1
|
Franzago M, Borrelli P, Cavallo P, Di Tizio L, Gazzolo D, Di Nicola M, Stuppia L, Vitacolonna E. Circadian Gene Variants: Effects in Overweight and Obese Pregnant Women. Int J Mol Sci 2024; 25:3838. [PMID: 38612648 PMCID: PMC11011577 DOI: 10.3390/ijms25073838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 03/19/2024] [Accepted: 03/26/2024] [Indexed: 04/14/2024] Open
Abstract
Obesity and overweight are common and complex conditions influenced by multiple genetic and environmental factors. Several genetic variants located in the genes involved in clock systems and fat taste perception can affect metabolic health. In particular, the polymorphisms in CLOCK and BMAL1 genes were reported to be significantly related to cardiovascular disease, metabolic syndrome, sleep reduction, and evening preference. Moreover, genetic variants in the CD36 gene have been shown to be involved in lipid metabolism, regulation of fat intake, and body weight regulation. The aim of this study is to evaluate, for the first time, the association between variants in some candidate genes (namely, BMAL1 rs7950226 (G>A), CLOCK rs1801260 (A>G), CLOCK rs4864548 (G>A), CLOCK rs3736544 (G>A), CD36 rs1984112 (A>G), CD36 rs1761667 (G>A)) and overweight/obesity (OB) in pregnant women. A total of 163 normal-weight (NW) and 128 OB participants were included. A significant correlation was observed between A-allele in CLOCK rs4864548 and an increased risk of obesity (OR: 1.97; 95% CI 1.22-3.10, p = 0.005). In addition, we found that subjects carrying the haplotype of rs1801260-A, rs4864548-A, and rs3736544-G are likely to be overweight or obese (OR 1.47, 95% CI 1.03-2.09, p = 0.030), compared with those with other haplotypes. Moreover, a significant relation was observed between third-trimester lipid parameters and genetic variants-namely, CD36 rs1984112, CD36 rs1761667, BMAL1 rs7950226, and CLOCK rs1801260. A multivariate logistic regression model revealed that CLOCK rs4864548 A-allele carriage was a strong risk factor for obesity (OR 2.05, 95% CI 1.07-3.93, p = 0.029); on the other hand, greater adherence to Mediterranean diet (OR 0.80, 95% CI 0.65-0.98, p = 0.038) and higher HDL levels (OR 0.96, 95% CI 0.94-0.99, p = 0.021) were related to a reduced risk of obesity. Interestingly, an association between maternal CLOCK rs4864548 and neonatal birthweight was detected (p = 0.025). These data suggest a potential role of the polymorphisms in clock systems and in fat taste perception in both susceptibility to overweight/obesity and influencing the related metabolic traits in pregnant women.
Collapse
Affiliation(s)
- Marica Franzago
- Department of Medicine and Aging, School of Medicine, and Health Sciences, “G. D’Annunzio” University, Via dei Vestini, Chieti-Pescara, 66100 Chieti, Italy; (M.F.); (P.C.); (D.G.)
- Center for Advanced Studies and Technology (CAST), “G. D’Annunzio” University, Chieti-Pescara, 66100 Chieti, Italy;
| | - Paola Borrelli
- Laboratory of Biostatistics, Department of Medical, Oral and Biotechnological Sciences, “G. D’Annunzio” University, Chieti-Pescara, 66100 Chieti, Italy; (P.B.); (M.D.N.)
| | - Pierluigi Cavallo
- Department of Medicine and Aging, School of Medicine, and Health Sciences, “G. D’Annunzio” University, Via dei Vestini, Chieti-Pescara, 66100 Chieti, Italy; (M.F.); (P.C.); (D.G.)
| | - Luciano Di Tizio
- Department of Obstetrics and Gynaecology, SS. Annunziata Hospital, “G. D’Annunzio” University, 66100 Chieti, Italy;
| | - Diego Gazzolo
- Department of Medicine and Aging, School of Medicine, and Health Sciences, “G. D’Annunzio” University, Via dei Vestini, Chieti-Pescara, 66100 Chieti, Italy; (M.F.); (P.C.); (D.G.)
- Neonatal Intensive Care Unit, “G. D’Annunzio” University, 66100 Chieti, Italy
| | - Marta Di Nicola
- Laboratory of Biostatistics, Department of Medical, Oral and Biotechnological Sciences, “G. D’Annunzio” University, Chieti-Pescara, 66100 Chieti, Italy; (P.B.); (M.D.N.)
| | - Liborio Stuppia
- Center for Advanced Studies and Technology (CAST), “G. D’Annunzio” University, Chieti-Pescara, 66100 Chieti, Italy;
- Department of Psychological, Health and Territorial Sciences, School of Medicine and Health Sciences, “G. D’Annunzio” University, Chieti-Pescara, 66100 Chieti, Italy
| | - Ester Vitacolonna
- Department of Medicine and Aging, School of Medicine, and Health Sciences, “G. D’Annunzio” University, Via dei Vestini, Chieti-Pescara, 66100 Chieti, Italy; (M.F.); (P.C.); (D.G.)
- Center for Advanced Studies and Technology (CAST), “G. D’Annunzio” University, Chieti-Pescara, 66100 Chieti, Italy;
| |
Collapse
|
2
|
Rana S, Fatima N, Bhatti AA. Association of CLOCK gene variants with obesity and adiposity-related anthropometric, metabolic, and behavioral parameters. Facets (Ott) 2022. [DOI: 10.1139/facets-2021-0137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The CLOCK gene is a core component of the circadian clock and regulates various aspects of metabolism. Therefore, any variation that affects the function/expression of the CLOCK gene may contribute to the manifestation of metabolic disorders such as obesity. This study investigated whether the CLOCK variants rs4864548 and rs6843722 are associated with obesity and related traits in Pakistanis. A total of 306 overweight/obese cases and 306 age- and gender-matched control subjects were recruited (males 336 and females 276, age range 12–63 years). Anthropometric and metabolic parameters were taken by standard procedures and biochemical analyses, respectively. Behavior-related information was collected with a questionnaire. The genotypes of the variants were determined by allelic discrimination Taqman assays. Both variants were found to have a significant association with overweight/obesity according to the over-dominant model. The rs4864548 and rs6843722 were observed to escalate the risk of overweight/obesity by 1.611 ( p = 0.004) and 1.657 ( p = 0.002) times, respectively. These variants were also seen to be significantly associated with various other adiposity-related anthropometric parameters ( p < 0.05). However, no association of both variants with metabolic and behavioral parameters was observed ( p > 0.05). Thus, these variants may contribute to increasing the risk of overweight/obesity and related anthropometric traits in Pakistanis.
Collapse
Affiliation(s)
- Sobia Rana
- Molecular Biology and Human Genetics Laboratory, Dr. Panjwani Center for Molecular Medicine and Drug Research (PCMD), International Center for Chemical and Biological Sciences (ICCBS), University of Karachi, Karachi, 75270, Pakistan
| | - Narjis Fatima
- Molecular Biology and Human Genetics Laboratory, Dr. Panjwani Center for Molecular Medicine and Drug Research (PCMD), International Center for Chemical and Biological Sciences (ICCBS), University of Karachi, Karachi, 75270, Pakistan
| | - Adil Anwar Bhatti
- Molecular Biology and Human Genetics Laboratory, Dr. Panjwani Center for Molecular Medicine and Drug Research (PCMD), International Center for Chemical and Biological Sciences (ICCBS), University of Karachi, Karachi, 75270, Pakistan
| |
Collapse
|
3
|
Chromosomal regions strongly associated with waist circumference and body mass index in metabolic syndrome in a family-based study. Sci Rep 2021; 11:6082. [PMID: 33727680 PMCID: PMC7966400 DOI: 10.1038/s41598-021-85741-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 03/05/2021] [Indexed: 11/24/2022] Open
Abstract
Obesity is the most crucial phenotype in metabolic syndrome (MetS), and waist circumference (WC) and body mass index (BMI) are two common indexes to define obesity. It is an accepted fact that genetic and environmental interaction influence obesity and MetS. Microsatellites are a subcategory of tandem repeats with a length of 1 to 10 nucleotides. Tandem repeats make up repetitive genomic regions. Differences in the number of tandem repeats or their variation (alleles) result in microsatellite polymorphisms. Thus, we attempted to find microsatellite variation associated with WC and BMI in a family-based study. Twelve microsatellite markers were selected to investigate possible genes or chromosomal regions in 91 families with at least one affected MetS. The cut-off values for BMI and WC were considered 25 kg/m2 and 90 cm, respectively. In all members of the families, the strongest association was observed between the marker D11S1304 (allele 1) with both WC and BMI, independently, by the biallelic model in the family-based association test analysis (P < 0.05). Besides, when we compared high- and low-level groups in members with MetS, the markers D8S1743 and D11S1304 (allele 1) showed a strong association with WC (P = 0.0080) and BMI (P = 0.0074), respectively. When the simultaneous detection of the high WC and MetS status was used as a trait, the strongest association was observed with the marker D8S1743 (P = 0.0034). Moreover, when BMI with the high MetS status was used as a trait, the strongest association was observed with the marker D8S1743 (allele 4) (P = 0.0034). The obtained results showed a relationship between obesity and MetS with markers on the selected regions on chromosomes 8 and 11, and to a lesser degree, on chromosome 12.
Collapse
|
4
|
Ran S, Jiang ZX, He X, Liu Y, Zhang YX, Zhang L, Pei YF, Zhang M, Hai R, Gu GS, Liu BL, Tian Q, Zhang YH, Wang JY, Deng HW. Replication of FTO Gene associated with lean mass in a Meta-Analysis of Genome-Wide Association Studies. Sci Rep 2020; 10:5057. [PMID: 32193455 PMCID: PMC7081265 DOI: 10.1038/s41598-020-61406-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2019] [Accepted: 01/13/2020] [Indexed: 12/13/2022] Open
Abstract
Sarcopenia is characterized by low skeletal muscle, a complex trait with high heritability. With the dramatically increasing prevalence of obesity, obesity and sarcopenia occur simultaneously, a condition known as sarcopenic obesity. Fat mass and obesity-associated (FTO) gene is a candidate gene of obesity. To identify associations between lean mass and FTO gene, we performed a genome-wide association study (GWAS) of lean mass index (LMI) in 2207 unrelated Caucasian subjects and replicated major findings in two replication samples including 6,004 unrelated Caucasian and 38,292 unrelated Caucasian. We found 29 single nucleotide polymorphisms (SNPs) in FTO significantly associated with sarcopenia (combined p-values ranging from 5.92 × 10-12 to 1.69 × 10-9). Potential biological functions of SNPs were analyzed by HaploReg v4.1, RegulomeDB, GTEx, IMPC and STRING. Our results provide suggestive evidence that FTO gene is associated with lean mass.
Collapse
Affiliation(s)
- Shu Ran
- School of Medical Instruments and Food Engineering, University of Shanghai for Science and Technology, Shanghai, P.R. China
| | - Zi-Xuan Jiang
- School of Medical Instruments and Food Engineering, University of Shanghai for Science and Technology, Shanghai, P.R. China
| | - Xiao He
- School of Medical Instruments and Food Engineering, University of Shanghai for Science and Technology, Shanghai, P.R. China
| | - Yu Liu
- School of Medical Instruments and Food Engineering, University of Shanghai for Science and Technology, Shanghai, P.R. China
| | - Yu-Xue Zhang
- School of Medical Instruments and Food Engineering, University of Shanghai for Science and Technology, Shanghai, P.R. China
| | - Lei Zhang
- Center for Genetic Epidemiology and Genomics, School of Public Health, Soochow University, Jiangsu, P.R. China
- Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, Jiangsu, P.R. China
| | - Yu-Fang Pei
- Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, Jiangsu, P.R. China
- Department of Epidemiology and Statistics, School of Public Health, Soochow University, Jiangsu, P.R. China
| | - Meng Zhang
- Beijing Gene Tangram Technology Development CO., Ltd., Beijing, P.R. China
| | - Rong Hai
- Inner Mongolia Autonomous Region Center of Health Management Service, Hohhot, P.R. China
| | - Gui-Shan Gu
- Ji Lin University, First Hospital, Changchun, P.R. China
| | - Bao-Lin Liu
- School of Medical Instruments and Food Engineering, University of Shanghai for Science and Technology, Shanghai, P.R. China
| | - Qing Tian
- Department of Biostatistics and Data Science, Tulane University, New Orleans, Louisiana, USA
| | - Yong-Hong Zhang
- Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, Jiangsu, P.R. China
- Department of Epidemiology and Statistics, School of Public Health, Soochow University, Jiangsu, P.R. China
| | - Jing-Yu Wang
- Ji Lin University, First Hospital, Changchun, P.R. China
| | - Hong-Wen Deng
- Department of Biostatistics and Data Science, Tulane University, New Orleans, Louisiana, USA.
| |
Collapse
|
5
|
Ran S, Zhang YX, Liu L, Jiang ZX, He X, Liu Y, Shen H, Tian Q, Pei YF, Deng HW, Zhang L. Association of 3p27.1 Variants with Whole Body Lean Mass Identified by a Genome-wide Association Study. Sci Rep 2020; 10:4293. [PMID: 32152362 PMCID: PMC7062907 DOI: 10.1038/s41598-020-61272-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Accepted: 02/25/2020] [Indexed: 12/25/2022] Open
Abstract
Whole body lean mass (WBLM) is a heritable trait predicting sarcopenia. To identify genomic locus underlying WBLM, we performed a genome-wide association study of fat-adjusted WBLM in the Framingham Heart Study (FHS, N = 6,004), and replicated in the Kansas City Osteoporosis Study (KCOS, N = 2,207). We identified a novel locus 3p27.1 that was associated with WBLM (lead SNP rs3732593 P = 7.19 × 10-8) in the discovery FHS sample, and the lead SNP was successfully replicated in the KCOS sample (one-sided P = 0.04). Bioinformatics analysis found that this SNP and its adjacent SNPs had the function of regulating enhancer activity in skeletal muscle myoblasts cells, further confirming the regulation of WBLM by this locus. Our finding provides new insight into the genetics of WBLM and enhance our understanding of sarcopenia.
Collapse
Affiliation(s)
- Shu Ran
- School of Medical Instruments and Food Engineering, University of Shanghai for Science and Technology, Shanghai, PR China
| | - Yu-Xue Zhang
- School of Medical Instruments and Food Engineering, University of Shanghai for Science and Technology, Shanghai, PR China
| | - Lu Liu
- Kunshan Hospital of Traditional Chinese Medicine, Jiangsu, PR China
| | - Zi-Xuan Jiang
- School of Medical Instruments and Food Engineering, University of Shanghai for Science and Technology, Shanghai, PR China
| | - Xiao He
- School of Medical Instruments and Food Engineering, University of Shanghai for Science and Technology, Shanghai, PR China
| | - Yu Liu
- School of Medical Instruments and Food Engineering, University of Shanghai for Science and Technology, Shanghai, PR China
| | - Hui Shen
- Department of Biostatistics and Bioinformatics, Tulane University School of Public Health and Tropical Medicine, New Orleans, Louisiana, USA
| | - Qing Tian
- Department of Biostatistics and Bioinformatics, Tulane University School of Public Health and Tropical Medicine, New Orleans, Louisiana, USA
| | - Yu-Fang Pei
- Department of Epidemiology and Statistics, School of Public Health, Soochow University, Jiangsu, PR China
- Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, Jiangsu, PR China
| | - Hong-Wen Deng
- Department of Biostatistics and Bioinformatics, Tulane University School of Public Health and Tropical Medicine, New Orleans, Louisiana, USA
| | - Lei Zhang
- Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, Jiangsu, PR China.
