1
|
Kwok JC, Sato Y, Niggel JK, Ozdogan E, Murgiano L, Miyadera K. Delayed-onset cord1 progressive retinal atrophy in English Springer Spaniels genetically affected with the RPGRIP1 variant. Vet Ophthalmol 2024. [PMID: 39428496 DOI: 10.1111/vop.13290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 09/11/2024] [Accepted: 10/01/2024] [Indexed: 10/22/2024]
Abstract
OBJECTIVE Cone-rod dystrophy (cord1) is a form of progressive retinal atrophy. It is linked to an RPGRIP1 genetic variant which is the third most common canine disease variant thus far. While the variant affects various breeds, it is highly prevalent in English Springer Spaniels (ESSs). Yet its clinical and pathological implications remain equivocal. Herein, we study the retinal phenotype in ESSs genetically affected with the RPGRIP1 variant. ANIMAL STUDIED Over 4 years, 494 ESSs (123 affected) were enrolled. PROCEDURE(S) Owner-perceived vision was collected via a questionnaire. Ophthalmic examination included fundus photography. In selected ESSs, retinal function and structure were assessed using electroretinography (ERG, 148 dogs) and optical coherence tomography (OCT, 4 dogs). RESULTS Ophthalmoscopic changes included peripheral hypo-reflective lesions often with distinct borders progressing centripetally culminating in generalized retinal atrophy. Cross-sectional study revealed declining photopic ERG amplitudes with age in the affected group but not in controls. OCT indicated progressive photoreceptor loss. Despite ophthalmoscopic, ERG, or OCT abnormalities, most affected dogs were not visually impaired per their owners. In a fraction of afflicted ESSs, vision/globe-threatening complications were documented including cataracts, lens luxation, and glaucoma. CONCLUSIONS In ESSs, the RPGRIP1 variant is associated with insidious pathology with delayed-onset visual defects. The subtle phenotype without apparent visual deficit until the final years of life, if at all, may have caused underdiagnosis of cord1. Still, DNA testing remains informative, and ERG and OCT indicate progressive pathology. Peripheral fundus examination and photopic ERG are particularly useful for early detection and monitoring of cord1.
Collapse
Affiliation(s)
- Jennifer C Kwok
- Department of Clinical Sciences and Advanced Medicine, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Yu Sato
- Department of Clinical Sciences and Advanced Medicine, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Jessica K Niggel
- Department of Clinical Sciences and Advanced Medicine, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Emma Ozdogan
- Department of Clinical Sciences and Advanced Medicine, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Leonardo Murgiano
- Department of Clinical Sciences and Advanced Medicine, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Keiko Miyadera
- Department of Clinical Sciences and Advanced Medicine, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
2
|
Daich Varela M, Jeste M, de Guimaraes TAC, Mahroo OA, Arno G, Webster AR, Michaelides M. Clinical, Ophthalmic, and Genetic Characterization of RPGRIP1-Associated Leber Congenital Amaurosis/Early-Onset Severe Retinal Dystrophy. Am J Ophthalmol 2024; 266:255-263. [PMID: 38768745 DOI: 10.1016/j.ajo.2024.05.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 05/06/2024] [Accepted: 05/07/2024] [Indexed: 05/22/2024]
Abstract
PURPOSE To present the clinical characteristics, retinal features, natural history, and genetics of RPGRIP1-associated early-onset severe retinal dystrophy (EOSRD)/Leber congenital amaurosis (LCA). DESIGN Retrospective case series. METHODS Review of clinical notes, multimodal retinal imaging, and molecular diagnosis of 18 patients (17 families) with EOSRD/LCA and disease-causing variants in RPGRIP1. RESULTS The mean age of visual symptoms onset was 0.87 ± 1 year (birth to 3 years), and the mean age at baseline visit was 11.4 ± 10.2 years (1-39 years). At the baseline visit, 44% of patients were legally blind (range, 2-39 years), and there was no significant association found between age and best-corrected visual acuity (BCVA) in cross-sectional analysis. Retinal evaluation showed an abolished electroretinogram or a cone-rod dystrophy pattern, no or minimal pigment deposits, a hyperautofluorescent ring at the posterior pole, and a largely preserved central macular architecture, with retained outer nuclear layer and ellipsoid zone island into adulthood. Eleven variants (48%) were previously unreported, and 13 families (76%) had a double-null (DN) genotype. Twelve patients (67%) had follow-up assessments over a 15.7 ± 9.5-year period. The rate of BCVA decline was 0.02 logarithm of the minimum angle of resolution (1 letter)/year. CONCLUSIONS RPGRIP1 EOSRD/LCA often presents at birth or early infancy, with nystagmus, decreased visual acuity, hyperopia, and photophobia. Patients with a DN genotype may develop symptoms earlier and have worse vision. Multimodal imaging may show a hyperautofluorescent posterior pole ring and relatively preserved central macular architecture, suggesting that the condition is a promising candidate for gene supplementation.
Collapse
Affiliation(s)
- Malena Daich Varela
- Moorfields Eye Hospital (M.D.V., T.A.C.deG., O.A.M., G.A., A.R.W., M.M.), London, United Kingdom; UCL Institute of Ophthalmology, University College London (M.D.V., T.A.C.deG., O.A.M., G.A., A.R.W., M.M.), London, United Kingdom
| | - Mrunmayi Jeste
- St Thomas' Hospital (M.J., O.A.M), London, United Kingdom
| | - Thales A C de Guimaraes
- Moorfields Eye Hospital (M.D.V., T.A.C.deG., O.A.M., G.A., A.R.W., M.M.), London, United Kingdom; UCL Institute of Ophthalmology, University College London (M.D.V., T.A.C.deG., O.A.M., G.A., A.R.W., M.M.), London, United Kingdom
| | - Omar A Mahroo
- Moorfields Eye Hospital (M.D.V., T.A.C.deG., O.A.M., G.A., A.R.W., M.M.), London, United Kingdom; UCL Institute of Ophthalmology, University College London (M.D.V., T.A.C.deG., O.A.M., G.A., A.R.W., M.M.), London, United Kingdom; St Thomas' Hospital (M.J., O.A.M), London, United Kingdom
| | - Gavin Arno
- Moorfields Eye Hospital (M.D.V., T.A.C.deG., O.A.M., G.A., A.R.W., M.M.), London, United Kingdom; UCL Institute of Ophthalmology, University College London (M.D.V., T.A.C.deG., O.A.M., G.A., A.R.W., M.M.), London, United Kingdom
| | - Andrew R Webster
- Moorfields Eye Hospital (M.D.V., T.A.C.deG., O.A.M., G.A., A.R.W., M.M.), London, United Kingdom; UCL Institute of Ophthalmology, University College London (M.D.V., T.A.C.deG., O.A.M., G.A., A.R.W., M.M.), London, United Kingdom
| | - Michel Michaelides
- Moorfields Eye Hospital (M.D.V., T.A.C.deG., O.A.M., G.A., A.R.W., M.M.), London, United Kingdom; UCL Institute of Ophthalmology, University College London (M.D.V., T.A.C.deG., O.A.M., G.A., A.R.W., M.M.), London, United Kingdom.
| |
Collapse
|
3
|
Takahashi K, Miyadera K. [Canine inherited retinal degeneration as model to study disease mechanisms and therapy for ciliopathies]. Nihon Yakurigaku Zasshi 2024; 159:192-197. [PMID: 38684401 DOI: 10.1254/fpj.23071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2024]
Abstract
Humans have a highly developed retina and obtain approximately 80% of their external information from vision. Photoreceptor cells, which are located in the outermost layer of the neuroretina and recognize light signals, are highly specialized sensory cilia that share structural and functional features with primary cilia. Genetic disorders of the retina or photoreceptor cells are termed inherited retinal diseases (IRDs) and are caused by variants in one of more than 280 genes identified to date. Among the genes responsible for IRDs, many are shared with those responsible for ciliopathies. In studies of inherited diseases, mouse models are commonly used due to their advantages in breeding, handling, and relative feasibility in creating pathological models. On the other hand, structural, functional, and genetic differences in the retina between mice and humans can be a barrier in IRD research. To overcome the limitations of mouse models, larger vertebrate models of IRDs can be a useful research subject. In particular, canines have retinas that are structurally and functionally similar and eyes that are anatomically comparable to those of humans. In addition, due to their unique veterinary clinical surveillance and genetic background, naturally occurring canine IRDs are more likely to be identified than in other large animals. To date, pathogenic mutations related to canine IRDs have been identified in more than 30 genes, contributing to the understanding of pathogeneses and to the development of new therapies. This review provides an overview of the roles of the canine IRD models in ciliopathy research.
Collapse
Affiliation(s)
- Kei Takahashi
- Division of Experimental Retinal Therapies, Department of Clinical Sciences & Advanced Medicine, School of Veterinary Medicine, University of Pennsylvania
| | - Keiko Miyadera
- Division of Experimental Retinal Therapies, Department of Clinical Sciences & Advanced Medicine, School of Veterinary Medicine, University of Pennsylvania
| |
Collapse
|
4
|
Suga A, Mizobuchi K, Inooka T, Yoshitake K, Minematsu N, Tsunoda K, Kuniyoshi K, Kawai Y, Omae Y, Tokunaga K, Hayashi T, Ueno S, Iwata T. A homozygous structural variant of RPGRIP1 is frequently associated with achromatopsia in Japanese patients with IRD. GENETICS IN MEDICINE OPEN 2024; 2:101843. [PMID: 39669618 PMCID: PMC11613597 DOI: 10.1016/j.gimo.2024.101843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 03/21/2024] [Accepted: 03/21/2024] [Indexed: 12/14/2024]
Abstract
Purpose Achromatopsia (ACHM) is an early-onset cone dysfunction caused by 5 genes with cone-specific functions (CNGA3, CNGB3, GNAT2, PDE6C, and PDE6H) and by ATF6, a transcription factor with ubiquitous expression. To improve the relatively low variant detection ratio in these genes in a cohort of exome-sequenced Japanese patients with inherited retinal diseases (IRD), we performed genome sequencing to detect structural variants and intronic variants in patients with ACHM. Methods Genome sequencing of 10 ACHM pedigrees was performed after exome sequencing. Structural, non-coding, and coding variants were filtered based on segregation between the affected and unaffected in each pedigree. Variant frequency and predicted damage scores were considered in identifying pathogenic variants. Results A homozygous deletion involving exon 18 of RPGRIP1 was detected in 5 of 10 ACHM probands, and variant inheritance from each parent was confirmed. This deletion was relatively frequent (minor allele frequency = 0.0023) in the Japanese population but was only homozygous in patients with ACHM among the 199 Japanese IRD probands analyzed by the same genome sequencing pipeline. Conclusion The deletion involving exon 18 of RPGRIP1 is a prevalent cause of ACHM in Japanese patients and contributes to the wide spectrum of RPGRIP1-associated IRD phenotypes, from Leber congenital amaurosis to ACHM.
Collapse
Affiliation(s)
- Akiko Suga
- Division of Molecular and Cellular Biology, National Institute of Sensory Organs, NHO Tokyo Medical Center, Tokyo, Japan
| | - Kei Mizobuchi
- Department of Ophthalmology, The Jikei University School of Medicine, Tokyo, Japan
| | - Taiga Inooka
- Department of Ophthalmology, Nagoya University Graduate School of Medicine, Aichi, Japan
| | - Kazutoshi Yoshitake
- Laboratory of Aquatic Molecular Biology and Biotechnology, Aquatic Bioscience, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Naoko Minematsu
- Division of Molecular and Cellular Biology, National Institute of Sensory Organs, NHO Tokyo Medical Center, Tokyo, Japan
| | - Kazushige Tsunoda
- Division of Vision Research, National Institute of Sensory Organs, NHO Tokyo Medical Center, Tokyo, Japan
| | - Kazuki Kuniyoshi
- Department of Ophthalmology, Kindai University Faculty of Medicine, Osaka, Japan
| | - Yosuke Kawai
- Genome Medical Science Project, National Center for Global Health and Medicine, Tokyo, Japan
| | - Yosuke Omae
- Genome Medical Science Project, National Center for Global Health and Medicine, Tokyo, Japan
| | - Katsushi Tokunaga
- Genome Medical Science Project, National Center for Global Health and Medicine, Tokyo, Japan
| | - Takaaki Hayashi
- Department of Ophthalmology, The Jikei University School of Medicine, Tokyo, Japan
| | - Shinji Ueno
- Department of Ophthalmology, Hirosaki University Graduate School of Medicine, Aomori, Japan
| | - Takeshi Iwata
- Division of Molecular and Cellular Biology, National Institute of Sensory Organs, NHO Tokyo Medical Center, Tokyo, Japan
| |
Collapse
|
5
|
Khan AO. RPGRIP1-related retinal disease presenting as isolated cone dysfunction. Ophthalmic Genet 2023; 44:595-597. [PMID: 36762997 DOI: 10.1080/13816810.2023.2175224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 01/15/2023] [Accepted: 01/27/2023] [Indexed: 02/11/2023]
Abstract
PURPOSE Bialleic RPGRIP1 pathogenic variants are typically associated with severe Leber congenital amaurosis (non-recordable electroretinography [ERG]) and less commonly with cone-rod dystrophy. This report highlights isolated cone dysfunction as an alternative RPGRIP1-related presenting phenotype. METHODS Retrospective case series. RESULTS Four individuals (two sibships from two unrelated families) had low vision, nystagmus, photophobia, and a grossly normal retinal appearance since soon after birth. ERG confirmed non-recordable photopic function with normal scotopic function. Genetic testing revealed affected members from the two families to harbor two different homozygous RPGRIP1 variants (Family 1: c.3565C>T; p.Arg1189*; Family 2: c.2711_2741delinsATATTAG; p.Gly904_Lys914delinsAspIIeArg). Follow-up for Family 1 revealed deterioration of pan-retinal function (non-recordable ERGs by 11 and 7 years old) and thus a final diagnosis of cone-rod dystrophy. Follow-up for Family 2 showed stable retinal function (normal ERG scotopic tracings maintained at 12 and 21 years old) and thus a diagnosis of isolated cone dysfunction. CONCLUSIONS Isolated cone dysfunction that progresses to pan-retinal dysfunction or remains relatively stationary is an alternative phenotype related to biallelic RPGRIP1 pathogenic variants.
Collapse
Affiliation(s)
- Arif O Khan
- Eye Institute, Cleveland Clinic Abu Dhabi, Abu Dhabi, UAE
- Department of Ophthalmology, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, Ohio, USA
| |
Collapse
|
6
|
Torii K, Nishina S, Morikawa H, Mizobuchi K, Takayama M, Tachibana N, Kurata K, Hikoya A, Sato M, Nakano T, Fukami M, Azuma N, Hayashi T, Saitsu H, Hotta Y. The Structural Abnormalities Are Deeply Involved in the Cause of RPGRIP1-Related Retinal Dystrophy in Japanese Patients. Int J Mol Sci 2023; 24:13678. [PMID: 37761981 PMCID: PMC10531429 DOI: 10.3390/ijms241813678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 08/31/2023] [Accepted: 09/02/2023] [Indexed: 09/29/2023] Open
Abstract
Leber congenital amaurosis (LCA) is the most severe form of inherited retinal dystrophy. RPGRIP1-related LCA accounts for 5-6% of LCA. We performed whole-exome sequencing and whole-genome sequencing (WGS) on 29 patients with clinically suspected LCA and examined ophthalmic findings in patients with biallelic pathogenic variants of RPGRIP1. In addition to five previously reported cases, we identified five cases from four families with compound heterozygous RPGRIP1 variants using WGS. Five patients had null variants comprising frameshift variants, an Alu insertion, and microdeletions. A previously reported 1339 bp deletion involving exon 18 was found in four cases, and the deletion was relatively prevalent in the Japanese population (allele frequency: 0.002). Microdeletions involving exon 1 were detected in four cases. In patients with RPGRIP1 variants, visual acuity remained low, ranging from light perception to 0.2, and showed no correlation with age. In optical coherence tomography images, the ellipsoid zone (EZ) length decreased with age in all but one case of unimpaired EZ. The retinal structure was relatively preserved in all cases; however, there were cases with great differences in visual function compared to their siblings and a 56-year-old patient who still had a faint EZ line. Structural abnormalities may be important genetic causes of RPGRIP1-related retinal dystrophy in Japanese patients, and WGS was useful for detecting them.
