1
|
Valle J. Biofilm-associated proteins: from the gut biofilms to neurodegeneration. Gut Microbes 2025; 17:2461721. [PMID: 39898557 PMCID: PMC11792866 DOI: 10.1080/19490976.2025.2461721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 12/07/2024] [Accepted: 01/28/2025] [Indexed: 02/04/2025] Open
Abstract
Human microbiota form a biofilm with substantial consequences for health and disease. Numerous studies have indicated that microbial communities produce functional amyloids as part of their biofilm extracellular scaffolds. The overlooked interplay between bacterial amyloids and the host may have detrimental consequences for the host, including neurodegeneration. This work gives an overview of the biofilm-associated amyloids expressed by the gut microbiota and their potential role in neurodegeneration. It discusses the biofilm-associated proteins (BAPs) of the gut microbiota, maps the amyloidogenic domains of these proteins, and analyzes the presence of bap genes within accessory genomes linked with transposable elements. Furthermore, the evidence supporting the existence of amyloids in the gut are presented. Finally, it explores the potential interactions between BAPs and α-synuclein, extending the literature on amyloid cross-kingdom interactions. Based on these findings, this study propose that BAP amyloids act as transmissible catalysts, facilitating the misfolding, accumulation, and spread of α-synuclein aggregates. This review contributes to the understanding of complex interactions among the microbiota, transmissible elements, and host, which is crucial for developing novel therapeutic approaches to combat microbiota-related diseases and improve overall health outcomes.
Collapse
Affiliation(s)
- Jaione Valle
- Microbial Biotechnology Department, Instituto de Agrobiotecnología, CSIC-Gobierno de Navarra, Mutilva, Navarra, Spain
| |
Collapse
|
2
|
Ran Z, Mu BR, Wang DM, Xin-Huang, Ma QH, Lu MH. Parkinson's Disease and the Microbiota-Gut-Brain Axis: Metabolites, Mechanisms, and Innovative Therapeutic Strategies Targeting the Gut Microbiota. Mol Neurobiol 2025; 62:5273-5296. [PMID: 39531191 DOI: 10.1007/s12035-024-04584-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 10/22/2024] [Indexed: 11/16/2024]
Abstract
The human gut microbiota is diverse and abundant and plays important roles in regulating health by participating in metabolism and controlling physiological activities. The gut microbiota and its metabolites have been shown to affect the functioning of the gut and central nervous system through the microbiota-gut-brain axis. It is well established that microbiota play significant roles in the pathogenesis and progression of Parkinson's disease (PD). Disorders of the intestinal microbiota and altered metabolite levels are closely associated with PD. Here, the changes in intestinal microbiota and effects of metabolites in patients with PD are reviewed. Potential mechanisms underlying intestinal microbiota disorders in the pathogenesis of PD are briefly discussed. Additionally, we outline the current strategies for the treatment of PD that target the gut microbiota, emphasizing the development of promising novel strategies.
Collapse
Affiliation(s)
- Zhao Ran
- Chongqing Key Laboratory of Sichuan-Chongqing Co-Construction for Diagnosis and Treatment of Infectious Diseases Integrated Traditional Chinese and Western Medicine, College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Ben-Rong Mu
- Chongqing Key Laboratory of Sichuan-Chongqing Co-Construction for Diagnosis and Treatment of Infectious Diseases Integrated Traditional Chinese and Western Medicine, College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Dong-Mei Wang
- College of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Xin-Huang
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, Institute of Neuroscience, Soochow University, Suzhou, 215021, China
| | - Quan-Hong Ma
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, Institute of Neuroscience, Soochow University, Suzhou, 215021, China.
| | - Mei-Hong Lu
- Chongqing Key Laboratory of Sichuan-Chongqing Co-Construction for Diagnosis and Treatment of Infectious Diseases Integrated Traditional Chinese and Western Medicine, College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| |
Collapse
|
3
|
Long J, Yang C, Liu J, Ma C, Jiao M, Hu H, Xiong J, Zhang Y, Wei W, Yang H, He Y, Zhu M, Yu Y, Fu L, Chen H. Tannic acid inhibits Escherichia coli biofilm formation and underlying molecular mechanisms: Biofilm regulator CsgD. Biomed Pharmacother 2024; 175:116716. [PMID: 38735084 DOI: 10.1016/j.biopha.2024.116716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/27/2024] [Accepted: 05/06/2024] [Indexed: 05/14/2024] Open
Abstract
Biofilms often engender persistent infections, heightened antibiotic resistance, and the recurrence of infections. Therefor, infections related to bacterial biofilms are often chronic and pose challenges in terms of treatment. The main transcription regulatory factor, CsgD, activates csgABC-encoded curli to participate in the composition of extracellular matrix, which is an important skeleton for biofilm development in enterobacteriaceae. In our previous study, a wide range of natural bioactive compounds that exhibit strong affinity to CsgD were screened and identified via molecular docking. Tannic acid (TA) was subsequently chosen, based on its potent biofilm inhibition effect as observed in crystal violet staining. Therefore, the aim of this study was to investigate the specific effects of TA on the biofilm formation of clinically isolated Escherichia coli (E. coli). Results demonstrated a significant inhibition of E. coli Ec032 biofilm formation by TA, while not substantially affecting the biofilm of the ΔcsgD strain. Moreover, deletion of the csgD gene led to a reduction in Ec032 biofilm formation, alongside diminished bacterial motility and curli synthesis inhibition. Transcriptomic analysis and RT-qPCR revealed that TA repressed genes associated with the csg operon and other biofilm-related genes. In conclusion, our results suggest that CsgD is one of the key targets for TA to inhibit E. coli biofilm formation. This work preliminarily elucidates the molecular mechanisms of TA inhibiting E. coli biofilm formation, which could provide a lead structure for the development of future antibiofilm drugs.
Collapse
Affiliation(s)
- Jinying Long
- College of Veterinary Medicine, Southwest University, Chongqing 402460, China; National Center of Technology Innovation for Pigs, Chongqing 402460, China; Immunology Research Center, Medical Research Institute, Southwest University, Chongqing 402460, China
| | - Can Yang
- College of Veterinary Medicine, Southwest University, Chongqing 402460, China; National Center of Technology Innovation for Pigs, Chongqing 402460, China; Immunology Research Center, Medical Research Institute, Southwest University, Chongqing 402460, China
| | - JingJing Liu
- College of Veterinary Medicine, Southwest University, Chongqing 402460, China; National Center of Technology Innovation for Pigs, Chongqing 402460, China
| | - Chengjun Ma
- College of Veterinary Medicine, Southwest University, Chongqing 402460, China; National Center of Technology Innovation for Pigs, Chongqing 402460, China
| | - Min Jiao
- College of Veterinary Medicine, Southwest University, Chongqing 402460, China; National Center of Technology Innovation for Pigs, Chongqing 402460, China
| | - Huiming Hu
- College of Veterinary Medicine, Southwest University, Chongqing 402460, China
| | - Jing Xiong
- National Center of Technology Innovation for Pigs, Chongqing 402460, China; Chongqing Academy of Animal Sciences, Chongqing 402460, China
| | - Yang Zhang
- National Center of Technology Innovation for Pigs, Chongqing 402460, China; Chongqing Academy of Animal Sciences, Chongqing 402460, China
| | - Wei Wei
- College of Veterinary Medicine, Southwest University, Chongqing 402460, China; National Center of Technology Innovation for Pigs, Chongqing 402460, China; Traditional Chinese Veterinary Research Institute, Southwest University, Chongqing 402460, China
| | - Hongzao Yang
- College of Veterinary Medicine, Southwest University, Chongqing 402460, China; National Center of Technology Innovation for Pigs, Chongqing 402460, China; Traditional Chinese Veterinary Research Institute, Southwest University, Chongqing 402460, China
| | - Yuzhang He
- College of Veterinary Medicine, Southwest University, Chongqing 402460, China; Immunology Research Center, Medical Research Institute, Southwest University, Chongqing 402460, China
| | - Maixun Zhu
- National Center of Technology Innovation for Pigs, Chongqing 402460, China; Chongqing Academy of Animal Sciences, Chongqing 402460, China
| | - Yuandi Yu
- National Center of Technology Innovation for Pigs, Chongqing 402460, China; Chongqing Academy of Animal Sciences, Chongqing 402460, China
| | - Lizhi Fu
- National Center of Technology Innovation for Pigs, Chongqing 402460, China; Chongqing Academy of Animal Sciences, Chongqing 402460, China.
| | - Hongwei Chen
- College of Veterinary Medicine, Southwest University, Chongqing 402460, China; National Center of Technology Innovation for Pigs, Chongqing 402460, China; Immunology Research Center, Medical Research Institute, Southwest University, Chongqing 402460, China; Traditional Chinese Veterinary Research Institute, Southwest University, Chongqing 402460, China.
| |
Collapse
|
4
|
Elkins M, Jain N, Tükel Ç. The menace within: bacterial amyloids as a trigger for autoimmune and neurodegenerative diseases. Curr Opin Microbiol 2024; 79:102473. [PMID: 38608623 PMCID: PMC11162901 DOI: 10.1016/j.mib.2024.102473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 03/20/2024] [Accepted: 03/26/2024] [Indexed: 04/14/2024]
Abstract
Bacteria are known to produce amyloids, proteins characterized by a conserved cross-beta sheet structure, which exhibit structural and functional similarities to human amyloids. The deposition of human amyloids into fibrillar plaques within organs is closely linked to several debilitating human diseases, including Alzheimer's and Parkinson's disease. Recently, bacterial amyloids have garnered significant attention as potential initiators of human amyloid-associated diseases as well as autoimmune diseases. This review aims to explore how bacterial amyloid, particularly curli found in gut biofilms, can act as a trigger for neurodegenerative and autoimmune diseases. We will elucidate three primary mechanisms through which bacterial amyloids exert their influence: By delving into these three distinct modes of action, this review will provide valuable insights into the intricate relationship between bacterial amyloids and the onset or progression of neurodegenerative and autoimmune diseases. A comprehensive understanding of these mechanisms may open new avenues for therapeutic interventions and preventive strategies targeting amyloid-associated diseases.
Collapse
Affiliation(s)
- Molly Elkins
- Center for Microbiology and Immunology, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania, USA
| | - Neha Jain
- Department of Bioscience and Bioengineering, Indian Institute of Technology Jodhpur, NH 62, Surpura Bypass, Karwar, Rajasthan, India
| | - Çagla Tükel
- Center for Microbiology and Immunology, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania, USA.
| |
Collapse
|
5
|
Fernández-Calvet A, Matilla-Cuenca L, Izco M, Navarro S, Serrano M, Ventura S, Blesa J, Herráiz M, Alkorta-Aranburu G, Galera S, Ruiz de Los Mozos I, Mansego ML, Toledo-Arana A, Alvarez-Erviti L, Valle J. Gut microbiota produces biofilm-associated amyloids with potential for neurodegeneration. Nat Commun 2024; 15:4150. [PMID: 38755164 PMCID: PMC11099085 DOI: 10.1038/s41467-024-48309-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 04/26/2024] [Indexed: 05/18/2024] Open
Abstract
Age-related neurodegenerative diseases involving amyloid aggregation remain one of the biggest challenges of modern medicine. Alterations in the gastrointestinal microbiome play an active role in the aetiology of neurological disorders. Here, we dissect the amyloidogenic properties of biofilm-associated proteins (BAPs) of the gut microbiota and their implications for synucleinopathies. We demonstrate that BAPs are naturally assembled as amyloid-like fibrils in insoluble fractions isolated from the human gut microbiota. We show that BAP genes are part of the accessory genomes, revealing microbiome variability. Remarkably, the abundance of certain BAP genes in the gut microbiome is correlated with Parkinson's disease (PD) incidence. Using cultured dopaminergic neurons and Caenorhabditis elegans models, we report that BAP-derived amyloids induce α-synuclein aggregation. Our results show that the chaperone-mediated autophagy is compromised by BAP amyloids. Indeed, inoculation of BAP fibrils into the brains of wild-type mice promote key pathological features of PD. Therefore, our findings establish the use of BAP amyloids as potential targets and biomarkers of α-synucleinopathies.
Collapse
Affiliation(s)
- Ariadna Fernández-Calvet
- Instituto de Agrobiotecnología (IDAB). CSIC-Gobierno de Navarra, Avenida Pamplona 123, Mutilva, 31192, Spain
| | - Leticia Matilla-Cuenca
- Instituto de Agrobiotecnología (IDAB). CSIC-Gobierno de Navarra, Avenida Pamplona 123, Mutilva, 31192, Spain
| | - María Izco
- Laboratory of Molecular Neurobiology, Center for Biomedical Research of La Rioja, Logroño, Spain
| | - Susanna Navarro
- Institut de Biotecnologia i de Biomedicina and Departament de Bioquimica i Biologia Molecular, Universitat Autónoma de Barcelona, Bellaterra, Spain
| | - Miriam Serrano
- Instituto de Agrobiotecnología (IDAB). CSIC-Gobierno de Navarra, Avenida Pamplona 123, Mutilva, 31192, Spain
| | - Salvador Ventura
- Institut de Biotecnologia i de Biomedicina and Departament de Bioquimica i Biologia Molecular, Universitat Autónoma de Barcelona, Bellaterra, Spain
| | - Javier Blesa
- HM CINAC (Centro Integral de Neurociencias Abarca Campal), Hospital Universitario HM Puerta del Sur, HM Hospitales, Madrid, Spain
- Instituto de Investigación Sanitaria, HM Hospitales, Madrid, Spain
| | - Maite Herráiz
- Department of Gastroenterology, Clínica Universitaria and Medical School, University of Navarra, Navarra, Spain
- IdiSNA, Instituto de Investigación Sanitaria de Navarra, Pamplona, Spain
| | - Gorka Alkorta-Aranburu
- IdiSNA, Instituto de Investigación Sanitaria de Navarra, Pamplona, Spain
- CIMA LAB Diagnostics, University of Navarra, Pamplona, Spain
| | - Sergio Galera
- Department of Personalized Medicine, NASERTIC, Government of Navarra, Pamplona, Spain
| | | | - María Luisa Mansego
- Translational Bioinformatics Unit, Navarrabiomed, Complejo Hospitalario de Navarra (CHN), Universidad Pública de Navarra (UPNA), IdiSNA, Pamplona, Spain
| | - Alejandro Toledo-Arana
- Instituto de Agrobiotecnología (IDAB). CSIC-Gobierno de Navarra, Avenida Pamplona 123, Mutilva, 31192, Spain
| | - Lydia Alvarez-Erviti
- Laboratory of Molecular Neurobiology, Center for Biomedical Research of La Rioja, Logroño, Spain
| | - Jaione Valle
- Instituto de Agrobiotecnología (IDAB). CSIC-Gobierno de Navarra, Avenida Pamplona 123, Mutilva, 31192, Spain.
| |
Collapse
|
6
|
Nhu NTK, Rahman MA, Goh KGK, Kim SJ, Phan MD, Peters KM, Alvarez-Fraga L, Hancock SJ, Ravi C, Kidd TJ, Sullivan MJ, Irvine KM, Beatson SA, Sweet MJ, Irwin AD, Vukovic J, Ulett GC, Hasnain SZ, Schembri MA. A convergent evolutionary pathway attenuating cellulose production drives enhanced virulence of some bacteria. Nat Commun 2024; 15:1441. [PMID: 38383596 PMCID: PMC10881479 DOI: 10.1038/s41467-024-45176-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Accepted: 01/16/2024] [Indexed: 02/23/2024] Open
Abstract
Bacteria adapt to selective pressure in their immediate environment in multiple ways. One mechanism involves the acquisition of independent mutations that disable or modify a key pathway, providing a signature of adaptation via convergent evolution. Extra-intestinal pathogenic Escherichia coli (ExPEC) belonging to sequence type 95 (ST95) represent a global clone frequently associated with severe human infections including acute pyelonephritis, sepsis, and neonatal meningitis. Here, we analysed a publicly available dataset of 613 ST95 genomes and identified a series of loss-of-function mutations that disrupt cellulose production or its modification in 55.3% of strains. We show the inability to produce cellulose significantly enhances ST95 invasive infection in a rat model of neonatal meningitis, leading to the disruption of intestinal barrier integrity in newborn pups and enhanced dissemination to the liver, spleen and brain. Consistent with these observations, disruption of cellulose production in ST95 augmented innate immune signalling and tissue neutrophil infiltration in a mouse model of urinary tract infection. Mutations that disrupt cellulose production were also identified in other virulent ExPEC STs, Shigella and Salmonella, suggesting a correlative association with many Enterobacteriaceae that cause severe human infection. Together, our findings provide an explanation for the emergence of hypervirulent Enterobacteriaceae clones.
