoS One 2016; 11:e0154884. [PMID: 27144394 PMCID: PMC4856323 DOI: 10.1371/journal.pone.0154884] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Accepted: 04/20/2016] [Indexed: 12/29/2022] Open
Abstract
Recent studies have demonstrated that ectodysplasin-A (EDA) mutations are associated with non-syndromic tooth agenesis. Indeed, we were the first to report three novel EDA mutations (A259E, R289C and R334H) in sporadic non-syndromic tooth agenesis. We studied the mechanism linking EDA mutations and non-syndromic tooth agenesis in human embryonic kidney 293T cells and mouse ameloblast-derived LS8 cells transfected with mutant isoforms of EDA. The receptor binding capability of the mutant EDA1 protein was impaired in comparison to wild-type EDA1. Although the non-syndromic tooth agenesis-causing EDA1 mutants possessed residual binding capability, the transcriptional activation of the receptor's downstream target, nuclear factor κB (NF-κB), was compromised. We also analyzed the changes of selected genes in other signaling pathways, such as WNT and BMP, after EDA mutation. We found that non-syndromic tooth agenesis-causing EDA1 mutant proteins upregulate BMP4 (bone morphogenetic protein 4) mRNA expression and downregulate WNT10A and WNT10B (wingless-type MMTV integration site family member 10A and 10B) mRNA expression. Our results indicated that non-syndromic tooth agenesis causing EDA mutations (A259E, R289C and R334H) were loss-of-function, and suggested that EDA may regulate the expression of WNT10A, WNT10B and BMP4 via NF-κB during tooth development. The results from our study may help to understand the molecular mechanism linking specific EDA mutations with non-syndromic tooth agenesis.
Collapse
Affiliation(s)
- Wenjing Shen
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, Beijing, 100081, China
- Department of Forensic Medicine, Hebei Medical University, Hebei, 050017, China
- Department of Prosthodontics, School and Hospital of Stomatology of Hebei Medical University, Hebei, 050017, China
| | - Yue Wang
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, Beijing, 100081, China
| | - Yang Liu
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, Beijing, 100081, China
| | - Haochen Liu
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, Beijing, 100081, China
| | - Hongshan Zhao
- Department of Medical Genetics, School of Basic Medical Sciences, Peking University, Beijing, 100191, China
- Human Disease Genomics Center, Peking University, Beijing, 100191, China
| | - Guozhong Zhang
- Department of Forensic Medicine, Hebei Medical University, Hebei, 050017, China
| | - Malcolm L. Snead
- Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, California, 90033, United States of America
| | - Dong Han
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, Beijing, 100081, China
- * E-mail:
| | - Hailan Feng
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, Beijing, 100081, China
| |
Collapse
|
45
|
De novo EDA mutations: Variable expression in two Egyptian families. Arch Oral Biol 2016; 68:21-8. [PMID: 27054699 DOI: 10.1016/j.archoralbio.2016.03.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Revised: 03/28/2016] [Accepted: 03/29/2016] [Indexed: 11/21/2022]
Abstract
OBJECTIVE Mutations in the EDA gene, encoding the epithelial morphogen ectodysplasin-A, can result in different but overlapping phenotypes. Therefore the aim of the study was to search for etiological variations of EDA and other candidate genes in two unrelated Egyptian male children with sporadic non-syndromic tooth agenesis (NTA) and hypohidrotic ectodermal dysplasia (HED). DESIGN Direct sequencing of the coding regions including exon-intron boundaries of EDA, MSX1, PAX9, WNT10A and EDAR was performed in probands and their available family members. RESULTS Two etiological mutations were found in the EDA coding region. The patient with NTA in both deciduous and permanent dentition was a carrier of a novel in-frame deletion situated in the short collagenous domain (c.663-680delTCCTCCTGGTCCTCAAGG, p.222-227delPPGPQG). The second mutation, located outside the minimal furin consensus motif (c.463C>T, p.Arg155Cys, rs132630312), was identified in the patient exhibiting all typical features of HED. The identified EDA mutations were not detected in probands' family members as well as in 188 unrelated control individuals. No pathogenic variants were found in the MSX1, PAX9, WNT10A and EDAR genes. CONCLUSION Our results increase the knowledge of the spectrum of EDA mutations and confirm that this gene is an important candidate gene for two developmental diseases sharing the common feature of the congenital lack of teeth. In addition, these results can support the hypothesis that X-linked HED and EDA-related NTA are the same disease with different degrees of severity.