Collapse
Affiliation(s)
- Kaoruko Torii
- Department of Ophthalmology, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu 431-3192, Japan
| | - Sachiko Nishina
- Division of Ophthalmology, National Center for Child Health and Development, 2-10-1 Okura, Setagaya-ku, Tokyo 157-8535, Japan
| | - Hazuki Morikawa
- Division of Ophthalmology, National Center for Child Health and Development, 2-10-1 Okura, Setagaya-ku, Tokyo 157-8535, Japan
| | - Kei Mizobuchi
- Department of Ophthalmology, The Jikei University School of Medicine, 3-25-8 Nishi-shimbashi, Minato-ku, Tokyo 105-8461, Japan
| | - Masakazu Takayama
- Department of Ophthalmology, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu 431-3192, Japan
| | - Nobutaka Tachibana
- Department of Ophthalmology, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu 431-3192, Japan
| | - Kentaro Kurata
- Department of Ophthalmology, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu 431-3192, Japan
| | - Akiko Hikoya
- Department of Ophthalmology, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu 431-3192, Japan
| | - Miho Sato
- Department of Ophthalmology, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu 431-3192, Japan
| | - Tadashi Nakano
- Department of Ophthalmology, The Jikei University School of Medicine, 3-25-8 Nishi-shimbashi, Minato-ku, Tokyo 105-8461, Japan
| | - Maki Fukami
- Department of Molecular Endocrinology, National Research Institute for Child Health and Development, 2-10-1 Okura, Setagaya-ku, Tokyo 157-8535, Japan
| | - Noriyuki Azuma
- Division of Ophthalmology, National Center for Child Health and Development, 2-10-1 Okura, Setagaya-ku, Tokyo 157-8535, Japan
- Department of Developmental and Regenerative Biology, Medical Research Institute, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, Japan
| | - Takaaki Hayashi
- Department of Ophthalmology, The Jikei University School of Medicine, 3-25-8 Nishi-shimbashi, Minato-ku, Tokyo 105-8461, Japan
| | - Hirotomo Saitsu
- Department of Biochemistry, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu 431-3192, Japan
| | - Yoshihiro Hotta
- Department of Ophthalmology, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu 431-3192, Japan
| |
Collapse
|
7
|
Takahashi K, Kwok JC, Sato Y, Aguirre GD, Miyadera K. Molecular characterization of MAP9 in the photoreceptor sensory cilia as a modifier in canine RPGRIP1-associated cone-rod dystrophy. Front Cell Neurosci 2023; 17:1226603. [PMID: 37650070 PMCID: PMC10464610 DOI: 10.3389/fncel.2023.1226603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 07/18/2023] [Indexed: 09/01/2023] Open
Abstract
Photoreceptors possess a highly specialized primary cilium containing expanded ciliary membrane discs called the outer segment. The photoreceptor cilium is essential for the maintenance of the outer segment, and pathogenic variants in more than 50 cilia-related genes have been identified as causing non-syndromic inherited retinal diseases in patients. The retinitis pigmentosa GTPase regulator interacting protein 1 (RPGRIP1) is a structural protein localized to the photoreceptor cilium and biallelic RPGRIP1 variants have been associated with non-syndromic human inherited retinal diseases. In a canine cone-rod dystrophy model, a naturally occurring 44-bp exonic insertion in RPGRIP1 (RPGRIP1ins44/ins44) is the primary disease locus while an additional homozygous variant in MAP9 (microtubule associated protein 9) (MAP9aff/aff) acts as a modifier associated with early disease onset. MAP9 was originally identified as a microtubule-binding protein stabilizing microtubule structure during both mitosis and interphase in human cell lines. However, the roles of MAP9 in primary cilia, including photoreceptor neurosensory cilia, have not been well understood. Hence, we characterized the pathogenic phenotypes associated with homozygous MAP9 variant, and investigated the molecular function of MAP9 in primary cilia using the RPGRIP1-associated oligogenic canine cone-rod dystrophy model as well as cultured cells. Both functionally and structurally, the RPGRIP1ins44/ins44 MAP9aff/aff retina exhibited progressive cone photoreceptor degeneration starting earlier than the retina affected by RPGRIP1ins44/ins44 alone. Based on immunostaining of canine retinal sections and cultured cells, we found that MAP9 is prominently localized in the basal body of primary cilia and played an important role in maintaining the structure of ciliary microtubule axoneme. These findings suggest that the affected MAP9, together with mutant RPGRIP1, is deprived of critical roles in cilia organization and maintenance resulting in altered cilia structure and function giving rise to early onset and accelerated disease progression in the RPGRIP1ins44/ins44 MAP9aff/aff double homozygote cone-rod dystrophy canine model.
Collapse
Affiliation(s)
| | | | | | | | - Keiko Miyadera
- Division of Experimental Retinal Therapies, Department of Clinical Sciences & Advanced Medicine, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
8
|
Ripolles-Garcia A, Murgiano L, Ziolkowska N, Marinho FP, Roszak K, Iffrig S, Aguirre GD, Miyadera K. Natural disease history of a canine model of oligogenic RPGRIP1-cone-rod dystrophy establishes variable effects of previously and newly mapped modifier loci. Hum Mol Genet 2023; 32:2139-2151. [PMID: 36951959 PMCID: PMC10281748 DOI: 10.1093/hmg/ddad046] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 02/23/2023] [Accepted: 03/21/2023] [Indexed: 03/24/2023] Open
Abstract
Canine RPGRIP1-cone-rod dystrophy (CRD), a model for human inherited retinal diseases (IRDs), was originally identified as autosomal recessive early-onset blindness. However, later studies revealed extensive phenotypic variability among RPGRIP1 mutants. This led to the identification of a homozygous MAP9 variant as a modifier associated with early-onset disease. Based on further phenotypic variation affecting cone photoreceptor function, we report mapping of L3 as an additional modifier locus, within a 4.1-Mb locus on canine chromosome 30. We establish the natural disease history of RPGRIP1-CRD based on up to 9-year long-term functional and structural retinal data from 58 dogs including 44 RPGRIP1 mutants grouped according to the modifier status. RPGRIP1 mutants affected by both MAP9 and L3 modifiers exhibited the most severe phenotypes with rapid disease progression. MAP9 alone was found to act as an overall accelerator of rod and cone diseases, while L3 had a cone-specific effect. Ultrastructural analysis of photoreceptors revealed varying degrees of rod and cone damage, while the connecting cilia appeared structurally preserved in all groups. We conclude that RPGRIP1-CRD is an oligogenic disease with at least three loci contributing to the pathogenesis. While the RPGRIP1 variant is required for developing the disease, MAP9 and L3 modifiers exacerbate the phenotype, individually and cumulatively. Oligogenic canine RPGRIP1-CRD illustrates the impact of multiple genetic modifiers on disease phenotype and thus has the potential to reveal new targets for broad-spectrum therapies for oligogenic or polygenic forms of human IRDs.
Collapse
Affiliation(s)
- Ana Ripolles-Garcia
- Division of Experimental Retinal Therapies, Department of Clinical Sciences & Advanced Medicine, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Leonardo Murgiano
- Division of Experimental Retinal Therapies, Department of Clinical Sciences & Advanced Medicine, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Natalia Ziolkowska
- Department of Histology and Embryology, Faculty of Veterinary Medicine, University of Warmia and Mazury, Olsztyn 10-719, Poland
| | - Felipe Pompeo Marinho
- Division of Experimental Retinal Therapies, Department of Clinical Sciences & Advanced Medicine, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Karolina Roszak
- Division of Experimental Retinal Therapies, Department of Clinical Sciences & Advanced Medicine, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Sommer Iffrig
- Division of Experimental Retinal Therapies, Department of Clinical Sciences & Advanced Medicine, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Gustavo D Aguirre
- Division of Experimental Retinal Therapies, Department of Clinical Sciences & Advanced Medicine, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Keiko Miyadera
- Division of Experimental Retinal Therapies, Department of Clinical Sciences & Advanced Medicine, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
9
|
Tehreem R, Chen I, Shah MR, Li Y, Khan MA, Afshan K, Chen R, Firasat S. Exome Sequencing Identified Molecular Determinants of Retinal Dystrophies in Nine Consanguineous Pakistani Families. Genes (Basel) 2022; 13:genes13091630. [PMID: 36140798 PMCID: PMC9498396 DOI: 10.3390/genes13091630] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 09/07/2022] [Accepted: 09/07/2022] [Indexed: 11/16/2022] Open
Abstract
Inherited retinal dystrophies (IRDs) are a heterogeneous group of degenerative disorders of the retina. Retinitis Pigmentosa (RP) is a common type of IRD that causes night blindness and loss of peripheral vision and may progress to blindness. Mutations in more than 300 genes have been associated with syndromic and non-syndromic IRDs. Recessive forms are more frequent in populations where endogamy is a social preference, such as Pakistan. The aim of this study was to identify molecular determinants of IRDs with the common presentation of night blindness in consanguineous Pakistani families. This study included nine consanguineous IRD-affected families that presented autosomal recessive inheritance of the night blindness phenotype. DNA was extracted from blood samples. Targeted exome sequencing of 344 known genes for retinal dystrophies was performed. Screening of nine affected families revealed two novel (c.5571_5576delinsCTAGATand c.471dup in EYS and SPATA7 genes, respectively) and six reported pathogenic mutations (c.304C>A, c.187C>T, c.1560C>A, c.547C>T, c.109del and c.9911_11550del in PDE6A, USH2A, USH2A, NMNAT1, PAX6 and ALMS1 genes, respectively) segregating with disease phenotype in each respective family. Molecular determinants of hereditary retinal dystrophies were identified in all screened families. Identification of novel variants aid future diagnosis of retinal dystrophies and help to provide genetic counseling to affected families.
Collapse
Affiliation(s)
- Raeesa Tehreem
- Department of Zoology, Faculty of Biological Sciences, Quaid-i-Azam University, University Road, Islamabad 45320, Pakistan
| | - Iris Chen
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Mudassar Raza Shah
- Department of Zoology, Faculty of Biological Sciences, Quaid-i-Azam University, University Road, Islamabad 45320, Pakistan
| | - Yumei Li
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Muzammil Ahmad Khan
- Gomal Center of Biochemistry and Biotechnology, Gomal University, Dera Ismail Khan 29111, Pakistan
- Department of Human Genetics, Sidra Medicine, Doha P.O. Box 26999, Qatar
| | - Kiran Afshan
- Department of Zoology, Faculty of Biological Sciences, Quaid-i-Azam University, University Road, Islamabad 45320, Pakistan
| | - Rui Chen
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- Correspondence: (R.C.); (S.F.); Tel.: +(713)-798-5194 (R.C.); +92-51-9064-4410 (S.F.)
| | - Sabika Firasat
- Department of Zoology, Faculty of Biological Sciences, Quaid-i-Azam University, University Road, Islamabad 45320, Pakistan
- Correspondence: (R.C.); (S.F.); Tel.: +(713)-798-5194 (R.C.); +92-51-9064-4410 (S.F.)
| |
Collapse
|
10
|
Zebrafish and inherited photoreceptor disease: Models and insights. Prog Retin Eye Res 2022; 91:101096. [PMID: 35811244 DOI: 10.1016/j.preteyeres.2022.101096] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 06/20/2022] [Accepted: 06/23/2022] [Indexed: 11/21/2022]
Abstract
Photoreceptor dysfunctions and degenerative diseases are significant causes of vision loss in patients, with few effective treatments available. Targeted interventions to prevent or reverse photoreceptor-related vision loss are not possible without a thorough understanding of the underlying mechanism leading to disease, which is exceedingly difficult to accomplish in the human system. Cone diseases are particularly challenging to model, as some popular genetically modifiable model animals are nocturnal with a rod-dominant visual system and cones that have dissimilarities to human cones. As a result, cone diseases, which affect visual acuity, colour perception, and central vision in patients, are generally poorly understood in terms of pathology and mechanism. Zebrafish (Danio rerio) provide the opportunity to model photoreceptor diseases in a diurnal vertebrate with a cone-rich retina which develops many macular degeneration-like pathologies. Zebrafish undergo external development, allowing early-onset retinal diseases to be detected and studied, and many ophthalmic tools are available for zebrafish visual assessment during development and adulthood. There are numerous zebrafish models of photoreceptor disease, spanning the various types of photoreceptor disease (developmental, rod, cone, and mixed photoreceptor diseases) and genetic/molecular cause. In this review, we explore the features of zebrafish that make them uniquely poised to model cone diseases, summarize the established zebrafish models of inherited photoreceptor disease, and discuss how disease in these models compares to the human presentation, where applicable. Further, we highlight the contributions of these zebrafish models to our understanding of photoreceptor biology and disease, and discuss future directions for utilising and investigating these diverse models.
Collapse
|
11
|
Perkins BD. Zebrafish models of inherited retinal dystrophies. JOURNAL OF TRANSLATIONAL GENETICS AND GENOMICS 2022; 6:95-110. [PMID: 35693295 PMCID: PMC9186516 DOI: 10.20517/jtgg.2021.47] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/18/2023]
Abstract
Inherited retinal degenerations (IRDs) cause permanent vision impairment or vision loss due to the death of rod and cone photoreceptors. Animal models of IRDs have been instrumental in providing knowledge of the pathological mechanisms that cause photoreceptor death and in developing successful approaches that could slow or prevent vision loss. Zebrafish models of IRDs represent an ideal model system to study IRDs in a cone-rich retina and to test strategies that exploit the natural ability to regenerate damaged neurons. This review highlights those zebrafish mutants and transgenic lines that exhibit adult-onset retinal degeneration and serve as models of retinitis pigmentosa, cone-rod dystrophy, and ciliopathies.
Collapse
Affiliation(s)
- Brian D. Perkins
- Department of Ophthalmic Research, Cole Eye Institute, Cleveland Clinic, OH 44195, USA
- Department of Ophthalmology, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, OH 44195, USA
- Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH 44195, USA
| |
Collapse
|
12
|
Ocular Characteristics of Patients with Leber Congenital Amaurosis 6 Caused by Pathogenic RPGRIP1 Gene Variation in a Chinese Cohort. J Ophthalmol 2021; 2021:9966427. [PMID: 34796026 PMCID: PMC8595035 DOI: 10.1155/2021/9966427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 10/13/2021] [Indexed: 11/17/2022] Open
Abstract
Purpose To delineate the clinical and genetic characteristics of Chinese patients with RPGRIP1-associated Leber congenital amaurosis 6 (LCA6). Methods After screening 352 unrelated families with clinically diagnosed RP, five LCA6 patients with RPGRIP1 variations from unrelated Chinese families were identified. Full ophthalmology examinations, including decimal best-corrected visual acuity (BCVA), fundus photography, fundus autofluorescence imaging, spectral-domain optical coherence tomography (SD-OCT), full-field electroretinography (ffERG), multifocal electroretinography (mfERG), perimetry, and flash visual evoked potential (FVEP), were performed. Target next-generation sequencing (NGS) and Sanger sequencing were performed for the five patients to identify and to validate candidate disease-causing variants. Results Five patients were molecularly diagnosed as the LCA6 associated with RPGRIP1 variation, with typical clinical characteristics including congenital night blindness, nystagmus, and visual defect, at an early age. Interestingly, LCA6 exhibited extensive clinical heterogeneity and the changes in the morphology and function were not completely consistent in the five LCA6 patients. Case 1 showed extensive inferior-nasal retinal atrophy with a corresponding area of hypofluorescence in fundus autofluorescence, and the fundus photograph was nearly normal in cases 2 and 3. The ERG results displayed a moderately reduced rod-system response in cases 1 and 2 and a significant reduced rod-system response in case 3. Both case 4 and case 5 showed mottled pigmentation in fundi and an unrecordable rod and cone-system response in ERG. Moreover, we identified eight compound variants and one homozygous variant in the five patients with RPGRIP1. Conclusions This is the largest report focused on the clinical electrophysiological features of patients with associated LCA6 caused by the variation in the RPGRIP1 gene in the Chinese population with an enriched phenotypic and genotypic background of LCA6 to improve future gene therapies.
