1
|
Schneider AL, Ritter Schenk C, Zimmermann P. Fifteen-minute consultation: Management of mammalian bites in children-from local wound care to prophylactic antibiotics. Arch Dis Child Educ Pract Ed 2024; 109:222-227. [PMID: 38448218 DOI: 10.1136/archdischild-2023-326403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 02/11/2024] [Indexed: 03/08/2024]
Abstract
Animal and human bites are a common reason for emergency consultation, especially in children. The most common complication of bite wounds is local infection. Systemic infections are much rarer. The key in reducing the risk of infection after a mammalian bite is local wound management with either primary or delayed closure. The benefit of administering prophylactic antibiotics is controversial.In this review, we provide a summary of the current evidence for the management of mammalian bites in children, including recommendations for appropriate investigations, wound management, administration of prophylactic and therapeutic antibiotics and the prevention of systemic infections.
Collapse
Affiliation(s)
| | | | - Petra Zimmermann
- Department of Paediatrics, Fribourg Hospital, Fribourg, Fribourg, Switzerland
- Department of Community Health, University of Fribourg, Fribourg, Switzerland
- Infectious Diseases Research Group, Murdoch Children's Research Institute, Parkville, Victoria, Australia
- Department of Paediatrics, The University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
2
|
Wang K, Jordan T, Dowdell K, Herbert R, Moore IN, Koelle DM, Cohen JI. A nonhuman primate model for genital herpes simplex virus 2 infection that results in vaginal vesicular lesions, virus shedding, and seroconversion. PLoS Pathog 2024; 20:e1012477. [PMID: 39226323 PMCID: PMC11371218 DOI: 10.1371/journal.ppat.1012477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 08/05/2024] [Indexed: 09/05/2024] Open
Abstract
The most commonly used animal models for evaluating the efficacy of HSV-2 candidate vaccines are mice and guinea pigs. While numerous HSV-2 vaccine candidates have been tested in these animals and were effective in reducing disease and mortality, these results did not predict the effectiveness of the vaccines in human trials. Infection of rhesus macaques rarely results in lesions or HSV-2 specific antibody responses. In seeking an animal model that better recapitulates human disease and that might be more predictive of the efficacy of prophylactic vaccines than mice and guinea pigs, we evaluated Cebus apella (C. apella), a New World primate, in an HSV-2 genital infection model. Infectious HSV-2 was cultured from vaginal swabs from all 4 animals for 9-14 days after intravaginal inoculation of HSV-2 seronegative monkeys. Two of 4 monkeys had vesicular lesions in the vagina or vulva. No neurological symptoms were noted. Recurrent lesions and HSV-2 DNA shedding after acute disease resolved was infrequent. UV irradiation of the genital area did not induce recurrent genital lesions or virus shedding. All 4 monkeys developed HSV-2 neutralizing antibodies as well as virus-specific CD4 and CD8 T cell responses. Reinfection of animals 15 to 19 months after primary infection did not result in lesions; animals had reduced virus shedding and a shorter duration of shedding compared with that during primary infection, suggesting that primary infection induced protective immunity. Primary fibroblasts from C. apella monkeys supported the growth of HSV-2 in vitro; in contrast, HSV-2 did not replicate above the titer of the input inoculum in fibroblasts from rhesus macaques. These observations suggest that the C. apella monkey has potential to serve as a model for evaluating the efficacy of prophylactic vaccines, antivirals, or monoclonal antibodies to HSV-2.
