1
|
Ackland J, Barber C, Heinson A, Azim A, Cleary DW, Christodoulides M, Kurukulaaratchy RJ, Howarth P, Wilkinson TMA, Staples KJ. Nontypeable Haemophilus influenzae infection of pulmonary macrophages drives neutrophilic inflammation in severe asthma. Allergy 2022; 77:2961-2973. [PMID: 35570583 PMCID: PMC9796932 DOI: 10.1111/all.15375] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 03/22/2022] [Accepted: 04/13/2022] [Indexed: 01/27/2023]
Abstract
BACKGROUND Nontypeable Haemophilus influenzae (NTHi) is a respiratory tract pathobiont that chronically colonizes the airways of asthma patients and is associated with severe, neutrophilic disease phenotypes. The mechanism of NTHi airway persistence is not well understood, but accumulating evidence suggests NTHi can persist within host airway immune cells such as macrophages. We hypothesized that NTHi infection of pulmonary macrophages drives neutrophilic inflammation in severe asthma. METHODS Bronchoalveolar lavage (BAL) samples from 25 severe asthma patients were assessed by fluorescence in situ hybridisation to quantify NTHi presence. Weighted gene correlation network analysis (WGCNA) was performed on RNASeq data from NTHi-infected monocyte-derived macrophages to identify transcriptomic networks associated with NTHi infection. RESULTS NTHi was detected in 56% of BAL samples (NTHi+) and was associated with longer asthma duration (34 vs 22.5 years, p = .0436) and higher sputum neutrophil proportion (67% vs 25%, p = .0462). WGCNA identified a transcriptomic network of immune-related macrophage genes significantly associated with NTHi infection, including upregulation of T17 inflammatory mediators and neutrophil chemoattractants IL1B, IL8, IL23 and CCL20 (all p < .05). Macrophage network genes SGPP2 (p = .0221), IL1B (p = .0014) and GBP1 (p = .0477) were more highly expressed in NTHi+ BAL and moderately correlated with asthma duration (IL1B; rho = 0.41, p = .041) and lower prebronchodilator FEV1/FVC% (GBP1; rho = -0.43, p = .046 and IL1B; rho = -0.42, p = .055). CONCLUSIONS NTHi persistence with pulmonary macrophages may contribute to chronic airway inflammation and T17 responses in severe asthma, which can lead to decreased lung function and reduced steroid responsiveness. Identifying therapeutic strategies to reduce the burden of NTHi in asthma could improve patient outcomes.
Collapse
Affiliation(s)
- Jodie Ackland
- Clinical and Experimental SciencesUniversity of Southampton Faculty of MedicineSouthamptonUK
| | - Clair Barber
- Clinical and Experimental SciencesUniversity of Southampton Faculty of MedicineSouthamptonUK,NIHR Southampton Biomedical Research CentreUniversity Hospital Southampton NHS Foundation TrustSouthamptonUK
| | - Ashley Heinson
- Clinical and Experimental SciencesUniversity of Southampton Faculty of MedicineSouthamptonUK
| | - Adnan Azim
- Clinical and Experimental SciencesUniversity of Southampton Faculty of MedicineSouthamptonUK,NIHR Southampton Biomedical Research CentreUniversity Hospital Southampton NHS Foundation TrustSouthamptonUK
| | - David W. Cleary
- Clinical and Experimental SciencesUniversity of Southampton Faculty of MedicineSouthamptonUK,NIHR Southampton Biomedical Research CentreUniversity Hospital Southampton NHS Foundation TrustSouthamptonUK
| | - Myron Christodoulides
- Clinical and Experimental SciencesUniversity of Southampton Faculty of MedicineSouthamptonUK
| | - Ramesh J. Kurukulaaratchy
- Clinical and Experimental SciencesUniversity of Southampton Faculty of MedicineSouthamptonUK,NIHR Southampton Biomedical Research CentreUniversity Hospital Southampton NHS Foundation TrustSouthamptonUK
| | - Peter Howarth
- Clinical and Experimental SciencesUniversity of Southampton Faculty of MedicineSouthamptonUK,NIHR Southampton Biomedical Research CentreUniversity Hospital Southampton NHS Foundation TrustSouthamptonUK
| | - Tom M. A. Wilkinson
- Clinical and Experimental SciencesUniversity of Southampton Faculty of MedicineSouthamptonUK,NIHR Southampton Biomedical Research CentreUniversity Hospital Southampton NHS Foundation TrustSouthamptonUK,Wessex Investigational Sciences HubUniversity of Southampton Faculty of Medicine, Southampton General HospitalSouthamptonUK
| | - Karl J. Staples
- Clinical and Experimental SciencesUniversity of Southampton Faculty of MedicineSouthamptonUK,NIHR Southampton Biomedical Research CentreUniversity Hospital Southampton NHS Foundation TrustSouthamptonUK,Wessex Investigational Sciences HubUniversity of Southampton Faculty of Medicine, Southampton General HospitalSouthamptonUK
| | | |
Collapse
|
2
|
Ackland J, Watson A, Wilkinson TMA, Staples KJ. Interrupting the Conversation: Implications for Crosstalk Between Viral and Bacterial Infections in the Asthmatic Airway. FRONTIERS IN ALLERGY 2021; 2:738987. [PMID: 35386999 PMCID: PMC8974750 DOI: 10.3389/falgy.2021.738987] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 09/20/2021] [Indexed: 12/20/2022] Open
Abstract
Asthma is a heterogeneous, chronic respiratory disease affecting 300 million people and is thought to be driven by different inflammatory endotypes influenced by a myriad of genetic and environmental factors. The complexity of asthma has rendered it challenging to develop preventative and disease modifying therapies and it remains an unmet clinical need. Whilst many factors have been implicated in asthma pathogenesis and exacerbations, evidence indicates a prominent role for respiratory viruses. However, advances in culture-independent detection methods and extensive microbial profiling of the lung, have also demonstrated a role for respiratory bacteria in asthma. In particular, airway colonization by the Proteobacteria species Nontypeable Haemophilus influenzae (NTHi) and Moraxella catarrhalis (Mcat) is associated with increased risk of developing recurrent wheeze and asthma in early life, poor clinical outcomes in established adult asthma and the development of more severe inflammatory phenotypes. Furthermore, emerging evidence indicates that bacterial-viral interactions may influence exacerbation risk and disease severity, highlighting the need to consider the impact chronic airway colonization by respiratory bacteria has on influencing host responses to viral infection. In this review, we first outline the currently understood role of viral and bacterial infections in precipitating asthma exacerbations and discuss the underappreciated potential impact of bacteria-virus crosstalk in modulating host responses. We discuss the mechanisms by which early life infection may predispose to asthma development. Finally, we consider how infection and persistent airway colonization may drive different asthma phenotypes, with a view to identifying pathophysiological mechanisms that may prove tractable to new treatment modalities.
Collapse
Affiliation(s)
- Jodie Ackland
- Clinical and Experimental Sciences, University of Southampton Faculty of Medicine, Southampton, United Kingdom
| | - Alastair Watson
- Clinical and Experimental Sciences, University of Southampton Faculty of Medicine, Southampton, United Kingdom
- NIHR Southampton Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust, Southampton, United Kingdom
- College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Tom M. A. Wilkinson
- Clinical and Experimental Sciences, University of Southampton Faculty of Medicine, Southampton, United Kingdom
- NIHR Southampton Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust, Southampton, United Kingdom
- Wessex Investigational Sciences Hub, University of Southampton Faculty of Medicine, Southampton General Hospital, Southampton, United Kingdom
| | - Karl J. Staples
- Clinical and Experimental Sciences, University of Southampton Faculty of Medicine, Southampton, United Kingdom
- NIHR Southampton Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust, Southampton, United Kingdom
- Wessex Investigational Sciences Hub, University of Southampton Faculty of Medicine, Southampton General Hospital, Southampton, United Kingdom
- *Correspondence: Karl J. Staples
| |
Collapse
|
3
|
Ackland J, Heinson AI, Cleary DW, Christodoulides M, Wilkinson TMA, Staples KJ. Dual RNASeq Reveals NTHi-Macrophage Transcriptomic Changes During Intracellular Persistence. Front Cell Infect Microbiol 2021; 11:723481. [PMID: 34497778 PMCID: PMC8419319 DOI: 10.3389/fcimb.2021.723481] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 07/26/2021] [Indexed: 12/13/2022] Open
Abstract
Nontypeable Haemophilus influenzae (NTHi) is a pathobiont which chronically colonises the airway of individuals with chronic respiratory disease and is associated with poor clinical outcomes. It is unclear how NTHi persists in the airway, however accumulating evidence suggests that NTHi can invade and persist within macrophages. To better understand the mechanisms of NTHi persistence within macrophages, we developed an in vitro model of NTHi intracellular persistence using human monocyte-derived macrophages (MDM). Dual RNA Sequencing was used to assess MDM and NTHi transcriptomic regulation occurring simultaneously during NTHi persistence. Analysis of the macrophage response to NTHi identified temporally regulated transcriptomic profiles, with a specific 'core' profile displaying conserved expression of genes across time points. Gene list enrichment analysis identified enrichment of immune responses in the core gene set, with KEGG pathway analysis revealing specific enrichment of intracellular immune response pathways. NTHi persistence was facilitated by modulation of bacterial metabolic, stress response and ribosome pathways. Levels of NTHi genes bioC, mepM and dps were differentially expressed by intracellular NTHi compared to planktonic NTHi, indicating that the transcriptomic adaption was distinct between the two different NTHi lifestyles. Overall, this study provides crucial insights into the transcriptomic adaptations facilitating NTHi persistence within macrophages. Targeting these reported pathways with novel therapeutics to reduce NTHi burden in the airway could be an effective treatment strategy given the current antimicrobial resistance crisis and lack of NTHi vaccines.
Collapse
Affiliation(s)
- Jodie Ackland
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Ashley I Heinson
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - David W Cleary
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, United Kingdom.,NIHR Southampton Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust, Southampton, United Kingdom
| | - Myron Christodoulides
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Tom M A Wilkinson
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, United Kingdom.,NIHR Southampton Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust, Southampton, United Kingdom.,Wessex Investigational Sciences Hub, Southampton General Hospital, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Karl J Staples
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, United Kingdom.,NIHR Southampton Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust, Southampton, United Kingdom.,Wessex Investigational Sciences Hub, Southampton General Hospital, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| |
Collapse
|
4
|
Phase Variation in HMW1A Controls a Phenotypic Switch in Haemophilus influenzae Associated with Pathoadaptation during Persistent Infection. mBio 2021; 12:e0078921. [PMID: 34154422 PMCID: PMC8262952 DOI: 10.1128/mbio.00789-21] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Genetic variants arising from within-patient evolution shed light on bacterial adaptation during chronic infection. Contingency loci generate high levels of genetic variation in bacterial genomes, enabling adaptation to the stringent selective pressures exerted by the host. A significant gap in our understanding of phase-variable contingency loci is the extent of their contribution to natural infections. The human-adapted pathogen nontypeable Haemophilus influenzae (NTHi) causes persistent infections, which contribute to underlying disease progression. The phase-variable high-molecular-weight (HMW) adhesins located on the NTHi surface mediate adherence to respiratory epithelial cells and, depending on the allelic variant, can also confer high epithelial invasiveness or hyperinvasion. In this study, we characterize the dynamics of HMW-mediated hyperinvasion in living cells and identify a specific HMW binding domain shared by hyperinvasive NTHi isolates of distinct pathological origins. Moreover, we observed that HMW expression decreased over time by using a longitudinal set of persistent NTHi strains collected from chronic obstructive pulmonary disease (COPD) patients, resulting from increased numbers of simple-sequence repeats (SSRs) downstream of the functional P2hmw1A promoter, which is the one primarily driving HMW expression. Notably, the increased SSR numbers at the hmw1 promoter region also control a phenotypic switch toward lower bacterial intracellular invasion and higher biofilm formation, likely conferring adaptive advantages during chronic airway infection by NTHi. Overall, we reveal novel molecular mechanisms of NTHi pathoadaptation based on within-patient lifestyle switching controlled by phase variation.
Collapse
|
5
|
Mues N, Chu HW. Out-Smarting the Host: Bacteria Maneuvering the Immune Response to Favor Their Survival. Front Immunol 2020; 11:819. [PMID: 32477341 PMCID: PMC7235365 DOI: 10.3389/fimmu.2020.00819] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 04/09/2020] [Indexed: 12/29/2022] Open
Abstract
Bacteria adapt themselves to various environmental conditions in nature, which can lead to bacterial adaptation and persistence in the host as commensals or pathogens. In healthy individuals, host defense mechanisms prevent the opportunistic bacteria/commensals from becoming a pathological infection. However, certain pathological conditions can impair normal defense barriers leading to bacterial survival and persistence. Under pathological conditions such as chronic lung inflammation, bacteria employ various mechanisms from structural changes to protease secretion to manipulate and evade the host immune response and create a niche permitting commensal bacteria to thrive into infections. Therefore, understanding the mechanisms by which pathogenic bacteria survive in the host tissues and organs may offer new strategies to overcome persistent bacterial infections. In this review, we will discuss and highlight the complex interactions between airway pathogenic bacteria and immune responses in several major chronic inflammatory diseases such as asthma and chronic obstructive pulmonary disease (COPD).
Collapse
Affiliation(s)
- Nastaran Mues
- Department of Medicine, National Jewish Health, Denver, CO, United States
| | - Hong Wei Chu
- Department of Medicine, National Jewish Health, Denver, CO, United States
| |
Collapse
|
6
|
Abstract
The respiratory tract is tasked with responding to a constant and vast influx of foreign agents. It acts as an important first line of defense in the innate immune system and as such plays a crucial role in preventing the entry of invading pathogens. While physical barriers like the mucociliary escalator exert their effects through the clearance of these pathogens, diverse and dynamic cellular mechanisms exist for the activation of the innate immune response through the recognition of pathogen-associated molecular patterns (PAMPs). These PAMPs are recognized by pattern recognition receptors (PRRs) that are expressed on a number of myeloid cells such as dendritic cells, macrophages, and neutrophils found in the respiratory tract. C-type lectin receptors (CLRs) are PRRs that play a pivotal role in the innate immune response and its regulation to a variety of respiratory pathogens such as viruses, bacteria, and fungi. This chapter will describe the function of both activating and inhibiting myeloid CLRs in the recognition of a number of important respiratory pathogens as well as the signaling events initiated by these receptors.