Collapse
|
46
|
Chaudhary AK, Girisha KM, Bashyam MD. A novel EDARADD 5'-splice site mutation resulting in activation of two alternate cryptic 5'-splice sites causes autosomal recessive Hypohidrotic Ectodermal Dysplasia. Am J Med Genet A 2016; 170:1639-41. [PMID: 26991760 DOI: 10.1002/ajmg.a.37607] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Accepted: 02/19/2016] [Indexed: 11/05/2022]
Affiliation(s)
- Ajay K Chaudhary
- Laboratory of Molecular Oncology, Centre for DNA Fingerprinting and Diagnostics, Hyderabad, India
| | - Katta M Girisha
- Department of Medical Genetics, Kasturba Medical College, Manipal University, Manipal, India
| | - Murali D Bashyam
- Laboratory of Molecular Oncology, Centre for DNA Fingerprinting and Diagnostics, Hyderabad, India
| |
Collapse
|
47
|
Li D, Xu R, Huang F, Wang B, Tao Y, Jiang Z, Li H, Yao J, Xu P, Wu X, Ren L, Zhang R, Kelsoe JR, Ma J. A novel missense mutation in collagenous domain of EDA gene in a Chinese family with X-linked hypohidrotic ectodermal dysplasia. J Genet 2016; 94:115-9. [PMID: 25846883 DOI: 10.1007/s12041-015-0474-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Daxu Li
- Stomatology Clinic, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, People's Republic of China.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Prasad MK, Geoffroy V, Vicaire S, Jost B, Dumas M, Le Gras S, Switala M, Gasse B, Laugel-Haushalter V, Paschaki M, Leheup B, Droz D, Dalstein A, Loing A, Grollemund B, Muller-Bolla M, Lopez-Cazaux S, Minoux M, Jung S, Obry F, Vogt V, Davideau JL, Davit-Beal T, Kaiser AS, Moog U, Richard B, Morrier JJ, Duprez JP, Odent S, Bailleul-Forestier I, Rousset MM, Merametdijan L, Toutain A, Joseph C, Giuliano F, Dahlet JC, Courval A, El Alloussi M, Laouina S, Soskin S, Guffon N, Dieux A, Doray B, Feierabend S, Ginglinger E, Fournier B, de la Dure Molla M, Alembik Y, Tardieu C, Clauss F, Berdal A, Stoetzel C, Manière MC, Dollfus H, Bloch-Zupan A. A targeted next-generation sequencing assay for the molecular diagnosis of genetic disorders with orodental involvement. J Med Genet 2016; 53:98-110. [PMID: 26502894 PMCID: PMC4752661 DOI: 10.1136/jmedgenet-2015-103302] [Citation(s) in RCA: 88] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2015] [Revised: 09/08/2015] [Accepted: 09/24/2015] [Indexed: 11/23/2022]
Abstract
BACKGROUND Orodental diseases include several clinically and genetically heterogeneous disorders that can present in isolation or as part of a genetic syndrome. Due to the vast number of genes implicated in these disorders, establishing a molecular diagnosis can be challenging. We aimed to develop a targeted next-generation sequencing (NGS) assay to diagnose mutations and potentially identify novel genes mutated in this group of disorders. METHODS We designed an NGS gene panel that targets 585 known and candidate genes in orodental disease. We screened a cohort of 101 unrelated patients without a molecular diagnosis referred to the Reference Centre for Oro-Dental Manifestations of Rare Diseases, Strasbourg, France, for a variety of orodental disorders including isolated and syndromic amelogenesis imperfecta (AI), isolated and syndromic selective tooth agenesis (STHAG), isolated and syndromic dentinogenesis imperfecta, isolated dentin dysplasia, otodental dysplasia and primary failure of tooth eruption. RESULTS We discovered 21 novel pathogenic variants and identified the causative mutation in 39 unrelated patients in known genes (overall diagnostic rate: 39%). Among the largest subcohorts of patients with isolated AI (50 unrelated patients) and isolated STHAG (21 unrelated patients), we had a definitive diagnosis in 14 (27%) and 15 cases (71%), respectively. Surprisingly, COL17A1 mutations accounted for the majority of autosomal-dominant AI cases. CONCLUSIONS We have developed a novel targeted NGS assay for the efficient molecular diagnosis of a wide variety of orodental diseases. Furthermore, our panel will contribute to better understanding the contribution of these genes to orodental disease. TRIAL REGISTRATION NUMBERS NCT01746121 and NCT02397824.