Collapse
Affiliation(s)
- Kening Wang
- Medical Virology Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Tristan Jordan
- Medical Virology Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Kennichi Dowdell
- Medical Virology Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | | | - Ian N. Moore
- Infectious Disease Pathogenesis Section, Comparative Medicine Branch National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - David M. Koelle
- Department of Medicine, University of Washington, Seattle, Washington, United States of America
- Department of Laboratory Medicine and Pathology, School of Medicine, University of Washington, Seattle, Washington, United States of America
- Department of Global Health, School of Medicine, University of Washington, Seattle, Washington, United States of America
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
- Benaroya Research Institute, Seattle, Washington, United States of America
| | - Jeffrey I. Cohen
- Medical Virology Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| |
Collapse
|
3
|
Kinoshita H, Yamada S, Ogawa T, Nguyen PHA, Harada S, Kawahara M, Ishijima K, Maeda K, Ebihara H, Fukushi S. Development of a vesicular stomatitis virus pseudotyped with herpes B virus glycoproteins and its application in a neutralizing antibody detection assay. mBio 2024; 15:e0109224. [PMID: 38847539 PMCID: PMC11253632 DOI: 10.1128/mbio.01092-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 05/02/2024] [Indexed: 07/18/2024] Open
Abstract
Herpes B virus (BV) is a zoonotic virus and belongs to the genus Simplexvius, the same genus as human herpes simplex virus (HSV). BV typically establishes asymptomatic infection in its natural hosts, macaque monkeys. However, in humans, BV infection causes serious neurological diseases and death. As such, BV research can only be conducted in a high containment level facility (i.e., biosafety level [BSL] 4), and the mechanisms of BV entry have not been fully elucidated. In this study, we generated a pseudotyped vesicular stomatitis virus (VSV) expressing BV glycoproteins using G-complemented VSV∆G system, which we named VSV/BVpv. We found that four BV glycoproteins (i.e., gB, gD, gH, and gL) were required for the production of a high-titer VSV/BVpv. Moreover, VSV/BVpv cell entry was dependent on the binding of gD to its cellular receptor nectin-1. Pretreatment of Vero cells with endosomal acidification inhibitors did not affect the VSV/BVpv infection. The result indicated that VSV/BVpv entry occurred by direct fusion with the plasma membrane of Vero cells and suggested that the entry pathway was similar to that of native HSV. Furthermore, we developed a VSV/BVpv-based chemiluminescence reduction neutralization test (CRNT), which detected the neutralization antibodies against BV in macaque plasma samples with high sensitivity and specificity. Crucially, the VSV/BVpv generated in this study can be used under BSL-2 condition to study the initial entry process through gD-nectin-1 interaction and the direct fusion of BV with the plasma membrane of Vero cells.IMPORTANCEHerpes B virus (BV) is a highly pathogenic zoonotic virus against humans. BV belongs to the genus Simplexvius, the same genus as human herpes simplex virus (HSV). By contrast to HSV, cell entry mechanisms of BV are not fully understood. The research procedures to manipulate infectious BV should be conducted in biosafety level (BSL)-4 facilities. As pseudotyped viruses provide a safe viral entry model because of their inability to produce infectious progeny virus, we tried to generate a pseudotyped vesicular stomatitis virus bearing BV glycoproteins (VSV/BVpv) by modification of expression constructs of BV glycoproteins, and successfully obtained VSV/BVpv with a high titer. This study has provided novel information for constructing VSV/BVpv and its usefulness to study BV infection.
Collapse
Affiliation(s)
- Hitomi Kinoshita
- Department of Virology 1, National Institute of Infectious Diseases, Tokyo, Japan
| | - Souichi Yamada
- Department of Virology 1, National Institute of Infectious Diseases, Tokyo, Japan
| | - Takuma Ogawa
- Department of Virology 1, National Institute of Infectious Diseases, Tokyo, Japan
| | - Phu Hoang Anh Nguyen
- Department of Virology 1, National Institute of Infectious Diseases, Tokyo, Japan
| | - Shizuko Harada
- Department of Virology 1, National Institute of Infectious Diseases, Tokyo, Japan
| | - Madoka Kawahara
- Department of Virology 1, National Institute of Infectious Diseases, Tokyo, Japan
| | - Keita Ishijima
- Department of Veterinary Science, National Institute of Infectious Diseases, Tokyo, Japan
| | - Ken Maeda
- Department of Veterinary Science, National Institute of Infectious Diseases, Tokyo, Japan
| | - Hideki Ebihara
- Department of Virology 1, National Institute of Infectious Diseases, Tokyo, Japan
| | - Shuetsu Fukushi
