1
|
Lei C, Liu J, Zhang R, Pan Y, Lu Y, Gao Y, Ma X, Yang Y, Guan Y, Mamatyusupu D, Xu S. Ancestral Origins and Admixture History of Kazakhs. Mol Biol Evol 2024; 41:msae144. [PMID: 38995236 PMCID: PMC11272102 DOI: 10.1093/molbev/msae144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 04/29/2024] [Accepted: 07/02/2024] [Indexed: 07/13/2024] Open
Abstract
Kazakh people, like many other populations that settled in Central Asia, demonstrate an array of mixed anthropological features of East Eurasian (EEA) and West Eurasian (WEA) populations, indicating a possible scenario of biological admixture between already differentiated EEA and WEA populations. However, their complex biological origin, genomic makeup, and genetic interaction with surrounding populations are not well understood. To decipher their genetic structure and population history, we conducted, to our knowledge, the first whole-genome sequencing study of Kazakhs residing in Xinjiang (KZK). We demonstrated that KZK derived their ancestries from 4 ancestral source populations: East Asian (∼39.7%), West Asian (∼28.6%), Siberian (∼23.6%), and South Asian (∼8.1%). The recognizable interactions of EEA and WEA ancestries in Kazakhs were dated back to the 15th century BCE. Kazakhs were genetically distinctive from the Uyghurs in terms of their overall genomic makeup, although the 2 populations were closely related in genetics, and both showed a substantial admixture of western and eastern peoples. Notably, we identified a considerable sex-biased admixture, with an excess of western males and eastern females contributing to the KZK gene pool. We further identified a set of genes that showed remarkable differentiation in KZK from the surrounding populations, including those associated with skin color (SLC24A5, OCA2), essential hypertension (HLA-DQB1), hypertension (MTHFR, SLC35F3), and neuron development (CNTNAP2). These results advance our understanding of the complex history of contacts between Western and Eastern Eurasians, especially those living or along the old Silk Road.
Collapse
Affiliation(s)
- Chang Lei
- State Key Laboratory of Genetic Engineering, Human Phenome Institute, Zhangjiang Fudan International Innovation Center, Center for Evolutionary Biology, School of Life Sciences, Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Jiaojiao Liu
- State Key Laboratory of Genetic Engineering, Human Phenome Institute, Zhangjiang Fudan International Innovation Center, Center for Evolutionary Biology, School of Life Sciences, Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Rui Zhang
- Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Yuwen Pan
- Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Yan Lu
- Ministry of Education Key Laboratory of Contemporary Anthropology, Fudan University, Shanghai 201203, China
| | - Yang Gao
- State Key Laboratory of Genetic Engineering, Human Phenome Institute, Zhangjiang Fudan International Innovation Center, Center for Evolutionary Biology, School of Life Sciences, Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Xixian Ma
- Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Yajun Yang
- State Key Laboratory of Genetic Engineering, Human Phenome Institute, Zhangjiang Fudan International Innovation Center, Center for Evolutionary Biology, School of Life Sciences, Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Yaqun Guan
- Department of Biochemistry and Molecular Biology, Preclinical Medicine College, Xinjiang Medical University, Urumqi 830011, China
| | - Dolikun Mamatyusupu
- College of the Life Sciences and Technology, Xinjiang University, Urumqi 830046, China
| | - Shuhua Xu
- State Key Laboratory of Genetic Engineering, Human Phenome Institute, Zhangjiang Fudan International Innovation Center, Center for Evolutionary Biology, School of Life Sciences, Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai 200032, China
- Ministry of Education Key Laboratory of Contemporary Anthropology, Fudan University, Shanghai 201203, China
| |
Collapse
|
2
|
Watahiki H, Fujii K, Fukagawa T, Mita Y, Kitayama T, Mizuno N. Y chromosome haplogroup N in a Japanese population is classified into three subclades, and two DYS385 loci, a duplicated Y-STR, are duplicated again in subclade N-M1819. Leg Med (Tokyo) 2024; 67:102390. [PMID: 38190775 DOI: 10.1016/j.legalmed.2023.102390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 12/21/2023] [Accepted: 12/28/2023] [Indexed: 01/10/2024]
Abstract
DYS385 is one of the major Y chromosome short tandem repeats (Y-STRs) in forensic genetics and exists as 2 copies in the human Y chromosome palindrome P4 region. In this study, we found that some samples were estimated to have ≥ 4 copies of DYS385 in Y chromosome haplogroup N in a Japanese population. Y chromosome haplogroup N is distributed widely in eastern/central Asia, Siberia, and eastern/northern Europe, and is also observed in Japan; however, little is known about haplogroup N subclades in the Japanese population. To reveal the link between increased DYS385 copy number and haplogroup N subclades, we sequenced single nucleotide polymorphisms to classify the subclades. As a result, the Japanese Y chromosomes of haplogroup N were classified into three subclades, and an increased DYS385 copy number was specific to subclade N-M1819* (N1b2*). These results are of use in forensic DNA analysis because Y-STR copy number is important for the interpretation of Y-STR typing results of male DNA mixtures and kinship analysis. We also found that DYS458.1 microvariants (DYS458 intermediate alleles with single-nucleotide insertion) were observed only in subclade N-CTS962 (N1b1b∼) samples. Given that previous studies reported that DYS458.1 microvariants are observed in Y chromosomes of haplogroup N in other populations, DYS458.1 might be used to infer haplogroup N subclades without limitation to the Japanese population. The results of this study will be beneficial not only to forensic genetics but also to anthropological studies.
Collapse
Affiliation(s)
- Haruhiko Watahiki
- National Research Institute of Police Science, 6-3-1, Kashiwanoha, Kashiwa, Chiba 277-0882, Japan.
| | - Koji Fujii
- National Research Institute of Police Science, 6-3-1, Kashiwanoha, Kashiwa, Chiba 277-0882, Japan
| | - Takashi Fukagawa
- National Research Institute of Police Science, 6-3-1, Kashiwanoha, Kashiwa, Chiba 277-0882, Japan
| | - Yusuke Mita
- National Research Institute of Police Science, 6-3-1, Kashiwanoha, Kashiwa, Chiba 277-0882, Japan
| | - Tetsushi Kitayama
- National Research Institute of Police Science, 6-3-1, Kashiwanoha, Kashiwa, Chiba 277-0882, Japan
| | - Natsuko Mizuno
- National Research Institute of Police Science, 6-3-1, Kashiwanoha, Kashiwa, Chiba 277-0882, Japan
| |
Collapse
|
3
|
Agdzhoyan A, Iskandarov N, Ponomarev G, Pylev V, Koshel S, Salaev V, Pocheshkhova E, Kagazezheva Z, Balanovska E. Origins of East Caucasus Gene Pool: Contributions of Autochthonous Bronze Age Populations and Migrations from West Asia Estimated from Y-Chromosome Data. Genes (Basel) 2023; 14:1780. [PMID: 37761920 PMCID: PMC10530682 DOI: 10.3390/genes14091780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 08/30/2023] [Accepted: 09/05/2023] [Indexed: 09/29/2023] Open
Abstract
The gene pool of the East Caucasus, encompassing modern-day Azerbaijan and Dagestan populations, was studied alongside adjacent populations using 83 Y-chromosome SNP markers. The analysis of genetic distances among 18 populations (N = 2216) representing Nakh-Dagestani, Altaic, and Indo-European language families revealed the presence of three components (Steppe, Iranian, and Dagestani) that emerged in different historical periods. The Steppe component occurs only in Karanogais, indicating a recent medieval migration of Turkic-speaking nomads from the Eurasian steppe. The Iranian component is observed in Azerbaijanis, Dagestani Tabasarans, and all Iranian-speaking peoples of the Caucasus. The Dagestani component predominates in Dagestani-speaking populations, except for Tabasarans, and in Turkic-speaking Kumyks. Each component is associated with distinct Y-chromosome haplogroup complexes: the Steppe includes C-M217, N-LLY22g, R1b-M73, and R1a-M198; the Iranian includes J2-M172(×M67, M12) and R1b-M269; the Dagestani includes J1-Y3495 lineages. We propose J1-Y3495 haplogroup's most common lineage originated in an autochthonous ancestral population in central Dagestan and splits up ~6 kya into J1-ZS3114 (Dargins, Laks, Lezgi-speaking populations) and J1-CTS1460 (Avar-Andi-Tsez linguistic group). Based on the archeological finds and DNA data, the analysis of J1-Y3495 phylogeography suggests the growth of the population in the territory of modern-day Dagestan that started in the Bronze Age, its further dispersal, and the microevolution of the diverged population.
Collapse
Affiliation(s)
| | - Nasib Iskandarov
- Research Centre for Medical Genetics, 115522 Moscow, Russia (V.P.); (E.P.)
| | - Georgy Ponomarev
- Research Centre for Medical Genetics, 115522 Moscow, Russia (V.P.); (E.P.)
| | - Vladimir Pylev
- Research Centre for Medical Genetics, 115522 Moscow, Russia (V.P.); (E.P.)
- Biobank of Northern Eurasia, 115201 Moscow, Russia
| | - Sergey Koshel
- Research Centre for Medical Genetics, 115522 Moscow, Russia (V.P.); (E.P.)
- Department of Cartography and Geoinformatics, Faculty of Geography, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Vugar Salaev
- Research Centre for Medical Genetics, 115522 Moscow, Russia (V.P.); (E.P.)
| | - Elvira Pocheshkhova
- Research Centre for Medical Genetics, 115522 Moscow, Russia (V.P.); (E.P.)
- Department of Biology with Course in Medical Genetics, Faculty of Pharmacy, Kuban State Medical University, 350063 Krasnodar, Russia
| | - Zhaneta Kagazezheva
- Department of Biology with Course in Medical Genetics, Faculty of Pharmacy, Kuban State Medical University, 350063 Krasnodar, Russia
| | - Elena Balanovska
- Research Centre for Medical Genetics, 115522 Moscow, Russia (V.P.); (E.P.)
| |
Collapse
|
4
|
Yu HX, Ao C, Zhang XP, Liu KJ, Wang YB, Meng SL, Li H, Wei LH, Man D. Unveiling 2,000 years of differentiation among Tungusic-speaking populations: a revised phylogeny of the paternal founder lineage C2a-M48-SK1061. Front Genet 2023; 14:1243730. [PMID: 37554407 PMCID: PMC10405515 DOI: 10.3389/fgene.2023.1243730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 07/14/2023] [Indexed: 08/10/2023] Open
Abstract
Previous studies demonstrated Y chromosome haplogroup C2a-M48-SK1061 is the only founding paternal lineage of all Tungusic-speaking populations. To infer the differentiation history of these populations, we studied more sequences and constructed downstream structure of haplogroup C2a-M48-SK1061 with better resolution. In this study, we generated 100 new sequences and co-analyzed 140 sequences of C2a-M48-SK1061 to reconstruct a highly revised phylogenetic tree with age estimates. We also performed the analysis of the geographical distribution and spatial autocorrelation of sub-branches. Dozens of new sub-branches were discovered, many sub-branches were nearly unique for Ewenki, Evens, Oroqen, Xibe, Manchu, Daur, and Mongolian. The topology of these unique sub-branches is the key evidence for understanding the complex evolutionary relationship between different Tungusic-speaking populations. The revised phylogeny provided a clear pattern for the differentiation history of haplogroup C2a-M48-SK1061 in the past 2,000 years. This study showed that the divergence pattern of founder lineage is essential to understanding the differentiation history of populations.