- Center for Genetic Epidemiology and Genomics, School of Public Health, Soochow University, Jiangsu, PR China.
| |
Collapse
|
6
|
Tam V, Turcotte M, Meyre D. Established and emerging strategies to crack the genetic code of obesity. Obes Rev 2019; 20:212-240. [PMID: 30353704 DOI: 10.1111/obr.12770] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 08/27/2018] [Accepted: 08/28/2018] [Indexed: 12/11/2022]
Abstract
Tremendous progress has been made in the genetic elucidation of obesity over the past two decades, driven largely by technological, methodological and organizational innovations. Current strategies for identifying obesity-predisposing loci/genes, including cytogenetics, linkage analysis, homozygosity mapping, admixture mapping, candidate gene studies, genome-wide association studies, custom genotyping arrays, whole-exome sequencing and targeted exome sequencing, have achieved differing levels of success, and the identified loci in aggregate explain only a modest fraction of the estimated heritability of obesity. This review outlines the successes and limitations of these approaches and proposes novel strategies, including the use of exceptionally large sample sizes, the study of diverse ethnic groups and deep phenotypes and the application of innovative methods and study designs, to identify the remaining obesity-predisposing genes. The use of both established and emerging strategies has the potential to crack the genetic code of obesity in the not-too-distant future. The resulting knowledge is likely to yield improvements in obesity prediction, prevention and care.
Collapse
Affiliation(s)
- V Tam
- Department of Health Research Methods, Evidence, and Impact, McMaster University, Hamilton, ON, Canada
| | - M Turcotte
- Department of Health Research Methods, Evidence, and Impact, McMaster University, Hamilton, ON, Canada
| | - D Meyre
- Department of Health Research Methods, Evidence, and Impact, McMaster University, Hamilton, ON, Canada.,Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON, Canada
| |
Collapse
|
7
|
Riestra P, Gebreab SY, Liu Y, Diez Roux AV, Khan RR, Gaye A, Xu R, Davis SK. Differentially conserved transcriptomic response to adversity related to self-rated health in the multi-ethnic study of atherosclerosis. Exp Biol Med (Maywood) 2017; 242:1812-1819. [PMID: 28927291 PMCID: PMC5714146 DOI: 10.1177/1535370217732030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Accepted: 08/25/2017] [Indexed: 11/17/2022] Open
Abstract
Self-rated health (SRH) is considered a strong indicator of well-being and clinical health status and has been linked to inflammatory markers. The objective of this work was to examine how self-rated physical health (SRPH) and mental health (SRMH) influence the immune system through the regulation of a stress-related gene expression profile known as the 'conserved transcriptional response to adversity' (CTRA), which involves the up-regulation of pro-inflammatory genes and down-regulation of genes involved in type I interferon (IFN) response and antibody synthesis. CTRA expression data were derived from genome-wide transcriptional data on purified monocytes in 1264 adult participants from the multi-ethnic study of atherosclerosis. SRPH and SRMH were assessed through the SF-12 questionnaire. Multiple linear regression models were used to determine the association between the composite score of the CTRA subsets and SRPH and SRMH. Higher scores of SRPH and SRMH were associated with an increased expression of the overall CTRA profile. The individual gene subsets analysis did not reveal an increased expression of pro-inflammatory genes in persons with lower scores of SRH. However, we observed that higher scores of SRPH positively modulate the immune response through the up-regulation of both type I interferon response and antibody synthesis-related genes, while better scores of SRMH were associated with a down-regulation of genes involved in antibody synthesis. The significant association between SRH and a gene expression profile related to type I IFN response and antibody synthesis suggests that SRH may be linked to the immunocompetence status. Impact statement In this work, we evaluated for the first time how self-rated mental (SRMH) and physical health (SRPH) influence the immune response at the molecular level in a large multi-ethnic cohort. We observed that both SRMH and SRPH are related to immunocompetence status. These findings indicated that the link between how we perceive our health and poorer health outcomes could be explained by alterations in the immune response by shifting the expression of genes related to the type I IFN response and antibody synthesis.
Collapse
Affiliation(s)
- Pia Riestra
- National Human Genome Research
Institute, Genomics of Metabolic, Cardiovascular and Inflammatory
Disease Branch, Social Epidemiology Research Unit, National Institutes of
Health, Bethesda, MD 20892, USA
| | - Samson Y Gebreab
- National Human Genome Research
Institute, Genomics of Metabolic, Cardiovascular and Inflammatory
Disease Branch, Social Epidemiology Research Unit, National Institutes of
Health, Bethesda, MD 20892, USA
| | - Yongmei Liu
- Department of Epidemiology and Prevention, Division of Public
Health Sciences, Center for Human Genomics, Wake Forest School of Medicine,
Winston-Salem, NC 27157, USA
| | - Ana V Diez Roux
- Dean’s Office, School of Public Health, Drexel University,
Philadelphia, PA 19104, USA
| | - Rumana R Khan
- National Human Genome Research
Institute, Genomics of Metabolic, Cardiovascular and Inflammatory
Disease Branch, Social Epidemiology Research Unit, National Institutes of
Health, Bethesda, MD 20892, USA
| | - Amadou Gaye
- National Human Genome Research
Institute, Genomics of Metabolic, Cardiovascular and Inflammatory
Disease Branch, Social Epidemiology Research Unit, National Institutes of
Health, Bethesda, MD 20892, USA
| | - Ruihua Xu
- National Human Genome Research
Institute, Genomics of Metabolic, Cardiovascular and Inflammatory
Disease Branch, Social Epidemiology Research Unit, National Institutes of
Health, Bethesda, MD 20892, USA
| | - SK Davis
- National Human Genome Research
Institute, Genomics of Metabolic, Cardiovascular and Inflammatory
Disease Branch, Social Epidemiology Research Unit, National Institutes of
Health, Bethesda, MD 20892, USA
| |
Collapse
|
8
|
Kumar V. Introduction: special issue on “Rhythms, Calendar and Biological Processes”. BIOL RHYTHM RES 2017. [DOI: 10.1080/09291016.2017.1345423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Vinod Kumar
- IndoUS Center for Biological Timing, Department of Zoology, University of Delhi, Delhi, India
| |
Collapse
|
9
|
Zhao F, Gao LH, Li SS, Wei ZY, Fu WZ, He JW, Liu YJ, Hu YQ, Dong J, Zhang ZL. Association between SNPs and haplotypes in the METTL21C gene and peak bone mineral density and body composition in Chinese male nuclear families. J Bone Miner Metab 2017; 35:437-447. [PMID: 27628047 DOI: 10.1007/s00774-016-0774-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Accepted: 07/30/2016] [Indexed: 10/21/2022]
Abstract
The methyltransferase-like 21C gene (METTL21C), which is mainly expressed in muscle, can promote the differentiation of myoblasts to myotubes and reduce glucocorticoid-induced apoptosis of osteocytes. The purpose of this study was to explore the association between single nucleotide polymorphisms of METTL21C and peak bone mineral density (BMD), body mass index, total fat mass (TFM), and total lean mass (TLM) in Chinese young men. Fifteen tagging single nucleotide polymorphisms were genotyped, and haplotype blocks were derived in 400 Chinese male nuclear families. The peak BMD of the lumbar and hip, TFM, and TLM were measured by dual-energy X-ray absorptiometry. The association analyses were performed by a quantitative transmission disequilibrium test. Both TLM and TFM had a significant positive effect on peak BMD, but the positive regulation of TLM was stronger than that of TFM. After 1000 permutations, significant within-family associations were found between rs9585961 and lumbar spine BMD and femoral neck BMD, rs9518810 and femoral neck BMD, and rs599976 and body mass index, TFM, and percentage fat mass (all P < 0.05). The association analyses with haplotypes showed that haplotype AG in block 1 was significantly associated with TFM (P = 0.031) and haplotype CAG in block 2 was significantly associated with lumbar spine BMD (P = 0.020). Our study, for the first time, demonstrates that the polymorphisms and haplotypes of METTL21C contribute to the peak BMD and TFM in Chinese males, which suggests that as a quantitative trait locus with potential pleiotropy it may have an influence on osteoporosis and obesity.
Collapse
Affiliation(s)
- Fei Zhao
- Division of Osteoporosis and Bone Disease, Metabolic Bone Disease and Genetic Research Unit, Department of Endocrinology and Metabolism, Shanghai Jiao Tong University Affiliated Six People's Hospital, Shanghai, 200233, China
- Department of Endocrinology, Shanxi Medical University Affiliated First Hospital, Taiyuan, 030001, China
| | - Li-Hong Gao
- Division of Osteoporosis and Bone Disease, Metabolic Bone Disease and Genetic Research Unit, Department of Endocrinology and Metabolism, Shanghai Jiao Tong University Affiliated Six People's Hospital, Shanghai, 200233, China
| | - Shan-Shan Li
- Division of Osteoporosis and Bone Disease, Metabolic Bone Disease and Genetic Research Unit, Department of Endocrinology and Metabolism, Shanghai Jiao Tong University Affiliated Six People's Hospital, Shanghai, 200233, China
| | - Zhan-Ying Wei
- Division of Osteoporosis and Bone Disease, Metabolic Bone Disease and Genetic Research Unit, Department of Endocrinology and Metabolism, Shanghai Jiao Tong University Affiliated Six People's Hospital, Shanghai, 200233, China
| | - Wen-Zhen Fu
- Division of Osteoporosis and Bone Disease, Metabolic Bone Disease and Genetic Research Unit, Department of Endocrinology and Metabolism, Shanghai Jiao Tong University Affiliated Six People's Hospital, Shanghai, 200233, China
| | - Jin-Wei He
- Division of Osteoporosis and Bone Disease, Metabolic Bone Disease and Genetic Research Unit, Department of Endocrinology and Metabolism, Shanghai Jiao Tong University Affiliated Six People's Hospital, Shanghai, 200233, China
| | - Yu-Juan Liu
- Division of Osteoporosis and Bone Disease, Metabolic Bone Disease and Genetic Research Unit, Department of Endocrinology and Metabolism, Shanghai Jiao Tong University Affiliated Six People's Hospital, Shanghai, 200233, China
| | - Yun-Qiu Hu
- Division of Osteoporosis and Bone Disease, Metabolic Bone Disease and Genetic Research Unit, Department of Endocrinology and Metabolism, Shanghai Jiao Tong University Affiliated Six People's Hospital, Shanghai, 200233, China
| | - Jing Dong
- Department of Endocrinology, Shanxi Medical University Affiliated First Hospital, Taiyuan, 030001, China
| | - Zhen-Lin Zhang
- Division of Osteoporosis and Bone Disease, Metabolic Bone Disease and Genetic Research Unit, Department of Endocrinology and Metabolism, Shanghai Jiao Tong University Affiliated Six People's Hospital, Shanghai, 200233, China.
| |
Collapse
|
10
|
Riestra P, Gebreab SY, Xu R, Khan RJ, Gaye A, Correa A, Min N, Sims M, Davis SK. Circadian CLOCK gene polymorphisms in relation to sleep patterns and obesity in African Americans: findings from the Jackson heart study. BMC Genet 2017. [PMID: 28645331 PMCID: PMC5481932 DOI: 10.1186/s12863-017-0522-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Circadian rhythms regulate key biological processes and the dysregulation of the intrinsic clock mechanism affects sleep patterns and obesity onset. The CLOCK (circadian locomotor output cycles protein kaput) gene encodes a core transcription factor of the molecular circadian clock influencing diverse metabolic pathways, including glucose and lipid homeostasis. The primary objective of this study was to evaluate the associations between CLOCK single nucleotide polymorphisms (SNPs) and body mass index (BMI). We also evaluated the association of SNPs with BMI related factors such as sleep duration and quality, adiponectin and leptin, in 2962 participants (1116 men and 1810 women) from the Jackson Heart Study. Genotype data for the selected 23 CLOCK gene SNPS was obtained by imputation with IMPUTE2 software and reference phase data from the 1000 genome project. Genetic analyses were conducted with PLINK RESULTS: We found a significant association between the CLOCK SNP rs2070062 and sleep duration, participants carriers of the T allele showed significantly shorter sleep duration compared to non-carriers after the adjustment for individual proportions of European ancestry (PEA), socio economic status (SES), body mass index (BMI), alcohol consumption and smoking status that reach the significance threshold after multiple testing correction. In addition, we found nominal associations of the CLOCK SNP rs6853192 with longer sleep duration and the rs6820823, rs3792603 and rs11726609 with BMI. However, these associations did not reach the significance threshold after correction for multiple testing. CONCLUSIONS In this work, CLOCK gene variants were associated with sleep duration and BMI suggesting that the effects of these polymorphisms on circadian rhythmicity may affect sleep duration and body weight regulation in Africans Americans.
Collapse
Affiliation(s)
- Pia Riestra
- National Human Genome Research Institute Genomics of Metabolic, Cardiovascular and Inflammatory Disease Branch Social Epidemiology Research Unit, National Institutes of Health, 10 Center Drive, Bethesda, MD, 20892, USA.
| | - Samson Y Gebreab
- National Human Genome Research Institute Genomics of Metabolic, Cardiovascular and Inflammatory Disease Branch Social Epidemiology Research Unit, National Institutes of Health, 10 Center Drive, Bethesda, MD, 20892, USA
| | - Ruihua Xu
- National Human Genome Research Institute Genomics of Metabolic, Cardiovascular and Inflammatory Disease Branch Social Epidemiology Research Unit, National Institutes of Health, 10 Center Drive, Bethesda, MD, 20892, USA
| | - Rumana J Khan
- National Human Genome Research Institute Genomics of Metabolic, Cardiovascular and Inflammatory Disease Branch Social Epidemiology Research Unit, National Institutes of Health, 10 Center Drive, Bethesda, MD, 20892, USA
| | - Amadou Gaye
- National Human Genome Research Institute Genomics of Metabolic, Cardiovascular and Inflammatory Disease Branch Social Epidemiology Research Unit, National Institutes of Health, 10 Center Drive, Bethesda, MD, 20892, USA
| | - Adolfo Correa
- Jackson Heart Study, Jackson Medical Mall, 350 West Woodrow Wilson Av., Suite 701, Jackson, MS, 39217, USA
| | - Nancy Min
- Jackson Heart Study, University of Mississippi Medical Center, 350 W Woodrow Wilson Ave, Ste 701, Jackson, MS, 39213, USA
| | - Mario Sims
- Jackson Heart Study, University of Mississippi Medical Center, 350 W Woodrow Wilson Ave, Ste 701, Jackson, MS, 39213, USA
| | - Sharon K Davis
- National Human Genome Research Institute Genomics of Metabolic, Cardiovascular and Inflammatory Disease Branch Social Epidemiology Research Unit, National Institutes of Health, 10 Center Drive, Bethesda, MD, 20892, USA
| |
Collapse
|
11
|
Ran S, Zhang L, Liu L, Feng AP, Pei YF, Zhang L, Han YY, Lin Y, Li X, Kong WW, You XY, Zhao W, Tian Q, Shen H, Zhang YH, Deng HW. Gene-based genome-wide association study identified 19p13.3 for lean body mass. Sci Rep 2017; 7:45025. [PMID: 28322352 PMCID: PMC5359571 DOI: 10.1038/srep45025] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Accepted: 02/17/2017] [Indexed: 12/15/2022] Open
Abstract
Lean body mass (LBM) is a complex trait for human health. To identify genomic loci underlying LBM, we performed a gene-based genome-wide association study of lean mass index (LMI) in 1000 unrelated Caucasian subjects, and replicated in 2283 unrelated Caucasians subjects. Gene-based association analyses highlighted the significant associations of three genes UQCR, TCF3 and MBD3 in one single locus 19p13.3 (discovery p = 6.10 × 10-5, 1.65 × 10-4 and 1.10 × 10-4; replication p = 2.21 × 10-3, 1.84 × 10-3 and 6.95 × 10-3; combined p = 2.26 × 10-6, 4.86 × 10-6 and 1.15 × 10-5, respectively). These results, together with the known functional relevance of the three genes to LMI, suggested that the 19p13.3 region containing UQCR, TCF3 and MBD3 genes was a novel locus underlying lean mass variation.