Collapse
Affiliation(s)
- Megana K Prasad
- Laboratoire de Génétique Médicale, INSERMU1112, Institut de génétique médicale d'Alsace, FMTS, Université de Strasbourg, Strasbourg, France
| | - Véronique Geoffroy
- Laboratoire de Génétique Médicale, INSERMU1112, Institut de génétique médicale d'Alsace, FMTS, Université de Strasbourg, Strasbourg, France
| | - Serge Vicaire
- Plateforme de Biopuces et Séquençage, Institut de Génétique et de Biologie Moléculaire and Cellulaire-Centre Européen de Recherche en Biologie et en Médecine, CNRS UMR7104, INSERM U964, Université de Strasbourg, Illkirch, France
| | - Bernard Jost
- Plateforme de Biopuces et Séquençage, Institut de Génétique et de Biologie Moléculaire and Cellulaire-Centre Européen de Recherche en Biologie et en Médecine, CNRS UMR7104, INSERM U964, Université de Strasbourg, Illkirch, France
| | - Michael Dumas
- Plateforme de Biopuces et Séquençage, Institut de Génétique et de Biologie Moléculaire and Cellulaire-Centre Européen de Recherche en Biologie et en Médecine, CNRS UMR7104, INSERM U964, Université de Strasbourg, Illkirch, France
| | - Stéphanie Le Gras
- Plateforme de Biopuces et Séquençage, Institut de Génétique et de Biologie Moléculaire and Cellulaire-Centre Européen de Recherche en Biologie et en Médecine, CNRS UMR7104, INSERM U964, Université de Strasbourg, Illkirch, France
| | - Marzena Switala
- Centre de Référence des Manifestations Odontologiques des Maladies Rares, Pôle de Médecine et Chirurgie Bucco-dentaires, Hôpitaux Universitaires de Strasbourg (HUS), Strasbourg, France
- Faculté de Chirurgie Dentaire, Université de Strasbourg, Strasbourg, France
| | - Barbara Gasse
- Evolution et Développement du Squelette-EDS, UMR7138-SAE, Université Pierre et Marie Curie, Paris, France
| | - Virginie Laugel-Haushalter
- Institut de Génétique et de Biologie Moléculaire and Cellulaire-Centre Européen de Recherche en Biologie et en Médecine, CNRS UMR7104, INSERM U964 Université de Strasbourg, Illkirch, France
| | - Marie Paschaki
- Laboratoire de Génétique Médicale, INSERMU1112, Institut de génétique médicale d'Alsace, FMTS, Université de Strasbourg, Strasbourg, France
- Institut de Génétique et de Biologie Moléculaire and Cellulaire-Centre Européen de Recherche en Biologie et en Médecine, CNRS UMR7104, INSERM U964 Université de Strasbourg, Illkirch, France
| | - Bruno Leheup
- Faculté de Médecine, CHU de Nancy, Université de Lorraine, Vandoeuvre-Les-Nancy, France
| | | | | | - Adeline Loing
- Centre de Référence des Manifestations Odontologiques des Maladies Rares, Pôle de Médecine et Chirurgie Bucco-dentaires, Hôpitaux Universitaires de Strasbourg (HUS), Strasbourg, France
| | - Bruno Grollemund
- Faculté de Chirurgie Dentaire, Université de Strasbourg, Strasbourg, France
| | - Michèle Muller-Bolla
- Départment d'Odontologie Pédiatrique, UFR d'Odontologie, Université de Nice Sophia-Antipolis, CHU de Nice, Nice, France
- URB2i—EA 4462, Paris Descartes, Paris, France
| | - Séréna Lopez-Cazaux
- Faculté de Chirurgie Dentaire, Département d'Odontologie Pédiatrique, CHU Hotel Dieu, Service d'odontologie conservatrice et pédiatrique, Nantes, France
| | - Maryline Minoux
- Centre de Référence des Manifestations Odontologiques des Maladies Rares, Pôle de Médecine et Chirurgie Bucco-dentaires, Hôpitaux Universitaires de Strasbourg (HUS), Strasbourg, France