Collapse
Affiliation(s)
- Hui-Xin Yu
- Institute of Anthropology and Human Sciences, School of Ethnology and Anthropology, Inner Mongolia Normal University, Hohhot, China
| | - Cheligeer Ao
- Institute of Anthropology and Human Sciences, School of Ethnology and Anthropology, Inner Mongolia Normal University, Hohhot, China
| | - Xian-Peng Zhang
- Institute of Anthropology and Human Sciences, School of Ethnology and Anthropology, Inner Mongolia Normal University, Hohhot, China
| | - Kai-Jun Liu
- Chengdu 23Mofang Biotechnology Co., Ltd., Chengdu, China
| | - Yi-Bing Wang
- Institute of Anthropology and Human Sciences, School of Ethnology and Anthropology, Inner Mongolia Normal University, Hohhot, China
| | - Song-Lin Meng
- School of History and Ethnic Culture, Hulunbuir University, Hulunbuir, China
| | - Hui Li
- MOE Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai, China
- B&R International Joint Laboratory for Eurasian Anthropology, Fudan University, Shanghai, China
| | - Lan-Hai Wei
- Institute of Anthropology and Human Sciences, School of Ethnology and Anthropology, Inner Mongolia Normal University, Hohhot, China
- MOE Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai, China
- B&R International Joint Laboratory for Eurasian Anthropology, Fudan University, Shanghai, China
- College of Life Science and Technology, Inner Mongolia Normal University, Hohhot, China
| | - Da Man
- Institute of Anthropology and Human Sciences, School of Ethnology and Anthropology, Inner Mongolia Normal University, Hohhot, China
| |
Collapse
|
5
|
Dai SS, Sulaiman X, Isakova J, Xu WF, Abdulloevich NT, Afanasevna ME, Ibrohimovich KB, Chen X, Yang WK, Wang MS, Shen QK, Yang XY, Yao YG, Aldashev AA, Saidov A, Chen W, Cheng LF, Peng MS, Zhang YP. The genetic echo of the Tarim mummies in modern Central Asians. Mol Biol Evol 2022; 39:6675590. [PMID: 36006373 PMCID: PMC9469894 DOI: 10.1093/molbev/msac179] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
The diversity of Central Asians has been shaped by multiple migrations and cultural diffusion. Although ancient DNA studies have revealed the demographic changes of the Central Asian since the Bronze Age, the contribution of the ancient populations to the modern Central Asian remains opaque. Herein, we performed high-coverage sequencing of 131 whole genomes of Indo-European-speaking Tajik and Turkic-speaking Kyrgyz populations to explore their genomic diversity and admixture history. By integrating the ancient DNA data, we revealed more details of the origins and admixture history of Central Asians. We found that the major ancestry of present-day Tajik populations can be traced back to the admixture of the Bronze Age Bactria–Margiana Archaeological Complex and Andronovo-related populations. Highland Tajik populations further received additional gene flow from the Tarim mummies, an isolated ancient North Eurasian–related population. The West Eurasian ancestry of Kyrgyz is mainly derived from Historical Era populations in Xinjiang of China. Furthermore, the recent admixture signals detected in both Tajik and Kyrgyz are ascribed to the expansions of Eastern Steppe nomadic pastoralists during the Historical Era.
Collapse
Affiliation(s)
- Shan Shan Dai
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China.,Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming 650204, China
| | - Xierzhatijiang Sulaiman
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China.,Department of Pharmacology, School of Pharmacy, Xinjiang Medical University, Urumqi 830054, China
| | - Jainagul Isakova
- Institute of Molecular Biology and Medicine, Bishkek 720040, Kyrgyzstan
| | - Wei Fang Xu
- Shenzhen Hospital of Guangzhou University of Chinese Medicine, Shenzhen 518034, China
| | - Najmudinov Tojiddin Abdulloevich
- E.N. Pavlovsky Institute of Zoology and Parasitology, Academy of Sciences of Republic of Tajikistan, Dushanbe 734025, Tajikistan
| | - Manilova Elena Afanasevna
- E.N. Pavlovsky Institute of Zoology and Parasitology, Academy of Sciences of Republic of Tajikistan, Dushanbe 734025, Tajikistan
| | - Khudoidodov Behruz Ibrohimovich
- E.N. Pavlovsky Institute of Zoology and Parasitology, Academy of Sciences of Republic of Tajikistan, Dushanbe 734025, Tajikistan
| | - Xi Chen
- Research Center for Ecology and Environment of Central Asia, Chinese Academy of Sciences, Urumqi 830011, China.,State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China
| | - Wei Kang Yang
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China
| | - Ming Shan Wang
- Howard Hughes Medical Institute, University of California Santa Cruz, Santa Cruz, CA 95064, USA
| | - Quan Kuan Shen
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China.,Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming 650204, China
| | - Xing Yan Yang
- Key Laboratory of Chemistry in Ethnic Medicinal Resource, Yunnan Minzu University, Kunming 650504, China.,School of Chemistry and Environment, Yunnan Minzu University, Kunming 650504, China
| | - Yong Gang Yao
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China.,KIZ/CUHK Joint Laboratory of Bio-resources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China.,Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming 650204, China
| | - Almaz A Aldashev
- Institute of Molecular Biology and Medicine, Bishkek 720040, Kyrgyzstan
| | - Abdusattor Saidov
- E.N. Pavlovsky Institute of Zoology and Parasitology, Academy of Sciences of Republic of Tajikistan, Dushanbe 734025, Tajikistan
| | - Wei Chen
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming 650224, China.,State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming 650224, China
| | - Lu Feng Cheng
- Department of Pharmacology, School of Pharmacy, Xinjiang Medical University, Urumqi 830054, China
| | - Min Sheng Peng
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China.,KIZ/CUHK Joint Laboratory of Bio-resources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China.,Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming 650204, China
| | - Ya Ping Zhang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China.,KIZ/CUHK Joint Laboratory of Bio-resources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China.,Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming 650204, China.,State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, School of Life Sciences, Yunnan University, Kunming 650091, China
| |
Collapse
|
6
|
Voskoboeva EY, Bookina TM, Semyachkina AN, Mikhaylova SV, Vashakmadze ND, Baydakova GV, Zakharova EY, Kutsev SI. Mucopolysaccharidosis Type I in the Russian Federation and Other Republics of the Former Soviet Union: Molecular Genetic Analysis and Epidemiology. Front Mol Biosci 2022; 8:783644. [PMID: 35141277 PMCID: PMC8819008 DOI: 10.3389/fmolb.2021.783644] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Accepted: 12/13/2021] [Indexed: 11/13/2022] Open
Abstract
Mutations in the IDUA gene cause deficiency of the lysosomal enzyme alpha-l-iduronidase (IDUA), which leads to a rare disease known as mucopolysaccharidosis type I. More than 300 pathogenic variants of the IDUA gene have been reported to date, but not much is known about the distribution of mutations in different populations and ethnic groups due to the low prevalence of the disease. This article presents the results of a molecular genetic study of 206 patients with mucopolysaccharidosis type I (MPS I) from the Russian Federation (RF) and other republics of the former Soviet Union. Among them, there were 173 Russian (Slavic) patients, 9 Tatars, and 24 patients of different nationalities from other republics of the former Soviet Union. Seventy-three different pathogenic variants in the IDUA gene were identified. The common variant NM_000203.5:c.208C>T was the most prevalent mutant allele among Russian and Tatar patients. The common variant NM_000203.5:c.1205G>A accounted for only 5.8% mutant alleles in Russian patients. Both mutations were very rare or absent in patients from other populations. The pathogenic variant NM_000203.5:c.187C>T was the major allele in patients of Turkic origin (Altaian, Uzbeks, and Kyrgyz). Specific own pathogenic alleles in the IDUA gene were identified in each of these ethnic groups. The identified features are important for understanding the molecular origin of the disease, predicting the risk of its development and creating optimal diagnostic and treatment tools for specific regions and ethnic groups.