Collapse
|
7
|
Discovery and Contribution of Nontypeable Haemophilus influenzae NTHI1441 to Human Respiratory Epithelial Cell Invasion. Infect Immun 2019; 87:IAI.00462-19. [PMID: 31427451 DOI: 10.1128/iai.00462-19] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Accepted: 07/25/2019] [Indexed: 11/20/2022] Open
Abstract
Nontypeable Haemophilus influenzae (NTHi) is the primary cause of bacterially induced acute exacerbations of chronic obstructive pulmonary disease (COPD). NTHi adheres to and invades host respiratory epithelial cells as a means to persist in the lower airways of adults with COPD. Therefore, we mined the genomes of NTHi strains isolated from the airways of adults with COPD to identify novel proteins to investigate their role in adherence and invasion of human respiratory epithelial cells. An isogenic knockout mutant of the open reading frame NTHI1441 showed a 76.6% ± 5.5% reduction in invasion of human bronchial and alveolar epithelial cells at 1, 3, and 6 h postinfection. Decreased invasion of the NTHI1441 mutant was independent of either intracellular survival or adherence to cells. NTHI1441 is conserved among NTHi genomes. Results of whole-bacterial-cell enzyme-linked immunosorbent assay (ELISA) and flow cytometry experiments identified that NTHI1441 has epitopes expressed on the bacterial cell surface. Adults with COPD develop increased serum IgG against NTHI1441 after experiencing an exacerbation with NTHi. This study reveals NTHI1441 as a novel NTHi virulence factor expressed during infection of the COPD lower airways that contributes to invasion of host respiratory epithelial cells. The role in host cell invasion, conservation among strains, and expression of surface-exposed epitopes suggest that NTHI1441 is a potential target for preventative and therapeutic interventions for disease caused by NTHi.
Collapse
|
8
|
van den Broek MFL, De Boeck I, Kiekens F, Boudewyns A, Vanderveken OM, Lebeer S. Translating Recent Microbiome Insights in Otitis Media into Probiotic Strategies. Clin Microbiol Rev 2019; 32:e00010-18. [PMID: 31270125 PMCID: PMC6750133 DOI: 10.1128/cmr.00010-18] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The microbiota of the upper respiratory tract (URT) protects the host from bacterial pathogenic colonization by competing for adherence to epithelial cells and by immune response regulation that includes the activation of antimicrobial and (anti-)inflammatory components. However, environmental or host factors can modify the microbiota to an unstable community that predisposes the host to infection or inflammation. One of the URT diseases most often encountered in children is otitis media (OM). The role of pathogenic bacteria like Streptococcus pneumoniae, Haemophilus influenzae, and Moraxella catarrhalis in the pathogenesis of OM is well documented. Results from next-generation-sequencing (NGS) studies reveal other bacterial taxa involved in OM, such as Turicella and Alloiococcus Such studies can also identify bacterial taxa that are potentially protective against URT infections, whose beneficial action needs to be substantiated in relevant experimental models and clinical trials. Of note, lactic acid bacteria (LAB) are members of the URT microbiota and associated with a URT ecosystem that is deemed healthy, based on NGS and some experimental and clinical studies. These observations have formed the basis of this review, in which we describe the current knowledge of the molecular and clinical potential of LAB in the URT, which is currently underexplored in microbiome and probiotic research.
Collapse
Affiliation(s)
- Marianne F L van den Broek
- Environmental Ecology and Applied Microbiology Research Group, Department of Bioscience Engineering, University of Antwerp, Antwerp, Belgium
| | - Ilke De Boeck
- Environmental Ecology and Applied Microbiology Research Group, Department of Bioscience Engineering, University of Antwerp, Antwerp, Belgium
| | - Filip Kiekens
- Laboratory of Pharmaceutical Technology and Biopharmacy, Department of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Wilrijk, Belgium
| | - An Boudewyns
- Department of Otorhinolaryngology, Head and Neck Surgery, Antwerp University Hospital, Edegem, Belgium
| | - Olivier M Vanderveken
- Department of Otorhinolaryngology, Head and Neck Surgery, Antwerp University Hospital, Edegem, Belgium
- Department of Translational Neurosciences, Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
| | - Sarah Lebeer
- Environmental Ecology and Applied Microbiology Research Group, Department of Bioscience Engineering, University of Antwerp, Antwerp, Belgium
| |
Collapse
|
9
|
Pathogenic Mannheimia haemolytica Invades Differentiated Bovine Airway Epithelial Cells. Infect Immun 2019; 87:IAI.00078-19. [PMID: 30962401 PMCID: PMC6529648 DOI: 10.1128/iai.00078-19] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Accepted: 04/01/2019] [Indexed: 12/14/2022] Open
Abstract
The Gram-negative bacterium Mannheimia haemolytica is the primary bacterial species associated with bovine respiratory disease (BRD) and is responsible for significant economic losses to livestock industries worldwide. Healthy cattle are frequently colonized by commensal serotype A2 strains, but disease is usually caused by pathogenic strains of serotype A1. For reasons that are poorly understood, a transition occurs within the respiratory tract and a sudden explosive proliferation of serotype A1 bacteria leads to the onset of pneumonic disease. Very little is known about the interactions of M. haemolytica with airway epithelial cells of the respiratory mucosa which might explain the different abilities of serotype A1 and A2 strains to cause disease. In the present study, host-pathogen interactions in the bovine respiratory tract were mimicked using a novel differentiated bovine bronchial epithelial cell (BBEC) infection model. In this model, differentiated BBECs were inoculated with serotype A1 or A2 strains of M. haemolytica and the course of infection followed over a 5-day period by microscopic assessment and measurement of key proinflammatory mediators. We have demonstrated that serotype A1, but not A2, M. haemolytica invades differentiated BBECs by transcytosis and subsequently undergoes rapid intracellular replication before spreading to adjacent cells and causing extensive cellular damage. Our findings suggest that the explosive proliferation of serotype A1 M. haemolytica that occurs within the bovine respiratory tract prior to the onset of pneumonic disease is potentially due to bacterial invasion of, and rapid proliferation within, the mucosal epithelium. The discovery of this previously unrecognized mechanism of pathogenesis is important because it will allow the serotype A1-specific virulence determinants responsible for invasion to be identified and thereby provide opportunities for the development of new strategies for combatting BRD aimed at preventing early colonization and infection of the bovine respiratory tract.
Collapse
|
10
|
Bertuzzi M, Hayes GE, Bignell EM. Microbial uptake by the respiratory epithelium: outcomes for host and pathogen. FEMS Microbiol Rev 2019; 43:145-161. [PMID: 30657899 PMCID: PMC6435450 DOI: 10.1093/femsre/fuy045] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Accepted: 01/17/2019] [Indexed: 12/21/2022] Open
Abstract
Intracellular occupancy of the respiratory epithelium is a useful pathogenic strategy facilitating microbial replication and evasion of professional phagocytes or circulating antimicrobial drugs. A less appreciated but growing body of evidence indicates that the airway epithelium also plays a crucial role in host defence against inhaled pathogens, by promoting ingestion and quelling of microorganisms, processes that become subverted to favour pathogen activities and promote respiratory disease. To achieve a deeper understanding of beneficial and deleterious activities of respiratory epithelia during antimicrobial defence, we have comprehensively surveyed all current knowledge on airway epithelial uptake of bacterial and fungal pathogens. We find that microbial uptake by airway epithelial cells (AECs) is a common feature of respiratory host-microbe interactions whose stepwise execution, and impacts upon the host, vary by pathogen. Amidst the diversity of underlying mechanisms and disease outcomes, we identify four key infection scenarios and use best-characterised host-pathogen interactions as prototypical examples of each. The emergent view is one in which effi-ciency of AEC-mediated pathogen clearance correlates directly with severity of disease outcome, therefore highlighting an important unmet need to broaden our understanding of the antimicrobial properties of respiratory epithelia and associated drivers of pathogen entry and intracellular fate.
Collapse
Affiliation(s)
- Margherita Bertuzzi
- Manchester Fungal Infection Group, Faculty of Biology, Medicine and Health. The University of Manchester, Manchester Academic Health Science Centre, Core Technology Facility, Grafton Street, Manchester M13 9NT, UK
- Lydia Becker Institute of Immunology and Inflammation, Biology, Medicine and Health. The University of Manchester, Manchester Academic Health Science Centre
| | - Gemma E Hayes
- Northern Devon Healthcare NHS Trust, North Devon District Hospital, Raleigh Park, Barnstaple EX31 4JB, UK
| | - Elaine M Bignell
- Manchester Fungal Infection Group, Faculty of Biology, Medicine and Health. The University of Manchester, Manchester Academic Health Science Centre, Core Technology Facility, Grafton Street, Manchester M13 9NT, UK
- Lydia Becker Institute of Immunology and Inflammation, Biology, Medicine and Health. The University of Manchester, Manchester Academic Health Science Centre
| |
Collapse
|
11
|
Thofte O, Su YC, Brant M, Littorin N, Duell BL, Alvarado V, Jalalvand F, Riesbeck K. EF-Tu From Non-typeable Haemophilus influenzae Is an Immunogenic Surface-Exposed Protein Targeted by Bactericidal Antibodies. Front Immunol 2018; 9:2910. [PMID: 30619274 PMCID: PMC6305414 DOI: 10.3389/fimmu.2018.02910] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2018] [Accepted: 11/27/2018] [Indexed: 01/07/2023] Open
Abstract
Non-typeable Haemophilus influenzae (NTHi), a commensal organism in pre-school children, is an opportunistic pathogen causing respiratory tract infections including acute otitis media. Adults suffering from chronic obstructive pulmonary disease (COPD) are persistently colonized by NTHi. Previous research has suggested that, in some bacterial species, the intracellular elongation factor thermo-unstable (EF-Tu) can moonlight as a surface protein upon host encounter. The aim of this study was to determine whether EF-Tu localizes to the surface of H. influenzae, and if such surface-associated EF-Tu is a target for bactericidal antibodies. Using flow cytometry, transmission immunoelectron microscopy, and epitope mapping, we demonstrated that EF-Tu is exposed at the surface of NTHi, and identified immunodominant epitopes of this protein. Rabbits immunized with whole-cell NTHi produced significantly more immunoglobulin G (IgG) directed against EF-Tu than against the NTHi outer membrane proteins D and F as revealed by enzyme-linked immunosorbent assays. Chemical cleavage of NTHi EF-Tu by cyanogen bromide (CNBr) followed by immunoblotting showed that the immunodominant epitopes were located within the central and C-terminal regions of the protein. Peptide epitope mapping by dot blot analysis further revealed four different immunodominant peptide sequences; EF-Tu41−65, EF-Tu161−185, EF-Tu221−245, and EF-Tu281−305. These epitopes were confirmed to be surface-exposed and accessible by peptide-specific antibodies in flow cytometry. We also analyzed whether antibodies raised against NTHi EF-Tu cross-react with other respiratory tract pathogens. Anti-EF-Tu IgG significantly detected EF-Tu on unencapsulated bacteria, including the Gram-negative H. parainfluenzae, H. haemolyticus, Moraxella catarrhalis and various Gram-positive Streptococci of the oral microbiome. In contrast, considerably less EF-Tu was observed at the surface of encapsulated bacteria including H. influenzae serotype b (Hib) and Streptococcus pneumoniae (e.g., serotype 3 and 4). Removal of the capsule, as exemplified by Hib RM804, resulted in increased EF-Tu surface density. Finally, anti-NTHi EF-Tu IgG promoted complement-dependent bacterial killing of NTHi and other unencapsulated Gram-negative bacteria as well as opsonophagocytosis of Gram-positive bacteria. In conclusion, our data demonstrate that NTHi EF-Tu is surface-exposed and recognized by antibodies mediating host innate immunity against NTHi in addition to other unencapsulated respiratory tract bacteria.
Collapse
Affiliation(s)
- Oskar Thofte
- Clinical Microbiology, Department of Translational Medicine, Faculty of Medicine, Lund University, Malmö, Sweden
| | - Yu-Ching Su
- Clinical Microbiology, Department of Translational Medicine, Faculty of Medicine, Lund University, Malmö, Sweden
| | - Marta Brant
- Clinical Microbiology, Department of Translational Medicine, Faculty of Medicine, Lund University, Malmö, Sweden
| | - Nils Littorin
- Clinical Microbiology, Department of Translational Medicine, Faculty of Medicine, Lund University, Malmö, Sweden
| | - Benjamin Luke Duell
- Clinical Microbiology, Department of Translational Medicine, Faculty of Medicine, Lund University, Malmö, Sweden
| | - Vera Alvarado
- Clinical Microbiology, Department of Translational Medicine, Faculty of Medicine, Lund University, Malmö, Sweden
| | - Farshid Jalalvand
- Clinical Microbiology, Department of Translational Medicine, Faculty of Medicine, Lund University, Malmö, Sweden
| | - Kristian Riesbeck
- Clinical Microbiology, Department of Translational Medicine, Faculty of Medicine, Lund University, Malmö, Sweden
| |
Collapse
|
12
|
Hardison RL, Heimlich DR, Harrison A, Beatty WL, Rains S, Moseley MA, Thompson JW, Justice SS, Mason KM. Transient Nutrient Deprivation Promotes Macropinocytosis-Dependent Intracellular Bacterial Community Development. mSphere 2018; 3:3/5/e00286-18. [PMID: 30209128 PMCID: PMC6135960 DOI: 10.1128/msphere.00286-18] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Nutrient limitation restricts bacterial growth in privileged sites such as the middle ear. Transient heme-iron restriction of nontypeable Haemophilus influenzae (NTHI), the major causative agent of chronic and recurrent otitis media (OM), promotes new and diverse phenotypes that can influence planktonic, biofilm, and intracellular lifestyles of NTHI. However, the bacterial responses to nutrient restriction that impact intracellular fate and survival of NTHI are unknown. In this work, we provide evidence for the role of transient heme-iron restriction in promoting the formation of intracellular bacterial communities (IBCs) of NTHI both in vitro and in vivo in a preclinical model of OM. We show that transient heme-iron restriction of NTHI results in significantly increased invasion and intracellular populations that escape or evade the endolysosomal pathway for increased intracellular survival. In contrast, NTHI continuously exposed to heme-iron traffics through the endolysosomal pathway for degradation. The use of pharmacological inhibitors revealed that prior heme-iron status does not appear to influence NTHI internalization through endocytic pathways. However, inhibition of macropinocytosis altered the intracellular fate of transiently restricted NTHI for degradation in the endolysosomal pathway. Furthermore, prevention of macropinocytosis significantly reduced the number of IBCs in cultured middle ear epithelial cells, providing evidence for the feasibility of this approach to reduce OM persistence. These results reveal that microenvironmental cues can influence the intracellular fate of NTHI, leading to new mechanisms for survival during disease progression.IMPORTANCE Otitis media is the most common bacterial infection in childhood. Current therapies are limited in the prevention of chronic or recurrent otitis media which leads to increased antibiotic exposure and represents a significant socioeconomic burden. In this study, we delineate the effect of nutritional limitation on the intracellular trafficking pathways used by nontypeable Haemophilus influenzae (NTHI). Moreover, transient limitation of heme-iron led to the development of intracellular bacterial communities that are known to contribute to persistence and recurrence in other diseases. New approaches for therapeutic interventions that reduce the production of intracellular bacterial communities and promote trafficking through the endolysosomal pathway were revealed through the use of pharmacological inhibition of macropinocytosis. This work demonstrates the importance of an intracellular niche for NTHI and provides new approaches for intervention for acute, chronic, and recurring episodes of otitis media.