Collapse
|
13
|
Beryozkin A, Aweidah H, Carrero Valenzuela RD, Berman M, Iguzquiza O, Cremers FPM, Khan MI, Swaroop A, Amer R, Khateb S, Ben-Yosef T, Sharon D, Banin E. Retinal Degeneration Associated With RPGRIP1: A Review of Natural History, Mutation Spectrum, and Genotype-Phenotype Correlation in 228 Patients. Front Cell Dev Biol 2021; 9:746781. [PMID: 34722527 PMCID: PMC8551679 DOI: 10.3389/fcell.2021.746781] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Accepted: 09/15/2021] [Indexed: 12/03/2022] Open
Abstract
Purpose:RPGRIP1 encodes a ciliary protein expressed in the photoreceptor connecting cilium. Mutations in this gene cause ∼5% of Leber congenital amaurosis (LCA) worldwide, but are also associated with cone–rod dystrophy (CRD) and retinitis pigmentosa (RP) phenotypes. Our purpose was to clinically characterize RPGRIP1 patients from our cohort, collect clinical data of additional RPGRIP1 patients reported previously in the literature, identify common clinical features, and seek genotype–phenotype correlations. Methods: Clinical data were collected from 16 patients of our cohort and 212 previously reported RPGRIP1 patients and included (when available) family history, best corrected visual acuity (BCVA), refraction, comprehensive ocular examination, optical coherence tomography (OCT) imaging, visual fields (VF), and full-field electroretinography (ffERG). Results: Out of 228 patients, the majority (197, 86%) were diagnosed with LCA, 18 (7%) with RP, and 13 (5%) with CRD. Age of onset was during early childhood (n = 133, average of 1.7 years). All patients but 6 had moderate hyperopia (n = 59, mean of 4.8D), and average BCVA was 0.06 Snellen (n = 124; only 10 patients had visual acuity [VA] > 0.10 Snellen). On funduscopy, narrowing of blood vessels was noted early in life. Most patients had mild bone spicule-like pigmentation starting in the midperiphery and later encroaching upon the posterior pole. OCT showed thinning of the outer nuclear layer (ONL), while cystoid changes and edema were relatively rare. VF were usually very constricted from early on. ffERG responses were non-detectable in the vast majority of cases. Most of the mutations are predicted to be null (363 alleles), and 93 alleles harbored missense mutations. Missense mutations were identified only in two regions: the RPGR-interacting domain and the C2 domains. Biallelic null mutations are mostly associated with a severe form of the disease, whereas biallelic missense mutations usually cause a milder disease (mostly CRD). Conclusion: Our results indicate that RPGRIP1 biallelic mutations usually cause severe retinal degeneration at an early age with a cone–rod pattern. However, most of the patients exhibit preservation of some (usually low) BCVA for a long period and can potentially benefit from gene therapy. Missense changes appear only in the conserved domains and are associated with a milder phenotype.
Collapse
Affiliation(s)
- Avigail Beryozkin
- Department of Ophthalmology, Hadassah Medical Center, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Hamzah Aweidah
- Department of Ophthalmology, Hadassah Medical Center, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | | | - Myriam Berman
- Ophthalmology, Clinical Department, Faculty of Medicine, Universidad Nacional de Tucumán, Tucumán, Argentina
| | - Oscar Iguzquiza
- Neurology, Clinical Department, Faculty of Medicine, Universidad Nacional de Tucumán, Tucumán, Argentina
| | - Frans P M Cremers
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, Netherlands
| | - Muhammad Imran Khan
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, Netherlands
| | - Anand Swaroop
- Neurobiology-Neurodegeneration and Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, MD, United States
| | - Radgonde Amer
- Department of Ophthalmology, Hadassah Medical Center, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Samer Khateb
- Department of Ophthalmology, Hadassah Medical Center, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Tamar Ben-Yosef
- The Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Dror Sharon
- Department of Ophthalmology, Hadassah Medical Center, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Eyal Banin
- Department of Ophthalmology, Hadassah Medical Center, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| |
Collapse
|
14
|
Shah MH, Kumaran M, Chermakani P, Kader MA, Ramakrishnan R, Krishnadas SR, Devarajan B, Sundaresan P. Whole-exome sequencing identifies multiple pathogenic variants in a large South Indian family with primary open-angle glaucoma. Indian J Ophthalmol 2021; 69:2461-2468. [PMID: 34427245 PMCID: PMC8544095 DOI: 10.4103/ijo.ijo_3301_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Purpose: To identify the pathogenic variants associated with primary open-angle glaucoma (POAG) using whole-exome sequencing (WES) data of a large South Indian family. Methods: We recruited a large five-generation South Indian family (n = 84) with a positive family history of POAG (n = 19). All study participants had a comprehensive ocular evaluation. We performed WES for 16 samples (nine POAG and seven unaffected controls) since Sanger sequencing of the POAG candidate genes (MYOC, OPTN, and TBK1) showed no genetic variation. We used an in-house pipeline for prioritizing the pathogenic variants based on their segregation among the POAG individual. Results: We identified one novel and five low-frequency pathogenic variants with consistent co-segregation in all affected individuals. The variant c.G3719A in RPGR-interacting domain of RPGRIP1 that segregated heterozygously with the six POAG cases is distinct from variants causing photoreceptor dystrophies, reported affecting the RPGR protein complex signaling in primary cilia. The cilia in trabecular meshwork (TM) cells has been reported to mediate the intraocular pressure (IOP) sensation. Furthermore, we identified a novel c.A1295G variant in Rho guanine nucleotide exchange factors Gene 40 (ARHGEF40) and a likely pathogenic variant in the RPGR gene, suggesting that they may alter the RhoA activity essential for IOP regulation. Conclusion: Our study supports that low-frequency pathogenic variants in multiple genes and pathways probably affect Primary Open Angle Glaucoma’s pathogenesis in the large South Indian family. Furthermore, it requires larger case-controls to perform family-based association tests and to strengthen our analysis.
Collapse
Affiliation(s)
- Mohd Hussain Shah
- Department of Genetics, Aravind Medical Research Foundation, Madurai, India
| | - Manojkumar Kumaran
- Department of Bioinformatics, Aravind Medical Research Foundation, Madurai; School of Chemical and Biotechnology, SASTRA (Deemed to be University), Thanjavur, India
| | - Prakash Chermakani
- Department of Genetics, Aravind Medical Research Foundation; Department of Molecular Biology, Alagappa University, Karaikudi, Tamil Nadu, India
| | | | - R Ramakrishnan
- Glaucoma Clinic, Aravind Eye Hospital, Tirunelveli, India
| | | | | | | |
Collapse
|
15
|
Huang CH, Yang CM, Yang CH, Hou YC, Chen TC. Leber's Congenital Amaurosis: Current Concepts of Genotype-Phenotype Correlations. Genes (Basel) 2021; 12:genes12081261. [PMID: 34440435 PMCID: PMC8392113 DOI: 10.3390/genes12081261] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 08/15/2021] [Accepted: 08/18/2021] [Indexed: 12/26/2022] Open
Abstract
Leber’s congenital amaurosis (LCA), one of the most severe inherited retinal dystrophies, is typically associated with extremely early onset of visual loss, nystagmus, and amaurotic pupils, and is responsible for 20% of childhood blindness. With advances in molecular diagnostic technology, the knowledge about the genetic background of LCA has expanded widely, while disease-causing variants have been identified in 38 genes. Different pathogenetic mechanisms have been found among these varieties of genetic mutations, all of which result in the dysfunction or absence of their encoded proteins participating in the visual cycle. Hence, the clinical phenotypes also exhibit extensive heterogenicity, including the course of visual impairment, involvement of the macular area, alteration in retinal structure, and residual function of the diseased photoreceptor. By reviewing the clinical course, fundoscopic images, optical coherent tomography examination, and electroretinogram, genotype-phenotype correlations could be established for common genetic mutations in LCA, which would benefit the timing of the diagnosis and thus promote early intervention. Gene therapy is promising in the management of LCA, while several clinical trials are ongoing and preliminary success has been announced, focusing on RPE65 and other common disease-causing genes. This review provides an update on the genetics, clinical examination findings, and genotype-phenotype correlations in the most well-established causative genetic mutations of LCA.
Collapse
Affiliation(s)
- Chu-Hsuan Huang
- Department of Ophthalmology, Cathay General Hospital, Taipei 106, Taiwan; (C.-H.H.); (Y.-C.H.)
| | - Chung-May Yang
- Department of Ophthalmology, National Taiwan University Hospital, Taipei 100, Taiwan; (C.-M.Y.); (C.-H.Y.)
- Department of Ophthalmology, College of Medicine, National Taiwan University, Taipei 100, Taiwan
| | - Chang-Hao Yang
- Department of Ophthalmology, National Taiwan University Hospital, Taipei 100, Taiwan; (C.-M.Y.); (C.-H.Y.)
- Department of Ophthalmology, College of Medicine, National Taiwan University, Taipei 100, Taiwan
| | - Yu-Chih Hou
- Department of Ophthalmology, Cathay General Hospital, Taipei 106, Taiwan; (C.-H.H.); (Y.-C.H.)
| | - Ta-Ching Chen
- Department of Ophthalmology, National Taiwan University Hospital, Taipei 100, Taiwan; (C.-M.Y.); (C.-H.Y.)
- Correspondence: ; Tel.: +886-2-23123456
| |
Collapse
|
16
|
Li X, Alhasani RH, Cao Y, Zhou X, He Z, Zeng Z, Strang N, Shu X. Gypenosides Alleviate Cone Cell Death in a Zebrafish Model of Retinitis Pigmentosa. Antioxidants (Basel) 2021; 10:antiox10071050. [PMID: 34209942 PMCID: PMC8300748 DOI: 10.3390/antiox10071050] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 06/09/2021] [Accepted: 06/22/2021] [Indexed: 01/05/2023] Open
Abstract
Retinitis pigmentosa (RP) is a group of visual disorders caused by mutations in over 70 genes. RP is characterized by initial degeneration of rod cells and late cone cell death, regardless of genetic abnormality. Rod cells are the main consumers of oxygen in the retina, and after the death of rod cells, the cone cells have to endure high levels of oxygen, which in turn leads to oxidative damage and cone degeneration. Gypenosides (Gyp) are major dammarane-type saponins of Gynostemma pentaphyllum that are known to reduce oxidative stress and inflammation. In this project we assessed the protective effect of Gyp against cone cell death in the rpgrip1 mutant zebrafish, which recapitulate the classical pathological features found in RP patients. Rpgrip1 mutant zebrafish were treated with Gyp (50 µg/g body weight) from two-months post fertilization (mpf) until 6 mpf. Gyp treatment resulted in a significant decrease in cone cell death compared to that of untreated mutant zebrafish. A markedly low level of reactive oxygen species and increased expression of antioxidant genes were detected in Gyp-incubated mutant zebrafish eyes compared to that of untreated mutant zebrafish. Similarly, the activities of catalase and superoxide dismutase and the level of glutathione were significantly increased in Gyp-treated mutant zebrafish eyes compared to that of untreated mutant zebrafish. Gyp treatment also decreased endoplasmic reticulum stress in rpgrip1 mutant eyes. Expression of proinflammatory cytokines was also significantly decreased in Gyp-treated mutant zebrafish eyes compared to that of untreated mutant zebrafish. Network pharmacology analysis demonstrated that the promotion of cone cell survival by Gyp is possibly mediated by multiple hub genes and associated signalling pathways. These data suggest treatment with Gyp will benefit RP patients.
Collapse
Affiliation(s)
- Xing Li
- School of Basic Medical Sciences, Shaoyang University, Shaoyang 422000, China; (X.L.); (Y.C.); (Z.H.)
| | - Reem Hasaballah Alhasani
- Department of Biological and Biomedical Sciences, Glasgow Caledonian University, Glasgow G4 0BA, UK; (R.H.A.); (X.Z.)
- Department of Biology, Faculty of Applied Science, Umm Al-Qura University, Makkah 21961, Saudi Arabia
| | - Yanqun Cao
- School of Basic Medical Sciences, Shaoyang University, Shaoyang 422000, China; (X.L.); (Y.C.); (Z.H.)
| | - Xinzhi Zhou
- Department of Biological and Biomedical Sciences, Glasgow Caledonian University, Glasgow G4 0BA, UK; (R.H.A.); (X.Z.)
| | - Zhiming He
- School of Basic Medical Sciences, Shaoyang University, Shaoyang 422000, China; (X.L.); (Y.C.); (Z.H.)
| | - Zhihong Zeng
- College of Biological and Environmental Engineering, Changsha University, Changsha 410022, China;
| | - Niall Strang
- Department of Vision Science, Glasgow Caledonian University, Glasgow G4 0BA, UK;
| | - Xinhua Shu
- School of Basic Medical Sciences, Shaoyang University, Shaoyang 422000, China; (X.L.); (Y.C.); (Z.H.)
- Department of Biological and Biomedical Sciences, Glasgow Caledonian University, Glasgow G4 0BA, UK; (R.H.A.); (X.Z.)
- Department of Vision Science, Glasgow Caledonian University, Glasgow G4 0BA, UK;
- Correspondence:
| |
Collapse
|
17
|
Hadalin V, Šuštar M, Volk M, Maver A, Sajovic J, Jarc-Vidmar M, Peterlin B, Hawlina M, Fakin A. Cone Dystrophy Associated with a Novel Variant in the Terminal Codon of the RPGR- ORF15. Genes (Basel) 2021; 12:genes12040499. [PMID: 33805381 PMCID: PMC8066792 DOI: 10.3390/genes12040499] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 03/23/2021] [Accepted: 03/24/2021] [Indexed: 12/30/2022] Open
Abstract
Mutations in RPGRORF15 are associated with rod-cone or cone/cone-rod dystrophy, the latter associated with mutations at the distal end. We describe the phenotype associated with a novel variant in the terminal codon of the RPGRORF15 c.3457T>A (Ter1153Lysext*38), which results in a C-terminal extension. Three male patients from two families were recruited, aged 31, 35, and 38 years. Genetic testing was performed by whole exome sequencing. Filtered variants were analysed according to the population frequency, ClinVar database, the variant’s putative impact, and predicted pathogenicity; and were classified according to the ACMG guidelines. Examination included visual acuity (Snellen), colour vision (Ishihara), visual field, fundus autofluorescence (FAF), optical coherence tomography (OCT), and electrophysiology. All patients were myopic, and had central scotoma and reduced colour vision. Visual acuities on better eyes were counting fingers, 0.3 and 0.05. Electrophysiology showed severely reduced cone-specific responses and macular dysfunction, while the rod-specific response was normal. FAF showed hyperautofluorescent ring centred at the fovea encompassing an area of photoreceptor loss approximately two optic discs in diameter (3462–6342 μm). Follow up after 2–11 years showed enlargement of the diameter (avg. 100 μm/year). The novel c.3457T>A (Ter1153Lysext*38) mutation in the terminal RPGRORF15 codon is associated with cone dystrophy, which corresponds to the previously described phenotypes associated with mutations in the distal end of the RPGRORF15. Minimal progression during follow-up years suggests a relatively stable disease after the initial loss of the central cones.
