1
|
Krushkal J, Vural S, Jensen TL, Wright G, Zhao Y. Increased copy number of imprinted genes in the chromosomal region 20q11-q13.32 is associated with resistance to antitumor agents in cancer cell lines. Clin Epigenetics 2022; 14:161. [PMID: 36461044 PMCID: PMC9716673 DOI: 10.1186/s13148-022-01368-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 10/31/2022] [Indexed: 12/03/2022] Open
Abstract
BACKGROUND Parent of origin-specific allelic expression of imprinted genes is epigenetically controlled. In cancer, imprinted genes undergo both genomic and epigenomic alterations, including frequent copy number changes. We investigated whether copy number loss or gain of imprinted genes in cancer cell lines is associated with response to chemotherapy treatment. RESULTS We analyzed 198 human imprinted genes including protein-coding genes and noncoding RNA genes using data from tumor cell lines from the Cancer Cell Line Encyclopedia and Genomics of Drug Sensitivity in Cancer datasets. We examined whether copy number of the imprinted genes in 35 different genome locations was associated with response to cancer drug treatment. We also analyzed associations of pretreatment expression and DNA methylation of imprinted genes with drug response. Higher copy number of BLCAP, GNAS, NNAT, GNAS-AS1, HM13, MIR296, MIR298, and PSIMCT-1 in the chromosomal region 20q11-q13.32 was associated with resistance to multiple antitumor agents. Increased expression of BLCAP and HM13 was also associated with drug resistance, whereas higher methylation of gene regions of BLCAP, NNAT, SGK2, and GNAS was associated with drug sensitivity. While expression and methylation of imprinted genes in several other chromosomal regions was also associated with drug response and many imprinted genes in different chromosomal locations showed a considerable copy number variation, only imprinted genes at 20q11-q13.32 had a consistent association of their copy number with drug response. Copy number values among the imprinted genes in the 20q11-q13.32 region were strongly correlated. They were also correlated with the copy number of cancer-related non-imprinted genes MYBL2, AURKA, and ZNF217 in that chromosomal region. Expression of genes at 20q11-q13.32 was associated with ex vivo drug response in primary tumor samples from the Beat AML 1.0 acute myeloid leukemia patient cohort. Association of the increased copy number of the 20q11-q13.32 region with drug resistance may be complex and could involve multiple genes. CONCLUSIONS Copy number of imprinted and non-imprinted genes in the chromosomal region 20q11-q13.32 was associated with cancer drug resistance. The genes in this chromosomal region may have a modulating effect on tumor response to chemotherapy.
Collapse
Affiliation(s)
- Julia Krushkal
- Biometric Research Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute, 9609 Medical Center Dr, Rockville, MD, 20850, USA.
| | - Suleyman Vural
- Biometric Research Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute, 9609 Medical Center Dr, Rockville, MD, 20850, USA.,Marie-Josee and Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA
| | | | - George Wright
- Biometric Research Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute, 9609 Medical Center Dr, Rockville, MD, 20850, USA
| | - Yingdong Zhao
- Biometric Research Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute, 9609 Medical Center Dr, Rockville, MD, 20850, USA
| |
Collapse
|
2
|
Srancikova A, Bacova Z, Bakos J. The epigenetic regulation of synaptic genes contributes to the etiology of autism. Rev Neurosci 2021; 32:791-802. [PMID: 33939901 DOI: 10.1515/revneuro-2021-0014] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 04/12/2021] [Indexed: 12/30/2022]
Abstract
Epigenetic mechanisms greatly affect the developing brain, as well as the maturation of synapses with pervasive, long-lasting consequences on behavior in adults. Substantial evidence exists that implicates dysregulation of epigenetic mechanisms in the etiology of neurodevelopmental disorders. Therefore, this review explains the role of enzymes involved in DNA methylation and demethylation in neurodevelopment by emphasizing changes of synaptic genes and proteins. Epigenetic causes of sex-dependent differences in the brain are analyzed in conjunction with the pathophysiology of autism spectrum disorders. Special attention is devoted to the epigenetic regulation of the melanoma-associated antigen-like gene 2 (MAGEL2) found in Prader-Willi syndrome, which is known to be accompanied by autistic symptoms.
Collapse
Affiliation(s)
- Annamaria Srancikova
- Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences, Dubravska cesta 9, 845 05 Bratislava, Slovakia
| | - Zuzana Bacova
- Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences, Dubravska cesta 9, 845 05 Bratislava, Slovakia
| | - Jan Bakos
- Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences, Dubravska cesta 9, 845 05 Bratislava, Slovakia
- Institute of Physiology, Faculty of Medicine, Comenius University, Bratislava, Slovakia
| |
Collapse
|
3
|
Bruscadin JJ, de Souza MM, de Oliveira KS, Rocha MIP, Afonso J, Cardoso TF, Zerlotini A, Coutinho LL, Niciura SCM, de Almeida Regitano LC. Muscle allele-specific expression QTLs may affect meat quality traits in Bos indicus. Sci Rep 2021; 11:7321. [PMID: 33795794 PMCID: PMC8016890 DOI: 10.1038/s41598-021-86782-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 03/17/2021] [Indexed: 02/01/2023] Open
Abstract
Single nucleotide polymorphisms (SNPs) located in transcript sequences showing allele-specific expression (ASE SNPs) were previously identified in the Longissimus thoracis muscle of a Nelore (Bos indicus) population consisting of 190 steers. Given that the allele-specific expression pattern may result from cis-regulatory SNPs, called allele-specific expression quantitative trait loci (aseQTLs), in this study, we searched for aseQTLs in a window of 1 Mb upstream and downstream from each ASE SNP. After this initial analysis, aiming to investigate variants with a potential regulatory role, we further screened our aseQTL data for sequence similarity with transcription factor binding sites and microRNA (miRNA) binding sites. These aseQTLs were overlapped with methylation data from reduced representation bisulfite sequencing (RRBS) obtained from 12 animals of the same population. We identified 1134 aseQTLs associated with 126 different ASE SNPs. For 215 aseQTLs, one allele potentially affected the affinity of a muscle-expressed transcription factor to its binding site. 162 aseQTLs were predicted to affect 149 miRNA binding sites, from which 114 miRNAs were expressed in muscle. Also, 16 aseQTLs were methylated in our population. Integration of aseQTL with GWAS data revealed enrichment for traits such as meat tenderness, ribeye area, and intramuscular fat . To our knowledge, this is the first report of aseQTLs identification in bovine muscle. Our findings indicate that various cis-regulatory and epigenetic mechanisms can affect multiple variants to modulate the allelic expression. Some of the potential regulatory variants described here were associated with the expression pattern of genes related to interesting phenotypes for livestock. Thus, these variants might be useful for the comprehension of the genetic control of these phenotypes.
Collapse
Affiliation(s)
- Jennifer Jessica Bruscadin
- grid.411247.50000 0001 2163 588XPost-Graduation Program of Evolutionary Genetics and Molecular Biology, Center of Biological Sciences and Health, Federal University of São Carlos, São Carlos, SP Brazil
| | - Marcela Maria de Souza
- grid.34421.300000 0004 1936 7312Post-Doctoral Fellow, Department of Animal Science, Iowa State University, Ames, IA USA
| | - Karina Santos de Oliveira
- grid.411247.50000 0001 2163 588XPost-Graduation Program of Evolutionary Genetics and Molecular Biology, Center of Biological Sciences and Health, Federal University of São Carlos, São Carlos, SP Brazil
| | - Marina Ibelli Pereira Rocha
- grid.411247.50000 0001 2163 588XPost-Graduation Program of Evolutionary Genetics and Molecular Biology, Center of Biological Sciences and Health, Federal University of São Carlos, São Carlos, SP Brazil
| | - Juliana Afonso
- grid.11899.380000 0004 1937 0722Department of Animal Science, University of São Paulo/ESALQ, Piracicaba, SP Brazil
| | - Tainã Figueiredo Cardoso
- grid.460200.00000 0004 0541 873XEmbrapa Pecuária Sudeste, P. O. Box 339, São Carlos, SP 13564-230 Brazil
| | - Adhemar Zerlotini
- grid.460200.00000 0004 0541 873XEmbrapa Informática Agropecuária, Campinas, SP Brazil
| | - Luiz Lehmann Coutinho
- grid.11899.380000 0004 1937 0722Department of Animal Science, University of São Paulo/ESALQ, Piracicaba, SP Brazil
| | | | | |
Collapse
|
4
|
Chase KA, Mallari JE, Tan Y, Sittig L. Behavioral Effects of Neuronal, Parent-specific Commd1 Knockout in Mice. Neuroscience 2020; 434:1-7. [PMID: 32200079 DOI: 10.1016/j.neuroscience.2020.03.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 03/08/2020] [Accepted: 03/09/2020] [Indexed: 10/24/2022]
Abstract
In this study we focused on gene expression and behavioral differences in mice with brain-specific Commd1 knockout. Commd1 is an imprinted gene with preferential maternal expression, residing within a larger genomic region previously found to affect sensorimotor gating. In this study, individuals harboring a conditional Commd1 mutant allele were bred with Syn1-Cre animals, paying special attention to the parent of origin of the Commd1 mutation. Analysis of mRNA levels of Commd1 and phenotypic tests, including the open field, sensorimotor gating, and the forced swim test, were conducted on offspring with either maternally or paternally derived Commd1 knockout. We found that measurable Commd1 mRNA knockout occurred only in the maternally derived line and affected stereotypy and depressive-like behavior without differences in total locomotion compared to controls. Interestingly, we found that maternal knockout animals exhibited decreased time swimming and increased time immobile when compared to maternal and paternal wild type, and paternal knockout animals. However, there were no differences in climbing behavior between genotypes. This study demonstrates an in vivo behavioral role for Commd1 for the first time and demonstrates the need for careful interpretation of experimental results involving Cre-based knockout systems.
