1
|
Swingler M, Donadoni M, Bellizzi A, Cakir S, Sariyer IK. iPSC-derived three-dimensional brain organoid models and neurotropic viral infections. J Neurovirol 2023; 29:121-134. [PMID: 37097597 PMCID: PMC10127962 DOI: 10.1007/s13365-023-01133-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 03/27/2023] [Accepted: 04/04/2023] [Indexed: 04/26/2023]
Abstract
Progress in stem cell research has revolutionized the medical field for more than two decades. More recently, the discovery of induced pluripotent stem cells (iPSCs) has allowed for the development of advanced disease modeling and tissue engineering platforms. iPSCs are generated from adult somatic cells by reprogramming them into an embryonic-like state via the expression of transcription factors required for establishing pluripotency. In the context of the central nervous system (CNS), iPSCs have the potential to differentiate into a wide variety of brain cell types including neurons, astrocytes, microglial cells, endothelial cells, and oligodendrocytes. iPSCs can be used to generate brain organoids by using a constructive approach in three-dimensional (3D) culture in vitro. Recent advances in 3D brain organoid modeling have provided access to a better understanding of cell-to-cell interactions in disease progression, particularly with neurotropic viral infections. Neurotropic viral infections have been difficult to study in two-dimensional culture systems in vitro due to the lack of a multicellular composition of CNS cell networks. In recent years, 3D brain organoids have been preferred for modeling neurotropic viral diseases and have provided invaluable information for better understanding the molecular regulation of viral infection and cellular responses. Here we provide a comprehensive review of the literature on recent advances in iPSC-derived 3D brain organoid culturing and their utilization in modeling major neurotropic viral infections including HIV-1, HSV-1, JCV, ZIKV, CMV, and SARS-CoV2.
Collapse
Affiliation(s)
- Michael Swingler
- Department of Microbiology, Immunology and Inflammation, Center for Neurovirology and Gene Editing, Temple University Lewis Katz School of Medicine, Philadelphia, PA, 19140, USA
| | - Martina Donadoni
- Department of Microbiology, Immunology and Inflammation, Center for Neurovirology and Gene Editing, Temple University Lewis Katz School of Medicine, Philadelphia, PA, 19140, USA
| | - Anna Bellizzi
- Department of Microbiology, Immunology and Inflammation, Center for Neurovirology and Gene Editing, Temple University Lewis Katz School of Medicine, Philadelphia, PA, 19140, USA
| | - Senem Cakir
- Department of Microbiology, Immunology and Inflammation, Center for Neurovirology and Gene Editing, Temple University Lewis Katz School of Medicine, Philadelphia, PA, 19140, USA
| | - Ilker K Sariyer
- Department of Microbiology, Immunology and Inflammation, Center for Neurovirology and Gene Editing, Temple University Lewis Katz School of Medicine, Philadelphia, PA, 19140, USA.
| |
Collapse
|
2
|
Nühn MM, Gumbs SBH, Buchholtz NVEJ, Jannink LM, Gharu L, de Witte LD, Wensing AMJ, Lewin SR, Nijhuis M, Symons J. Shock and kill within the CNS: A promising HIV eradication approach? J Leukoc Biol 2022; 112:1297-1315. [PMID: 36148896 PMCID: PMC9826147 DOI: 10.1002/jlb.5vmr0122-046rrr] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 08/12/2022] [Accepted: 08/15/2022] [Indexed: 01/18/2023] Open
Abstract
The most studied HIV eradication approach is the "shock and kill" strategy, which aims to reactivate the latent reservoir by latency reversing agents (LRAs) and allowing elimination of these cells by immune-mediated clearance or viral cytopathic effects. The CNS is an anatomic compartment in which (persistent) HIV plays an important role in HIV-associated neurocognitive disorder. Restriction of the CNS by the blood-brain barrier is important for maintenance of homeostasis of the CNS microenvironment, which includes CNS-specific cell types, expression of transcription factors, and altered immune surveillance. Within the CNS predominantly myeloid cells such as microglia and perivascular macrophages are thought to be a reservoir of persistent HIV infection. Nevertheless, infection of T cells and astrocytes might also impact HIV infection in the CNS. Genetic adaptation to this microenvironment results in genetically distinct, compartmentalized viral populations with differences in transcription profiles. Because of these differences in transcription profiles, LRAs might have different effects within the CNS as compared with the periphery. Moreover, reactivation of HIV in the brain and elimination of cells within the CNS might be complex and could have detrimental consequences. Finally, independent of activity on latent HIV, LRAs themselves can have adverse neurologic effects. We provide an extensive overview of the current knowledge on compartmentalized (persistent) HIV infection in the CNS and on the "shock and kill" strategy. Subsequently, we reflect on the impact and promise of the "shock and kill" strategy on the elimination of persistent HIV in the CNS.