Collapse
Affiliation(s)
- Vlasta Hadalin
- Eye Hospital, University Medical Centre Ljubljana, Grablovičeva 46, 1000 Ljubljana, Slovenia; (V.H.); (M.Š.); (J.S.); (M.J.-V.); (M.H.)
| | - Maja Šuštar
- Eye Hospital, University Medical Centre Ljubljana, Grablovičeva 46, 1000 Ljubljana, Slovenia; (V.H.); (M.Š.); (J.S.); (M.J.-V.); (M.H.)
| | - Marija Volk
- Clinical Institute of Medical Genetics, University Medical Centre Ljubljana, Šlajmerjeva ulica 4, 1000 Ljubljana, Slovenia; (M.V.); (A.M.); (B.P.)
| | - Aleš Maver
- Clinical Institute of Medical Genetics, University Medical Centre Ljubljana, Šlajmerjeva ulica 4, 1000 Ljubljana, Slovenia; (M.V.); (A.M.); (B.P.)
| | - Jana Sajovic
- Eye Hospital, University Medical Centre Ljubljana, Grablovičeva 46, 1000 Ljubljana, Slovenia; (V.H.); (M.Š.); (J.S.); (M.J.-V.); (M.H.)
| | - Martina Jarc-Vidmar
- Eye Hospital, University Medical Centre Ljubljana, Grablovičeva 46, 1000 Ljubljana, Slovenia; (V.H.); (M.Š.); (J.S.); (M.J.-V.); (M.H.)
| | - Borut Peterlin
- Clinical Institute of Medical Genetics, University Medical Centre Ljubljana, Šlajmerjeva ulica 4, 1000 Ljubljana, Slovenia; (M.V.); (A.M.); (B.P.)
| | - Marko Hawlina
- Eye Hospital, University Medical Centre Ljubljana, Grablovičeva 46, 1000 Ljubljana, Slovenia; (V.H.); (M.Š.); (J.S.); (M.J.-V.); (M.H.)
| | - Ana Fakin
- Eye Hospital, University Medical Centre Ljubljana, Grablovičeva 46, 1000 Ljubljana, Slovenia; (V.H.); (M.Š.); (J.S.); (M.J.-V.); (M.H.)
- Correspondence:
| |
Collapse
|
18
|
Zou G, Zhang T, Cheng X, Igelman AD, Wang J, Qian X, Fu S, Wang K, Koenekoop RK, Fishman GA, Yang P, Li Y, Pennesi ME, Chen R. Noncoding mutation in RPGRIP1 contributes to inherited retinal degenerations. Mol Vis 2021; 27:95-106. [PMID: 33907365 PMCID: PMC8056464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 03/16/2021] [Indexed: 11/23/2022] Open
Abstract
Purpose Despite the extensive use of next-generation sequencing (NGS) technology to identify disease-causing genomic variations, a major gap in our understanding of Mendelian diseases is the unidentified molecular lesion in a significant portion of patients. For inherited retinal degenerations (IRDs), although currently close to 300 disease-associated genes have been identified, the mutations in approximately one-third of patients remain unknown. With mounting evidence that noncoding mutations might contribute significantly to disease burden, we aimed to systematically investigate the contributions of noncoding regions in the genome to IRDs. Methods In this study, we focused on RPGRIP1, which has been linked to various IRD phenotypes, including Leber congenital amaurosis (LCA), retinitis pigmentosa (RP), and macular dystrophy (MD). As several noncoding mutant alleles have been reported in RPGRIP1, and we observed that the mutation carrier frequency of RPGRIP1 is higher in patient cohorts with unsolved IRDs, we hypothesized that mutations in the noncoding regions of RPGRIP1 might be a significant contributor to pathogenicity. To test this hypothesis, we performed whole-genome sequencing (WGS) for 25 patients with unassigned IRD who carry a single mutation in RPGRIP1. Results Three noncoding variants in RPGRIP1, including a 2,890 bp deletion and two deep-intronic variants (c.2710+233G>A and c.1468-263G>C), were identified as putative second hits of RPGRIP1 in three patients with LCA. The mutant alleles were validated with direct sequencing or in vitro assays. Conclusions The results highlight the significance of the contribution of noncoding pathogenic variants to unsolved IRD cases.
Collapse
Affiliation(s)
- Gang Zou
- Department of Ophthalmology, Ningxia Eye Hospital, People’s Hospital of Ningxia Hui Autonomous Region, First Affiliated Hospital of Northwest University for Nationalities, Ningxia Clinical Research Center on Diseases of Blindness in Eye, Yinchuan, China
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas
| | - Tao Zhang
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas
| | - Xuesen Cheng
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas
| | - Austin D. Igelman
- Department of Ophthalmology, Casey Eye Institute, Oregon Health & Science University, Portland, Oregon
| | - Jun Wang
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas
| | - Xinye Qian
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas
| | - Shangyi Fu
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas
| | - Keqing Wang
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas
| | - Robert K. Koenekoop
- Department of Paediatric Surgery, Human Genetics and Adult Ophthalmology, MUHC, Montréal, Quebec, Canada
| | - Gerald A. Fishman
- Pangere Center for Inherited Retinal Diseases, The Chicago Lighthouse, Chicago, IL
| | - Paul Yang
- Department of Ophthalmology, Casey Eye Institute, Oregon Health & Science University, Portland, Oregon
| | - Yumei Li
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas
| | - Mark E. Pennesi
- Department of Ophthalmology, Casey Eye Institute, Oregon Health & Science University, Portland, Oregon
| | - Rui Chen
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas
| |
Collapse
|
19
|
Noel NCL, MacDonald IM, Allison WT. Zebrafish Models of Photoreceptor Dysfunction and Degeneration. Biomolecules 2021; 11:78. [PMID: 33435268 PMCID: PMC7828047 DOI: 10.3390/biom11010078] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 01/02/2021] [Accepted: 01/04/2021] [Indexed: 12/15/2022] Open
Abstract
Zebrafish are an instrumental system for the generation of photoreceptor degeneration models, which can be utilized to determine underlying causes of photoreceptor dysfunction and death, and for the analysis of potential therapeutic compounds, as well as the characterization of regenerative responses. We review the wealth of information from existing zebrafish models of photoreceptor disease, specifically as they relate to currently accepted taxonomic classes of human rod and cone disease. We also highlight that rich, detailed information can be derived from studying photoreceptor development, structure, and function, including behavioural assessments and in vivo imaging of zebrafish. Zebrafish models are available for a diversity of photoreceptor diseases, including cone dystrophies, which are challenging to recapitulate in nocturnal mammalian systems. Newly discovered models of photoreceptor disease and drusenoid deposit formation may not only provide important insights into pathogenesis of disease, but also potential therapeutic approaches. Zebrafish have already shown their use in providing pre-clinical data prior to testing genetic therapies in clinical trials, such as antisense oligonucleotide therapy for Usher syndrome.
Collapse
Affiliation(s)
- Nicole C. L. Noel
- Department of Medical Genetics, University of Alberta, Edmonton, AB T6G 2H7, Canada; (I.M.M.); (W.T.A.)
| | - Ian M. MacDonald
- Department of Medical Genetics, University of Alberta, Edmonton, AB T6G 2H7, Canada; (I.M.M.); (W.T.A.)
- Department of Ophthalmology and Visual Sciences, University of Alberta, Edmonton, AB T6G 2R7, Canada
| | - W. Ted Allison
- Department of Medical Genetics, University of Alberta, Edmonton, AB T6G 2H7, Canada; (I.M.M.); (W.T.A.)
- Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2E9, Canada
- Centre for Prions and Protein Folding Diseases, University of Alberta, Edmonton, AB T6G 2M8, Canada
| |
Collapse
|
20
|
Padhy SK, Takkar B, Narayanan R, Venkatesh P, Jalali S. Voretigene Neparvovec and Gene Therapy for Leber's Congenital Amaurosis: Review of Evidence to Date. APPLICATION OF CLINICAL GENETICS 2020; 13:179-208. [PMID: 33268999 PMCID: PMC7701157 DOI: 10.2147/tacg.s230720] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 11/06/2020] [Indexed: 12/13/2022]
Abstract
Gene therapy has now evolved as the upcoming modality for management of many disorders, both inheritable and non-inheritable. Knowledge of genetics pertaining to a disease has therefore become paramount for physicians across most specialities. Inheritable retinal dystrophies (IRDs) are notorious for progressive and relentless vision loss, frequently culminating in complete blindness in both eyes. Leber’s congenital amaurosis (LCA) is a typical example of an IRD that manifests very early in childhood. Research in gene therapy has led to the development and approval of voretigene neparvovec (VN) for use in patients of LCA with a deficient biallelic RPE65 gene. The procedure involves delivery of a recombinant virus vector that carries the RPE65 gene in the subretinal space. This comprehensive review reports the evidence thus far in support of gene therapy for LCA. We explore and compare the various gene targets including but not limited to RPE65, and discuss the choice of vector and method for ocular delivery. The review details the evolution of gene therapy with VN in a phased manner, concluding with the challenges that lie ahead for its translation for use in communities that differ much both genetically and economically.
Collapse
Affiliation(s)
- Srikanta Kumar Padhy
- Vitreoretina and Uveitis Services, L V Prasad Eye Institute, Mithu Tulsi Chanrai Campus, Bhubaneswar, India
| | - Brijesh Takkar
- Srimati Kanuri Santhamma Center for Vitreoretinal Diseases, Kallam Anji Reddy Campus, L.V. Prasad Eye Institute, Hyderabad, India.,Center of Excellence for Rare Eye Diseases, Kallam Anji Reddy Campus, L V Prasad Eye Institute, Hyderabad, India
| | - Raja Narayanan
- Srimati Kanuri Santhamma Center for Vitreoretinal Diseases, Kallam Anji Reddy Campus, L.V. Prasad Eye Institute, Hyderabad, India
| | - Pradeep Venkatesh
- Dr RP Centre for Ophthalmic Sciences, All India Institute of Medical Sciences, New Delhi, India
| | - Subhadra Jalali
- Srimati Kanuri Santhamma Center for Vitreoretinal Diseases, Kallam Anji Reddy Campus, L.V. Prasad Eye Institute, Hyderabad, India.,Jasti V. Ramanamma Childrens' Eye Care Centre, Kallam Anji Reddy Campus, L V Prasad Eye Institute, Hyderabad, India
| |
Collapse
|
21
|
Alhasani RH, Zhou X, Biswas L, Li X, Reilly J, Zeng Z, Shu X. Gypenosides attenuate retinal degeneration in a zebrafish retinitis pigmentosa model. Exp Eye Res 2020; 201:108291. [PMID: 33049273 DOI: 10.1016/j.exer.2020.108291] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 09/07/2020] [Accepted: 10/05/2020] [Indexed: 12/16/2022]
Abstract
Retinitis pigmentosa (RP) is a collection of heterogenous genetic retinal disorders resulting in cumulative retinal deterioration involving progressive loss of photoreceptors and eventually in total blindness. Oxidative stress plays a central role in this photoreceptor loss. Gypenosides (Gyp) are the main functional component isolated from the climbing vine Gynostemma pentaphyllum and have been shown to defend cells against the effects of oxidative stress and inflammation, providing protection in experimentally-induced optic neuritis. The zebrafish model has been used to investigate a range of human diseases. Previously we reported early retinal degeneration in a mutant zebrafish line carrying a point-nonsense mutation in the retinitis pigmentosa GTPase regulator interacting protein 1 (rpgrip1) gene that is mutated in RP patients. The current study investigated the potential protective effects of Gyp against photoreceptor degeneration in the Rpgrip1 deleted zebrafish. Rpgrip1 mutant zebrafish were treated with 5 μg/ml of Gyp in E3 medium from 6 h post fertilization (hpf) till 1 month post fertilization (mpf). Rpgrip1 mutant zebrafish treated with 5 μg/ml of Gyp showed a significant decrease by 68.41% (p = 0.0002) in photoreceptor cell death compared to that of untreated mutant zebrafish. Expression of antioxidant genes catalase, sod1, sod2, gpx1, gclm, nqo-1 and nrf-2 was significantly decreased in rpgrip1 mutant zebrafish eyes by 61.51%, 77.40%, 60.11%, 81.17%, 72.07%, 78.95% and 85.42% (all p < 0.0001), respectively, when compared to that of wildtype zebrafish; superoxide dismutase and catalase activities, and glutathione levels in rpgrip1 mutant zebrafish eyes were significantly decreased by 87.21%, 21.55% and 96.51% (all p < 0.0001), respectively. There were marked increases in the production of reactive oxygen species (ROS) and malondialdehyde (MDA) by 2738.73% and 510.69% (all p < 0.0001), respectively, in rpgrip1 mutant zebrafish eyes; expression of pro-inflammatory cytokines IL-1β, IL-6 and TNF-α was also significantly increased by 150.11%, 267.79% and 190.72% (all p < 0.0001), respectively, in rpgrip1 mutant zebrafish eyes, compared to that of wildtype zebrafish. Treatment with Gyp significantly counteracted these effects. This study indicates that Gyp has a potential role in the treatment of RP.
Collapse
Affiliation(s)
- Reem Hasaballah Alhasani
- Department of Biological and Biomedical Sciences, Glasgow Caledonian University, Glasgow, G4 0BA, United Kingdom; Department of Biology, Faculty of Applied Science, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Xinzhi Zhou
- Department of Biological and Biomedical Sciences, Glasgow Caledonian University, Glasgow, G4 0BA, United Kingdom
| | - Lincoln Biswas
- Department of Biological and Biomedical Sciences, Glasgow Caledonian University, Glasgow, G4 0BA, United Kingdom
| | - Xing Li
- School of Basic Medical Sciences, Shaoyang University, Shaoyang, Hunan, 422000, PR China
| | - James Reilly
- Department of Biological and Biomedical Sciences, Glasgow Caledonian University, Glasgow, G4 0BA, United Kingdom
| | - Zhihong Zeng
- College of Biological and Environmental Engineering, Changsha University, Changsha, Hunan, 410022, PR China.
| | - Xinhua Shu
- Department of Biological and Biomedical Sciences, Glasgow Caledonian University, Glasgow, G4 0BA, United Kingdom; Department of Vision Science, Glasgow Caledonian University, Glasgow, G4 0BA, United Kingdom; School of Basic Medical Sciences, Shaoyang University, Shaoyang, Hunan, 422000, PR China.
| |
Collapse
|
22
|
Sallum JMF, Motta FL, Arno G, Porto FBO, Resende RG, Belfort R. Clinical and molecular findings in a cohort of 152 Brazilian severe early onset inherited retinal dystrophy patients. AMERICAN JOURNAL OF MEDICAL GENETICS PART C-SEMINARS IN MEDICAL GENETICS 2020; 184:728-752. [PMID: 32865313 DOI: 10.1002/ajmg.c.31828] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 07/25/2020] [Accepted: 07/28/2020] [Indexed: 12/17/2022]
Abstract
Leber congenital amaurosis (LCA) and early-onset retinal dystrophy (EORD) are severe inherited retinal dystrophy that can cause deep blindness childhood. They represent 5% of all retinal dystrophies in the world population and about 10% in Brazil. Clinical findings and molecular basis of syndromic and nonsyndromic LCA/EORD in a Brazilian sample (152 patients/137 families) were studied. In this population, 15 genes were found to be related to the phenotype, 38 new variants were detected and four new complex alleles were discovered. Among 123 variants found, the most common were CEP290: c.2991+1655A>G, CRB1: p.Cys948Tyr, and RPGRIP1: exon10-18 deletion.