Collapse
Affiliation(s)
- Kayla A Chase
- University of California, Department of Psychiatry, 9500 Gilman Drive, La Jolla, CA 92093, United States; University of Illinois at Chicago, Department of Psychiatry, 900 S. Ashland Ave, Chicago, IL 60612, United States.
| | - Jazlene E Mallari
- University of California, Department of Psychiatry, 9500 Gilman Drive, La Jolla, CA 92093, United States
| | - Yvette Tan
- University of California, Department of Psychiatry, 9500 Gilman Drive, La Jolla, CA 92093, United States
| | - Laura Sittig
- University of California, Department of Psychiatry, 9500 Gilman Drive, La Jolla, CA 92093, United States
| |
Collapse
|
5
|
Calvete JJ, Casewell NR, Hernández-Guzmán U, Quesada-Bernat S, Sanz L, Rokyta DR, Storey D, Albulescu LO, Wüster W, Smith CF, Schuett GW, Booth W. Venom Complexity in a Pitviper Produced by Facultative Parthenogenesis. Sci Rep 2018; 8:11539. [PMID: 30068934 PMCID: PMC6070573 DOI: 10.1038/s41598-018-29791-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 07/12/2018] [Indexed: 11/25/2022] Open
Abstract
Facultative parthenogenesis (FP) is asexual reproduction in plant and animal species that would otherwise reproduce sexually. This process in vertebrates typically results from automictic development (likely terminal fusion) and is phylogenetically widespread. In squamate reptiles and chondrichthyan fishes, FP has been reported to occur in nature and can result in the production of reproductively viable offspring; suggesting that it is of ecological and evolutionary significance. However, terminal fusion automixis is believed to result in near genome-wide reductions in heterozygosity; thus, FP seems likely to affect key phenotypic characters, yet this remains almost completely unstudied. Snake venom is a complex phenotypic character primarily used to subjugate prey and is thus tightly linked to individual fitness. Surprisingly, the composition and function of venom produced by a parthenogenetic pitviper exhibits a high degree of similarity to that of its mother and conspecifics from the same population. Therefore, the apparent loss of allelic diversity caused by FP appears unlikely to have a significant impact on the prey-capturing ability of this snake. Accordingly, the pitviper offspring produced by FP retained complex phenotypic characteristics associated with fitness. This result reinforces the potential ecological and evolutionary importance of FP and questions our understanding of the inheritance of venom-associated genes.
Collapse
Affiliation(s)
- J J Calvete
- Evolutionary and Translational Venomics Laboratory, CSIC, Valencia, Spain.
| | - N R Casewell
- Alistair Reid Venom Research Unit, Parasitology Department, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK.
| | - U Hernández-Guzmán
- Evolutionary and Translational Venomics Laboratory, CSIC, Valencia, Spain
- Laboratorio de Química de Biomacromoléculas, Instituto de Química, Universidad Nacional Autónoma de México, Ciudad Universitaria, Delegación Coyoacán C.P, 04510, Ciudad de México, Mexico
| | - S Quesada-Bernat
- Evolutionary and Translational Venomics Laboratory, CSIC, Valencia, Spain
| | - L Sanz
- Evolutionary and Translational Venomics Laboratory, CSIC, Valencia, Spain
| | - D R Rokyta
- Department of Biological Science, Florida State University, Tallahassee, FL, USA
| | - D Storey
- Alistair Reid Venom Research Unit, Parasitology Department, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK
- Molecular Ecology and Fisheries Genetics Laboratory, School of Biological Sciences, Environment Centre Wales, Bangor University, Bangor, LL57 2UW, UK
| | - L-O Albulescu
- Alistair Reid Venom Research Unit, Parasitology Department, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK
| | - W Wüster
- Molecular Ecology and Fisheries Genetics Laboratory, School of Biological Sciences, Environment Centre Wales, Bangor University, Bangor, LL57 2UW, UK
- Chiricahua Desert Museum, P.O. Box 376, Rodeo, NM, USA
| | - C F Smith
- Chiricahua Desert Museum, P.O. Box 376, Rodeo, NM, USA
- The Copperhead Institute, P.O. Box 6755, Spartanburg, SC, USA
- Department of Biology, Wofford College, 429 North Church Street, Spartanburg, SC, USA
| | - G W Schuett
- Chiricahua Desert Museum, P.O. Box 376, Rodeo, NM, USA
- The Copperhead Institute, P.O. Box 6755, Spartanburg, SC, USA
- Department of Biology and Neuroscience Institute, Georgia State University, Atlanta, GA, USA
| | - W Booth
- Chiricahua Desert Museum, P.O. Box 376, Rodeo, NM, USA
- The Copperhead Institute, P.O. Box 6755, Spartanburg, SC, USA
- Department of Biological Science, The University of Tulsa, Tulsa, OK, USA
| |
Collapse
|
6
|
Jahangiri M, Shahhoseini M, Movaghar B. The Effect of Vitrification on Expression and Histone Marks of Igf2 and Oct4 in Blastocysts Cultured from Two-Cell Mouse Embryos. CELL JOURNAL 2017; 19:607-613. [PMID: 29105395 PMCID: PMC5672099 DOI: 10.22074/cellj.2018.3959] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Accepted: 10/16/2016] [Indexed: 12/15/2022]
Abstract
OBJECTIVES Vitrification is increasingly used in assisted reproductive technology (ART) laboratories worldwide. In this study the effect of vitrification on the expression and modifications of H3 histones of Igf2 and Oct4 was investigated in blastocysts cultured from vitrified and non-vitrified two-cell embryos. MATERIALS AND METHODS In this experimental study, two-cell embryos were cultured in KSOM medium to reach the blastocyst stage. Expression of Igf2 and Oct4 and modifications of H3 histones in regulatory regions of both genes were compared with in vivo blastocysts, which comprise the control group. To gene expression evaluation, reverse transcription-quantitative polymerase chain reaction (RT-qPCR) and the ChIP assay method were carried out to assess expression and histone modifications of the two genes. RESULTS The expression level of Igf2 was significantly higher in both experimental groups than the control group. In the regulatory region of Igf2, H3K9 methylation decreased whereas H3K9 acetylation increased in the experimental group compared with the control group. In contrast, the expression level of Oct4 was significantly lower in experimental groups. The Oct4 gene promoter showed a significant increase in H3K9 methylation and decrease in H3K9 acetylation (P<0.05). CONCLUSIONS According to our results, both vitrification and cultivation conditions may lead to changes in expression level and modification of histones in Igf2 and Oct4. However, these effects were the same in vitrified and non-vitrified groups. Indeed, the embryo is most affected by culture environment and in vitro culture. Therefore, vitrification may be used as a low-risk technique for embryo cryopreservation in ART.
Collapse
Affiliation(s)
- Maryam Jahangiri
- Department of Embryology, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Maryam Shahhoseini
- Department of Genetics, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Bahar Movaghar
- Department of Embryology, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran.
| |
Collapse
|
7
|
Cui Y, Yang H. Dissecting genomic imprinting and genetic conflict from a game theory prospective: Comment on: "Epigenetic game theory: How to compute the epigenetic control of maternal-to-zygotic transition" by Qian Wang et al. Phys Life Rev 2017; 20:161-163. [PMID: 28159530 DOI: 10.1016/j.plrev.2017.01.028] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Accepted: 01/27/2017] [Indexed: 01/11/2023]
Affiliation(s)
- Yuehua Cui
- Department of Statistics and Probability, Michigan State University, East Lansing, MI 48824, United States.
| | - Haitao Yang
- Department of Statistics and Probability, Michigan State University, East Lansing, MI 48824, United States
| |
Collapse
|
8
|
Carcinoma of the colon and rectum with deregulation of insulin-like growth factor 2 signaling: clinical and molecular implications. J Gastroenterol 2016; 51:971-84. [PMID: 26984550 DOI: 10.1007/s00535-016-1181-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Accepted: 02/02/2016] [Indexed: 02/08/2023]
Abstract
BACKGROUND Loss of imprinting (LOI) of the insulin-like growth factor 2 (IGF2) is an early event in the development of colorectal cancer (CRC). Whether LOI of IGF2 denotes a molecular or clinical cancer subgroup is currently unknown. METHODS Tumor biopsies and paired normal mucosa from 399 patients with extensive clinical annotations were analyzed for LOI and IGF2 expression. LOI status in 140 informative cases was correlated with clinicopathologic parameters and outcome. RESULTS LOI was frequent in normal mucosa and tumors and occurred throughout the large intestine. LOI was unrelated to microsatellite instability, KRAS mutation status, stage, and survival. However, CRC with LOI showed increased IGF2 protein levels and activation of AKT1. Gene expression analysis of tumors with and without LOI and knockdown of IGF2 in cell lines revealed that IGF2 induced distinct sets of activated and repressed genes, including Wnt5a, CEACAM6, IGF2BP3, KPN2A, BRCA2, and CDK1. Inhibition of AKT1 in IGF2-stimulated cells showed that the downstream effects of IGF2 on cell proliferation and gene expression were strictly AKT1-dependent. CONCLUSIONS LOI of IGF2 is a frequent and early event in CRC that occurs both in the adenomatous polyposis coli (APC) gene-mutated and serrated route of carcinogenesis. LOI leads to overexpression of IGF2, activates IGF1R and AKT1, and is a powerful driver of cell proliferation. Moreover, our results suggest that IGF2 via AKT1 also contributes to non-canonical wnt signaling. Although LOI had no significant impact on major clinical parameters and outcome, its potential as a target for preventive and therapeutic interventions merits further investigation.
Collapse
|
9
|
A powerful association test for qualitative traits incorporating imprinting effects using general pedigree data. J Hum Genet 2014; 60:77-83. [PMID: 25518739 DOI: 10.1038/jhg.2014.109] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Revised: 11/19/2014] [Accepted: 11/24/2014] [Indexed: 11/08/2022]
Abstract
For qualitative traits and diallelic marker loci, the pedigree disequilibrium test (PDT) based on general pedigrees and its extension (Monte Carlo PDT (MCPDT)) for dealing with missing genotypes are simple and powerful tests for association. There is an increasing interest of incorporating imprinting into association analysis. However, PDT and MCPDT do not take account of the information on imprinting effects in the analysis, which may reduce their test powers when the effects are present. On the other hand, the transmission disequilibrium test with imprinting (TDTI*) combines imprinting into the mapping of association variants. However, TDTI* only accommodates two-generation nuclear families and thus is not suitable for extended pedigrees. In this article, we first extend PDT to incorporate imprinting and propose PDTI for complete pedigrees (no missing genotypes). To fully utilize pedigrees with missing genotypes, we further develop the Monte Carlo PDTI (MCPDTI) statistic based on Monte Carlo sampling and estimation. Both PDTI and MCPDTI are derived in a two-stage framework. Simulation study shows that PDTI and MCPDTI control the size well under the null hypothesis of no association and are more powerful than PDT and TDTI* (based on a sample of nuclear families randomly selecting from pedigrees) when imprinting effects exist.