Collapse
Affiliation(s)
- E. Yu Voskoboeva
- Federal State Budgetary Scientific Institution, Research Center for Medical Genetics, Moscow, Russia
- *Correspondence: E. Yu Voskoboeva, ; T. M. Bookina, ; A. N. Semyachkina, ; S. V. Mikhaylova, ; N. D. Vashakmadze, ; G. V. Baydakova, ; E. Yu Zakharova, ; S. I. Kutsev,
| | - T. M. Bookina
- Federal State Budgetary Scientific Institution, Research Center for Medical Genetics, Moscow, Russia
- *Correspondence: E. Yu Voskoboeva, ; T. M. Bookina, ; A. N. Semyachkina, ; S. V. Mikhaylova, ; N. D. Vashakmadze, ; G. V. Baydakova, ; E. Yu Zakharova, ; S. I. Kutsev,
| | - A. N. Semyachkina
- Research and Clinical Institute of Pediatrics named after Yuri Veltischev, Pirogov Russian National Research Medical University, Ministry of Health of the Russian Federation, Moscow, Russia
- *Correspondence: E. Yu Voskoboeva, ; T. M. Bookina, ; A. N. Semyachkina, ; S. V. Mikhaylova, ; N. D. Vashakmadze, ; G. V. Baydakova, ; E. Yu Zakharova, ; S. I. Kutsev,
| | - S. V. Mikhaylova
- Federal State Budgetary Scientific Institution, Research Center for Medical Genetics, Moscow, Russia
- Detached Structural Unit Russian Children’s Clinical Hospital, Clinical Institute for Pediatrics, Pirogov Russian National Research Medical University, Ministry of Health of the Russian Federation Research, Moscow, Russia
- *Correspondence: E. Yu Voskoboeva, ; T. M. Bookina, ; A. N. Semyachkina, ; S. V. Mikhaylova, ; N. D. Vashakmadze, ; G. V. Baydakova, ; E. Yu Zakharova, ; S. I. Kutsev,
| | - N. D. Vashakmadze
- Pediatrics Department, Central Clinical Hospital of the Russian Academy of Sciences, Pirogov Russian National Research Medical University, Moscow, Russia
- *Correspondence: E. Yu Voskoboeva, ; T. M. Bookina, ; A. N. Semyachkina, ; S. V. Mikhaylova, ; N. D. Vashakmadze, ; G. V. Baydakova, ; E. Yu Zakharova, ; S. I. Kutsev,
| | - G. V. Baydakova
- Federal State Budgetary Scientific Institution, Research Center for Medical Genetics, Moscow, Russia
- *Correspondence: E. Yu Voskoboeva, ; T. M. Bookina, ; A. N. Semyachkina, ; S. V. Mikhaylova, ; N. D. Vashakmadze, ; G. V. Baydakova, ; E. Yu Zakharova, ; S. I. Kutsev,
| | - E. Yu Zakharova
- Federal State Budgetary Scientific Institution, Research Center for Medical Genetics, Moscow, Russia
- *Correspondence: E. Yu Voskoboeva, ; T. M. Bookina, ; A. N. Semyachkina, ; S. V. Mikhaylova, ; N. D. Vashakmadze, ; G. V. Baydakova, ; E. Yu Zakharova, ; S. I. Kutsev,
| | - S. I. Kutsev
- Federal State Budgetary Scientific Institution, Research Center for Medical Genetics, Moscow, Russia
- *Correspondence: E. Yu Voskoboeva, ; T. M. Bookina, ; A. N. Semyachkina, ; S. V. Mikhaylova, ; N. D. Vashakmadze, ; G. V. Baydakova, ; E. Yu Zakharova, ; S. I. Kutsev,
| |
Collapse
|
7
|
Contrasting maternal and paternal genetic histories among five ethnic groups from Khyber Pakhtunkhwa, Pakistan. Sci Rep 2022; 12:1027. [PMID: 35046511 PMCID: PMC8770644 DOI: 10.1038/s41598-022-05076-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 12/10/2021] [Indexed: 11/24/2022] Open
Abstract
Northwest Pakistan has served as a point of entry to South Asia for different populations since ancient times. However, relatively little is known about the population genetic history of the people residing within this region. To better understand human dispersal in the region within the broader history of the subcontinent, we analyzed mtDNA diversity in 659 and Y-chromosome diversity in 678 individuals, respectively, from five ethnic groups (Gujars, Jadoons, Syeds, Tanolis and Yousafzais), from Swabi and Buner Districts, Khyber Pakhtunkhwa Province, Pakistan. The mtDNAs of all individuals were subject to control region sequencing and SNP genotyping, while Y-chromosomes were analyzed using 54 SNPs and 19 STR loci. The majority of the mtDNAs belonged to West Eurasian haplogroups, with the rest belonging to either South or East Asian lineages. Four of the five Pakistani populations (Gujars, Jadoons, Syeds, Yousafzais) possessed strong maternal genetic affinities with other Pakistani and Central Asian populations, whereas one (Tanolis) did not. Four haplogroups (R1a, R1b, O3, L) among the 11 Y-chromosome lineages observed among these five ethnic groups contributed substantially to their paternal genetic makeup. Gujars, Syeds and Yousafzais showed strong paternal genetic affinities with other Pakistani and Central Asian populations, whereas Jadoons and Tanolis had close affinities with Turkmen populations from Central Asia and ethnic groups from northeast India. We evaluate these genetic data in the context of historical and archeological evidence to test different hypotheses concerning their origins and biological relationships.
Collapse
|
8
|
Dual origins of the Northwest Chinese Kyrgyz: the admixture of Bronze age Siberian and Medieval Niru'un Mongolian Y chromosomes. J Hum Genet 2021; 67:175-180. [PMID: 34531527 DOI: 10.1038/s10038-021-00979-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 08/31/2021] [Accepted: 09/13/2021] [Indexed: 01/25/2023]
Abstract
The Kyrgyz are a trans-border ethnic group, mainly living in Kyrgyzstan. Previous genetic investigations of Central Asian populations have repeatedly investigated the Central Asian Kyrgyz. However, from the standpoint of human evolution and genetic diversity, Northwest Chinese Kyrgyz is one of the more poorly studied populations. In this study, we analyzed the non-recombining portion of the Y-chromosome from 298 male Kyrgyz samples from Xinjiang Uygur Autonomous Region in northwestern China, using a high-resolution analysis of 108 biallelic markers and 17 or 24 STRs. First, via a Y-SNP-based PCA plot, Northwest Chinese Kyrgyz tended to cluster with other Kyrgyz population and are located in the West Asian and Central Asian group. Second, we found that the Northwest Chinese Kyrgyz display a high proportion of Y-lineage R1a1a1b2a2a-Z2125, related to Bronze Age Siberian, and followed by Y-lineage C2b1a3a1-F3796, related to Medieval Niru'un Mongols, such as Uissun tribe from Kazakhs. In these two dominant lineages, two unique recent descent clusters have been detected via NETWORK analysis, respectively, but they have nearly the same TMRCA ages (about 13th-14th centuries). This finding once again shows that the expansions of Mongol Empire had a striking effect on the Central Asian gene pool.
Collapse
|
9
|
Exchanging fluids The sociocultural implications of microbial, cultural, and ethnic admixture in Latin America. Politics Life Sci 2021; 39:56-86. [PMID: 32697057 DOI: 10.1017/pls.2020.4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Knowledge of evolutionary influences on patterns of human mating, social interactions, and differential health is increasing, yet these insights have rarely been applied to historical analyses of human population dynamics. The genetic and evolutionary forces behind biases in interethnic mating and in the health of individuals of different ethnic groups in Latin America and the Caribbean since the European colonization of America are still largely ignored. We discuss how historical and contemporary sociocultural interactions and practices are strongly influenced by population-level evolutionary forces. Specifically, we discuss the historical implications of functional (de facto) polygyny, sex-biased admixture, and assortative mating in Latin America. We propose that these three evolutionary mechanisms influenced mating patterns, shaping the genetic and cultural landscape across Latin America and the Caribbean. Further, we discuss how genetic differences between the original populations that migrated at different times into Latin America contributed to their accommodation to and survival in the different local ecologies and interethnic interactions. Relevant medical and social implications follow from the genetic and cultural changes reviewed.
Collapse
|
10
|
Zhabagin M, Sabitov Z, Tazhigulova I, Alborova I, Agdzhoyan A, Wei LH, Urasin V, Koshel S, Mustafin K, Akilzhanova A, Li H, Balanovsky O, Balanovska E. Medieval Super-Grandfather founder of Western Kazakh Clans from Haplogroup C2a1a2-M48. J Hum Genet 2021; 66:707-716. [PMID: 33510364 DOI: 10.1038/s10038-021-00901-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 10/09/2020] [Accepted: 11/24/2020] [Indexed: 11/09/2022]
Abstract
Western Kazakhstan is populated by three clans totaling 2 million people. Since the clans are patrilineal, the Y-chromosome is the most informative genetic system for tracing their origin. We genotyped 40 Y-SNP and 17 Y-STR markers in 330 Western Kazakhs. High phylogenetic resolution within haplogroup C2a1a2-M48 was achieved by using additional SNPs. Three lines of evidence indicate that the Alimuly and Baiuly clans (but not the Zhetiru clan) have a common founder placed 700 ± 200 years back by the STR data and 500 ± 200 years back by the sequencing data. This supports traditional genealogy claims about the descent of these clans from Emir Alau, who lived 650 years ago and whose lineage might be carried by two-thirds of Western Kazakhs. There is accumulation of specific haplogroups in the subclans representing other lineages, confirming that the clan structure corresponds with the paternal genetic structure of the steppe population.
Collapse
Affiliation(s)
- Maxat Zhabagin
- National Laboratory Astana, Nazarbayev University, Nur-Sultan, Kazakhstan. .,MOE Key Laboratory of Contemporary Anthropology and B&R International Joint Laboratory for Eurasian Anthropology, School of Life Sciences, Fudan University, Shanghai, China. .,National Center for Biotechnology, Nur-Sultan, Kazakhstan.