Collapse
Affiliation(s)
- Nguyen Thi Khanh Nhu
- Institute for Molecular Bioscience (IMB), The University of Queensland, Brisbane, QLD, Australia
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
- Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, QLD, Australia
| | - M Arifur Rahman
- Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, QLD, Australia
- Immunopathology Group, Mater Research Institute, The University of Queensland, Translational Research Institute, Brisbane, Australia
- QIMR Berghofer Medical Research Institute, Brisbane QLD, Australia
| | - Kelvin G K Goh
- School of Pharmacy and Medical Sciences, Griffith University, Southport, QLD, Australia
- Menzies Health Institute Queensland, Griffith University, Southport, QLD, Australia
| | - Seung Jae Kim
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Minh-Duy Phan
- Institute for Molecular Bioscience (IMB), The University of Queensland, Brisbane, QLD, Australia
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
- Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, QLD, Australia
| | - Kate M Peters
- Institute for Molecular Bioscience (IMB), The University of Queensland, Brisbane, QLD, Australia
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
- Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, QLD, Australia
| | - Laura Alvarez-Fraga
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
- Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, QLD, Australia
- INRAE, Univ Montpellier, LBE, 102 Avenue des Etangs, Narbonne, 11100, France
| | - Steven J Hancock
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
- Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, QLD, Australia
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, UK
| | - Chitra Ravi
- Institute for Molecular Bioscience (IMB), The University of Queensland, Brisbane, QLD, Australia
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
- Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, QLD, Australia
| | - Timothy J Kidd
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
- Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, QLD, Australia
- Central Microbiology, Pathology Queensland, Royal Brisbane and Women's Hospital, Brisbane, Australia
| | - Matthew J Sullivan
- School of Pharmacy and Medical Sciences, Griffith University, Southport, QLD, Australia
- Menzies Health Institute Queensland, Griffith University, Southport, QLD, Australia
- School of Biological Sciences, University of East Anglia, Norwich, NR4 7TJ, UK
| | - Katharine M Irvine
- Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, QLD, Australia
- Immunopathology Group, Mater Research Institute, The University of Queensland, Translational Research Institute, Brisbane, Australia
| | - Scott A Beatson
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
- Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, QLD, Australia
| | - Matthew J Sweet
- Institute for Molecular Bioscience (IMB), The University of Queensland, Brisbane, QLD, Australia
- Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, QLD, Australia
| | - Adam D Irwin
- Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, QLD, Australia
- University of Queensland Centre for Clinical Research, Brisbane, Australia
- Queensland Children's Hospital, Brisbane, Australia
| | - Jana Vukovic
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia.
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia.
| | - Glen C Ulett
- School of Pharmacy and Medical Sciences, Griffith University, Southport, QLD, Australia.
- Menzies Health Institute Queensland, Griffith University, Southport, QLD, Australia.
| | - Sumaira Z Hasnain
- Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, QLD, Australia.
- Immunopathology Group, Mater Research Institute, The University of Queensland, Translational Research Institute, Brisbane, Australia.
| | - Mark A Schembri
- Institute for Molecular Bioscience (IMB), The University of Queensland, Brisbane, QLD, Australia.
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia.
- Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, QLD, Australia.
| |
Collapse
|
7
|
Shrestha S, Bista S, Byanjankar N, Prasai Joshi T. Evaluation of bottled drinking water and occurrence of multidrug-resistance and biofilm producing bacteria in Nepal. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 341:122896. [PMID: 37944893 DOI: 10.1016/j.envpol.2023.122896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 11/05/2023] [Accepted: 11/06/2023] [Indexed: 11/12/2023]
Abstract
Health consequences arising from unsafe drinking water and water insecurity lead to increased reliance on usage of bottled water. Biofilm-producing antibiotic-resistant bacteria in bottled water may pose a risk to public health. This study aims to assess the quality of bottled drinking water with a focus on biofilm-producing and drug-resistant coliform. We analyzed 60 bottled water samples of 30 different brands purchased from Kathmandu for physicochemical and microbial analysis. The parameters pH, iron, total coliform count, Escherichia coli count, and fecal coliform count exceeded National Drinking Water Quality Standards, 2022 in 30.00%, 16.67%, 66.67%, 23.33%, and 16.67% of samples, respectively. Water quality index measurement showed 36.67% and 6.67% of bottled water samples were categorized as grade A and grade B indicating excellent and good water quality, respectively. However, 56.67% of bottled water samples fall under grade E meaning unsuitable for drinking. Among 14 coliform isolates, 85.71% and 14.29% were identified as E. coli and Klebsiella spp, respectively. The antibiotic susceptibility testing revealed that 28.57% of the isolates were multidrug-resistant and Gentamicin resistant isolates comprised 71.43%. However, none of the isolates were carbapenem (meropenem) resistant. In this study, 42.87% of the isolates were found biofilm producers with 14.29% each of strong, moderate, and weak biofilm producers. The genetic potential of biofilm-producing capacity of the isolates was assessed by Polymerase Chain Reaction amplification of bcsA and csgD genes. Our results showed that 66.67% and 50.00% of the isolates harbored bcsA and csgD genes, respectively. This study highlights potential public health hazards associated with the consumption of bottled water containing biofilm-producing and drug-resistant bacteria in Nepal.
Collapse
Affiliation(s)
- Sunita Shrestha
- Environment Research Laboratory, Faculty of Science, Nepal Academy of Science and Technology, Khumaltar, Lalitpur, Nepal
| | - Sayara Bista
- Environment Research Laboratory, Faculty of Science, Nepal Academy of Science and Technology, Khumaltar, Lalitpur, Nepal
| | - Naina Byanjankar
- Environment Research Laboratory, Faculty of Science, Nepal Academy of Science and Technology, Khumaltar, Lalitpur, Nepal
| | - Tista Prasai Joshi
- Environment Research Laboratory, Faculty of Science, Nepal Academy of Science and Technology, Khumaltar, Lalitpur, Nepal.
| |
Collapse
|
8
|
Visser JA, Yager D, Chambers SA, Lim JY, Cao X, Cegelski L. Nordihydroguaiaretic Acid (NDGA) Inhibits CsgA Polymerization, Bacterial Amyloid Biogenesis, and Biofilm Formation. Chembiochem 2023; 24:e202300266. [PMID: 37195016 DOI: 10.1002/cbic.202300266] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 05/13/2023] [Accepted: 05/15/2023] [Indexed: 05/18/2023]
Abstract
Escherichia coli and other Enterobacteriaceae thrive in robust biofilm communities through the coproduction of curli amyloid fibers and phosphoethanolamine cellulose. Curli promote adhesion to abiotic surfaces and plant and human host tissues and are associated with pathogenesis in urinary tract infection and food-borne illness. The production of curli in the host has also been implicated in the pathogenesis of neurodegenerative diseases. We report that the natural product nordihydroguaiaretic acid (NDGA) is effective as a curlicide in E. coli. NDGA prevents CsgA polymerization in vitro in a dose-dependent manner. NDGA selectively inhibits cell-associated curli assembly and inhibits uropathogenic E. coli biofilm formation. More broadly, this work emphasizes the ability to evaluate and identify bioactive amyloid assembly inhibitors by using the powerful gene-directed amyloid biogenesis machinery in E. coli.
Collapse
Affiliation(s)
- Joshua A Visser
- Department of Chemistry, Stanford University, 380 Roth Way, Keck Building, Stanford, CA, 94305, USA
| | - Deborah Yager
- Department of Chemistry, Stanford University, 380 Roth Way, Keck Building, Stanford, CA, 94305, USA
| | - Schuyler A Chambers
- Department of Chemistry, Stanford University, 380 Roth Way, Keck Building, Stanford, CA, 94305, USA
| | - Ji Youn Lim
- Department of Chemistry, Stanford University, 380 Roth Way, Keck Building, Stanford, CA, 94305, USA
| | - Xujun Cao
- Department of Chemistry, Stanford University, 380 Roth Way, Keck Building, Stanford, CA, 94305, USA
| | - Lynette Cegelski
- Department of Chemistry, Stanford University, 380 Roth Way, Keck Building, Stanford, CA, 94305, USA
| |
Collapse
|
9
|
Zhou Y, Zhou Z, Zheng L, Gong Z, Li Y, Jin Y, Huang Y, Chi M. Urinary Tract Infections Caused by Uropathogenic Escherichia coli: Mechanisms of Infection and Treatment Options. Int J Mol Sci 2023; 24:10537. [PMID: 37445714 DOI: 10.3390/ijms241310537] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 06/20/2023] [Accepted: 06/21/2023] [Indexed: 07/15/2023] Open
Abstract
Urinary tract infections (UTIs) are common bacterial infections that represent a severe public health problem. They are often caused by Escherichia coli (E. coli), Klebsiella pneumoniae (K. pneumonia), Proteus mirabilis (P. mirabilis), Enterococcus faecalis (E. faecalis), and Staphylococcus saprophyticus (S. saprophyticus). Among these, uropathogenic E. coli (UPEC) are the most common causative agent in both uncomplicated and complicated UTIs. The adaptive evolution of UPEC has been observed in several ways, including changes in colonization, attachment, invasion, and intracellular replication to invade the urothelium and survive intracellularly. While antibiotic therapy has historically been very successful in controlling UTIs, high recurrence rates and increasing antimicrobial resistance among uropathogens threaten to greatly reduce the efficacy of these treatments. Furthermore, the gradual global emergence of multidrug-resistant UPEC has highlighted the need to further explore its pathogenesis and seek alternative therapeutic and preventative strategies. Therefore, a thorough understanding of the clinical status and pathogenesis of UTIs and the advantages and disadvantages of antibiotics as a conventional treatment option could spark a surge in the search for alternative treatment options, especially vaccines and medicinal plants. Such options targeting multiple pathogenic mechanisms of UPEC are expected to be a focus of UTI management in the future to help combat antibiotic resistance.
Collapse
Affiliation(s)
- Yang Zhou
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, 4 Beijing Road, Guiyang 550004, China
- School of Pharmaceutical Sciences, Guizhou Medical University, 4 Beijing Road, Guiyang 550004, China
| | - Zuying Zhou
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, 4 Beijing Road, Guiyang 550004, China
- School of Pharmaceutical Sciences, Guizhou Medical University, 4 Beijing Road, Guiyang 550004, China
| | - Lin Zheng
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, 4 Beijing Road, Guiyang 550004, China
- School of Pharmaceutical Sciences, Guizhou Medical University, 4 Beijing Road, Guiyang 550004, China
| | - Zipeng Gong
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, 4 Beijing Road, Guiyang 550004, China
| | - Yueting Li
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, 4 Beijing Road, Guiyang 550004, China
| | - Yang Jin
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, 4 Beijing Road, Guiyang 550004, China
| | - Yong Huang
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, 4 Beijing Road, Guiyang 550004, China
- School of Pharmaceutical Sciences, Guizhou Medical University, 4 Beijing Road, Guiyang 550004, China
| | - Mingyan Chi
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, 4 Beijing Road, Guiyang 550004, China
- School of Pharmaceutical Sciences, Guizhou Medical University, 4 Beijing Road, Guiyang 550004, China
| |
Collapse
|
10
|
Buchanan JA, Varghese NR, Johnston CL, Sunde M. Functional Amyloids: Where Supramolecular Amyloid Assembly Controls Biological Activity or Generates New Functionality. J Mol Biol 2023; 435:167919. [PMID: 37330295 DOI: 10.1016/j.jmb.2022.167919] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 12/05/2022] [Accepted: 12/05/2022] [Indexed: 06/19/2023]
Abstract
Functional amyloids are a rapidly expanding class of fibrillar protein structures, with a core cross-β scaffold, where novel and advantageous biological function is generated by the assembly of the amyloid. The growing number of amyloid structures determined at high resolution reveal how this supramolecular template both accommodates a wide variety of amino acid sequences and also imposes selectivity on the assembly process. The amyloid fibril can no longer be considered a generic aggregate, even when associated with disease and loss of function. In functional amyloids the polymeric β-sheet rich structure provides multiple different examples of unique control mechanisms and structures that are finely tuned to deliver assembly or disassembly in response to physiological or environmental cues. Here we review the range of mechanisms at play in natural, functional amyloids, where tight control of amyloidogenicity is achieved by environmental triggers of conformational change, proteolytic generation of amyloidogenic fragments, or heteromeric seeding and amyloid fibril stability. In the amyloid fibril form, activity can be regulated by pH, ligand binding and higher order protofilament or fibril architectures that impact the arrangement of associated domains and amyloid stability. The growing understanding of the molecular basis for the control of structure and functionality delivered by natural amyloids in nearly all life forms should inform the development of therapies for amyloid-associated diseases and guide the design of innovative biomaterials.