Collapse
Affiliation(s)
- Rachael L Hardison
- Center for Microbial Pathogenesis, The Research Institute at Nationwide Children's Hospital, Columbus, Ohio, USA
- The Ohio State University College of Medicine, Columbus, Ohio, USA
| | - Derek R Heimlich
- Center for Microbial Pathogenesis, The Research Institute at Nationwide Children's Hospital, Columbus, Ohio, USA
| | - Alistair Harrison
- Center for Microbial Pathogenesis, The Research Institute at Nationwide Children's Hospital, Columbus, Ohio, USA
| | - Wandy L Beatty
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Sarah Rains
- Duke Proteomics and Metabolomics Core Facility, Duke Center for Genomic and Computational Biology, Duke University, Durham, North Carolina, USA
| | - M Arthur Moseley
- Duke Proteomics and Metabolomics Core Facility, Duke Center for Genomic and Computational Biology, Duke University, Durham, North Carolina, USA
| | - J Will Thompson
- Duke Proteomics and Metabolomics Core Facility, Duke Center for Genomic and Computational Biology, Duke University, Durham, North Carolina, USA
| | - Sheryl S Justice
- Center for Microbial Pathogenesis, The Research Institute at Nationwide Children's Hospital, Columbus, Ohio, USA
- Department of Pediatrics, The Ohio State University, Columbus, Ohio, USA
| | - Kevin M Mason
- Center for Microbial Pathogenesis, The Research Institute at Nationwide Children's Hospital, Columbus, Ohio, USA
- Department of Pediatrics, The Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
13
|
Murphy TF, Kirkham C, Gallo MC, Yang Y, Wilding GE, Pettigrew MM. Immunoglobulin A Protease Variants Facilitate Intracellular Survival in Epithelial Cells By Nontypeable Haemophilus influenzae That Persist in the Human Respiratory Tract in Chronic Obstructive Pulmonary Disease. J Infect Dis 2017; 216:1295-1302. [PMID: 28968876 DOI: 10.1093/infdis/jix471] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Accepted: 09/06/2017] [Indexed: 01/02/2023] Open
Abstract
Background Nontypeable Haemophilus influenzae (NTHi) persists in the airways in chronic obstructive pulmonary disease (COPD). NTHi expresses 4 immunoglobulin (Ig)A protease variants (A1, A2, B1, B2) with distinct cleavage specificities for human IgA1. Little is known about the different roles of IgA protease variants in NTHi infection. Methods Twenty-six NTHi isolates from a 20-year longitudinal study of COPD were analyzed for IgA protease expression, survival in human respiratory epithelial cells, and cleavage of lysosomal-associated membrane protein 1 (LAMP1). Results IgA protease B1 and B2-expressing strains showed greater intracellular survival in host epithelial cells than strains expressing no IgA protease (P < .001) or IgA protease A1 or A2 (P < .001). Strains that lost IgA protease expression showed reduced survival in host cells compared with the same strain that expressed IgA protease B1 (P = .006) or B2 (P = .015). IgA proteases B1 and B2 cleave LAMP1. Passage of strains through host cells selected for expression of IgA proteases B1 and B2 but not A1. Conclusions IgA proteases B1 and B2 cleave LAMP1 and mediate intracellular survival in respiratory epithelial cells. Intracellular persistence of NTHi selects for expression of IgA proteases B1 and B2. The variants of NTHi IgA proteases play distinct roles in pathogenesis of infection.
Collapse
Affiliation(s)
- Timothy F Murphy
- Division of Infectious Diseases, Department of Medicine.,Department of Microbiology and Immunology.,Clinical and Translational Research Center, University at Buffalo, the State University of New York
| | - Charmaine Kirkham
- Division of Infectious Diseases, Department of Medicine.,Clinical and Translational Research Center, University at Buffalo, the State University of New York
| | - Mary C Gallo
- Department of Microbiology and Immunology.,Clinical and Translational Research Center, University at Buffalo, the State University of New York
| | | | | | - Melinda M Pettigrew
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, Yale University, New Haven, Connecticut
| |
Collapse
|
14
|
Riesbeck K. Inhaled Corticosteroids in Chronic Obstructive Pulmonary Disease. A Two-Edged Sword. Am J Respir Crit Care Med 2017; 194:1177-1178. [PMID: 27845580 DOI: 10.1164/rccm.201605-0942ed] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Affiliation(s)
- Kristian Riesbeck
- 1 Department of Translational Medicine Lund University Malmö, Sweden
| |
Collapse
|
15
|
Euba B, López-López N, Rodríguez-Arce I, Fernández-Calvet A, Barberán M, Caturla N, Martí S, Díez-Martínez R, Garmendia J. Resveratrol therapeutics combines both antimicrobial and immunomodulatory properties against respiratory infection by nontypeable Haemophilus influenzae. Sci Rep 2017; 7:12860. [PMID: 29038519 PMCID: PMC5643544 DOI: 10.1038/s41598-017-13034-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Accepted: 09/12/2017] [Indexed: 12/21/2022] Open
Abstract
The respiratory pathogen nontypeable Haemophilus influenzae (NTHi) is an important cause of acute exacerbation of chronic obstructive pulmonary disease (AECOPD) that requires efficient treatments. A previous screening for host genes differentially expressed upon NTHi infection identified sirtuin-1, which encodes a NAD-dependent deacetylase protective against emphysema and is activated by resveratrol. This polyphenol concomitantly reduces NTHi viability, therefore highlighting its therapeutic potential against NTHi infection at the COPD airway. In this study, resveratrol antimicrobial effect on NTHi was shown to be bacteriostatic and did not induce resistance development in vitro. Analysis of modulatory properties on the NTHi-host airway epithelial interplay showed that resveratrol modulates bacterial invasion but not subcellular location, reduces inflammation without targeting phosphodiesterase 4B gene expression, and dampens β defensin-2 gene expression in infected cells. Moreover, resveratrol therapeutics against NTHi was evaluated in vivo on mouse respiratory and zebrafish septicemia infection model systems, showing to decrease NTHi viability in a dose-dependent manner and reduce airway inflammation upon infection, and to have a significant bacterial clearing effect without signs of host toxicity, respectively. This study presents resveratrol as a therapeutic of particular translational significance due to the attractiveness of targeting both infection and overactive inflammation at the COPD airway.
Collapse
Affiliation(s)
- Begoña Euba
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Madrid, Spain.,Instituto de Agrobiotecnología, CSIC-Universidad Pública Navarra-Gobierno Navarra, Mutilva, Spain
| | - Nahikari López-López
- Instituto de Agrobiotecnología, CSIC-Universidad Pública Navarra-Gobierno Navarra, Mutilva, Spain
| | - Irene Rodríguez-Arce
- Instituto de Agrobiotecnología, CSIC-Universidad Pública Navarra-Gobierno Navarra, Mutilva, Spain
| | - Ariadna Fernández-Calvet
- Instituto de Agrobiotecnología, CSIC-Universidad Pública Navarra-Gobierno Navarra, Mutilva, Spain
| | | | - Nuria Caturla
- Monteloeder, Elche Parque Empresarial, Elche, Alicante, Spain
| | - Sara Martí
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Madrid, Spain.,Departamento Microbiología, Hospital Universitari Bellvitge, University of Barcelona, IDIBELL, Barcelona, Spain
| | - Roberto Díez-Martínez
- Ikan Biotech SL, The Zebrafish Lab, Centro Europeo de Empresas e Innovación de Navarra (CEIN), Noáin, Spain
| | - Junkal Garmendia
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Madrid, Spain. .,Instituto de Agrobiotecnología, CSIC-Universidad Pública Navarra-Gobierno Navarra, Mutilva, Spain.
| |
Collapse
|
16
|
Ahearn CP, Gallo MC, Murphy TF. Insights on persistent airway infection by non-typeable Haemophilus influenzae in chronic obstructive pulmonary disease. Pathog Dis 2017; 75:3753446. [PMID: 28449098 PMCID: PMC5437125 DOI: 10.1093/femspd/ftx042] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Accepted: 04/28/2017] [Indexed: 12/21/2022] Open
Abstract
Non-typeable Haemophilus influenzae (NTHi) is the most common bacterial cause of infection of the lower airways in adults with chronic obstructive pulmonary disease (COPD). Infection of the COPD airways causes acute exacerbations, resulting in substantial morbidity and mortality. NTHi has evolved multiple mechanisms to establish infection in the hostile environment of the COPD airways, allowing the pathogen to persist in the airways for months to years. Persistent infection of the COPD airways contributes to chronic airway inflammation that increases symptoms and accelerates the progressive loss of pulmonary function, which is a hallmark of the disease. Persistence mechanisms of NTHi include the expression of multiple redundant adhesins that mediate binding to host cellular and extracellular matrix components. NTHi evades host immune recognition and clearance by invading host epithelial cells, forming biofilms, altering gene expression and displaying surface antigenic variation. NTHi also binds host serum factors that confer serum resistance. Here we discuss the burden of COPD and the role of NTHi infections in the course of the disease. We provide an overview of NTHi mechanisms of persistence that allow the pathogen to establish a niche in the hostile COPD airways.
Collapse
Affiliation(s)
- Christian P. Ahearn
- Department of Microbiology and Immunology, University at Buffalo, Jacobs School of Medicine and Biomedical Sciences, Buffalo, NY 14203, USA
- Clinical and Translational Research Center, University at Buffalo, Jacobs School of Medicine and Biomedical Sciences, Buffalo, NY 14203, USA
| | - Mary C. Gallo
- Department of Microbiology and Immunology, University at Buffalo, Jacobs School of Medicine and Biomedical Sciences, Buffalo, NY 14203, USA
- Clinical and Translational Research Center, University at Buffalo, Jacobs School of Medicine and Biomedical Sciences, Buffalo, NY 14203, USA
| | - Timothy F. Murphy
- Department of Microbiology and Immunology, University at Buffalo, Jacobs School of Medicine and Biomedical Sciences, Buffalo, NY 14203, USA
- Clinical and Translational Research Center, University at Buffalo, Jacobs School of Medicine and Biomedical Sciences, Buffalo, NY 14203, USA
- Division of Infectious Disease, Department of Medicine, University at Buffalo, Jacobs School of Medicine and Biomedical Sciences, Buffalo, NY 14203, USA
| |
Collapse
|
17
|
Barenkamp SJ, Ogra PL, Bakaletz LO, Chonmaitree T, Heikkinen T, Hurst DS, Kawauchi H, Kurono Y, Leiberman A, Murphy TF, Patel JA, Sih TM, St Geme JW, Stenfors LE. 5. Microbiology and Immunology. Ann Otol Rhinol Laryngol 2016. [DOI: 10.1177/00034894051140s109] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
18
|
Singh NK, Kunde DA, Tristram SG. Effect of epithelial cell type on in vitro invasion of non-typeable Haemophilus influenzae. J Microbiol Methods 2016; 129:66-69. [PMID: 27473508 DOI: 10.1016/j.mimet.2016.07.021] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Revised: 07/25/2016] [Accepted: 07/26/2016] [Indexed: 11/28/2022]
Abstract
Non-typeable Haemophilus influenzae (NTHi) have been shown to have variable ability for in vitro invasion with a range of epithelial cells, and increased invasion of BEAS-2B cells has been associated with altered penicillin binding protein3 (PBP3), which is concerning as these strains are increasing worldwide. The aim of the study was to investigate the effect of respiratory cell type and the presence of altered PBP3 on the in vitro invasion of NTHi. A collection of 16 clinical NTHi isolates was established, 7 had normal PBP3, and 9 had altered PBP3 as defined by an N526K substitution. The isolates were tested for invasion of BEAS-2B, NHBE, A549 and NCI-H292 respiratory epithelial cells in vitro using a gentamicin survival assay, with invasion measured as the percentage of intracellular organisms relative to the initial inoculum. The overall median invasion for the 16 NTHi isolates for cell types BEAS-2B, NHBE, A549 and NCI-H292 cells were 3.17, 2.31, 0.11 and 1.52 respectively. The differences were statistically significant for BEAS-2B compared to A549 (P=0.015) and A549 compared to NCI-H292 (P=0.015), and there were also very marked differences in invasion for some individual isolates depending on the cell type used. There was a consistent bias for invasion of isolates with normal versus abnormal PBP3: and this was statistically significant for BEAS-2B (0.07 to 9.90, P=0.031) and A549 cells (0.02 to 1.68, P=0.037). These results show that NTHi invasion of respiratory epithelial cells in vitro is both strain dependant and influenced significantly by the cell line used, and that the association between altered PBP3 and increased invasion is conserved across multiple cell lines.