| | - Zhaxylyk Sabitov
- L.N. Gumilyov Eurasian National University, Nur-Sultan, Kazakhstan
| | - Inkar Tazhigulova
- Forensic science center of the Ministry of Justice of the Republic of Kazakhstan, Nur-Sultan, Kazakhstan
| | - Irina Alborova
- Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - Anastasiya Agdzhoyan
- Vavilov Institute for General Genetics, Russian Academy of Sciences, Moscow, Russia
| | - Lan-Hai Wei
- MOE Key Laboratory of Contemporary Anthropology and B&R International Joint Laboratory for Eurasian Anthropology, School of Life Sciences, Fudan University, Shanghai, China.,Department of Anthropology and Ethnology, Institute of Anthropology, Xiamen University, Xiamen, China
| | | | - Sergey Koshel
- Faculty of Geography, Lomonosov Moscow State University, Moscow, Russia
| | - Kharis Mustafin
- Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - Ainur Akilzhanova
- National Laboratory Astana, Nazarbayev University, Nur-Sultan, Kazakhstan
| | - Hui Li
- MOE Key Laboratory of Contemporary Anthropology and B&R International Joint Laboratory for Eurasian Anthropology, School of Life Sciences, Fudan University, Shanghai, China
| | - Oleg Balanovsky
- Vavilov Institute for General Genetics, Russian Academy of Sciences, Moscow, Russia.,Biobank of North Eurasia, Moscow, Russia
| | - Elena Balanovska
- Biobank of North Eurasia, Moscow, Russia.,Research Centre for Medical Genetics, Moscow, Russia
| |
Collapse
|
11
|
Liu B, Ma P, Wang C, Yan S, Yao H, Li Y, Xie Y, Meng S, Sun J, Cai Y, Sarengaowa S, Li H, Cheng H, Wei L. Paternal origin of Tungusic‐speaking populations: Insights from the updated phylogenetic tree of Y‐chromosome haplogroup
C2a‐M86. Am J Hum Biol 2020; 33:e23462. [DOI: 10.1002/ajhb.23462] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 05/15/2020] [Accepted: 06/11/2020] [Indexed: 11/10/2022] Open
Affiliation(s)
- Bing‐Li Liu
- Institute of Chinese and Culture Education Studies Huaqiao University Xiamen China
| | - Peng‐Cheng Ma
- School of Life Sciences Jilin University Changchun China
| | - Chi‐Zao Wang
- MOE Key Laboratory of Contemporary Anthropology, School of Life Sciences Fudan University Shanghai China
| | - Shi Yan
- Human Phenome Institute Fudan University Shanghai China
| | - Hong‐Bing Yao
- Key Laboratory of Evidence Science of Gansu Province Gansu University of Political Science and Law Lanzhou China
| | - Yong‐Lan Li
- Laboratory for Human Biology and Human Genetics Institute of Ethnology and Anthropology, School of Ethnology and Anthropology, Inner Mongolia Normal University Hohhot China
| | - Yong‐Mei Xie
- Laboratory for Human Biology and Human Genetics Institute of Ethnology and Anthropology, School of Ethnology and Anthropology, Inner Mongolia Normal University Hohhot China
| | - Song‐Lin Meng
- School of History and Ethnic Culture Hulunbuir University Hulunbuir China
| | - Jin Sun
- Department of Anthropology and Ethnology, Institute of Anthropology Xiamen University Xiamen China
| | - Yan‐Huan Cai
- Department of Anthropology and Ethnology, Institute of Anthropology Xiamen University Xiamen China
| | - Sarengaowa Sarengaowa
- Department of Anthropology and Ethnology, Institute of Anthropology Xiamen University Xiamen China
| | - Hui Li
- MOE Key Laboratory of Contemporary Anthropology, School of Life Sciences Fudan University Shanghai China
- Human Phenome Institute Fudan University Shanghai China
- B&R International Joint Laboratory for Eurasian Anthropology Fudan University Shanghai China
| | - Hui‐Zhen Cheng
- Department of Anthropology and Ethnology, Institute of Anthropology Xiamen University Xiamen China
| | - Lan‐Hai Wei
- Department of Anthropology and Ethnology, Institute of Anthropology Xiamen University Xiamen China
- B&R International Joint Laboratory for Eurasian Anthropology Fudan University Shanghai China
| |
Collapse
|
12
|
Zubair M, Hemphill BE, Schurr TG, Tariq M, Ilyas M, Ahmad H. Mitochondrial DNA diversity in the Khattak and Kheshgi of the Peshawar Valley, Pakistan. Genetica 2020; 148:195-206. [PMID: 32607672 DOI: 10.1007/s10709-020-00095-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Accepted: 05/12/2020] [Indexed: 11/29/2022]
Abstract
The strategic location of Pakistan and its presence at the crossroads of Asia has resulted in it playing a central role in both prehistoric and historic human migratory events, thereby linking and facilitating contacts between the inhabitants of the Middle East, Central Asia, China and South Asia. Despite the importance of this region and its inhabitants for our understanding of modern human origins and population dispersals, the nature of mitochondrial DNA (mtDNA) variation among members of the myriad populations of this area has largely been unexplored. Here, we report mtDNA control region sequences in 58 individuals from the Khattak and the Kheshgi, two major Pakhtun tribes residing within the Peshawar Valley of northwestern Pakistan. The results reveal that these ethnic groups are genetically heterogeneous, having 55.7% West Eurasian, 33.9% South Asian and 10.2% East Asian haplogroups. The genetic diversity observed for the Kheshgi was somewhat higher than that of the Khattak. A multidimensional scaling plot based on haplogroup frequencies for the Khattak, Kheshgi and neighboring populations indicates that the Khattak have close affinities with Baluch, Uzbek and Kazak populations but are only distantly related to the Kheshgi and other Pakistani populations. By contrast, the Kheshgi cluster closely with other Pakhtun or Pathan populations of Pakistan, suggesting a possible common maternal gene pool shared amongst them. These mtDNA data allow us to begin reconstructing the origins of the Khattak and Kheshgi and describe their complex interactions with populations from the surrounding regions.
Collapse
Affiliation(s)
- Muhammad Zubair
- Department of Zoology, Hazara University Mansehra, Mansehra, 21120, Pakistan.,Department of Genetics, Hazara University Mansehra, Mansehra, 21120, Pakistan
| | - Brian E Hemphill
- Department of Anthropology, University of Alaska, Fairbanks, AK, 99775, USA
| | - Theodore G Schurr
- Department of Anthropology, University of Pennsylvania, Philadelphia, 19104, USA
| | - Muhammad Tariq
- Centre for Omic Sciences, Islamia College Peshawar, Peshawar, 25120, Pakistan
| | - Muhammad Ilyas
- Centre for Omic Sciences, Islamia College Peshawar, Peshawar, 25120, Pakistan
| | - Habib Ahmad
- Department of Genetics, Hazara University Mansehra, Mansehra, 21120, Pakistan. .,Centre for Omic Sciences, Islamia College Peshawar, Peshawar, 25120, Pakistan.
| |
Collapse
|
13
|
Joint Genetic Analyses of Mitochondrial and Y-Chromosome Molecular Markers for a Population from Northwest China. Genes (Basel) 2020; 11:genes11050564. [PMID: 32443545 PMCID: PMC7290686 DOI: 10.3390/genes11050564] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 05/09/2020] [Accepted: 05/11/2020] [Indexed: 12/27/2022] Open
Abstract
The genetic markers on mitochondria DNA (mtDNA) and Y-chromosome can be applied as a powerful tool in population genetics. We present a study to reveal the genetic background of Kyrgyz group, a Chinese ethnic group living in northwest China, and genetic polymorphisms of 60 loci on maternal inherited mtDNA and 24 loci on paternal inherited Y-chromosome short tandem repeats (Y-STRs) were investigated. The relationship between the two systems was tested, and the result indicated that they were statistically independent from each other. The genetic distances between Kyrgyz group and 11 reference populations for mtDNA, and 13 reference populations for Y-STRs were also calculated, respectively. The present results demonstrated that the Kyrgyz group was genetically closer to East Asian populations than European populations based on the mtDNA loci but the other way around for the Y-STRs. The genetic analyses could largely strengthen the understanding for the genetic background of the Kyrgyz group.
Collapse
|
14
|
Y-chromosome evidence confirmed the Kerei-Abakh origin of Aksay Kazakhs. J Hum Genet 2020; 65:797-803. [PMID: 32313196 DOI: 10.1038/s10038-020-0759-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 03/14/2020] [Accepted: 04/02/2020] [Indexed: 11/08/2022]
Abstract
Aksay Kazakhs are the easternmost branch of Kazakhs, residing in Jiuquan city, the forefront of the ancient Silk Road. However, the genetic diversity of Aksay Kazakhs and its relationships with other Kazakhs still lack attention. To clarify this issue, we analyzed the non-recombining portion of the Y-chromosome from 93 Aksay Kazakhs samples, using a high-resolution analysis of 106 biallelic markers and 17 STRs. The lowest haplogroup diversity (0.38) was observed in Aksay Kazakhs among all studied Kazakh populations. The social and cultural traditions of the Kazakhs shaped their current pattern of genetic variation. Aksay Kazakhs tended to migrate with clans and had limited paternal admixture with neighboring populations. Aksay Kazakhs had the highest frequency (80%) of haplogroup C2b1a3a1-F3796 (previous C3*-Star Cluster) among the investigated Eurasian steppe populations, which was now seen as the genetic marker of Kerei clan. Furthermore, NETWORK analysis indicated that Aksay Kazakhs originated from sub-clan Kerei-Abakh in Kazakhstan with DYS448 = 23. TMRCA estimates of three recent descent clusters detected in C2*-M217 (xM48) network, one of which incorporate nearly all of the C2b1a3a1-F3796 Aksay Kazakhs samples, gave the age range of 976-1405 YA for DC1, 1059-1314 YA for DC2, and 1139-1317 YA for DC3, respectively; this is coherent with the 7th to the 11th centuries Altaic-speaking pastoral nomadic population expansion.
Collapse
|
15
|
Farhang S, Faramarzi E, Amini Sani N, Poustchi H, Ostadrahimi A, Alizadeh BZ, Somi MH. Cohort Profile: The AZAR cohort, a health-oriented research model in areas of major environmental change in Central Asia. Int J Epidemiol 2020; 48:382-382h. [PMID: 30445493 DOI: 10.1093/ije/dyy215] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/14/2018] [Indexed: 12/27/2022] Open
Affiliation(s)
- Sara Farhang
- Liver and Gastrointestinal Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,University Medical Center Groningen, University Center of Psychiatry, Rob Giel Research Center, Groningen, The Netherlands.,Research Center of Psychiatry and Behavioral Sciences
| | - Elnaz Faramarzi
- Liver and Gastrointestinal Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Nayyere Amini Sani
- Department of Statistics and Epidemiology, Tabriz University of Medical Sciences, Iran
| | - Hossein Poustchi
- Liver and Gastrointestinal Diseases Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Alireza Ostadrahimi
- Nutrition Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Behrooz Z Alizadeh
- Liver and Gastrointestinal Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Epidemiology, University Medical Center Groningen, Groningen, The Netherlands
| | - Mohammad H Somi
- Liver and Gastrointestinal Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
16
|
Xie T, Hu L, Guo YX, Li YC, Chen F, Zhu BF. Genetic polymorphism analysis of mitochondrial DNA from Chinese Xinjiang Kazak ethnic group by a novel mitochondrial DNA genotyping panel. Mol Biol Rep 2018; 46:17-25. [DOI: 10.1007/s11033-018-4375-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Accepted: 09/10/2018] [Indexed: 11/24/2022]
|
17
|
Juhász Z, Dudás E, Pamjav H. A new self-learning computational method for footprints of early human migration processes. Mol Genet Genomics 2018; 293:1579-1594. [PMID: 29974304 DOI: 10.1007/s00438-018-1469-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Accepted: 06/28/2018] [Indexed: 11/25/2022]
Abstract
We present a new self-learning computational method searching for footprints of early migration processes determining the genetic compositions of recent human populations. The data being analysed are 26- and 18-dimensional mitochondrial and Y-chromosomal haplogroup distributions representing 50 recent and 34 ancient populations in Eurasia and America. The algorithms search for associations of haplogroups jointly propagating in a significant subset of these populations. Joint propagations of Hgs are detected directly by similar ranking lists of populations derived from Hg frequencies of the 50 Hg distributions. The method provides us the most characteristic associations of mitochondrial and Y-chromosomal haplogroups, and the set of populations where these associations propagate jointly. In addition, the typical ranking lists characterizing these Hg associations show the geographical distribution, the probable place of origin and the paths of their protection. Comparison to ancient data verifies that these recent geographical distributions refer to the most important prehistoric migrations supported by archaeological evidences.