- Faculté de Chirurgie Dentaire, Université de Strasbourg, Strasbourg, France
| | - Sophie Jung
- Centre de Référence des Manifestations Odontologiques des Maladies Rares, Pôle de Médecine et Chirurgie Bucco-dentaires, Hôpitaux Universitaires de Strasbourg (HUS), Strasbourg, France
- Faculté de Chirurgie Dentaire, Université de Strasbourg, Strasbourg, France
| | - Frédéric Obry
- Centre de Référence des Manifestations Odontologiques des Maladies Rares, Pôle de Médecine et Chirurgie Bucco-dentaires, Hôpitaux Universitaires de Strasbourg (HUS), Strasbourg, France
- Faculté de Chirurgie Dentaire, Université de Strasbourg, Strasbourg, France
| | - Vincent Vogt
- Centre de Référence des Manifestations Odontologiques des Maladies Rares, Pôle de Médecine et Chirurgie Bucco-dentaires, Hôpitaux Universitaires de Strasbourg (HUS), Strasbourg, France
- Faculté de Chirurgie Dentaire, Université de Strasbourg, Strasbourg, France
| | - Jean-Luc Davideau
- Faculté de Chirurgie Dentaire, Université de Strasbourg, Strasbourg, France
| | - Tiphaine Davit-Beal
- Evolution et Développement du Squelette-EDS, UMR7138-SAE, Université Pierre et Marie Curie, Paris, France
- Faculté de Chirurgie Dentaire, Département d'Odontologie Pédiatrique, Université Paris Descartes, Montrouge, France
| | | | - Ute Moog
- Institute of Human Genetics, Heidelberg University, Heidelberg, Germany
| | - Béatrice Richard
- Service de Consultations et Traitements Dentaires, Hospices Civils de Lyon, Faculté d'Odontologie, Université Claude Bernard Lyon1, Lyon, France
| | - Jean-Jacques Morrier
- Service de Consultations et Traitements Dentaires, Hospices Civils de Lyon, Faculté d'Odontologie, Université Claude Bernard Lyon1, Lyon, France
| | - Jean-Pierre Duprez
- Service de Consultations et Traitements Dentaires, Hospices Civils de Lyon, Faculté d'Odontologie, Université Claude Bernard Lyon1, Lyon, France
| | - Sylvie Odent
- Service de Génétique Clinique, CHU de Rennes, Rennes, France
| | - Isabelle Bailleul-Forestier
- Faculté de Chirurgie Dentaire, CHU de Toulouse, Odontologie Pédiatrique, Université Paul Sabatier, Toulouse, France
| | - Monique Marie Rousset
- Unité Fonctionnelle d'Odontologie pédiatrique, Service d'odontologie, CHRU de Lille, Lille, France
| | - Laure Merametdijan
- Faculté de Chirurgie Dentaire, Service d'Odontologie Conservatrice et Endodontie, CHU Nantes, Université de Nantes, France
| | | | - Clara Joseph
- Départment d'Odontologie Pédiatrique, Université de Nice Sophia-Antipolis, CHU Nice, Nice, France
| | | | - Jean-Christophe Dahlet
- Centre de Référence des Manifestations Odontologiques des Maladies Rares, Pôle de Médecine et Chirurgie Bucco-dentaires, Hôpitaux Universitaires de Strasbourg (HUS), Strasbourg, France
| | - Aymeric Courval
- Pôle de Médecine et de Chirurgie Bucco-dentaire, Hôpital Civil, HUS, Strasbourg, France
| | - Mustapha El Alloussi
- Faculty of Dental Medicine, Department of Pediatric Dentistry, University Mohammed V Rabat, Morocco
| | - Samir Laouina
- Faculty of Dental Medicine, Department of Pediatric Dentistry, University Mohammed V Rabat, Morocco
| | - Sylvie Soskin
- Pédiatrie 1, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | | | - Anne Dieux