Collapse
Affiliation(s)
- Marieke M. Nühn
- Translational Virology, Department of Medical MicrobiologyUniversity Medical CenterUtrechtthe Netherlands
| | - Stephanie B. H. Gumbs
- Translational Virology, Department of Medical MicrobiologyUniversity Medical CenterUtrechtthe Netherlands
| | - Ninée V. E. J. Buchholtz
- Translational Virology, Department of Medical MicrobiologyUniversity Medical CenterUtrechtthe Netherlands
| | - Lisanne M. Jannink
- Translational Virology, Department of Medical MicrobiologyUniversity Medical CenterUtrechtthe Netherlands
| | - Lavina Gharu
- Translational Virology, Department of Medical MicrobiologyUniversity Medical CenterUtrechtthe Netherlands
| | - Lot D. de Witte
- Translational Virology, Department of Medical MicrobiologyUniversity Medical CenterUtrechtthe Netherlands,Department of PsychiatryIcahn School of MedicineNew YorkNew YorkUSA
| | - Annemarie M. J. Wensing
- Translational Virology, Department of Medical MicrobiologyUniversity Medical CenterUtrechtthe Netherlands
| | - Sharon R. Lewin
- Department of Infectious DiseasesThe University of Melbourne at the Peter Doherty Institute of Immunity and InfectionMelbourneVICAustralia,Victorian Infectious Diseases ServiceThe Royal Melbourne Hospital at the Peter Doherty Institute of Immunity and InfectionMelbourneVICAustralia,Department of Infectious DiseasesAlfred Hospital and Monash UniversityMelbourneVICAustralia
| | - Monique Nijhuis
- Translational Virology, Department of Medical MicrobiologyUniversity Medical CenterUtrechtthe Netherlands
| | - Jori Symons
- Translational Virology, Department of Medical MicrobiologyUniversity Medical CenterUtrechtthe Netherlands
| |
Collapse
|
3
|
Gumbs SBH, Kübler R, Gharu L, Schipper PJ, Borst AL, Snijders GJLJ, Ormel PR, van Berlekom AB, Wensing AMJ, de Witte LD, Nijhuis M. Human microglial models to study HIV infection and neuropathogenesis: a literature overview and comparative analyses. J Neurovirol 2022; 28:64-91. [PMID: 35138593 PMCID: PMC9076745 DOI: 10.1007/s13365-021-01049-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 12/03/2021] [Accepted: 12/18/2021] [Indexed: 02/08/2023]
Abstract
HIV persistence in the CNS despite antiretroviral therapy may cause neurological disorders and poses a critical challenge for HIV cure. Understanding the pathobiology of HIV-infected microglia, the main viral CNS reservoir, is imperative. Here, we provide a comprehensive comparison of human microglial culture models: cultured primary microglia (pMG), microglial cell lines, monocyte-derived microglia (MDMi), stem cell-derived microglia (iPSC-MG), and microglia grown in 3D cerebral organoids (oMG) as potential model systems to advance HIV research on microglia. Functional characterization revealed phagocytic capabilities and responsiveness to LPS across all models. Microglial transcriptome profiles of uncultured pMG showed the highest similarity to cultured pMG and oMG, followed by iPSC-MG and then MDMi. Direct comparison of HIV infection showed a striking difference, with high levels of viral replication in cultured pMG and MDMi and relatively low levels in oMG resembling HIV infection observed in post-mortem biopsies, while the SV40 and HMC3 cell lines did not support HIV infection. Altogether, based on transcriptional similarities to uncultured pMG and susceptibility to HIV infection, MDMi may serve as a first screening tool, whereas oMG, cultured pMG, and iPSC-MG provide more representative microglial culture models for HIV research. The use of current human microglial cell lines (SV40, HMC3) is not recommended.
Collapse
Affiliation(s)
- Stephanie B H Gumbs
- Translational Virology, Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Raphael Kübler
- Translational Virology, Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, The Netherlands
- Department of Psychiatry, Icahn School of Medicine, New York, NY, USA
| | - Lavina Gharu
- Translational Virology, Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Pauline J Schipper
- Translational Virology, Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Anne L Borst
- Translational Virology, Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Gijsje J L J Snijders
- Department of Psychiatry, Icahn School of Medicine, New York, NY, USA
- Department of Psychiatry, University Medical Center Utrecht, Brain Center, Utrecht University, Utrecht, The Netherlands
| | - Paul R Ormel
- Department of Psychiatry, University Medical Center Utrecht, Brain Center, Utrecht University, Utrecht, The Netherlands
| | - Amber Berdenis van Berlekom
- Department of Psychiatry, University Medical Center Utrecht, Brain Center, Utrecht University, Utrecht, The Netherlands
- Department of Translational Neuroscience, University Medical Center Utrecht, Brain Center, Utrecht University, Utrecht, The Netherlands
| | - Annemarie M J Wensing
- Translational Virology, Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Lot D de Witte
- Department of Psychiatry, Icahn School of Medicine, New York, NY, USA
- Department of Psychiatry, University Medical Center Utrecht, Brain Center, Utrecht University, Utrecht, The Netherlands
| | - Monique Nijhuis
- Translational Virology, Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, The Netherlands.