Collapse
Affiliation(s)
- Z Juhász
- Centre for Energy Research, Institute of Technical Physics and Materials Science, PO Box. 216, Budapest, 1536, Hungary
| | - E Dudás
- National Centre of Experts and Research, Institute of Forensic Genetics, Budapest, Hungary
| | - Horolma Pamjav
- National Centre of Experts and Research, Institute of Forensic Genetics, Budapest, Hungary.
| |
Collapse
|
18
|
Huang YZ, Pamjav H, Flegontov P, Stenzl V, Wen SQ, Tong XZ, Wang CC, Wang LX, Wei LH, Gao JY, Jin L, Li H. Dispersals of the Siberian Y-chromosome haplogroup Q in Eurasia. Mol Genet Genomics 2018; 293:107-117. [PMID: 28884289 PMCID: PMC5846874 DOI: 10.1007/s00438-017-1363-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Accepted: 08/27/2017] [Indexed: 12/17/2022]
Abstract
The human Y-chromosome has proven to be a powerful tool for tracing the paternal history of human populations and genealogical ancestors. The human Y-chromosome haplogroup Q is the most frequent haplogroup in the Americas. Previous studies have traced the origin of haplogroup Q to the region around Central Asia and Southern Siberia. Although the diversity of haplogroup Q in the Americas has been studied in detail, investigations on the diffusion of haplogroup Q in Eurasia and Africa are still limited. In this study, we collected 39 samples from China and Russia, investigated 432 samples from previous studies of haplogroup Q, and analyzed the single nucleotide polymorphism (SNP) subclades Q1a1a1-M120, Q1a2a1-L54, Q1a1b-M25, Q1a2-M346, Q1a2a1a2-L804, Q1a2b2-F1161, Q1b1a-M378, and Q1b1a1-L245. Through NETWORK and BATWING analyses, we found that the subclades of haplogroup Q continued to disperse from Central Asia and Southern Siberia during the past 10,000 years. Apart from its migration through the Beringia to the Americas, haplogroup Q also moved from Asia to the south and to the west during the Neolithic period, and subsequently to the whole of Eurasia and part of Africa.
Collapse
Affiliation(s)
- Yun-Zhi Huang
- Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Horolma Pamjav
- National Center of Forensic Experts and Research, Budapest, 1087, Hungary
| | - Pavel Flegontov
- Department of Biology and Ecology, Faculty of Science, University of Ostrava, 71000, Ostrava, Czech Republic
- A.A. Kharkevich Institute for Information Transmission Problems, Russian Academy of Sciences, Moscow, 127051, Russian Federation
| | - Vlastimil Stenzl
- Institute of Criminalistics, Police of the Czech Republic, 17089, Prague, Czech Republic
| | - Shao-Qing Wen
- Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Xin-Zhu Tong
- Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Chuan-Chao Wang
- Department of Anthropology and Ethnology, Xiamen University, Xiamen, 361005, China
| | - Ling-Xiang Wang
- Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Lan-Hai Wei
- Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai, 200438, China
- Institut National des Langues et Civilisations Orientales, 75013, Paris, France
| | - Jing-Yi Gao
- Faculty of Arts and Humanities, University of Tartu, 50090, Tartu, Estonia
- Faculty of Central European Studies, Beijing International Studies University, Beijing, 100024, China
| | - Li Jin
- Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Hui Li
- Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai, 200438, China.
| |
Collapse
|
19
|
Huang YZ, Wei LH, Yan S, Wen SQ, Wang CC, Yang YJ, Wang LX, Lu Y, Zhang C, Xu SH, Yao DL, Jin L, Li H. Whole sequence analysis indicates a recent southern origin of Mongolian Y-chromosome C2c1a1a1-M407. Mol Genet Genomics 2017; 293:657-663. [DOI: 10.1007/s00438-017-1403-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Accepted: 12/04/2017] [Indexed: 10/18/2022]
|
20
|
A glimpse at the intricate mosaic of ethnicities from Mesopotamia: Paternal lineages of the Northern Iraqi Arabs, Kurds, Syriacs, Turkmens and Yazidis. PLoS One 2017; 12:e0187408. [PMID: 29099847 PMCID: PMC5669434 DOI: 10.1371/journal.pone.0187408] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Accepted: 10/09/2017] [Indexed: 01/22/2023] Open
Abstract
Widely considered as one of the cradles of human civilization, Mesopotamia is largely situated in the Republic of Iraq, which is also the birthplace of the Sumerian, Akkadian, Assyrian and Babylonian civilizations. These lands were subsequently ruled by the Persians, Greeks, Romans, Arabs, Mongolians, Ottomans and finally British prior to the independence. As a direct consequence of this rich history, the contemporary Iraqi population comprises a true mosaic of different ethnicities, which includes Arabs, Kurds, Turkmens, Assyrians, and Yazidis among others. As such, the genetics of the contemporary Iraqi populations are of anthropological and forensic interest. In an effort to contribute to a better understanding of the genetic basis of this ethnic diversity, a total of 500 samples were collected from Northern Iraqi volunteers belonging to five major ethnic groups, namely: Arabs (n = 102), Kurds (n = 104), Turkmens (n = 102), Yazidis (n = 106) and Syriacs (n = 86). 17-loci Y-STR analyses were carried out using the AmpFlSTR Yfiler system, and subsequently in silico haplogroup assignments were made to gain insights from a molecular anthropology perspective. Systematic comparisons of the paternal lineages of these five Northern Iraqi ethnic groups, not only among themselves but also in the context of the larger genetic landscape of the Near East and beyond, were then made through the use of two different genetic distance metric measures and the associated data visualization methods. Taken together, results from the current study suggested the presence of intricate Y-chromosomal lineage patterns among the five ethic groups analyzed, wherein both interconnectivity and independent microvariation were observed in parallel, albeit in a differential manner. Notably, the novel Y-STR data on Turkmens, Syriacs and Yazidis from Northern Iraq constitute the first of its kind in the literature. Data presented herein is expected to contribute to further population and forensic investigations in Northern Iraq in particular and the Near East in general.
Collapse
|
21
|
The Connection of the Genetic, Cultural and Geographic Landscapes of Transoxiana. Sci Rep 2017; 7:3085. [PMID: 28596519 PMCID: PMC5465200 DOI: 10.1038/s41598-017-03176-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Accepted: 04/26/2017] [Indexed: 11/09/2022] Open
Abstract
We have analyzed Y-chromosomal variation in populations from Transoxiana, a historical region covering the southwestern part of Central Asia. We studied 780 samples from 10 regional populations of Kazakhs, Uzbeks, Turkmens, Dungans, and Karakalpaks using 35 SNP and 17 STR markers. Analysis of haplogroup frequencies using multidimensional scaling and principal component plots, supported by an analysis of molecular variance, showed that the geographic landscape of Transoxiana, despite its distinctiveness and diversity (deserts, fertile river basins, foothills and plains) had no strong influence on the genetic landscape. The main factor structuring the gene pool was the mode of subsistence: settled agriculture or nomadic pastoralism. Investigation of STR-based clusters of haplotypes and their ages revealed that cultural and demic expansions of Transoxiana were not closely connected with each other. The Arab cultural expansion introduced Islam to the region but did not leave a significant mark on the pool of paternal lineages. The Mongol expansion, in contrast, had enormous demic success, but did not impact cultural elements like language and religion. The genealogy of Muslim missionaries within the settled agricultural communities of Transoxiana was based on spiritual succession passed from teacher to disciple. However, among Transoxianan nomads, spiritual and biological succession became merged.
Collapse
|
22
|
Bulbul O, Filoglu G, Zorlu T, Altuncul H, Freire-Aradas A, Söchtig J, Ruiz Y, Klintschar M, Triki-Fendri S, Rebai A, Phillips C, Lareu MV, Carracedo Á, Schneider PM. Inference of biogeographical ancestry across central regions of Eurasia. Int J Legal Med 2015; 130:73-9. [DOI: 10.1007/s00414-015-1246-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Accepted: 08/10/2015] [Indexed: 11/28/2022]
|
23
|
mtDNA analysis of 174 Eurasian populations using a new iterative rank correlation method. Mol Genet Genomics 2015; 291:493-509. [PMID: 26142878 DOI: 10.1007/s00438-015-1084-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Accepted: 06/19/2015] [Indexed: 10/23/2022]
Abstract
In this study, we analyse 27-dimensional mtDNA haplogroup distributions of 174 Eurasian, North-African and American populations, including numerous ancient data as well. The main contribution of this work was the description of the haplogroup distribution of recent and ancient populations as compounds of certain hypothetic ancient core populations immediately or indirectly determining the migration processes in Eurasia for a long time. To identify these core populations, we developed a new iterative algorithm determining clusters of the 27 mtDNA haplogroups studied having strong rank correlation among each other within a definite subset of the populations. Based on this study, the current Eurasian populations can be considered as compounds of three early core populations regarding to maternal lineages. We wanted to show that a simultaneous analysis of ancient and recent data using a new iterative rank correlation algorithm and the weighted SOC learning technique may reveal the most important and deterministic migration processes in the past. This technique allowed us to determine geographically, historically and linguistically well-interpretable clusters of our dataset having a very specific, hardly classifiable structure. The method was validated using a 2-dimensional stepping stone model.
Collapse
|
24
|
Balaresque P, Poulet N, Cussat-Blanc S, Gerard P, Quintana-Murci L, Heyer E, Jobling MA. Y-chromosome descent clusters and male differential reproductive success: young lineage expansions dominate Asian pastoral nomadic populations. Eur J Hum Genet 2015; 23:1413-22. [PMID: 25585703 DOI: 10.1038/ejhg.2014.285] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Revised: 11/25/2014] [Accepted: 11/28/2014] [Indexed: 11/09/2022] Open
Abstract
High-frequency microsatellite haplotypes of the male-specific Y-chromosome can signal past episodes of high reproductive success of particular men and their patrilineal descendants. Previously, two examples of such successful Y-lineages have been described in Asia, both associated with Altaic-speaking pastoral nomadic societies, and putatively linked to dynasties descending, respectively, from Genghis Khan and Giocangga. Here we surveyed a total of 5321 Y-chromosomes from 127 Asian populations, including novel Y-SNP and microsatellite data on 461 Central Asian males, to ask whether additional lineage expansions could be identified. Based on the most frequent eight-microsatellite haplotypes, we objectively defined 11 descent clusters (DCs), each within a specific haplogroup, that represent likely past instances of high male reproductive success, including the two previously identified cases. Analysis of the geographical patterns and ages of these DCs and their associated cultural characteristics showed that the most successful lineages are found both among sedentary agriculturalists and pastoral nomads, and expanded between 2100 BCE and 1100 CE. However, those with recent origins in the historical period are almost exclusively found in Altaic-speaking pastoral nomadic populations, which may reflect a shift in political organisation in pastoralist economies and a greater ease of transmission of Y-chromosomes through time and space facilitated by the use of horses.