Collapse
Affiliation(s)
- Jessica A Buchanan
- School of Medical Sciences and Sydney Nano, The University of Sydney, NSW 2006, Australia.
| | - Nikhil R Varghese
- School of Medical Sciences and Sydney Nano, The University of Sydney, NSW 2006, Australia.
| | - Caitlin L Johnston
- School of Medical Sciences and Sydney Nano, The University of Sydney, NSW 2006, Australia.
| | - Margaret Sunde
- School of Medical Sciences and Sydney Nano, The University of Sydney, NSW 2006, Australia.
| |
Collapse
|
11
|
Laconi A, Tolosi R, Apostolakos I, Piccirillo A. Biofilm Formation Ability of ESBL/pAmpC-Producing Escherichia coli Isolated from the Broiler Production Pyramid. Antibiotics (Basel) 2023; 12:antibiotics12010155. [PMID: 36671356 PMCID: PMC9855187 DOI: 10.3390/antibiotics12010155] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/09/2023] [Accepted: 01/10/2023] [Indexed: 01/14/2023] Open
Abstract
Escherichia coli able to produce extended spectrum β-lactamases (ESBLs) and plasmid-mediated AmpC β-lactamases (pAmpCs) represents a serious threat to public health, since these genes confer resistance to critically important antimicrobials (i.e., third generation cephalosporins) and can be transferred to non-resistant bacteria via plasmids. E. coli are known to be able to form a biofilm, which represents a favorable environment for the exchange of resistance determinants. Here, we assessed the ability of 102 ESBL/pAmpC-producing E. coli isolated from the broiler production pyramid to form a biofilm and to identify genetic factors involved in biofilm formation. All but one of the ESBL/pAmpC-producing E. coli were able to form a biofilm, and this represents a great concern to public health. E. coli belonging to phylogroups D, E, and F, as well as strains harboring the blaCTX-M-type gene, seem to be associated with an increased biofilm capability (p < 0.05). Furthermore, virulence genes involved in adherence and invasion (i.e., csgBAC, csgDEFG, matABCDEF, and sfaX) seem to enhance biofilm formation in E. coli. Efforts should be made to reduce the presence of ESBL/pAmpC- and biofilm-producing E. coli in the broiler production pyramid and, therefore, the risk of dissemination of resistant bacteria and genes.
Collapse
Affiliation(s)
- Andrea Laconi
- Department of Comparative Biomedicine and Food Science, University of Padua, 35020 Legnaro, PD, Italy
| | - Roberta Tolosi
- Department of Comparative Biomedicine and Food Science, University of Padua, 35020 Legnaro, PD, Italy
| | - Ilias Apostolakos
- Dairy Research Institute, Hellenic Agricultural Organization “DIMITRA”, 45221 Ioannina, Greece
| | - Alessandra Piccirillo
- Department of Comparative Biomedicine and Food Science, University of Padua, 35020 Legnaro, PD, Italy
- Correspondence: ; Tel.: +39-0498-272-793
| |
Collapse
|
12
|
Amyloid-containing biofilms and autoimmunity. Curr Opin Struct Biol 2022; 75:102435. [PMID: 35863164 PMCID: PMC9847210 DOI: 10.1016/j.sbi.2022.102435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 06/08/2022] [Accepted: 06/20/2022] [Indexed: 01/21/2023]
Abstract
Bacteria are microscopic, single-celled organisms known for their ability to adapt to their environment. In response to stressful environmental conditions or in the presence of a contact surface, they commonly form multicellular aggregates called biofilms. Biofilms form on various abiotic or biotic surfaces through a dynamic stepwise process involving adhesion, growth, and extracellular matrix production. Biofilms develop on tissues as well as on implanted devices during infections, providing the bacteria with a mechanism for survival under harsh conditions including targeting by the immune system and antimicrobial therapy. Like pathogenic bacteria, members of the human microbiota can form biofilms. Biofilms formed by enteric bacteria contribute to several human diseases including autoimmune diseases and cancer. However, until recently the interactions of immune cells with biofilms had been mostly uncharacterized. Here, we will discuss how components of the enteric biofilm produced in vivo, specifically amyloid curli and extracellular DNA, could be interacting with the host's immune system causing an unpredicted immune response.
Collapse
|
13
|
Sivaranjani M, Hansen EG, Perera SR, Flores PA, Tükel Ç, White AP. Purification of the Bacterial Amyloid "Curli" from Salmonella enterica Serovar Typhimurium and Detection of Curli from Infected Host Tissues. Bio Protoc 2022; 12:e4419. [PMID: 35813019 PMCID: PMC9183970 DOI: 10.21769/bioprotoc.4419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 03/04/2022] [Accepted: 04/24/2022] [Indexed: 12/29/2022] Open
Abstract
Microbiologists are learning to appreciate the importance of "functional amyloids" that are produced by numerous bacterial species and have impacts beyond the microbial world. These structures are used by bacteria to link together, presumably to increase survival, protect against harsh conditions, and perhaps to influence cell-cell communication. Bacterial functional amyloids are also beginning to be appreciated in the context of host-pathogen interactions, where there is evidence that they can trigger the innate immune system and are recognized as non-self-molecular patterns. The characteristic three-dimensional fold of amyloids renders them similar across the bacterial kingdom and into the eukaryotic world, where amyloid proteins can be undesirable and have pathological consequences. The bacterial protein curli, produced by pathogenic Salmonella enterica and Escherichia coli strains, was one of the first functional amyloids discovered. Curli have since been well characterized in terms of function, and we are just starting to scratch the surface about their potential impact on eukaryotic hosts. In this manuscript, we present step-by-step protocols with pictures showing how to purify these bacterial surface structures. We have described the purification process from S. enterica, acknowledging that the same method can be applied to E. coli. In addition, we describe methods for detection of curli within animal tissues (i.e., GI tract) and discuss purifying curli intermediates in a S. enterica msbB mutant strain as they are more cytotoxic than mature curli fibrils. Some of these methods were first described elsewhere, but we wanted to assemble them together in more detail to make it easier for researchers who want to purify curli for use in biological experiments. Our aim is to provide methods that are useful for specialists and non-specialists as bacterial amyloids become of increasing importance.
Collapse
Affiliation(s)
- Murugesan Sivaranjani
- Vaccine and Infectious Disease Organization, Saskatoon, Saskatchewan, Canada
,Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Elizabeth G. Hansen
- Vaccine and Infectious Disease Organization, Saskatoon, Saskatchewan, Canada
,Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Sumudu R. Perera
- Vaccine and Infectious Disease Organization, Saskatoon, Saskatchewan, Canada
,Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Pamela A. Flores
- Vaccine and Infectious Disease Organization, Saskatoon, Saskatchewan, Canada
,Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Çagla Tükel
- Center for Microbiology and Immunology, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania, USA
| | - Aaron P. White
- Vaccine and Infectious Disease Organization, Saskatoon, Saskatchewan, Canada
,Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
,
*For correspondence:
| |
Collapse
|
14
|
Wang C, Zheng C. Using Caenorhabditis elegans to Model Therapeutic Interventions of Neurodegenerative Diseases Targeting Microbe-Host Interactions. Front Pharmacol 2022; 13:875349. [PMID: 35571084 PMCID: PMC9096141 DOI: 10.3389/fphar.2022.875349] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 03/08/2022] [Indexed: 12/02/2022] Open
Abstract
Emerging evidence from both clinical studies and animal models indicates the importance of the interaction between the gut microbiome and the brain in the pathogenesis of neurodegenerative diseases (NDs). Although how microbes modulate neurodegeneration is still mostly unclear, recent studies have started to probe into the mechanisms for the communication between microbes and hosts in NDs. In this review, we highlight the advantages of using Caenorhabditis elegans (C. elegans) to disentangle the microbe-host interaction that regulates neurodegeneration. We summarize the microbial pro- and anti-neurodegenerative factors identified using the C. elegans ND models and the effects of many are confirmed in mouse models. Specifically, we focused on the role of bacterial amyloid proteins, such as curli, in promoting proteotoxicity and neurodegeneration by cross-seeding the aggregation of endogenous ND-related proteins, such as α-synuclein. Targeting bacterial amyloid production may serve as a novel therapeutic strategy for treating NDs, and several compounds, such as epigallocatechin-3-gallate (EGCG), were shown to suppress neurodegeneration at least partly by inhibiting curli production. Because bacterial amyloid fibrils contribute to biofilm formation, inhibition of amyloid production often leads to the disruption of biofilms. Interestingly, from a list of 59 compounds that showed neuroprotective effects in C. elegans and mouse ND models, we found that about half of them are known to inhibit bacterial growth or biofilm formation, suggesting a strong correlation between the neuroprotective and antibiofilm activities. Whether these potential therapeutics indeed protect neurons from proteotoxicity by inhibiting the cross-seeding between bacterial and human amyloid proteins awaits further investigations. Finally, we propose to screen the long list of antibiofilm agents, both FDA-approved drugs and novel compounds, for their neuroprotective effects and develop new pharmaceuticals that target the gut microbiome for the treatment of NDs. To this end, the C. elegans ND models can serve as a platform for fast, high-throughput, and low-cost drug screens that target the microbe-host interaction in NDs.
Collapse
Affiliation(s)
| | - Chaogu Zheng
- School of Biological Sciences, The University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
15
|
Comparative Genomics Applied to Systematically Assess Pathogenicity Potential in Shiga Toxin-Producing Escherichia coli O145:H28. Microorganisms 2022; 10:microorganisms10050866. [PMID: 35630311 PMCID: PMC9144400 DOI: 10.3390/microorganisms10050866] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 04/14/2022] [Accepted: 04/19/2022] [Indexed: 01/27/2023] Open
Abstract
Shiga toxin-producing Escherichia coli (STEC) O145:H28 can cause severe disease in humans and is a predominant serotype in STEC O145 environmental isolates. Here, comparative genomics was applied to a set of clinical and environmental strains to systematically evaluate the pathogenicity potential in environmental strains. While the core genes-based tree separated all O145:H28 strains from the non O145:H28 reference strains, it failed to segregate environmental strains from the clinical. In contrast, the accessory genes-based tree placed all clinical strains in the same clade regardless of their genotypes or serotypes, apart from the environmental strains. Loss-of-function mutations were common in the virulence genes examined, with a high frequency in genes related to adherence, autotransporters, and the type three secretion system. Distinct differences in pathogenicity islands LEE, OI-122, and OI-57, the acid fitness island, and the tellurite resistance island were detected between the O145:H28 and reference strains. A great amount of genetic variation was detected in O145:H28, which was mainly attributed to deletions, insertions, and gene acquisition at several chromosomal “hot spots”. Our study demonstrated a distinct virulence gene repertoire among the STEC O145:H28 strains originating from the same geographical region and revealed unforeseen contributions of loss-of-function mutations to virulence evolution and genetic diversification in STEC.
Collapse
|
16
|
Kitani-Morii F, Friedland RP, Yoshida H, Mizuno T. Drosophila as a Model for Microbiota Studies of Neurodegeneration. J Alzheimers Dis 2021; 84:479-490. [PMID: 34569965 PMCID: PMC8673522 DOI: 10.3233/jad-215031] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Accumulating evidence show that the gut microbiota is deeply involved not only in host nutrient metabolism but also in immune function, endocrine regulation, and chronic disease. In neurodegenerative conditions such as Alzheimer’s disease (AD), Parkinson’s disease (PD), and amyotrophic lateral sclerosis, the gut-brain axis, the bidirectional interaction between the brain and the gut, provides new route of pathological spread and potential therapeutic targets. Although studies of gut microbiota have been conducted mainly in mice, mammalian gut microbiota is highly diverse, complex, and sensitive to environmental changes. Drosophila melanogaster, a fruit fly, has many advantages as a laboratory animal: short life cycle, numerous and genetically homogenous offspring, less ethical concerns, availability of many genetic models, and low maintenance costs. Drosophila has a simpler gut microbiota than mammals and can be made to remain sterile or to have standardized gut microbiota by simple established methods. Research on the microbiota of Drosophila has revealed new molecules that regulate the brain-gut axis, and it has been shown that dysbiosis of the fly microbiota worsens lifespan, motor function, and neurodegeneration in AD and PD models. The results shown in fly studies represents a fundamental part of the immune and proteomic process involving gut-microbiota interactions that are highly conserved. Even though the fly’s gut microbiota are not simple mimics of humans, flies are a valuable system to learn the molecular mechanisms of how the gut microbiota affect host health and behavior.
Collapse
Affiliation(s)
- Fukiko Kitani-Morii
- Department of Molecular Pathobiology of Brain Diseases, Kyoto Prefectural University of Medicine, Kamigyo-ku, Kyoto, Japan.,Department of Neurology, Kyoto Prefectural University of Medicine, Kamigyo-ku, Kyoto, Japan
| | - Robert P Friedland
- Department of Neurology, University of Louisville School of Medicine, Louisville, KY, USA
| | - Hideki Yoshida
- Applied Biology, Kyoto Institute of Technology, Sakyo-ku, Kyoto, Japan
| | - Toshiki Mizuno
- Department of Neurology, Kyoto Prefectural University of Medicine, Kamigyo-ku, Kyoto, Japan
| |
Collapse
|
17
|
Serra DO, Hengge R. Bacterial Multicellularity: The Biology of Escherichia coli Building Large-Scale Biofilm Communities. Annu Rev Microbiol 2021; 75:269-290. [PMID: 34343018 DOI: 10.1146/annurev-micro-031921-055801] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Biofilms are a widespread multicellular form of bacterial life. The spatial structure and emergent properties of these communities depend on a polymeric extracellular matrix architecture that is orders of magnitude larger than the cells that build it. Using as a model the wrinkly macrocolony biofilms of Escherichia coli, which contain amyloid curli fibers and phosphoethanolamine (pEtN)-modified cellulose as matrix components, we summarize here the structure, building, and function of this large-scale matrix architecture. Based on different sigma and other transcription factors as well as second messengers, the underlying regulatory network reflects the fundamental trade-off between growth and survival. It controls matrix production spatially in response to long-range chemical gradients, but it also generates distinct patterns of short-range matrix heterogeneity that are crucial for tissue-like elasticity and macroscopic morphogenesis. Overall, these biofilms confer protection and a potential for homeostasis, thereby reducing maintenance energy, which makes multicellularity an emergent property of life itself. Expected final online publication date for the Annual Review of Microbiology, Volume 75 is October 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Diego O Serra
- Instituto de Biología Molecular y Celular de Rosario (IBR), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Rosario (UNR), 2000 Rosario, Argentina
| | - Regine Hengge
- Institut für Biologie/Mikrobiologie, Humboldt-Universität zu Berlin, 10115 Berlin, Germany;
| |
Collapse
|
18
|
Miller AL, Bessho S, Grando K, Tükel Ç. Microbiome or Infections: Amyloid-Containing Biofilms as a Trigger for Complex Human Diseases. Front Immunol 2021; 12:638867. [PMID: 33717189 PMCID: PMC7952436 DOI: 10.3389/fimmu.2021.638867] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 02/09/2021] [Indexed: 12/14/2022] Open
Abstract
The human microbiota is the community of microorganisms that live upon or within their human host. The microbiota consists of various microorganisms including bacteria, fungi, viruses, and archaea; the gut microbiota is comprised mostly of bacteria. Many bacterial species within the gut microbiome grow as biofilms, which are multicellular communities embedded in an extracellular matrix. Studies have shown that the relative abundances of bacterial species, and therefore biofilms and bacterial byproducts, change during progression of a variety of human diseases including gastrointestinal, autoimmune, neurodegenerative, and cancer. Studies have shown the location and proximity of the biofilms within the gastrointestinal tract might impact disease outcome. Gram-negative enteric bacteria secrete the amyloid curli, which makes up as much as 85% of the extracellular matrix of enteric biofilms. Curli mediates cell-cell attachment and attachment to various surfaces including extracellular matrix components such as fibronectin and laminin. Structurally, curli is strikingly similar to pathological and immunomodulatory human amyloids such as amyloid-β, which has been implicated in Alzheimer's disease, α-synuclein, which is involved in Parkinson's disease, and serum amyloid A, which is secreted during the acute phase of inflammation. The immune system recognizes both bacterial amyloid curli and human amyloids utilizing the same receptors, so curli also induces inflammation. Moreover, recent work indicates that curli can participate in the self-assembly process of pathological human amyloids. Curli is found within biofilms of commensal enteric bacteria as well as invasive pathogens; therefore, evidence suggests that curli contributes to complex human diseases. In this review, we summarize the recent findings on how bacterial biofilms containing curli participate in the pathological and immunological processes in gastrointestinal diseases, systemic autoimmune diseases, and neurodegenerative diseases.