Collapse
|
10
|
Reichert S, Rojas ER, Zahn S, Robin JP, Criscuolo F, Massemin S. Maternal telomere length inheritance in the king penguin. Heredity (Edinb) 2014; 114:10-6. [PMID: 25052413 DOI: 10.1038/hdy.2014.60] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2014] [Revised: 04/24/2014] [Accepted: 05/07/2014] [Indexed: 01/07/2023] Open
Abstract
Telomeres are emerging as a biomarker for ageing and survival, and are likely important in shaping life-history trade-offs. In particular, telomere length with which one starts in life has been linked to lifelong survival, suggesting that early telomere dynamics are somehow related to life-history trajectories. This result highlights the importance of determining the extent to which telomere length is inherited, as a crucial factor determining early life telomere length. Given the scarcity of species for which telomere length inheritance has been studied, it is pressing to assess the generality of telomere length inheritance patterns. Further, information on how this pattern changes over the course of growth in individuals living under natural conditions should provide some insight on the extent to which environmental constraints also shape telomere dynamics. To fill this gap partly, we followed telomere inheritance in a population of king penguins (Aptenodytes patagonicus). We tested for paternal and maternal influence on chick initial telomere length (10 days old after hatching), and how these relationships changed with chick age (at 70, 200 and 300 days old). Based on a correlative approach, offspring telomere length was positively associated with maternal telomere length early in life (at 10 days old). However, this relationship was not significant at older ages. These data suggest that telomere length in birds is maternally inherited. Nonetheless, the influence of environmental conditions during growth remained an important factor shaping telomere length, as the maternal link disappeared with chicks' age.
Collapse
Affiliation(s)
- S Reichert
- 1] Département Ecologie, Physiologie et Ethologie, Institut Pluridisciplinaire Hubert Curien, Université de Strasbourg, Strasbourg, France [2] CNRS, UMR 7178, Strasbourg, France
| | - E R Rojas
- 1] Département Ecologie, Physiologie et Ethologie, Institut Pluridisciplinaire Hubert Curien, Université de Strasbourg, Strasbourg, France [2] CNRS, UMR 7178, Strasbourg, France
| | - S Zahn
- 1] Département Ecologie, Physiologie et Ethologie, Institut Pluridisciplinaire Hubert Curien, Université de Strasbourg, Strasbourg, France [2] CNRS, UMR 7178, Strasbourg, France
| | - J-P Robin
- 1] Département Ecologie, Physiologie et Ethologie, Institut Pluridisciplinaire Hubert Curien, Université de Strasbourg, Strasbourg, France [2] CNRS, UMR 7178, Strasbourg, France
| | - F Criscuolo
- 1] Département Ecologie, Physiologie et Ethologie, Institut Pluridisciplinaire Hubert Curien, Université de Strasbourg, Strasbourg, France [2] CNRS, UMR 7178, Strasbourg, France
| | - S Massemin
- 1] Département Ecologie, Physiologie et Ethologie, Institut Pluridisciplinaire Hubert Curien, Université de Strasbourg, Strasbourg, France [2] CNRS, UMR 7178, Strasbourg, France
| |
Collapse
|
11
|
Rachdaoui N, Sarkar DK. Transgenerational epigenetics and brain disorders. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2014; 115:51-73. [PMID: 25131542 DOI: 10.1016/b978-0-12-801311-3.00002-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Neurobehavioral and psychiatric disorders are complex diseases with a strong heritable component; however, to date, genome-wide association studies failed to identify the genetic loci involved in the etiology of these brain disorders. Recently, transgenerational epigenetic inheritance has emerged as an important factor playing a pivotal role in the inheritance of brain disorders. This field of research provides evidence that environmentally induced epigenetic changes in the germline during embryonic development can be transmitted for multiple generations and may contribute to the etiology of brain disease heritability. In this review, we discuss some of the most recent findings on transgenerational epigenetic inheritance. We particularly discuss the findings on the epigenetic mechanisms involved in the heritability of alcohol-induced neurobehavioral disorders such as fetal alcohol spectrum disorders.
Collapse
Affiliation(s)
- Nadia Rachdaoui
- Rutgers Endocrine Research Program, Department of Animal Sciences, Rutgers University, New Brunswick, New Jersey, USA
| | - Dipak K Sarkar
- Rutgers Endocrine Research Program, Department of Animal Sciences, Rutgers University, New Brunswick, New Jersey, USA.
| |
Collapse
|
12
|
Vrana PB, Shorter KR, Szalai G, Felder MR, Crossland JP, Veres M, Allen JE, Wiley CD, Duselis AR, Dewey MJ, Dawson WD. Peromyscus (deer mice) as developmental models. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2013; 3:211-30. [PMID: 24896658 DOI: 10.1002/wdev.132] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2013] [Revised: 10/28/2013] [Accepted: 11/04/2013] [Indexed: 01/08/2023]
Abstract
Deer mice (Peromyscus) are the most common native North American mammals, and exhibit great natural genetic variation. Wild-derived stocks from a number of populations are available from the Peromyscus Genetic Stock Center (PGSC). The PGSC also houses a number of natural variants and mutants (many of which appear to differ from Mus). These include metabolic, coat-color/pattern, neurological, and other morphological variants/mutants. Nearly all these mutants are on a common genetic background, the Peromyscus maniculatus BW stock. Peromyscus are also superior behavior models in areas such as repetitive behavior and pair-bonding effects, as multiple species are monogamous. While Peromyscus development generally resembles that of Mus and Rattus, prenatal stages have not been as thoroughly studied, and there appear to be intriguing differences (e.g., longer time spent at the two-cell stage). Development is greatly perturbed in crosses between P. maniculatus (BW) and Peromyscus polionotus (PO). BW females crossed to PO males produce growth-restricted, but otherwise healthy, fertile offspring which allows for genetic analyses of the many traits that differ between these two species. PO females crossed to BW males produce overgrown but severely dysmorphic conceptuses that rarely survive to late gestation. There are likely many more uses for these animals as developmental models than we have described here. Peromyscus models can now be more fully exploited due to the emerging genetic (full linkage map), genomic (genomes of four stocks have been sequenced) and reproductive resources.
Collapse
Affiliation(s)
- Paul B Vrana
- Peromyscus Genetic Stock Center & Department of Biological Sciences, University of South Carolina, Columbia, SC, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Tunster SJ, Jensen AB, John RM. Imprinted genes in mouse placental development and the regulation of fetal energy stores. Reproduction 2013; 145:R117-37. [PMID: 23445556 DOI: 10.1530/rep-12-0511] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Imprinted genes, which are preferentially expressed from one or other parental chromosome as a consequence of epigenetic events in the germline, are known to functionally converge on biological processes that enable in utero development in mammals. Over 100 imprinted genes have been identified in the mouse, the majority of which are both expressed and imprinted in the placenta. The purpose of this review is to provide a summary of the current knowledge regarding imprinted gene function in the mouse placenta. Few imprinted genes have been assessed with respect to their dosage-related action in the placenta. Nonetheless, current data indicate that imprinted genes converge on two key functions of the placenta, nutrient transport and placental signalling. Murine studies may provide a greater understanding of certain human pathologies, including low birth weight and the programming of metabolic diseases in the adult, and complications of pregnancy, such as pre-eclampsia and gestational diabetes, resulting from fetuses carrying abnormal imprints.
Collapse
Affiliation(s)
- S J Tunster
- Cardiff School of Biosciences, Cardiff University, Museum Avenue, Cardiff, Wales CF10 3AX, UK
| | | | | |
Collapse
|
14
|
Gao H, Liu Y, Zhang T, Yang R, Prows DR. Parametric proportional hazards model for mapping genomic imprinting of survival traits. J Appl Genet 2012; 54:79-88. [PMID: 23132376 DOI: 10.1007/s13353-012-0120-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2012] [Revised: 10/06/2012] [Accepted: 10/15/2012] [Indexed: 10/27/2022]
Abstract
A number of imprinted genes have been observed in plants, animals and humans. They not only control growth and developmental traits, but may also be responsible for survival traits. Based on the Cox proportional hazards (PH) model, we constructed a general parametric model for dissecting genomic imprinting, in which a baseline hazard function is selectable for fitting the effects of imprinted quantitative trait loci (iQTL) genotypes on the survival curve. The expectation-maximisation (EM) algorithm is derived for solving the maximum likelihood estimates of iQTL parameters. The imprinting patterns of the detected iQTL are statistically tested under a series of null hypotheses. The Bayesian information criterion (BIC) model selection criterion is employed to choose an optimal baseline hazard function with maximum likelihood and parsimonious parameterisation. We applied the proposed approach to analyse the published data in an F(2) population of mice and concluded that, among five commonly used survival distributions, the log-logistic distribution is the optimal baseline hazard function for the survival time of hyperoxic acute lung injury (HALI). Under this optimal model, five QTL were detected, among which four are imprinted in different imprinting patterns.
Collapse
Affiliation(s)
- Huijiang Gao
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, People's Republic of China
| | | | | | | | | |
Collapse
|
15
|
van der Zanden LFM, Galesloot TE, Feitz WFJ, Brouwers MM, Shi M, Knoers NVAM, Franke B, Roeleveld N, van Rooij IALM. Exploration of gene-environment interactions, maternal effects and parent of origin effects in the etiology of hypospadias. J Urol 2012; 188:2354-60. [PMID: 23088992 DOI: 10.1016/j.juro.2012.08.033] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2012] [Indexed: 10/27/2022]
Abstract
PURPOSE Hypospadias is a common congenital malformation of the male external genitalia. Association studies for single nucleotide polymorphisms in genes encoding steroid 5alpha-reductase, estrogen receptors 1 and 2, and activating transcription factor 3 have been equivocal. We examined whether nonreplication of findings for 4 single nucleotide polymorphisms in these genes could be due to interaction with environmental exposures. MATERIALS AND METHODS We genotyped 712 Dutch hypospadias case-parent triads for the 4 single nucleotide polymorphisms, used questionnaire information to determine exposures and performed association tests using the log-linear approach. We studied gene-environment interactions for the 4 single nucleotide polymorphisms with exposure to estrogens, cytokines or cigarette smoke, multiple birth, being born small for gestational age, maternal hypertension or preeclampsia, high body mass index or primiparity. In addition, the presence of maternal genetic and parent of origin effects was tested. RESULTS Gene-environment interactions were identified for rs523349 in SRD5A2 with estrogen exposure and maternal hypertension or preeclampsia, as well as for rs11119982 in ATF3 with exposure to cytokines. Both single nucleotide polymorphisms seemed to influence hypospadias risk only in exposed cases. For rs6932902 in ESR1 only maternally derived alleles appeared to increase hypospadias risk in offspring. CONCLUSIONS Interactions between genetic and environmental factors may help to explain nonreplication in genetic studies of hypospadias.
Collapse
Affiliation(s)
- Loes F M van der Zanden
- Department of Epidemiology, Radboud University Nijmegen Medical Center, Nijmegen, The Netherlands.