| |
Collapse
|
4
|
Chan TYH, De Zan V, Gregg A, Alagaratnam J, Gerevini S, Antinori A, D'Arminio Monforte A, Saracino A, Trunfio M, Everitt A, Rackstraw S, Marta M, Calcagno A, Cinque P, Winston A. The symptomatology of cerebrospinal fluid HIV RNA escape: a large case-series. AIDS 2021; 35:2341-2346. [PMID: 34127578 DOI: 10.1097/qad.0000000000002992] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE To characterize the clinical, laboratory and radiological characteristics of persons with HIV (PWH) presenting with cerebrospinal fluid (CSF) HIV RNA escape. DESIGN Retrospective case review of PWH presenting with symptomatic CSF HIV RNA escape at seven tertiary HIV clinical sites in the United Kingdom and Italy. METHOD PWH with symptomatic CSF HIV RNA escape episodes were identified and data obtained from medical records. CSF HIV RNA escape was defined as quantifiable CSF HIV RNA in unquantifiable plasma HIV RNA or CSF HIV RNA greater than plasma HIV RNA in cases where plasma HIV RNA was quantifiable. The onset of clinical symptoms was classified as acute (<2 weeks-6 months), or chronic (>6 months) and differences in presentation in those with CSF HIV RNA below and above 1000 copies/ml determined. RESULTS We identified 106 PWH with CSF HIV RNA escape (65 male); 68 (64%) PWH had acute presentations and 38 (36%) had chronic presentations. Cognitive decline (n = 54; 50.9%), confusion (n = 20; 18.9%) and headache (n = 28; 26.4%) were the most common presentations, with cognitive decline being more common in PWH who presented chronically compared with PWH who presented acutely (73.7% vs. 35.3%, P = 0.0002). Sixty PWH had CSF HIV RNA at least 1000 copies/ml and presented more frequently with confusion (n = 15/60; 25.0%) compared with PWH with CSF HIV RNA less than 1000 copies/ml at presentation (n = 5/46; 10.9%; P = 0.03). CONCLUSION Cognitive decline, confusion and headache are the most frequent presenting symptoms of CSF HIV RNA escape and their relative frequency varied according to symptom onset and CSF HIV RNA concentration.
Collapse
Affiliation(s)
| | - Valentina De Zan
- Department of Infectious Diseases, San Raffaele Scientific Institute and San Raffaele Vita-Salute University, Milan, Italy
| | - Alistair Gregg
- Section of Retrovirology, Department of Infectious Disease, Faculty of Medicine, Imperial College London
| | - Jasmini Alagaratnam
- Department of HIV Medicine, St. Mary's Hospital, Imperial College Healthcare NHS Trust, London, UK
- Department of Neuroradiology, San Raffaele Scientific Institute and San Raffaele Vita-Salute University, Milan
| | - Simonetta Gerevini
- Department of Neuroradiology, San Raffaele Scientific Institute and San Raffaele Vita-Salute University, Milan
| | - Andrea Antinori
- Clinical Department, Lazzaro Spallanzani National Institute of Infectious Diseases, Rome
| | - Antonella D'Arminio Monforte
- Clinic of Infectious and Tropical Diseases, Department of Health Sciences, ASST Santi Paolo e Carlo, University of Milan, Milan
| | | | - Mattia Trunfio
- Unit of Infectious Diseases, Department of Medical Sciences, University of Turin, Turin, Italy
| | - Alex Everitt
- Department of Neurology, St. Mary's Hospital, Imperial College Healthcare NHS Trust
| | - Simon Rackstraw
- Department of Medicine, Mildmay Hospital, London, UK
- The Blizard Institute, Centre for Neuroscience, Surgery & Trauma, Queen Mary University of London, Barts and The London School of Medicine & Dentistry
- Grahame Hayton Unit, I&I and Neurology Department, Barts Health NHS Trust, London, UK
| | - Monica Marta
- The Blizard Institute, Centre for Neuroscience, Surgery & Trauma, Queen Mary University of London, Barts and The London School of Medicine & Dentistry
- Grahame Hayton Unit, I&I and Neurology Department, Barts Health NHS Trust, London, UK
| | - Andrea Calcagno
- Unit of Infectious Diseases, Department of Medical Sciences, University of Turin, Turin, Italy
| | - Paola Cinque
- Department of Infectious Diseases, San Raffaele Scientific Institute and San Raffaele Vita-Salute University, Milan, Italy
| | - Alan Winston
- Section of Retrovirology, Department of Infectious Disease, Faculty of Medicine, Imperial College London
- Department of HIV Medicine, St. Mary's Hospital, Imperial College Healthcare NHS Trust, London, UK
| |
Collapse
|
5
|
Magid-Bernstein J, Guo CY, Chow FC, Thakur KT. A rare case of HIV CNS escape in a patient previously considered a viral controller. Int J STD AIDS 2020; 31:694-698. [PMID: 32538333 DOI: 10.1177/0956462420922452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Human immunodeficiency virus (HIV) ribonucleic acid (RNA) levels generally remain undetectable in the cerebrospinal fluid of people living with HIV with peripheral viral suppression. Secondary HIV central nervous system (CNS) escape refers to the rare independent replication of HIV RNA in the central nervous system despite peripheral viral suppression that occurs in the setting of a concomitant non-HIV infection. We describe here a young man with perinatal HIV infection considered a viral controller who developed secondary HIV CNS escape in the setting of a presumed fungal CNS infection.