Collapse
Affiliation(s)
- Juliana Maria Ferraz Sallum
- Department of Ophthalmology, Universidade Federal de São Paulo, Sao Paulo, Brazil.,Instituto de Genética Ocular, Sao Paulo, Brazil
| | - Fabiana Louise Motta
- Department of Ophthalmology, Universidade Federal de São Paulo, Sao Paulo, Brazil.,Instituto de Genética Ocular, Sao Paulo, Brazil
| | - Gavin Arno
- UCL Institute of Ophthalmology, London, UK.,Moorfields Eye Hospital, London, UK
| | - Fernanda Belga Ottoni Porto
- INRET Clínica e Centro de Pesquisa, Belo Horizonte, Minas Gerais, Brazil.,Centro Oftalmológico de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | | | - Rubens Belfort
- Department of Ophthalmology, Universidade Federal de São Paulo, Sao Paulo, Brazil
| |
Collapse
|
23
|
Sato S, Morimoto T, Tanaka S, Hotta K, Fujikado T, Tsujikawa M, Nishida K. Novel mutation identified in Leber congenital amaurosis - a case report. BMC Ophthalmol 2020; 20:313. [PMID: 32736544 PMCID: PMC7393846 DOI: 10.1186/s12886-020-01577-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 07/21/2020] [Indexed: 11/20/2022] Open
Abstract
Background Leber congenital amaurosis (LCA) is the earliest onset and the most severe form of all inherited retinal degenerative disorders, characterized by blindness, or severe visual impairment from birth, and typically exhibits clinical and genetic heterogeneity. Recently, 14 causative genes of LCA were reported. We performed whole-exome sequencing (WES) for Japanese siblings, and identified a novel homozygous nonsense mutation in the RPGR-interacting protein 1 (RPGRIP1) gene. We also report their follow-up data over 27 years. Case presentation Patient 1 is a 37-year-old male. In 1992, his eye position indicated orthophoria, however, horizontal nystagmus was evident, and he complained of photophobia. His best corrected decimal visual acuity (BCVA) was 0.2 (S + 6.5/C-3.5/170°) OD and 0.1 (S + 6.0/C-2.5/10°) OS. Fundus examination revealed bisymmetrical inferior focal retinal pigment epithelium (RPE) mottling. Bright-flash electroretinogram (ERG) revealed a subnormal pattern, while 30 Hz flicker ERG was non-recordable in both eyes. At his final visit in 2019, his BCVA was 0.09 (S + 3.5/C-3.5/180°) OD and 0.09 (S + 3.0/C-4.0/10°) OS. Patient 2, a 34-year-old female, is the sibling of patient 1. In 1992, her BCVA was 0.05 (S + 6.0) OD and 0.06 (S + 5.0) OS. She was in a chin-up position during visual acuity testing. Horizontal nystagmus was evident, and she also complained of photophobia. Bright-flash ERG was severely attenuated, and 30 Hz flicker ERG was non-recordable in both eyes. At her final visit in 2019, her BCVA was 0.02 (uncorrectable) OD and 0.03 (uncorrectable) OS. There were no other patients with LCA in their family and their parents were non-consanguineous. WES revealed a homozygous, consecutive, two-nucleotide variation in the RPGRIP1 gene (NM_020366: exon15:c.G2294A and c.C2295A, p.C765X), resulting in a premature stop codon. We interpreted this variation as a novel pathogenic mutation of RPGRIP1 that contributes to LCA6 development. Conclusions Herein, we report a novel nonsense mutation of RPGRIP1 in two patients with LCA6 and present their long-term follow-up data. These clinical data linked to genotypes provide important information for the development of new treatments, such as gene therapy, as well as for genetic counseling.
Collapse
Affiliation(s)
- Shigeru Sato
- Department of Ophthalmology, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan. .,Laboratory of Regenerative Medicine and Development, Osaka University Graduate School of Medicine, Osaka, Japan.
| | - Takeshi Morimoto
- Department of Ophthalmology, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan.,Department of Advanced Visual Neuroscience, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Sayaka Tanaka
- Department of Ophthalmology, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Kikuko Hotta
- Laboratory of Pathophysiology and Pharmacotherapeutics, Faculty of Pharmacy, Osaka Ohtani University, Osaka, Japan
| | - Takashi Fujikado
- Special Research Promotion Group, Osaka University Graduate School of Frontier Biosciences, Osaka, Japan
| | - Motokazu Tsujikawa
- Department of Ophthalmology, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan.,Laboratory of Regenerative Medicine and Development, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Kohji Nishida
- Department of Ophthalmology, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan.,Integrated Frontier Research for Medical Science Division, Institute for Open and Trans-disciplinary Research Initiatives, Osaka University, Osaka, Japan
| |
Collapse
|
24
|
Clinical and Molecular Diagnosis of Joubert Syndrome and Related Disorders. Pediatr Neurol 2020; 106:43-49. [PMID: 32139166 DOI: 10.1016/j.pediatrneurol.2020.01.012] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 01/16/2020] [Accepted: 01/26/2020] [Indexed: 12/12/2022]
Abstract
BACKGROUND Joubert syndrome and related disorders are a group of ciliopathies characterized by mid-hindbrain malformation, developmental delay, hypotonia, oculomotor apraxia, and breathing abnormalities. Molar tooth sign in brain imaging is the hallmark for diagnosis. Joubert syndrome is a clinically and genetically heterogeneous disorder involving mutations in 35 ciliopathy-related genes. We present a large cohort of 59 patients with Joubert syndrome from 55 families. Molecular analysis was performed in 35 families (trio). METHODS Clinical exome analysis was performed to identify causal mutations, and genotype-phenotype correlations were evaluated. RESULTS All of the cases were stratified into pure Joubert syndrome (62.7%), Joubert syndrome with retinal disease (22.0%), polydactyly (8.5%), and liver (1.7%) and kidney (1.7%) involvement. Joubert syndrome-related disorders include Meckel-Gruber syndrome in 5.1% cases and Leber congenital amaurosis (1.7%). Of the 35 Joubert syndrome-related genes, 11 were identified in these patients, i.e., CEP290, C5ORF, TCTN1, CC2D2A, RPGRP1L, TCTN3, AHI1, INPP5E, TCTN2, NPHP1, and TMEM237. For the first time, we identified a ciliopathy gene, CCDC28B, as a causal gene in Joubert syndrome in one family. CEP290 accounted for 37.8% cases of pure Joubert syndrome, Joubert syndrome with retinal and renal disease, and Meckel-Gruber syndrome. The p.G1890∗ allele in CEP290 is highly recurrent. Of the six families with Joubert syndrome who had a prenatal diagnosis, one fetus was normal, two were carriers, and three were affected. CONCLUSIONS This is the largest study of Joubert syndrome from India. Although a high degree of locus and allelic heterogeneity was observed, CEP290 variants were the most common among these patients.
Collapse
|
25
|
Mayer AK, Balousha G, Sharkia R, Mahajnah M, Ayesh S, Schulze M, Buchert R, Zobor D, Azem A, Schöls L, Bauer P, Wissinger B. Unraveling the genetic cause of hereditary ophthalmic disorders in Arab societies from Israel and the Palestinian Authority. Eur J Hum Genet 2020; 28:742-753. [PMID: 31896775 DOI: 10.1038/s41431-019-0566-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 11/12/2019] [Accepted: 12/10/2019] [Indexed: 11/09/2022] Open
Abstract
Visual impairment due to inherited ophthalmic disorders is amongst the most common disabilities observed in populations practicing consanguineous marriages. Here we investigated the molecular genetic basis of an unselected broad range of ophthalmic disorders in 20 consanguineous families from Arab villages of Israel and the Palestinian Authority. Most patients had little or very poor prior clinical workup and were recruited in a field study. Homozygosity mapping followed by candidate gene sequencing applying conventional Sanger sequencing or targeted next generation sequencing was performed in six families. In the remaining 14 families, one affected subject per family was chosen for whole exome sequencing. We discovered likely disease-causing variants, all homozygous, in 19 of 20 independent families (95%) including a previously reported novel disease gene for congenital nystagmus associated with foveal hypoplasia. Moreover, we found a family in which disease-causing variants for two collagenopathies - Stickler and Knobloch syndrome - segregate within a large sibship. Nine of the 19 distinct variants observed in this study were novel. Our study demonstrated a very high molecular diagnostic yield for a highly diverse spectrum of rare ophthalmic disorders in Arab patients from Israel and the Palestinian Authority, even with very limited prior clinical investigation. We conclude that 'genetic testing first' may be an economic way to direct clinical care and to support proper genetic counseling and risk assessment in these families.
Collapse
Affiliation(s)
- Anja K Mayer
- Institute for Ophthalmic Research, Molecular Genetics Laboratory, Tuebingen, Germany.,Praxis fuer Humangenetik Tuebingen, Tuebingen, Germany
| | - Ghassan Balousha
- Department of Pathology and Histology, Al-Quds University, Eastern Jerusalem, Palestinian Authority, Jerusalem, Israel
| | - Rajech Sharkia
- The Triangle Regional Research and Development Center, Kfar Qari', Israel.,Beit-Berl Academic College, Beit-Berl, Israel
| | - Muhammad Mahajnah
- Child Neurology and Development Center, Hillel-Yaffe Medical Center, Hadera, Israel.,The Ruth and Bruce Rappaport Faculty of Medicine, Technion, Haifa, Israel
| | - Suhail Ayesh
- Molecular Genetic Laboratory, Al-Makassed Islamic Charitable Society Hospital, Jerusalem, Israel
| | - Martin Schulze
- Institute of Medical Genetics and Applied Genomics, University of Tuebingen, Tuebingen, Germany.,Praxis fuer Humangenetik Tuebingen, Tuebingen, Germany
| | - Rebecca Buchert
- Institute of Medical Genetics and Applied Genomics, University of Tuebingen, Tuebingen, Germany
| | - Ditta Zobor
- University Eye Hospital, University of Tuebingen, Tuebingen, Germany
| | - Abdussalam Azem
- The School of Neurobiology, Biochemistry and Biophysics, George S. Wise faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Ludger Schöls
- Hertie Institute for Brain Research, University of Tuebingen, Tuebingen, Germany.,German Center of Neurodegenerative Diseases (DZNE), Tuebingen, Germany
| | - Peter Bauer
- Institute of Medical Genetics and Applied Genomics, University of Tuebingen, Tuebingen, Germany
| | - Bernd Wissinger
- Institute for Ophthalmic Research, Molecular Genetics Laboratory, Tuebingen, Germany.
| |
Collapse
|
26
|
Liang Q, Dharmat R, Owen L, Shakoor A, Li Y, Kim S, Vitale A, Kim I, Morgan D, Liang S, Wu N, Chen K, DeAngelis MM, Chen R. Single-nuclei RNA-seq on human retinal tissue provides improved transcriptome profiling. Nat Commun 2019; 10:5743. [PMID: 31848347 PMCID: PMC6917696 DOI: 10.1038/s41467-019-12917-9] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Accepted: 10/02/2019] [Indexed: 12/23/2022] Open
Abstract
Single-cell RNA-seq is a powerful tool in decoding the heterogeneity in complex tissues by generating transcriptomic profiles of the individual cell. Here, we report a single-nuclei RNA-seq (snRNA-seq) transcriptomic study on human retinal tissue, which is composed of multiple cell types with distinct functions. Six samples from three healthy donors are profiled and high-quality RNA-seq data is obtained for 5873 single nuclei. All major retinal cell types are observed and marker genes for each cell type are identified. The gene expression of the macular and peripheral retina is compared to each other at cell-type level. Furthermore, our dataset shows an improved power for prioritizing genes associated with human retinal diseases compared to both mouse single-cell RNA-seq and human bulk RNA-seq results. In conclusion, we demonstrate that obtaining single cell transcriptomes from human frozen tissues can provide insight missed by either human bulk RNA-seq or animal models.
Collapse
Affiliation(s)
- Qingnan Liang
- HGSC, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, 77030, TX, USA
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Rachayata Dharmat
- HGSC, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, 77030, TX, USA
- St. Jude Children's Research Hospital, 262 Danny Thomas Pl, Memphis, TN, 38105, USA
| | - Leah Owen
- Department of Ophthalmology and Visual Sciences, University of Utah School of Medicine, Salt Lake City, UT, 84132, USA
| | - Akbar Shakoor
- Department of Ophthalmology and Visual Sciences, University of Utah School of Medicine, Salt Lake City, UT, 84132, USA
| | - Yumei Li
- HGSC, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Sangbae Kim
- HGSC, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Albert Vitale
- Department of Ophthalmology and Visual Sciences, University of Utah School of Medicine, Salt Lake City, UT, 84132, USA
| | - Ivana Kim
- Department of Ophthalmology and Visual Sciences, University of Utah School of Medicine, Salt Lake City, UT, 84132, USA
| | - Denise Morgan
- Department of Ophthalmology and Visual Sciences, University of Utah School of Medicine, Salt Lake City, UT, 84132, USA
- Department of Pharmacotherapy, the College of Pharmacy, University of Utah, Salt Lake City, UT, 84132, USA
| | - Shaoheng Liang
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Nathaniel Wu
- HGSC, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Ken Chen
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Margaret M DeAngelis
- Department of Ophthalmology and Visual Sciences, University of Utah School of Medicine, Salt Lake City, UT, 84132, USA.
- Department of Pharmacotherapy, the College of Pharmacy, University of Utah, Salt Lake City, UT, 84132, USA.
- Department of Population Health Sciences, University of Utah School of Medicine, Salt Lake City, UT, 84132, USA.
| | - Rui Chen
- HGSC, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA.
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, 77030, TX, USA.
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX, 77030, USA.
| |
Collapse
|
27
|
Leber congenital amaurosis: Current genetic basis, scope for genetic testing and personalized medicine. Exp Eye Res 2019; 189:107834. [PMID: 31639339 DOI: 10.1016/j.exer.2019.107834] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 10/06/2019] [Accepted: 10/10/2019] [Indexed: 02/07/2023]
Abstract
Retinal dystrophies are one of the leading causes of pediatric congenital blindness. Leber's congenital amaurosis (LCA) encompasses one of the most severe forms of inherited retinal dystrophy responsible for early-onset childhood blindness in infancy. These are clinically characterized by nystagmus, amaurotic pupil response and markedly reduced or in most instances completely absent full-field electroretinogram. LCA exhibits immense genetic heterogeneity. With advances in next-generation genetic technologies, tremendous progress has been achieved over the last two decades in discovering genes and genetic defects leading to retinal dystrophies. Currently, 28 genes have been implicated in the pathogenesis of LCA and with initial reports of success in management with targeted gene therapy the disease has attracted a lot of research attention in the recent time. The review provides an update on genetic basis of LCA, scope for genetic testing and pharmacogenetic medicine in diagnosis and treatment of these diseases.
Collapse
|
28
|
Miyamichi D, Nishina S, Hosono K, Yokoi T, Kurata K, Sato M, Hotta Y, Azuma N. Retinal structure in Leber's congenital amaurosis caused by RPGRIP1 mutations. Hum Genome Var 2019; 6:32. [PMID: 31666973 PMCID: PMC6804879 DOI: 10.1038/s41439-019-0064-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2019] [Revised: 04/29/2019] [Accepted: 05/12/2019] [Indexed: 12/27/2022] Open
Abstract
This study aimed to evaluate retinal structure in the early stage of Leber’s congenital amaurosis (LCA) caused by RPGRIP1 mutations. Four patients from two families were included. Case 1 was a 13-year-old girl, cases 2 and 3 were 7-year-old monozygotic twin brothers of case 1, and case 4 was a 17-year-old boy. Comprehensive ophthalmic examinations were performed, including visual acuity measurements, perimetry, electroretinography (ERG), and optical coherence tomography (OCT). To identify potential pathogenic mutations, 74 genes known to cause retinitis pigmentosa or LCA were assessed using targeted next-generation sequencing. OCT showed photoreceptor outer nuclear layer (ONL) thinning in all patients. The lamellar structure was retained in all patients, whereas the ellipsoid zone was extinguished in cases 1, 2, and 3. In case 4, the ellipsoid zone was maintained at 9 years of age but became blurred at 17 years of age. In case 1, OCT indicated slight photoreceptor ONL thinning during the period between 7 and 11 years of age. Mutation analysis revealed RPGRIP1 mutations as the cause for autosomal recessive LCA in all patients. Photoreceptor ONL on OCT is relatively well preserved in the early stage of LCA caused by RPGRIP1 mutations. Researchers in Japan have characterized the early stages of the inherited retinal disease Leber’s congenital amaurosis (LCA), raising hope that gene therapy could help before the disease progresses too far. LCA results in early-onset blindness or severe visual impairment and has been linked with several genes, including RPGRIP1. Daisuke Miyamichi from Hamamatsu University School of Medicine, Japan, and coworkers conducted ophthalamic tests on four young patients with RPGRIP1 mutations. In all four cases, they found thinning of the photoreceptor outer nuclear layer, a layer of the retina. The outer nuclear layer progressively thinned in consecutive samples taken from the same patient at different ages, and was better retained in the younger patients. Taken together, these findings suggest that gene therapy to correct RPGRIP1 mutations could be effective if carried out in early childhood.