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Peromyscus as a Mammalian epigenetic model. GENETICS RESEARCH INTERNATIONAL 2012; 2012:179159. [PMID: 22567379 PMCID: PMC3335729 DOI: 10.1155/2012/179159] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2011] [Revised: 11/10/2011] [Accepted: 12/02/2011] [Indexed: 12/12/2022]
Abstract
Deer mice (Peromyscus) offer an opportunity for studying the effects of natural genetic/epigenetic variation with several advantages over other mammalian models. These advantages include the ability to study natural genetic variation and behaviors not present in other models. Moreover, their life histories in diverse habitats are well studied. Peromyscus resources include genome sequencing in progress, a nascent genetic map, and >90,000 ESTs. Here we review epigenetic studies and relevant areas of research involving Peromyscus models. These include differences in epigenetic control between species and substance effects on behavior. We also present new data on the epigenetic effects of diet on coat-color using a Peromyscus model of agouti overexpression. We suggest that in terms of tying natural genetic variants with environmental effects in producing specific epigenetic effects, Peromyscus models have a great potential.
Collapse
|
17
|
Zhou X, Fang M, Li J, Prows DR, Yang R. Characterization of genomic imprinting effects and patterns with parametric accelerated failure time model. Mol Genet Genomics 2011; 287:67-75. [PMID: 22143178 DOI: 10.1007/s00438-011-0661-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2011] [Accepted: 11/16/2011] [Indexed: 11/26/2022]
Abstract
Genomic imprinting, a genetic phenomenon of non-equivalent allele expression that depends on parental origins, has been ubiquitously observed in nature. It does not only control the traits of growth and development but also may be responsible for survival traits. Based on the accelerated failure time model, we construct a general parametric model for mapping the imprinted QTL (iQTL). Within the framework of interval mapping, maximum likelihood estimation of iQTL parameters is implemented via EM algorithm. The imprinting patterns of the detected iQTL are statistically tested according to a series of null hypotheses. BIC model selection criterion is employed to choose an optimal baseline hazard function with maximum likelihood and parsimonious parameters. Simulations are used to validate the proposed mapping procedure. A published dataset from a mouse model system was used to illustrate the proposed framework. Results show that among the five commonly used survival distributions, Log-logistic distribution is the optimal baseline hazard function for mapping QTL of hyperoxic acute lung injury (HALI) survival; under the log-logistic distribution, four QTLs were identified, in which only one QTL was inherited in Mendelian fashion, whereas others were imprinted in different imprinting patterns.
Collapse
Affiliation(s)
- Xiaojing Zhou
- Department of Mathematics, Heilongjiang Bayi Agricultural University, Daqing, People's Republic of China
| | | | | | | | | |
Collapse
|
18
|
Yang J, Lin S. Likelihood approach for detecting imprinting and in utero maternal effects using general pedigrees from prospective family-based association studies. Biometrics 2011; 68:477-85. [PMID: 22008205 DOI: 10.1111/j.1541-0420.2011.01695.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Genetic imprinting and in utero maternal effects are causes of parent-of-origin effect but they are confounded with each other. Tests attempting to detect only one of these effects would have a severely inflated type I error rate if the assumption of the absence of the other effect is violated. Some existing methods avoid the potential confounding by modeling imprinting and in utero maternal effect simultaneously. However, these methods are not amendable to extended families, which are commonly recruited in family-based studies. In this article, we propose a likelihood approach for detecting imprinting and maternal effects (LIME) using general pedigrees from prospective family-based association studies. LIME formulates the probability of familial genotypes without the Hardy-Weinberg equilibrium assumption by introducing a novel concept called conditional mating type between marry-in founders and their nonfounder spouses. Further, a logit link is used to model the penetrance. To deal with the issue of incomplete pedigree genotypic data, LIME imputes the unobserved genotypes implicitly by considering all compatible ones conditional on the observed genotypes. We carried out a simulation study to evaluate the relative power and type I error of LIME and two existing methods. The results show that the use of extended pedigree data, even with incomplete information, can achieve much greater power than using nuclear families for detecting imprinting and in utero maternal effects without leading to inflated type I error rates.
Collapse
Affiliation(s)
- Jingyuan Yang
- Department of Statistics, The Ohio State University, 404 Cockins Hall, 1958 Neil Avenue, Columbus, Ohio 43210, USA.
| | | |
Collapse
|
19
|
Xia F, Zhou JY, Fung WK. A powerful approach for association analysis incorporating imprinting effects. ACTA ACUST UNITED AC 2011; 27:2571-7. [PMID: 21798962 DOI: 10.1093/bioinformatics/btr443] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
MOTIVATION For a diallelic marker locus, the transmission disequilibrium test (TDT) is a simple and powerful design for genetic studies. The TDT was originally proposed for use in families with both parents available (complete nuclear families) and has further been extended to 1-TDT for use in families with only one of the parents available (incomplete nuclear families). Currently, the increasing interest of the influence of parental imprinting on heritability indicates the importance of incorporating imprinting effects into the mapping of association variants. RESULTS In this article, we extend the TDT-type statistics to incorporate imprinting effects and develop a series of new test statistics in a general two-stage framework for association studies. Our test statistics enjoy the nature of family-based designs that need no assumption of Hardy-Weinberg equilibrium. Also, the proposed methods accommodate complete and incomplete nuclear families with one or more affected children. In the simulation study, we verify the validity of the proposed test statistics under various scenarios, and compare the powers of the proposed statistics with some existing test statistics. It is shown that our methods greatly improve the power for detecting association in the presence of imprinting effects. We further demonstrate the advantage of our methods by the application of the proposed test statistics to a rheumatoid arthritis dataset. CONTACT wingfung@hku.hk SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Fan Xia
- Department of Statistics and Actuarial Science, The University of Hong Kong, Hong Kong
| | | | | |
Collapse
|
20
|
Horii T, Yanagisawa E, Kimura M, Morita S, Hatada I. Epigenetic differences between embryonic stem cells generated from blastocysts developed in vitro and in vivo. Cell Reprogram 2011; 12:551-63. [PMID: 20818993 DOI: 10.1089/cell.2009.0104] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Embryonic stem (ES) cells constitute a very important tool for regenerative medicine today. These ES cells, and human ES cells in particular, are almost all derived from embryos obtained by in vitro fertilization (IVF) and from in vitro culture (IVC); however, such in vitro manipulated embryos often show abnormal genomic imprinting, which can lead to the development of various diseases. Nevertheless, several reports have evaluated ES cells derived from in vitro manipulated embryos. In this study, we established ES cells derived from both in vivo and in vitro developed blastocysts (Vivo ES cells and Vitro ES cells, respectively) to compare the methylation status of imprinted genes and gene expression patterns. At very early passages, Vitro ES cells showed an increase in abnormal genomic imprinting compared to Vivo ES cells. In addition, we found that the gene expression patterns of several methylation related-genes frequently shifted to promote demethylation and to inhibit methylation in early-passage Vitro ES cells. In contrast, at later passages, we found no significant differences between Vivo and Vitro ES cells. In conclusion, it is advisable to use early passage Vivo ES cells whenever feasible, or to select ES cell lines with a normal epigenotype.
Collapse
Affiliation(s)
- Takuro Horii
- Biosignal Genome Resource Center, Institute for Molecular and Cellular Regulation, Gunma University, Japan
| | | | | | | | | |
Collapse
|
21
|
Li G, Cui Y. A general statistical framework for dissecting parent-of-origin effects underlying endosperm traits in flowering plants. Ann Appl Stat 2010. [DOI: 10.1214/09-aoas323] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
22
|
Martino DJ, Prescott SL. Silent mysteries: epigenetic paradigms could hold the key to conquering the epidemic of allergy and immune disease. Allergy 2010; 65:7-15. [PMID: 19796189 DOI: 10.1111/j.1398-9995.2009.02186.x] [Citation(s) in RCA: 109] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Epigenetic mechanisms provide new insights into how environmental changes may mediate the increasing propensity for complex immune diseases such as allergic disease. There is now strong evidence that early environmental exposures play a key role in activating or silencing genes by altering DNA and histone methylation, histone acetylation and chromatin structure. These modifications determine the degree of DNA compaction and accessibility for gene transcription, altering gene expression, phenotype and disease susceptibility. While there is already evidence that a number of early environmental exposures are associated with an increased risk of allergic disease, several new studies indicate in utero microbial and dietary exposures can modify gene expression and allergic disease propensity through epigenetic modification. This review explores the evidence that immune development is under clear epigenetic regulation, including the pattern of T helper (Th)1 and Th2 cell differentiation, regulatory T cell differentiation, and more recently, Th17 development. It also considers the mechanisms of epigenetic regulation and early immune defects in allergy prone neonates. The inherent plasticity conferred by epigenetic mechanisms clearly also provides opportunities for environmental strategies that can re-programme gene expression for disease prevention. Identifying genes that are differentially silenced or activated in relation to subsequent disease will not only assist in identifying causal pathways, but may also help identify the contributing environmental factors.
Collapse
Affiliation(s)
- D J Martino
- School of Pediatrics and Child Health Research, University of Western Australia, Perth, Western Australia, Australia
| | | |
Collapse
|
23
|
Cui Y, Li G, Li S, Wu R. Designs for linkage analysis and association studies of complex diseases. Methods Mol Biol 2010; 620:219-242. [PMID: 20652506 DOI: 10.1007/978-1-60761-580-4_6] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Genetic linkage analysis has been a traditional means for identifying regions of the genome with large genetic effects that contribute to a disease. Following linkage analysis, association studies are widely pursued to fine-tune regions with significant linkage signals. For complex diseases which often involve function of multi-genetic variants each with small or moderate effect, linkage analysis has little power compared to association studies. In this chapter, we give a brief review of design issues related to linkage analysis and association studies with human genetic data. We introduce methods commonly used for linkage and association studies and compared the relative merits of the family-based and population-based association studies. Compared to candidate gene studies, a genomewide blind searching of disease variant is proving to be a more powerful approach. We briefly review the commonly used two-stage designs in genome-wide association studies. As more and more biological evidences indicate the role of genomic imprinting in disease, identifying imprinted genes becomes critically important. Design and analysis in genetic mapping imprinted genes are introduced in this chapter. Recent efforts in integrating gene expression analysis and genetic mapping, termed expression quantitative trait loci (eQTLs) mapping or genetical genomics analysis, offer new prospect in elucidating the genetic architecture of gene expression. Designs in genetical genomics analysis are also covered in this chapter.