Collapse
Affiliation(s)
| | - Chu-Yueh Guo
- Weill Institute for Neurosciences, Department of Neurology, University of California, San Francisco, CA, USA
| | - Felicia C Chow
- Weill Institute for Neurosciences, Department of Neurology, University of California, San Francisco, CA, USA.,Department of Medicine, Division of Infectious Diseases, University of California, San Francisco, CA, USA
| | - Kiran T Thakur
- Department of Neurology, Columbia University Irving Medical Center, New York, NY, USA
| |
Collapse
|
6
|
Potential for early antiretroviral therapy to reduce central nervous system HIV-1 persistence. AIDS 2019; 33 Suppl 2:S135-S144. [PMID: 31789814 DOI: 10.1097/qad.0000000000002326] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
: Although treatment with antiretroviral therapy (ART) improves central nervous inflammation, limits viral replication detected in the cerebrospinal fluid, and prevents severe clinical neurological disease in most individuals, HIV-1 can persist in the central nervous system (CNS) despite ART. Recent observations that initiation of ART early in the course of infection limits the size of systemic HIV reservoirs, parallel clinical reports of increased rates of posttreatment viral control in early treatment cohorts, and an understanding of the dynamics of HIV-1 infection and neuropathogenesis during early infection provides rationale to consider that ART started early in the course of HIV-1 infection may have a beneficial effect on CNS HIV-1 persistence. Early ART may restrict the initial establishment of HIV-1 infection in cells of the CNS, and furthermore, may reduce levels of immune activation and inflammation that allow perpetuation of CNS infection. In this review, we consider the precedent set by studies of the impact of early treatment on systemic HIV-1 reservoirs, summarize the current understanding of early CNS HIV-1 exposure and its effects, and examine the evidence for a benefit in the CNS compartment of early treatment.
Collapse
|
7
|
Immune activation in the central nervous system throughout the course of HIV infection. Curr Opin HIV AIDS 2016; 11:226-33. [PMID: 26760827 DOI: 10.1097/coh.0000000000000243] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
PURPOSE OF REVIEW Robust and dynamic innate and adaptive responses characterize the acute central nervous system (CNS) response to HIV and other viral infections. In a state of chronic infection or viral latency, persistent immune activation associates with abnormality in the CNS. Understanding this process is critical, as immune-mediated abnormality in nonrenewable CNS cells may result in long-term neurologic sequelae for HIV-infected individuals. RECENT FINDINGS In humans, immune activation is reduced by suppressive combination antiretroviral therapy, but persists at abnormally elevated levels on treatment. CNS immune activation is initiated in acute infection and progressively increases until combination antiretroviral therapy is started. Newly identified characteristics of the CNS immune surveillance network include features of homeostasis and function of brain microglial cells, lymphatic drainage from CNS to cervical lymph nodes, and cells in cerebrospinal fluid associated with neurocognitive impairment. SUMMARY More research is required to determine whether early intervention to reduce infection limits the immunopathology established by sustained immune responses that ultimately fail to resolve infection, and to unravel mechanisms of persistent immune activation during treated HIV so that strategies can be developed to therapeutically protect the brain.
Collapse
|
8
|
Abstract
CNS infection is a nearly constant facet of systemic CNS infection and is generally well controlled by suppressive systemic antiretroviral therapy (ART). However, there are instances when HIV can be detected in the cerebrospinal fluid (CSF) despite suppression of plasma viruses below the clinical limits of measurement. We review three types of CSF viral escape: asymptomatic, neuro-symptomatic, and secondary. The first, asymptomatic CSF escape, is seemingly benign and characterized by lack of discernable neurological deterioration or subsequent CNS disease progression. Neuro-symptomatic CSF escape is an uncommon, but important, entity characterized by new or progressive CNS disease that is critical to recognize clinically because of its management implications. Finally, secondary CSF escape, which may be even more uncommon, is defined by an increase of CSF HIV replication in association with a concomitant non-HIV infection, as a consequence of the local inflammatory response. Understanding these CSF escape settings not only is important for clinical diagnosis and management but also may provide insight into the CNS HIV reservoir.
Collapse
|
9
|
Sturdevant CB, Joseph SB, Schnell G, Price RW, Swanstrom R, Spudich S. Compartmentalized replication of R5 T cell-tropic HIV-1 in the central nervous system early in the course of infection. PLoS Pathog 2015; 11:e1004720. [PMID: 25811757 PMCID: PMC4374811 DOI: 10.1371/journal.ppat.1004720] [Citation(s) in RCA: 135] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2014] [Accepted: 01/31/2015] [Indexed: 02/07/2023] Open
Abstract
Compartmentalized HIV-1 replication within the central nervous system (CNS) likely provides a foundation for neurocognitive impairment and a potentially important tissue reservoir. The timing of emergence and character of this local CNS replication has not been defined in a population of subjects. We examined the frequency of elevated cerebrospinal fluid (CSF) HIV-1 RNA concentration, the nature of CSF viral populations compared to the blood, and the presence of a cellular inflammatory response (with the potential to bring infected cells into the CNS) using paired CSF and blood samples obtained over the first two years of infection from 72 ART-naïve subjects. Using single genome amplification (SGA) and phylodynamics analysis of full-length env sequences, we compared CSF and blood viral populations in 33 of the 72 subjects. Independent HIV-1 replication in the CNS (compartmentalization) was detected in 20% of sample pairs analyzed by SGA, or 7% of all sample pairs, and was exclusively observed after four months of infection. In subjects with longitudinal sampling, 30% showed evidence of CNS viral replication or pleocytosis/inflammation in at least one time point, and in approximately 16% of subjects we observed evolving CSF/CNS compartmentalized viral replication and/or a marked CSF inflammatory response at multiple time points suggesting an ongoing or recurrent impact of the infection in the CNS. Two subjects had one of two transmitted lineages (or their recombinant) largely sequestered within the CNS shortly after transmission, indicating an additional mechanism for establishing early CNS replication. Transmitted variants were R5 T cell-tropic. Overall, examination of the relationships between CSF viral populations, blood and CSF HIV-1 RNA concentrations, and inflammatory responses suggested four distinct states of viral population dynamics, with associated mechanisms of local viral replication and the early influx of virus into the CNS. This study considerably enhances the generalizability of our results and greatly expands our knowledge of the early interactions of HIV-1 in the CNS.