Collapse
Affiliation(s)
- Neeraj Kumar Singh
- School of Health Sciences, University of Tasmania, Launceston, Tasmania, Australia
| | - Dale A Kunde
- School of Health Sciences, University of Tasmania, Launceston, Tasmania, Australia
| | - Stephen G Tristram
- School of Health Sciences, University of Tasmania, Launceston, Tasmania, Australia.
| |
Collapse
|
19
|
Low-Dose Oxygen Enhances Macrophage-Derived Bacterial Clearance following Cigarette Smoke Exposure. J Immunol Res 2016; 2016:1280347. [PMID: 27403445 PMCID: PMC4923598 DOI: 10.1155/2016/1280347] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Revised: 05/04/2016] [Accepted: 05/17/2016] [Indexed: 11/22/2022] Open
Abstract
Background. Chronic obstructive pulmonary disease (COPD) is a common, smoking-related lung disease. Patients with COPD frequently suffer disease exacerbations induced by bacterial respiratory infections, suggestive of impaired innate immunity. Low-dose oxygen is a mainstay of therapy during COPD exacerbations; yet we understand little about whether oxygen can modulate the effects of cigarette smoke on lung immunity. Methods. Wild-type mice were exposed to cigarette smoke for 5 weeks, followed by intratracheal instillation of Pseudomonas aeruginosa (PAO1) and 21% or 35–40% oxygen. After two days, lungs were harvested for PAO1 CFUs, and bronchoalveolar fluid was sampled for inflammatory markers. In culture, macrophages were exposed to cigarette smoke and oxygen (40%) for 24 hours and then incubated with PAO1, followed by quantification of bacterial phagocytosis and inflammatory markers. Results. Mice exposed to 35–40% oxygen after cigarette smoke and PAO1 had improved survival and reduced lung CFUs and inflammation. Macrophages from these mice expressed less TNF-α and more scavenger receptors. In culture, macrophages exposed to cigarette smoke and oxygen also demonstrated decreased TNF-α secretion and enhanced phagocytosis of PAO1 bacteria. Conclusions. Our findings demonstrate a novel, protective role for low-dose oxygen following cigarette smoke and bacteria exposure that may be mediated by enhanced macrophage phagocytosis.
Collapse
|
20
|
Transformed Recombinant Enrichment Profiling Rapidly Identifies HMW1 as an Intracellular Invasion Locus in Haemophilus influenza. PLoS Pathog 2016; 12:e1005576. [PMID: 27124727 PMCID: PMC4849778 DOI: 10.1371/journal.ppat.1005576] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Accepted: 03/23/2016] [Indexed: 12/12/2022] Open
Abstract
Many bacterial species actively take up and recombine homologous DNA into their genomes, called natural competence, a trait that offers a means to identify the genetic basis of naturally occurring phenotypic variation. Here, we describe “transformed recombinant enrichment profiling” (TREP), in which natural transformation is used to generate complex pools of recombinants, phenotypic selection is used to enrich for specific recombinants, and deep sequencing is used to survey for the genetic variation responsible. We applied TREP to investigate the genetic architecture of intracellular invasion by the human pathogen Haemophilus influenzae, a trait implicated in persistence during chronic infection. TREP identified the HMW1 adhesin as a crucial factor. Natural transformation of the hmw1 operon from a clinical isolate (86-028NP) into a laboratory isolate that lacks it (Rd KW20) resulted in ~1,000-fold increased invasion into airway epithelial cells. When a distinct recipient (Hi375, already possessing hmw1 and its paralog hmw2) was transformed by the same donor, allelic replacement of hmw2AHi375 by hmw1A86-028NP resulted in a ~100-fold increased intracellular invasion rate. The specific role of hmw1A86-028NP was confirmed by mutant and western blot analyses. Bacterial self-aggregation and adherence to airway cells were also increased in recombinants, suggesting that the high invasiveness induced by hmw1A86-028NP might be a consequence of these phenotypes. However, immunofluorescence results found that intracellular hmw1A86-028NP bacteria likely invaded as groups, instead of as individual bacterial cells, indicating an emergent invasion-specific consequence of hmw1A-mediated self-aggregation. Many bacteria are naturally competent, actively taking up DNA from their surroundings and incorporating it into their genomes by homologous recombination. This cellular process has had a large impact on the evolution of these species, for example by enabling pathogens to acquire virulence factors and antibiotic resistances from their relatives. But natural competence can also be exploited by researchers to identify the underlying genetic variation responsible for naturally varying phenotypic traits, similar to how eukaryotic geneticists use meiotic recombination during sexual reproduction to create genetically admixed populations. Here we exploited natural competence, phenotypic selection, and deep sequencing to rapidly identify the hmw1 locus as a major contributor to intracellular invasion of airway epithelial cells by the human pathogen Haemophilus influenzae, a trait that likely allows bacterial cells to evade the immune system and therapeutic interventions during chronic infections. Genetic variation in this locus can strongly modulate bacterial intracellular invasion rates, and possession of a certain allele favors adhesion and self-aggregation, which appear to prompt bacteria to invade airway cells as groups, rather than as individuals. Overall, our findings indicate that targeting HMW1 could block the ability of H. influenzae to invade airway cells, which would make antibiotic therapy to treat chronic lung infections more effective. Furthermore, our new approach to identifying the genetic basis of natural phenotypic variation is applicable to a wide-range of phenotypically selectable traits within the widely distributed naturally competent bacterial species, including pathogenesis traits in many human pathogens.
Collapse
|
21
|
Kress-Bennett JM, Hiller NL, Eutsey RA, Powell E, Longwell MJ, Hillman T, Blackwell T, Byers B, Mell JC, Post JC, Hu FZ, Ehrlich GD, Janto BA. Identification and Characterization of msf, a Novel Virulence Factor in Haemophilus influenzae. PLoS One 2016; 11:e0149891. [PMID: 26977929 PMCID: PMC4792463 DOI: 10.1371/journal.pone.0149891] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Accepted: 02/05/2016] [Indexed: 12/11/2022] Open
Abstract
Haemophilus influenzae is an opportunistic pathogen. The emergence of virulent, non-typeable strains (NTHi) emphasizes the importance of developing new interventional targets. We screened the NTHi supragenome for genes encoding surface-exposed proteins suggestive of immune evasion, identifying a large family containing Sel1-like repeats (SLRs). Clustering identified ten SLR-containing gene subfamilies, each with various numbers of SLRs per gene. Individual strains also had varying numbers of SLR-containing genes from one or more of the subfamilies. Statistical genetic analyses of gene possession among 210 NTHi strains typed as either disease or carriage found a significant association between possession of the SlrVA subfamily (which we have termed, macrophage survival factor, msf) and the disease isolates. The PittII strain contains four chromosomally contiguous msf genes. Deleting all four of these genes (msfA1-4) (KO) resulted in a highly significant decrease in phagocytosis and survival in macrophages; which was fully complemented by a single copy of the msfA1 gene. Using the chinchilla model of otitis media and invasive disease, the KO strain displayed a significant decrease in fitness compared to the WT in co-infections; and in single infections, the KO lost its ability to invade the brain. The singly complemented strain showed only a partial ability to compete with the WT suggesting gene dosage is important in vivo. The transcriptional profiles of the KO and WT in planktonic growth were compared using the NTHi supragenome array, which revealed highly significant changes in the expression of operons involved in virulence and anaerobiosis. These findings demonstrate that the msfA1-4 genes are virulence factors for phagocytosis, persistence, and trafficking to non-mucosal sites.
Collapse
Affiliation(s)
- Jennifer M. Kress-Bennett
- Center for Genomic Sciences, Allegheny Singer Research Institute, Allegheny General Hospital, Pittsburgh, Pennsylvania, United States of America
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, Pennsylvania, United States of America
| | - N. Luisa Hiller
- Center for Genomic Sciences, Allegheny Singer Research Institute, Allegheny General Hospital, Pittsburgh, Pennsylvania, United States of America
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States of America
| | - Rory A. Eutsey
- Center for Genomic Sciences, Allegheny Singer Research Institute, Allegheny General Hospital, Pittsburgh, Pennsylvania, United States of America
| | - Evan Powell
- Center for Genomic Sciences, Allegheny Singer Research Institute, Allegheny General Hospital, Pittsburgh, Pennsylvania, United States of America
| | - Mark J. Longwell
- Center for Genomic Sciences, Allegheny Singer Research Institute, Allegheny General Hospital, Pittsburgh, Pennsylvania, United States of America
| | - Todd Hillman
- Center for Genomic Sciences, Allegheny Singer Research Institute, Allegheny General Hospital, Pittsburgh, Pennsylvania, United States of America
| | - Tenisha Blackwell
- Center for Genomic Sciences, Allegheny Singer Research Institute, Allegheny General Hospital, Pittsburgh, Pennsylvania, United States of America
| | - Barbara Byers
- Center for Genomic Sciences, Allegheny Singer Research Institute, Allegheny General Hospital, Pittsburgh, Pennsylvania, United States of America
| | - Joshua C. Mell
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, Pennsylvania, United States of America
- Center for Genomic Sciences, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, Pennsylvania, United States of America
| | - J. Christopher Post
- Center for Genomic Sciences, Allegheny Singer Research Institute, Allegheny General Hospital, Pittsburgh, Pennsylvania, United States of America
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, Pennsylvania, United States of America
- Department of Otolaryngology, Head and Neck Surgery, Drexel University College of Medicine, Allegheny Campus, Pittsburgh, Pennsylvania, United States of America
| | - Fen Z. Hu
- Center for Genomic Sciences, Allegheny Singer Research Institute, Allegheny General Hospital, Pittsburgh, Pennsylvania, United States of America
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, Pennsylvania, United States of America
- Department of Otolaryngology, Head and Neck Surgery, Drexel University College of Medicine, Allegheny Campus, Pittsburgh, Pennsylvania, United States of America
| | - Garth D. Ehrlich
- Center for Genomic Sciences, Allegheny Singer Research Institute, Allegheny General Hospital, Pittsburgh, Pennsylvania, United States of America
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, Pennsylvania, United States of America
- Center for Genomic Sciences, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, Pennsylvania, United States of America
- Department of Otolaryngology, Head and Neck Surgery, Drexel University College of Medicine, Allegheny Campus, Pittsburgh, Pennsylvania, United States of America
| | - Benjamin A. Janto
- Center for Genomic Sciences, Allegheny Singer Research Institute, Allegheny General Hospital, Pittsburgh, Pennsylvania, United States of America
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, Pennsylvania, United States of America
- Center for Genomic Sciences, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
22
|
Ikeda M, Enomoto N, Hashimoto D, Fujisawa T, Inui N, Nakamura Y, Suda T, Nagata T. Nontypeable Haemophilus influenzae exploits the interaction between protein-E and vitronectin for the adherence and invasion to bronchial epithelial cells. BMC Microbiol 2015; 15:263. [PMID: 26572616 PMCID: PMC4647820 DOI: 10.1186/s12866-015-0600-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2015] [Accepted: 11/06/2015] [Indexed: 12/05/2022] Open
Abstract
Background Nontypeable Haemophilus influenzae (NTHi) is one of the most common Gram-negative pathogens in otitis media and exacerbation of chronic obstructive pulmonary disease. NTHi has been reported to invade bronchial epithelial cells. This penetration enables NTHi to evade the host immune system and antibiotics, and it seems to be related to the intractable features of these diseases. However, the precise mechanism of the invasion has been unknown. We hypothesized that protein-E, an outer membrane protein of NTHi, plays a role in this penetration into bronchial epithelial cells. Results We utilized two NTHi strains. NTHi efficiently attached to plate-bound vitronectin (254–309 / field at 1,000× magnification) and this attachment was blocked by pretreatment with protein-E peptide (PE84–108). The blockade of adhesion was dependent on the concentration of PE84–108. NTHi strains invaded bronchial epithelial cells and the intracellular bacteria were localized in early endosomes. Furthermore, intracellular invasion of NTHi was also blocked by PE84–108, but not by Arg-Gly-Asp (RGD) peptide. Pretreatment with PE84–108 significantly prevented cells from being invaded by both NTHi strains, which was confirmed by fluorescent microscope observation. In addition, pretreatment with PE84–108 significantly reduced percentages of CFU after gentamicin treatment of cells per input CFU. Conclusions These results suggest that NTHi does not directly bind to the cell surface, but binds to host vitronectin that is bound to the cell surface, via bacterial protein-E. Bacterial protein-E and host vitronectin play a role in the attachment to bronchial epithelial cells and is also involved in the subsequent intracellular invasion of NTHi. A novel vaccine or treatment strategy targeting the protein-E-vitronectin axis may prevent respiratory intracellular infection of NTHi and may lead to better clinical outcomes. Electronic supplementary material The online version of this article (doi:10.1186/s12866-015-0600-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Masaki Ikeda
- Second Division, Department of Internal Medicine, Hamamatsu University School of Medicine, Hamamatsu, Japan.
| | - Noriyuki Enomoto
- Second Division, Department of Internal Medicine, Hamamatsu University School of Medicine, Hamamatsu, Japan.
| | - Dai Hashimoto
- Second Division, Department of Internal Medicine, Hamamatsu University School of Medicine, Hamamatsu, Japan.
| | - Tomoyuki Fujisawa
- Second Division, Department of Internal Medicine, Hamamatsu University School of Medicine, Hamamatsu, Japan.
| | - Naoki Inui
- Department of Clinical Pharmacology and Therapeutics, Hamamatsu University School of Medicine, Hamamatsu, Japan.
| | - Yutaro Nakamura
- Second Division, Department of Internal Medicine, Hamamatsu University School of Medicine, Hamamatsu, Japan.
| | - Takafumi Suda
- Second Division, Department of Internal Medicine, Hamamatsu University School of Medicine, Hamamatsu, Japan.
| | - Toshi Nagata
- Department of Health Science, Hamamatsu University School of Medicine, Hamamatsu, Japan.
| |
Collapse
|
23
|
Goyal M, Singh M, Ray P, Srinivasan R, Chakraborti A. Cellular interaction of nontypeable Haemophilus influenzae triggers cytotoxicity of infected type II alveolar cells via apoptosis. Pathog Dis 2015; 73:1-12. [PMID: 25227327 DOI: 10.1111/2049-632x.12215] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Nontypeable Haemophilus influenzae (NTHi) is an important cause of lower respiratory tract infections, resulting in exacerbations of chronic obstructive pulmonary disease (COPD). Despite its pathogenic potential, little is known regarding the role of intracellular NTHi in pathogenesis of pulmonary infection. Kinetics of NTHi internalization was studied using gentamicin protection assays. NTHi strains isolated from COPD patients efficiently adhere to and invade type II alveolar (A549) cells. During early stages, that is, 6 h postinfection, we noted a substantial increase in NTHi invasion with no evidence of intracellular replication. Electron microscopy revealed that the majority of internalized NTHi resided within membrane bound acidic endocytic vacuoles. However, at later stages, that is, 8 h postinfection, significant reduction in viable intracellular NTHi was observed and vacuoles were found to be empty with NTHi escape into the cytosol. By 12 h, cytopathic changes of cells were evident with massive vacuolization of cytoplasm, intense chromatin condensation, and intact plasma membrane. Furthermore, analysis of apoptotic markers confirmed that infected A549 cells underwent apoptosis at later stages. In addition, inhibition of internalization of NTHi by cytochalasin D prevented apoptosis of cells. Collectively, these findings suggest that internalization of NTHi and its escape from vacuolar compartments triggers cytotoxicity of alveolar cells via apoptosis during the infection process.