Collapse
Affiliation(s)
- Yuehua Cui
- Department of Statistics and Probability, Michigan State University, East Lansing, MI, USA
| | | | | | | |
Collapse
|
24
|
Market-Velker BA, Zhang L, Magri LS, Bonvissuto AC, Mann MR. Dual effects of superovulation: loss of maternal and paternal imprinted methylation in a dose-dependent manner. Hum Mol Genet 2009; 19:36-51. [DOI: 10.1093/hmg/ddp465] [Citation(s) in RCA: 248] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
25
|
Yu J, Tao Q, Cheng YY, Lee KY, Ng SSM, Cheung KF, Tian L, Rha SY, Neumann U, Röcken C, Ebert MPA, Chan FKL, Sung JJY. Promoter methylation of the Wnt/beta-catenin signaling antagonist Dkk-3 is associated with poor survival in gastric cancer. Cancer 2009; 115:49-60. [PMID: 19051296 DOI: 10.1002/cncr.23989] [Citation(s) in RCA: 110] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
BACKGROUND Abnormal activation of the Wnt/beta-catenin signaling pathway is common and critical in the pathogenesis of digestive cancers. In this study, the authors investigated the promoter methylation of the dickkopf homolog 3 gene Dkk-3 in these cancers and its prognostic significance in gastric cancer. METHODS Dkk-3 methylation was assessed in 173 patients with gastric cancers (including 104 patients who were followed for up to 4090 days) and in 128 patients with colorectal cancer. Cell growth was evaluated by using a colony-formation assay. For survival analyses, the authors used Kaplan-Meier plots, the log-rank test, and Cox proportional regression. RESULTS Dkk-3 was silenced or down-regulated in 12 of 17 gastric cancer cell lines (70.6%) and in 3 of 9 colon cancer cell lines (33.3%). The loss of gene expression was associated with promoter methylation, which could be restored by demethylating agents. Ectopic expression of Dkk-3 suppressed colony formation. Moreover, methylation of Dkk-3 was detected in 117 of 173 primary gastric tumors (67.6%) and in 67 of 128 colorectal tumors (52.3%). The clinical significance and the prognostic value of Dkk-3 methylation also were examined in 104 gastric cancers and in 84 colorectal cancers. Multivariate analysis indicated that Dkk-3 methylation was associated significantly and independently with poor disease survival (relative risk, 2.534; 95% confidence interval, 1.54-4.17; P=.002) in gastric cancer, but not in colorectal cancer. Kaplan-Meier survival curves revealed that patients who had Dkk-3 methylated gastric cancers had a significantly shorter survival (median, 0.76 years) compared with patients who did not have Dkk-3 methylation (median, 2.68 years; P<.0001; log-rank test). CONCLUSIONS Epigenetic silencing of the Dkk-3 gene by promoter methylation was a common event in gastric cancer and was associated with a poor outcome in such patients.
Collapse
Affiliation(s)
- Jun Yu
- Institute of Digestive Disease, Department of Medicine, Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, NT, Hong Kong SAR.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Abstract
OBJECTIVE Genomic imprinting is the epigenetic change that occurred differentially in the specific genes in spermatozoa and oocyte according to their paternal or maternal origin, thus allowing a monoallelic expression. This review is a critical analysis of the published information relating to the role of the male imprinting on the successful reproduction. METHODS We performed a literature search on some of the components that regulate the male genomic imprinting and the possible role on reproductive events such as spermatogenesis, and placental and embryo development. RESULTS The literature analysis allowed us to appreciate structural, genetic and epigenetic changes occurring during the formation of the male gamete that could have an impact on embryo development, mainly in the formation of extraembryonic tissues as the placenta. CONCLUSION Alterations in the molecular mechanisms involved in the sperm DNA methylation during the spermatogenesis, could induce alterations in the normal pattern of expression required in the fetal-placental components development.
Collapse
|
27
|
A Statistical Variance Components Framework for Mapping Imprinted Quantitative Trait Locus in Experimental Crosses. JOURNAL OF PROBABILITY AND STATISTICS 2009. [DOI: 10.1155/2009/689489] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Current methods for mapping imprinted quantitative trait locus (iQTL) with inbred line crosses assume fixed QTL effects. When an iQTL segregates in experimental line crosses, combining different line crosses with similar genetic background can improve the accuracy of iQTLs inference. In this article, we develop a general interval-based statistical variance components framework to map iQTLs underlying complex traits by combining different backcross line crosses. We propose a new iQTL variance partition method based on the nature of marker alleles shared identical-by-decent (IBD) in inbred lines. Maternal effect is adjusted when testing imprinting. Efficient estimation methods with the maximum likelihood and the restricted maximum likelihood are derived and compared. Statistical properties of the proposed mapping strategy are evaluated through extensive simulations under different sampling designs. An extension to multiple QTL analysis is given. The proposed method will greatly facilitate genetic dissection of imprinted complex traits in inbred line crosses.
Collapse
|
28
|
Hesson LB, Krex D, Latif F. Epigenetic markers in human gliomas: prospects for therapeutic intervention. Expert Rev Neurother 2008; 8:1475-96. [PMID: 18928342 DOI: 10.1586/14737175.8.10.1475] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Gliomas represent the most common CNS cancers in adults. Prognosis for patients harboring malignant gliomas is particularly dismal and, despite current treatment strategies comprising surgery, radiotherapy and chemotherapy, the median survival time after diagnosis is still in the range of just 12 months. In recent years, there has been an increased effort to identify tumor biomarkers that can be used as diagnostic tools, or markers for predicting therapeutic response and prognosis. Investigation of genetic changes has identified several such markers that have shown some success in predicting the most effective therapy. In recent years, however, it has become apparent that the biology of many cancers of the CNS is determined not only by their genetic profile but also their epigenetic profile. Epigenetic biomarkers show great potential in effectively predicting patient prognosis and response to therapy. The eventual application of epigenetic profiling of tumors may help to indicate the most effective tailored therapy for individual patients.
Collapse
Affiliation(s)
- Luke B Hesson
- Department of Reproductive and Child Health, Institute of Biomedical Research, Medical School, University of Birmingham, Edgbaston, B15 2TT, UK.
| | | | | |
Collapse
|
29
|
Li Y, Coelho CM, Liu T, Wu S, Wu J, Zeng Y, Li Y, Hunter B, Dante RA, Larkins BA, Wu R. A statistical model for estimating maternal-zygotic interactions and parent-of-origin effects of QTLs for seed development. PLoS One 2008; 3:e3131. [PMID: 18769549 PMCID: PMC2519836 DOI: 10.1371/journal.pone.0003131] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2008] [Accepted: 08/11/2008] [Indexed: 11/19/2022] Open
Abstract
Proper development of a seed requires coordinated exchanges of signals among the three components that develop side by side in the seed. One of these is the maternal integument that encloses the other two zygotic components, i.e., the diploid embryo and its nurturing annex, the triploid endosperm. Although the formation of the embryo and endosperm contains the contributions of both maternal and paternal parents, maternally and paternally derived alleles may be expressed differently, leading to a so-called parent-of-origin or imprinting effect. Currently, the nature of how genes from the maternal and zygotic genomes interact to affect seed development remains largely unknown. Here, we present a novel statistical model for estimating the main and interaction effects of quantitative trait loci (QTLs) that are derived from different genomes and further testing the imprinting effects of these QTLs on seed development. The experimental design used is based on reciprocal backcrosses toward both parents, so that the inheritance of parent-specific alleles could be traced. The computing model and algorithm were implemented with the maximum likelihood approach. The new strategy presented was applied to study the mode of inheritance for QTLs that control endoreduplication traits in maize endosperm. Monte Carlo simulation studies were performed to investigate the statistical properties of the new model with the data simulated under different imprinting degrees. The false positive rate of imprinting QTL discovery by the model was examined by analyzing the simulated data that contain no imprinting QTL. The reciprocal design and a series of analytical and testing strategies proposed provide a standard procedure for genomic mapping of QTLs involved in the genetic control of complex seed development traits in flowering plants.
Collapse
Affiliation(s)
- Yanchun Li
- School of Forestry and Biotechnology, Zhejiang Forestry University, Lin'an, Zhejiang, People's Republic of China
- Agricultural Ecology Research Institute, Fujian Academy of Agricultural Science, Fuzhou, Fujian, People's Republic of China
| | - Cintia M. Coelho
- Department of Plant Sciences, University of Arizona, Tucson, Arizona, Unites States of America
| | - Tian Liu
- Human Genetics Group, Genome institute of Singapore, Singapore, Singapore
| | - Song Wu
- Department of Statistics, University of Florida, Gainesville, Florida, United States of America
| | - Jiasheng Wu
- School of Forestry and Biotechnology, Zhejiang Forestry University, Lin'an, Zhejiang, People's Republic of China
| | - Yanru Zeng
- School of Forestry and Biotechnology, Zhejiang Forestry University, Lin'an, Zhejiang, People's Republic of China
| | - Youchun Li
- Department of Plant Sciences, University of Arizona, Tucson, Arizona, Unites States of America
| | - Brenda Hunter
- Department of Plant Sciences, University of Arizona, Tucson, Arizona, Unites States of America
| | - Ricardo A. Dante
- Department of Plant Sciences, University of Arizona, Tucson, Arizona, Unites States of America
| | - Brian A. Larkins
- Department of Plant Sciences, University of Arizona, Tucson, Arizona, Unites States of America
| | - Rongling Wu
- School of Forestry and Biotechnology, Zhejiang Forestry University, Lin'an, Zhejiang, People's Republic of China
- Department of Statistics, University of Florida, Gainesville, Florida, United States of America
- Department of Operations Research and Financial Engineering, Princeton University, Princeton, New Jersey, United States of America
- * E-mail:
| |
Collapse
|
30
|
Abstract
We explore the theoretical consequences of limiting selection to males for the evolution of imprinted genes. We find that the efficiency of male-limited selection depends on the pattern of imprinting at an imprinted locus. When selection is strong, the maternally expressed pattern of imprinting allows faster genetic change than the reciprocal, paternally expressed pattern. When selection is relatively weak, the pattern of imprinting that permits a greater rate of genetic response to selection depends on the frequency of the favored allele: the paternally expressed pattern permits faster genetic change than does the maternally expressed pattern at low frequencies of a favored allele; at higher frequencies of a favored allele, however, the maternally expressed pattern is again more conducive to a genetic response. To our knowledge, this is the first theoretical description of a difference between the two reciprocal patterns of imprinting. The selective efficiency bias we identify between the two patterns of imprinting has implications for natural and livestock populations, which we discuss.