Collapse
Affiliation(s)
- Amanda L Miller
- Department of Microbiology and Immunology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| | - Shingo Bessho
- Department of Microbiology and Immunology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| | - Kaitlyn Grando
- Department of Microbiology and Immunology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| | - Çagla Tükel
- Department of Microbiology and Immunology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| |
Collapse
|
19
|
Nitrate Is an Environmental Cue in the Gut for Salmonella enterica Serovar Typhimurium Biofilm Dispersal through Curli Repression and Flagellum Activation via Cyclic-di-GMP Signaling. mBio 2021; 13:e0288621. [PMID: 35130730 PMCID: PMC8822344 DOI: 10.1128/mbio.02886-21] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Curli, a major component of the bacterial biofilms in the intestinal tract, activates pattern recognition receptors and triggers joint inflammation after infection with Salmonella enterica serovar Typhimurium. The factors that allow S. Typhimurium to disperse from biofilms and invade the epithelium to establish a successful infection during acute inflammation remain unknown. Here, we studied S. Typhimurium biofilms in vitro and in vivo to understand how the inflammatory environment regulates the switch between multicellular and motile S. Typhimurium in the gut. We discovered that nitrate generated by the host is an environmental cue that induces S. Typhimurium to disperse from the biofilm. Nitrate represses production of an important biofilm component, curli, and activates flagella via the modulation of intracellular cyclic-di-GMP levels. We conclude that nitrate plays a central role in pathogen fitness by regulating the sessile-to-motile lifestyle switch during infection. IMPORTANCE Recent studies provided important insight into our understanding of the role of c-di-GMP signaling and the regulation of enteric biofilms. Despite an improved understanding of how c-di-GMP signaling regulates S. Typhimurium biofilms, the processes that affect the intracellular c-di-GMP levels and the formation of multicellular communities in vivo during infections remain unknown. Here, we show that nitrate generated in the intestinal lumen during infection with S. Typhimurium is an important regulator of biofilm formation in vivo.
Collapse
|
20
|
Emerging Roles of Functional Bacterial Amyloids in Gene Regulation, Toxicity, and Immunomodulation. Microbiol Mol Biol Rev 2020; 85:85/1/e00062-20. [PMID: 33239434 DOI: 10.1128/mmbr.00062-20] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Bacteria often reside in multicellular communities, called biofilms, held together by an extracellular matrix. In many bacteria, the major proteinaceous component of the biofilm are amyloid fibers. Amyloids are highly stable and structured protein aggregates which were known mostly to be associated with neurodegenerative diseases, such as Alzheimer's, Parkinson's, and Huntington's diseases. In recent years, microbial amyloids were identified also in other species and shown to play major roles in microbial physiology and virulence. For example, amyloid fibers assemble on the bacterial cell surface as a part of the extracellular matrix and are extremely important to the scaffolding and structural integrity of biofilms, which contribute to microbial resilience and resistance. Furthermore, microbial amyloids play fundamental nonscaffold roles that contribute to the development of biofilms underlying numerous persistent infections. Here, we review several nonscaffold roles of bacterial amyloid proteins, including bridging cells during collective migration, acting as regulators of cell fate, as toxins against other bacteria or against host immune cells, and as modulators of the hosts' immune system. These overall points on the complexity of the amyloid fold in encoding numerous activities, which offer approaches for the development of a novel repertoire of antivirulence therapeutics.
Collapse
|
21
|
Pachucki RJ, Corradetti C, Kohler L, Ghadiali J, Gallo PM, Nicastro L, Tursi SA, Gallucci S, Tükel Ç, Caricchio R. Persistent Bacteriuria and Antibodies Recognizing Curli/eDNA Complexes From Escherichia coli Are Linked to Flares in Systemic Lupus Erythematosus. Arthritis Rheumatol 2020; 72:1872-1881. [PMID: 32840064 PMCID: PMC7722165 DOI: 10.1002/art.41400] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Accepted: 05/31/2020] [Indexed: 01/23/2023]
Abstract
OBJECTIVE Infections contribute to morbidity and mortality in systemic lupus erythematosus (SLE). Uropathogenic Escherichia coli (UPEC) are known to trigger urinary tract infections (UTIs) and form biofilms, which are multicellular communities of bacteria that are strengthened by amyloids such as curli. We previously reported that curli naturally form complexes with bacterial extracellular DNA (eDNA), and these curli/eDNA complexes induce hallmark features of lupus in mouse models. The present study was undertaken to investigate whether anti-curli/eDNA complex antibodies play a role in the pathogenesis of SLE or development of flares in SLE. METHODS In total, 96 SLE patients who met at least 4 Systemic Lupus International Collaborating Clinics disease criteria were investigated. Anti-curli/eDNA complex antibodies in the plasma were tested for both IgG and IgA subclasses. Results were compared to that in 54 age-, sex-, and race/ethnicity-matched healthy controls. Correlations of the levels of anti-curli/eDNA antibodies with clinical parameters, lupus disease status, and frequency of bacteriuria were assessed. RESULTS Anti-curli/eDNA antibodies were detected in the plasma of SLE patients and healthy controls, and their levels correlated with the presence of asymptomatic persistent bacteriuria and occurrence of disease flares in lupus patients. Persistent bacteriuria contained curli-producing UPEC, and this was associated with an inflammatory phenotype. Finally, curli/eDNA complexes cross-reacted with lupus autoantigens, such as double-stranded DNA, in binding autoantibodies. CONCLUSION These results suggest that UTIs and persistent bacteriuria are environmental triggers of lupus and its flares. Antibodies against curli/eDNA could serve as a sign of systemic exposure to bacterial products in SLE.
Collapse
Affiliation(s)
- Ryan J Pachucki
- Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania
| | - Chelsea Corradetti
- Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania
| | - Lynne Kohler
- Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania
| | - Jay Ghadiali
- Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania
| | - Paul M Gallo
- Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania
| | - Lauren Nicastro
- Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania
| | - Sarah A Tursi
- Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania
| | - Stefania Gallucci
- Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania
| | - Çagla Tükel
- Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania
| | - Roberto Caricchio
- Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania
| |
Collapse
|
22
|
Jeffries J, Thongsomboon W, Visser JA, Enriquez K, Yager D, Cegelski L. Variation in the ratio of curli and phosphoethanolamine cellulose associated with biofilm architecture and properties. Biopolymers 2020; 112:e23395. [PMID: 32894594 DOI: 10.1002/bip.23395] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 07/17/2020] [Accepted: 07/20/2020] [Indexed: 11/11/2022]
Abstract
Bacterial biofilms are communities of bacteria entangled in a self-produced extracellular matrix (ECM). Escherichia coli direct the assembly of two insoluble biopolymers, curli amyloid fibers, and phosphoethanolamine (pEtN) cellulose, to build remarkable biofilm architectures. Intense curiosity surrounds how bacteria harness these amyloid-polysaccharide composites to build biofilms, and how these biopolymers function to benefit bacterial communities. Defining ECM composition involving insoluble polymeric assemblies poses unique challenges to analysis and, thus, to comparing strains with quantitative ECM molecular correlates. In this work, we present results from a sum-of-the-parts 13 C solid-state nuclear magnetic resonance (NMR) analysis to define the curli-to-pEtN cellulose ratio in the isolated ECM of the E. coli laboratory K12 strain, AR3110. We compare and contrast the compositional analysis and comprehensive biofilm phenotypes for AR3110 and a well-studied clinical isolate, UTI89. The ECM isolated from AR3110 contains approximately twice the amount of pEtN cellulose relative to curli content as UTI89, revealing plasticity in matrix assembly principles among strains. The two parent strains and a panel of relevant gene mutants were investigated in three biofilm models, examining: (a) macrocolonies on agar, (b) pellicles at the liquid-air interface, and (c) biomass accumulation on plastic. We describe the influence of curli, cellulose, and the pEtN modification on biofilm phenotypes with power in the direct comparison of these strains. The results suggest that curli more strongly influence adhesion, while pEtN cellulose drives cohesion. Their individual and combined influence depends on both the biofilm modality (agar, pellicle, or plastic-associated) and the strain itself.
Collapse
Affiliation(s)
- Jamie Jeffries
- Department of Molecular and Cellular Physiology, School of Medicine, Stanford University, Stanford, California, USA
| | | | | | - Kyle Enriquez
- Department of Chemistry, Stanford University, Stanford, California, USA
| | - Deborah Yager
- Department of Chemistry, Stanford University, Stanford, California, USA
| | - Lynette Cegelski
- Department of Chemistry, Stanford University, Stanford, California, USA
| |
Collapse
|
23
|
Miller AL, Pasternak JA, Medeiros NJ, Nicastro LK, Tursi SA, Hansen EG, Krochak R, Sokaribo AS, MacKenzie KD, Palmer MB, Herman DJ, Watson NL, Zhang Y, Wilson HL, Wilson RP, White AP, Tükel Ç. In vivo synthesis of bacterial amyloid curli contributes to joint inflammation during S. Typhimurium infection. PLoS Pathog 2020; 16:e1008591. [PMID: 32645118 PMCID: PMC7347093 DOI: 10.1371/journal.ppat.1008591] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 05/01/2020] [Indexed: 12/16/2022] Open
Abstract
Reactive arthritis, an autoimmune disorder, occurs following gastrointestinal infection with invasive enteric pathogens, such as Salmonella enterica. Curli, an extracellular, bacterial amyloid with cross beta-sheet structure can trigger inflammatory responses by stimulating pattern recognition receptors. Here we show that S. Typhimurium produces curli amyloids in the cecum and colon of mice after natural oral infection, in both acute and chronic infection models. Production of curli was associated with an increase in anti-dsDNA autoantibodies and joint inflammation in infected mice. The negative impacts on the host appeared to be dependent on invasive systemic exposure of curli to immune cells. We hypothesize that in vivo synthesis of curli contributes to known complications of enteric infections and suggest that cross-seeding interactions can occur between pathogen-produced amyloids and amyloidogenic proteins of the host. Our manuscript focuses on curli, a ‘functional amyloid’ produced by Salmonella as well as other enteric bacteria. We present the first biochemical evidence that these fibers are produced in the gastrointestinal tract of mice after oral infection, the natural route for Salmonella infections. This finding is significant because of the immune impacts on the host; we show that curli cause an increase in autoimmunity and inflammation in the knee joints of infected mice. Reactive arthritis is a known autoimmune complication after enteric infections and our results indicate that presence of curli in the gut provides a novel linchpin of pathogenesis. As curli or curli-like amyloids are also produced by the commensal bacteria, it is possible that the unintended release of amyloids produced by the microbiota could trigger similar autoimmune reactions. Finally, our work provides conceptual evidence for the possibility of cross-seeding between bacterial amyloids like curli and human amyloids involved in amyloid-associated diseases such as Alzheimer’s Disease via the gut microbiome or infections.
Collapse
Affiliation(s)
- Amanda L. Miller
- Department of Microbiology and Immunology, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania, United States of America
| | - J. Alex Pasternak
- Vaccine and Infectious Disease Organization-International Vaccine Centre, Saskatoon, Saskatchewan, Canada
| | - Nicole J. Medeiros
- Department of Microbiology and Immunology, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania, United States of America
| | - Lauren K. Nicastro
- Department of Microbiology and Immunology, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania, United States of America
| | - Sarah A. Tursi
- Department of Microbiology and Immunology, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania, United States of America
| | - Elizabeth G. Hansen
- Vaccine and Infectious Disease Organization-International Vaccine Centre, Saskatoon, Saskatchewan, Canada
- Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Ryan Krochak
- Vaccine and Infectious Disease Organization-International Vaccine Centre, Saskatoon, Saskatchewan, Canada
- Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Akosiererem S. Sokaribo
- Vaccine and Infectious Disease Organization-International Vaccine Centre, Saskatoon, Saskatchewan, Canada
- Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Keith D. MacKenzie
- Vaccine and Infectious Disease Organization-International Vaccine Centre, Saskatoon, Saskatchewan, Canada
- Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Melissa B. Palmer
- Vaccine and Infectious Disease Organization-International Vaccine Centre, Saskatoon, Saskatchewan, Canada
- Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Dakoda J. Herman
- Vaccine and Infectious Disease Organization-International Vaccine Centre, Saskatoon, Saskatchewan, Canada
- Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Nikole L. Watson
- Vaccine and Infectious Disease Organization-International Vaccine Centre, Saskatoon, Saskatchewan, Canada
- Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Yi Zhang
- Department of Microbiology and Immunology, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania, United States of America
| | - Heather L. Wilson
- Vaccine and Infectious Disease Organization-International Vaccine Centre, Saskatoon, Saskatchewan, Canada
| | - R. Paul Wilson
- Department of Microbiology and Immunology, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania, United States of America
| | - Aaron P. White
- Vaccine and Infectious Disease Organization-International Vaccine Centre, Saskatoon, Saskatchewan, Canada
- Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
- * E-mail: (APW); (CT)
| | - Çagla Tükel
- Department of Microbiology and Immunology, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania, United States of America
- * E-mail: (APW); (CT)
| |
Collapse
|
24
|
Evaluation of Phosphoethanolamine Cellulose Production among Bacterial Communities Using Congo Red Fluorescence. J Bacteriol 2020; 202:JB.00030-20. [PMID: 32312746 DOI: 10.1128/jb.00030-20] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 04/14/2020] [Indexed: 12/23/2022] Open
Abstract
Bacterial biofilms are surface-associated communities of bacterial cells enmeshed in an extracellular matrix (ECM). The biofilm lifestyle results in physiological heterogeneity across the community, promotes persistence, and protects cells from external insults such as antibiotic treatment. Escherichia coli was recently discovered to produce a chemically modified form of cellulose, phosphoethanolamine (pEtN) cellulose, which contributes to the formation of its extracellular matrix and elaboration of its hallmark wrinkled macrocolony architectures. Both pEtN cellulose and unmodified cellulose bind dyes such as calcofluor white and Congo red (CR). Here, we present the use of CR fluorescence to distinguish between pEtN cellulose and unmodified cellulose producers. We demonstrate the utility of this tool in the evaluation of a uropathogenic E. coli clinical isolate that appeared to produce curli and a cellulosic component but did not exhibit macrocolony wrinkling. We determined that lack of macrocolony wrinkling was attributed to a single-nucleotide mutation and introduction of a stop codon in bcsG, abrogating production of BcsG, the pEtN transferase. Thus, this work underscores the important contribution of the pEtN cellulose modification to the E. coli agar-based macrocolony wrinkling phenotype and introduces a facile approach to distinguish between modified and unmodified cellulose.IMPORTANCE E. coli bacteria produce amyloid fibers, termed curli, and a cellulosic component to assemble biofilm communities. Cellulose is the most abundant biopolymer on Earth, and we recently discovered that the cellulosic component in E. coli biofilms was not standard cellulose, but a newly identified cellulosic polymer, phosphoethanolamine cellulose. Studies involving the biological and functional impact of this cellulose modification among E. coli and other organisms are just beginning. Convenient methods for distinguishing pEtN cellulose from unmodified cellulose in E. coli and for estimating production are needed to facilitate further research. Dissecting the balance of pEtN cellulose and curli production by E. coli commensal strains and clinical isolates will improve our understanding of the host microbiome and of factors contributing to bacterial pathogenesis.