Collapse
Affiliation(s)
- Christa Buckheit Sturdevant
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Sarah B. Joseph
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Gretja Schnell
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Richard W. Price
- Department of Neurology, University of California, San Francisco, San Francisco, California, United States of America
| | - Ronald Swanstrom
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- UNC Center for AIDS Research, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Serena Spudich
- Department of Neurology, Yale University School of Medicine, New Haven, Connecticut, United States of America
- * E-mail:
| |
Collapse
|
10
|
Zayyad Z, Spudich S. Neuropathogenesis of HIV: from initial neuroinvasion to HIV-associated neurocognitive disorder (HAND). Curr HIV/AIDS Rep 2015; 12:16-24. [PMID: 25604237 PMCID: PMC4741099 DOI: 10.1007/s11904-014-0255-3] [Citation(s) in RCA: 126] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Early in the HIV epidemic, the central nervous system (CNS) was recognized as a target of infection and injury in the advanced stages of disease. Though the most severe forms of HIV-associated neurocognitive disorder (HAND) related to severe immunosuppression are rare in the current era of widespread combination antiretroviral therapy (cART), evidence now supports pathological involvement of the CNS throughout the course of infection. Recent work suggests that the stage for HIV neuropathogenesis may be set with initial viral entry into the CNS, followed by initiation of pathogenetic processes including neuroinflammation and neurotoxicity, and establishment of local, compartmentalized HIV replication that may reflect a tissue reservoir for HIV. Key questions still exist as to when HIV establishes local infection in the CNS, which CNS cells are the primary targets of HIV, and what mechanistic processes underlie the injury to neurons that produce clinical symptoms of HAND. Advances in these areas will provide opportunities for improved treatment of patients with established HAND, prevention of neurological disease in those with early stage infection, and understanding of HIV tissue reservoirs that will aid efforts at HIV eradication.
Collapse
Affiliation(s)
- Zaina Zayyad
- Department of Neurology, Yale University School of Medicine, 300 George Street, Room 8300c, New Haven, CT, 06520, USA,
| | | |
Collapse
|
11
|
Enhanced human immunodeficiency virus Type 1 expression and neuropathogenesis in knockout mice lacking Type I interferon responses. J Neuropathol Exp Neurol 2014; 73:59-71. [PMID: 24335529 PMCID: PMC3871403 DOI: 10.1097/nen.0000000000000026] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
The roles of Type I interferon (IFN) in human immunodeficiency virus Type 1 (HIV-1) neuropathogenesis are poorly understood; both protective and deleterious effects of IFN signaling have been described. We used genetically modified mice deficient in the Type I IFN receptor (IFNRKO) to analyze the progress of HIV-1 brain infection and neuropathogenesis in the absence of IFN signaling. IFNRKO and wild-type (WT) mice on the 129xSv/Ev or C57BL/6 strain backgrounds were infected systemically with EcoHIV, a chimeric HIV-1 that productively infects mice. IFNRKO mice showed higher HIV-1 expression in spleen and peritoneal macrophages and greater virus infiltration into the brain compared to WT mice. Neuropathogenesis was studied by histopathological, immunohistochemical, immunofluorescence, and polymerase chain reaction analyses of brain tissues after the virus was inoculated into the brain by stereotaxic intracerebral injection. Both IFNRKO and WT mice showed readily detectable HIV-1 and brain lesions, including microglial activation, astrocytosis, and increased expression of genes coding for inflammatory cytokines and chemokines typical of human HIV-1 brain disease. Parameters of HIV-1 neuropathogenesis, including HIV-1 expression in microglia/macrophages, were significantly greater in IFNRKO than in WT mice. Our results show unequivocally that Type I IFN signaling and responses limit HIV-1 infection and pathogenesis in the brains of mice.