Collapse
|
31
|
Huang D, Lin X, Chen H, Yang Q, Jie Y, Zhai X, Yin H. Parentally imprinted allele (PIA) typing in the differentially methylated region upstream of the human H19 gene. Forensic Sci Int Genet 2008; 2:286-91. [PMID: 19083838 DOI: 10.1016/j.fsigen.2008.03.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2007] [Revised: 03/12/2008] [Accepted: 03/27/2008] [Indexed: 10/22/2022]
Abstract
The H19 gene is a paternally imprinted gene located on chromosome 11p15.5. In this study, the H19FR1 and H19FR2 haplotype polymorphisms including four and three SNPs, respectively, upstream of the H19 gene according to the GenBank sequence (accession no. AF125183) were investigated. Five haplotypes and nine genotypes were detected for H19FR1 in the Chinese Han population by means of PCR and subsequent denaturing gradient gel electrophoresis (DGGE). The power of discrimination (Dp), polymorphism information content (PIC) and probability of paternity exclusion (PE) were estimated to be 0.803, 0.58 and 0.322, respectively. For the H19FR2, two haplotypes and three genotyes were observed, and the Dp, PIC and PE were 0.626, 0.37 and 0.162, respectively. Sequencing results showed that only two of the four reported SNPs, a7342g and g7547a, were detected in H19FR1 in the Chinese Han population, and two new SNPs, g7351c and a7357g, were found. In the H19FR2 region, only one of the three reported SNPs, a8097g, was detected. Based on the methylation status of the genomic DNA, selective detection of the parental alleles for H19FRs was examined by using two types of enzymes, the methylation-sensitive restriction enzyme (msRE) HpaII or HhaI and McrBC. Genomic DNA digested by either HpaII or HhaI, revealed a single band derived from the paternal allele, as a result of cleavage of unmethylated recognition sites on the maternal allele. On the contrary, the use of McrBC, which can digest a methylated paternal sequence, resulted in exclusively amplifying the maternal allele. This parentally imprinted allele (PIA) typing method could be one of the useful techniques for discriminating the parental origin of alleles.
Collapse
Affiliation(s)
- Daixin Huang
- Faculty of Forensic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China.
| | | | | | | | | | | | | |
Collapse
|
32
|
Yauk C, Polyzos A, Rowan-Carroll A, Somers CM, Godschalk RW, Van Schooten FJ, Berndt ML, Pogribny IP, Koturbash I, Williams A, Douglas GR, Kovalchuk O. Germ-line mutations, DNA damage, and global hypermethylation in mice exposed to particulate air pollution in an urban/industrial location. Proc Natl Acad Sci U S A 2008; 105:605-10. [PMID: 18195365 PMCID: PMC2206583 DOI: 10.1073/pnas.0705896105] [Citation(s) in RCA: 205] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2007] [Indexed: 11/18/2022] Open
Abstract
Particulate air pollution is widespread, yet we have little understanding of the long-term health implications associated with exposure. We investigated DNA damage, mutation, and methylation in gametes of male mice exposed to particulate air pollution in an industrial/urban environment. C57BL/CBA mice were exposed in situ to ambient air near two integrated steel mills and a major highway, alongside control mice breathing high-efficiency air particulate (HEPA) filtered ambient air. PCR analysis of an expanded simple tandem repeat (ESTR) locus revealed a 1.6-fold increase in sperm mutation frequency in mice exposed to ambient air for 10 wks, followed by a 6-wk break, compared with HEPA-filtered air, indicating that mutations were induced in spermatogonial stem cells. DNA collected after 3 or 10 wks of exposure did not exhibit increased mutation frequency. Bulky DNA adducts were below the detection threshold in testes samples, suggesting that DNA reactive chemicals do not reach the germ line and cause ESTR mutation. In contrast, DNA strand breaks were elevated at 3 and 10 wks, possibly resulting from oxidative stress arising from exposure to particles and associated airborne pollutants. Sperm DNA was hypermethylated in mice breathing ambient relative to HEPA-filtered air and this change persisted following removal from the environmental exposure. Increased germ-line DNA mutation frequencies may cause population-level changes in genetic composition and disease. Changes in methylation can have widespread repercussions for chromatin structure, gene expression and genome stability. Potential health effects warrant extensive further investigation.
Collapse
Affiliation(s)
- Carole Yauk
- Environmental and Occupational Toxicology Division, HECSB, Ottawa, ON, Canada K1A 0K9.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Shete S, Elston RC, Lu Y. A novel approach to detect parent-of-origin effects from pedigree data with application to Beckwith-Wiedemann syndrome. Ann Hum Genet 2007; 71:804-14. [PMID: 17578507 DOI: 10.1111/j.1469-1809.2007.00378.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The parent-of-origin phenomenon in humans is now well recognized, and the deregulation of imprinted genes has been implicated in a number of human diseases. Recently, several linkage analysis methods have been developed to allow for parent-of-origin effects in the analysis of pedigree data. However, in general, one does not know a priori if disease-causing loci are imprinted or not. Linkage methods that allow for imprinting can lose power if there is no imprinting. Conversely, linkage methods that do not allow for imprinting will lose power if there is imprinting, because of penetrance values not being correctly specified. Therefore, it is important to know whether imprinting is a possible mode of disease inheritance before performing linkage analyses. In this paper we describe a simple covariate-coding scheme to test for the presence of parent-of-origin effects, and provide a formula for calculating parent-specific penetrance values prior to any linkage analysis. In simulation studies our coding scheme successfully detected parent-of-origin effects and, when pedigrees were ascertained sequentially or through a single proband, inclusion of this covariate more accurately estimated penetrance values than when such a covariate was not included. The use of accurate penetrance values in a linkage analysis that allows for imprinting can provide higher power when the disease locus is imprinted. Finally, we applied our approach to 27 pedigrees affected with Beckwith-Wiedemann syndrome (BWS), an overgrowth syndrome, and found that a maternally expressed parent-of-origin model based on the likelihood ratio test was the most parsimonious, suggesting a role for paternally imprinted genes in BWS.
Collapse
Affiliation(s)
- Sanjay Shete
- Department of Epidemiology, The University of Texas M. D. Anderson Cancer Center, Houston, TX, USA
| | | | | |
Collapse
|
34
|
Liu T, Todhunter RJ, Wu S, Hou W, Mateescu R, Zhang Z, Burton-Wurster NI, Acland GM, Lust G, Wu R. A random model for mapping imprinted quantitative trait loci in a structured pedigree: an implication for mapping canine hip dysplasia. Genomics 2007; 90:276-84. [PMID: 17531439 DOI: 10.1016/j.ygeno.2007.04.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2006] [Revised: 03/24/2007] [Accepted: 04/06/2007] [Indexed: 11/22/2022]
Abstract
Genetic imprinting may have played a more notable role in shaping embryonic development of plants, animals, and humans than previously appreciated. Quantitative trait loci that are imprinted (iQTL) exert monoallelic effects, depending on the parent of origin, which is an exception to the laws of Mendelian genetics. In this article, we present a modified random effect-based mapping model to use in a genome-wide scan for the distribution of iQTL that contribute to genetic variance for a complex trait in a structured pedigree. This model, implemented with the maximum likelihood method, capitalizes on a network of relatedness for maternally and paternally derived alleles through identical-by-descent sharing, thus allowing for the discrimination of the genetic variances due to alleles derived from maternal and paternal parents. The model was employed to map iQTL responsible for canine hip dysplasia in a multihierarchical canine pedigree, founded with seven greyhounds and six Labrador retrievers. Of eight significant QTL detected, three, located on CFA1, CFA8, and CF28, were found to trigger significant parent-of-origin effects on the age of femoral capital ossification measured at the left and right hips of a canine. The detected iQTL provide important candidate regions for fine-mapping of imprinted genes and for studying their structure and function in the control of complex traits.
Collapse
Affiliation(s)
- Tian Liu
- Department of Statistics, University of Florida, Gainesville, FL 32611, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Promkan M, Teingtat S, Stheinkijkarnchai A, Wasant P, Patmasiriwat P. Highest accuracy of combined consensus clinical criteria and SNRPN gene molecular markers in diagnosis of Prader-Willi syndrome in Thai patients. Clin Chem Lab Med 2007; 45:972-80. [PMID: 17867985 DOI: 10.1515/cclm.2007.271] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Prader-Willi Syndrome (PWS) is a complex human genetic disease arising from a loss of paternal allele expression of imprinting genes on chromosome 15q11-q13. Normally the CpG islands at this site are heavily methylated in the maternal allele, but unmethylated in the paternal allele and therefore activated in gene expression. only the methylated allele should present in pws patients when methylation-specific pcr (msp) is analyzed. METHODS This paper reports an analysis of PWS in Thai patients using consensus diagnostic criteria based on a combination of clinical data, basic G-banding and fluorescence in situ hybridization (FISH) cytogenetics, PCR-based methylation assay, and bisulfite sequencing of the CpG islands of SNRPN to confirm 15q deletion or the methylation pattern of the SNRPN promoter and exon 1. Lack of complete clinical reports or inadequacy of the minimum laboratory support required had made it difficult to diagnose PWS, Angelman syndrome and other microdeletion disorders. RESULTS Accuracy of 100% was obtained for diagnosis of the PWS study patients using the minimum requirements necessary. A total of 20 patients were diagnosed as PWS based on clinical criteria and the scoring tool for PWS, and the same approach was applied to four separate patients with some unmatched criteria but phenotypic similarity to PWS. Findings showed that 70% of those clinically diagnosed as PWS patients (14/20) had a deletion at 15q11-q13 according to FISH, while all 20 patients showed MSP positive of SNRPN gene. Six cases (30%) without a paternal deletion were confirmed to have maternal uniparental disomy (mUPD) of PWS by MSP and methylation sequencing approaches. Noteworthy, two of the six cases with mUPD were 3.5 year-old twins. None of the five cases with scores lower than the reported consensus criteria showed positive G-band, FISH or MSP results. CONCLUSIONS We demonstrate here the high power of combining clinical findings, FISH and MSP in definitive diagnosis of PWS and in distinguishing between the two major different types of molecular mechanisms. No false positives or false negatives were observed in our analysis.
Collapse
Affiliation(s)
- Moltira Promkan
- Department of Clinical Microscopy, Faculty of Medical Technology, Mahidol University, Bangkok, Thailand
| | | | | | | | | |
Collapse
|
36
|
Hu YQ, Zhou JY, Fung WK. An extension of the transmission disequilibrium test incorporating imprinting. Genetics 2006; 175:1489-504. [PMID: 17194789 PMCID: PMC1840072 DOI: 10.1534/genetics.106.058461] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The recombination rates in meioses of females and males are often different. Some genes that affect development and behavior in mammals are known to be imprinted, and >1% of all mammalian genes are believed to be imprinted. When the gene is imprinted and the recombination fractions are sex specific, the conventional transmission disequilibrium test (TDT) is shown to be still valid for testing for linkage. The power function of the TDT is derived, and the effect of the degree of imprinting on the power of the TDT is investigated. It is learned that imprinting has little effect on the power when the female and male recombination rates are equal. On the basis of case-parents trios, the transmissions from the heterozygous fathers/mothers to their affected children are separated as paternal and maternal, and two TDT-like statistics, TDT(p) and TDT(m), are consequently constructed. It is found that the TDT(p) possesses a higher power than the TDT for maternal imprinting genes, and the TDT(m) is more powerful than the TDT for paternal imprinting genes. On the basis of the parent-of-origin effects test statistic (POET), a novel statistic, TDT incorporating imprinting (TDTI) is proposed to test for linkage in the presence of linkage disequilibrium, which is shown to be more powerful than the TDT when parent-of-origin effects are significant but slightly less powerful than the TDT when parent-of-origin effects are negligible. The validity of the TDT and TDTI is assessed by simulation. The power approximation formulas for the TDT and TDTI are derived and the simulation results show that they are accurate. The simulation study on power comparison shows that the TDTI outperforms the TDT for imprinted genes. The improvement can be substantial in the case of complete paternal/maternal imprinting.