Collapse
Affiliation(s)
- Manu Goyal
- Department of Experimental Medicine and Biotechnology, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh, India Department of Pediatrics, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - Meenu Singh
- Department of Pediatrics, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - Pallab Ray
- Department of Medical Microbiology, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - Radhika Srinivasan
- Department of Cytology and Gynaecological Pathology, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - Anuradha Chakraborti
- Department of Experimental Medicine and Biotechnology, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| |
Collapse
|
24
|
Understanding nontypeable Haemophilus influenzae and chronic obstructive pulmonary disease. Curr Opin Pulm Med 2014; 20:159-64. [PMID: 24441573 DOI: 10.1097/mcp.0000000000000023] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
PURPOSE OF REVIEW Bacteria are frequently implicated in acute exacerbations of chronic obstructive pulmonary disease (COPD), but their influence on airway inflammation remains unclear. This review will focus on nontypeable Haemophilus influenzae (NTHi), its impact on host immune responses, and the potential for vaccination strategies in COPD. RECENT FINDINGS NTHi is associated with impaired immune function in patients with COPD. Features of the bacterium itself potentiate its ability to colonize the lower airways. An imbalance between bacterial load and host immunity may lend itself to the development of exacerbations. Oral immunotherapy may be a method of augmenting the host immune response and could provide protection from exacerbations. SUMMARY A causal link between NTHi and COPD exacerbations has not been clearly established. However, colonization of the lower airways by NTHi likely plays a significant role in the inflammatory state of COPD.
Collapse
|
25
|
Dectin-1 is expressed in human lung and mediates the proinflammatory immune response to nontypeable Haemophilus influenzae. mBio 2014; 5:e01492-14. [PMID: 25161190 PMCID: PMC4173778 DOI: 10.1128/mbio.01492-14] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
UNLABELLED The C-type lectin receptor Dectin-1 is expressed mainly on myeloid cells mediating the immune response targeting respiratory pathogens such as Aspergillus fumigatus and Mycobacterium tuberculosis. The pulmonary epithelium serves as an important interface for interactions between these pathogens and the respiratory tract. Therefore, we analyzed the expression pattern of Dectin-1 in the human lung. Immunohistochemically stained human lung sections from 17 out of 19 individuals were positive for Dectin-1, which was expressed mainly apically on bronchial and alveolar epithelium. Our results showed no correlation with chronic obstructive pulmonary disease (COPD) or the smoking habits of the patients. Nontypeable Haemophilus influenzae (NTHI), an important bacterial pathogen of the respiratory tract with significant importance in COPD, has also been proposed to be recognized by Dectin-1, suggesting a possible impact on the NTHI-dependent immune response in human airways. Therefore, the involvement of Dectin-1 in NTHI-triggered cytokine responses was investigated in primary normal human bronchial epithelial (NHBE) cells and in the A549 cell line stably transfected with Dectin-1. The presence of Dectin-1 significantly increased cytokine release in response to NTHI in NHBE and A549 cells. In addition, phosphorylation of the Dectin-1 hem-immunoreceptor tyrosine-based activation motif (hemITAM) was essential for the Dectin-1-triggered response to NTHI in A549 cells. In conclusion, in human airways, epithelium-expressed Dectin-1 may play a significant role in generating an NTHI-mediated, proinflammatory immune response. IMPORTANCE In this study, we demonstrated, for the first time, the expression of Dectin-1 on human lung tissues and, in particular, pulmonary epithelium by making use of immunohistochemical staining. The epithelial lining of the human airways is an important interface for host-pathogen interactions. Therefore, our data suggest that epithelium-expressed Dectin-1 is of considerable importance for the interaction of the human airways with pathogens detected by this receptor, such as A. fumigatus and M. tuberculosis. Moreover, we further demonstrated that, in pulmonary epithelial cells, Dectin-1 enhances the proinflammatory immune response to NTHI. In COPD patients, NTHI is a major cause of respiratory tract infections and is associated with proinflammatory immune responses in the lower airways. Therefore, our data suggest that the functional interaction of Dectin-1 with NTHI in human airways may have an important impact on the pathogenesis of COPD.
Collapse
|
26
|
Wu S, Baum MM, Kerwin J, Guerrero D, Webster S, Schaudinn C, VanderVelde D, Webster P. Biofilm-specific extracellular matrix proteins of nontypeable Haemophilus influenzae. Pathog Dis 2014; 72:143-60. [PMID: 24942343 DOI: 10.1111/2049-632x.12195] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Revised: 06/07/2014] [Accepted: 06/11/2014] [Indexed: 11/28/2022] Open
Abstract
Nontypeable Haemophilus influenzae (NTHi), a human respiratory tract pathogen, can form colony biofilms in vitro. Bacterial cells and the amorphous extracellular matrix (ECM) constituting the biofilm can be separated using sonication. The ECM from 24- and 96-h NTHi biofilms contained polysaccharides and proteinaceous components as detected by nuclear magnetic resonance (NMR) and Fourier transform infrared spectroscopy (FTIR) spectroscopy. More conventional chemical assays on the biofilm ECM confirmed the presence of these components and also DNA. Proteomics revealed eighteen proteins present in biofilm ECM that were not detected in planktonic bacteria. One ECM protein was unique to 24-h biofilms, two were found only in 96-h biofilms, and fifteen were present in the ECM of both 24- and 96-h NTHi biofilms. All proteins identified were either associated with bacterial membranes or cytoplasmic proteins. Immunocytochemistry showed two of the identified proteins, a DNA-directed RNA polymerase and the outer membrane protein OMP P2, associated with bacteria and biofilm ECM. Identification of biofilm-specific proteins present in immature biofilms is an important step in understanding the in vitro process of NTHi biofilm formation. The presence of a cytoplasmic protein and a membrane protein in the biofilm ECM of immature NTHi biofilms suggests that bacterial cell lysis may be a feature of early biofilm formation.
Collapse
Affiliation(s)
- Siva Wu
- Bioenergy/GTL & Structural Biology Department, Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | | | | | | | | | | | | | | |
Collapse
|
27
|
NOD2/RICK-dependent β-defensin 2 regulation is protective for nontypeable Haemophilus influenzae-induced middle ear infection. PLoS One 2014; 9:e90933. [PMID: 24625812 PMCID: PMC3953203 DOI: 10.1371/journal.pone.0090933] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2013] [Accepted: 02/06/2014] [Indexed: 12/30/2022] Open
Abstract
Middle ear infection, otitis media (OM), is clinically important due to the high incidence in children and its impact on the development of language and motor coordination. Previously, we have demonstrated that the human middle ear epithelial cells up-regulate β-defensin 2, a model innate immune molecule, in response to nontypeable Haemophilus influenzae (NTHi), the most common OM pathogen, via TLR2 signaling. NTHi does internalize into the epithelial cells, but its intracellular trafficking and host responses to the internalized NTHi are poorly understood. Here we aimed to determine a role of cytoplasmic pathogen recognition receptors in NTHi-induced β-defensin 2 regulation and NTHi clearance from the middle ear. Notably, we observed that the internalized NTHi is able to exist freely in the cytoplasm of the human epithelial cells after rupturing the surrounding membrane. The human middle ear epithelial cells inhibited NTHi-induced β-defensin 2 production by NOD2 silencing but augmented it by NOD2 over-expression. NTHi-induced β-defensin 2 up-regulation was attenuated by cytochalasin D, an inhibitor of actin polymerization and was enhanced by α-hemolysin, a pore-forming toxin. NOD2 silencing was found to block α-hemolysin-mediated enhancement of NTHi-induced β-defensin 2 up-regulation. NOD2 deficiency appeared to reduce inflammatory reactions in response to intratympanic inoculation of NTHi and inhibit NTHi clearance from the middle ear. Taken together, our findings suggest that a cytoplasmic release of internalized NTHi is involved in the pathogenesis of NTHi infections, and NOD2-mediated β-defensin 2 regulation contributes to the protection against NTHi-induced otitis media.
Collapse
|
28
|
Talbott SM, Talbott JA, Talbott TL, Dingler E. β-Glucan supplementation, allergy symptoms, and quality of life in self-described ragweed allergy sufferers. Food Sci Nutr 2014; 1:90-101. [PMID: 24804018 PMCID: PMC3951572 DOI: 10.1002/fsn3.11] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2012] [Revised: 10/31/2012] [Accepted: 11/06/2012] [Indexed: 12/03/2022] Open
Abstract
This randomized, placebo-controlled, double-blind study compared the effects of daily supplementation for 4 week with 250 mg Wellmune WGP® β-1,3/1,6-Glucan (WGP) with placebo 250 mg/day (rice flour) on physical and psychological health attributes of self-described “moderate” ragweed allergy sufferers. Study participants (mean age = 36 ± 9 year; range 18–53 year) were recruited before the beginning of ragweed season (September) in Northeastern Ohio. Serum IgE concentration, allergy symptoms [via self-report, Visual Analog Scale (VAS), and Rhinoconjunctivitis Quality of Life Questionnaire (RQLQ)], psychological well-being [Profile of Mood States (POMS)], and physical function (RAND SF-36 Medical Outcomes Study) were measured immediately prior to and after supplementation with WGP (n = 24) or placebo (n = 24) for 4 weeks. Data were analyzed using repeated measures analyses of variance (ANOVA). Compared with placebo, WGP reduced total allergy symptoms (28%), symptom severity (52%), and symptom rating on the VAS (37%) (P < 0.05), but had no effect on serum IgE levels. As measured by the POMS, WGP increased participants' rating of vigor (10%), but reduced tension (34%), depression (45%), anger (41%), fatigue (38%), and confusion (34%) (P < 0.05). Study participants given WGP reported increased physical health (11%), energy (19%), and emotional well-being (7%) compared with study participants given the placebo (RAND SF-36 Medical Outcomes Study). The WGP group also reported decreased sleep problems (53%), reduced nasal symptoms (59%), eye symptoms (57%), non-nasal symptoms (50%), activities (53%), emotions (57%), and improved quality of life (QOL) (56%), as well as improved global mood state (13%). Supplementation with WGP for 4 weeks improved allergy symptoms, overall physical health, and emotional well-being compared with placebo in self-described “moderate” ragweed allergy sufferers during ragweed allergy season.
Collapse
|
29
|
Internalization and trafficking of nontypeable Haemophilus influenzae in human respiratory epithelial cells and roles of IgA1 proteases for optimal invasion and persistence. Infect Immun 2013; 82:433-44. [PMID: 24218477 DOI: 10.1128/iai.00864-13] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Nontypeable Haemophilus influenzae (NTHI) is a leading cause of opportunistic infections of the respiratory tract in children and adults. Although considered an extracellular pathogen, NTHI has been observed repeatedly within and between cells of the human respiratory tract, and these observations have been correlated to symptomatic infection. These findings are intriguing in light of the knowledge that NTHI persists in the respiratory tract despite antibiotic therapy and the development of bactericidal antibodies. We hypothesized that intracellular NTHI avoids, escapes, or neutralizes the endolysosomal pathway and persists within human respiratory epithelial cells and that human IgA1 proteases are required for optimal internalization and persistence of NTHI. Virtually all strains encode a human IgA1 protease gene, igaA, and we previously characterized a novel human IgA1 protease gene, igaB, that is associated with disease-causing strains and is homologous to the IgA1 protease that is unique to pathogenic Neisseria spp. Here, we show that NTHI invades human bronchial epithelial cells in vitro in a lipid raft-independent manner, is subsequently trafficked via the endolysosomal pathway, and is killed in lysosomes after variable durations of persistence. IgaA is required for optimal invasion. IgaB appears to play little or no role in adherence or invasion but is required for optimal intracellular persistence of NTHI. IgaB cleaves lysosome-associated membrane protein 1 (LAMP1) at pHs characteristic of the plasma membrane, early endosome, late endosome, and lysosome. However, neither IgA1 protease inhibits acidification of intracellular vesicles containing NTHI. NTHI IgA1 proteases play important but different roles in NTHI invasion and trafficking in respiratory epithelial cells.
Collapse
|
30
|
Singh K, Nordström T, Mörgelin M, Brant M, Cardell LO, Riesbeck K. Haemophilus influenzae resides in tonsils and uses immunoglobulin D binding as an evasion strategy. J Infect Dis 2013; 209:1418-28. [PMID: 24218509 DOI: 10.1093/infdis/jit593] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Haemophilus influenzae (Hi) causes respiratory tract infections and is also considered to be a commensal, particularly in preschool children. Tonsils from patients (n = 617) undergoing tonsillectomy due to chronic infection or hypertrophy were examined. We found that 51% of tonsils were positive for Hi, and in 95% of cases analyzed in detail (n = 39) Hi resided intracellularly in the core tonsillar tissue. Patients harbored several intracellular unique strains and the majority were nontypeable Hi (NTHi). Interestingly, the isolated NTHi bound soluble immunoglobulin (Ig) D at the constant heavy chain domain 1 as revealed by recombinant IgD/IgG chimeras. NTHi also interacted with B lymphocytes via the IgD B-cell receptor, resulting in internalization of bacteria, T-cell-independent activation via Toll-like receptor 9, and differentiation into non-NTHi-specific IgM-producing cells. Taken together, IgD-binding NTHi leads to an unspecific immune response and may support the bacteria to circumvent the host defense.