Collapse
|
25
|
Escherichia coli O157:H7 Curli Fimbriae Promotes Biofilm Formation, Epithelial Cell Invasion, and Persistence in Cattle. Microorganisms 2020; 8:microorganisms8040580. [PMID: 32316415 PMCID: PMC7232329 DOI: 10.3390/microorganisms8040580] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 04/15/2020] [Indexed: 02/08/2023] Open
Abstract
Escherichia coli O157:H7 (O157) is noninvasive and a weak biofilm producer; however, a subset of O157 are exceptions. O157 ATCC 43895 forms biofilms and invades epithelial cells. Tn5 mutagenesis identified a mutation responsible for both phenotypes. The insertion mapped within the curli csgB fimbriae locus. Screening of O157 strains for biofilm formation and cell invasion identified a bovine and a clinical isolate with those characteristics. A single base pair A to T transversion, intergenic to the curli divergent operons csgDEFG and csgBAC, was present only in biofilm-producing and invasive strains. Using site-directed mutagenesis, this single base change was introduced into two curli-negative/noninvasive O157 strains and modified strains to form biofilms, produce curli, and gain invasive capability. Transmission electron microscopy (EM) and immuno-EM confirmed curli fibers. EM of bovine epithelial cells (MAC-T) co-cultured with curli-expressing O157 showed intracellular bacteria. The role of curli in O157 persistence in cattle was examined by challenging cattle with curli-positive and -negative O157 and comparing carriage. The duration of bovine colonization with the O157 curli-negative mutant was shorter than its curli-positive isogenic parent. These findings definitively demonstrate that a single base pair stably confers biofilm formation, epithelial cell invasion, and persistence in cattle.
Collapse
|
26
|
Barilli E, Vismarra A, Frascolla V, Rega M, Bacci C. Escherichia coli Strains Isolated from Retail Meat Products: Evaluation of Biofilm Formation Ability, Antibiotic Resistance, and Phylogenetic Group Analysis. J Food Prot 2020; 83:233-240. [PMID: 31934774 DOI: 10.4315/0362-028x.jfp-19-330] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Accepted: 10/15/2019] [Indexed: 01/24/2023]
Abstract
ABSTRACT Escherichia coli is a ubiquitous organism capable of forming a biofilm. This is an important virulence factor and is critical in certain diseases and in the development of antibiotic resistance, which is increased by biofilm synthesis. In the present study, the potential health risk associated with handling and consumption of foods of animal origin contaminated with E. coli-producing biofilm was evaluated. We analyzed the ability of 182 E. coli strains isolated from pork, poultry, and beef, purchased in three different supermarkets in the area of the "Italian Food Valley" (Parma, northern Italy), to form biofilms. Positive strains were also tested for the presence of 12 biofilm-associated genes. Moreover, the 182 E. coli were characterized for antibiotic resistance, presence of multidrug resistance, extended-spectrum β-lactamase strains, and phylogenetic diversity through PCR. Twenty-five percent of the isolates produced biofilm. The majority showed weak adherence, five were moderate, and three were strong producers. E. coli with a strong adherence capability (three of three) harbored eight biofilm-associated genes, while weak and moderate producers harbored only five (frequencies ranging from 80 to 100%). Multidrug resistance was observed in 20 biofilm-producing E. coli, and 15 of these belonged to phylogenetic group D. Among nonbiofilm producers, the percentage of strains belonging to phylogenetic groups B2 and D was approximately 40%, highlighting a potential health risk for consumers and people handling contaminated products. The present study underlines the importance of monitoring the prevalence and characteristics of E. coli contaminating retail meat in relation to the potential virulence highlighted here. HIGHLIGHTS
Collapse
Affiliation(s)
- Elena Barilli
- Department of Veterinary Sciences, University of Parma, Strada del Taglio, 10, 43126, Parma, Italy (ORCID: https://orcid.org/0000-0003-1006-5804 [A.V.]; https://orcid/org/0000-0002-1332-6080 [C.B.])
| | - Alice Vismarra
- Department of Veterinary Sciences, University of Parma, Strada del Taglio, 10, 43126, Parma, Italy (ORCID: https://orcid.org/0000-0003-1006-5804 [A.V.]; https://orcid/org/0000-0002-1332-6080 [C.B.])
| | - Viviana Frascolla
- Department of Veterinary Sciences, University of Parma, Strada del Taglio, 10, 43126, Parma, Italy (ORCID: https://orcid.org/0000-0003-1006-5804 [A.V.]; https://orcid/org/0000-0002-1332-6080 [C.B.])
| | - Martina Rega
- Department of Veterinary Sciences, University of Parma, Strada del Taglio, 10, 43126, Parma, Italy (ORCID: https://orcid.org/0000-0003-1006-5804 [A.V.]; https://orcid/org/0000-0002-1332-6080 [C.B.])
| | - Cristina Bacci
- Department of Veterinary Sciences, University of Parma, Strada del Taglio, 10, 43126, Parma, Italy (ORCID: https://orcid.org/0000-0003-1006-5804 [A.V.]; https://orcid/org/0000-0002-1332-6080 [C.B.])
| |
Collapse
|
27
|
Abstract
When protein/peptides aggregate, they usually form the amyloid state consisting of cross β-sheet structure built by repetitively stacked β-strands forming long fibrils. Amyloids are usually associated with disease including Alzheimer's. However, amyloid has many useful features. It efficiently transforms protein from the soluble to the insoluble state in an essentially two-state process, while its repetitive structure provides high stability and a robust prion-like replication mechanism. Accordingly, amyloid is used by nature in multifaceted and ingenious ways of life, ranging from bacteria and fungi to mammals. These include (1) Structure: Templating for small chemical molecules (Pmel17), biofilm formation in bacteria (curli), assisting aerial hyphae formation in streptomycetes (chaplins) or monolayer formation at a surface (hydrophobins). (2) Reservoirs: A storage state for peptide/proteins to protect them from their surroundings or vice versa (storage of peptide hormones in mammalian secretory granules or major basic protein in eosinophils). (3) Information carriers: The fungal immune system (HET-s prion in Podospora anserina, yeast prions) or long-term memory (e.g., mnemons in yeast, cytoplasmic polyadenylation element-binding protein in aplysia). Aggregation is also used to (4) "suppress" the function of the soluble protein (e.g., Cdc19 in yeast stress granules), or (5) "signaling" through formation of oligomers (e.g., HET-s prion, necroptosis-related proteins RIP1/RIP3). This review summarizes current knowledge on functional amyloids with a focus on the amyloid systems curli in bacteria, HET-s prion in P. anserina, and peptide hormone storage in mammals together with an attempt to highlight differences between functional and disease-associated amyloids.
Collapse
Affiliation(s)
- Daniel Otzen
- iNANO, Aarhus University, DK-8000 Aarhus C, Denmark
| | - Roland Riek
- Laboratory of Physical Chemistry, Swiss Federal Institute of Technology, CH-8093 Zürich, Switzerland
| |
Collapse
|
28
|
Jeffries J, Fuller GG, Cegelski L. Unraveling Escherichia coli's Cloak: Identification of Phosphoethanolamine Cellulose, Its Functions, and Applications. Microbiol Insights 2019; 12:1178636119865234. [PMID: 31431800 PMCID: PMC6685106 DOI: 10.1177/1178636119865234] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Accepted: 06/27/2019] [Indexed: 12/21/2022] Open
Abstract
Bacterial biofilms are complex, multicellular communities made up of bacteria enmeshed in a self-produced extracellular matrix (ECM) that protects against environmental stress. The ECM often comprises insoluble components, which complicates the study of biofilm composition, structure, and function. Wrinkled, agar-grown Escherichia coli biofilms require 2 insoluble macromolecules: curli amyloid fibers and cellulosic polymers. We quantified these components with solid-state nuclear magnetic resonance (NMR) and determined that curli contributed 85% of the isolated uropathogenic E coli ECM dry mass. The remaining 15% was cellulosic, but, surprisingly, was not ordinary cellulose. We tracked the identity of the unanticipated peak in the 13C NMR spectrum of the cellulosic component and discovered that E coli secrete phosphoethanolamine (pEtN)-modified cellulose. Cellulose is the most abundant biopolymer on the planet, and this marked the first identification of a naturally, chemically modified cellulose. To investigate potential roles of pEtN cellulose, we customized a newly designed live-cell monolayer rheometer and demonstrated that pEtN cellulose facilitated E coli attachment to bladder epithelial cells and acted as a glue, keeping curli cell associated. The discovery of pEtN cellulose opens questions regarding its biological function(s) and provides opportunities in materials science to explore this newly discovered biopolymer.
Collapse
Affiliation(s)
- Jamie Jeffries
- Department of Molecular and Cellular Physiology, School of Medicine, Stanford University, Stanford, CA, USA
| | - Gerald G Fuller
- Department of Chemical Engineering, Stanford University, Stanford, CA, USA
| | | |
Collapse
|
29
|
Human Bile-Mediated Regulation of Salmonella Curli Fimbriae. J Bacteriol 2019; 201:JB.00055-19. [PMID: 30936374 DOI: 10.1128/jb.00055-19] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Accepted: 03/28/2019] [Indexed: 12/17/2022] Open
Abstract
Typhoid fever is caused primarily by Salmonella enterica serovar Typhi. Approximately 3% to 5% of individuals infected with S Typhi become chronic carriers with the gallbladder (GB) as the site of persistence, as gallstones within the GB are a platform on which the bacteria form a biofilm. S Typhi is a human-restricted pathogen; therefore, asymptomatic carriers represent a critical reservoir for further spread of disease. To examine the dynamics of the Salmonella biofilm during chronic carriage, the human gallstone (GS) environment was simulated by growing biofilms on cholesterol-coated surfaces in the presence of bile, and the transcriptional profile was determined. Some of the most highly activated genes corresponded to the curli fimbria operon, with the major structural component csgA upregulated >80-fold. The curli protein polymer is a major component of the extracellular matrix (ECM) in Salmonella biofilms. The upregulation of curli fimbriae by human bile was validated through reverse transcription-quantitative PCR (qRT-PCR), microscopy, and Western blotting. Interestingly, this activation appears human specific, as qRT-PCR showed repression of csgA in biofilms grown in mouse or ox bile. Comparative transcriptional studies of the two divergent csg operons suggest an early activation of both operons in minimal medium complemented with glucose that quickly diminishes as the biofilm matures. However, in the presence of human bile, there is a modest activation of both operons that steadily increases as the biofilm matures. Understanding the effect of the GB environment on key biofilm-associated factors can help target antibiofilm therapeutics or other preventative strategies to eradicate chronic carriage.IMPORTANCE Typhoid fever is caused by Salmonella enterica serovar Typhi, and 3% to 5% of patients become chronic gallbladder (GB) carriers (also known as "Typhoid Marys"). We have previously demonstrated a role for Salmonella biofilm formation on gallstones as a primary mechanism of carriage. In this study, we found that the important biofilm extracellular matrix component curli fimbria is induced in an in vitro human GB model system. This induction is specific to human bile and increases as the biofilm matures. We also found that the biofilm and curli regulator CsgD play a key role in this observed induction. This work further enhances our understanding biofilm-mediated chronic carriage and provides a potential target for eliminating persistent GB infection by S Typhi.
Collapse
|
30
|
Hengge R. Targeting Bacterial Biofilms by the Green Tea Polyphenol EGCG. Molecules 2019; 24:molecules24132403. [PMID: 31261858 PMCID: PMC6650844 DOI: 10.3390/molecules24132403] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 06/24/2019] [Accepted: 06/25/2019] [Indexed: 12/20/2022] Open
Abstract
Bacterial biofilms are multicellular aggregates in which cells are embedded in an extracellular matrix of self-produced biopolymers. Being refractory to antibiotic treatment and host immune systems, biofilms are involved in most chronic infections, and anti-biofilm agents are being searched for urgently. Epigallocatechin-3-gallate (EGCG) was recently shown to act against biofilms by strongly interfering with the assembly of amyloid fibres and the production of phosphoethanolamin-modified cellulose fibrils. Mechanistically, this includes a direct inhibition of the fibre assembly, but also triggers a cell envelope stress response that down-regulates the synthesis of these widely occurring biofilm matrix polymers. Based on its anti-amyloidogenic properties, EGCG seems useful against biofilms involved in cariogenesis or chronic wound infection. However, EGCG seems inefficient against or may even sometimes promote biofilms which rely on other types of matrix polymers, suggesting that searching for 'magic bullet' anti-biofilm agents is an unrealistic goal. Combining molecular and ecophysiological aspects in this review also illustrates why plants control the formation of biofilms on their surfaces by producing anti-amyloidogenic compounds such as EGCG. These agents are not only helpful in combating certain biofilms in chronic infections but even seem effective against the toxic amyloids associated with neuropathological diseases.
Collapse
Affiliation(s)
- Regine Hengge
- Institut für Biologie/Mikrobiologie, Humboldt-Universität zu Berlin, 10155 Berlin, Germany.
| |
Collapse
|
31
|
Sobieszczańska B, Pawłowska B, Duda-Madej A, Pawlik K, Wiśniewski J, Grzegrzółka J, Turniak M, Walczuk U, Gamian A. Effect of amyloid curli fibrils and curli CsgA monomers from Escherichia coli on in vitro model of intestinal epithelial barrier stimulated with cytokines. Int J Med Microbiol 2019; 309:274-282. [PMID: 31113736 DOI: 10.1016/j.ijmm.2019.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 05/04/2019] [Accepted: 05/10/2019] [Indexed: 10/26/2022] Open
Abstract
Amyloid curli fibrils produced by Escherichia coli are well-known virulence factor influencing E. coli adhesion and biofilm formation. However, the impact of curli on intestinal epithelial barrier stimulated with proinflammatory cytokines is unknown. In the study, we examined the effect of curli produced by nonpathogenic E. coli K-12 and wild-type E. coli EC32 strains, and purified CsgA proteins on differentiated Caco-2 cell monolayers stimulated with a mixture of IL-1β, TNF-α, and INFγ cytokines as a model of 'inflamed intestinal epithelial barrier' in vitro. The results of the study indicated that curliated E. coli adhered better to polarized Caco-2 cells than their curli-deficient mutants and the adherence was further augmented by stimulation of epithelial cells with proinflammatory cytokines. Interestingly, curli reduced internalization but enhanced intracellular survival of the wild-type E. coli strain EC32 within intestinal epithelial cells. Curli-expressing E. coli, as well as purified CsgA proteins, attenuated IL-8 secretion by unstimulated Caco-2 cells, although the effect was barely observed on cytokine-stimulated cells. The findings of the study revealed that curli fibrils are an important virulence factor enabling curliated E. coli to effectively colonize intestinal epithelium especially in individuals with inflammatory intestinal disorders.