Collapse
Affiliation(s)
- Daisuke Miyamichi
- 1Department of Ophthalmology, Hamamatsu University School of Medicine, Shizuoka, Japan
| | - Sachiko Nishina
- 2Department of Ophthalmology and Laboratory for Visual Science, National Center for Child Health and Development, Tokyo, Japan
| | - Katsuhiro Hosono
- 1Department of Ophthalmology, Hamamatsu University School of Medicine, Shizuoka, Japan
| | - Tadashi Yokoi
- 2Department of Ophthalmology and Laboratory for Visual Science, National Center for Child Health and Development, Tokyo, Japan
| | - Kentaro Kurata
- 1Department of Ophthalmology, Hamamatsu University School of Medicine, Shizuoka, Japan
| | - Miho Sato
- 1Department of Ophthalmology, Hamamatsu University School of Medicine, Shizuoka, Japan
| | - Yoshihiro Hotta
- 1Department of Ophthalmology, Hamamatsu University School of Medicine, Shizuoka, Japan
| | - Noriyuki Azuma
- 2Department of Ophthalmology and Laboratory for Visual Science, National Center for Child Health and Development, Tokyo, Japan
| |
Collapse
|
29
|
Abstract
Rods and cones are retinal photoreceptor neurons required for our visual sensation. Because of their highly polarized structures and well-characterized processes of G protein-coupled receptor-mediated phototransduction signaling, these photoreceptors have been excellent models for studying the compartmentalization and sorting of proteins. Rods and cones have a modified ciliary compartment called the outer segment (OS) as well as non-OS compartments. The distinct membrane protein compositions between OS and non-OS compartments suggest that the OS is separated from the rest of the cellular compartments by multiple barriers or gates that are selectively permissive to specific cargoes. This review discusses the mechanisms of protein sorting and compartmentalization in photoreceptor neurons. Proper sorting and compartmentalization of membrane proteins are required for signal transduction and transmission. This review also discusses the roles of compartmentalized signaling, which is compromised in various retinal ciliopathies.
Collapse
Affiliation(s)
- Yoshikazu Imanishi
- Department of Pharmacology, School of Medicine, Case Western Reserve University, Cleveland, Ohio 44106, USA;
| |
Collapse
|
30
|
Wheway G, Nazlamova L, Turner D, Cross S. 661W Photoreceptor Cell Line as a Cell Model for Studying Retinal Ciliopathies. Front Genet 2019; 10:308. [PMID: 31024622 PMCID: PMC6459963 DOI: 10.3389/fgene.2019.00308] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Accepted: 03/21/2019] [Indexed: 12/20/2022] Open
Abstract
The retina contains several ciliated cell types, including the retinal pigment epithelium (RPE) and photoreceptor cells. The photoreceptor cilium is one of the most highly modified sensory cilia in the human body. The outer segment of the photoreceptor is a highly elaborate primary cilium, containing stacks or folds of membrane where the photopigment molecules are located. Perhaps unsurprisingly, defects in cilia often lead to retinal phenotypes, either as part of syndromic conditions involving other organs, or in isolation in the so-called retinal ciliopathies. The study of retinal ciliopathies has been limited by a lack of retinal cell lines. RPE1 retinal pigment epithelial cell line is commonly used in such studies, but the existence of a photoreceptor cell line has largely been neglected in the retinal ciliopathy field. 661W cone photoreceptor cells, derived from mouse, have been widely used as a model for studying macular degeneration, but not described as a model for studying retinal ciliopathies such as retinitis pigmentosa. Here, we characterize the 661W cell line as a model for studying retinal ciliopathies. We fully characterize the expression profile of these cells, using whole transcriptome RNA sequencing, and provide this data on Gene Expression Omnibus for the advantage of the scientific community. We show that these cells express the majority of markers of cone cell origin. Using immunostaining and confocal microscopy, alongside scanning electron microscopy, we show that these cells grow long primary cilia, reminiscent of photoreceptor outer segments, and localize many cilium proteins to the axoneme, membrane and transition zone. We show that siRNA knockdown of cilia genes Ift88 results in loss of cilia, and that this can be assayed by high-throughput screening. We present evidence that the 661W cell line is a useful cell model for studying retinal ciliopathies.
Collapse
Affiliation(s)
- Gabrielle Wheway
- Centre for Research in Biosciences, University of the West of England, Bristol, Bristol, United Kingdom.,Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, United Kingdom.,Human Development and Health, Southampton General Hospital, Southampton, United Kingdom
| | - Liliya Nazlamova
- Centre for Research in Biosciences, University of the West of England, Bristol, Bristol, United Kingdom.,Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, United Kingdom.,Human Development and Health, Southampton General Hospital, Southampton, United Kingdom
| | - Dann Turner
- Centre for Research in Biosciences, University of the West of England, Bristol, Bristol, United Kingdom
| | - Stephen Cross
- Wolfson Bioimaging Facility, University of Bristol, Bristol, United Kingdom
| |
Collapse
|
31
|
Baehr W, Hanke-Gogokhia C, Sharif A, Reed M, Dahl T, Frederick JM, Ying G. Insights into photoreceptor ciliogenesis revealed by animal models. Prog Retin Eye Res 2018; 71:26-56. [PMID: 30590118 DOI: 10.1016/j.preteyeres.2018.12.004] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Revised: 12/10/2018] [Accepted: 12/18/2018] [Indexed: 12/11/2022]
Abstract
Photoreceptors are polarized neurons, with very specific subcellular compartmentalization and unique requirements for protein expression and trafficking. Each photoreceptor contains an outer segment, the site of photon capture that initiates vision, an inner segment that houses the biosynthetic machinery and a synaptic terminal for signal transmission to downstream neurons. Outer segments and inner segments are connected by a connecting cilium (CC), the equivalent of a transition zone (TZ) of primary cilia. The connecting cilium is part of the basal body/axoneme backbone that stabilizes the outer segment. This report will update the reader on late developments in photoreceptor ciliogenesis and transition zone formation, specifically in mouse photoreceptors, focusing on early events in photoreceptor ciliogenesis. The connecting cilium, an elongated and narrow structure through which all outer segment proteins and membrane components must traffic, functions as a gate that controls access to the outer segment. Here we will review genes and their protein products essential for basal body maturation and for CC/TZ genesis, sorted by phenotype. Emphasis is given to naturally occurring mouse mutants and gene knockouts that interfere with CC/TZ formation and ciliogenesis.
Collapse
Affiliation(s)
- Wolfgang Baehr
- Department of Ophthalmology and Visual Sciences, University of Utah Health Sciences, Salt Lake City, UT, 84132, USA.
| | - Christin Hanke-Gogokhia
- Department of Ophthalmology and Visual Sciences, University of Utah Health Sciences, Salt Lake City, UT, 84132, USA
| | - Ali Sharif
- Department of Ophthalmology and Visual Sciences, University of Utah Health Sciences, Salt Lake City, UT, 84132, USA
| | - Michelle Reed
- Department of Ophthalmology and Visual Sciences, University of Utah Health Sciences, Salt Lake City, UT, 84132, USA
| | - Tiffanie Dahl
- Department of Ophthalmology and Visual Sciences, University of Utah Health Sciences, Salt Lake City, UT, 84132, USA
| | - Jeanne M Frederick
- Department of Ophthalmology and Visual Sciences, University of Utah Health Sciences, Salt Lake City, UT, 84132, USA
| | - Guoxin Ying
- Department of Ophthalmology and Visual Sciences, University of Utah Health Sciences, Salt Lake City, UT, 84132, USA
| |
Collapse
|
32
|
Birtel J, Gliem M, Mangold E, Müller PL, Holz FG, Neuhaus C, Lenzner S, Zahnleiter D, Betz C, Eisenberger T, Bolz HJ, Charbel Issa P. Next-generation sequencing identifies unexpected genotype-phenotype correlations in patients with retinitis pigmentosa. PLoS One 2018; 13:e0207958. [PMID: 30543658 PMCID: PMC6292620 DOI: 10.1371/journal.pone.0207958] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Accepted: 11/08/2018] [Indexed: 12/13/2022] Open
Abstract
Retinitis pigmentosa (RP) is an inherited degenerative disease causing severe retinal dystrophy and visual impairment mainly with onset in infancy or adolescence. Targeted next-generation sequencing (NGS) has become an efficient tool to encounter the enormous genetic heterogeneity of diverse retinal dystrophies, including RP. To identify disease-causing mutations in unselected, consecutive RP patients, we conducted Sanger sequencing of genes commonly involved in the suspected genetic RP subtype, followed by targeted large-panel NGS if no mutation was identified, or NGS as primary analysis. A high (70%) detection rate of disease-causing mutations was achieved in a large cohort of 116 unrelated patients. About half (48%) of the solved RP cases were explained by mutations in four genes: RPGR, EYS, PRPF31 and USH2A. Overall, 110 different mutations distributed across 30 different genes were detected, and 46 of these mutations were novel. A molecular diagnosis was achieved in the majority (82–100%) of patients if the family history was suggestive for a particular mode of inheritance, but only in 60% in cases of sporadic RP. The diagnostic potential of extensive molecular analysis in a routine setting is also illustrated by the identification of unexpected genotype-phenotype correlations for RP patients with mutations in CRX, CEP290, RPGRIP1, MFSD8. Furthermore, we identified numerous mutations in autosomal dominant (PRPF31, PRPH2, CRX) and X-linked (RPGR) RP genes in patients with sporadic RP. Variants in RP2 and RPGR were also found in female RP patients with apparently sporadic or dominant disease. In summary, this study demonstrates that massively parallel sequencing of all known retinal dystrophy genes is a valuable diagnostic approach for RP patients.
Collapse
Affiliation(s)
- Johannes Birtel
- Department of Ophthalmology, University of Bonn, Bonn, Germany
- Center for Rare Diseases Bonn (ZSEB), University of Bonn, Bonn, Germany
| | - Martin Gliem
- Department of Ophthalmology, University of Bonn, Bonn, Germany
- Center for Rare Diseases Bonn (ZSEB), University of Bonn, Bonn, Germany
| | | | - Philipp L. Müller
- Department of Ophthalmology, University of Bonn, Bonn, Germany
- Center for Rare Diseases Bonn (ZSEB), University of Bonn, Bonn, Germany
| | - Frank G. Holz
- Department of Ophthalmology, University of Bonn, Bonn, Germany
- Center for Rare Diseases Bonn (ZSEB), University of Bonn, Bonn, Germany
| | | | | | | | - Christian Betz
- Bioscientia Center for Human Genetics, Ingelheim, Germany
| | | | - Hanno J. Bolz
- Bioscientia Center for Human Genetics, Ingelheim, Germany
- Institute of Human Genetics, University Hospital of Cologne, Cologne, Germany
| | - Peter Charbel Issa
- Department of Ophthalmology, University of Bonn, Bonn, Germany
- Center for Rare Diseases Bonn (ZSEB), University of Bonn, Bonn, Germany
- Oxford Eye Hospital, Oxford University Hospitals NHS Foundation Trust, and Nuffield Laboratory of Ophthalmology, Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
- * E-mail:
| |
Collapse
|
33
|
Wiegering A, Rüther U, Gerhardt C. The ciliary protein Rpgrip1l in development and disease. Dev Biol 2018; 442:60-68. [DOI: 10.1016/j.ydbio.2018.07.024] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Revised: 07/13/2018] [Accepted: 07/28/2018] [Indexed: 12/28/2022]
|
34
|
Dharmat R, Eblimit A, Robichaux MA, Zhang Z, Nguyen TMT, Jung SY, He F, Jain A, Li Y, Qin J, Overbeek P, Roepman R, Mardon G, Wensel TG, Chen R. SPATA7 maintains a novel photoreceptor-specific zone in the distal connecting cilium. J Cell Biol 2018; 217:2851-2865. [PMID: 29899041 PMCID: PMC6080925 DOI: 10.1083/jcb.201712117] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 05/09/2018] [Accepted: 05/23/2018] [Indexed: 12/25/2022] Open
Abstract
Photoreceptor-specific ciliopathies often affect a structure that is considered functionally homologous to the ciliary transition zone (TZ) called the connecting cilium (CC). However, it is unclear how mutations in certain ciliary genes disrupt the photoreceptor CC without impacting the primary cilia systemically. By applying stochastic optical reconstruction microscopy technology in different genetic models, we show that the CC can be partitioned into two regions: the proximal CC (PCC), which is homologous to the TZ of primary cilia, and the distal CC (DCC), a photoreceptor-specific extension of the ciliary TZ. This specialized distal zone of the CC in photoreceptors is maintained by SPATA7, which interacts with other photoreceptor-specific ciliary proteins such as RPGR and RPGRIP1. The absence of Spata7 results in the mislocalization of DCC proteins without affecting the PCC protein complexes. This collapse results in destabilization of the axonemal microtubules, which consequently results in photoreceptor degeneration. These data provide a novel mechanism to explain how genetic disruption of ubiquitously present ciliary proteins exerts tissue-specific ciliopathy phenotypes.
Collapse
Affiliation(s)
- Rachayata Dharmat
- Molecular and Human Genetics, Baylor College of Medicine, Houston, TX
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX
| | - Aiden Eblimit
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX
| | - Michael A Robichaux
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX
| | - Zhixian Zhang
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX
| | - Thanh-Minh T Nguyen
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, Netherlands
- Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - Sung Yun Jung
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX
| | - Feng He
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX
| | - Antrix Jain
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX
| | - Yumei Li
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX
| | - Jun Qin
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX
| | - Paul Overbeek
- Molecular and Human Genetics, Baylor College of Medicine, Houston, TX
| | - Ronald Roepman
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, Netherlands
- Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - Graeme Mardon
- Molecular and Human Genetics, Baylor College of Medicine, Houston, TX
- Pathology and Immunology, Baylor College of Medicine, Houston, TX
| | - Theodore G Wensel
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX
| | - Rui Chen
- Molecular and Human Genetics, Baylor College of Medicine, Houston, TX
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX
| |
Collapse
|
35
|
Patnaik SR, Zhang X, Biswas L, Akhtar S, Zhou X, Kusuluri DK, Reilly J, May-Simera H, Chalmers S, McCarron JG, Shu X. RPGR protein complex regulates proteasome activity and mediates store-operated calcium entry. Oncotarget 2018; 9:23183-23197. [PMID: 29796181 PMCID: PMC5955404 DOI: 10.18632/oncotarget.25259] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Accepted: 04/07/2018] [Indexed: 11/25/2022] Open
Abstract
Ciliopathies are a group of genetically heterogeneous disorders, characterized by defects in cilia genesis or maintenance. Mutations in the RPGR gene and its interacting partners, RPGRIP1 and RPGRIP1L, cause ciliopathies, but the function of their proteins remains unclear. Here we show that knockdown (KD) of RPGR, RPGRIP1 or RPGRIP1L in hTERT-RPE1 cells results in abnormal actin cytoskeleton organization. The actin cytoskeleton rearrangement is regulated by the small GTPase RhoA via the planar cell polarity (PCP) pathway. RhoA activity was upregulated in the absence of RPGR, RPGRIP1 or RPGRIP1L proteins. In RPGR, RPGRIP1 or RPGRIP1L KD cells, we observed increased levels of DVl2 and DVl3 proteins, the core components of the PCP pathway, due to impaired proteasomal activity. RPGR, RPGRIP1 or RPGRIP1L KD cells treated with thapsigargin (TG), an inhibitor of sarcoendoplasmic reticulum Ca2+- ATPases, showed impaired store-operated Ca2+ entry (SOCE), which is mediated by STIM1 and Orai1 proteins. STIM1 was not localized to the ER-PM junction upon ER store depletion in RPGR, RPGRIP1 or RPGRIP1L KD cells. Our results demonstrate that the RPGR protein complex is required for regulating proteasomal activity and for modulating SOCE, which may contribute to the ciliopathy phenotype.