Collapse
Affiliation(s)
- Patricia Balaresque
- UMR 5288, Faculté de Médecine Purpan, Laboratoire d'Anthropologie Moléculaire et Imagerie de Synthèse (AMIS), CNRS/Université Paul Sabatier, Toulouse, France.,Department of Genetics, University of Leicester, Leicester, UK
| | - Nicolas Poulet
- Onema, Direction de l'Action Scientifique et Technique, Toulouse, France
| | | | - Patrice Gerard
- UMR 5288, Faculté de Médecine Purpan, Laboratoire d'Anthropologie Moléculaire et Imagerie de Synthèse (AMIS), CNRS/Université Paul Sabatier, Toulouse, France
| | - Lluis Quintana-Murci
- CNRS URA3012, Unit of Human Evolutionary Genetics, Institut Pasteur, Paris, France
| | - Evelyne Heyer
- Eco-Anthropologie et Ethnobiologie, UMR 7206 CNRS, MNHN, Université Paris Diderot, Sorbonne Paris Cité, Sorbonne Universités, Paris, France
| | - Mark A Jobling
- Department of Genetics, University of Leicester, Leicester, UK
| |
Collapse
|
25
|
Kraaijenbrink T, van der Gaag KJ, Zuniga SB, Xue Y, Carvalho-Silva DR, Tyler-Smith C, Jobling MA, Parkin EJ, Su B, Shi H, Xiao CJ, Tang WR, Kashyap VK, Trivedi R, Sitalaximi T, Banerjee J, Gaselô KTO, Tuladhar NM, Opgenort JRML, van Driem GL, Barbujani G, de Knijff P. A linguistically informed autosomal STR survey of human populations residing in the greater Himalayan region. PLoS One 2014; 9:e91534. [PMID: 24614536 PMCID: PMC3948894 DOI: 10.1371/journal.pone.0091534] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2012] [Accepted: 02/13/2014] [Indexed: 11/18/2022] Open
Abstract
The greater Himalayan region demarcates two of the most prominent linguistic phyla in Asia: Tibeto-Burman and Indo-European. Previous genetic surveys, mainly using Y-chromosome polymorphisms and/or mitochondrial DNA polymorphisms suggested a substantially reduced geneflow between populations belonging to these two phyla. These studies, however, have mainly focussed on populations residing far to the north and/or south of this mountain range, and have not been able to study geneflow patterns within the greater Himalayan region itself. We now report a detailed, linguistically informed, genetic survey of Tibeto-Burman and Indo-European speakers from the Himalayan countries Nepal and Bhutan based on autosomal microsatellite markers and compare these populations with surrounding regions. The genetic differentiation between populations within the Himalayas seems to be much higher than between populations in the neighbouring countries. We also observe a remarkable genetic differentiation between the Tibeto-Burman speaking populations on the one hand and Indo-European speaking populations on the other, suggesting that language and geography have played an equally large role in defining the genetic composition of present-day populations within the Himalayas.
Collapse
Affiliation(s)
- Thirsa Kraaijenbrink
- MGC Department of Human and Clinical Genetics, Leiden University Medical Centre, Leiden, the Netherlands
| | - Kristiaan J. van der Gaag
- MGC Department of Human and Clinical Genetics, Leiden University Medical Centre, Leiden, the Netherlands
| | - Sofia B. Zuniga
- MGC Department of Human and Clinical Genetics, Leiden University Medical Centre, Leiden, the Netherlands
| | - Yali Xue
- The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, United Kingdom
| | | | - Chris Tyler-Smith
- The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, United Kingdom
| | - Mark A. Jobling
- Department of Genetics, University of Leicester, Leicester, United Kingdom
| | - Emma J. Parkin
- Department of Genetics, University of Leicester, Leicester, United Kingdom
| | - Bing Su
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology and Kunming Primate Research Centre, Chinese Academy of Sciences, Kunming, Yunnan, PR China
| | - Hong Shi
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology and Kunming Primate Research Centre, Chinese Academy of Sciences, Kunming, Yunnan, PR China
| | - Chun-Jie Xiao
- Human Genetics Centre, Yunnan University, Kunming, Yunnan, PR China
| | - Wen-Ru Tang
- Human Genetics Centre, Yunnan University, Kunming, Yunnan, PR China
| | - V. K. Kashyap
- National DNA Analysis Center, Central Forensic Science Laboratory, Kolkata, India
| | - R. Trivedi
- National DNA Analysis Center, Central Forensic Science Laboratory, Kolkata, India
| | - T. Sitalaximi
- National DNA Analysis Center, Central Forensic Science Laboratory, Kolkata, India
| | - Jheelam Banerjee
- National DNA Analysis Center, Central Forensic Science Laboratory, Kolkata, India
| | - Karma Tshering of Gaselô
- Himalayan Languages Project, Institut für Sprachwissenschaft, University of Bern, Bern, Switzerland
| | - Nirmal M. Tuladhar
- Centre for Nepal and Asian Studies, Tribhuvan University, Kirtipur, Nepal
| | | | - George L. van Driem
- Himalayan Languages Project, Institut für Sprachwissenschaft, University of Bern, Bern, Switzerland
| | - Guido Barbujani
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Peter de Knijff
- MGC Department of Human and Clinical Genetics, Leiden University Medical Centre, Leiden, the Netherlands
- * E-mail: (P. de Knijff)
| |
Collapse
|
26
|
Tateno Y, Komiyama T, Katoh T, Munkhbat B, Oka A, Haida Y, Kobayashi H, Tamiya G, Inoko H. Divergence of East Asians and Europeans estimated using male- and female-specific genetic markers. Genome Biol Evol 2014; 6:466-73. [PMID: 24589501 PMCID: PMC3971580 DOI: 10.1093/gbe/evu027] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
To study the male and female lineages of East Asian and European humans, we have sequenced 25 short tandem repeat markers on 453 Y-chromosomes and collected sequences of 72 complete mitochondrial genomes to construct independent phylogenetic trees for male and female lineages. The results indicate that East Asian individuals fall into two clades, one that includes East Asian individuals only and a second that contains East Asian and European individuals. Surprisingly, the European individuals did not form an independent clade, but branched within in the East Asians. We then estimated the divergence time of the root of the European clade as ∼41,000 years ago. These data indicate that, contrary to traditional views, Europeans diverged from East Asians around that time. We also address the origin of the Ainu lineage in northern Japan.
Collapse
Affiliation(s)
- Yoshio Tateno
- School of New Biology, Daegu Gyoungbuk Institute of Science and Technology, Daegu, Republic of Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
SCHMIDT RYANW, EVTEEV ANDREJA. Iron Age nomads of southern Siberia in craniofacial perspective. ANTHROPOL SCI 2014. [DOI: 10.1537/ase.140724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Affiliation(s)
- RYAN W. SCHMIDT
- Kitasato University, School of Medicine, Department of Anatomy, Sagamihara
- University of Montana, Department of Anthropology, Missoula
| | - ANDREJ A. EVTEEV
- Anuchin Research Institute and Museum of Anthropology, Lomonosov Moscow State University, Moscow
| |
Collapse
|
28
|
Zhang F, Chen R, Liu D, Yao X, Li G, Jin Y, Yu C, Li Y, Coin LJM. YHap: a population model for probabilistic assignment of Y haplogroups from re-sequencing data. BMC Bioinformatics 2013; 14:331. [PMID: 24252171 PMCID: PMC4225519 DOI: 10.1186/1471-2105-14-331] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2013] [Accepted: 11/12/2013] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Y haplogroup analyses are an important component of genealogical reconstruction, population genetic analyses, medical genetics and forensics. These fields are increasingly moving towards use of low-coverage, high throughput sequencing. While there have been methods recently proposed for assignment of Y haplogroups on the basis of high-coverage sequence data, assignment on the basis of low-coverage data remains challenging. RESULTS We developed a new algorithm, YHap, which uses an imputation framework to jointly predict Y chromosome genotypes and assign Y haplogroups using low coverage population sequence data. We use data from the 1000 genomes project to demonstrate that YHap provides accurate Y haplogroup assignment with less than 2x coverage. CONCLUSIONS Borrowing information across multiple samples within a population using an imputation framework enables accurate Y haplogroup assignment.
Collapse
|
29
|
Di Cristofaro J, Pennarun E, Mazières S, Myres NM, Lin AA, Temori SA, Metspalu M, Metspalu E, Witzel M, King RJ, Underhill PA, Villems R, Chiaroni J. Afghan Hindu Kush: where Eurasian sub-continent gene flows converge. PLoS One 2013; 8:e76748. [PMID: 24204668 PMCID: PMC3799995 DOI: 10.1371/journal.pone.0076748] [Citation(s) in RCA: 81] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2013] [Accepted: 08/29/2013] [Indexed: 01/09/2023] Open
Abstract
Despite being located at the crossroads of Asia, genetics of the Afghanistan populations have been largely overlooked. It is currently inhabited by five major ethnic populations: Pashtun, Tajik, Hazara, Uzbek and Turkmen. Here we present autosomal from a subset of our samples, mitochondrial and Y- chromosome data from over 500 Afghan samples among these 5 ethnic groups. This Afghan data was supplemented with the same Y-chromosome analyses of samples from Iran, Kyrgyzstan, Mongolia and updated Pakistani samples (HGDP-CEPH). The data presented here was integrated into existing knowledge of pan-Eurasian genetic diversity. The pattern of genetic variation, revealed by structure-like and Principal Component analyses and Analysis of Molecular Variance indicates that the people of Afghanistan are made up of a mosaic of components representing various geographic regions of Eurasian ancestry. The absence of a major Central Asian-specific component indicates that the Hindu Kush, like the gene pool of Central Asian populations in general, is a confluence of gene flows rather than a source of distinctly autochthonous populations that have arisen in situ: a conclusion that is reinforced by the phylogeography of both haploid loci.