Collapse
Affiliation(s)
- Shu Ran
- Center of System Biomedical Sciences, University of Shanghai for Science and Technology, Shanghai, PR China
| | - Lei Zhang
- Center for Genetic Epidemiology and Genomics, School of Public Health, Soochow University, Jiangsu, PR China
- Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, Jiangsu, PR China
| | - Lu Liu
- Center for Genetic Epidemiology and Genomics, School of Public Health, Soochow University, Jiangsu, PR China
- Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, Jiangsu, PR China
| | - An-Ping Feng
- Center for Genetic Epidemiology and Genomics, School of Public Health, Soochow University, Jiangsu, PR China
- Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, Jiangsu, PR China
| | - Yu-Fang Pei
- Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, Jiangsu, PR China
- Department of Epidemiology and Statistics, School of Public Health, Soochow University, Jiangsu, PR China
| | - Lei Zhang
- Center of System Biomedical Sciences, University of Shanghai for Science and Technology, Shanghai, PR China
| | - Ying-Ying Han
- Center of System Biomedical Sciences, University of Shanghai for Science and Technology, Shanghai, PR China
| | - Yong Lin
- Center of System Biomedical Sciences, University of Shanghai for Science and Technology, Shanghai, PR China
| | - Xiao Li
- Center for Genetic Epidemiology and Genomics, School of Public Health, Soochow University, Jiangsu, PR China
- Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, Jiangsu, PR China
| | - Wei-Wen Kong
- Center for Genetic Epidemiology and Genomics, School of Public Health, Soochow University, Jiangsu, PR China
- Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, Jiangsu, PR China
| | - Xin-Yi You
- Center for Genetic Epidemiology and Genomics, School of Public Health, Soochow University, Jiangsu, PR China
- Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, Jiangsu, PR China
| | - Wen Zhao
- Center for Genetic Epidemiology and Genomics, School of Public Health, Soochow University, Jiangsu, PR China
- Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, Jiangsu, PR China
| | - Qing Tian
- Department of Biostatistics, Tulane University, New Orleans, Louisiana, USA
| | - Hui Shen
- Department of Biostatistics, Tulane University, New Orleans, Louisiana, USA
| | - Yong-Hong Zhang
- Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, Jiangsu, PR China
- Department of Epidemiology and Statistics, School of Public Health, Soochow University, Jiangsu, PR China
| | - Hong-Wen Deng
- Center of System Biomedical Sciences, University of Shanghai for Science and Technology, Shanghai, PR China
- Department of Biostatistics, Tulane University, New Orleans, Louisiana, USA
| |
Collapse
|
12
|
SNP-SNP interactions between WNT4 and WNT5A were associated with obesity related traits in Han Chinese Population. Sci Rep 2017; 7:43939. [PMID: 28272483 PMCID: PMC5341019 DOI: 10.1038/srep43939] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Accepted: 01/31/2017] [Indexed: 12/02/2022] Open
Abstract
Considering the biological roles of WNT4 and WNT5A involved in adipogenesis, we aimed to investigate whether SNPs in WNT4 and WNT5A contribute to obesity related traits in Han Chinese population. Targeted genomic sequence for WNT4 and WNT5A was determined in 100 Han Chinese subjects and tag SNPs were selected. Both single SNP and SNP × SNP interaction association analyses with body mass index (BMI) were evaluated in the 100 subjects and another independent sample of 1,627 Han Chinese subjects. Meta-analyses were performed and multiple testing corrections were carried out using the Bonferroni method. Consistent with the Genetic Investigation of ANthropometric Traits (GIANT) dataset results, we didn’t detect significant association signals in single SNP association analyses. However, the interaction between rs2072920 and rs11918967, was associated with BMI after multiple testing corrections (combined P = 2.20 × 10−4). The signal was also significant in each contributing data set. SNP rs2072920 is located in the 3′-UTR of WNT4 and SNP rs11918967 is located in the intron of WNT5A. Functional annotation results revealed that both SNPs might be involved in transcriptional regulation of gene expression. Our results suggest that a combined effect of SNPs via WNT4-WNT5A interaction may affect the variation of BMI in Han Chinese population.
Collapse
|
13
|
Gianfagna F, Grippi C, Ahrens W, Bailey MES, Börnhorst C, De Henauw S, Foraita R, Koni AC, Krogh V, Mårild S, Molnár D, Moreno L, Pitsiladis Y, Russo P, Siani A, Tornaritis M, Veidebaum T, Iacoviello L. The role of neuromedin U in adiposity regulation. Haplotype analysis in European children from the IDEFICS Cohort. PLoS One 2017; 12:e0172698. [PMID: 28235053 PMCID: PMC5325300 DOI: 10.1371/journal.pone.0172698] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Accepted: 02/08/2017] [Indexed: 01/26/2023] Open
Abstract
BACKGROUND AND AIMS Neuromedin U (NMU) is a hypothalamic neuropeptide with important roles in several metabolic processes, recently suggested as potential therapeutic target for obesity. We analysed the associations between NMU gene variants and haplotypes and body mass index (BMI) in a large sample of European children. METHODS AND RESULTS From a large European multi-center study on childhood obesity, 4,528 children (2.0-9.9 years, mean age 6.0±1.8 SD; boys 52.2%) were randomly selected, stratifying by age, sex and country, and genotyped for tag single nucleotide polymorphisms (SNPs; rs6827359, T:C; rs12500837, T:C; rs9999653,C:T) of NMU gene, then haplotypes were inferred. Regression models were applied to estimate the associations between SNPs or haplotypes and BMI as well as other anthropometric measures. BMI was associated with all NMU SNPs (p<0.05). Among five haplotypes inferred, the haplotype carrying the minor alleles (CCT, frequency = 22.3%) was the only associated with lower BMI values (beta = -0.16, 95%CI:-0.28,-0.04, p = 0.006; z-score, beta = -0.08, 95%CI:-0.14,-0.01, p = 0.019) and decreased risk of overweight/obesity (OR = 0.81, 95%CI:0.68,0.97, p = 0.020) when compared to the most prevalent haplotype (codominant model). Similar significant associations were also observed using the same variables collected after two years' time (BMI, beta = -0.25, 95%CI:-0.41,-0.08, p = 0.004; z-score, beta = -0.10, 95%CI:-0.18,-0.03, p = 0.009; overweight/obesity OR = 0.81, 95%CI:0.66,0.99, p = 0.036). The association was age-dependent in girls (interaction between CCT haplotypes and age, p = 0.008), more evident between 7 and 9 years of age. The CCT haplotype was consistently associated with lower levels of fat mass, skinfold thickness, hip and arm circumferences both at T0 and at T1, after adjustment for multiple testing (FDR-adjusted p<0.05). CONCLUSIONS This study shows an association between a NMU haplotype and anthropometric indices, mainly linked to fat mass, which appears to be age- and sex-specific in children. Genetic variations within or in linkage with this haplotype should be investigated to identify functional variants responsible for the observed phenotypic variation.
Collapse
Affiliation(s)
- Francesco Gianfagna
- Laboratory of Molecular and Nutritional Epidemiology, Department of Epidemiology and Prevention, IRCCS Istituto Neurologico Mediterraneo Neuromed, Pozzilli, Isernia, Italy
- EPIMED Research Center, Department of Clinical and Experimental Medicine, University of Insubria, Varese, Italy
- * E-mail:
| | - Claudio Grippi
- Laboratory of Molecular and Nutritional Epidemiology, Department of Epidemiology and Prevention, IRCCS Istituto Neurologico Mediterraneo Neuromed, Pozzilli, Isernia, Italy
| | - Wolfgang Ahrens
- Leibniz Institute for Prevention Research and Epidemiology – BIPS, Bremen, Germany
- Faculty of Mathematics and Computer Science, Institute of Statistics, Bremen University, Bremen, Germany
| | - Mark E. S. Bailey
- School of Life Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Claudia Börnhorst
- Leibniz Institute for Prevention Research and Epidemiology – BIPS, Bremen, Germany
| | - Stefan De Henauw
- Department of Public Health, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | - Ronja Foraita
- Leibniz Institute for Prevention Research and Epidemiology – BIPS, Bremen, Germany
| | - Anna C. Koni
- School of Life Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Vittorio Krogh
- Department of Preventive and Predictive Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Staffan Mårild
- Dept. of Paediatrics, Inst. of Clinical Sciences, Sahlgrenska Academy at Gothenburg University, Gothenburg, Sweden
| | - Dénes Molnár
- Department of Paediatrics, Medical Faculty, University of Pécs, Pécs, Hungary
| | - Luis Moreno
- GENUD (Growth, Exercise, Nutrition and Development) Research Group, University of Zaragoza, Zaragoza, Spain
| | - Yannis Pitsiladis
- Centre for Sport and Exercise Science and Medicine, University of Brighton, Brighton, United Kingdom
| | - Paola Russo
- Unit of Epidemiology & Population Genetics, Institute of Food Sciences, CNR, Avellino, Italy
| | - Alfonso Siani
- Unit of Epidemiology & Population Genetics, Institute of Food Sciences, CNR, Avellino, Italy
| | | | - Toomas Veidebaum
- Department of Chronic Diseases, National Institute for Health Development, Tallinn, Estonia
| | - Licia Iacoviello
- Laboratory of Molecular and Nutritional Epidemiology, Department of Epidemiology and Prevention, IRCCS Istituto Neurologico Mediterraneo Neuromed, Pozzilli, Isernia, Italy
| |
Collapse
|
14
|
Dong SS, Guo Y, Zhu DL, Chen XF, Wu XM, Shen H, Chen XD, Tan LJ, Tian Q, Deng HW, Yang TL. Epigenomic elements analyses for promoters identify ESRRG as a new susceptibility gene for obesity-related traits. Int J Obes (Lond) 2016; 40:1170-6. [PMID: 27113491 PMCID: PMC4935547 DOI: 10.1038/ijo.2016.44] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Revised: 02/23/2016] [Accepted: 02/28/2016] [Indexed: 12/22/2022]
Abstract
OBJECTIVES With ENCODE epigenomic data and results from published genome-wide association studies (GWASs), we aimed to find regulatory signatures of obesity genes and discover novel susceptibility genes. METHODS Obesity genes were obtained from public GWAS databases and their promoters were annotated based on the regulatory element information. Significantly enriched or depleted epigenomic elements in the promoters of obesity genes were evaluated and all human genes were then prioritized according to the existence of the selected elements to predict new candidate genes. Top-ranked genes were subsequently applied to validate their associations with obesity-related traits in three independent in-house GWAS samples. RESULTS We identified RAD21 and EZH2 as over-represented, and STAT2 (signal transducer and activator of transcription 2) and IRF3 (interferon regulatory transcription factor 3) as depleted transcription factors. Histone modification of H3K9me3 and chromatin state segmentation of 'poised promoter' and 'repressed' were over-represented. All genes were prioritized and we selected the top five genes for validation at the population level. Combining results from the three GWAS samples, rs7522101 in ESRRG (estrogen-related receptor-γ) remained significantly associated with body mass index after multiple testing corrections (P=7.25 × 10(-5)). It was also associated with β-cell function (P=1.99 × 10(-3)) and fasting glucose level (P<0.05) in the meta-analyses of glucose and insulin-related traits consortium (MAGIC) data set.Cnoclusions:In summary, we identified epigenomic characteristics for obesity genes and suggested ESRRG as a novel obesity-susceptibility gene.
Collapse
Affiliation(s)
- S-S Dong
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, Institute of Molecular Genetics, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, People's Republic of China
| | - Y Guo
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, Institute of Molecular Genetics, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, People's Republic of China
| | - D-L Zhu
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, Institute of Molecular Genetics, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, People's Republic of China
| | - X-F Chen
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, Institute of Molecular Genetics, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, People's Republic of China
| | - X-M Wu
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, Institute of Molecular Genetics, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, People's Republic of China
| | - H Shen
- School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA, USA
| | - X-D Chen
- Laboratory of Molecular and Statistical Genetics, College of Life Sciences, Hunan Normal University, Changsha, People's Republic of China
| | - L-J Tan
- Laboratory of Molecular and Statistical Genetics, College of Life Sciences, Hunan Normal University, Changsha, People's Republic of China
| | - Q Tian
- School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA, USA
| | - H-W Deng
- School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA, USA
| | - T-L Yang
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, Institute of Molecular Genetics, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, People's Republic of China
| |
Collapse
|
15
|
Fang Y, Xiang Ding C, Li Jun T, Jie S, Ding You L, Fang Z, Bao Yong S, Hong Wen D. Genome wide association study: searching for genes underlying body mass index in the Chinese. BIOMEDICAL AND ENVIRONMENTAL SCIENCES : BES 2014; 27:360-370. [PMID: 24827717 PMCID: PMC4537185 DOI: 10.3967/bes2014.061] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Received: 04/29/2013] [Accepted: 10/24/2013] [Indexed: 06/03/2023]
Abstract
OBJECTIVE Obesity is becoming a worldwide health problem. The genome wide association (GWA) study particularly for body mass index (BMI) has not been successfully conducted in the Chinese. In order to identify novel genes for BMI variation in the Chinese, an initial GWA study and a follow up replication study were performed. METHODS Affymetrix 500K SNPs were genotyped for initial GWA of 597 Northern Chinese. After quality control, 281,533 SNPs were included in the association analysis. Three SNPs were genotyped in a Southern Chinese replication sample containing 2 955 Chinese Han subjects. Association analyses were performed by Plink software. RESULTS Eight SNPs were significantly associated with BMI variation after false discovery rate (FDR) correction (P=5.45×10⁻⁷-7.26×10⁻⁶, FDR q=0.033-0.048). Two adjacent SNPs (rs4432245 & rs711906) in the eukaryotic translation initiation factor 2 alpha kinase 4 (EIF2AK4) gene were significantly associated with BMI (P=6.38×10⁻⁶ & 4.39×10⁻⁶, FDR q=0.048). In the follow-up replication study, we confirmed the associations between BMI and rs4432245, rs711906 in the EIF2AKE gene (P=0.03 & 0.01, respectively). CONCLUSION Our study suggests novel mechanisms for BMI, where EIF2AK4 has exerted a profound effect on the synthesis and storage of triglycerides and may impact on overall energy homeostasis associated with obesity. The minor allele frequencies for the two SNPs in the EIF2AK4 gene have marked ethnic differences between Caucasians and the Chinese. The association of the EIF2AK4 gene with BMI is suggested to be 'ethnic specific' in the Chinese.