Collapse
|
12
|
Cisneros IE, Ghorpade A. HIV-1, methamphetamine and astrocyte glutamate regulation: combined excitotoxic implications for neuro-AIDS. Curr HIV Res 2012; 10:392-406. [PMID: 22591363 PMCID: PMC3580828 DOI: 10.2174/157016212802138832] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2011] [Revised: 04/18/2012] [Accepted: 04/18/2012] [Indexed: 02/08/2023]
Abstract
Glutamate, the most abundant excitatory transmitter in the brain can lead to neurotoxicity when not properly regulated. Excitotoxicity is a direct result of abnormal regulation of glutamate concentrations in the synapse, and is a common neurotoxic mediator associated with neurodegenerative disorders. It is well accepted that methamphetamine (METH), a potent central nervous stimulant with high abuse potential, and human immunodeficiency virus (HIV)-1 are implicated in the progression of neurocognitive malfunction. Both have been shown to induce common neurodegenerative effects such as astrogliosis, compromised blood brain barrier integrity, and excitotoxicity in the brain. Reduced glutamate uptake from neuronal synapses likely leads to the accumulation of glutamate in the extracellular spaces. Astrocytes express the glutamate transporters responsible for majority of the glutamate uptake from the synapse, as well as for vesicular glutamate release. However, the cellular and molecular mechanisms of astrocyte-mediated excitotoxicity in the context of METH and HIV-1 are undefined. Topics reviewed include dysregulation of the glutamate transporters, specifically excitatory amino acid transporter-2, metabotropic glutamate receptor(s) expression and the release of glutamate by vesicular exocytosis. We also discuss glutamate concentration dysregulation through astrocytic expression of enzymes for glutamate synthesis and metabolism. Lastly, we discuss recent evidence of various astrocyte and neuron crosstalk mechanisms implicated in glutamate regulation. Astrocytes play an essential role in the neuropathologies associated with METH/HIV-1-induced excitotoxicity. We hope to shed light on common cellular and molecular pathways astrocytes share in glutamate regulation during drug abuse and HIV-1 infection.
Collapse
Affiliation(s)
| | - Anuja Ghorpade
- University of North Texas Health Science Center, Fort Worth, TX, USA
| |
Collapse
|
13
|
Spudich S, Gisslen M, Hagberg L, Lee E, Liegler T, Brew B, Fuchs D, Tambussi G, Cinque P, Hecht FM, Price RW. Central nervous system immune activation characterizes primary human immunodeficiency virus 1 infection even in participants with minimal cerebrospinal fluid viral burden. J Infect Dis 2011; 204:753-60. [PMID: 21844301 DOI: 10.1093/infdis/jir387] [Citation(s) in RCA: 118] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND Central nervous system (CNS) human immunodeficiency virus (HIV) infection and immune activation lead to brain injury and neurological impairment. Although HIV enters the nervous system soon after transmission, the magnitude of infection and immunoactivation within the CNS during primary HIV infection (PHI) has not been characterized. METHODS This cross-sectional study analyzed cerebrospinal fluid (CSF) and blood from 96 participants with PHI and compared them with samples from neuroasymptomatic participants with chronic infection and ≥ 200 or < 200 blood CD4 T cells/μL, and with samples from HIV-seronegative participants with respect to CSF and plasma HIV RNA, CSF to serum albumin ratio, and CSF white blood cell counts (WBC), neopterin levels, and concentrations of chemokines CXCL10 and CCL2. RESULTS The PHI participants (median 77 days post transmission) had CSF HIV RNA, WBC, neopterin, and CXCL10 concentrations similar to the chronic infection participants but uniquely high albumin ratios. 18 participants had ≤ 100 copies/mL CSF HIV RNA, which was associated with low CSF to plasma HIV ratios and levels of CSF inflammation lower than in other PHI participants but higher than in HIV-seronegative controls. CONCLUSIONS Prominent CNS infection and immune activation is evident during the first months after HIV transmission, though a proportion of PHI patients demonstrate relatively reduced CSF HIV RNA and inflammation during this early period.
Collapse
Affiliation(s)
- Serena Spudich
- Department of Neurology, University of California San Francisco, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Reeve AB, Patel K, Pearce NC, Augustus KV, Domingues HG, O'Neil SP, Novembre FJ. Reduced genetic diversity in lymphoid and central nervous system tissues and selection-induced tissue-specific compartmentalization of neuropathogenic SIVsmmFGb during acute infection. AIDS Res Hum Retroviruses 2009; 25:583-601. [PMID: 19500015 PMCID: PMC2853841 DOI: 10.1089/aid.2008.0240] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The simian lentivirus strain SIVsmmFGb is a viral swarm population inducing neuropathology in over 90% of infected pigtailed macaques and serves as a reliable model for HIV neuropathogenesis. However, little is understood about the genetic diversity of this virus, how said diversity influences the initial seeding of the central nervous system and lymph nodes, or whether the virus forms distinct genetic compartments between tissues during acute infection. In this study, we establish that our SIVsmmFGb stock virus contains four genetically distinct envelope V1 region groups, three distinct integrase groups, and two Nef groups. We demonstrate that initial central nervous system and lymph node seeding reduces envelope V1 and integrase genetic diversity but has a variable effect on Nef diversity. SIVsmmFGb envelope V1 region genes from the basal ganglia, cerebellum, and hippocampus form distinct genetic compartments from each other, the midfrontal cortex, and the lymph nodes. Basal ganglia, cerebellum, hippocampus, and midfrontal cortex-derived nef genes all form distinct genetic compartments from each other, as well as from the lymph nodes. We also find basal ganglia, hippocampus, and midfrontal cortex-derived integrase sequences forming distinct compartments from both of the lymph nodes and that the hippocampus and midfrontal cortex form separate compartments from the cerebellum, while the axillary and mesenteric lymph nodes compartmentalize separately from each other. Compartmentalization of the envelope V1 genes resulted from positive selection, and compartmentalization of the nef and integrase genes from negative selection. These results indicate restrictions on virus genetic diversity during initial tissue seeding in neuropathogenic SIV infection.