Collapse
Affiliation(s)
| | - Erwan Pennarun
- Estonian Biocentre and Department of Evolutionary Biology, University of Tartu, Tartu, Estonia
| | - Stéphane Mazières
- Aix Marseille Université, ADES UMR7268, CNRS, EFS-AM, Marseille, France
| | - Natalie M. Myres
- Sorenson Molecular Genealogy Foundation, Salt Lake City, Utah, United States of America
| | - Alice A. Lin
- Department of Psychiatry, Stanford University School of Medicine, Stanford, California, United States of America
| | - Shah Aga Temori
- Department of Biochemistry, Kabul Medical University, Kabul, Afghanistan
| | - Mait Metspalu
- Estonian Biocentre and Department of Evolutionary Biology, University of Tartu, Tartu, Estonia
| | - Ene Metspalu
- Estonian Biocentre and Department of Evolutionary Biology, University of Tartu, Tartu, Estonia
| | - Michael Witzel
- Department of South Asian Studies, Harvard University. Cambridge, Massachusetts, United States of America
| | - Roy J. King
- Department of Psychiatry, Stanford University School of Medicine, Stanford, California, United States of America
| | - Peter A. Underhill
- Department of Genetics, Stanford University School of Medicine, Stanford, California, United States of America
| | - Richard Villems
- Estonian Biocentre and Department of Evolutionary Biology, University of Tartu, Tartu, Estonia
- Estonian Academy of Sciences, Tallinn, Estonia
| | - Jacques Chiaroni
- Aix Marseille Université, ADES UMR7268, CNRS, EFS-AM, Marseille, France
- * E-mail:
| |
Collapse
|
30
|
Y-chromosome diversity in the Kalmyks at the ethnical and tribal levels. J Hum Genet 2013; 58:804-11. [DOI: 10.1038/jhg.2013.108] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2013] [Revised: 09/16/2013] [Accepted: 09/27/2013] [Indexed: 01/15/2023]
|
31
|
Margaryan A, Khachatryan Z, Khudoyan A, Andonian L, Yepiskoposyan L. Assessment of patrilineal gene pool of the Iranian Azeris. RUSS J GENET+ 2013. [DOI: 10.1134/s1022795413100050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
32
|
Indigenous and foreign Y-chromosomes characterize the Lingayat and Vokkaliga populations of Southwest India. Gene 2013; 526:96-106. [DOI: 10.1016/j.gene.2013.04.074] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2013] [Revised: 04/25/2013] [Accepted: 04/26/2013] [Indexed: 11/21/2022]
|
33
|
Eurasiaplex: A forensic SNP assay for differentiating European and South Asian ancestries. Forensic Sci Int Genet 2013; 7:359-66. [DOI: 10.1016/j.fsigen.2013.02.010] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2012] [Revised: 02/17/2013] [Accepted: 02/23/2013] [Indexed: 01/13/2023]
|
34
|
Gubina MA, Damba LD, Babenko VN, Romaschenko AG, Voevoda MI. Haplotype diversity in mtDNA and Y-chromosome in populations of Altai-Sayan region. RUSS J GENET+ 2013. [DOI: 10.1134/s1022795412120034] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
35
|
Pamjav H, Fehér T, Németh E, Pádár Z. Brief communication: New Y-chromosome binary markers improve phylogenetic resolution within haplogroup R1a1. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2012; 149:611-5. [DOI: 10.1002/ajpa.22167] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2012] [Accepted: 09/05/2012] [Indexed: 11/07/2022]
|
36
|
Malyarchuk BA, Derenko M, Denisova G. On the Y-chromosome haplogroup C3c classification. J Hum Genet 2012; 57:685-6. [PMID: 22810113 DOI: 10.1038/jhg.2012.93] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
As there are ambiguities in classification of the Y-chromosome haplogroup C3c, relatively frequent in populations of Northern Asia, we analyzed all three haplogroup-defining markers M48, M77 and M86 in C3-M217-individuals from Siberia, Eastern Asia and Eastern Europe. We have found that haplogroup C3c is characterized by the derived state at M48, whereas mutations at both M77 and M86 define subhaplogroup C3c1. The branch defined by M48 alone would belong to subhaplogroup C3c*, characteristic for some populations of Central and Eastern Siberia, such as Koryaks, Evens, Evenks and Yukaghirs. Subhaplogroup C3c* individuals could be considered as remnants of the Neolithic population of Siberia, based on the age of C3c*-short tandem repeat variation amounting to 4.5 ± 2.4 thousand years.
Collapse
Affiliation(s)
- Boris A Malyarchuk
- Genetics Laboratory, Institute of Biological Problems of the North, Russian Academy of Sciences, Magadan, Russia.
| | | | | |
Collapse
|
37
|
Hodoğlugil U, Mahley RW. Turkish population structure and genetic ancestry reveal relatedness among Eurasian populations. Ann Hum Genet 2012; 76:128-41. [PMID: 22332727 DOI: 10.1111/j.1469-1809.2011.00701.x] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Turkey has experienced major population movements. Population structure and genetic relatedness of samples from three regions of Turkey, using over 500,000 SNP genotypes, were compared together with Human Genome Diversity Panel (HGDP) data. To obtain a more representative sampling from Central Asia, Kyrgyz samples (Bishkek, Kyrgyzstan) were genotyped and analysed. Principal component (PC) analysis reveals a significant overlap between Turks and Middle Easterners and a relationship with Europeans and South and Central Asians; however, the Turkish genetic structure is unique. FRAPPE, STRUCTURE, and phylogenetic analyses support the PC analysis depending upon the number of parental ancestry components chosen. For example, supervised STRUCTURE (K=3) illustrates a genetic ancestry for the Turks of 45% Middle Eastern (95% CI, 42-49), 40% European (95% CI, 36-44) and 15% Central Asian (95% CI, 13-16), whereas at K=4 the genetic ancestry of the Turks was 38% European (95% CI, 35-42), 35% Middle Eastern (95% CI, 33-38), 18% South Asian (95% CI, 16-19) and 9% Central Asian (95% CI, 7-11). PC analysis and FRAPPE/STRUCTURE results from three regions in Turkey (Aydin, Istanbul and Kayseri) were superimposed, without clear subpopulation structure, suggesting sample homogeneity. Thus, this study demonstrates admixture of Turkish people reflecting the population migration patterns.
Collapse
Affiliation(s)
- Uğur Hodoğlugil
- Gladstone Institute of Cardiovascular Disease, San Francisco, CA 94158, USA
| | | |
Collapse
|
38
|
Haber M, Platt DE, Ashrafian Bonab M, Youhanna SC, Soria-Hernanz DF, Martínez-Cruz B, Douaihy B, Ghassibe-Sabbagh M, Rafatpanah H, Ghanbari M, Whale J, Balanovsky O, Wells RS, Comas D, Tyler-Smith C, Zalloua PA. Afghanistan's ethnic groups share a Y-chromosomal heritage structured by historical events. PLoS One 2012; 7:e34288. [PMID: 22470552 PMCID: PMC3314501 DOI: 10.1371/journal.pone.0034288] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2011] [Accepted: 02/25/2012] [Indexed: 11/24/2022] Open
Abstract
Afghanistan has held a strategic position throughout history. It has been inhabited since the Paleolithic and later became a crossroad for expanding civilizations and empires. Afghanistan's location, history, and diverse ethnic groups present a unique opportunity to explore how nations and ethnic groups emerged, and how major cultural evolutions and technological developments in human history have influenced modern population structures. In this study we have analyzed, for the first time, the four major ethnic groups in present-day Afghanistan: Hazara, Pashtun, Tajik, and Uzbek, using 52 binary markers and 19 short tandem repeats on the non-recombinant segment of the Y-chromosome. A total of 204 Afghan samples were investigated along with more than 8,500 samples from surrounding populations important to Afghanistan's history through migrations and conquests, including Iranians, Greeks, Indians, Middle Easterners, East Europeans, and East Asians. Our results suggest that all current Afghans largely share a heritage derived from a common unstructured ancestral population that could have emerged during the Neolithic revolution and the formation of the first farming communities. Our results also indicate that inter-Afghan differentiation started during the Bronze Age, probably driven by the formation of the first civilizations in the region. Later migrations and invasions into the region have been assimilated differentially among the ethnic groups, increasing inter-population genetic differences, and giving the Afghans a unique genetic diversity in Central Asia.
Collapse
Affiliation(s)
- Marc Haber
- The Lebanese American University, Chouran, Beirut, Lebanon
- Evolutionary Biology Institute, Pompeu Fabra University, Barcelona, Spain
| | - Daniel E. Platt
- Bioinformatics and Pattern Discovery, IBM T. J. Watson Research Centre, Yorktown Heights, New York, United States of America
| | - Maziar Ashrafian Bonab
- Biological Sciences, School of Biological Sciences, University of Portsmouth, Portsmouth, United Kingdom
| | | | - David F. Soria-Hernanz
- Evolutionary Biology Institute, Pompeu Fabra University, Barcelona, Spain
- The Genographic Project, National Geographic Society, Washington, D.C., United States of America
| | | | | | | | | | | | - John Whale
- Biological Sciences, School of Biological Sciences, University of Portsmouth, Portsmouth, United Kingdom
| | - Oleg Balanovsky
- Research Centre for Medical Genetics, Russian Academy of Medical Sciences, Moscow, Russia
| | - R. Spencer Wells
- The Genographic Project, National Geographic Society, Washington, D.C., United States of America
| | - David Comas
- Evolutionary Biology Institute, Pompeu Fabra University, Barcelona, Spain
| | - Chris Tyler-Smith
- Wellcome Trust Genome Campus, The Wellcome Trust Sanger Institute, Hinxton, Cambridgeshire, United Kingdom
| | - Pierre A. Zalloua
- The Lebanese American University, Chouran, Beirut, Lebanon
- Harvard School of Public Health, Harvard University, Boston, Massachusetts, United States of America
- * E-mail:
| | | |
Collapse
|
39
|
Abilev S, Malyarchuk B, Derenko M, Wozniak M, Grzybowski T, Zakharov I. The Y-chromosome C3* Star-Cluster Attributed to Genghis Khan's Descendants is Present at High Frequency in the Kerey Clan from Kazakhstan. Hum Biol 2012; 84:79-89. [DOI: 10.3378/027.084.0106] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
40
|
Balanovsky O, Dibirova K, Dybo A, Mudrak O, Frolova S, Pocheshkhova E, Haber M, Platt D, Schurr T, Haak W, Kuznetsova M, Radzhabov M, Balaganskaya O, Romanov A, Zakharova T, Soria Hernanz DF, Zalloua P, Koshel S, Ruhlen M, Renfrew C, Wells RS, Tyler-Smith C, Balanovska E. Parallel evolution of genes and languages in the Caucasus region. Mol Biol Evol 2011; 28:2905-20. [PMID: 21571925 DOI: 10.1093/molbev/msr126] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
We analyzed 40 single nucleotide polymorphism and 19 short tandem repeat Y-chromosomal markers in a large sample of 1,525 indigenous individuals from 14 populations in the Caucasus and 254 additional individuals representing potential source populations. We also employed a lexicostatistical approach to reconstruct the history of the languages of the North Caucasian family spoken by the Caucasus populations. We found a different major haplogroup to be prevalent in each of four sets of populations that occupy distinct geographic regions and belong to different linguistic branches. The haplogroup frequencies correlated with geography and, even more strongly, with language. Within haplogroups, a number of haplotype clusters were shown to be specific to individual populations and languages. The data suggested a direct origin of Caucasus male lineages from the Near East, followed by high levels of isolation, differentiation, and genetic drift in situ. Comparison of genetic and linguistic reconstructions covering the last few millennia showed striking correspondences between the topology and dates of the respective gene and language trees and with documented historical events. Overall, in the Caucasus region, unmatched levels of gene-language coevolution occurred within geographically isolated populations, probably due to its mountainous terrain.