Collapse
Affiliation(s)
- Yang Fang
- Department of Epidemiology and Biostatistics, School of Public Health, Central South University, Changsha 410078, Hunan, China
| | - Chen Xiang Ding
- Laboratory of Molecular and Statistical Genetics, College of Life Sciences, Hunan Normal University, Changsha 410081, Hunan, China
| | - Tan Li Jun
- Laboratory of Molecular and Statistical Genetics, College of Life Sciences, Hunan Normal University, Changsha 410081, Hunan, China
| | - Shen Jie
- Department of Endocrinology, The Third Affiliated Hospital of Southern Medical University, Guangzhou 510630, Guangdong, China
| | - Li Ding You
- Department of Pediatrics, University of Missouri Kansas City School of Medicine, Division of Gastroenterology, Children’s Mercy Hospital, Kansas City, Missouri 64108, USA
| | - Zhang Fang
- Laboratory of Molecular and Statistical Genetics, College of Life Sciences, Hunan Normal University, Changsha 410081, Hunan, China
| | - Sha Bao Yong
- Laboratory of Molecular and Statistical Genetics, College of Life Sciences, Hunan Normal University, Changsha 410081, Hunan, China
| | - Deng Hong Wen
- Laboratory of Molecular and Statistical Genetics, College of Life Sciences, Hunan Normal University, Changsha 410081, Hunan, China
- Systematic Biomedicine Research Center, University of Shanghai for Science and Technology, Shanghai 200093, China
- Center for Bioinformatics and Genomics, Department of Biostatistics and Bioinformatics, Tulane University, New Orleans, LA 70112, USA
| |
Collapse
|
16
|
Ran S, Liu YJ, Zhang L, Pei Y, Yang TL, Hai R, Han YY, Lin Y, Tian Q, Deng HW. Genome-wide association study identified copy number variants important for appendicular lean mass. PLoS One 2014; 9:e89776. [PMID: 24626161 PMCID: PMC3953533 DOI: 10.1371/journal.pone.0089776] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2013] [Accepted: 01/25/2014] [Indexed: 11/26/2022] Open
Abstract
Skeletal muscle is a major component of the human body. Age-related loss of muscle mass and function contributes to some public health problems such as sarcopenia and osteoporosis. Skeletal muscle, mainly composed of appendicular lean mass (ALM), is a heritable trait. Copy number variation (CNV) is a common type of human genome variant which may play an important role in the etiology of many human diseases. In this study, we performed genome-wide association analyses of CNV for ALM in 2,286 Caucasian subjects. We then replicated the major findings in 1,627 Chinese subjects. Two CNVs, CNV1191 and CNV2580, were detected to be associated with ALM (p = 2.26×10−2 and 3.34×10−3, respectively). In the Chinese replication sample, the two CNVs achieved p-values of 3.26×10−2 and 0.107, respectively. CNV1191 covers a gene, GTPase of the immunity-associated protein family (GIMAP1), which is important for skeletal muscle cell survival/death in humans. CNV2580 is located in the Serine hydrolase-like protein (SERHL) gene, which plays an important role in normal peroxisome function and skeletal muscle growth in response to mechanical stimuli. In summary, our study suggested two novel CNVs and the related genes that may contribute to variation in ALM.
Collapse
Affiliation(s)
- Shu Ran
- Center of System Biomedical Sciences, University of Shanghai for Science and Technology, Shanghai, People’s Republic of China
| | - Yong-Jun Liu
- Department of Biostatistics and Bioinformatics, Tulane University, New Orleans, Louisiana, United States of America
| | - Lei Zhang
- Center of System Biomedical Sciences, University of Shanghai for Science and Technology, Shanghai, People’s Republic of China
| | - Yufang Pei
- Center of System Biomedical Sciences, University of Shanghai for Science and Technology, Shanghai, People’s Republic of China
| | - Tie-Lin Yang
- Key Laboratory of Biomedical Information Engineering of the Ministry of Education, Institute of Molecular Genetics, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an, People’s Republic of China
| | - Rong Hai
- Geriatrics Health Clinic of Inner Mongolia People’s Hospital, Inner Mongolia, People’s Republic of China
| | - Ying-Ying Han
- Center of System Biomedical Sciences, University of Shanghai for Science and Technology, Shanghai, People’s Republic of China
| | - Yong Lin
- Center of System Biomedical Sciences, University of Shanghai for Science and Technology, Shanghai, People’s Republic of China
| | - Qing Tian
- Department of Biostatistics and Bioinformatics, Tulane University, New Orleans, Louisiana, United States of America
| | - Hong-Wen Deng
- Center of System Biomedical Sciences, University of Shanghai for Science and Technology, Shanghai, People’s Republic of China
- Department of Biostatistics and Bioinformatics, Tulane University, New Orleans, Louisiana, United States of America
- * E-mail:
| |
Collapse
|
17
|
Malzahn D, Müller-Nurasyid M, Heid IM, Wichmann HE, Bickeböller H. Controversial association results for INSIG2 on body mass index may be explained by interactions with age and with MC4R. Eur J Hum Genet 2014; 22:1217-24. [PMID: 24518831 DOI: 10.1038/ejhg.2014.3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2013] [Revised: 12/17/2013] [Accepted: 12/30/2013] [Indexed: 12/14/2022] Open
Abstract
Among the single-nucleotide polymorphisms (SNPs) previously reported to be associated with body mass index (BMI) and obesity, we focus on a common risk variant rs7566605 upstream of the insulin-induced gene 2 (INSIG2) gene and a rare protective variant rs2229616 on the melanocortin-4 receptor (MC4R) gene. INSIG2 is involved in adipogenesis and MC4R effects hormonal appetite control in response to the amount of adipose tissue. The influence of rs2229616 (MC4R) on BMI and obesity has been confirmed repeatedly and insight into the underlying mechanism provided. However, a main effect of rs7566605 (INSIG2) is under debate because of inconsistent replications of association. Interaction of rs7566605 with age may offer an explanation. SNP-age and SNP-SNP interaction models were tested on independent individuals from three population-based longitudinal cohorts, restricting the analysis to an observed age of 25-74 years. KORA S3/F3, KORA S4/F4 (Augsburg, Germany, 1994-2005, 1999-2008), and Framingham-Offspring data (Framingham, USA, 1971-2001) were analysed, with a total sample size of N=6926 in the joint analysis. The effect of interaction between rs7566605 and age on BMI and obesity status is significant and consistent across studies. This new evidence for rs7566605 (INSIG2) complements previous research. In addition, the interaction effect of rs7566605 with the MC4R variant rs2229616 on BMI was observed. This effect size was three times larger than that in a previously reported single-locus main effect of rs2229616. This leads to the conclusion that SNP-age or SNP-SNP interactions can mask genetic effects for complex diseases if left unaccounted for.
Collapse
Affiliation(s)
- Dörthe Malzahn
- Department of Genetic Epidemiology, University Medical Center, Georg-August-University, Göttingen, Germany
| | - Martina Müller-Nurasyid
- 1] Department of Medicine I, University Hospital Grosshadern, Ludwig-Maximilians-University, Munich, Germany [2] Institute of Medical Informatics, Biometry and Epidemiology, Chair of Epidemiology and Chair of Genetic Epidemiology, Ludwig-Maximilians-University, Neuherberg, Germany [3] Institute of Genetic Epidemiology, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany
| | - Iris M Heid
- 1] Institute of Genetic Epidemiology, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany [2] Department of Genetic Epidemiology, University of Regensburg, Regensburg, Germany
| | - H-Erich Wichmann
- 1] Institute of Epidemiology I, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany [2] Institute of Medical Informatics, Biometry and Epidemiology, Chair of Epidemiology, Ludwig-Maximilians-University, Munich, Germany [3] Klinikum Großhadern, Munich, Germany
| | | | - Heike Bickeböller
- Department of Genetic Epidemiology, University Medical Center, Georg-August-University, Göttingen, Germany
| |
Collapse
|
18
|
Hoteit M, Arabi A, Habib R, Mahfouz R, Baddoura R, Halaby G, El-Hajj Fuleihan G. Estrogen receptor α is not a candidate gene for metabolic syndrome in Caucasian elderly subjects. Metabolism 2014; 63:50-60. [PMID: 24140101 DOI: 10.1016/j.metabol.2013.08.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2013] [Revised: 07/22/2013] [Accepted: 08/09/2013] [Indexed: 11/21/2022]
Abstract
OBJECTIVE Variants of estrogen receptor α (ERα) have been associated with obesity, dyslipidemia, diabetes and blood pressure. The Middle East registers some of the highest rate of metabolic syndrome worldwide. The aim of this study is to investigate the relationship between metabolic syndrome, a clustered combination of these metabolic factors, and polymorphisms PvuII and XbaI of ERα in Lebanese Caucasian elderly overweight subjects. MATERIAL/METHODS 250 Caucasian Lebanese unrelated elderly men and women, median age 71 years, were studied. ERα intronic polymorphisms variants, PvuII and XbaI diplotypes and genotypes, were examined. Associations with metabolic syndrome, defined by the American Heart Association/National Heart, Lung, and Blood Institute (AHA/NHLBI), and its components, namely high density lipoprotein (HDL), fasting glucose levels, blood pressure, and waist circumference were evaluated in regression models. RESULTS ER α diplotypes and genotypes distributions were similar between participants with and without metabolic syndrome, in the overall group of subjects, and by gender. No consistent associations between the diplotypes and genotypes tested and metabolic syndrome, or its components, could be detected. CONCLUSIONS Genetic variants in ERα were not associated with metabolic syndrome or its components, in a group of 250 Lebanese Caucasian elderly participants, a group with a high prevalence of metabolic syndrome.
Collapse
Affiliation(s)
- Maha Hoteit
- Calcium Metabolism and Osteoporosis Program, WHO Collaborating Center for Metabolic Bone Disorders, American University of Beirut Medical Center, Beirut, Lebanon
| | | | | | | | | | | | | |
Collapse
|
19
|
Abstract
Obesity is a disorder characterized by an excess accumulation of body fat resulting from a mismatch between energy intake and expenditure. Incidence of obesity has increased dramatically in the past few years, almost certainly fuelled by a shift in dietary habits owing to the widespread availability of low-cost, hypercaloric foods. However, clear differences exist in obesity susceptibility among individuals exposed to the same obesogenic environment, implicating genetic risk factors. Numerous genes have been shown to be involved in the development of monofactorial forms of obesity. In genome-wide association studies, a large number of common variants have been associated with adiposity levels, each accounting for only a small proportion of the predicted heritability. Although the small effect sizes of obesity variants identified in genome-wide association studies currently preclude their utility in clinical settings, screening for a number of monogenic obesity variants is now possible. Such regular screening will provide more informed prognoses and help in the identification of at-risk individuals who could benefit from early intervention, in evaluation of the outcomes of current obesity treatments, and in personalization of the clinical management of obesity. This Review summarizes current advances in obesity genetics and discusses the future of research in this field and the potential relevance to personalized obesity therapy.
Collapse
|
20
|
Ran S, Pei YF, Liu YJ, Zhang L, Han YY, Hai R, Tian Q, Lin Y, Yang TL, Guo YF, Shen H, Thethi IS, Zhu XZ, Deng HW. Bivariate genome-wide association analyses identified genes with pleiotropic effects for femoral neck bone geometry and age at menarche. PLoS One 2013; 8:e60362. [PMID: 23593202 PMCID: PMC3617200 DOI: 10.1371/journal.pone.0060362] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2012] [Accepted: 02/26/2013] [Indexed: 02/05/2023] Open
Abstract
Femoral neck geometric parameters (FNGPs), which include cortical thickness (CT), periosteal diameter (W), buckling ratio (BR), cross-sectional area (CSA), and section modulus (Z), contribute to bone strength and may predict hip fracture risk. Age at menarche (AAM) is an important risk factor for osteoporosis and bone fractures in women. Some FNGPs are genetically correlated with AAM. In this study, we performed a bivariate genome-wide association study (GWAS) to identify new candidate genes responsible for both FNGPs and AAM. In the discovery stage, we tested 760,794 SNPs in 1,728 unrelated Caucasian subject, followed by replication analyses in independent samples of US Caucasians (with 501 subjects) and Chinese (with 826 subjects). We found six SNPs that were associated with FNGPs and AAM. These SNPs are located in three genes (i.e. NRCAM, IDS and LOC148145), suggesting these three genes may co-regulate FNGPs and AAM. Our findings may help improve the understanding of genetic architecture and pathophysiological mechanisms underlying both osteoporosis and AAM.