Collapse
Affiliation(s)
- Aaron B. Reeve
- Division of Microbiology and Immunology, Yerkes National Primate Research Center, Atlanta, Georgia
| | - Kalpana Patel
- Division of Microbiology and Immunology, Yerkes National Primate Research Center, Atlanta, Georgia
| | - Nicholas C. Pearce
- Division of Microbiology and Immunology, Yerkes National Primate Research Center, Atlanta, Georgia
| | - Katherine V. Augustus
- Division of Microbiology and Immunology, Yerkes National Primate Research Center, Atlanta, Georgia
| | - Heber G. Domingues
- Division of Comparative Pathology, New England Primate Research Center, Harvard Medical School, Southborough, Massachusetts
| | - Shawn P. O'Neil
- Division of Comparative Pathology, New England Primate Research Center, Harvard Medical School, Southborough, Massachusetts
| | - Francis J. Novembre
- Division of Microbiology and Immunology, Yerkes National Primate Research Center, Atlanta, Georgia
- Department of Microbiology and Immunology, Emory University, Atlanta, Georgia
| |
Collapse
|
15
|
Fletcher NF, Brayden DJ, Brankin B, Callanan JJ. Feline immunodeficiency virus infection: a valuable model to study HIV-1 associated encephalitis. Vet Immunol Immunopathol 2008; 123:134-7. [PMID: 18289700 DOI: 10.1016/j.vetimm.2008.01.028] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Feline immunodeficiency virus (FIV), like human immunodeficiency virus (HIV)-1, is a neurotropic lentivirus and is associated with neuropathology in natural and experimental infections. FIV enters the brain early following experimental infection, and virus has been proposed to enter the brain via the blood-brain barrier and blood-CSF barrier, within infected lymphocytes and monocytes/macrophages. However the entry of cell-free virus or the direct infection of brain endothelial cells and astrocytes of the blood-brain barrier may also contribute to CNS infection. This review explores the role played by the FIV model in the elucidation of mechanism of lentiviral entry to the brain and viral interactions with the CNS, particularly in relation to lymphotropic lentiviruses.
Collapse
Affiliation(s)
- Nicola F Fletcher
- School of Agriculture, Food Science and Veterinary Medicine, University College Dublin, Belfield, Dublin 4, Ireland.
| | | | | | | |
Collapse
|
16
|
Factors influencing cerebrospinal fluid and plasma HIV-1 RNA detection rate in patients with and without opportunistic neurological disease during the HAART era. BMC Infect Dis 2007; 7:147. [PMID: 18096083 PMCID: PMC2244630 DOI: 10.1186/1471-2334-7-147] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2007] [Accepted: 12/21/2007] [Indexed: 11/10/2022] Open
Abstract
Background In the central nervous system, HIV replication can occur relatively independent of systemic infection, and intrathecal replication of HIV-1 has been observed in patients with HIV-related and opportunistic neurological diseases. The clinical usefulness of HIV-1 RNA detection in the cerebrospinal fluid (CSF) of patients with opportunistic neurological diseases, or the effect of opportunistic diseases on CSF HIV levels in patients under HAART has not been well defined. We quantified CSF and plasma viral load in HIV-infected patients with and without different active opportunistic neurological diseases, determined the characteristics that led to a higher detection rate of HIV RNA in CSF, and compared these two compartments. Methods A prospective study was conducted on 90 HIV-infected patients submitted to lumbar puncture as part of a work-up for suspected neurological disease. Seventy-one patients had active neurological diseases while the remaining 19 did not. Results HIV-1 RNA was quantified in 90 CSF and 70 plasma samples. The HIV-1 RNA detection rate in CSF was higher in patients with neurological diseases, in those with a CD4 count lower than 200 cells/mm3, and in those not receiving antiretroviral therapy, as well as in patients with detectable plasma HIV-1 RNA. Median viral load was lower in CSF than in plasma in the total population, in patients without neurological diseases, and in patients with toxoplasmic encephalitis, while no significant difference between the two compartments was observed for patients with cryptococcal meningitis and HIV-associated dementia. CSF viral load was lower in patients with cryptococcal meningitis and neurotoxoplasmosis under HAART than in those not receiving HAART. Conclusion Detection of HIV-1 RNA in CSF was more frequent in patients with neurological disease, a CD4 count lower than 200 cells/mm3 and detectable plasma HIV-1. Median HIV-1 RNA levels were generally lower in CSF than in plasma but some patients showed higher CSF levels, and no difference between these two compartments was observed in patients with cryptococcal meningitis and HIV-associated dementia, suggesting the presence of intrathecal viral replication in these patients. HAART played a role in the control of CSF HIV levels even in patients with cryptococcal meningitis and neurotoxoplasmosis in whom viral replication is potentially higher.