Collapse
Affiliation(s)
- Kalpana Singh
- Medical Microbiology, Department of Laboratory Medicine Malmö, Lund University, Malmö
| | | | | | | | | | | |
Collapse
|
31
|
Improvement rate of acute otitis media caused by Haemophilus influenzae at 1 week is significantly associated with time to recovery. J Clin Microbiol 2013; 51:3542-6. [PMID: 23966504 DOI: 10.1128/jcm.01108-13] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Acute otitis media (AOM) is the most common upper respiratory tract infection in childhood. Children with AOM were enrolled at Tohoku Rosai Hospital between July 2006 and June 2011 if their middle ear fluid cultures after tympanocentesis yielded only Haemophilus influenzae. The susceptibilities of the isolates to ampicillin were determined, and microtiter biofilm assays and invasion assays using BEAS-2B cells were performed. The association between these bacterial characteristics and clinical relapses of AOM and treatment failures was evaluated. Seventy-four children (39 boys and 35 girls) with a median age of 1 year (interquartile range [IQR], 0.25 to 2 years) were enrolled. Among 74 H. influenzae isolates, 37 showed intermediate resistance or resistance to ampicillin (MIC, ≥ 2 μg/ml). In the microtiter biofilm assay, the median optical density at 600 nm (OD600) was 0.68 (IQR, 0.24 to 1.02), and 70 isolates formed biofilms. The median invasion rate was 15% (IQR, 0 to 10%), and 46 isolates invaded BEAS-2B cells. Relapses and treatment failures occurred in 19 and 6 children, respectively. There was no significant difference in the invasion rates between patients with and those without relapses or treatment failures. Also, there was no significant association between biofilm formation and relapse or treatment failure. The improvements in the severity scores after 1 week were significantly associated with the recovery time (P < 0.0001). We did not identify any significant association between relapse or treatment failure and bacterial factors. AOM has a multifactorial etiology, and this may explain why we could not find a significant association. An improvement in the severity score after 1 week of treatment may be a useful predictor of the outcome of AOM.
Collapse
|
32
|
King PT, Lim S, Pick A, Ngui J, Prodanovic Z, Downey W, Choong C, Kelman A, Baranyai E, Francis M, Moshinsky R, Bardin PG, Holmes PW, Holdsworth SR. Lung T-cell responses to nontypeable Haemophilus influenzae in patients with chronic obstructive pulmonary disease. J Allergy Clin Immunol 2012; 131:1314-21.e14. [PMID: 23142009 DOI: 10.1016/j.jaci.2012.09.030] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2012] [Revised: 08/27/2012] [Accepted: 09/25/2012] [Indexed: 12/18/2022]
Abstract
BACKGROUND Chronic obstructive pulmonary disease (COPD) is characterized by pulmonary inflammation that persists after the cessation of smoking. T cells have a major role in driving inflammation in patients with COPD and are activated by specific antigens to produce mediators, such as cytokines. The antigens that activate lung T cells have not been clearly defined. Nontypeable Haemophilus influenzae (NTHi) is the dominant bacterium isolated from the lungs of patients with COPD. OBJECTIVE We sought to measure the response of lung tissue T cells to stimulation with NTHi. METHODS We obtained lung tissue from 69 subjects having lobectomies for lung cancer. Of the group, 39 subjects had COPD, and 30 without COPD were classified as control subjects. The lung tissue was dispersed into single-cell suspensions and stimulated with live NTHi. Cells were labeled with antibodies for 5 important inflammatory mediators in patients with COPD and analyzed by using flow cytometry. RESULTS NTHi produced strong activation of both TH cells and cytotoxic T cells in the COPD cohort. The COPD cohort had significantly higher levels of cells producing TNF-α, IL-13, and IL-17 in both T-cell subsets. When control subjects were divided into those with and without a significant smoking history and compared with patients with COPD, there was a progressive increase in the numbers of T cells producing cytokines from nonsmoking control subjects to smoking control subjects to patients with COPD. CONCLUSION NTHi activates lung T cells in patients with COPD. This proinflammatory profibrotic response might be a key cause of inflammation in patients with COPD and has implications for treatment.
Collapse
Affiliation(s)
- Paul T King
- Monash University Department of Medicine, Monash Medical Centre, Melbourne, Australia.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
López-Gómez A, Cano V, Moranta D, Morey P, García Del Portillo F, Bengoechea JA, Garmendia J. Host cell kinases, α5 and β1 integrins, and Rac1 signalling on the microtubule cytoskeleton are important for non-typable Haemophilus influenzae invasion of respiratory epithelial cells. MICROBIOLOGY-SGM 2012; 158:2384-2398. [PMID: 22723286 DOI: 10.1099/mic.0.059972-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Non-typable Haemophilus influenzae (NTHi) is a common commensal of the human nasopharynx, but causes opportunistic infection when the respiratory tract is compromised by infection or disease. The ability of NTHi to invade epithelial cells has been described, but the underlying molecular mechanisms are poorly characterized. We previously determined that NTHi promotes phosphorylation of the serine-threonine kinase Akt in A549 human lung epithelial cells, and that Akt phosphorylation and NTHi cell invasion are prevented by inhibition of phosphoinositide 3-kinase (PI3K). Because PI3K-Akt signalling is associated with several host cell networks, the purpose of the current study was to identify eukaryotic molecules important for NTHi epithelial invasion. We found that inhibition of Akt activity reduced NTHi internalization; differently, bacterial entry was increased by phospholipase Cγ1 inhibition but was not affected by protein kinase inhibition. We also found that α5 and β1 integrins, and the tyrosine kinases focal adhesion kinase and Src, are important for NTHi A549 cell invasion. NTHi internalization was shown to be favoured by activation of Rac1 guanosine triphosphatase (GTPase), together with the guanine nucleotide exchange factor Vav2 and the effector Pak1. Also, Pak1 might be associated with inactivation of the microtubule destabilizing agent Op18/stathmin, to facilitate microtubule polymerization and NTHi entry. Conversely, inhibition of RhoA GTPase and its effector ROCK increased the number of internalized bacteria. Src and Rac1 were found to be important for NTHi-triggered Akt phosphorylation. An increase in host cyclic AMP reduced bacterial entry, which was linked to protein kinase A. These findings suggest that NTHi finely manipulates host signalling molecules to invade respiratory epithelial cells.
Collapse
Affiliation(s)
- Antonio López-Gómez
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Bunyola, Spain.,Laboratory Microbial Pathogenesis, Fundación Investigación Sanitaria Illes Balears, Bunyola, Spain
| | - Victoria Cano
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Bunyola, Spain.,Laboratory Microbial Pathogenesis, Fundación Investigación Sanitaria Illes Balears, Bunyola, Spain
| | - David Moranta
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Bunyola, Spain.,Laboratory Microbial Pathogenesis, Fundación Investigación Sanitaria Illes Balears, Bunyola, Spain
| | - Pau Morey
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Bunyola, Spain.,Laboratory Microbial Pathogenesis, Fundación Investigación Sanitaria Illes Balears, Bunyola, Spain
| | | | - José Antonio Bengoechea
- Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Bunyola, Spain.,Laboratory Microbial Pathogenesis, Fundación Investigación Sanitaria Illes Balears, Bunyola, Spain
| | - Junkal Garmendia
- Instituto de Agrobiotecnología, CSIC-Universidad Pública de Navarra-Gobierno de Navarra, Mutilva, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Bunyola, Spain.,Laboratory Microbial Pathogenesis, Fundación Investigación Sanitaria Illes Balears, Bunyola, Spain
| |
Collapse
|
34
|
King P. Haemophilus influenzae and the lung (Haemophilus and the lung). Clin Transl Med 2012; 1:10. [PMID: 23369277 PMCID: PMC3567431 DOI: 10.1186/2001-1326-1-10] [Citation(s) in RCA: 102] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2012] [Accepted: 06/14/2012] [Indexed: 12/26/2022] Open
Abstract
Haemophilus influenzae is present as a commensal organism in the nasopharynx of most healthy adults from where it can spread to cause both systemic and respiratory tract infection. This bacterium is divided into typeable forms (such as type b) or nontypeable forms based on the presence or absence of a tough polysaccharide capsule. Respiratory disease is predominantly caused by the nontypeable forms (NTHi). Haemophilus influenzae has evolved a number of strategies to evade the host defense including the ability to invade into local tissue. Pathogenic properties of this bacterium as well as defects in host defense may result in the spread of this bacterium from the upper airway to the bronchi of the lung. This can result in airway inflammation and colonization particularly in chronic obstructive pulmonary disease. Treatment of respiratory tract infection with Haemophilus influenzae is often only partially successful with ongoing infection and inflammation. Improvement in patient outcome will be dependent on a better understanding of the pathogenesis and host immune response to this bacterium.
Collapse
Affiliation(s)
- Paul King
- Department of Respiratory and Sleep Medicine and Department of Medicine, Monash University, Monash Medical Centre, 246 Clayton Rd, Clayton, Melbourne, 3168, Australia.
| |
Collapse
|
35
|
Arrevillaga G, Gaona J, Sánchez C, Rosales V, Gómez B. Respiratory syncytial virus persistence in macrophages downregulates intercellular adhesion molecule-1 expression and reduces adhesion of non-typeable Haemophilus influenzae. Intervirology 2012; 55:442-50. [PMID: 22572178 DOI: 10.1159/000335548] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2010] [Accepted: 11/30/2011] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Persistence of respiratory syncytial virus (RSV) has been associated with episodes of chronic obstructive pulmonary disease (COPD); furthermore, co-infection of RSV with non-typeable Haemophilus influenzae (NTHi) is increasingly recognized as a cause of exacerbations of COPD. OBJECTIVE To study whether RSV persistence in a macrophage (Mφ)-like cell line alters NTHi uptake (adhesion and ingestion). METHODS A murine Mφ-like cell line persistently infected with RSV (MφP) was used. The effects of RSV persistence on NTHi uptake by MφP and mock-infected Mφ (MφN) were determined by flow-cytometric assays with NTHi labelled with either ethidium bromide or FITC. Expression of intercellular adhesion molecule-1 (ICAM-1), a ligand for NTHi, was determined by measuring mRNA through real-time PCR and protein by Western blot assays. RESULTS RSV persistence reduced both the capacity of Mφ to take up bacteria and the expression of ICAM-1 mRNA and protein. Furthermore, when ICAM-1 was blocked with anti-ICAM-1 antibody, the adhesion capacity of NTHi was significantly reduced for MφN, whereas for MφP the effect was less evident, implying that ICAM-1 participates in NTHi adhesion to Mφ. CONCLUSION RSV persistence in murine Mφ diminishes their capacity to adhere and ingest NTHi through downregulation of ICAM-1 expression at the transcriptional level.
Collapse
Affiliation(s)
- Gerardo Arrevillaga
- Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad Universitaria, México D.F., México
| | | | | | | | | |
Collapse
|
36
|
Clementi CF, Murphy TF. Non-typeable Haemophilus influenzae invasion and persistence in the human respiratory tract. Front Cell Infect Microbiol 2011; 1:1. [PMID: 22919570 PMCID: PMC3417339 DOI: 10.3389/fcimb.2011.00001] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2011] [Accepted: 10/04/2011] [Indexed: 12/21/2022] Open
Abstract
Non-typeable Haemophilus influenzae (NTHI) is an opportunistic bacterial pathogen of the human respiratory tract and is a leading cause of respiratory infections in children and adults. NTHI is considered to be an extracellular pathogen, but has consistently been observed within and between human respiratory epithelial cells and macrophages, in vitro and ex vivo. Until recently, few studies have examined the internalization, trafficking, and fate of NTHI in host cells. It is important to clarify this interaction because of a possible correlation between intracellular NTHI and symptomatic infection, and because NTHI infections frequently persist and recur despite antibiotic therapy and the development of bactericidal antibodies, suggesting a possible intracellular state or reservoir for NTHI. How does NTHI enter host cells? Can NTHI survive intracellularly and, if so, for how long? Strides have been made in the identification of host receptors, signaling, endocytosis, and trafficking pathways involved in the entry and persistence of NTHI in the respiratory tract.
Collapse
Affiliation(s)
- Cara F Clementi
- Department of Microbiology and Immunology, University at Buffalo, State University of New York Buffalo, NY, USA
| | | |
Collapse
|
37
|
Morey P, Cano V, Martí-Lliteras P, López-Gómez A, Regueiro V, Saus C, Bengoechea JA, Garmendia J. Evidence for a non-replicative intracellular stage of nontypable Haemophilus influenzae in epithelial cells. MICROBIOLOGY-SGM 2010; 157:234-250. [PMID: 20929955 DOI: 10.1099/mic.0.040451-0] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Nontypable Haemophilus influenzae (NTHi) is a Gram-negative, non-capsulated human bacterial pathogen, a major cause of a repertoire of respiratory infections, and intimately associated with persistent lung bacterial colonization in patients suffering from chronic obstructive pulmonary disease (COPD). Despite its medical relevance, relatively little is known about its mechanisms of pathogenicity. In this study, we found that NTHi invades the airway epithelium by a distinct mechanism, requiring microtubule assembly, lipid rafts integrity, and activation of phosphatidylinositol 3-kinase (PI3K) signalling. We found that the majority of intracellular bacteria are located inside an acidic subcellular compartment, in a metabolically active and non-proliferative state. This NTHi-containing vacuole (NTHi-CV) is endowed with late endosome features, co-localizing with LysoTracker, lamp-1, lamp-2, CD63 and Rab7. The NTHi-CV does not acquire Golgi- or autophagy-related markers. These observations were extended to immortalized and primary human airway epithelial cells. By using NTHi clinical isolates expressing different amounts of phosphocholine (PCho), a major modification of NTHi lipooligosaccharide, on their surfaces, and an isogenic lic1BC mutant strain lacking PCho, we showed that PCho is not responsible for NTHi intracellular location. In sum, this study indicates that NTHi can survive inside airway epithelial cells.