Collapse
Affiliation(s)
- Shu Ran
- Center of System Biomedical Sciences, School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai, P. R. China
| | - Yu-Fang Pei
- Center of System Biomedical Sciences, School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai, P. R. China
| | - Yong-Jun Liu
- School of Public Health and Tropical Medicine, Tulane University, New Orleans, Louisiana, United States of America
| | - Lei Zhang
- Center of System Biomedical Sciences, School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai, P. R. China
| | - Ying-Ying Han
- Center of System Biomedical Sciences, School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai, P. R. China
| | - Rong Hai
- Inner Mongolia People’s Hospital, Hohhot, P. R. China
| | - Qing Tian
- School of Public Health and Tropical Medicine, Tulane University, New Orleans, Louisiana, United States of America
| | - Yong Lin
- Center of System Biomedical Sciences, School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai, P. R. China
| | - Tie-Lin Yang
- School of Life Science and Technology, Xi’an Jiaotong University, Xi’an, Shanxi, P. R. China
| | - Yan-Fang Guo
- School of Basic Medical Science, Institute of Bioinformatics, Southern Medical University, Guangzhou, Guangdong, P. R. China
| | - Hui Shen
- School of Public Health and Tropical Medicine, Tulane University, New Orleans, Louisiana, United States of America
| | - Inderpal S. Thethi
- School of Public Health and Tropical Medicine, Tulane University, New Orleans, Louisiana, United States of America
| | - Xue-Zhen Zhu
- Center of System Biomedical Sciences, School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai, P. R. China
| | - Hong-Wen Deng
- School of Public Health and Tropical Medicine, Tulane University, New Orleans, Louisiana, United States of America
- Center of System Biomedical Sciences, School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai, P. R. China
- * E-mail:
| |
Collapse
|
21
|
Han Y, Pei Y, Liu Y, Zhang L, Wu S, Tian Q, Chen X, Shen H, Zhu X, Papasian CJ, Deng H. Bivariate genome-wide association study suggests fatty acid desaturase genes and cadherin DCHS2 for variation of both compressive strength index and appendicular lean mass in males. Bone 2012; 51:1000-7. [PMID: 22960237 DOI: 10.1016/j.bone.2012.08.127] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2012] [Revised: 08/18/2012] [Accepted: 08/20/2012] [Indexed: 01/18/2023]
Abstract
Compressive strength index (CSI) is a newly established index for predicting hip fracture, the most serious consequence of osteoporosis. Appendicular lean mass (ALM), which influences skeletal strength of the lower limbs, is another trait associated with the risk of hip fracture. In this study, we performed a bivariate genome-wide association study (GWAS) to identify new candidate genes responsible for both CSI and ALM. In our discovery sample of 1627 unrelated Chinese subjects (802 males and 825 females), we scanned 909,509 SNPs using the Affymetrix Human Genome SNP 6.0 genotyping array. We successfully replicated our results in a sample of 2286 Caucasian subjects (558 males and 1728 females). The results indicated that five SNPs (rs174583, rs174577, rs174549, rs174548, rs7672337) in the FADS1, FADS2, and DCHS2 genes had significant bivariate associations with CSI and ALM in male subjects for both the GWAS discovery (with P<8.42×10(-6)) and the Caucasian sample (with P<0.07). We performed further replication analysis in a 2nd Caucasian sample with 501 Caucasian male subjects, using Affymetrix 500k arrays, and found that two of the above SNPs (rs174548 and rs174549, P=0.07) had bivariate associations with both CSI and ALM in males; the other 3 SNPs were not typed with the 500k array. The above findings suggest that the 3 genes, FADS1, FADS2, and DCHS2, containing these SNPs might play dual roles influencing both CSI and ALM in males. Our findings provide new insights into our understanding of the genetic basis of bone metabolism and the pathogenesis of osteoporosis.
Collapse
Affiliation(s)
- Yingying Han
- Center of System Biomedical Sciences, University of Shanghai for Science and Technology, Yangpu District, Shanghai, PR China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Liu YZ, Li J, Pan R, Shen H, Tian Q, Zhou Y, Liu YJ, Deng HW. Genome-wide copy number variation association analyses for age at menarche. J Clin Endocrinol Metab 2012; 97:E2133-9. [PMID: 22904172 PMCID: PMC3485608 DOI: 10.1210/jc.2012-1145] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
CONTEXT Menarche is a significant physiological event for women. Age at menarche (AAM) is a heritable trait associated with many common female diseases. The genetic basis and the mechanism for AAM are largely unknown. Copy number variation (CNV) is a common type of genetic variation underlying human complex traits. The importance of CNV to AAM variation is unclear. OBJECTIVE The objective of the study was to identify CNV important to AAM variation. DESIGN We performed the first genome-wide CNV study of AAM in 1654 Caucasian females using Affymetrix human single-nucleotide polymorphism 6.0 array. We also replicated our findings in another Chinese cohort containing 752 women. RESULTS We identified a CNV, variation_38399, in the 2q14.2 region, for association with AAM (P = 1.03 × 10(-3)). The CNV has two variants (one copy and two copy), with a mean AAM of 14.00 yr and 12.90 yr, respectively. Interestingly, in a Chinese sample containing 752 women, this CNV has been replicated both with a marginally significant P = 0.090 and with a same direction of effect (a lower copy number for a later AAM). The CNV is located approximately 75 kb upstream of the diazepam binding inhibitor (DBI), a gene known to regulate estrogen levels, a key factor for menarche. CONCLUSION Our findings for the first time identified a novel CNV and suggested the DBI-mediated endocrinological pathway as a potential mechanism for AAM regulation.
Collapse
Affiliation(s)
- Yao-Zhong Liu
- Department of Biostatistics and Bioinformatics, Tulane University School of Public Health and Tropical Medicine, New Orleans, Louisiana 70112, USA.
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Snyder EE, Walts B, Pérusse L, Chagnon YC, Weisnagel SJ, Rankinen T, Bouchard C. The Human Obesity Gene Map: The 2003 Update. ACTA ACUST UNITED AC 2012; 12:369-439. [PMID: 15044658 DOI: 10.1038/oby.2004.47] [Citation(s) in RCA: 207] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
This is the tenth update of the human obesity gene map, incorporating published results up to the end of October 2003 and continuing the previous format. Evidence from single-gene mutation obesity cases, Mendelian disorders exhibiting obesity as a clinical feature, quantitative trait loci (QTLs) from human genome-wide scans and animal crossbreeding experiments, and association and linkage studies with candidate genes and other markers is reviewed. Transgenic and knockout murine models relevant to obesity are also incorporated (N = 55). As of October 2003, 41 Mendelian syndromes relevant to human obesity have been mapped to a genomic region, and causal genes or strong candidates have been identified for most of these syndromes. QTLs reported from animal models currently number 183. There are 208 human QTLs for obesity phenotypes from genome-wide scans and candidate regions in targeted studies. A total of 35 genomic regions harbor QTLs replicated among two to five studies. Attempts to relate DNA sequence variation in specific genes to obesity phenotypes continue to grow, with 272 studies reporting positive associations with 90 candidate genes. Fifteen such candidate genes are supported by at least five positive studies. The obesity gene map shows putative loci on all chromosomes except Y. Overall, more than 430 genes, markers, and chromosomal regions have been associated or linked with human obesity phenotypes. The electronic version of the map with links to useful sites can be found at http://obesitygene.pbrc.edu.
Collapse
Affiliation(s)
- Eric E Snyder
- Human Genomics Laboratory, Pennington Biomedical Research Center, Louisiana State University, Baton Rouge, Louisiana 70808-4124, USA
| | | | | | | | | | | | | |
Collapse
|
24
|
Pérusse L, Rankinen T, Zuberi A, Chagnon YC, Weisnagel SJ, Argyropoulos G, Walts B, Snyder EE, Bouchard C. The Human Obesity Gene Map: The 2004 Update. ACTA ACUST UNITED AC 2012; 13:381-490. [PMID: 15833932 DOI: 10.1038/oby.2005.50] [Citation(s) in RCA: 212] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
This paper presents the eleventh update of the human obesity gene map, which incorporates published results up to the end of October 2004. Evidence from single-gene mutation obesity cases, Mendelian disorders exhibiting obesity as a clinical feature, transgenic and knockout murine models relevant to obesity, quantitative trait loci (QTLs) from animal cross-breeding experiments, association studies with candidate genes, and linkages from genome scans is reviewed. As of October 2004, 173 human obesity cases due to single-gene mutations in 10 different genes have been reported, and 49 loci related to Mendelian syndromes relevant to human obesity have been mapped to a genomic region, and causal genes or strong candidates have been identified for most of these syndromes. There are 166 genes which, when mutated or expressed as transgenes in the mouse, result in phenotypes that affect body weight and adiposity. The number of QTLs reported from animal models currently reaches 221. The number of human obesity QTLs derived from genome scans continues to grow, and we have now 204 QTLs for obesity-related phenotypes from 50 genome-wide scans. A total of 38 genomic regions harbor QTLs replicated among two to four studies. The number of studies reporting associations between DNA sequence variation in specific genes and obesity phenotypes has also increased considerably with 358 findings of positive associations with 113 candidate genes. Among them, 18 genes are supported by at least five positive studies. The obesity gene map shows putative loci on all chromosomes except Y. Overall, >600 genes, markers, and chromosomal regions have been associated or linked with human obesity phenotypes. The electronic version of the map with links to useful publications and genomic and other relevant sites can be found at http://obesitygene.pbrc.edu.
Collapse
Affiliation(s)
- Louis Pérusse
- Division of Kinesiology, Department of Social and Preventive Medicine, Faculty of Medicine, Laval University, Sainte-Foy, Québec, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Yan H, Guo Y, Yang TL, Zhao LJ, Deng HW. A family-based association study identified CYP17 as a candidate gene for obesity susceptibility in Caucasians. GENETICS AND MOLECULAR RESEARCH 2012; 11:1967-74. [PMID: 22653668 DOI: 10.4238/2012.may.22.1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The cytochrome P450c17α gene (CYP17) encodes a key biosynthesis enzyme of estrogen, which is critical in regulating adipogenesis and adipocyte development in humans. We therefore hypothesized that CYP17 is a candidate gene for predicting obesity. In order to test this hypothesis, we performed a family-based association test to investigate the relationship between the CYP17 gene and obesity phenotypes in a large sample comprising 1873 subjects from 405 Caucasian nuclear families of European origin recruited by the Osteoporosis Research Center of Creighton University, USA. Both single SNPs and haplotypes were tested for associations with obesity-related phenotypes, including body mass index (BMI) and fat mass. We identified three SNPs to be significantly associated with BMI, including rs3740397, rs6163, and rs619824. We further characterized the linkage disequilibrium structure for CYP17 and found that the whole CYP17 gene was located in a single-linkage disequilibrium block. This block was observed to be significantly associated with BMI. A major haplotype in this block was significantly associated with both BMI and fat mass. In conclusion, we suggest that the CYP17 gene has an effect on obesity in the Caucasian population. Further independent studies will be needed to confirm our findings.
Collapse
Affiliation(s)
- H Yan
- Key Laboratory of Biomedical Information Engineering, Ministry of Education and Institute of Molecular Genetics, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, P.R. China
| | | | | | | | | |
Collapse
|
26
|
|
27
|
Wu C, Gong Y, Yuan J, Gong H, Zou Y, Ge J. Identification of shared genetic susceptibility locus for coronary artery disease, type 2 diabetes and obesity: a meta-analysis of genome-wide studies. Cardiovasc Diabetol 2012; 11:68. [PMID: 22697793 PMCID: PMC3481354 DOI: 10.1186/1475-2840-11-68] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2012] [Accepted: 05/28/2012] [Indexed: 01/10/2023] Open
Abstract
Type 2 diabetes (2DM), obesity, and coronary artery disease (CAD) are frequently coexisted being as key components of metabolic syndrome. Whether there is shared genetic background underlying these diseases remained unclear. We performed a meta-analysis of 35 genome screens for 2DM, 36 for obesity or body mass index (BMI)-defined obesity, and 21 for CAD using genome search meta-analysis (GSMA), which combines linkage results to identify regions with only weak evidence and provide genetic interactions among different diseases. For each study, 120 genomic bins of approximately 30 cM were defined and ranked according to the best linkage evidence within each bin. For each disease, bin 6.2 achieved genomic significanct evidence, and bin 9.3, 10.5, 16.3 reached suggestive level for 2DM. Bin 11.2 and 16.3, and bin 10.5 and 9.3, reached suggestive evidence for obesity and CAD respectively. In pooled all three diseases, bin 9.3 and 6.5 reached genomic significant and suggestive evidence respectively, being relatively much weaker for 2DM/CAD or 2DM/obesity or CAD/obesity. Further, genomewide significant evidence was observed of bin 16.3 and 4.5 for 2DM/obesity, which is decreased when CAD was added. These findings indicated that bin 9.3 and 6.5 are most likely to be shared by 2DM, obesity and CAD. And bin 16.3 and 4.5 are potentially common regions to 2DM and obesity only. The observed shared susceptibility regions imply a partly overlapping genetic aspects of disease development. Fine scanning of these regions will definitely identify more susceptibility genes and causal variants.
Collapse
Affiliation(s)
- Chaoneng Wu
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | | | | | | | | | | |
Collapse
|
28
|
Huang L, Teng D, Wang H, Sheng G, Liu T. Association of copy number variation in the AHI1 gene with risk of obesity in the Chinese population. Eur J Endocrinol 2012; 166:727-34. [PMID: 22285701 DOI: 10.1530/eje-11-0999] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
OBJECTIVE The prevalence of obesity has increased dramatically over the past decade. Gene copy number variants (CNVs) have been recognized as a hereditable source of susceptibility in human complex diseases including obesity. Recent studies have shown that Abelson helper integration site 1 (Ahi1) gene has a significant contribution in the homeostasis regulation in mouse models of obesity. A study was therefore carried out to investigate whether CNVs in AHI1 gene contribute to human obesity. SUBJECTS AND METHODS We analyzed samples from 70 Chinese overweight adults and 74 healthy controls for DNA copy number change using the Affymetrix single-nucleotide polymorphism (SNP) 6.0 array. Validation of CNVs of AHI1 was achieved by real-time PCR using the ΔΔC(t) method. RESULTS Copy number gain analysis revealed significant gains (P=0.0017) of AHI1 gene copy number in 17 of 70 (24.3%) samples but only four of 74 (5.4%) controls overall. Then we studied the frequency distribution of CNVs in AHI1 gene according to body mass index (BMI) grade. Five out of 28 (18.5%) at-risk obese, six out of 26 (26.9%) moderate obese, and six out of 17 (29.4%) severe obese subjects studied showed increased AHI1 gene copy number. CONCLUSIONS The result suggested that there was a significant linear trend for increasing AHI1 gene copy number frequencies with increasing BMI.
Collapse
Affiliation(s)
- Liansha Huang
- Department of Science and Technology, Beijing University of Chinese Medicine, 11 Bei San Huan Dong Lu, Chaoyang District, Beijing, People's Republic of China
| | | | | | | | | |
Collapse
|
29
|
Yang TL, Guo Y, Li SM, Li SK, Tian Q, Liu YJ, Deng HW. Ethnic differentiation of copy number variation on chromosome 16p12.3 for association with obesity phenotypes in European and Chinese populations. Int J Obes (Lond) 2012; 37:188-90. [PMID: 22391884 DOI: 10.1038/ijo.2012.31] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
OBJECTIVE Genomic copy number variations (CNVs) have been strongly implicated as important genetic factors for obesity. A recent genome-wide association study identified a novel variant, rs12444979, which is in high linkage disequilibrium with CNV 16p12.3, for association with obesity in Europeans. The aim of this study was to directly examine the relationship between the CNV 16p12.3 and obesity phenotypes, including body mass index (BMI) and body fat mass. SUBJECTS Subjects were a multi-ethnic sample, including 2286 unrelated subjects from a European population and 1627 unrelated Han subjects from a Chinese population. Body fat mass was measured using dual energy X-ray absorptiometry. RESULTS Using Affymetrix Genome-Wide Human SNP Array 6.0, we directly detected CNV 16p12.3, with the deletion frequency of 27.26 and 0.8% in the European and Chinese populations, respectively. We confirmed the significant association between this CNV and obesity (BMI: P=1.38 × 10(-2); body fat mass: P=2.13 × 10(-3)) in the European population. Less copy numbers were associated with lower BMI and body fat mass, and the effect size was estimated to be 0.62 (BMI) and 1.41 (body fat mass), respectively. However, for the Chinese population, we did not observe significant association signal, and the frequencies of this deletion CNV are quite different between the European and Chinese populations (P<0.001). CONCLUSION Our findings first suggest that CNV 16p12.3 might be ethnic specific and cause ethnic phenotypic diversity, which may provide some new clues into the understanding of the genetic architecture of obesity.