- Service de génétique clinique Guy Fontaine, Centre Hospitalier Régionale Universitaire (CHRU) de Lille, Lille, France
| | - Bérénice Doray
- Service de Génétique Médicale, CHU de Strasbourg, Strasbourg, France
| | - Stephanie Feierabend
- Klinik für Zahnerhaltungskunde und Parodontologie, Universitats Klinikum, Freiburg, Germany
| | | | - Benjamin Fournier
- Laboratoire de Physiopathologie Orale Moléculaire INSERM UMR S1138, Centre de Recherche des Cordeliers, Universités Paris-Diderot et Paris-Descartes, Paris, France
- Centre de Référence des Malformations Rares de la Face et de la Cavité Buccale MAFACE, Hôpital Rothschild, Pôle d'Odontologie, Paris, France
| | - Muriel de la Dure Molla
- Laboratoire de Physiopathologie Orale Moléculaire INSERM UMR S1138, Centre de Recherche des Cordeliers, Universités Paris-Diderot et Paris-Descartes, Paris, France
- Centre de Référence des Malformations Rares de la Face et de la Cavité Buccale MAFACE, Hôpital Rothschild, Pôle d'Odontologie, Paris, France
| | - Yves Alembik
- Service de Génétique Médicale, CHU de Strasbourg, Strasbourg, France
| | - Corinne Tardieu
- Aix-Marseille Université, UMR 7268 ADES/EFS/CNRS, APHM, Hôpital Timone, Service Odontologie, Marseille, France
| | - François Clauss
- Centre de Référence des Manifestations Odontologiques des Maladies Rares, Pôle de Médecine et Chirurgie Bucco-dentaires, Hôpitaux Universitaires de Strasbourg (HUS), Strasbourg, France
- Faculté de Chirurgie Dentaire, Université de Strasbourg, Strasbourg, France
| | - Ariane Berdal
- Laboratoire de Physiopathologie Orale Moléculaire INSERM UMR S1138, Centre de Recherche des Cordeliers, Universités Paris-Diderot et Paris-Descartes, Paris, France
- Centre de Référence des Malformations Rares de la Face et de la Cavité Buccale MAFACE, Hôpital Rothschild, Pôle d'Odontologie, Paris, France
| | - Corinne Stoetzel
- Laboratoire de Génétique Médicale, INSERMU1112, Institut de génétique médicale d'Alsace, FMTS, Université de Strasbourg, Strasbourg, France
| | - Marie Cécile Manière
- Centre de Référence des Manifestations Odontologiques des Maladies Rares, Pôle de Médecine et Chirurgie Bucco-dentaires, Hôpitaux Universitaires de Strasbourg (HUS), Strasbourg, France
- Faculté de Chirurgie Dentaire, Université de Strasbourg, Strasbourg, France
| | - Hélène Dollfus
- Laboratoire de Génétique Médicale, INSERMU1112, Institut de génétique médicale d'Alsace, FMTS, Université de Strasbourg, Strasbourg, France
- Service de Génétique Médicale, Centre de Référence pour les Affections Rares en Génétique Ophtalmologique, HUS, Strasbourg, France
| | - Agnès Bloch-Zupan
- Centre de Référence des Manifestations Odontologiques des Maladies Rares, Pôle de Médecine et Chirurgie Bucco-dentaires, Hôpitaux Universitaires de Strasbourg (HUS), Strasbourg, France
- Faculté de Chirurgie Dentaire, Université de Strasbourg, Strasbourg, France
- Institut de Génétique et de Biologie Moléculaire and Cellulaire-Centre Européen de Recherche en Biologie et en Médecine, CNRS UMR7104, INSERM U964 Université de Strasbourg, Illkirch, France
| |
Collapse
|
49
|
Ectodysplasin A Pathway Contributes to Human and Murine Skin Repair. J Invest Dermatol 2016; 136:1022-1030. [PMID: 26829034 PMCID: PMC4967474 DOI: 10.1016/j.jid.2015.09.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Revised: 09/08/2015] [Accepted: 09/22/2015] [Indexed: 12/27/2022]