Collapse
Affiliation(s)
- Yue-Qing Hu
- Department of Statistics and Actuarial Science, University of Hong Kong, Hong Kong, China
| | | | | |
Collapse
|
37
|
Fingerlin TE, Abecasis GR, Boehnke M. Using sex-averaged genetic maps in multipoint linkage analysis when identity-by-descent status is incompletely known. Genet Epidemiol 2006; 30:384-96. [PMID: 16685713 DOI: 10.1002/gepi.20151] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The ratio of male and female genetic map distances varies dramatically across the human genome. Despite these sex differences in genetic map distances, most multipoint linkage analyses use sex-averaged genetic maps. We investigated the impact of using a sex-averaged genetic map instead of sex-specific maps for multipoint linkage analysis of affected sibling pairs when identity-by-descent states are incompletely known due to missing parental genotypes and incomplete marker heterozygosity. If either all or no parental genotypes were available, for intermarker distances of 10, 5, and 1 cM, we found no important differences in the expected maximum lod score (EMLOD) or location estimates of the disease locus between analyses that used the sex-averaged map and those that used the true sex-specific maps for female:male genetic map distance ratios 1:10 and 10:1. However, when genotypes for only one parent were available and the recombination rate was higher in females, the EMLOD using the sex-averaged map was inflated compared to the sex-specific map analysis if only mothers were genotyped and deflated if only fathers were genotyped. The inflation of the lod score when only mothers were genotyped led to markedly increased false-positive rates in some cases. The opposite was true when the recombination rate was higher in males; the EMLOD was inflated if only fathers were genotyped, and deflated if only mothers were genotyped. While the effects of missing parental genotypes were mitigated for less extreme cases of missingness, our results suggest that when possible, sex-specific maps should be used in linkage analyses.
Collapse
Affiliation(s)
- Tasha E Fingerlin
- Department of Preventive Medicine and Biometrics, School of Medicine, University of Colorado at Denver and Health Sciences Center, Denver, Colorado.
| | | | | |
Collapse
|
38
|
Chang HS, Anway MD, Rekow SS, Skinner MK. Transgenerational epigenetic imprinting of the male germline by endocrine disruptor exposure during gonadal sex determination. Endocrinology 2006; 147:5524-41. [PMID: 16973722 DOI: 10.1210/en.2006-0987] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Embryonic exposure to the endocrine disruptor vinclozolin at the time of gonadal sex determination was previously found to promote transgenerational disease states. The actions of vinclozolin appear to be due to epigenetic alterations in the male germline that are transmitted to subsequent generations. Analysis of the transgenerational epigenetic effects on the male germline (i.e. sperm) identified 25 candidate DNA sequences with altered methylation patterns in the vinclozolin generation sperm. These sequences were identified and mapped to specific genes and noncoding DNA regions. Bisulfite sequencing was used to confirm the altered methylation pattern of 15 of the candidate DNA sequences. Alterations in the epigenetic pattern (i.e. methylation) of these genes/DNA sequences were found in the F2 and F3 generation germline. Therefore, the reprogramming of the male germline involves the induction of new imprinted-like genes/DNA sequences that acquire an apparent permanent DNA methylation pattern that is passed at least through the paternal allele. The expression pattern of several of the genes during embryonic development were found to be altered in the vinclozolin F1 and F2 generation testis. A number of the imprinted-like genes/DNA sequences identified are associated with epigenetic linked diseases. In summary, an endocrine disruptor exposure during embryonic gonadal sex determination was found to promote an alteration in the epigenetic (i.e. induction of imprinted-like genes/DNA sequences) programming of the male germline, and this is associated with the development of transgenerational disease states.
Collapse
Affiliation(s)
- Hung-Shu Chang
- Center for Reproductive Biology, School of Molecular Biosciences, Washington State University, Pullman, Washington 99164-4231, USA
| | | | | | | |
Collapse
|
39
|
Zhou JY, Hu YQ, Fung WK. A simple method for detection of imprinting effects based on case-parents trios. Heredity (Edinb) 2006; 98:85-91. [PMID: 17035952 DOI: 10.1038/sj.hdy.6800906] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Using data from families in which marker genotypes are known for the father, the mother and the affected offspring, a simple statistic for testing for imprinting effects is developed. The statistic considers whether the expected number of families in which the father carries more copies of a particular marker allele than the mother is equal to the expected number of families in which the mother carries more copies of the allele than the father. The proposed parent-of-origin effects test statistic (POET) is shown to be normally distributed and can be employed to test for imprinting in situations where the marker locus need not be a disease susceptibility locus and where the female and male recombination fractions are sex-specific. A simulation study is conducted to characterize the power of the POET and other properties, and its results show that it is appropriate to employ the POET.
Collapse
Affiliation(s)
- J-Y Zhou
- Department of Statistics and Actuarial Science, The University of Hong Kong, Hong Kong, China
| | | | | |
Collapse
|
40
|
Chalaya TV, Akopov SB, Nikolaev LG, Sverdlov ED. Tissue specificity of methylation of cytosines in regulatory regions of four genes located in the locus FXYD5-COX7A1 of human chromosome 19: correlation with their expression level. BIOCHEMISTRY (MOSCOW) 2006; 71:294-9. [PMID: 16545066 DOI: 10.1134/s0006297906030096] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
In this study, we compared degree of methylation of selected CpG sites in CCGG sequences located in promoter regions of four human genes with expression level of these genes in several human cell lines and tissues. These genes were subdivided into two groups according to the dependence of their expression on CpG methylation in the 5 -regions. The first group, characterized by clear correlation of methylation with the transcription level, includes housekeeping gene COX6B (the absence of methylation unambiguously correlates with expression) and urothelium-specific uroplakin gene (the methylation coincides with absence of expression). The second group includes genes that are expressed in many, but not all tissues and cells. For these genes (LEAP-1 and ATP4A), there was no correlation between methylation and expression. It is possible that methylation provides some basal level of gene repression, which is overcome by binding of tissue-specific transcription factors, whereas lack of methylation gives the opportunity for gene expression in various cells and tissues.
Collapse
Affiliation(s)
- T V Chalaya
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow
| | | | | | | |
Collapse
|
41
|
Cui Y, Cheverud JM, Wu R. A statistical model for dissecting genomic imprinting through genetic mapping. Genetica 2006; 130:227-39. [PMID: 16955328 DOI: 10.1007/s10709-006-9101-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2006] [Accepted: 07/24/2006] [Indexed: 12/26/2022]
Abstract
As a result of nonequivalent genetic contribution of maternal and paternal genomes to offsprings, genomic imprinting or called parent-of-origin effect, has been broadly identified in plants, animals and humans. Its role in shaping organism's development has been unanimously recognized. However, statistical methods for identifying imprinted quantitative trait loci (iQTL) and estimating the imprinted effect have not been well developed. In this article, we propose an efficient statistical procedure for genomewide estimating and testing the effects of significant iQTL underlying the quantitative variation of interested traits. The developed model can be applied to two different genetic cross designs, backcross and F(2) families derived from inbred lines. The proposed procedure is built within the maximum likelihood framework and implemented with the EM algorithm. Extensive simulation studies show that the proposed model is well performed in a variety of situations. To demonstrate the usefulness of the proposed approach, we apply the model to a published data in an F(2) family derived from LG/S and SM/S mouse stains. Two partially maternal imprinting iQTL are identified which regulate the growth of body weight. Our approach provides a testable framework for identifying and estimating iQTL involved in the genetic control of complex traits.
Collapse
Affiliation(s)
- Yuehua Cui
- Department of Statistics and Probability, Michigan State University, A-411 Wells Hall, East Lansing, MI 48824, USA.
| | | | | |
Collapse
|
42
|
Schumacher A, Petronis A. Epigenetics of Complex Diseases: From General Theory to Laboratory Experiments. Curr Top Microbiol Immunol 2006; 310:81-115. [PMID: 16909908 DOI: 10.1007/3-540-31181-5_6] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Despite significant effort, understanding the causes and mechanisms of complex non-Mendelian diseases remains a key challenge. Although numerous molecular genetic linkage and association studies have been conducted in order to explain the heritable predisposition to complex diseases, the resulting data are quite often inconsistent and even controversial. In a similar way, identification of environmental factors causal to a disease is difficult. In this article, a new interpretation of the paradigm of "genes plus environment" is presented in which the emphasis is shifted to epigenetic misregulation as a major etiopathogenic factor. Epigenetic mechanisms are consistent with various non-Mendelian irregularities of complex diseases, such as the existence of clinically indistinguishable sporadic and familial cases, sexual dimorphism, relatively late age of onset and peaks of susceptibility to some diseases, discordance of monozygotic twins and major fluctuations on the course of disease severity. It is also suggested that a substantial portion of phenotypic variance that traditionally has been attributed to environmental effects may result from stochastic epigenetic events in the cell. It is argued that epigenetic strategies, when applied in parallel with the traditional genetic ones, may significantly advance the discovery of etiopathogenic mechanisms of complex diseases. The second part of this chapter is dedicated to a review of laboratory methods for DNA methylation analysis, which may be useful in the study of complex diseases. In this context, epigenetic microarray technologies are emphasized, as it is evident that such technologies will significantly advance epigenetic analyses in complex diseases.
Collapse
Affiliation(s)
- A Schumacher
- The Krembil Family Epigenetics Laboratory, Centre for Addiction and Mental Health, ON, Toronto, Canada
| | | |
Collapse
|
43
|
A statistical framework for genome-wide scanning and testing of imprinted quantitative trait loci. J Theor Biol 2006; 244:115-26. [PMID: 16959270 DOI: 10.1016/j.jtbi.2006.07.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2006] [Revised: 06/28/2006] [Accepted: 07/11/2006] [Indexed: 10/24/2022]
Abstract
Non-equivalent expression of alleles at a locus results in genomic imprinting. In this article, a statistical framework for genome-wide scanning and testing of imprinted quantitative trait loci (iQTL) underlying complex traits is developed based on experimental crosses of inbred line species in backcross populations. The joint likelihood function is composed of four component likelihood functions with each of them derived from one of four backcross families. The proposed approach models genomic imprinting effect as a probability measure with which one can test the degree of imprinting. Simulation results show that the model is robust for identifying iQTL with various degree of imprinting ranging from no imprinting, partial imprinting to complete imprinting. Under various simulation scenarios, the proposed model shows consistent parameter estimation with reasonable precision and high power in testing iQTL. When a QTL shows Mendelian effect, the proposed model also outperforms traditional Mendelian model. Extension to incorporate maternal effect is also given. The developed model, built within the maximum likelihood framework and implemented with the EM algorithm, provides a quantitative framework for testing and estimating iQTL involved in the genetic control of complex traits.