Collapse
Affiliation(s)
- T-L Yang
- Key Laboratory of Biomedical Information Engineering of Ministry of Education and Institute of Molecular Genetics, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | | | | | | | | | | | | |
Collapse
|
30
|
Cornes BK, Medland SE, Ferreira MAR, Morley KI, Duffy DL, Heijmans BT, Montgomery GW, Martin NG. Sex-Limited Genome-Wide Linkage Scan for Body Mass Index in an Unselected Sample of 933 Australian Twin Families. Twin Res Hum Genet 2012. [DOI: 10.1375/twin.8.6.616] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
AbstractGenes involved in pathways regulating body weight may operate differently in men and women. To determine whether sex-limited genes influence the obesity-related phenotype body mass index (BMI), we have conducted a general non- scalar sex-limited genome-wide linkage scan using variance components analysis in Mx (Neale, 2002). BMI measurements and genotypic data were available for 2053 Australian female and male adult twins and their siblings from 933 families. Clinical measures of BMI were available for 64.4% of these individuals, while only self-reported measures were available for the remaining participants. The mean age of participants was 39.0 years of age (SD 12.1 years). The use of a sex-limited linkage model identified areas on the genome where quantitative trait loci (QTL) effects differ between the sexes, particularly on chromosome 8 and 20, providing us with evidence that some of the genes responsible for BMI may have different effects in men and women. Our highest linkage peak was observed at 12q24 (–log10p = 3.02), which was near the recommended threshold for suggestive linkage (–log10p = 3.13). Previous studies have found evidence for a quantitative trait locus on 12q24 affecting BMI in a wide range of populations, and candidate genes for non- insulin-dependent diabetes mellitus, a consequence of obesity, have also been mapped to this region. We also identified many peaks near a –log10p of 2 (threshold for replicating an existing finding) in many areas across the genome that are within regions previously identified by other studies, as well as in locations that harbor genes known to influence weight regulation.
Collapse
|
31
|
De Moor MHM, Liu YJ, Boomsma DI, Li J, Hamilton JJ, Hottenga JJ, Levy S, Liu XG, Pei YF, Posthuma D, Recker RR, Sullivan PF, Wang L, Willemsen G, Yan H, De Geus EJC, Deng HW. Genome-wide association study of exercise behavior in Dutch and American adults. Med Sci Sports Exerc 2011; 41:1887-95. [PMID: 19727025 DOI: 10.1249/mss.0b013e3181a2f646] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
INTRODUCTION The objective of this study was to identify genetic variants that are associated with adult leisure time exercise behavior using genome-wide association (GWA) in two independent samples. METHODS Exercise behavior was measured in 1644 unrelated Dutch and 978 unrelated American adults of European ancestry with detailed questions about type, frequency, and duration of exercise. Individuals were classified into regular exercisers or nonexercisers using a threshold of 4 MET·h (metabolic equivalents-hours per week). GWA analyses of ∼1.6 million observed and imputed Single Nucleotide Polymorphism (SNP) were conducted in both samples independently using logistic regression in SNPTEST, including sex, age, and body mass index as covariates. A meta-analysis of the results was performed using the weighted inverse variance method in METAL. RESULTS Thirty-seven novel SNPs in the PAPSS2 gene and in two intergenic regions on chromosomes 2q33.1 and 18p11.32 were associated with exercise participation (pooled P values <1.0 × 10(-5)). Previously reported associations (ACE, CASR, CYP19A1, DRD2, LEPR, and MC4R genes) or linkage findings (2p22.3, 4q28, 4q31.21 7p13, 9q31, 11p15, 13q22, 15q13, 18q12.2, 18q21.1, 19p13.3, and 20q12) were not replicated, although suggestive evidence was found for association to rs12405556 in the LEPR gene (pooled P value 9.7 × 10(-4); American sample, P value 9.8 × 10(-5)) and for association to rs8036270 in the GABRG3 gene (pooled P value 4.6 × 10(-5)) in the linkage region 15q12-13. CONCLUSIONS The heritability of leisure time exercise behavior is likely to be accounted for by many genetic variants with small effect size. These can be detected by GWA as was shown here for the PAPSS2 gene, but larger samples with genome-wide genotypes and high-quality exercise data are needed for further progress.
Collapse
Affiliation(s)
- Marleen H M De Moor
- Department of Biological Psychology, VU University Amsterdam, Amsterdam, The Netherlands.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Zhong K, Lei SF, Yang F, Chen XD, Tan LJ, Zhu XZ, Tian Q, Deng HW. The differences of sarcopenia-related phenotypes: effects of gender and population. Eur Rev Aging Phys Act 2011. [DOI: 10.1007/s11556-011-0082-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Abstract
Sarcopenia is a serious condition especially in the elderly population mainly characterized by the loss of skeletal muscle mass and strength with aging. Extremity skeletal muscle mass index (EMMI) (sum of skeletal muscle mass in arms and legs/height2) is gaining popularity in sarcopenia definition (less than two standard deviations below the mean of a young adult reference group), but little is known about the gender- and population-specific differences of EMMI. This study aimed at investigating the differences of EMMI, arm muscle mass index (AMMI), and leg muscle mass index (LMMI) between gender groups and populations (Chinese vs. Caucasians). The participants included 1,809 Chinese and 362 Caucasians with normal weight aged from 19 to 45 years old. Extremity muscle mass, arm muscle mass, and leg muscle mass were measured by using dual energy x-ray absorptiometry. Independent sample t tests were used to analyze the differences in muscle mass indexes between the studied groups. All the study parameters including EMMIs, AMMIs, and LMMIs were significantly higher (P ≤ 0.0003) in the Caucasian group than in the Chinese group and also higher in the male group than in the female group, and these significant differences (P ≤ 0.0005) remained after adjusting for age by simple regressions. The detected differences of muscle mass indexes between different gender and ethnic groups may provide important implications in their different risk of future sarcopenia.
Collapse
|
33
|
Yang TL, Guo Y, Shen H, Lei SF, Liu YJ, Li J, Liu YZ, Yu N, Chen J, Xu T, Cheng Y, Tian Q, Yu P, Papasian CJ, Deng HW. Genetic association study of common mitochondrial variants on body fat mass. PLoS One 2011; 6:e21595. [PMID: 21747914 PMCID: PMC3126834 DOI: 10.1371/journal.pone.0021595] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2010] [Accepted: 06/06/2011] [Indexed: 11/19/2022] Open
Abstract
Mitochondria play a central role in ATP production and energy metabolism. Previous studies suggest that common variants in mtDNA are associated with several common complex diseases, including obesity. To test the hypothesis that common mtDNA variants influence obesity-related phenotypes, including BMI and body fat mass, we genotyped a total of 445 mtSNPs across the whole mitochondrial genome in a large sample of 2,286 unrelated Caucasian subjects. 72 of these 445 mtSNPs passed quality control criteria, and were used for subsequent analyses. We also classified all subjects into nine common European haplogroups. Association analyses were conducted for both BMI and body fat mass with single mtSNPs and mtDNA haplogroups. Two mtSNPs, mt4823 and mt8873 were detected to be significantly associated with body fat mass, with adjusted P values of 4.94 × 10⁻³ and 4.58 × 10⁻², respectively. The minor alleles mt4823 C and mt8873 A were associated with reduced fat mass values and the effect size (β) was estimated to be 3.52 and 3.18, respectively. These two mtSNPs also achieved nominally significant levels for association with BMI. For haplogroup analyses, we found that haplogroup X was strongly associated with both BMI (adjusted P = 8.31 × 10⁻³) and body fat mass (adjusted P = 5.67×10⁻⁴) Subjects classified as haplogroup X had lower BMI and fat mass values, with the β estimated to be 2.86 and 6.03, respectively. Our findings suggest that common variants in mitochondria might play a role in variations of body fat mass. Further molecular and functional studies will be needed to clarify the potential mechanism.
Collapse
Affiliation(s)
- Tie-Lin Yang
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, and Institute of Molecular Genetics, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, People's Republic of China
| | - Yan Guo
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, and Institute of Molecular Genetics, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, People's Republic of China
- * E-mail: (YG); (H-WD)
| | - Hui Shen
- School of Public Health and Tropical Medicine, Tulane University, New Orleans, Louisiana, United States of America
| | - Shu-Feng Lei
- School of Public Health and Tropical Medicine, Tulane University, New Orleans, Louisiana, United States of America
| | - Yong-Jun Liu
- School of Public Health and Tropical Medicine, Tulane University, New Orleans, Louisiana, United States of America
| | - Jian Li
- School of Public Health and Tropical Medicine, Tulane University, New Orleans, Louisiana, United States of America
| | - Yao-Zhong Liu
- School of Public Health and Tropical Medicine, Tulane University, New Orleans, Louisiana, United States of America
| | - Na Yu
- School of Public Health and Tropical Medicine, Tulane University, New Orleans, Louisiana, United States of America
| | - Jia Chen
- School of Public Health and Tropical Medicine, Tulane University, New Orleans, Louisiana, United States of America
| | - Ting Xu
- School of Public Health and Tropical Medicine, Tulane University, New Orleans, Louisiana, United States of America
| | - Yu Cheng
- School of Public Health and Tropical Medicine, Tulane University, New Orleans, Louisiana, United States of America
| | - Qing Tian
- School of Public Health and Tropical Medicine, Tulane University, New Orleans, Louisiana, United States of America
| | - Ping Yu
- School of Public Health and Tropical Medicine, Tulane University, New Orleans, Louisiana, United States of America
| | - Christopher J. Papasian
- School of Public Health and Tropical Medicine, Tulane University, New Orleans, Louisiana, United States of America
| | - Hong-Wen Deng
- School of Public Health and Tropical Medicine, Tulane University, New Orleans, Louisiana, United States of America
- Institute of Bioscience and Biotechnology, School of Science, Beijing Jiaotong University, Beijing, People's Republic of China
- * E-mail: (YG); (H-WD)
| |
Collapse
|
34
|
Chen Y, Liu YJ, Pei YF, Yang TL, Deng FY, Liu XG, Li DY, Deng HW. Copy number variations at the Prader-Willi syndrome region on chromosome 15 and associations with obesity in whites. Obesity (Silver Spring) 2011; 19:1229-34. [PMID: 21233802 PMCID: PMC4512297 DOI: 10.1038/oby.2010.323] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Obesity is a serious health problem with strong genetic determination. Copy number variation (CNV) is a common type of genomic variant associated with some complex human diseases. However, it is not clear how CNVs contribute to the etiology of obesity. In this study, we examined 1,000 unrelated US whites to search for CNVs that may predispose to obesity. We focused our analyses on the Prader-Willi syndrome (PWS) critical region (chromosome 15q11-q13), because the PWS region is a hotspot for CNV generation and obesity is one of the major clinical manifestations for chromosome abnormalities at this region. We constructed a map containing 39 CNVs at the PWS critical region with CNV occurrence rates higher than 1%. Among them, three CNVs were significantly associated with body fat mass (P < 0.05), with a higher copy number (CN) associated with an increase of 5.08-9.77 kg in body fat mass. These three CNVs are close to two known PWS genes, NDN (necdin homolog) and C15orf2 (chromosome 15 open reading frame 2), and partially overlap with another obesity gene PWRN1 (Prader-Willi region nonprotein-coding RNA 1). Interestingly, our recently published whole genome association scan study using the same sample by examining single-nucleotide polymorphisms (SNPs) did not find any significant associations at these CNV regions, suggesting the importance of examining both CNVs and SNPs for better understanding of genetic basis of obesity. Further studies are warranted to validate these CNVs and their importance to obesity.
Collapse
Affiliation(s)
- Yuan Chen
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education and Institute of Molecular Genetics, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an, Shaanxi, The People’s Republic of China
| | - Yong-Jun Liu
- School of Medicine, University of Missouri-Kansas City, Kansas City, Missouri, USA
| | - Yu-Fang Pei
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education and Institute of Molecular Genetics, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an, Shaanxi, The People’s Republic of China
- School of Medicine, University of Missouri-Kansas City, Kansas City, Missouri, USA
| | - Tie-Lin Yang
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education and Institute of Molecular Genetics, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an, Shaanxi, The People’s Republic of China
- School of Medicine, University of Missouri-Kansas City, Kansas City, Missouri, USA
| | - Fei-Yan Deng
- School of Medicine, University of Missouri-Kansas City, Kansas City, Missouri, USA
| | - Xiao-Gang Liu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education and Institute of Molecular Genetics, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an, Shaanxi, The People’s Republic of China
| | - Ding-You Li
- Department of Pediatrics, Children’s Mercy Hospital, Kansas City, Missouri, USA
| | - Hong-Wen Deng
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education and Institute of Molecular Genetics, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an, Shaanxi, The People’s Republic of China
- School of Medicine, University of Missouri-Kansas City, Kansas City, Missouri, USA
- Center of System Biomedical Sciences, Shanghai University of Science and Technology, Shanghai, The People’s Republic of China
- College of Life Sciences and Engineering, Beijing Jiao Tong University, Beijing, The People’s Republic of China
| |
Collapse
|
35
|
Abstract
Although
the existence of a link between neurodegenerative diseases and obesity has
been suggested, a causal relation between neural degeneration and obesity
has remained to be demonstrated experimentally. We recently showed that
neurodegeneration in the hypothalamic satiety center results in obesity in
mice transgenic for E4B (also known as UFD2a), a mammalian ubiquitin
elongation factor (E4). Increased expression of E4B in neurons of the
transgenic mice results in the formation of ubiquitin-positive aggregates
similar to those apparent in many human neurodegenerative diseases as well
as in degeneration of hypothalamic neurons responsible for the regulation
of food intake and energy expenditure. We thus propose that
neurodegeneration is a possible cause of human obesity and related
metabolic diseases, which have become a serious public health problem
worldwide. Our animal model is thus a powerful tool for studies of the
relation between neurodegeneration and obesity.
Collapse
Affiliation(s)
- Etsuo Susaki
- Department of Molecular and Cellular Biology, Medical Institute of Bioregulation, Kyushu University, Higashi-ku, Fukuoka, Japan
| | | |
Collapse
|
36
|
Dong C, Beecham A, Slifer S, Wang L, McClendon MS, Blanton SH, Rundek T, Sacco RL. Genome-wide linkage and peak-wide association study of obesity-related quantitative traits in Caribbean Hispanics. Hum Genet 2010; 129:209-19. [PMID: 21104097 DOI: 10.1007/s00439-010-0916-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2010] [Accepted: 11/05/2010] [Indexed: 12/14/2022]
Abstract
Although obesity is more prevalent in Hispanics than non-Hispanic whites in the United States, little is known about the genetic etiology of the related traits in this population. To identify genetic loci influencing obesity in non-Mexican Hispanics, we performed a genome-wide linkage scan in 1,390 subjects from 100 Caribbean Hispanic families on six obesity-related quantitative traits: body mass index (BMI), body weight, waist circumference, waist-to-hip ratio, abdominal and average triceps skinfold thickness after adjusting for significant demographic and lifestyle factors. We then carried out an association analysis of the linkage peaks and the FTO gene in an independent community-based Hispanic subcohort (N = 652, 64% Caribbean Hispanics) from the Northern Manhattan Study. Evidence of linkage was strongest on 1q43 with multipoint LOD score of 2.45 (p = 0.0004) for body weight. Suggestive linkage evidence of LOD > 2.0 was also identified on 1q43 for BMI (LOD = 2.03), 14q32 for abdominal skinfold thickness (LOD = 2.17), 16p12 for BMI (LOD = 2.27) and weight (LOD = 2.26), and 16q23-24 for average triceps skinfold thickness (LOD = 2.32). In the association analysis of 6,440 single nucleotide polymorphisms (SNPs) under 1-LOD unit down regions of our linkage peaks on chromosome 1q43 and 16p12 as well as in the FTO gene, we found that two SNPs (rs6665519 and rs669231) on 1q43 and one FTO SNP (rs12447427) were significantly associated with BMI or body weight after adjustment for multiple testing. Our results suggest that in addition to FTO, multiple genetic loci, particularly those on 1q43 region, may contribute to the variations in obesity-related quantitative traits in Caribbean Hispanics.