Collapse
Affiliation(s)
- Pau Morey
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Bunyola, Spain.,Programa de Infección e Inmunidad, Fundación Caubet-CIMERA, recinto Hospital Joan March, carretera Sóller, km 12, 07110, Bunyola, Spain
| | - Victoria Cano
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Bunyola, Spain.,Programa de Infección e Inmunidad, Fundación Caubet-CIMERA, recinto Hospital Joan March, carretera Sóller, km 12, 07110, Bunyola, Spain
| | - Pau Martí-Lliteras
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Bunyola, Spain.,Programa de Infección e Inmunidad, Fundación Caubet-CIMERA, recinto Hospital Joan March, carretera Sóller, km 12, 07110, Bunyola, Spain
| | - Antonio López-Gómez
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Bunyola, Spain.,Programa de Infección e Inmunidad, Fundación Caubet-CIMERA, recinto Hospital Joan March, carretera Sóller, km 12, 07110, Bunyola, Spain
| | - Verónica Regueiro
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Bunyola, Spain.,Programa de Infección e Inmunidad, Fundación Caubet-CIMERA, recinto Hospital Joan March, carretera Sóller, km 12, 07110, Bunyola, Spain
| | - Carles Saus
- Servicio de Anatomía Patológica, Hospital Universitario Son Dureta, Palma Mallorca, Spain
| | - José Antonio Bengoechea
- Área Microbiología, Facultad de Biología, Universitat Illes Balears, carretera Valldemossa, km 7.5, 07122, Palma Mallorca, Spain.,Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Bunyola, Spain.,Programa de Infección e Inmunidad, Fundación Caubet-CIMERA, recinto Hospital Joan March, carretera Sóller, km 12, 07110, Bunyola, Spain
| | - Junkal Garmendia
- Programa de Infección e Inmunidad, Fundación Caubet-CIMERA, recinto Hospital Joan March, carretera Sóller, km 12, 07110, Bunyola, Spain.,Instituto Agrobiotecnología (UPNA-CSIC), Campus Arrosadía s/n, 31192 Mutilva Baja, Navarra, Spain.,Área Microbiología, Facultad de Biología, Universitat Illes Balears, carretera Valldemossa, km 7.5, 07122, Palma Mallorca, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Bunyola, Spain
| |
Collapse
|
38
|
Binding of complement regulators to invasive nontypeable Haemophilus influenzae isolates is not increased compared to nasopharyngeal isolates, but serum resistance is linked to disease severity. J Clin Microbiol 2010; 48:921-7. [PMID: 20089757 DOI: 10.1128/jcm.01654-09] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The aim of the present study was to analyze the importance of nontypeable Haemophilus influenzae (NTHi) isolated from patients with sepsis (invasive isolates) compared to nasopharyngeal isolates from patients with upper respiratory tract infection for resistance to complement-mediated attack in human serum and to correlate this result with disease severity. We studied and characterized cases of invasive NTHi disease in detail. All patients with invasive NTHi isolates were adults, and 35% had a clinical presentation of severe sepsis according to the ACCP/SCCM classification of sepsis grading. Moreover, 41% of the patients had evidence of immune deficiency. The different isolates were analyzed for survival in human serum and for binding of 125I-labeled, purified human complement inhibitors C4b-binding protein (C4BP), factor H, and vitronectin, in addition to binding of regulators directly from serum. No significant differences were found when blood-derived and nasopharyngeal isolates were compared, suggesting that interactions with the complement system are equally important for NTHi strains, irrespective of isolation site. Interestingly, a correlation between serum resistance and invasive disease severity was found. The ability to resist the attack of the complement system seems to be important for NTHi strains infecting the respiratory tract as well as the bloodstream.
Collapse
|
39
|
Perez Vidakovics MLA, Jendholm J, Mörgelin M, Månsson A, Larsson C, Cardell LO, Riesbeck K. B cell activation by outer membrane vesicles--a novel virulence mechanism. PLoS Pathog 2010; 6:e1000724. [PMID: 20090836 PMCID: PMC2799554 DOI: 10.1371/journal.ppat.1000724] [Citation(s) in RCA: 110] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2009] [Accepted: 12/10/2009] [Indexed: 12/13/2022] Open
Abstract
Secretion of outer membrane vesicles (OMV) is an intriguing phenomenon of Gram-negative bacteria and has been suggested to play a role as virulence factors. The respiratory pathogens Moraxella catarrhalis reside in tonsils adjacent to B cells, and we have previously shown that M. catarrhalis induce a T cell independent B cell response by the immunoglobulin (Ig) D-binding superantigen MID. Here we demonstrate that Moraxella are endocytosed and killed by human tonsillar B cells, whereas OMV have the potential to interact and activate B cells leading to bacterial rescue. The B cell response induced by OMV begins with IgD B cell receptor (BCR) clustering and Ca(2+) mobilization followed by BCR internalization. In addition to IgD BCR, TLR9 and TLR2 were found to colocalize in lipid raft motifs after exposure to OMV. Two components of the OMV, i.e., MID and unmethylated CpG-DNA motifs, were found to be critical for B cell activation. OMV containing MID bound to and activated tonsillar CD19(+) IgD(+) lymphocytes resulting in IL-6 and IgM production in addition to increased surface marker density (HLA-DR, CD45, CD64, and CD86), whereas MID-deficient OMV failed to induce B cell activation. DNA associated with OMV induced full B cell activation by signaling through TLR9. Importantly, this concept was verified in vivo, as OMV equipped with MID and DNA were found in a 9-year old patient suffering from Moraxella sinusitis. In conclusion, Moraxella avoid direct interaction with host B cells by redirecting the adaptive humoral immune response using its superantigen-bearing OMV as decoys.
Collapse
MESH Headings
- Adhesins, Bacterial/immunology
- B-Lymphocytes/immunology
- B-Lymphocytes/metabolism
- Blotting, Western
- Cell Membrane/immunology
- Cell Membrane/metabolism
- Cell Separation
- Child
- Child, Preschool
- CpG Islands/immunology
- Electrophoresis, Polyacrylamide Gel
- Enzyme-Linked Immunosorbent Assay
- Flow Cytometry
- Humans
- Immunoglobulin D/immunology
- Lymphocyte Activation/immunology
- Membrane Microdomains/immunology
- Membrane Microdomains/metabolism
- Microscopy, Confocal
- Microscopy, Electron, Transmission
- Microscopy, Fluorescence
- Moraxella catarrhalis/immunology
- Moraxella catarrhalis/pathogenicity
- Moraxellaceae Infections/immunology
- Palatine Tonsil/immunology
- Receptors, Antigen, B-Cell/immunology
- Reverse Transcriptase Polymerase Chain Reaction
- Signal Transduction/immunology
- Sinusitis/immunology
- Sinusitis/microbiology
- Virulence
Collapse
Affiliation(s)
| | - Johan Jendholm
- Medical Microbiology, Department of Laboratory Medicine, University Hospital Malmö, Lund University, Malmö, Sweden
| | - Matthias Mörgelin
- Section of Clinical and Experimental Infectious Medicine, Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Anne Månsson
- Division of ENT Diseases, Department of Clinical Sciences, Intervention and Technology, Karolinska Institute, Huddinge, Sweden
| | - Christer Larsson
- Center for Molecular Pathology, Department of Laboratory Medicine, University Hospital Malmö, Lund University, Malmö, Sweden
| | - Lars-Olaf Cardell
- Division of ENT Diseases, Department of Clinical Sciences, Intervention and Technology, Karolinska Institute, Huddinge, Sweden
| | - Kristian Riesbeck
- Medical Microbiology, Department of Laboratory Medicine, University Hospital Malmö, Lund University, Malmö, Sweden
- * E-mail:
| |
Collapse
|
40
|
Abstract
BACKGROUND Enterocytes are exposed to antigens present in the intestinal lumen, like beta-glucans that are carbohydrate structures present not only in the cell wall of yeast and fungi but also in cereals. Beta-glucans are known for their immune modulating properties and we have earlier reported an increased immune response by enterocytes after addition of fecal water prepared from ileostomic contents obtained from participants consuming an oat beta-glucan diet versus a placebo diet. We hypothesized that our observation of immune stimulating effects by oat beta-glucan in enterocytes was mediated through the beta-glucan receptor dectin-1. METHODS Presence of dectin-1 in enterocytes was examined by reverse transcriptase PCR, western blot, and flow cytometry followed by an evaluation of the functional involvement of dectin-1 by using dectin-1 inhibitors during fecal water incubations. RESULTS Reverse transcriptase PCR and western blot analysis showed dectin-1 presence in the INT407 and Caco-2 NF-kappaB reporter enterocyte cell lines. Moreover, human enterocytes isolated from ileum or colon biopsies also contained dectin-1 protein. However, dectin-1 expression could not be confirmed by flow cytometry in INT407 cells, suggesting that in these cell lines dectin-1 is not expressed at the extracellular membrane. Furthermore, dectin-1 inhibitors did not suppress the beta-glucan containing fecal water-induced IL-8 production by INT407 cells and NF-kappaB transactivation by Caco-2 NF-kappaB reporter cells. CONCLUSION INT407 and Caco-2 NF-kappaB reporter cells seem to express no functional dectin-1. The absence of this pattern recognition receptor may function to protect the intestine against inflammatory damage, as the dectin-1 ligand beta-glucan is largely present in the intestinal lumen.
Collapse
|
41
|
Hotomi M, Arai J, Billal DS, Takei S, Ikeda Y, Ogami M, Kono M, Beder LB, Toya K, Kimura M, Yamanaka N. Nontypeable Haemophilus influenzae isolated from intractable acute otitis media internalized into cultured human epithelial cells. Auris Nasus Larynx 2009; 37:137-44. [PMID: 19505782 DOI: 10.1016/j.anl.2009.03.012] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2009] [Revised: 02/26/2009] [Accepted: 03/22/2009] [Indexed: 12/01/2022]
Abstract
OBJECTIVES The aim of this study is to examine the internalization of nontypeable Haemophilus influenzae (NTHi) into human epithelial cells. METHODS Bactericidal assay was applied to examine the effects of antibiotics against cell-adherent NTHi using HEp-2 cells. A trans-well chamber assay was applied to examine the internalization and penetration of NTHi using Detroit562 cells. RESULTS The adherence of NTHi to HEp-2 cells was noted after 2h of incubation. Azithromycin had a strong bactericidal effect against both cell-associated and non-adherent NTHi, while ceftriaxone did not show bactericidal effects on NTHi adhered to the HEp-2 cells. Three (60.0%) out of five NTHi isolates from the nasopharynx of children with intractable acute otitis media (AOM) internalized into and subsequently penetrated through the epithelial cells at various degrees. Azithromycin had a strong bactericidal effect against the cell-internalized NTHi, while ceftriaxone was bactericidal only against extracellular NTHi. CONCLUSION The potential of NTHi as the intracellular pathogen may contribute to the persistent existence of this pathogen that result in the prolonged and intractable clinical course of AOM. Azithromycin may be a therapeutically significant antibiotic for patients with prolonged respiratory tract infections due to NTHi.
Collapse
Affiliation(s)
- Muneki Hotomi
- Department of Otolaryngology-Head and Neck Surgery, Wakayama Medical University, 811-1 Kimiidera, Wakayama-shi, Wakayama, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Ronander E, Brant M, Eriksson E, Mörgelin M, Hallgren O, Westergren-Thorsson G, Forsgren A, Riesbeck K. Nontypeable Haemophilus influenzae adhesin protein E: characterization and biological activity. J Infect Dis 2009; 199:522-31. [PMID: 19125675 DOI: 10.1086/596211] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
The adhesin protein E (PE) of the human respiratory pathogen nontypeable Haemophilus influenzae (NTHi) exists in all clinical isolates. In the present study, NTHi adherence to epithelial cells of various origins was further analyzed. The number of intraepithelial PE-deficient NTHi was decreased compared with PE-expressing NTHi. Interestingly, PE-expressing NTHi or Escherichia coli transformants, in addition to soluble recombinant PE22-160 without a lipid moiety, induced a proinflammatory cell response. The adhesive PE domain was defined within PE84-108, and preincubation of epithelial cells with this peptide blocked adhesion of several clinical NTHi isolates. Mice immunized with PE84-108 cleared NTHi up to 8-fold more efficiently on pulmonary challenge than did mice immunized with a control peptide. Finally, anti-PE mouse antibodies from vaccinated mice prevented NTHi adhesion. Our data suggest that the ubiquitous adhesin PE plays an important role in the pathogenesis of NTHi infection.
Collapse
Affiliation(s)
- Elena Ronander
- Medical Microbiology, Department of Laboratory Medicine, Malmö University Hospital, Lund University, Malmö, Sweden
| | | | | | | | | | | | | | | |
Collapse
|
43
|
King PT, Ngui J, Gunawardena D, Holmes PW, Farmer MW, Holdsworth SR. Systemic humoral immunity to non-typeable Haemophilus influenzae. Clin Exp Immunol 2009; 153:376-84. [PMID: 18803761 DOI: 10.1111/j.1365-2249.2008.03697.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Non-typeable Haemophilus influenzae (NTHi) is a major cause of respiratory but rarely systemic infection. The host defence to this bacterium has not been well defined in patients with chronic airway infection. The aim of this study was to assess the effect of humoral immunity in host defence to NTHi. Responses were measured in control and bronchiectasis subjects who had recurrent bronchial infection. Antibody and complement-mediated killing was assessed by incubating NTHi with serum and the role of the membrane-attack complex and classical/alternate pathways of complement activation measured. The effect of one strain to induce protective immunity against other strains was assessed. The effect of antibody on granulocyte intracellular killing of NTHi was also measured. The results showed that both healthy control subjects and bronchiectasis patients all had detectable antibody to NTHi of similar titre. Both groups demonstrated effective antibody/complement-mediated killing of different strains of NTHi. This killing was mediated through the membrane-attack complex and the classical pathway of complement activation. Immunization of rabbits with one strain of NTHi resulted in protection from other strains in vitro. Antibody activated granulocytes to kill intracellular bacteria. These findings may explain why NTHi rarely causes systemic disease in patients with chronic respiratory mucosal infection and emphasize the potential importance of cellular immunity against this bacterium.