Collapse
Affiliation(s)
| | - Barbara Pawłowska
- Department of Microbiology, Wroclaw Medical University, Wroclaw, Poland
| | - Anna Duda-Madej
- Department of Microbiology, Wroclaw Medical University, Wroclaw, Poland
| | - Krzysztof Pawlik
- Ludwik Hirszfeld, Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw, Poland
| | - Jerzy Wiśniewski
- Department of Biochemistry, Wroclaw Medical University, Wroclaw, Poland
| | - Jędrzej Grzegrzółka
- Department of Histology and Embryology, Wroclaw Medical University, Wroclaw, Poland
| | - Michał Turniak
- Department of Microbiology, Wroclaw Medical University, Wroclaw, Poland
| | - Urszula Walczuk
- Department of Microbiology, Wroclaw Medical University, Wroclaw, Poland
| | - Andrzej Gamian
- Department of Biochemistry, Wroclaw Medical University, Wroclaw, Poland
| |
Collapse
|
32
|
Wang B, Huang B, Chen J, Li W, Yang L, Yao L, Niu Q. Whole-genome analysis of the colonization-resistant bacterium Phytobacter sp. SCO41 T isolated from Bacillus nematocida B16-fed adult Caenorhabditis elegans. Mol Biol Rep 2019; 46:1563-1575. [PMID: 30879274 DOI: 10.1007/s11033-018-04574-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Accepted: 12/13/2018] [Indexed: 12/31/2022]
Abstract
Colonization resistance is an important attribute for bacterial interactions with hosts, but the mechanism is still not completely clear. In this study, we found that Phytobacter sp. SCO41T can effectively inhibit the in vivo colonization of Bacillus nematocida B16 in Caenorhabditis elegans, and we revealed the colonization resistance mechanism. Three strains of colonization-resistant bacteria, SCO41T, BX15, and BC7, were isolated from the intestines of the free-living nematode C. elegans derived from rotten fruit and soil. The primary characteristics and genome map of one of the three isolates was investigated to explore the underlying mechanism of colonization resistance in C. elegans. In addition, we performed exogenous iron supplementation and gene cluster knockout experiments to validate the sequencing results. The results showed that relationship was close among the three strains, which was identified as belonging to the genus Phytobacter. The type strain is SCO41T (= CICC 24103T = KCTC 52362T). Whole genome analysis showed that csgA, csgB, csgC, csgE, csgF, and csgG were involved in the curli adhesive process and that fepA, fepB, fepC, fepD, and fepG played important roles in SCO41T against the colonization of B. nematocida B16 in C. elegans by competing for iron. Exogenous iron supplementation showed that exogenous iron can increase the colonization of B. nematocida B16, which was additionally confirmed by a deletion mutant strain. The csg gene family contributes to the colonization of SCO41T in C. elegans. Curli potentially contribute to the colonization of SCO41T in C. elegans, and enterobactin has a key role in SCO41T to resist the colonization of B. nematocida B16 by competing for iron.
Collapse
Affiliation(s)
- Bowen Wang
- Department of Life Science and Biotechnology, Nanyang Normal University, Nanyang, 473000, People's Republic of China
| | - Bingfen Huang
- Department of Life Science and Biotechnology, Nanyang Normal University, Nanyang, 473000, People's Republic of China
| | - Junmei Chen
- Department of Life Science and Biotechnology, Nanyang Normal University, Nanyang, 473000, People's Republic of China
| | - Wenpeng Li
- Department of Life Science and Biotechnology, Nanyang Normal University, Nanyang, 473000, People's Republic of China
| | - Ling Yang
- Nanyang Academy of Agricultural Sciences, Nanyang, 473083, Henan, People's Republic of China
| | - Lunguang Yao
- Henan Key Laboratory of Ecological Security for Water Source Region of Mid-line of South-to-North Diversion Project of Henan Province, Nanyang, People's Republic of China.
| | - Qiuhong Niu
- Department of Life Science and Biotechnology, Nanyang Normal University, Nanyang, 473000, People's Republic of China. .,China-UK-NYNU-RRes Joint Laboratory of Insect Biology, Nanyang Normal University, Nanyang, 473000, People's Republic of China.
| |
Collapse
|
33
|
Adamus-Białek W, Vollmerhausen TL, Janik K. Hydrogen peroxide stimulates uropathogenic Escherichia coli strains to cellulose production. Microb Pathog 2018; 126:287-291. [PMID: 30447422 DOI: 10.1016/j.micpath.2018.11.020] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 11/12/2018] [Accepted: 11/13/2018] [Indexed: 12/23/2022]
Abstract
Reactive oxygen intermediates, such as hydrogen peroxide, are toxic molecules produced by immune cells in response to bacterial invasion into the host. Bacteria try to protect themselves against the immune system through specific properties such as biofilm formation. This phenomenon occurs also during urinary tract infections. Cellulose is an important factor of Escherichia coli biofilm and contributes to building a protective shield around bacterial cells upon the host immune response. In this study, we aimed to analyze the effect of hydrogen peroxide on the production of this biofilm component. To achieve this goal, 25 clinical E. coli strains isolated from patients with urinary tract infections were used. These bacterial strains were characterized based on their growth characteristics, their ability to form biofilm and their capacity to produce cellulose upon exposure to sub-lethal concentrations of hydrogen peroxide growth, and the biofilm formation of these strains was analyzed. Our results revealed that the analyzed uropathogenic E. coli strains slightly, but significantly, reduced growth and biofilm production upon hydrogen peroxide treatment. However, when separating these strains regarding their ability to produce cellulose, we found that general biofilm production was reduced but cellulose expression was induced upon peroxide treatment. This finding contributes to a better understanding of how bacterial biofilm formation is triggered and provides interesting insights into how uropathogenic E. coli protect themselves in an inhospitable environment.
Collapse
Affiliation(s)
- Wioletta Adamus-Białek
- Jan Kochanowski University, Institute of Medical Sciences, Kielce, Poland; Department of Microbiology, Tumor and Cell Biology, Karolinska University Hospital & Karolinska Institutet, Stockholm, Sweden.
| | - Tara L Vollmerhausen
- Department of Microbiology, Tumor and Cell Biology, Karolinska University Hospital & Karolinska Institutet, Stockholm, Sweden
| | - Katrin Janik
- Department of Microbiology, Tumor and Cell Biology, Karolinska University Hospital & Karolinska Institutet, Stockholm, Sweden; Functional Genomics, Laimburg Research Centre, Laimburg, Italy
| |
Collapse
|
34
|
Swasthi HM, Bhasne K, Mahapatra S, Mukhopadhyay S. Human Fibrinogen Inhibits Amyloid Assembly of Biofilm-Forming CsgA. Biochemistry 2018; 57:6270-6273. [PMID: 30338995 DOI: 10.1021/acs.biochem.8b00841] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Curli is a biofilm-forming amyloid that is expressed on the surface of Gram-negative enteric bacteria such as Escherichia coli and Salmonella spp. Curli is primarily composed of the major structural subunit, CsgA, and interacts with a wide range of human proteins that contribute to bacterial virulence. The adsorption of curli onto the contact-phase proteins and fibrinogen results in a hypocoagulatory state. Using an array of biochemical and biophysical tools, we elucidated the molecular mechanism of interaction between human fibrinogen and CsgA. Our results revealed that a substoichiometric concentration of fibrinogen delays the onset of CsgA aggregation by inhibiting the early events of CsgA assembly. The presence of fibrinogen prevents the maturation of CsgA into fibrils and maintains the soluble state of CsgA. We also demonstrate that fibrinogen interacts more effectively with the disordered conformational state of CsgA than with the ordered β-rich state. Our study suggested that fibrinogen is an anti-curli protein and that the interplay of CsgA and fibrinogen might be a host defense mechanism against curli biogenesis, biofilm formation, bacterial colonization, and infection.
Collapse
|
35
|
Curli-Containing Enteric Biofilms Inside and Out: Matrix Composition, Immune Recognition, and Disease Implications. Microbiol Mol Biol Rev 2018; 82:82/4/e00028-18. [PMID: 30305312 DOI: 10.1128/mmbr.00028-18] [Citation(s) in RCA: 99] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Biofilms of enteric bacteria are highly complex, with multiple components that interact to fortify the biofilm matrix. Within biofilms of enteric bacteria such as Escherichia coli and Salmonella species, the main component of the biofilm is amyloid curli. Other constituents include cellulose, extracellular DNA, O antigen, and various surface proteins, including BapA. Only recently, the roles of these components in the formation of the enteric biofilm individually and in consortium have been evaluated. In addition to enhancing the stability and strength of the matrix, the components of the enteric biofilm influence bacterial virulence and transmission. Most notably, certain components of the matrix are recognized as pathogen-associated molecular patterns. Systemic recognition of enteric biofilms leads to the activation of several proinflammatory innate immune receptors, including the Toll-like receptor 2 (TLR2)/TLR1/CD14 heterocomplex, TLR9, and NLRP3. In the model of Salmonella enterica serovar Typhimurium, the immune response to curli is site specific. Although a proinflammatory response is generated upon systemic presentation of curli, oral administration of curli ameliorates the damaged intestinal epithelial barrier and reduces the severity of colitis. Furthermore, curli (and extracellular DNA) of enteric biofilms potentiate the autoimmune disease systemic lupus erythematosus (SLE) and promote the fibrillization of the pathogenic amyloid α-synuclein, which is implicated in Parkinson's disease. Homologues of curli-encoding genes are found in four additional bacterial phyla, suggesting that the biomedical implications involved with enteric biofilms are applicable to numerous bacterial species.
Collapse
|
36
|
Hollenbeck EC, Antonoplis A, Chai C, Thongsomboon W, Fuller GG, Cegelski L. Phosphoethanolamine cellulose enhances curli-mediated adhesion of uropathogenic Escherichia coli to bladder epithelial cells. Proc Natl Acad Sci U S A 2018; 115:10106-10111. [PMID: 30232265 PMCID: PMC6176564 DOI: 10.1073/pnas.1801564115] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Uropathogenic Escherichia coli (UPEC) are the major causative agents of urinary tract infections, employing numerous molecular strategies to contribute to adhesion, colonization, and persistence in the bladder niche. Identifying strategies to prevent adhesion and colonization is a promising approach to inhibit bacterial pathogenesis and to help preserve the efficacy of available antibiotics. This approach requires an improved understanding of the molecular determinants of adhesion to the bladder urothelium. We designed experiments using a custom-built live cell monolayer rheometer (LCMR) to quantitatively measure individual and combined contributions of bacterial cell surface structures [type 1 pili, curli, and phosphoethanolamine (pEtN) cellulose] to bladder cell adhesion. Using the UPEC strain UTI89, isogenic mutants, and controlled conditions for the differential production of cell surface structures, we discovered that curli can promote stronger adhesive interactions with bladder cells than type 1 pili. Moreover, the coproduction of curli and pEtN cellulose enhanced adhesion. The LCMR enables the evaluation of adhesion under high-shear conditions to reveal this role for pEtN cellulose which escaped detection using conventional tissue culture adhesion assays. Together with complementary biochemical experiments, the results support a model wherein cellulose serves a mortar-like function to promote curli association with and around the bacterial cell surface, resulting in increased bacterial adhesion strength at the bladder cell surface.
Collapse
Affiliation(s)
- Emily C Hollenbeck
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305
| | | | - Chew Chai
- Department of Bioengineering, Stanford University, Stanford, CA 94305
| | | | - Gerald G Fuller
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305;
| | - Lynette Cegelski
- Department of Chemistry, Stanford University, Stanford, CA 94305;
| |
Collapse
|
37
|
Nhu NTK, Phan MD, Peters KM, Lo AW, Forde BM, Min Chong T, Yin WF, Chan KG, Chromek M, Brauner A, Chapman MR, Beatson SA, Schembri MA. Discovery of New Genes Involved in Curli Production by a Uropathogenic Escherichia coli Strain from the Highly Virulent O45:K1:H7 Lineage. mBio 2018; 9:e01462-18. [PMID: 30131362 PMCID: PMC6106082 DOI: 10.1128/mbio.01462-18] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Accepted: 07/10/2018] [Indexed: 11/20/2022] Open
Abstract
Curli are bacterial surface-associated amyloid fibers that bind to the dye Congo red (CR) and facilitate uropathogenic Escherichia coli (UPEC) biofilm formation and protection against host innate defenses. Here we sequenced the genome of the curli-producing UPEC pyelonephritis strain MS7163 and showed it belongs to the highly virulent O45:K1:H7 neonatal meningitis-associated clone. MS7163 produced curli at human physiological temperature, and this correlated with biofilm growth, resistance of sessile cells to the human cationic peptide cathelicidin, and enhanced colonization of the mouse bladder. We devised a forward genetic screen using CR staining as a proxy for curli production and identified 41 genes that were required for optimal CR binding, of which 19 genes were essential for curli synthesis. Ten of these genes were novel or poorly characterized with respect to curli synthesis and included genes involved in purine de novo biosynthesis, a regulator that controls the Rcs phosphorelay system, and a novel repressor of curli production (referred to as rcpA). The involvement of these genes in curli production was confirmed by the construction of defined mutants and their complementation. The mutants did not express the curli major subunit CsgA and failed to produce curli based on CR binding. Mutation of purF (the first gene in the purine biosynthesis pathway) and rcpA also led to attenuated colonization of the mouse bladder. Overall, this work has provided new insight into the regulation of curli and the role of these amyloid fibers in UPEC biofilm formation and pathogenesis.IMPORTANCE Uropathogenic Escherichia coli (UPEC) strains are the most common cause of urinary tract infection, a disease increasingly associated with escalating antibiotic resistance. UPEC strains possess multiple surface-associated factors that enable their colonization of the urinary tract, including fimbriae, curli, and autotransporters. Curli are extracellular amyloid fibers that enhance UPEC virulence and promote biofilm formation. Here we examined the function and regulation of curli in a UPEC pyelonephritis strain belonging to the highly virulent O45:K1:H7 neonatal meningitis-associated clone. Curli expression at human physiological temperature led to increased biofilm formation, resistance of sessile cells to the human cationic peptide LL-37, and enhanced bladder colonization. Using a comprehensive genetic screen, we identified multiple genes involved in curli production, including several that were novel or poorly characterized with respect to curli synthesis. In total, this study demonstrates an important role for curli as a UPEC virulence factor that promotes biofilm formation, resistance, and pathogenesis.