Collapse
Affiliation(s)
- Oleg Balanovsky
- Research Centre for Medical Genetics, Russian Academy of Medical Sciences, Moscow, Russia.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Y-chromosome variation in Altaian Kazakhs reveals a common paternal gene pool for Kazakhs and the influence of Mongolian expansions. PLoS One 2011; 6:e17548. [PMID: 21412412 PMCID: PMC3055870 DOI: 10.1371/journal.pone.0017548] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2010] [Accepted: 02/08/2011] [Indexed: 12/28/2022] Open
Abstract
Kazakh populations have traditionally lived as nomadic pastoralists that seasonally migrate across the steppe and surrounding mountain ranges in Kazakhstan and southern Siberia. To clarify their population history from a paternal perspective, we analyzed the non-recombining portion of the Y-chromosome from Kazakh populations living in southern Altai Republic, Russia, using a high-resolution analysis of 60 biallelic markers and 17 STRs. We noted distinct differences in the patterns of genetic variation between maternal and paternal genetic systems in the Altaian Kazakhs. While they possess a variety of East and West Eurasian mtDNA haplogroups, only three East Eurasian paternal haplogroups appear at significant frequencies (C3*, C3c and O3a3c*). In addition, the Y-STR data revealed low genetic diversity within these lineages. Analysis of the combined biallelic and STR data also demonstrated genetic differences among Kazakh populations from across Central Asia. The observed differences between Altaian Kazakhs and indigenous Kazakhs were not the result of admixture between Altaian Kazakhs and indigenous Altaians. Overall, the shared paternal ancestry of Kazakhs differentiates them from other Central Asian populations. In addition, all of them showed evidence of genetic influence by the 13th century CE Mongol Empire. Ultimately, the social and cultural traditions of the Kazakhs shaped their current pattern of genetic variation.
Collapse
|
42
|
Lashgary Z, Khodadadi A, Singh Y, Houshmand SM, Mahjoubi F, Sharma P, Singh S, Seyedin M, Srivastava A, Ataee M, Mohammadi ZS, Rezaei N, Bamezai RNK, Sanati MH. Y chromosome diversity among the Iranian religious groups: a reservoir of genetic variation. Ann Hum Biol 2011; 38:364-71. [PMID: 21329477 DOI: 10.3109/03014460.2010.535562] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
BACKGROUND Iran is ethnically, linguistically and religiously diverse. However, little is known about the population genetics of Iranian religious communities. AIM This study was performed in order to define the different paternal components of the Iranian gene pool. SUBJECTS AND METHODS Fourteen Y chromosome bi-allelic markers were analysed in 130 male subjects from Assyrian, Armenian and Zoroastrian groups in comparison with 208 male subjects from three Iranian Muslim groups. RESULTS Among the three Iranian Muslim groups, the Uromian people possessed a particularly close genetic relationship to the Armenian, whereas the Zoroastrian group was different from the Uromian, but had a close genetic relationship to the two other Muslim groups (Kermanian and Shirazian). The genetic results indicate a relationship between Armenian and Assyrian groups in Iran and a clear distinction of the former from the Zoroastrian group. However, Assyrians had elevated frequency (40%) of R*(xR1a) and low frequency (11%) of J. CONCLUSION The results of this study may suggest that the Assyrian population either experienced Eurasian gene flow (possibly from Armenia) or that enforced relocations and expulsion of conquered people with different origin led to the integration of descendants with R haplogroup. This could also be due to genetic drift due to small population size and endogamy resulting from religious barriers.
Collapse
Affiliation(s)
- Zahra Lashgary
- National Institute for Genetic Engineering and Biotechnology, Tehran, Iran
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Burgarella C, Navascués M. Mutation rate estimates for 110 Y-chromosome STRs combining population and father-son pair data. Eur J Hum Genet 2011; 19:70-5. [PMID: 20823913 PMCID: PMC3039515 DOI: 10.1038/ejhg.2010.154] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2009] [Revised: 06/01/2010] [Accepted: 08/05/2010] [Indexed: 11/09/2022] Open
Abstract
Y-chromosome microsatellites (Y-STRs) are typically used for kinship analysis and forensic identification, as well as for inferences on population history and evolution. All applications would greatly benefit from reliable locus-specific mutation rates, to improve forensic probability calculations and interpretations of diversity data. However, estimates of mutation rate from father-son transmissions are available for few loci and have large confidence intervals, because of the small number of meiosis usually observed. By contrast, population data exist for many more Y-STRs, holding unused information about their mutation rates. To incorporate single locus diversity information into Y-STR mutation rate estimation, we performed a meta-analysis using pedigree data for 80 loci and individual haplotypes for 110 loci, from 29 and 93 published studies, respectively. By means of logistic regression we found that relative genetic diversity, motif size and repeat structure explain the variance of observed rates of mutations from meiosis. This model allowed us to predict locus-specific mutation rates (mean predicted mutation rate 2.12 × 10(-3), SD=1.58 × 10(-3)), including estimates for 30 loci lacking meiosis observations and 41 with a previous estimate of zero. These estimates are more accurate than meiosis-based estimates when a small number of meiosis is available. We argue that our methodological approach, by taking into account locus diversity, could be also adapted to estimate population or lineage-specific mutation rates. Such adjusted estimates would represent valuable information for selecting the most reliable markers for a wide range of applications.
Collapse
Affiliation(s)
- Concetta Burgarella
- CNRS UMR 7625 Écologie et Évolution, École Normale Supérieure, Paris, France
- INIA, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Madrid, Spain
| | - Miguel Navascués
- CNRS UMR 7625 Écologie et Évolution, École Normale Supérieure, Paris, France
- INRA, UMR CBGP (INRA/IRD/Cirad/Montpellier SupAgro), Campus International de Baillarguet, Montferrier-sur-Lez Cedex, France
| |
Collapse
|
44
|
Martínez-Cruz B, Vitalis R, Ségurel L, Austerlitz F, Georges M, Théry S, Quintana-Murci L, Hegay T, Aldashev A, Nasyrova F, Heyer E. In the heartland of Eurasia: the multilocus genetic landscape of Central Asian populations. Eur J Hum Genet 2010; 19:216-23. [PMID: 20823912 DOI: 10.1038/ejhg.2010.153] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Located in the Eurasian heartland, Central Asia has played a major role in both the early spread of modern humans out of Africa and the more recent settlements of differentiated populations across Eurasia. A detailed knowledge of the peopling in this vast region would therefore greatly improve our understanding of range expansions, colonizations and recurrent migrations, including the impact of the historical expansion of eastern nomadic groups that occurred in Central Asia. However, despite its presumable importance, little is known about the level and the distribution of genetic variation in this region. We genotyped 26 Indo-Iranian- and Turkic-speaking populations, belonging to six different ethnic groups, at 27 autosomal microsatellite loci. The analysis of genetic variation reveals that Central Asian diversity is mainly shaped by linguistic affiliation, with Turkic-speaking populations forming a cluster more closely related to East-Asian populations and Indo-Iranian speakers forming a cluster closer to Western Eurasians. The scattered position of Uzbeks across Turkic- and Indo-Iranian-speaking populations may reflect their origins from the union of different tribes. We propose that the complex genetic landscape of Central Asian populations results from the movements of eastern, Turkic-speaking groups during historical times, into a long-lasting group of settled populations, which may be represented nowadays by Tajiks and Turkmen. Contrary to what is generally thought, our results suggest that the recurrent expansions of eastern nomadic groups did not result in the complete replacement of local populations, but rather into partial admixture.
Collapse
Affiliation(s)
- Begoña Martínez-Cruz
- Muséum National d'Histoire Naturelle - Centre National de la Recherche Scientifique-Université Paris 7, UMR 7206, Éco-Anthropologie et Ethnobiologie, Paris, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Malyarchuk B, Derenko M, Denisova G, Wozniak M, Grzybowski T, Dambueva I, Zakharov I. Phylogeography of the Y-chromosome haplogroup C in northern Eurasia. Ann Hum Genet 2010; 74:539-46. [DOI: 10.1111/j.1469-1809.2010.00601.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
46
|
Global distribution of Y-chromosome haplogroup C reveals the prehistoric migration routes of African exodus and early settlement in East Asia. J Hum Genet 2010; 55:428-35. [PMID: 20448651 DOI: 10.1038/jhg.2010.40] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
47
|
Pérez-Pardal L, Royo LJ, Beja-Pereira A, Curik I, Traoré A, Fernández I, Sölkner J, Alonso J, Álvarez I, Bozzi R, Chen S, Ponce de León FA, Goyache F. Y-specific microsatellites reveal an African subfamily in taurine (Bos taurus) cattle. Anim Genet 2010; 41:232-41. [DOI: 10.1111/j.1365-2052.2009.01988.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
48
|
Shou WH, Qiao EF, Wei CY, Dong YL, Tan SJ, Shi H, Tang WR, Xiao CJ. Y-chromosome distributions among populations in Northwest China identify significant contribution from Central Asian pastoralists and lesser influence of western Eurasians. J Hum Genet 2010; 55:314-22. [DOI: 10.1038/jhg.2010.30] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
49
|
The mtDNA composition of Uzbekistan: a microcosm of Central Asian patterns. Int J Legal Med 2010; 124:195-204. [DOI: 10.1007/s00414-009-0406-z] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2009] [Accepted: 12/15/2009] [Indexed: 10/19/2022]
|
50
|
Zhang F, Xu Z, Tan J, Sun Y, Xu B, Li S, Zhao X, Zhou H, Gong G, Zhang J, Jin L. Prehistorical East-West admixture of maternal lineages in a 2,500-year-old population in Xinjiang. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2009; 142:314-20. [PMID: 20034008 DOI: 10.1002/ajpa.21237] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
As an area of contact between Asia and Europe, Central Asia witnessed a scenario of complex cultural developments, extensive migratory movements, and biological admixture between West and East Eurasians. However, the detanglement of this complexity of diversity requires an understanding of prehistoric contacts of the people from the West and the East on the Eurasia continent. We demonstrated the presence of genetic admixture of West and East in a population of 35 inhabitants excavated in Gavaerk in southern Xinjiang and dated 2,800-2,100 years before present by analyzing their mitochondrial DNA variations. This result indicates that the initial contact of the East and the West Eurasians occurred further east than Central Asia as early as 2,500 years ago.
Collapse
Affiliation(s)
- Fan Zhang
- State Key Laboratory of Genetic Engineering and MOE Key Laboratory of Contemporary Anthropology, School of Life Sciences and Institutes of Biomedical Sciences, Fudan University, 200433 Shanghai, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|