Collapse
Affiliation(s)
- Chuanhui Dong
- Department of Neurology, Miller School of Medicine, University of Miami, Miami, 1120 NW 14th Street, FL 33136, USA
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Zhang F, Tan LJ, Lei SF, Deng HW. The differences of femoral neck geometric parameters: effects of age, gender and race. Osteoporos Int 2010; 21:1205-14. [PMID: 19802512 PMCID: PMC2921984 DOI: 10.1007/s00198-009-1057-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2009] [Accepted: 08/10/2009] [Indexed: 12/01/2022]
Abstract
UNLABELLED This study aims at investigating the effects of age, sex, and ethnicity on five femoral neck geometric parameters (FNGPs): femoral neck periosteal diameter, cross-sectional area, cortical thickness, sectional modulus, and buckling ratio and found that the three factors would influence the FNGPs. INTRODUCTION Bone geometry is one of the most important predictors of bone strength and osteoporotic fractures. This study aims at investigating the effects of age, sex, and ethnicity on five femoral neck geometric parameters (FNGPs): femoral neck periosteal diameter (W), cross-sectional area (CSA), cortical thickness (CT), sectional modulus (Z), and buckling ratio (BR). METHODS In the studied 861 Caucasian subjects and 3,021 Chinese individuals, CSA, CT, and Z displayed trends of decrease with age, but W and BR showed increasing trends with age in both Chinese and Caucasian females and males (p < 0.05). W, CSA, CT, and Z were significantly higher (p <or= 0.001) in Caucasians than in Chinese and higher in males than in females except for BR between Chinese males and Chinese females. CONCLUSION In conclusion, the differences of FNGPs according to gender and ethnicity provide important implications in the different prevalence of osteoporotic fracture among different gender and ethnic groups.
Collapse
Affiliation(s)
- F. Zhang
- Laboratory of Molecular and Statistical Genetics, College of Life Sciences, Hunan Normal University, Changsha, Hunan 410081, People’s Republic of China
| | - L.-J. Tan
- Laboratory of Molecular and Statistical Genetics, College of Life Sciences, Hunan Normal University, Changsha, Hunan 410081, People’s Republic of China
| | - S.-F. Lei
- Laboratory of Molecular and Statistical Genetics, College of Life Sciences, Hunan Normal University, Changsha, Hunan 410081, People’s Republic of China. Departments of Orthopedic Surgery and Basic Medical Sciences, University of Missouri-Kansas City, 2411 Holmes St., Room M3-C03, Kansas City, MO 64108-2792, USA
| | - H.-W. Deng
- Laboratory of Molecular and Statistical Genetics, College of Life Sciences, Hunan Normal University, Changsha, Hunan 410081, People’s Republic of China. Center of Systematic Biomedical Research, Shanghai University of Science and Technology, Shanghai, China. Departments of Orthopedic Surgery and Basic Medical Sciences, University of Missouri-Kansas City, 2411 Holmes St., Room M3-C03, Kansas City, MO 64108-2792, USA
| |
Collapse
|
38
|
Haberstick BC, Lessem JM, McQueen MB, Boardman JD, Hopfer CJ, Smolen A, Hewitt JK. Stable genes and changing environments: body mass index across adolescence and young adulthood. Behav Genet 2010; 40:495-504. [PMID: 20087641 PMCID: PMC2989725 DOI: 10.1007/s10519-009-9327-3] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2008] [Accepted: 12/10/2009] [Indexed: 10/20/2022]
Abstract
The transition between adolescence and young adulthood is a developmentally sensitive time where children are at an increased risk for becoming overweight and developing obesity. Twin studies have reported that body mass index [BMI] is highly heritable, however, it remains unclear whether the genetic influences are sex-limited and whether non-additive genetic influences contribute to body mass index [BMI] during these ages. In the current report, we examined self-reported data on BMI in same [n = 2,744] and opposite-sex [n = 1,178] siblings participating in the National Longitudinal Study on Adolescent Health [Add Health]. To investigate whether the same or different genes contributed to BMI for both sexes, we fit quantitative sex-limited genetic models to three waves of data collection. At each of the three Waves of assessment, models that included additive genetic, individual-specific environment, and no sex-limited genetic influences fit the data most parsimoniously. Heritable effects on BMI at each of the three Waves were large for both sexes and ranged between .75 and .86. While genetic contributions across the ages were highly correlated, longitudinal analyses indicated that the relevant individual-specific environmental influences on BMI in adolescence and young adulthood change sizably. These results underscore the importance of understanding early genetic influences on BMI and highlight the role environmental experiences have at later ages when new genetic influences appear to make a small contribution to individual variation in BMI.
Collapse
Affiliation(s)
- Brett C Haberstick
- Institute for Behavioral Genetics, University of Colorado, Boulder, CO 80309-0447, USA.
| | | | | | | | | | | | | |
Collapse
|
39
|
Duncan EL, Brown MA. Mapping genes for osteoporosis--old dogs and new tricks. Bone 2010; 46:1219-25. [PMID: 20060943 DOI: 10.1016/j.bone.2009.12.035] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2009] [Revised: 12/27/2009] [Accepted: 12/30/2009] [Indexed: 12/15/2022]
Abstract
In stark contrast to its horticultural origins, modern genetics is an extremely technology-driven field. Almost all the major advances in the field over the past 20 years have followed technological developments that have permitted change in study designs. The development of PCR in the 1980s led to RFLP mapping of monogenic diseases. The development of fluorescent-tagged genotyping methods led to linkage mapping approaches for common diseases that dominated the 1990s. The development of microarray SNP genotyping has led to the genome-wide association study era of the new millennium. And now the development of next-generation sequencing technologies is about to open up a new era of gene-mapping, enabling many potential new study designs. This review aims to present the strengths and weaknesses of the current approaches, and present some new ideas about gene-mapping approaches that are likely to advance our knowledge of the genes involved in heritable bone traits such as bone mineral density (BMD) and fracture.
Collapse
Affiliation(s)
- Emma L Duncan
- Diamantina Institute of Cancer, Immunology and Metabolic Medicine, Princess Alexandra Hospital, Ipswich Road, Woolloongabba, QLD 4102, Australia
| | | |
Collapse
|
40
|
Susaki E, Kaneko-Oshikawa C, Miyata K, Tabata M, Yamada T, Oike Y, Katagiri H, Nakayama KI. Increased E4 activity in mice leads to ubiquitin-containing aggregates and degeneration of hypothalamic neurons resulting in obesity. J Biol Chem 2010; 285:15538-15547. [PMID: 20190229 DOI: 10.1074/jbc.m110.105841] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Obesity has become a serious worldwide public health problem. Although neural degeneration in specific brain regions has been suggested to contribute to obesity phenotype in humans, a causal relationship between these two conditions has not been demonstrated experimentally. We now show that E4B (also known as UFD2a), a mammalian ubiquitin chain elongation factor (E4), induces the formation of intracellular aggregates positive for ubiquitin and the adaptor protein p62 when overexpressed in cultured cells or the brain. Mice transgenic for E4B manifested neural degeneration in association with aggregate formation, and they exhibited functional impairment specifically in a subset of hypothalamic neurons that regulate food intake and energy expenditure, resulting in development of hyperphagic obesity and related metabolic abnormalities. The neural pathology of E4B transgenic mice was similar to that of human neurodegenerative diseases associated with the formation of intracellular ubiquitin-positive deposits, indicating the existence of a link between such diseases and obesity and related metabolic disorders. Our findings thus provide experimental evidence for a role of hypothalamic neurodegeneration in obesity, and the E4B transgenic mouse should prove to be a useful animal model for studies of the relationship between neurodegenerative diseases and obesity.
Collapse
Affiliation(s)
- Etsuo Susaki
- Department of Molecular and Cellular Biology, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, Fukuoka 812-8582; Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012
| | - Chie Kaneko-Oshikawa
- Department of Molecular and Cellular Biology, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, Fukuoka 812-8582; Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012
| | - Keishi Miyata
- Department of Molecular Genetics, Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo, Kumamoto 860-8556
| | - Mitsuhisa Tabata
- Department of Molecular Genetics, Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo, Kumamoto 860-8556
| | - Tetsuya Yamada
- Division of Advanced Therapeutics for Metabolic Diseases, Center for Translational and Advanced Animal Research, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan
| | - Yuichi Oike
- Department of Molecular Genetics, Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo, Kumamoto 860-8556
| | - Hideki Katagiri
- Division of Advanced Therapeutics for Metabolic Diseases, Center for Translational and Advanced Animal Research, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan
| | - Keiichi I Nakayama
- Department of Molecular and Cellular Biology, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, Fukuoka 812-8582; Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012.
| |
Collapse
|
41
|
Pattin KA, Moore JH. Genome-wide association studies for the identification of biomarkers in metabolic diseases. ACTA ACUST UNITED AC 2009; 4:39-51. [DOI: 10.1517/17530050903322245] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
42
|
Gu JM, Xiao WJ, He JW, Zhang H, Hu WW, Hu YQ, Li M, Liu YJ, Fu WZ, Yu JB, Gao G, Yue H, Ke YH, Zhang ZL. Association between VDR and ESR1 gene polymorphisms with bone and obesity phenotypes in Chinese male nuclear families. Acta Pharmacol Sin 2009; 30:1634-42. [PMID: 19960008 DOI: 10.1038/aps.2009.169] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
AIM The goal of this study was to determine whether polymorphisms in the vitamin D receptor (VDR) and estrogen receptor alpha (ESR1) genes are associated with variations of peak bone mineral density (BMD) and obesity phenotypes in young Chinese men. METHODS A total of 1215 subjects from 400 Chinese nuclear families were genotyped by polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) and allele-specific multiple PCR (ASM-PCR) analysis at the ApaI, FokI, and CDX2 sites in the VDR gene and the PvuII and XbaI sites in the ESR1 gene. BMD at the lumbar spine and hip, total fat mass, and total lean mass were measured using dual energy X-ray absorptiometry. The associations between VDR and ESR1 gene polymorphisms with peak BMD, body mass index (BMI), total fat mass, total lean mass, and percentage fat mass (PFM) were determined using quantitative transmission disequilibrium tests (QTDTs). RESULTS Using QTDTs, no significant within-family associations were obtained between genotypes or haplotypes of the VDR and ESR1 genes and peak BMD. For the obesity phenotypes, the within-family associations were significant between CDX2 genotypes and BMI (P=0.046), fat mass (P=0.004), and PFM (P=0.020). Further, PvuII was significantly associated with the variation of fat mass and PFM (P=0.002 and P=0.039, respectively). A subsequent 1000 permutations were in agreement with these within-family association results. CONCLUSION Our findings showed that VDR and ESR1 polymorphisms were associated with total fat mass in young Chinese men, but we failed to find a significant association between VDR and ESR1 genotypes and peak BMD. These findings suggested that the VDR and ESR1 genes are quantitative trait loci (QTL) underlying fat mass variation in young Chinese men.
Collapse
|
43
|
Powerful bivariate genome-wide association analyses suggest the SOX6 gene influencing both obesity and osteoporosis phenotypes in males. PLoS One 2009; 4:e6827. [PMID: 19714249 PMCID: PMC2730014 DOI: 10.1371/journal.pone.0006827] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2009] [Accepted: 08/04/2009] [Indexed: 01/21/2023] Open
Abstract
Background Current genome-wide association studies (GWAS) are normally implemented in a univariate framework and analyze different phenotypes in isolation. This univariate approach ignores the potential genetic correlation between important disease traits. Hence this approach is difficult to detect pleiotropic genes, which may exist for obesity and osteoporosis, two common diseases of major public health importance that are closely correlated genetically. Principal Findings To identify such pleiotropic genes and the key mechanistic links between the two diseases, we here performed the first bivariate GWAS of obesity and osteoporosis. We searched for genes underlying co-variation of the obesity phenotype, body mass index (BMI), with the osteoporosis risk phenotype, hip bone mineral density (BMD), scanning ∼380,000 SNPs in 1,000 unrelated homogeneous Caucasians, including 499 males and 501 females. We identified in the male subjects two SNPs in intron 1 of the SOX6 (SRY-box 6) gene, rs297325 and rs4756846, which were bivariately associated with both BMI and hip BMD, achieving p values of 6.82×10−7 and 1.47×10−6, respectively. The two SNPs ranked at the top in significance for bivariate association with BMI and hip BMD in the male subjects among all the ∼380,000 SNPs examined genome-wide. The two SNPs were replicated in a Framingham Heart Study (FHS) cohort containing 3,355 Caucasians (1,370 males and 1,985 females) from 975 families. In the FHS male subjects, the two SNPs achieved p values of 0.03 and 0.02, respectively, for bivariate association with BMI and femoral neck BMD. Interestingly, SOX6 was previously found to be essential to both cartilage formation/chondrogenesis and obesity-related insulin resistance, suggesting the gene's dual role in both bone and fat. Conclusions Our findings, together with the prior biological evidence, suggest the SOX6 gene's importance in co-regulation of obesity and osteoporosis.
Collapse
|
44
|
Peeters A, Beckers S, Verrijken A, Mertens I, Van Gaal L, Van Hul W. Possible role for ENPP1 polymorphism in obesity but not for INSIG2 and PLIN variants. Endocrine 2009; 36:103-9. [PMID: 19399648 DOI: 10.1007/s12020-009-9194-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2009] [Revised: 03/13/2009] [Accepted: 04/01/2009] [Indexed: 10/20/2022]
Abstract
Previous studies have suggested that ENPP1, INSIG2, and PLIN may be linked with a higher risk for obesity or with increased phenotypic measures of obesity. We selected polymorphisms in these candidate genes based on their prior associations with obesity risk or obesity parameters. K121Q (rs1044498) in ENPP1, rs7566605 in INSIG2, and rs894160 in PLIN were genotyped by Taqman assays in a Belgian sample of 1,078 obese subjects (body mass index (BMI) > 30 kg/m(2)) and 323 lean controls (18.5 < BMI < 25 kg/m(2)). BMI, waist circumference, and waist-to-hip ratio (WHR) were assessed by standard methods while a computerized tomography-scan was used to measure visceral (VFA), subcutaneous (SFA), and total (TFA) abdominal fat areas. Presence of the rare allele was not significantly different between cases and controls for the three variants that were tested, while only WHR was associated with ENPP1 in obese subjects. Our data thus indicate that K121Q, rs7566605, and rs894160 are not major contributing factors for obesity.