Collapse
Affiliation(s)
- P T King
- Monash University Department of Medicine, Monash Medical Centre, Melbourne, Australia.
| | | | | | | | | | | |
Collapse
|
44
|
Soltanian S, Stuyven E, Cox E, Sorgeloos P, Bossier P. Beta-glucans as immunostimulant in vertebrates and invertebrates. Crit Rev Microbiol 2009; 35:109-38. [DOI: 10.1080/10408410902753746] [Citation(s) in RCA: 114] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
45
|
Lee HY, Takeshita T, Shimada J, Akopyan A, Woo JI, Pan H, Moon SK, Andalibi A, Park RK, Kang SH, Kang SS, Gellibolian R, Lim DJ. Induction of beta defensin 2 by NTHi requires TLR2 mediated MyD88 and IRAK-TRAF6-p38MAPK signaling pathway in human middle ear epithelial cells. BMC Infect Dis 2008; 8:87. [PMID: 18578886 PMCID: PMC2447838 DOI: 10.1186/1471-2334-8-87] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2008] [Accepted: 06/25/2008] [Indexed: 01/22/2023] Open
Abstract
Background All mucosal epithelia, including those of the tubotympanium, are secreting a variety of antimicrobial innate immune molecules (AIIMs). In our previous study, we showed the bactericidal/bacteriostatic functions of AIIMs against various otitis media pathogens. Among the AIIMs, human β-defensin 2 is the most potent molecule and is inducible by exposure to inflammatory stimuli such as bacterial components or proinflammatory cytokines. Even though the β-defensin 2 is an important AIIM, the induction mechanism of this molecule has not been clearly established. We believe that this report is the first attempt to elucidate NTHi induced β-defensin expression in airway mucosa, which includes the middle ear. Methods Monoclonal antibody blocking method was employed in monitoring the TLR-dependent NTHi response. Two gene knock down methods – dominant negative (DN) plasmid and small interfering RNA (siRNA) – were employed to detect and confirm the involvement of several key genes in the signaling cascade resulting from the NTHi stimulated β-defensin 2 expression in human middle ear epithelial cell (HMEEC-1). The student's t-test was used for the statistical analysis of the data. Results The experimental results showed that the major NTHi-specific receptor in HMEEC-1 is the Toll-like receptor 2 (TLR2). Furthermore, recognition of NTHi component(s)/ligand(s) by TLR2, activated the Toll/IL-1 receptor (TIR)-MyD88-IRAK1-TRAF6-MKK3/6-p38 MAPK signal transduction pathway, ultimately leading to the induction of β-defensin 2. Conclusion This study found that the induction of β-defensin 2 is highest in whole cell lysate (WCL) preparations of NTHi, suggesting that the ligand(s) responsible for this up-regulation may be soluble macromolecule(s). We also found that this induction takes place through the TLR2 dependent MyD88-IRAK1-TRAF6-p38 MAPK pathway, with the primary response occurring within the first hour of stimulation. In combination with our previous studies showing that IL-1α-induced β-defensin 2 expression takes place through a MyD88-independent Raf-MEK1/2-ERK MAPK pathway, we found that both signaling cascades act synergistically to up-regulate β-defensin 2 levels. We propose that this confers an essential evolutionary advantage to the cells in coping with infections and may serve to amplify the innate immune response through paracrine signaling.
Collapse
Affiliation(s)
- Haa-Yung Lee
- The Gonda Department of Cell and Molecular Biology, House Ear Institute, Los Angeles, CA, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Photoprotective effects of glucomannan isolated from Candida utilis. Carbohydr Res 2007; 343:501-11. [PMID: 18067882 DOI: 10.1016/j.carres.2007.11.010] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2007] [Revised: 11/08/2007] [Accepted: 11/11/2007] [Indexed: 12/22/2022]
Abstract
Glucomannans belong to yeast and fungal cell wall polysaccharides with known immunostimulatory and radioprotective effects. However, glucomannan protective effects against pathological consequences of skin exposure to short wavelength solar light, ultraviolet (UV) radiation, are unclear. Herein, a highly branched glucomannan (GM) isolated from the cell wall of Candida utilis, a member of the alpha-(1-->6)-D-mannan group, was tested for its photoprotective effects in an in vitro model of UVB-irradiated human keratinocytes and an in vivo model of UV-induced erythema formation in human volunteers. GM suppressed the UVB-induced decrease of keratinocyte viability, which was connected with the suppression of UVB-induced keratinocyte apoptosis. GM reduced UVB-mediated caspase activation together with suppression of DNA fragment release into the cytoplasm. Furthermore, GM suppressed UVB-induced gene expression of pro-inflammatory markers including nuclear factor kappa B, inducible nitric oxide synthase, interleukins 8 and 1, together with suppression of prostaglandin E2 and interleukin 1alpha protein release. In vivo, GM decreased UV-induced skin erythema formation, which was correlated with a decrease of phosholipase A(2) activity within the stratum corneum. It could be concluded that GM isolated from C. utilis possesses significant photoprotective effects on human keratinocytes in vitro as well as in vivo.
Collapse
|
47
|
Kratzer C, Graninger W, Macfelda K, Buxbaum A, Georgopoulos A. Comparative activities of antibiotics against intracellular non-typeable Haemophilus influenzae. Wien Klin Wochenschr 2007; 119:297-302. [PMID: 17571234 DOI: 10.1007/s00508-007-0784-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2006] [Accepted: 11/07/2006] [Indexed: 10/23/2022]
Abstract
INTRODUCTION Non-typeable Haemophilus influenzae (NTHi) is a major bacterial pathogen of community-acquired respiratory tract infection and is usually found extracellularly, although studies have revealed that NTHi may possess the ability to invade human epithelial cells where it is then protected against attack by the local immune system and partly against the effect of antibiotics. The aim of the present study was to assess the ability of ampicillin, azithromycin, telithromycin, ciprofloxacin and moxifloxacin, five antibiotics in common clinical use, to kill NTHi within bronchial epithelial cells. METHODS Confluent human bronchial epithelial cells were infected with NTHi 77, a particularly invasive clinical strain. Extracellular bacterial cells were killed with gentamicin and the intracellular bacteria were incubated with antibiotics at concentrations of 1 mg/l or 10 mg/l for 4 h or 8 h. Viable intracellular bacteria were counted after lysis of the epithelial cells. RESULTS With the exception of ampicillin, all the antibiotics caused significant reduction of intracellular bacteria at concentrations of 10 mg/l and exposure for 4 h or at 1 mg/l for 8 h. At 1 mg/l, moxifloxacin eliminated 94% of intracellular NTHi after 4 h and 98% after 8 h; ciprofloxacin, azithromycin and telithromycin only achieved killing indices below 75 after 4 h but 86-90% killing after 8 h. At 10 mg/l, moxifloxacin, ciprofloxacin, telithromycin and azithromycin were able to achieve 99.7%, 96.3%, 86.7% and 74.7% eradication of intracellular bacteria, respectively, after exposure for 4 h. CONCLUSION These results demonstrate the rapid antibacterial efficacy of moxifloxacin against intracellular NTHi in vitro. Moxifloxacin, which combines high extracellular and intracellular activities, could be an important tool in the treatment of recurrent respiratory tract infections.
Collapse
Affiliation(s)
- Christina Kratzer
- Department of Internal Medicine I, Division of Infectious Diseases and Tropical Diseases, Medical University of Vienna, Vienna, Austria
| | | | | | | | | |
Collapse
|
48
|
Yadav M, Schorey JS. The beta-glucan receptor dectin-1 functions together with TLR2 to mediate macrophage activation by mycobacteria. Blood 2006; 108:3168-75. [PMID: 16825490 PMCID: PMC1895517 DOI: 10.1182/blood-2006-05-024406] [Citation(s) in RCA: 300] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Pattern recognition receptors (PRRs) play an essential role in a macrophage's response to mycobacterial infections. However, how these receptors work in concert to promote this macrophage response remains unclear. In this study, we used bone marrow-derived macrophages isolated from mannose receptor (MR), complement receptor 3 (CR3), MyD88, Toll-like receptor 4 (TLR4), and TLR2 knockout mice to examine the significance of these receptors in mediating a macrophage's response to a mycobacterial infection. We determined that mitogen-activated protein kinase (MAPK) activation and tumor necrosis factor-alpha (TNF-alpha) production in macrophage infected with Mycobacterium avium or M smegmatis is dependent on myeloid differentiation factor 88 (MyD88) and TLR2 but not TLR4, MR, or CR3. Interestingly, the TLR2-mediated production of TNF-alpha by macrophages infected with M smegmatis required the beta-glucan receptor dectin-1. A similar requirement for dectin-1 in TNF-alpha production was observed for macrophages infected with M bovis Bacillus Calmette-Guerin (BCG), M phlei, M avium 2151-rough, and M tuberculosis H37Ra. The limited production of TNF-alpha by virulent M avium 724 and M tuberculosis H37Rv was not dependent on dectin-1. Furthermore, dectin-1 facilitated interleukin-6 (IL-6), RANTES (regulated on activation, normal T expressed and secreted), and granulocyte colony-stimulating factor (G-CSF) production by mycobacteria-infected macrophages. These are the first results to establish a significant role for dectin-1, in cooperation with TLR2, to activate a macrophage's proinflammatory response to a mycobacterial infection.
Collapse
Affiliation(s)
- Mahesh Yadav
- Department of Biological Sciences, Center for Tropical Disease Research and Training, University of Notre Dame, 130 Galvin Life Science Center, Notre Dame, IN 46556, USA
| | | |
Collapse
|
49
|
Ozment-Skelton TR, Goldman MP, Gordon S, Brown GD, Williams DL. Prolonged reduction of leukocyte membrane-associated Dectin-1 levels following beta-glucan administration. J Pharmacol Exp Ther 2006; 318:540-6. [PMID: 16632639 DOI: 10.1124/jpet.106.102293] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Dectin-1 is the primary pattern recognition receptor for fungal glucans. Dectin-1 mediates the internalization and biological response to glucans. We examined the effect of i.v. or i.p. glucan phosphate (GP) administration on Dectin-1 membrane expression in murine peripheral blood leukocytes, splenocytes, bone marrow, and peritoneal cells from 3 h to 10 days after injection. Circulating leukocytes were also examined for uptake and internalization of glucans from the blood. Fluorescent-labeled GP was taken up from the systemic circulation by circulating peripheral leukocytes, splenocytes, and peritoneal cells. Following internalization, glucan colocalized with Dectin-1 in an intracellular vesicle. A single parenteral injection of GP resulted in a significant reduction (approximately 33-85%) in peripheral leukocyte membrane-associated Dectin-1 positivity that lasted for up to 7 days. The loss of leukocyte membrane-associated Dectin-1 after GP administration was primarily due to decreased levels of Dectin-1 on neutrophil and monocyte membranes with no significant changes in the percentage of neutrophils or monocytes circulating in the blood. Administration of control carbohydrate polymers, i.e., mannan or pullulan, which are not ligands for Dectin-1, did not decrease Dectin-1 leukocyte positivity, indicating that the effect on Dectin-1 is specific to glucans. In fact, mannan administration increased leukocyte Dectin-1 positivity, thus demonstrating a differential effect on leukocyte Dectin-1, compared with GP. We conclude that systemic administration of GP has a specific and prolonged effect on loss of leukocyte membrane Dectin-1 positivity. These data may have important implications for developing dosing regimens for immunomodulatory carbohydrates.
Collapse
MESH Headings
- Animals
- Cells, Cultured
- Depression, Chemical
- Flow Cytometry
- Fluorescent Dyes/chemical synthesis
- Injections, Intraperitoneal
- Injections, Intravenous
- Lectins, C-Type
- Leukocytes/drug effects
- Leukocytes/metabolism
- Macrophages, Peritoneal/cytology
- Macrophages, Peritoneal/drug effects
- Macrophages, Peritoneal/metabolism
- Male
- Mannans/pharmacology
- Membrane Proteins/biosynthesis
- Mice
- Mice, Inbred ICR
- Microscopy, Confocal
- Monocytes/drug effects
- Monocytes/metabolism
- Nerve Tissue Proteins/biosynthesis
- Neutrophils/drug effects
- Neutrophils/metabolism
- Spleen/cytology
- Spleen/drug effects
- Spleen/metabolism
- beta-Glucans/chemistry
- beta-Glucans/pharmacology
Collapse
Affiliation(s)
- Tammy R Ozment-Skelton
- Department of Surgery, P.O. Box 70575, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, USA
| | | | | | | | | |
Collapse
|
50
|
Rice PJ, Adams EL, Ozment-Skelton T, Gonzalez AJ, Goldman MP, Lockhart BE, Barker LA, Breuel KF, Deponti WK, Kalbfleisch JH, Ensley HE, Brown GD, Gordon S, Williams DL. Oral delivery and gastrointestinal absorption of soluble glucans stimulate increased resistance to infectious challenge. J Pharmacol Exp Ther 2005; 314:1079-86. [PMID: 15976018 DOI: 10.1124/jpet.105.085415] [Citation(s) in RCA: 227] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Glucans are immunomodulatory carbohydrates found in the cell walls of fungi and certain bacteria. We examined the pharmacokinetics of three water-soluble glucans (glucan phosphate, laminarin, and scleroglucan) after oral administration of 1 mg/kg doses in rats. Maximum plasma concentrations for glucan phosphate occurred at 4 h. In contrast, laminarin and scleroglucan showed two plasma peaks between 0.5 and 12 h. At 24 h, 27 +/- 3% of the glucan phosphate and 20 +/- 7% of the laminarin remained in the serum. Scleroglucan was rapidly absorbed and eliminated. The liver did not significantly contribute to the clearance of plasma glucan. Biological effects were further studied in mice. Following oral administration of 1 mg, glucans were bound and internalized by intestinal epithelial cells and gut-associated lymphoid tissue (GALT) cells. Internalization of glucan by intestinal epithelial cells was not Dectin-dependent. GALT expression of Dectin-1 and toll-like receptor (TLR) 2, but not TLR4, increased following oral administration of glucan. Oral glucan increased systemic levels of interleukin (IL)-12 (151 +/- 15%) in mice. Oral glucan administration also increased survival in mice challenged with Staphylococcus aureus or Candida albicans. These data demonstrate that orally administered water-soluble glucans translocate from the gastrointestinal (GI) tract into the systemic circulation. The glucans are bound by GI epithelial and GALT cells, and they modulate the expression of pattern recognition receptors in the GALT, increase IL-12 expression, and induce protection against infectious challenge.
Collapse
Affiliation(s)
- Peter J Rice
- Department of Pharmacology, East Tennessee State University, Johnson City, TN 37614, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|