Collapse
Affiliation(s)
- Sarita Rani Patnaik
- Department of Life Sciences, Glasgow Caledonian University, Glasgow G4 0BA, Scotland
- Institute of Molecular Physiology, Johannes Gutenberg-Universität Mainz, D-55128 Mainz, Germany
| | - Xun Zhang
- Department of Life Sciences, Glasgow Caledonian University, Glasgow G4 0BA, Scotland
| | - Lincoln Biswas
- Department of Life Sciences, Glasgow Caledonian University, Glasgow G4 0BA, Scotland
| | - Saeed Akhtar
- Cornea Research Chair, Department of Optometry, King Saud University, Riyadh 11433, Kingdom of Saudi Arabia
| | - Xinzhi Zhou
- Department of Life Sciences, Glasgow Caledonian University, Glasgow G4 0BA, Scotland
| | - Deva Krupakar Kusuluri
- Institute of Molecular Physiology, Johannes Gutenberg-Universität Mainz, D-55128 Mainz, Germany
| | - James Reilly
- Department of Life Sciences, Glasgow Caledonian University, Glasgow G4 0BA, Scotland
| | - Helen May-Simera
- Institute of Molecular Physiology, Johannes Gutenberg-Universität Mainz, D-55128 Mainz, Germany
| | - Susan Chalmers
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow G4 0RE, Scotland
| | - John G. McCarron
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow G4 0RE, Scotland
| | - Xinhua Shu
- Department of Life Sciences, Glasgow Caledonian University, Glasgow G4 0BA, Scotland
| |
Collapse
|
36
|
Wiegering A, Dildrop R, Kalfhues L, Spychala A, Kuschel S, Lier JM, Zobel T, Dahmen S, Leu T, Struchtrup A, Legendre F, Vesque C, Schneider-Maunoury S, Saunier S, Rüther U, Gerhardt C. Cell type-specific regulation of ciliary transition zone assembly in vertebrates. EMBO J 2018; 37:embj.201797791. [PMID: 29650680 PMCID: PMC5978567 DOI: 10.15252/embj.201797791] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Revised: 03/12/2018] [Accepted: 03/15/2018] [Indexed: 01/07/2023] Open
Abstract
Ciliopathies are life-threatening human diseases caused by defective cilia. They can often be traced back to mutations of genes encoding transition zone (TZ) proteins demonstrating that the understanding of TZ organisation is of paramount importance. The TZ consists of multimeric protein modules that are subject to a stringent assembly hierarchy. Previous reports place Rpgrip1l at the top of the TZ assembly hierarchy in Caenorhabditis elegans By performing quantitative immunofluorescence studies in RPGRIP1L-/- mouse embryos and human embryonic cells, we recognise a different situation in vertebrates in which Rpgrip1l deficiency affects TZ assembly in a cell type-specific manner. In cell types in which the loss of Rpgrip1l alone does not affect all modules, additional truncation or removal of vertebrate-specific Rpgrip1 results in an impairment of all modules. Consequently, Rpgrip1l and Rpgrip1 synergistically ensure the TZ composition in several vertebrate cell types, revealing a higher complexity of TZ assembly in vertebrates than in invertebrates.
Collapse
Affiliation(s)
- Antonia Wiegering
- Institute for Animal Developmental and Molecular Biology, Heinrich Heine University, Düsseldorf, Germany
| | - Renate Dildrop
- Institute for Animal Developmental and Molecular Biology, Heinrich Heine University, Düsseldorf, Germany
| | - Lisa Kalfhues
- Institute for Animal Developmental and Molecular Biology, Heinrich Heine University, Düsseldorf, Germany
| | - André Spychala
- Institute for Animal Developmental and Molecular Biology, Heinrich Heine University, Düsseldorf, Germany
| | - Stefanie Kuschel
- Institute for Animal Developmental and Molecular Biology, Heinrich Heine University, Düsseldorf, Germany
| | - Johanna Maria Lier
- Institute for Animal Developmental and Molecular Biology, Heinrich Heine University, Düsseldorf, Germany
| | - Thomas Zobel
- Center for Advanced Imaging (CAi), Heinrich Heine University, Düsseldorf, Germany
| | - Stefanie Dahmen
- Institute for Animal Developmental and Molecular Biology, Heinrich Heine University, Düsseldorf, Germany
| | - Tristan Leu
- Institute for Animal Developmental and Molecular Biology, Heinrich Heine University, Düsseldorf, Germany
| | - Andreas Struchtrup
- Institute for Animal Developmental and Molecular Biology, Heinrich Heine University, Düsseldorf, Germany
| | - Flora Legendre
- INSERM, U983, Hôpital Necker-Enfants Malades, Paris, France.,Sorbonne Paris Cité, Faculté de Médecine, Université Paris-Descartes, Paris, France
| | - Christine Vesque
- Paris-Seine (IBPS) - Developmental Biology Laboratory, Institut de Biologie, CNRS, UMR7622, INSERM U1156, Paris, France.,Sorbonne Universités, UPMC Univ Paris 06, Paris, France
| | - Sylvie Schneider-Maunoury
- Paris-Seine (IBPS) - Developmental Biology Laboratory, Institut de Biologie, CNRS, UMR7622, INSERM U1156, Paris, France.,Sorbonne Universités, UPMC Univ Paris 06, Paris, France
| | - Sophie Saunier
- INSERM, U983, Hôpital Necker-Enfants Malades, Paris, France.,Sorbonne Paris Cité, Faculté de Médecine, Université Paris-Descartes, Paris, France
| | - Ulrich Rüther
- Institute for Animal Developmental and Molecular Biology, Heinrich Heine University, Düsseldorf, Germany
| | - Christoph Gerhardt
- Institute for Animal Developmental and Molecular Biology, Heinrich Heine University, Düsseldorf, Germany
| |
Collapse
|
37
|
Targeted next generation sequencing identified novel mutations in RPGRIP1 associated with both retinitis pigmentosa and Leber's congenital amaurosis in unrelated Chinese patients. Oncotarget 2018; 8:35176-35183. [PMID: 28456785 PMCID: PMC5471044 DOI: 10.18632/oncotarget.17052] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Accepted: 03/15/2017] [Indexed: 01/01/2023] Open
Abstract
As the most common inherited retinal degenerations, retinitis pigmentosa (RP) is clinically and genetically heterogeneous. Some of the RP genes are also associated with other retinal diseases, such as LCA (Leber's congenital amaurosis) and CORD (cone-rod dystrophy). Here, in our molecular diagnosis of 99 Chinese RP patients using targeted gene capture sequencing, three probands were found to carry mutations of RPGRIP1, which was known to be associated with pathogenesis of LCA and CORD. By further clinical analysis, two probands were confirmed to be RP patients and one was confirmed to be LCA patient. These novel mutations were co-segregated with the disease phenotype in their families. Our result not only expands the mutational spectrum of the RPGRIP1 gene but also gives supports to clinical diagnosis and molecular treatment of RP patients.
Collapse
|
38
|
Imani S, Cheng J, Mobasher‐Jannat A, Wei C, Fu S, Yang L, Jadidi K, Khosravi MH, Mohazzab‐Torabi S, Shasaltaneh MD, Li Y, Chen R, Fu J. Identification of a novel RPGRIP1 mutation in an Iranian family with leber congenital amaurosis by exome sequencing. J Cell Mol Med 2018; 22:1733-1742. [PMID: 29193763 PMCID: PMC5824405 DOI: 10.1111/jcmm.13454] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Accepted: 10/13/2017] [Indexed: 12/18/2022] Open
Abstract
Leber congenital amaurosis (LCA) is a heterogeneous, early-onset inherited retinal dystrophy, which is associated with severe visual impairment. We aimed to determine the disease-causing variants in Iranian LCA and evaluate the clinical implications. Clinically, a possible LCA disease was found through diagnostic imaging, such as fundus photography, autofluorescence and optical coherence tomography. All affected patients showed typical eye symptoms associated with LCA including narrow arterioles, blindness, pigmentary changes and nystagmus. Target exome sequencing was performed to analyse the proband DNA. A homozygous novel c. 2889delT (p.P963 fs) mutation in the RPGRIP1 gene was identified, which was likely the deleterious and pathogenic mutation in the proband. Structurally, this mutation lost a retinitis pigmentosa GTPase regulator (RPGR)-interacting domain at the C-terminus which most likely impaired stability in the RPGRIP1 with the distribution of polarised proteins in the cilium connecting process. Sanger sequencing showed complete co-segregation in this pedigree. This study provides compelling evidence that the c. 2889delT (p.P963 fs) mutation in the RPGRIP1 gene works as a pathogenic mutation that contributes to the progression of LCA.
Collapse
Affiliation(s)
- Saber Imani
- Key Laboratory of Epigenetics and OncologyResearch Center for Preclinical MedicineSouthwest Medical UniversityLuzhouSichuanChina
- Hunan Normal University Medical CollegeChangshaHunanChina
- Chemical Injuries Research CenterBaqiyatallah University of Medical SciencesTehranIran
| | - Jingliang Cheng
- Key Laboratory of Epigenetics and OncologyResearch Center for Preclinical MedicineSouthwest Medical UniversityLuzhouSichuanChina
| | - Abdolkarim Mobasher‐Jannat
- Chemical Injuries Research CenterBaqiyatallah University of Medical SciencesTehranIran
- Student Research CommitteeBaqiyatallah University of Medical SciencesTehran Iran
| | - Chunli Wei
- Key Laboratory of Epigenetics and OncologyResearch Center for Preclinical MedicineSouthwest Medical UniversityLuzhouSichuanChina
| | - Shangyi Fu
- The Honors CollegeUniversity of HoustonHoustonTXUSA
- Department of Molecular and Human GeneticsBaylor College of MedicineHoustonTXUSA
| | - Lisha Yang
- Key Laboratory of Epigenetics and OncologyResearch Center for Preclinical MedicineSouthwest Medical UniversityLuzhouSichuanChina
| | - Khosrow Jadidi
- Department of OphthalmologyBaqiyatallah University of Medical SciencesTehranIran
| | | | - Saman Mohazzab‐Torabi
- Eye Research CenterFarabi Eye HospitalTehran University of Medical SciencesTehranIran
| | - Marzieh Dehghan Shasaltaneh
- Laboratory of Neuro‐organic ChemistryInstitute of Biochemistry and Biophysics (IBB)University of TehranTehranIran
- Laboratory of Systems Biology and Bioinformatics (LBB)Institute of Biochemistry and BiophysicsUniversity of TehranTehranIran
| | - Yumei Li
- Department of Molecular and Human GeneticsBaylor College of MedicineHoustonTXUSA
| | - Rui Chen
- Department of Molecular and Human GeneticsBaylor College of MedicineHoustonTXUSA
| | - Junjiang Fu
- Key Laboratory of Epigenetics and OncologyResearch Center for Preclinical MedicineSouthwest Medical UniversityLuzhouSichuanChina
- Hunan Normal University Medical CollegeChangshaHunanChina
| |
Collapse
|
39
|
Kumaran N, Smith AJ, Michaelides M, Ali R, Bainbridge J. Gene therapy for Leber congenital amaurosis. EXPERT REVIEW OF OPHTHALMOLOGY 2018. [DOI: 10.1080/17469899.2018.1429916] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Neruban Kumaran
- NIHR Biomedical Research Centre for Ophthalmology, UCL and Moorfields Eye Hospital, London, UK
| | - Alexander J. Smith
- NIHR Biomedical Research Centre for Ophthalmology, UCL and Moorfields Eye Hospital, London, UK
| | - Michel Michaelides
- NIHR Biomedical Research Centre for Ophthalmology, UCL and Moorfields Eye Hospital, London, UK
| | - Robin Ali
- NIHR Biomedical Research Centre for Ophthalmology, UCL and Moorfields Eye Hospital, London, UK
| | - James Bainbridge
- NIHR Biomedical Research Centre for Ophthalmology, UCL and Moorfields Eye Hospital, London, UK
| |
Collapse
|
40
|
Li S, Xi Q, Zhang X, Yu D, Li L, Jiang Z, Chen Q, Wang QK, Traboulsi EI. Identification of a mutation in CNNM4 by whole exome sequencing in an Amish family and functional link between CNNM4 and IQCB1. Mol Genet Genomics 2018; 293:699-710. [PMID: 29322253 DOI: 10.1007/s00438-018-1417-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Accepted: 01/06/2018] [Indexed: 12/15/2022]
Abstract
We investigated an Amish family in which three siblings presented with an early-onset childhood retinal dystrophy inherited in an autosomal recessive fashion. Genome-wide linkage analysis identified significant linkage to marker D2S2216 on 2q11 with a two-point LOD score of 1.95 and a multi-point LOD score of 3.76. Whole exome sequencing was then performed for the three affected individuals and identified a homozygous nonsense mutation (c.C1813T, p.R605X) in the cyclin and CBS domain divalent metal cation transport mediator 4 (CNNM4) gene located within the 2p14-2q14 Jalili syndrome locus. The initial assessment and collection of the family were performed before the clinical delineation of Jalili syndrome. Another assessment was made after the discovery of the responsible gene and the dental abnormalities characteristic of Jalili syndrome were retrospectively identified. The p.R605X mutation represents the first probable founder mutation of Jalili syndrome identified in the Amish community. The molecular mechanism underlying Jalili syndrome is unknown. Here we show that CNNM4 interacts with IQCB1, which causes Leber congenital amaurosis (LCA) when mutated. A truncated CNNM4 protein starting at R605 significantly increased the rate of apoptosis, and significantly increased the interaction between CNNM4 and IQCB1. Mutation p.R605X may cause Jalili syndrome by a nonsense-mediated decay mechanism, affecting the function of IQCB1 and apoptosis, or both. Our data, for the first time, functionally link Jalili syndrome gene CNNM4 to LCA gene IQCB1, providing important insights into the molecular pathogenic mechanism of retinal dystrophy in Jalili syndrome.
Collapse
Affiliation(s)
- Sisi Li
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Center for Human Genome Research and Cardio-X Institute, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Quansheng Xi
- Department of Molecular Cardiology, Center for Cardiovascular Genetics, Cleveland Clinic Lerner Research Institute, Cleveland, OH, 44195, USA
| | - Xiaoyu Zhang
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Center for Human Genome Research and Cardio-X Institute, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Dong Yu
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Center for Human Genome Research and Cardio-X Institute, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Lin Li
- Department of Molecular Cardiology, Center for Cardiovascular Genetics, Cleveland Clinic Lerner Research Institute, Cleveland, OH, 44195, USA
| | - Zhenyang Jiang
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Center for Human Genome Research and Cardio-X Institute, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Qiuyun Chen
- Department of Molecular Cardiology, Center for Cardiovascular Genetics, Cleveland Clinic Lerner Research Institute, Cleveland, OH, 44195, USA
- Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Cleveland, USA
- Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, OH, 44195, USA
| | - Qing K Wang
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Center for Human Genome Research and Cardio-X Institute, Huazhong University of Science and Technology, Wuhan, 430074, China.
- Department of Molecular Cardiology, Center for Cardiovascular Genetics, Cleveland Clinic Lerner Research Institute, Cleveland, OH, 44195, USA.
- Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Cleveland, USA.
- Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, OH, 44195, USA.
| | - Elias I Traboulsi
- Center for Genetic Eye Diseases, Cleveland Clinic Cole Eye Institute, Cleveland, OH, 44195, USA.
| |
Collapse
|
41
|
Rpgrip1 is required for rod outer segment development and ciliary protein trafficking in zebrafish. Sci Rep 2017; 7:16881. [PMID: 29203866 PMCID: PMC5715152 DOI: 10.1038/s41598-017-12838-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Accepted: 09/14/2017] [Indexed: 12/23/2022] Open
Abstract
Mutations in the RPGR-interacting protein 1 (RPGRIP1) gene cause recessive Leber congenital amaurosis (LCA), juvenile retinitis pigmentosa (RP) and cone-rod dystrophy. RPGRIP1 interacts with other retinal disease-causing proteins and has been proposed to have a role in ciliary protein transport; however, its function remains elusive. Here, we describe a new zebrafish model carrying a nonsense mutation in the rpgrip1 gene. Rpgrip1homozygous mutants do not form rod outer segments and display mislocalization of rhodopsin, suggesting a role for RPGRIP1 in rhodopsin-bearing vesicle trafficking. Furthermore, Rab8, the key regulator of rhodopsin ciliary trafficking, was mislocalized in photoreceptor cells of rpgrip1 mutants. The degeneration of rod cells is early onset, followed by the death of cone cells. These phenotypes are similar to that observed in LCA and juvenile RP patients. Our data indicate RPGRIP1 is necessary for rod outer segment development through regulating ciliary protein trafficking. The rpgrip1 mutant zebrafish may provide a platform for developing therapeutic treatments for RP patients.