Collapse
|
44
|
Beatty L, Weksberg R, Sadowski PD. Detailed analysis of the methylation patterns of the KvDMR1 imprinting control region of human chromosome 11. Genomics 2006; 87:46-56. [PMID: 16321503 DOI: 10.1016/j.ygeno.2005.05.015] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2005] [Revised: 04/29/2005] [Accepted: 05/03/2005] [Indexed: 11/22/2022]
Abstract
The paternal repression of several genes in human chromosome 11p15.5 (mouse chromosome 7) is associated with paternal expression of a transcript called KCNQ1OT1 (also known as LIT1). This long transcript originates from a promoter that resides in a CpG island in intron 10 of the KCNQ1 gene and runs in an antisense orientation to the direction of the coding KCNQ1 transcript. The CpG island is maternally methylated but paternally nonmethylated. The CpG island loses its maternal methylation in over 50% of cases of Beckwith-Wiedemann syndrome who lack uniparental disomy. This loss is usually accompanied by biallelic expression of the KCNQ1OT1 transcript. We have examined the methylation status of this CpG island in somatic cell hybrids and diploid lymphoblasts using Southern hybridization and bisulfite sequencing techniques. We find that the maternal copy of the CpG island is methylated at all CpGs examined within the CpG island and uniformly paternally unmethylated. In addition, in BWS patients who have lost methylation of the CpG island, this loss occurs throughout the CpG island. Finally, we find that there is a switch in methylation patterns outside the CpG island from maternal methylation within the island to predominantly paternal methylation at sites flanking the CpG island.
Collapse
Affiliation(s)
- Linda Beatty
- Department of Medical Genetics and Microbiology, University of Toronto, Toronto, ON, Canada
| | | | | |
Collapse
|
45
|
Abstract
Over the past 15 years, considerable progress has been made in understanding the etiology of childhood Attention Deficit Hyperactivity Disorder (ADHD), largely due to the publication of numerous twin studies which are consistent in suggesting substantial genetic influences (i.e., heritabilities ranging from 60% to 90%), non-shared environmental influences that are small-to-moderate in magnitude (i.e., ranging from 10% to 40%), and little-to-no shared environmental influences. Following from these quantitative genetic findings, numerous molecular genetic studies of association and linkage between ADHD and a variety of candidate genes have been conducted during the past 10 years. The majority of the candidate genes studied underlie various facets of the dopamine, norepinephrine, and serotonin neurotransmitter systems, although the etiological role of candidate genes outside of neurotransmitter systems (e.g., involved in various aspects of brain and nervous system development) have also been examined. In this paper, we review recent findings from candidate gene studies of childhood ADHD and highlight those candidate genes for which associations are most replicable and which thus appear most promising. We conclude with a consideration of some of the emerging themes that will be important in future studies of the genetics of ADHD.
Collapse
|
46
|
Cui Y, Lu Q, Cheverud JM, Littell RC, Wu R. Model for mapping imprinted quantitative trait loci in an inbred F2 design. Genomics 2006; 87:543-51. [PMID: 16413163 DOI: 10.1016/j.ygeno.2005.11.021] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2005] [Revised: 11/25/2005] [Accepted: 11/29/2005] [Indexed: 10/25/2022]
Abstract
The role of imprinting in shaping development has been ubiquitously observed in plants, animals, and humans. However, a statistical method that can detect and estimate the effects of imprinted quantitative trait loci (iQTL) over the genome has not been extensively developed. In this article, we propose a maximum likelihood approach for testing and estimating the imprinted effects of iQTL that contribute to variation in a quantitative trait. This approach, implemented with the EM algorithm, allows for a genome-wide scan for the existence of iQTL. This approach was used to reanalyze published data in an F(2) family derived from the LG/S and SM/S mouse strains. Several iQTL that regulate the growth of body weight by expressing paternally inherited alleles were identified. Our approach provides a standard procedure for testing the statistical significance of iQTL involved in the genetic control of complex traits.
Collapse
Affiliation(s)
- Yuehua Cui
- Department of Statistics, University of Florida, Gainesville, FL 32611, USA
| | | | | | | | | |
Collapse
|
47
|
Shete S, Zhou X. TLINKAGE-IMPRINT: A Model-Based Approach to Performing Two-Locus Genetic Imprinting Analysis. Hum Hered 2006; 62:145-56. [PMID: 17057404 DOI: 10.1159/000096418] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2006] [Accepted: 08/22/2006] [Indexed: 11/19/2022] Open
Abstract
OBJECTIVES Imprinting refers to the expression of only one copy of a gene pair, which is determined by the parental origin of the copy. Imprinted genes play a role in the development of several complex diseases, including cancers and mental disorders. In certain situations, two-trait-loci models are shown to be more powerful than one-trait-locus models. However, no current methods use pedigree structure efficiently and perform two-locus imprinting analyses. In this paper, we apply the Elston-Stewart algorithm to the parametric two-trait-loci imprinting model used by Strauch et al. [2000] to obtain a method for qualitative trait linkage analyses that explicitly models imprinting and can be applied to large pedigrees. METHODS We considered a parametric approach based on 4 x 4 penetrance matrix to account for imprinting and modified TLINKAGE software to implement this approach. We performed simulation studies using a small and a large pedigree under dominant and imprinted and dominant or imprinted scenarios. Furthermore, we developed a likelihood ratio-based test for imprinting that compares the logarithm of odds (LOD) score obtained using the two-locus imprinting model with that obtained using the standard two-locus model that does not allow for imprinting. RESULTS In simulation studies of three scenarios where the true mode of inheritance included imprinting, accurate modeling through the proposed approach yielded higher LOD scores and better recombination fraction estimates than the traditional two-locus model that does not allow for imprinting. CONCLUSIONS This imprinting model will be useful in identifying the genes responsible for several complex disorders that are potentially caused by a combination of imprinted and non-imprinted genes.
Collapse
Affiliation(s)
- Sanjay Shete
- Department of Epidemiology, The University of Texas M. D. Anderson Cancer Center, Houston, TX 77030, USA.
| | | |
Collapse
|
48
|
Shete S, Zhou X. Parametric approach to genomic imprinting analysis with applications to Angelman's syndrome. Hum Hered 2005; 59:26-33. [PMID: 15802919 DOI: 10.1159/000084734] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2004] [Accepted: 11/08/2004] [Indexed: 11/19/2022] Open
Abstract
Genomic imprinting is a mechanism by which only one copy of a gene pair is expressed, and this expression is determined by the parental origin of the copy. The deregulation of imprinted genes has been implicated in a number of human diseases. The Imprinted Gene Catalogue now has more than 200 genes listed, and estimates based on mouse models suggest many more may exist in humans. Therefore, the development of methods to identify such genes is important. In this communication, we present a parametric model-based approach to analyzing arbitrary-sized pedigree data for genomic imprinting. We have modified widely used LINKAGE program to incorporate our proposed approach. In addition, our approach allows for the use of sex-specific recombinations in the analysis, which is of particular importance in a genome-wide analysis for imprinted genes. We compared our imprinting analysis approach to that implemented in the GENEHUNTER-IMPRINT program using simulation studies as well as by analyzing causal genes in Angelman's syndrome families, which are known to be imprinted. These analyses showed that the proposed approach is very powerful for detecting imprinted genes in large pedigrees.
Collapse
Affiliation(s)
- Sanjay Shete
- Department of Epidemiology, The University of Texas M.D. Anderson Cancer Center, Houston, TX 77030, USA.
| | | |
Collapse
|
49
|
Abstract
Although cigarette smoking is the dominant risk factor for several epithelial cancers, only a small fraction of individuals with tobacco exposure develop cancer. The underlying hypothesis is that genetic factors may render certain smokers more susceptible to cancer than others. Genetic alterations in critical regulatory pathways may predispose cells to carcinogenesis. These pathways include regulation of xenobiotic metabolism; control of genomic stability, including DNA repair mechanisms, cell-cycle checkpoints, apoptosis and telomere length; and control of microenvironmental factors, such as matrix metalloproteinases, inflammation and growth factors. In addition, epigenetic events, such as promoter hypermethylation and loss of imprinting, are also involved in carcinogenesis. In this review, we will summarize recent advances in genetic susceptibility to tobacco-related cancer. Emphasizing on risk assessment, we will describe how genetic variations in the above-mentioned genetic pathways modify the tobacco-related cancer risk. In addition, we will discuss how genetic variations may assist in predicting clinical outcome, such as the natural history of cancer and treatment response. The measurements of genetic susceptibility by both genotypic and phenotypic assays are covered in the text. Finally, we present a number of current concerns that need to be addressed as the exciting field of molecular cancer epidemiology advances rapidly.
Collapse
Affiliation(s)
- Xifeng Wu
- Department of Epidemiology, MD Anderson Cancer Center, Houston, TX 77030, USA.
| | | | | | | |
Collapse
|
50
|
Mann MRW, Lee SS, Doherty AS, Verona RI, Nolen LD, Schultz RM, Bartolomei MS. Selective loss of imprinting in the placenta following preimplantation development in culture. Development 2004; 131:3727-35. [PMID: 15240554 DOI: 10.1242/dev.01241] [Citation(s) in RCA: 330] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Preimplantation development is a period of dynamic epigenetic change that begins with remodeling of egg and sperm genomes, and ends with implantation. During this time, parental-specific imprinting marks are maintained to direct appropriate imprinted gene expression. We previously demonstrated that H19 imprinting could be lost during preimplantation development under certain culture conditions. To define the lability of genomic imprints during this dynamic period and to determine whether loss of imprinting continues at later stages of development, imprinted gene expression and methylation were examined after in vitro preimplantation culture. Following culture in Whitten's medium, the normally silent paternal H19 allele was aberrantly expressed and undermethylated. However, only a subset of individual cultured blastocysts (∼65%) exhibited biallelic expression, while others maintained imprinted H19 expression. Loss of H19 imprinting persisted in mid-gestation conceptuses. Placental tissues displayed activation of the normally silent allele for H19, Ascl2, Snrpn, Peg3 and Xist while in the embryo proper imprinted expression for the most part was preserved. Loss of imprinted expression was associated with a decrease in methylation at the H19 and Snrpn imprinting control regions. These results indicate that tissues of trophectoderm origin are unable to restore genomic imprints and suggest that mechanisms that safeguard imprinting might be more robust in the embryo than in the placenta.
Collapse
Affiliation(s)
- Mellissa R W Mann
- Howard Hughes Medical Institute and Department of Cell and Developmental Biology, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
| | | | | | | | | | | | | |
Collapse
|