Collapse
|
17
|
Cerebrospinal Fluid Viral Load Quantification in an HIV-1-Infected Pediatric Group. J Acquir Immune Defic Syndr 2007; 46:508-9. [DOI: 10.1097/qai.0b013e31813eb89a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
18
|
Cinque P, Brew BJ, Gisslen M, Hagberg L, Price RW. Cerebrospinal fluid markers in central nervous system HIV infection and AIDS dementia complex. HANDBOOK OF CLINICAL NEUROLOGY 2007; 85:261-300. [PMID: 18808988 DOI: 10.1016/s0072-9752(07)85017-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Paola Cinque
- Clinic of Infectious Diseases, San Raffaele Scientific Institute, Milan, Italy
| | | | | | | | | |
Collapse
|
19
|
Polis MA, Suzman DL, Yoder CP, Shen JM, Mican JM, Dewar RL, Metcalf JA, Falloon J, Davey RT, Kovacs JA, Feinberg MB, Masur H, Piscitelli SC. Suppression of cerebrospinal fluid HIV burden in antiretroviral naive patients on a potent four-drug antiretroviral regimen. AIDS 2003; 17:1167-72. [PMID: 12819518 DOI: 10.1097/00002030-200305230-00008] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE To determine the longitudinal response of HIV in the cerebrospinal fluid (CSF) to highly active antiretroviral therapy (HAART) and to investigate the levels of indinavir penetrating into the CSF. DESIGN Open study of HIV-infected subjects naive to therapy with protease inhibitors. SETTING Tertiary care referral center. SUBJECTS Twenty-five participants were begun on indinavir, nevirapine, zidovudine, and lamivudine. INTERVENTIONS Lumbar punctures were performed prior to therapy and 2 and 6 months after beginning therapy. Plasma and CSF were assayed for routine cell counts, chemistries, HIV load and indinavir levels. RESULTS Twenty-two subjects had CSF HIV RNA level data available at all three time points, three others at baseline and 2 months. At month 2 of therapy, nine of 25 (36%) subjects had CSF HIV RNA levels > 50 HIV RNA copies/ml. By 6 months, all 22 subjects had CSF HIV RNA levels < 50 HIV RNA copies/ml. CSF white blood cell counts fell from a baseline mean of 5.3 x 10(6)/l to 1.9 x 10(6)/l (P = 0.013) at 6 months. Plasma indinavir levels declined rapidly while CSF levels remained stable throughout the 8-h dosing interval. The median CSF indinavir level was 71 ng/ml, approximating the upper limit of the 95% inhibitory concentration for indinavir against HIV-1. CONCLUSIONS CSF HIV RNA levels cannot be expected to fall below 50 HIV RNA copies/ml even after 2 months of therapy on HAART. Prolonged therapy may be required to suppress HIV levels within the central nervous system.
Collapse
Affiliation(s)
- Michael A Polis
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, Maryland 20892, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Mukhtar M, Harley S, Chen P, BouHamdan M, Patel C, Acheampong E, Pomerantz RJ. Primary isolated human brain microvascular endothelial cells express diverse HIV/SIV-associated chemokine coreceptors and DC-SIGN and L-SIGN. Virology 2002; 297:78-88. [PMID: 12083838 DOI: 10.1006/viro.2002.1376] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Chemokines have received increasing attention due to their inhibitory activities on human immunodeficiency virus type-1 (HIV-1) and simian immunodeficiency virus (SIV) replication and the potential for chemokine receptors to assist in HIV-1/SIV entry into permissive cells. Besides CD4, which is the major receptor for HIV-1 and SIV, a number of chemokine receptors including but not limited to APJ, CCR3, CXCR4, and CCR5 may be coreceptors for HIV-1/SIV, not only in peripheral blood and lymphoid tissues but also in the central nervous system (CNS). The present studies reveal the lack of CD4, but the significant expression of various chemokine receptors, APJ, CCR3, CXCR4, and CCR5, plus C-type lectins DC-SIGN and L-SIGN on isolated primary human brain microvascular endothelial cells (MVECs). As these MVECs do not express CD4, this suggests a CD4-independent HIV/SIV entry/infection of these cells, which are the major cells constituting the human blood-brain barrier. We also found that chemokines for cognate chemokine receptors individually were unable to block binding of HIV-1 to brain MVECs. These results reveal that in primary isolated brain MVECs viral attachment is mediated by a possible previously unknown receptor(s) or by cooperative activity of various receptors. Moreover, mRNA transcripts for DC-SIGN/L-SIGN, as well as DC-SIGN protein expression, suggest the capability of MVECs to attach viral particles on cell surfaces, even though polyclonal antisera for DC-SIGN did not affect viral binding to these cells. These data will assist in further understanding lentiviral entry into the CNS.
Collapse
MESH Headings
- Base Sequence
- Brain/blood supply
- Brain/virology
- Cell Adhesion Molecules
- Cells, Cultured
- Endothelium, Vascular/metabolism
- Endothelium, Vascular/virology
- Fluorescent Antibody Technique
- HIV-1/metabolism
- Humans
- Lectins/genetics
- Lectins/metabolism
- Lectins, C-Type
- Molecular Sequence Data
- Nerve Tissue Proteins/genetics
- Nerve Tissue Proteins/metabolism
- RNA, Messenger/analysis
- Receptors, Antigen/genetics
- Receptors, Antigen/metabolism
- Receptors, Cell Surface/genetics
- Receptors, Cell Surface/metabolism
- Receptors, Chemokine/genetics
- Receptors, Chemokine/metabolism
- Receptors, Virus/genetics
- Receptors, Virus/metabolism
- Reverse Transcriptase Polymerase Chain Reaction
- Sequence Alignment
- Simian Immunodeficiency Virus/metabolism
- Viral Proteins/metabolism
- Virus Replication
Collapse
Affiliation(s)
- Muhammad Mukhtar
- The Dorrance H. Hamilton Laboratories, Center for Human Virology, Division of Infectious Diseases, Department of Medicine, Jefferson Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania 19107, USA
| | | | | | | | | | | | | |
Collapse
|