Collapse
Affiliation(s)
- Nguyen Thi Khanh Nhu
- School of Chemistry and Molecular Biosciences, the University of Queensland, Brisbane, Queensland, Australia
- Australian Infectious Diseases Research Centre, the University of Queensland, Brisbane, Queensland, Australia
- Australian Centre for Ecogenomics, the University of Queensland, Brisbane, Queensland, Australia
| | - Minh-Duy Phan
- School of Chemistry and Molecular Biosciences, the University of Queensland, Brisbane, Queensland, Australia
- Australian Infectious Diseases Research Centre, the University of Queensland, Brisbane, Queensland, Australia
| | - Kate M Peters
- School of Chemistry and Molecular Biosciences, the University of Queensland, Brisbane, Queensland, Australia
- Australian Infectious Diseases Research Centre, the University of Queensland, Brisbane, Queensland, Australia
| | - Alvin W Lo
- School of Chemistry and Molecular Biosciences, the University of Queensland, Brisbane, Queensland, Australia
- Australian Infectious Diseases Research Centre, the University of Queensland, Brisbane, Queensland, Australia
| | - Brian M Forde
- School of Chemistry and Molecular Biosciences, the University of Queensland, Brisbane, Queensland, Australia
- Australian Infectious Diseases Research Centre, the University of Queensland, Brisbane, Queensland, Australia
- Australian Centre for Ecogenomics, the University of Queensland, Brisbane, Queensland, Australia
| | - Teik Min Chong
- Division of Genetics and Molecular Biology, Institute of Biological Sciences, Faculty of Sciences, University of Malaya, Kuala Lumpur, Malaysia
| | - Wai-Fong Yin
- Division of Genetics and Molecular Biology, Institute of Biological Sciences, Faculty of Sciences, University of Malaya, Kuala Lumpur, Malaysia
| | - Kok-Gan Chan
- Division of Genetics and Molecular Biology, Institute of Biological Sciences, Faculty of Sciences, University of Malaya, Kuala Lumpur, Malaysia
- International Genome Centre, Jiangsu University, Zhenjiang, China
| | - Milan Chromek
- Department of Microbiology, Tumor and Cell Biology, Division of Clinical Microbiology, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
- Department of Pediatrics, CLINTEC, Karolinska University Hospital and Karolinska Institutet, Stockholm, Sweden
| | - Annelie Brauner
- Department of Microbiology, Tumor and Cell Biology, Division of Clinical Microbiology, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| | - Matthew R Chapman
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan, USA
| | - Scott A Beatson
- School of Chemistry and Molecular Biosciences, the University of Queensland, Brisbane, Queensland, Australia
- Australian Infectious Diseases Research Centre, the University of Queensland, Brisbane, Queensland, Australia
- Australian Centre for Ecogenomics, the University of Queensland, Brisbane, Queensland, Australia
| | - Mark A Schembri
- School of Chemistry and Molecular Biosciences, the University of Queensland, Brisbane, Queensland, Australia
- Australian Infectious Diseases Research Centre, the University of Queensland, Brisbane, Queensland, Australia
| |
Collapse
|
38
|
Van Gerven N, Van der Verren SE, Reiter DM, Remaut H. The Role of Functional Amyloids in Bacterial Virulence. J Mol Biol 2018; 430:3657-3684. [PMID: 30009771 PMCID: PMC6173799 DOI: 10.1016/j.jmb.2018.07.010] [Citation(s) in RCA: 113] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 07/05/2018] [Accepted: 07/06/2018] [Indexed: 12/14/2022]
Abstract
Amyloid fibrils are best known as a product of human and animal protein misfolding disorders, where amyloid formation is associated with cytotoxicity and disease. It is now evident that for some proteins, the amyloid state constitutes the native structure and serves a functional role. These functional amyloids are proving widespread in bacteria and fungi, fulfilling diverse functions as structural components in biofilms or spore coats, as toxins and surface-active fibers, as epigenetic material, peptide reservoirs or adhesins mediating binding to and internalization into host cells. In this review, we will focus on the role of functional amyloids in bacterial pathogenesis. The role of functional amyloids as virulence factor is diverse but mostly indirect. Nevertheless, functional amyloid pathways deserve consideration for the acute and long-term effects of the infectious disease process and may form valid antimicrobial targets. Functional amyloids are widespread in bacteria, pathogenic and non-pathogenic. Bacterial biofilms most commonly function as structural support in the extracellular matrix of biofilms or spore coats, and in cell–cell and cell-surface adherence. The amyloid state can be the sole structured and functional state, or can be facultative, as a secondary state to folded monomeric subunits. Bacterial amyloids can enhance virulence by increasing persistence, cell adherence and invasion, intracellular survival, and pathogen spread by increased environmental survival. Bacterial amyloids may indirectly inflict disease by triggering inflammation, contact phase activation and possibly induce or aggravate human pathological aggregation disorders.
Collapse
Affiliation(s)
- Nani Van Gerven
- Structural Biology Brussels, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium; Structural and Molecular Microbiology, Structural Biology Research Center, VIB, Pleinlaan 2, 1050 Brussels, Belgium
| | - Sander E Van der Verren
- Structural Biology Brussels, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium; Structural and Molecular Microbiology, Structural Biology Research Center, VIB, Pleinlaan 2, 1050 Brussels, Belgium
| | - Dirk M Reiter
- Structural Biology Brussels, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium; Structural and Molecular Microbiology, Structural Biology Research Center, VIB, Pleinlaan 2, 1050 Brussels, Belgium
| | - Han Remaut
- Structural Biology Brussels, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium; Structural and Molecular Microbiology, Structural Biology Research Center, VIB, Pleinlaan 2, 1050 Brussels, Belgium.
| |
Collapse
|
39
|
Inhibitory effects of Myricetin derivatives on curli-dependent biofilm formation in Escherichia coli. Sci Rep 2018; 8:8452. [PMID: 29855532 PMCID: PMC5981455 DOI: 10.1038/s41598-018-26748-z] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Accepted: 05/18/2018] [Indexed: 01/09/2023] Open
Abstract
Biofilms are well-organised communities of microbes embedded in a self-produced extracellular matrix (e.g., curli amyloid fibers) and are associated with chronic infections. Therefore, development of anti-biofilm drugs is important to combat with these infections. Previously, we found that flavonol Myricetin inhibits curli-dependent biofilm formation by Escherichia coli (IC50 = 46.2 μM). In this study, we tested activities of seven Myricetin-derivatives to inhibit biofilm formation by E. coli K-12 in liquid culture. Among them, only Epigallocatechin gallate (EGCG), a major catechin in green tea, inhibited biofilm formation of K-12 (IC50 = 5.9 μM) more efficiently than Myricetin. Transmission electron microscopy and immunoblotting analyses demonstrated that EGCG prevented curli production by suppressing the expression of curli-related proteins. Quantitative RT-PCR analysis revealed that the transcripts of csgA, csgB, and csgD were significantly reduced in the presence of EGCG. Interestingly, the cellular level of RpoS, a stationary-phase specific alternative sigma factor, was reduced in the presence of EGCG, whereas the rpoS transcript was not affected. Antibiotic-chase experiments and genetic analyses revealed that EGCG accelerated RpoS degradation by ATP-dependent protease ClpXP in combination with its adaptor RssB. Collectively, these results provide significant insights into the development of drugs to treat chronic biofilm-associated infections.
Collapse
|
40
|
Migliore F, Macchi R, Landini P, Paroni M. Phagocytosis and Epithelial Cell Invasion by Crohn's Disease-Associated Adherent-Invasive Escherichia coli Are Inhibited by the Anti-inflammatory Drug 6-Mercaptopurine. Front Microbiol 2018; 9:964. [PMID: 29867868 PMCID: PMC5961443 DOI: 10.3389/fmicb.2018.00964] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Accepted: 04/24/2018] [Indexed: 12/22/2022] Open
Abstract
Adherent-invasive Escherichia coli (AIEC) strains are overrepresented in the dysbiotic microbiota of Crohn’s disease (CD) patients, and contribute to the onset of the chronic inflammation typical of the disease. However, the effects of anti-inflammatory drugs used for CD treatment on AIEC virulence have not yet been investigated. In this report, we show that exposure of AIEC LF82 strain to amino-6-mercaptopurine (6-MP) riboside, one of the most widely used anti-inflammatory drugs in CD, impairs its ability to adhere to, and consequently to invade, human epithelial cells. Notably, phagocytosis of LF82 treated with 6-MP by human macrophages is also reduced, suggesting that 6-MP affects AIEC cell surface determinants involved both in interaction with epithelial cells and in uptake by macrophages. Since a main target of 6-MP in bacterial cells is the inhibition of the important signal molecule c-di-GMP, we also tested whether perturbations in cAMP, another major signaling pathway in E. coli, might have similar effects on interactions with human cells. To this aim, we grew LF82 in the presence of glucose, which leads to inhibition of cAMP synthesis. Growth in glucose-supplemented medium resulted in a reduction in AIEC adhesion to epithelial cells and uptake by macrophages. Consistent with these results, both 6-MP and glucose can affect expression of cell adhesion-related genes, such as the csg genes, encoding thin aggregative fimbriae (curli). In addition, glucose strongly inhibits expression of the fim operon, encoding type 1 pili, a known AIEC determinant for adhesion to human cells. To further investigate whether 6-MP can indeed inhibit c-di-GMP signaling in AIEC, we performed biofilm and motility assays and determination of extracellular polysaccharides. 6-MP clearly affected biofilm formation and cellulose production, but also, unexpectedly, reduced cell motility, itself an important virulence factor for AIEC. Our results provide strong evidence that 6-MP can affect AIEC-host cell interaction by acting on the bacterial cell, thus strengthening the hypothesis that mercaptopurines might promote CD remission also by affecting gut microbiota composition and/or physiology, and suggesting that novel drugs targeting bacterial virulence and signaling might be effective in preventing chronic inflammation in CD.
Collapse
Affiliation(s)
- Federica Migliore
- Dipartimento di Bioscienze, Università degli studi di Milano, Milan, Italy
| | - Raffaella Macchi
- Dipartimento di Bioscienze, Università degli studi di Milano, Milan, Italy
| | - Paolo Landini
- Dipartimento di Bioscienze, Università degli studi di Milano, Milan, Italy
| | - Moira Paroni
- Dipartimento di Bioscienze, Università degli studi di Milano, Milan, Italy
| |
Collapse
|
41
|
Abstract
Extraintestinal pathogenic Escherichia coli (ExPEC) are important pathogens in humans and certain animals. Molecular epidemiological analyses of ExPEC are based on structured observations of E. coli strains as they occur in the wild. By assessing real-world phenomena as they occur in authentic contexts and hosts, they provide an important complement to experimental assessment. Fundamental to the success of molecular epidemiological studies are the careful selection of subjects and the use of appropriate typing methods and statistical analysis. To date, molecular epidemiological studies have yielded numerous important insights into putative virulence factors, host-pathogen relationships, phylogenetic background, reservoirs, antimicrobial-resistant strains, clinical diagnostics, and transmission pathways of ExPEC, and have delineated areas in which further study is needed. The rapid pace of discovery of new putative virulence factors and the increasing awareness of the importance of virulence factor regulation, expression, and molecular variation should stimulate many future molecular epidemiological investigations. The growing sophistication and availability of molecular typing methodologies, and of the new computational and statistical approaches that are being developed to address the huge amounts of data that whole genome sequencing generates, provide improved tools for such studies and allow new questions to be addressed.
Collapse
Affiliation(s)
| | - Thomas A Russo
- VA Western New York Healthcare System, Department of Medicine, Department of Microbiology and Immunology, Witebsky Center for Microbial Pathogenesis and Immunology, University of Buffalo, Buffalo, NY 14214
| |
Collapse
|
42
|
Solanki V, Tiwari M, Tiwari V. Host-bacteria interaction and adhesin study for development of therapeutics. Int J Biol Macromol 2018; 112:54-64. [PMID: 29414732 DOI: 10.1016/j.ijbiomac.2018.01.151] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Revised: 01/17/2018] [Accepted: 01/21/2018] [Indexed: 12/15/2022]
Abstract
Host-pathogen interaction is one of the most important areas of study to understand the adhesion of the pathogen to the host organisms. To adhere on the host cell surface, bacteria assemble the diverse adhesive structures on its surface, which play a foremost role in targeting to the host cell. We have highlighted different bacterial adhesins which are either protein mediated or glycan mediated. The present article listed examples of different bacterial adhesin proteins involved in the interactions with their host, types and subtypes of the fimbriae and non-fimbriae bacterial adhesins. Different bacterial surface adhesin subunits interact with host via different host surface biomolecules. We have also discussed the interactome of some of the pathogens with their host. Therefore, the present study will help researchers to have a detailed understanding of different interacting bacterial adhesins and henceforth, develop new therapies, adhesin specific antibodies and vaccines, which can effectively control pathogenicity of the pathogens.
Collapse
Affiliation(s)
- Vandana Solanki
- Department of Biochemistry, Central University of Rajasthan, Ajmer 305817, India
| | - Monalisa Tiwari
- Department of Biochemistry, Central University of Rajasthan, Ajmer 305817, India
| | - Vishvanath Tiwari
- Department of Biochemistry, Central University of Rajasthan, Ajmer 305817, India.
| |
Collapse
|
43
|
The Functional Amyloid Curli Protects Escherichia coli against Complement-Mediated Bactericidal Activity. Biomolecules 2018; 8:biom8010005. [PMID: 29364839 PMCID: PMC5871974 DOI: 10.3390/biom8010005] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Revised: 01/08/2018] [Accepted: 01/16/2018] [Indexed: 12/30/2022] Open
Abstract
Escherichia coli strains may be beneficial or pathogenic. Many E. coli strains that cause human disease, especially those responsible for bacteremia and sepsis, express virulence factors that impart resistance to the complement system. The bacterial amyloid curli functions in bacterial adherence and enhances the formation of biofilms. Survival of curli-producing parental and curli-deficient mutant E. coli in the context of a human complement response was evaluated using an in vivo murine model of bacteremia. Results showed that curli production enhanced E. coli survival, which suggests that curli defends against complement-mediated killing. This observation was supported by the results of in vitro assays comparing bacterial survival in human serum. Experiments in which the classical or alternative complement pathways were blocked indicated that the classical pathway is the major contributor to complement activation and that curli inhibits this activity. Our analyses indicate that curli does not appear to play a role in protecting E. coli against alternative pathway complement activation. We found that curli increases binding of E. coli cells to complement component Complement component 1q (C1q) but does not affect Complement component 3b (C3b) binding. We conclude that curli defends E. coli against complement-mediated killing via inhibition of the classical complement pathway.
Collapse
|
44
|
Thongsomboon W, Serra DO, Possling A, Hadjineophytou C, Hengge R, Cegelski L. Phosphoethanolamine cellulose: A naturally produced chemically modified cellulose. Science 2018; 359:334-338. [DOI: 10.1126/science.aao4096] [Citation(s) in RCA: 150] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Accepted: 11/13/2017] [Indexed: 12/22/2022]
|
45
|
Abstract
Many bacteria can assemble functional amyloid fibers on their cell surface. Most bacterial amyloids contribute to biofilm or other community behaviors where cells interact with a surface or with other cells. Bacterial amyloids, like all functional amyloids, share structural and biochemical properties with disease-associated eukaryotic amyloids. The general ability of amyloids to bind specific dyes, like Congo red and Thioflavin T, and their resistance to denaturation have provided useful tools for scoring and quantifying bacterial amyloid formation. Here, we present basic approaches to study bacterial amyloids by focusing on the well-studied curli amyloid fibers expressed by Enterobacteriaceae. These methods exploit the specific tinctorial and biophysical properties of amyloids. The methods described here are straightforward and can be easily applied by any modern molecular biology lab for the study of other bacterial amyloids.