Collapse
|
42
|
Seo S, Datta P. Photoreceptor outer segment as a sink for membrane proteins: hypothesis and implications in retinal ciliopathies. Hum Mol Genet 2017; 26:R75-R82. [PMID: 28453661 DOI: 10.1093/hmg/ddx163] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2017] [Accepted: 04/24/2017] [Indexed: 12/28/2022] Open
Abstract
The photoreceptor outer segment (OS) is a unique modification of the primary cilium, specialized for light perception. Being homologous organelles, the primary cilium and the OS share common building blocks and molecular machinery to construct and maintain them. The OS, however, has several unique structural features that are not seen in primary cilia. Although these unique features of the OS have been well documented, their implications in protein localization have been under-appreciated. In this review, we compare the structural properties of the primary cilium and the OS, and propose a hypothesis that the OS can act as a sink for membrane proteins. We further discuss the implications of this hypothesis in polarized protein localization in photoreceptors and mechanisms of photoreceptor degeneration in retinal ciliopathies.
Collapse
Affiliation(s)
- Seongjin Seo
- Department of Ophthalmology and Visual Sciences, Wynn Institute for Vision Research, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Poppy Datta
- Department of Ophthalmology and Visual Sciences, Wynn Institute for Vision Research, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| |
Collapse
|
43
|
Bujakowska KM, Liu Q, Pierce EA. Photoreceptor Cilia and Retinal Ciliopathies. Cold Spring Harb Perspect Biol 2017; 9:cshperspect.a028274. [PMID: 28289063 DOI: 10.1101/cshperspect.a028274] [Citation(s) in RCA: 132] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Photoreceptors are sensory neurons designed to convert light stimuli into neurological responses. This process, called phototransduction, takes place in the outer segments (OS) of rod and cone photoreceptors. OS are specialized sensory cilia, with analogous structures to those present in other nonmotile cilia. Deficient morphogenesis and/or dysfunction of photoreceptor sensory cilia (PSC) caused by mutations in a variety of photoreceptor-specific and common cilia genes can lead to inherited retinal degenerations (IRDs). IRDs can manifest as isolated retinal diseases or syndromic diseases. In this review, we describe the structure and composition of PSC and different forms of ciliopathies with retinal involvement. We review the genetics of the IRDs, which are monogenic disorders but genetically diverse with regard to causality.
Collapse
Affiliation(s)
- Kinga M Bujakowska
- Ocular Genomics Institute, Massachusetts Eye and Ear Infirmary, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts 02114
| | - Qin Liu
- Ocular Genomics Institute, Massachusetts Eye and Ear Infirmary, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts 02114
| | - Eric A Pierce
- Ocular Genomics Institute, Massachusetts Eye and Ear Infirmary, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts 02114
| |
Collapse
|
44
|
Abstract
Motile and non-motile (primary) cilia are nearly ubiquitous cellular organelles. The dysfunction of cilia causes diseases known as ciliopathies. The number of reported ciliopathies (currently 35) is increasing, as is the number of established (187) and candidate (241) ciliopathy-associated genes. The characterization of ciliopathy-associated proteins and phenotypes has improved our knowledge of ciliary functions. In particular, investigating ciliopathies has helped us to understand the molecular mechanisms by which the cilium-associated basal body functions in early ciliogenesis, as well as how the transition zone functions in ciliary gating, and how intraflagellar transport enables cargo trafficking and signalling. Both basic biological and clinical studies are uncovering novel ciliopathies and the ciliary proteins involved. The assignment of these proteins to different ciliary structures, processes and ciliopathy subclasses (first order and second order) provides insights into how this versatile organelle is built, compartmentalized and functions in diverse ways that are essential for human health.
Collapse
|
45
|
Kumaran N, Moore AT, Weleber RG, Michaelides M. Leber congenital amaurosis/early-onset severe retinal dystrophy: clinical features, molecular genetics and therapeutic interventions. Br J Ophthalmol 2017; 101:1147-1154. [PMID: 28689169 PMCID: PMC5574398 DOI: 10.1136/bjophthalmol-2016-309975] [Citation(s) in RCA: 217] [Impact Index Per Article: 27.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Revised: 04/26/2017] [Accepted: 04/30/2017] [Indexed: 12/29/2022]
Abstract
Leber congenital amaurosis (LCA) and early-onset severe retinal dystrophy (EOSRD) are both genetically and phenotypically heterogeneous, and characterised clinically by severe congenital/early infancy visual loss, nystagmus, amaurotic pupils and markedly reduced/absent full-field electroretinograms. The vast genetic heterogeneity of inherited retinal disease has been established over the last 10 - 20 years, with disease-causing variants identified in 25 genes to date associated with LCA/EOSRD, accounting for 70–80% of cases, with thereby more genes yet to be identified. There is now far greater understanding of the structural and functional associations seen in the various LCA/EOSRD genotypes. Subsequent development/characterisation of LCA/EOSRD animal models has shed light on the underlying pathogenesis and allowed the demonstration of successful rescue with gene replacement therapy and pharmacological intervention in multiple models. These advancements have culminated in more than 12 completed, ongoing and anticipated phase I/II and phase III gene therapy and pharmacological human clinical trials. This review describes the clinical and genetic characteristics of LCA/EOSRD and the differential diagnoses to be considered. We discuss in further detail the diagnostic clinical features, pathophysiology, animal models and human treatment studies and trials, in the more common genetic subtypes and/or those closest to intervention.
Collapse
Affiliation(s)
- Neruban Kumaran
- UCL Institute of Ophthalmology, University College London, London, UK.,Moorfields Eye Hospital NHS Foundation Trust, London, UK
| | - Anthony T Moore
- UCL Institute of Ophthalmology, University College London, London, UK.,Moorfields Eye Hospital NHS Foundation Trust, London, UK.,University of California San Francisco, San Francisco CA, California, USA
| | - Richard G Weleber
- Casey Eye Institute, Oregon Health and Science University, Portland, Oregon, USA
| | - Michel Michaelides
- UCL Institute of Ophthalmology, University College London, London, UK.,Moorfields Eye Hospital NHS Foundation Trust, London, UK
| |
Collapse
|
46
|
Coussa RG, Lopez Solache I, Koenekoop RK. Leber congenital amaurosis, from darkness to light: An ode to Irene Maumenee. Ophthalmic Genet 2017; 38:7-15. [PMID: 28095138 DOI: 10.1080/13816810.2016.1275021] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
This article is dedicated to Irene Hussels Maumenee, Professor of Human Genetics and Ophthalmology, Johns Hopkins' Wilmer Eye Institute, Ocular Genetics Fellowship director in 1994-1995. Leber congenital amaurosis (LCA) has almost come full circle, from a profound and molecularly uncharacterized form of congenital retinal blindness to one in which a large number of causative genes and disease pathways are known, and the world's first human retinal disease to be treated by gene therapy. Dr. Maumenee's insights, efforts, and leadership have contributed significantly to this remarkable scientific journey. In this manuscript, we present a short summary of the known LCA genes, LCA disease subtypes, and emerging treatment options. Our manuscript consolidates previous knowledge with current findings in an attempt to provide a more comprehensive understanding of LCA.
Collapse
Affiliation(s)
- Razek Georges Coussa
- a Department of Paediatric Surgery, Montreal Children's Hospital , McGill University Health Centre , Montreal , Quebec , Canada.,b The McGill Ocular Genetics Laboratory, Paediatric Ophthalmology Division , Montreal Children's Hospital, McGill University Health Centre , Montreal , Quebec , Canada
| | - Irma Lopez Solache
- b The McGill Ocular Genetics Laboratory, Paediatric Ophthalmology Division , Montreal Children's Hospital, McGill University Health Centre , Montreal , Quebec , Canada
| | - Robert K Koenekoop
- a Department of Paediatric Surgery, Montreal Children's Hospital , McGill University Health Centre , Montreal , Quebec , Canada.,b The McGill Ocular Genetics Laboratory, Paediatric Ophthalmology Division , Montreal Children's Hospital, McGill University Health Centre , Montreal , Quebec , Canada
| |
Collapse
|
47
|
Abstract
Leber congenital amaurosis (LCA) is a group of severe inherited retinal dystrophies that lead to early childhood blindness. In the last decade, interest in LCA has increased as advances in genetics have been applied to better identify, classify, and treat LCA. To date, 23 LCA genes have been identified. Gene replacement in the RPE65 form of LCA represents a major advance in treatment, although limitations have been recognized. In this article, we review the clinical and genetic features of LCA and evaluate the evidence available for gene therapy in RPE65 disease.
Collapse
Affiliation(s)
- Maan Alkharashi
- a Boston Children's Hospital, Harvard Medical School , Boston , MA , USA.,b Department of Ophthalmology , King Saud University , Riyadh , Saudi Arabia
| | - Anne B Fulton
- b Department of Ophthalmology , King Saud University , Riyadh , Saudi Arabia
| |
Collapse
|
48
|
Forman OP, Hitti RJ, Boursnell M, Miyadera K, Sargan D, Mellersh C. Canine genome assembly correction facilitates identification of a MAP9 deletion as a potential age of onset modifier for RPGRIP1-associated canine retinal degeneration. Mamm Genome 2016; 27:237-45. [PMID: 27017229 DOI: 10.1007/s00335-016-9627-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Accepted: 03/15/2016] [Indexed: 11/25/2022]
Abstract
Retinal degeneration (RD) in the Miniature Long Haired Dachshund (MLHD) is a cone-rod dystrophy resulting in eventual blindness in affected individuals. In a previous study, a 44-nucleotide insertion (ins44) in exon 2 of RPGRIP1 was associated with RD. However, results on an extended population of MLHD revealed a variable RD onset age for ins44 homozygous dogs. Further investigations using a genome-wide association study comparing early onset and late onset RD cases identified an age of onset modifying locus for RD, approximately 30 Mb upstream of RPGRIP1 on chr15. In this investigation, target enriched sequencing identified a MAP9 deletion spanning approximately 22 kb associated with early RD onset. Identification of the deletion required correction to the CanFam3.1 genome build as canine MAP9 is part of a historic tandem duplication, resulting in incomplete assembly of this genome region. The deletion breakpoints were identified in MAP9 intron 10 and in a downstream partial MAP9 pseudogene. The fusion of these two genes, which we have called MAP9 EORD (microtubule-associated protein, early onset retinal degeneration), is in frame and is expressed at the RNA level, with the 3' region containing several predicted deleterious variants. We speculate that MAP9 associates with α-tubulin in the basal body of the cilium. RPGRIP1 is also known to locate to the cilium, where it is closely associated with RPGR. RPGRIP1 mutations also cause redistribution of α-tubulin away from the ciliary region in photoreceptors. Hence, a MAP9 partial deficit is a particularly attractive candidate to synergise with a partial RPGRIP1 deficit to cause a more serious disease.
Collapse
Affiliation(s)
- Oliver P Forman
- Kennel Club Genetics Centre, Animal Health Trust, Newmarket, Suffolk, CB8 7UU, UK
| | - Rebekkah J Hitti
- Kennel Club Genetics Centre, Animal Health Trust, Newmarket, Suffolk, CB8 7UU, UK.
| | - Mike Boursnell
- Kennel Club Genetics Centre, Animal Health Trust, Newmarket, Suffolk, CB8 7UU, UK
| | - Keiko Miyadera
- School of Veterinary Medicine, University of Pennsylvania, 3900 Delancey St, Philadelphia, PA, 19104, USA
| | - David Sargan
- Comparative Genetics Group, Department of Clinical Veterinary Medicine, University of Cambridge, Madingley Rd., Cambridge, CB3 0ES, UK
| | - Cathryn Mellersh
- Kennel Club Genetics Centre, Animal Health Trust, Newmarket, Suffolk, CB8 7UU, UK
| |
Collapse
|
49
|
Bales KL, Gross AK. Aberrant protein trafficking in retinal degenerations: The initial phase of retinal remodeling. Exp Eye Res 2015; 150:71-80. [PMID: 26632497 DOI: 10.1016/j.exer.2015.11.007] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Revised: 11/04/2015] [Accepted: 11/09/2015] [Indexed: 12/18/2022]
Abstract
Retinal trafficking proteins are involved in molecular assemblies that govern protein transport, orchestrate cellular events involved in cilia formation, regulate signal transduction, autophagy and endocytic trafficking, all of which if not properly controlled initiate retinal degeneration. Improper function and or trafficking of these proteins and molecular networks they are involved in cause a detrimental cascade of neural retinal remodeling due to cell death, resulting as devastating blinding diseases. A universal finding in retinal degenerative diseases is the profound detection of retinal remodeling, occurring as a phased modification of neural retinal function and structure, which begins at the molecular level. Retinal remodeling instigated by aberrant trafficking of proteins encompasses many forms of retinal degenerations, such as the diverse forms of retinitis pigmentosa (RP) and disorders that resemble RP through mutations in the rhodopsin gene, retinal ciliopathies, and some forms of glaucoma and age-related macular degeneration (AMD). As a large majority of genes associated with these different retinopathies are overlapping, it is imperative to understand their underlying molecular mechanisms. This review will discuss some of the most recent discoveries in vertebrate retinal remodeling and retinal degenerations caused by protein mistrafficking.
Collapse
Affiliation(s)
- Katie L Bales
- University of Alabama at Birmingham, Birmingham, AL, United States
| | - Alecia K Gross
- University of Alabama at Birmingham, Birmingham, AL, United States.
| |
Collapse
|
50
|
Megaw RD, Soares DC, Wright AF. RPGR: Its role in photoreceptor physiology, human disease, and future therapies. Exp Eye Res 2015; 138:32-41. [PMID: 26093275 PMCID: PMC4553903 DOI: 10.1016/j.exer.2015.06.007] [Citation(s) in RCA: 94] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Revised: 06/03/2015] [Accepted: 06/04/2015] [Indexed: 12/21/2022]
Abstract
Mammalian photoreceptors contain specialised connecting cilia that connect the inner (IS) to the outer segments (OS). Dysfunction of the connecting cilia due to mutations in ciliary proteins are a common cause of the inherited retinal dystrophy retinitis pigmentosa (RP). Mutations affecting the Retinitis Pigmentosa GTPase Regulator (RPGR) protein is one such cause, affecting 10-20% of all people with RP and the majority of those with X-linked RP. RPGR is located in photoreceptor connecting cilia. It interacts with a wide variety of ciliary proteins, but its exact function is unknown. Recently, there have been important advances both in our understanding of RPGR function and towards the development of a therapy. This review summarises the existing literature on human RPGR function and dysfunction, and suggests that RPGR plays a role in the function of the ciliary gate, which controls access of both membrane and soluble proteins to the photoreceptor outer segment. We discuss key models used to investigate and treat RPGR disease and suggest that gene augmentation therapy offers a realistic therapeutic approach, although important questions still remain to be answered, while cell replacement therapy based on retinal progenitor cells represents a more distant prospect.
Collapse
Affiliation(s)
- Roly D Megaw
- Scottish Centre for Regenerative Medicine, University of Edinburgh, 5 Little France Drive, Edinburgh EH16 4UU, United Kingdom.
| | - Dinesh C Soares
- Medical Research Council Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XU, United Kingdom.
| | - Alan F Wright
- Medical Research Council Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XU, United Kingdom.
| |
Collapse
|