Collapse
Affiliation(s)
- Armand Peeters
- Department of Biomedical Sciences, University of Antwerp, Universiteitsplein 1, Wilrijk, 2610, Antwerp, Belgium.
| | | | | | | | | | | |
Collapse
|
45
|
Vimaleswaran KS, Franks PW, Brage S, Sardinha LB, Andersen LB, Wareham NJ, Ekelund U, Loos RJF. Absence of association between the INSIG2 gene polymorphism (rs7566605) and obesity in the European Youth Heart Study (EYHS). Obesity (Silver Spring) 2009; 17:1453-7. [PMID: 19197262 DOI: 10.1038/oby.2008.650] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The first genome-wide association study for BMI identified a polymorphism, rs7566605, 10 kb upstream of the insulin-induced gene 2 (INSIG2) transcription start site, as the most significantly associated variant in children and adults. Subsequent studies, however, showed inconsistent association of this polymorphism with obesity traits. This polymorphism has been hypothesized to alter INSIG2 expression leading to inhibition of fatty acid and cholesterol synthesis. Hence, we investigated the association of the INSIG2 rs7566605 polymorphism with obesity- and lipid-related traits in Danish and Estonian children (930 boys and 1,073 girls) from the European Youth Heart Study (EYHS), a school-based, cross-sectional study of pre- and early pubertal children. The association between the polymorphism and obesity traits was tested using additive and recessive models adjusted for age, age-group, gender, maturity and country. Interactions were tested by including the interaction terms in the model. Despite having sufficient power (98%) to detect the previously reported effect size for association with BMI, we did not find significant effects of rs7566605 on BMI (additive, P = 0.68; recessive, P = 0.24). Accordingly, the polymorphism was not associated with overweight (P = 0.87) or obesity (P = 0.34). We also did not find association with waist circumference (WC), sum of four skinfolds, or with total cholesterol, triglycerides, low-density lipoprotein, or high-density lipoprotein. There were no gender-specific (P = 0.55), age-group-specific (P = 0.63) or country-specific (P = 0.56) effects. There was also no evidence of interaction between genotype and physical activity (P = 0.95). Despite an adequately powered study, our findings suggest that rs7566605 is not associated with obesity-related traits and lipids in the EYHS.
Collapse
|
46
|
Liu YZ, Pei YF, Guo YF, Wang L, Liu XG, Yan H, Xiong DH, Zhang YP, Jin TB, Levy S, Haddock CK, Papasian CJ, Xu Q, Ma JZ, Payne TJ, Recker RR, Li MD, Deng HW. Genome-wide association analyses suggested a novel mechanism for smoking behavior regulated by IL15. Mol Psychiatry 2009; 14:668-80. [PMID: 19188921 PMCID: PMC2700850 DOI: 10.1038/mp.2009.3] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Cigarette smoking is the leading preventable cause of death in the United States. Although smoking behavior has a significant genetic determination, the specific genes and associated mechanisms underlying the smoking behavior are largely unknown. Here, we carried out a genome-wide association study on smoking behavior in 840 Caucasians, including 417 males and 423 females, in which we examined approximately 380,000 single nucleotide polymorphisms (SNPs). We found that a cluster of nine SNPs upstream from the IL15 gene were associated with smoking status in males, with the most significant SNP, rs4956302, achieving a P-value (8.80 x 10(-8)) of genome-wide significance. Another SNP, rs17354547 that is highly conserved across multiple species achieved a P-value of 5.65 x 10(-5). These two SNPs, together with two additional SNPs (rs1402812 and rs4956396) were selected from the above nine SNPs for replication in an African-American sample containing 1251 subjects, including 412 males and 839 females. The SNP rs17354547 was replicated successfully in the male subgroup of the replication sample; it was associated with smoking quantity (SQ), the Heaviness of Smoking Index (HSI) and the Fagerstrom Test for Nicotine Dependence (FTND), with P-values of 0.031, 0.0046 and 0.019, respectively. In addition, a haplotype formed by rs17354547, rs1402812 and rs4956396 was also associated with SQ, HSI and FTND, achieving P-values of 0.039, 0.0093 and 0.0093, respectively. To further confirm our findings, we carried out an in silico replication study of the nine SNPs in a Framingham Heart Study sample containing 7623 Caucasians from 1731 families, among which, 3491 subjects were males and 4132 were females. Again, the male-specific association with smoking status was observed, for which seven of the nine SNPs achieved significant P-values (P<0.05) and two achieved marginally significant P-values (P<0.10) in males. Several of the nine SNPs, including the highly conserved one across species, rs17354547, are located at potential transcription factor binding sites, suggesting transcription regulation as a possible function for these SNPs. Through this function, the SNPs may modulate the gene expression of IL15, a key cytokine regulating immune function. As the immune system has long been recognized to influence drug addiction behavior, our association findings suggest a novel mechanism for smoking addiction involving immune modulation through the IL15 pathway.
Collapse
Affiliation(s)
- Yao-Zhong Liu
- School of Medicine, University of Missouri - Kansas City, Kansas City, MO 64108, USA
| | - Yu-Fang Pei
- School of Medicine, University of Missouri - Kansas City, Kansas City, MO 64108, USA, The Key Laboratory of Biomedical Information Engineering of Ministry of Education and Institute of Molecular Genetics, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, P R China
| | - Yan-Fang Guo
- School of Medicine, University of Missouri - Kansas City, Kansas City, MO 64108, USA, The Key Laboratory of Biomedical Information Engineering of Ministry of Education and Institute of Molecular Genetics, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, P R China
| | - Liang Wang
- School of Medicine, University of Missouri - Kansas City, Kansas City, MO 64108, USA, The Key Laboratory of Biomedical Information Engineering of Ministry of Education and Institute of Molecular Genetics, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, P R China
| | - Xiao-Gang Liu
- School of Medicine, University of Missouri - Kansas City, Kansas City, MO 64108, USA, The Key Laboratory of Biomedical Information Engineering of Ministry of Education and Institute of Molecular Genetics, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, P R China
| | - Han Yan
- School of Medicine, University of Missouri - Kansas City, Kansas City, MO 64108, USA, The Key Laboratory of Biomedical Information Engineering of Ministry of Education and Institute of Molecular Genetics, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, P R China
| | - Dong-Hai Xiong
- Osteoporosis Research Center, Creighton University, Omaha, NE 68131, USA
| | - Yin-Ping Zhang
- School of Medicine, University of Missouri - Kansas City, Kansas City, MO 64108, USA, The Key Laboratory of Biomedical Information Engineering of Ministry of Education and Institute of Molecular Genetics, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, P R China
| | - Tian-Bo Jin
- School of Medicine, University of Missouri - Kansas City, Kansas City, MO 64108, USA, The Key Laboratory of Biomedical Information Engineering of Ministry of Education and Institute of Molecular Genetics, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, P R China
| | - Shawn Levy
- Vanderbilt Microarray Shared Resource, Vanderbilt University, Nashville, TN 37232
| | - Christopher K Haddock
- School of Medicine, University of Missouri - Kansas City, Kansas City, MO 64108, USA
| | | | - Qing Xu
- Department of Psychiatry and Neurobehavioral Sciences, University of Virginia, Charlottesville, VA 22911
| | - Jennie Z Ma
- Department of Public Health Sciences, University of Virginia, Charlottesville, VA 22911
| | - Thomas J Payne
- Department of Otolaryngology and Communicative Sciences and ACT Center for Tobacco Treatment, Education & Research, University of Mississippi Medical Center, Jackson, MS 39216
| | - Robert R Recker
- Osteoporosis Research Center, Creighton University, Omaha, NE 68131, USA
| | - Ming D Li
- Department of Psychiatry and Neurobehavioral Sciences, University of Virginia, Charlottesville, VA 22911
| | - Hong-Wen Deng
- School of Medicine, University of Missouri - Kansas City, Kansas City, MO 64108, USA, The Key Laboratory of Biomedical Information Engineering of Ministry of Education and Institute of Molecular Genetics, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, P R China, Laboratory of Molecular and Statistical Genetics, College of Life Sciences, Hunan Normal University, Changsha, Hunan 410081, P R China
| |
Collapse
|
47
|
Baguhl R, Wilke B, Klöting N, Klöting I. Genes on rat chromosomes 3, 5, 10, and 16 are linked with facets of metabolic syndrome. Obesity (Silver Spring) 2009; 17:1215-9. [PMID: 19584880 DOI: 10.1038/oby.2008.658] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
WOKW (Wistar Ottawa Karlsburg W) rats develop metabolic syndrome closely resembling human disorder. In crossing studies between disease-prone WOKW and disease-resistant DA (Dark Agouti) rats, several quantitative trait loci (QTLs) were mapped. To prove the in vivo relevance of QTLs, congenic DA.WOKW rats, briefly termed DA.3aW, DA.3bW, DA.5W, DA.10W, and DA.16W, were generated by transferring chromosomal regions of WOKW chromosomes 3, 5, 10, and 16 onto DA genetic background. Male (n=12) and female (n=12) rats of each congenic strain and their parental strain DA were characterized for adiposity index (AI), serum leptin, and serum insulin as well as serum cholesterol and serum triglycerides as single facets of metabolic syndrome at the age of 30 weeks. The data showed a significant higher AI for male and female DA.3aW and female DA.16W compared with DA. Serum leptin was significantly elevated in male and female DA.3aW, DA.10W, and DA.16W rats in comparison with DA. Rats of both sexes of DA.10W and female DA.16W showed significantly elevated serum insulin in comparison to DA. Female rats of all congenics had significantly higher serum cholesterol compared with DA, while males did not differ. Finally, triglycerides were only elevated in male DA.16W. The results demonstrate an involvement of WOKW chromosomes 3, 5, 10, and 16 in developing facets of the metabolic syndrome.
Collapse
Affiliation(s)
- Romy Baguhl
- Department of Laboratory Animal Science, Medical Faculty, University Greifswald, Karlsburg, Germany
| | | | | | | |
Collapse
|
48
|
Huang QY, Shen H, Deng HY, Conway T, Elze L, Davies KM, Recker RR, Deng HW. Linkage and association between CA repeat polymorphism of the TNFR2 gene and obesity phenotypes in two independent Caucasian populations. ACTA ACUST UNITED AC 2009; 33:775-81. [PMID: 16980123 DOI: 10.1016/s0379-4172(06)60110-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2005] [Accepted: 11/23/2005] [Indexed: 11/19/2022]
Abstract
Previously, our group has reported a suggestive linkage evidence of 1p36 with body mass index (BMI) (LOD = 2.09). The tumor necrosis factor receptor 2 (TNFR2) at 1p36 is an excellent positional and functional candidate gene for obesity. In this study, we have investigated the linkage and association between the TNFR2 gene and obesity phenotypes in two large independent samples, using the quantitative transmission disequilibrium tests (QTDT). The first group was made up of 1,836 individuals from 79 multi-generation pedigrees. The second group was a randomly ascertained set of 636 individuals from 157 US Caucasian nuclear families. Obesity phenotypes tested include BMI, fat mass, and percentage fat mass (PFM). A significant result (P = 0.0056) was observed for linkage with BMI in the sample of the multigenerational pedigrees. Our data support the TNFR2 gene as a quantitative trait locus (QTL) underlying BMI variation in the Caucasian populations.
Collapse
Affiliation(s)
- Qing-Yang Huang
- College of Life Sciences, Central China Normal University, Wuhan 430079, China
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Yan H, Liu YJ, Zhou Q, Xiao P, Recker RR, Deng HW. Comparison of whole genome linkage scans in premenopausal and postmenopausal women: no bone-loss-specific QTLs were implicated. Osteoporos Int 2009; 20:771-7. [PMID: 18766293 DOI: 10.1007/s00198-008-0723-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2007] [Accepted: 06/24/2008] [Indexed: 11/24/2022]
Abstract
UNLABELLED This study was conducted to investigate if there exist bone-loss-specific quantitative trait loci (QTLs) for females. Genome-wide linkage scans were conducted in total, premenopausal, and postmenopausal women, respectively. No QTLs exclusively were found in postmenopausal women, suggesting that no bone-loss-specific QTL was implicated independent of BMD in our sample. INTRODUCTION Bone mineral density (BMD) in elderly women is determined jointly by peak bone mass achieved before menopause and by subsequent bone loss upon and after menopause. Peak bone mass is under strong genetic control, but whether bone loss has genetic determination independent of peak BMD is unknown. MATERIALS AND METHODS To investigate if there exist bone-loss-specific quantitative trait loci (QTLs) for females, we conducted genome-wide linkage scans in 2,582 Caucasian females from 451 pedigrees including 1,486 premenopausal and 1,096 postmenopausal women. Linkage analyses were performed in the total sample and premenopausal and postmenopausal women subgroups, respectively, and the results were compared. RESULTS No linkage evidence was found exclusively in postmenopausal women. Linkage signals identified are largely consistent in the total, premenopausal, and postmenopausal samples. For example, for spine BMD, for the total sample, a significant linkage was obtained on 15q13 (LOD = 3.67), and LOD scores of 1.52 and 2.49 were achieved on 15q13 in premenopausal and postmenopausal women, respectively. CONCLUSIONS We did not find any QTLs exclusively in postmenopausal women; hence, no specific QTL for bone loss was implicated independent of BMD in our female sample.
Collapse
Affiliation(s)
- H Yan
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, People's Republic of China
| | | | | | | | | | | |
Collapse
|
50
|
Lei S, Deng F, Xiao P, Zhong K, Deng H, Recker RR, Deng H. Bivariate whole-genome linkage scan for bone geometry and total body fat mass. J Genet Genomics 2009; 36:89-97. [PMID: 19232307 DOI: 10.1016/s1673-8527(08)60095-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2008] [Revised: 12/01/2008] [Accepted: 12/10/2008] [Indexed: 02/05/2023]
Abstract
To quantify the genetic correlations between total body fat mass (TBFM) and femoral neck geometric parameters (FNGPs) and, if possible, to detect the specific genomic regions shared by them, bivariate genetic analysis and bivariate whole-genome linkage scan were carried out in a large Caucasian population. All the phenotypes studied were significantly controlled by genetic factors (P < 0.001) with the heritabilities ranging from 0.45 to 0.68. Significantly genetic correlations were found between TBFM and CSA (cross-section area), W (sub-periosteal diameter), Z (section modulus) and CT (cortical thickness) except between TBFM and BR (buckling ratio). The peak bivariate LOD scores were 3.23 (20q12), 2.47 (20p11), 3.19 (6q27), 1.68 (20p12), and 2.47 (7q11) for the five pairs of TBFM and BR, CSA, CT, W, and Z in the entire sample, respectively. Gender-specific bivariate linkage evidences were also found for the five pairs. 6p25 had complete pleiotropic effects on the variations of TBFM & Z in the female sub-population, and 6q27 and 17q11 had coincident linkages for TBFM & CSA and TBFM & Z in the entire population. We identified moderate genetic correlations and several shared genomic regions between TBFM and FNGPs in a large Caucasian population.
Collapse
|