Collapse
Affiliation(s)
- Margery L Evans
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Elizabeth Gichana
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Yizhou Zhou
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Matthew R Chapman
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
46
|
Conditional Function of Autoaggregative Protein Cah and Common cah Mutations in Shiga Toxin-Producing Escherichia coli. Appl Environ Microbiol 2017; 84:AEM.01739-17. [PMID: 29054868 DOI: 10.1128/aem.01739-17] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Accepted: 10/11/2017] [Indexed: 01/05/2023] Open
Abstract
Cah is a calcium-binding autotransporter protein involved in autoaggregation and biofilm formation. Although cah is widespread in Shiga toxin-producing Escherichia coli (STEC), we detected mutations in cah at a frequency of 31.3% in this pathogen. In STEC O157:H7 supershedder strain SS17, a large deletion results in a smaller coding sequence, encoding a protein lacking the C-terminal 71 amino acids compared with Cah in STEC O157:H7 strain EDL933. We examined the function of Cah in biofilm formation and host colonization to better understand the selective pressures for cah mutations. EDL933-Cah played a conditional role in biofilm formation in vitro: it enhanced E. coli DH5α biofilm formation on glass surfaces under agitated culture conditions that prevented autoaggregation but inhibited biofilm formation under hydrostatic conditions that facilitated autoaggregation. This function appeared to be strain dependent since Cah-mediated biofilm formation was diminished when an EDL933 cah gene was expressed in SS17. Deletion of cah in EDL933 enhanced bacterial attachment to spinach leaves and altered the adherence pattern of EDL933 to bovine recto-anal junction squamous epithelial (RSE) cells. In contrast, in trans expression of EDL933 cah in SS17 increased its attachment to leaf surfaces, and in DH5α, it enhanced its adherence to RSE cells. Hence, the ecological function of Cah appears to be modulated by environmental conditions and other bacterial strain-specific properties. Considering the prevalence of cah in STEC and its role in attachment and biofilm formation, cah mutations might be selected in ecological niches in which inactivation of Cah would result in an increased fitness in STEC during colonization of plants or animal hosts.IMPORTANCE Shiga toxin-producing Escherichia coli (STEC) harbors genes encoding diverse adhesins, and many of these are known to play an important role in bacterial attachment and host colonization. We demonstrated here that the autotransporter protein Cah confers on E. coli DH5α cells a strong autoaggregative phenotype that is inversely correlated with its ability to form biofilms and plays a strain-specific role in plant and animal colonization by STEC. Although cah is widespread in the STEC population, we detected a mutation rate of 31.3% in cah, which is similar to that reported for rpoS and fimH The formation of cell aggregates due to increased bacterium-to-bacterium interactions may be disadvantageous to bacterial populations under conditions that favor a planktonic state in STEC. Therefore, a loss-of-function mutation in cah is likely a selective trait in STEC when autoaggregative properties become detrimental to bacterial cells and may contribute to the adaptability of STEC to fluctuating environments.
Collapse
|
47
|
Socias SB, González-Lizárraga F, Avila CL, Vera C, Acuña L, Sepulveda-Diaz JE, Del-Bel E, Raisman-Vozari R, Chehin RN. Exploiting the therapeutic potential of ready-to-use drugs: Repurposing antibiotics against amyloid aggregation in neurodegenerative diseases. Prog Neurobiol 2017; 162:17-36. [PMID: 29241812 DOI: 10.1016/j.pneurobio.2017.12.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 12/07/2017] [Accepted: 12/07/2017] [Indexed: 01/02/2023]
Abstract
Neurodegenerative diseases are chronic and progressive disorders that affect specific regions of the brain, causing gradual disability and suffering that results in a complete inability of patients to perform daily functions. Amyloid aggregation of specific proteins is the most common biological event that is responsible for neuronal death and neurodegeneration in various neurodegenerative diseases. Therapeutic agents capable of interfering with the abnormal aggregation are required, but traditional drug discovery has fallen short. The exploration of new uses for approved drugs provides a useful alternative to fill the gap between the increasing incidence of neurodegenerative diseases and the long-term assessment of classical drug discovery technologies. Drug re-profiling is currently the quickest possible transition from bench to bedside. In this way, experimental evidence shows that some antibiotic compounds exert neuroprotective action through anti-aggregating activity on disease-associated proteins. The finding that many antibiotics can cross the blood-brain barrier and have been used for several decades without serious toxic effects makes them excellent candidates for therapeutic switching towards neurological disorders. The present review is, to our knowledge, the first extensive evaluation and analysis of the anti-amyloidogenic effect of different antibiotics on well-known disease-associated proteins. In addition, we propose a common structural signature derived from the antiaggregant antibiotic molecules that could be relevant to rational drug discovery.
Collapse
Affiliation(s)
- Sergio B Socias
- Instituto Superior de Investigaciones Biológicas (INSIBIO), CONICET-UNT, and Instituto de Química Biológica "Dr. Bernabé Bloj", Facultad de Bioquímica, Química y Farmacia, UNT. Chacabuco 461, T4000ILI, San Miguel de Tucumán, Argentina, Argentina
| | - Florencia González-Lizárraga
- Instituto Superior de Investigaciones Biológicas (INSIBIO), CONICET-UNT, and Instituto de Química Biológica "Dr. Bernabé Bloj", Facultad de Bioquímica, Química y Farmacia, UNT. Chacabuco 461, T4000ILI, San Miguel de Tucumán, Argentina, Argentina
| | - Cesar L Avila
- Instituto Superior de Investigaciones Biológicas (INSIBIO), CONICET-UNT, and Instituto de Química Biológica "Dr. Bernabé Bloj", Facultad de Bioquímica, Química y Farmacia, UNT. Chacabuco 461, T4000ILI, San Miguel de Tucumán, Argentina, Argentina
| | - Cecilia Vera
- Instituto Superior de Investigaciones Biológicas (INSIBIO), CONICET-UNT, and Instituto de Química Biológica "Dr. Bernabé Bloj", Facultad de Bioquímica, Química y Farmacia, UNT. Chacabuco 461, T4000ILI, San Miguel de Tucumán, Argentina, Argentina
| | - Leonardo Acuña
- Instituto Superior de Investigaciones Biológicas (INSIBIO), CONICET-UNT, and Instituto de Química Biológica "Dr. Bernabé Bloj", Facultad de Bioquímica, Química y Farmacia, UNT. Chacabuco 461, T4000ILI, San Miguel de Tucumán, Argentina, Argentina; Sorbonne Universite, UPMC Univ Paris 06, INSERM, CNRS, UM75, U1127, UMR 7225, Institut du Cerveau et de la Moelle Epinière, Paris, France
| | - Julia E Sepulveda-Diaz
- Sorbonne Universite, UPMC Univ Paris 06, INSERM, CNRS, UM75, U1127, UMR 7225, Institut du Cerveau et de la Moelle Epinière, Paris, France
| | - Elaine Del-Bel
- Department of Morphology, Physiology and Stomatology, Faculty of Odontology of Ribeirão Preto, University of São Paulo, Brazil; Center of Interdisciplinary Research on Applied Neurosciences (NAPNA), University of São Paulo, Brazil
| | - Rita Raisman-Vozari
- Sorbonne Universite, UPMC Univ Paris 06, INSERM, CNRS, UM75, U1127, UMR 7225, Institut du Cerveau et de la Moelle Epinière, Paris, France.
| | - Rosana N Chehin
- Instituto Superior de Investigaciones Biológicas (INSIBIO), CONICET-UNT, and Instituto de Química Biológica "Dr. Bernabé Bloj", Facultad de Bioquímica, Química y Farmacia, UNT. Chacabuco 461, T4000ILI, San Miguel de Tucumán, Argentina, Argentina.
| |
Collapse
|
48
|
Thiol Starvation Induces Redox-Mediated Dysregulation of Escherichia coli Biofilm Components. J Bacteriol 2017; 200:JB.00389-17. [PMID: 29038256 DOI: 10.1128/jb.00389-17] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Accepted: 10/06/2017] [Indexed: 11/20/2022] Open
Abstract
A hallmark of bacterial biofilms is the production of an extracellular matrix (ECM) that encases and protects the community from environmental stressors. Biofilm formation is an integral portion of the uropathogenic Escherichia coli (UPEC) life cycle. Approximately 2% of UPEC isolates are cysteine auxotrophs. Here, we investigated how cysteine homeostasis impacted UPEC UTI89 strain biofilm formation and, specifically, the production of the ECM components curli and cellulose. Cysteine auxotrophs produced less cellulose and slightly more curli compared to wild-type (WT) strains, and cysteine auxotrophs formed smooth, nonrugose colonies. Cellulose production was restored in cysteine auxotrophs when YfiR was inactivated. YfiR is a redox-sensitive regulator of the diguanylate cyclase, YfiN. The production of curli, a temperature-regulated appendage, was independent of temperature in UTI89 cysteine auxotrophs. In a screen of UPEC isolates, we found that ∼60% of UPEC cysteine auxotrophs produced curli at 37°C, but only ∼2% of cysteine prototrophic UPEC isolates produced curli at 37°C. Interestingly, sublethal concentrations of amdinocillin and trimethoprim-sulfamethoxazole inhibited curli production, whereas strains auxotrophic for cysteine continued to produce curli even in the presence of amdinocillin and trimethoprim-sulfamethoxazole. The dysregulation of ECM components and resistance to amdinocillin in cysteine auxotrophs may be linked to hyperoxidation, since the addition of exogenous cysteine or glutathione restored WT biofilm phenotypes to mutants unable to produce cysteine and glutathione.IMPORTANCE Uropathogenic Escherichia coli (UPEC) bacteria are the predominant causative agent of urinary tract infections (UTIs). UTIs account for billions of dollars of financial burden annually to the health care industry in the United States. Biofilms are an important aspect of the UPEC pathogenesis cascade and for the establishment of chronic infections. Approximately 2% of UPEC isolates from UTIs are cysteine auxotrophs, yet there is relatively little known about the biofilm formation of UPEC cysteine auxotrophs. Here we show that cysteine auxotrophs have dysregulated biofilm components due to a change in the redox state of the periplasm. Additionally, we show the relationship between cysteine auxotrophs, biofilms, and antibiotics frequently used to treat UTIs.
Collapse
|
49
|
The Production of Curli Amyloid Fibers Is Deeply Integrated into the Biology of Escherichia coli. Biomolecules 2017; 7:biom7040075. [PMID: 29088115 PMCID: PMC5745457 DOI: 10.3390/biom7040075] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Revised: 10/13/2017] [Accepted: 10/23/2017] [Indexed: 12/29/2022] Open
Abstract
Curli amyloid fibers are the major protein component of the extracellular matrix produced by Enterobacteriaceae during biofilm formation. Curli are required for proper biofilm development and environmental persistence by Escherichia coli. Here, we present a complete and vetted genetic analysis of functional amyloid fiber biogenesis. The Keio collection of single gene deletions was screened on Congo red indicator plates to identify E. coli mutants that had defective amyloid production. We discovered that more than three hundred gene products modulated curli production. These genes were involved in fundamental cellular processes such as regulation, environmental sensing, respiration, metabolism, cell envelope biogenesis, transport, and protein turnover. The alternative sigma factors, σS and σE, had opposing roles in curli production. Mutations that induced the σE or Cpx stress response systems had reduced curli production, while mutant strains with increased σS levels had increased curli production. Mutations in metabolic pathways, including gluconeogenesis and the biosynthesis of lipopolysaccharide (LPS), produced less curli. Regulation of the master biofilm regulator, CsgD, was diverse, and the screen revealed several proteins and small RNAs (sRNA) that regulate csgD messenger RNA (mRNA) levels. Using previously published studies, we found minimal overlap between the genes affecting curli biogenesis and genes known to impact swimming or swarming motility, underlying the distinction between motile and sessile lifestyles. Collectively, the diversity and number of elements required suggest curli production is part of a highly regulated and complex developmental pathway in E. coli.
Collapse
|
50
|
Pritchard AB, Crean S, Olsen I, Singhrao SK. Periodontitis, Microbiomes and their Role in Alzheimer's Disease. Front Aging Neurosci 2017; 9:336. [PMID: 29114218 PMCID: PMC5660720 DOI: 10.3389/fnagi.2017.00336] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Accepted: 10/02/2017] [Indexed: 12/11/2022] Open
Abstract
As far back as the eighteenth and early nineteenth centuries, microbial infections were responsible for vast numbers of deaths. The trend reversed with the introduction of antibiotics coinciding with longer life. Increased life expectancy however, accompanied the emergence of age related chronic inflammatory states including the sporadic form of Alzheimer's disease (AD). Taken together, the true challenge of retaining health into later years of life now appears to lie in delaying and/or preventing the progression of chronic inflammatory diseases, through identifying and influencing modifiable risk factors. Diverse pathogens, including periodontal bacteria have been associated with AD brains. Amyloid-beta (Aβ) hallmark protein of AD may be a consequence of infection, called upon due to its antimicrobial properties. Up to this moment in time, a lack of understanding and knowledge of a microbiome associated with AD brain has ensured that the role pathogens may play in this neurodegenerative disease remains unresolved. The oral microbiome embraces a range of diverse bacterial phylotypes, which especially in vulnerable individuals, will excite and perpetuate a range of inflammatory conditions, to a wide range of extra-oral body tissues and organs specific to their developing pathophysiology, including the brain. This offers the tantalizing opportunity that by controlling the oral-specific microbiome; clinicians may treat or prevent a range of chronic inflammatory diseases orally. Evolution has equipped the human host to combat infection/disease by providing an immune system, but Porphyromonas gingivalis and selective spirochetes, have developed immune avoidance strategies threatening the host-microbe homeostasis. It is clear from longitudinal monitoring of patients that chronic periodontitis contributes to declining cognition. The aim here is to discuss the contribution from opportunistic pathogens of the periodontal microbiome, and highlight the challenges, the host faces, when dealing with unresolvable oral infections that may lead to clinical manifestations that are characteristic for AD.
Collapse
Affiliation(s)
- Anna B. Pritchard
- Dementia & Neurodegenerative Diseases Research Group, Faculty of Clinical and Biomedical Sciences, School of Dentistry, University of Central Lancashire, Preston, United Kingdom
| | - StJohn Crean
- Dementia & Neurodegenerative Diseases Research Group, Faculty of Clinical and Biomedical Sciences, School of Dentistry, University of Central Lancashire, Preston, United Kingdom
| | - Ingar Olsen
- Department of Oral Biology, Faculty of Dentistry, University of Oslo, Oslo, Norway
| | - Sim K. Singhrao
- Dementia & Neurodegenerative Diseases Research Group, Faculty of Clinical and Biomedical Sciences, School of Dentistry, University of Central Lancashire, Preston, United Kingdom
| |
Collapse
|