Abstract
The highly conserved ectodysplasin A (EDA)/EDA receptor signaling pathway is critical during development for the formation of skin appendages. Mutations in genes encoding components of the EDA pathway disrupt normal appendage development, leading to the human disorder hypohidrotic ectodermal dysplasia. Spontaneous mutations in the murine Eda (Tabby) phenocopy human X-linked hypohidrotic ectodermal dysplasia. Little is known about the role of EDA signaling in adult skin homeostasis or repair. Because wound healing largely mimics the morphogenic events that occur during development, we propose a role for EDA signaling in adult wound repair. Here we report a pronounced delay in healing in Tabby mice, demonstrating a functional role for EDA signaling in adult skin. Moreover, pharmacological activation of the EDA pathway in both Tabby and wild-type mice significantly accelerates healing, influencing multiple processes including re-epithelialization and granulation tissue matrix deposition. Finally, we show that the healing promoting effects of EDA receptor activation are conserved in human skin repair. Thus, targeted manipulation of the EDA/EDA receptor pathway has clear therapeutic potential for the future treatment of human pathological wound healing.
Collapse
|
50
|
Live births after simultaneous avoidance of monogenic diseases and chromosome abnormality by next-generation sequencing with linkage analyses. Proc Natl Acad Sci U S A 2015; 112:15964-9. [PMID: 26712022 DOI: 10.1073/pnas.1523297113] [Citation(s) in RCA: 106] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In vitro fertilization (IVF), preimplantation genetic diagnosis (PGD), and preimplantation genetic screening (PGS) help patients to select embryos free of monogenic diseases and aneuploidy (chromosome abnormality). Next-generation sequencing (NGS) methods, while experiencing a rapid cost reduction, have improved the precision of PGD/PGS. However, the precision of PGD has been limited by the false-positive and false-negative single-nucleotide variations (SNVs), which are not acceptable in IVF and can be circumvented by linkage analyses, such as short tandem repeats or karyomapping. It is noteworthy that existing methods of detecting SNV/copy number variation (CNV) and linkage analysis often require separate procedures for the same embryo. Here we report an NGS-based PGD/PGS procedure that can simultaneously detect a single-gene disorder and aneuploidy and is capable of linkage analysis in a cost-effective way. This method, called "mutated allele revealed by sequencing with aneuploidy and linkage analyses" (MARSALA), involves multiple annealing and looping-based amplification cycles (MALBAC) for single-cell whole-genome amplification. Aneuploidy is determined by CNVs, whereas SNVs associated with the monogenic diseases are detected by PCR amplification of the MALBAC product. The false-positive and -negative SNVs are avoided by an NGS-based linkage analysis. Two healthy babies, free of the monogenic diseases of their parents, were born after such embryo selection. The monogenic diseases originated from a single base mutation on the autosome and the X-chromosome of the disease-carrying father and mother, respectively.
Collapse
|