- Department of Virology 1, National Institute of Infectious Diseases, Tokyo, Japan
| |
Collapse
|
4
|
Septelici D, Carbone G, Cipri A, Esposito S. Management Strategies for Common Animal Bites in Pediatrics: A Narrative Review on the Latest Progress. Microorganisms 2024; 12:924. [PMID: 38792754 PMCID: PMC11124134 DOI: 10.3390/microorganisms12050924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 04/28/2024] [Accepted: 04/30/2024] [Indexed: 05/26/2024] Open
Abstract
Animal bites are a common reason for children to visit primary care and emergency departments. Dog bites are the most prevalent, followed by cat bites at 20-30%. Other animals such as bats, monkeys, snakes, and rats collectively contribute less than 1% of cases. Hospitalization is necessary in only 4% of animal bite incidents. The main aim of this narrative review is to summarize the main protocols currently followed in pediatrics in cases involving the most common bites from different animal species. Analysis of the literature showed that the management of common animal bites in children presents a multifaceted challenge requiring a comprehensive understanding of the epidemiology, clinical presentation, and treatment modalities associated with each specific species. Effective wound management is paramount in reducing the risk of infection and promoting optimal healing outcomes. Additionally, tetanus vaccination status should be assessed and updated as necessary, and prophylactic antibiotics may be indicated in certain cases to prevent secondary infections. Furthermore, the role of rabies prophylaxis cannot be overstated, particularly in regions where rabies is endemic or following bites from high-risk animals. In addition to medical management, psychosocial support for both the child and their caregivers is integral to the overall care continuum. Future studies exploring the efficacy of novel treatment modalities, such as topical antimicrobial agents or advanced wound dressings, may offer new insights into optimizing wound healing and reducing the risk of complications.
Collapse
Affiliation(s)
| | | | | | - Susanna Esposito
- Pediatric Clinic, Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy; (D.S.); (G.C.); (A.C.)
| |
Collapse
|
5
|
Sanabria V, Romariz SAA, Braga M, Pires JM, Naffah-Mazzacoratti MDG, Mello LE, Longo BM, Foresti ML. What we have learned from non-human primates as animal models of epilepsy. Epilepsy Behav 2024; 154:109706. [PMID: 38518671 DOI: 10.1016/j.yebeh.2024.109706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 02/14/2024] [Accepted: 02/19/2024] [Indexed: 03/24/2024]
Abstract
Non-human primates (NHPs) have played a crucial role in our understanding of epilepsy, given their striking similarities with humans. Through their use, we have gained a deeper understanding of the neurophysiology and pathophysiology of epileptic seizures, and they have proven invaluable allies in developing anti-seizure therapies. This review explores the history of NHPs as natural models of epilepsy, discusses the findings obtained after exposure to various chemoconvulsant drugs and focal electrical stimulation protocols that helped uncover important mechanisms related to epilepsy, examines diverse treatments to prevent and manage epilepsy, and addresses essential ethical issues in research. In this review, we aim to emphasize the important role of NHPs in epilepsy research and summarize the benefits and challenges associated with their use as models.
Collapse
Affiliation(s)
- Viviam Sanabria
- Physiology Department, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | - Simone A A Romariz
- Physiology Department, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | - Matheus Braga
- Physiology Department, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | - Jaime Moreira Pires
- Physiology Department, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | | | - Luiz Eugênio Mello
- Physiology Department, Universidade Federal de São Paulo, São Paulo, SP, Brazil; Instituto D'Or de Pesquisa e Ensino, São Paulo, SP, Brazil
| | - Beatriz M Longo
- Physiology Department, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | - Maira Licia Foresti
- Physiology Department, Universidade Federal de São Paulo, São Paulo, SP, Brazil; Instituto D'Or de Pesquisa e Ensino, São Paulo, SP, Brazil.
| |
Collapse
|
6
|
Nguyen PHA, Fukushi S, Yamada S, Harada S, Yoshikawa T, Kinoshita H, Kawahara M, Ogawa T, Ebihara H, Moi ML, Saijo M. Analysis of antiviral drug properties of thymidine kinase of herpes B virus using recombinant herpes simplex virus 1. Microbiol Spectr 2024; 12:e0309123. [PMID: 38095468 PMCID: PMC10783082 DOI: 10.1128/spectrum.03091-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 11/25/2023] [Indexed: 01/13/2024] Open
Abstract
IMPORTANCE Zoonotic infection of humans with herpes B virus (BV) causes severe neurological diseases. Acyclovir (ACV) and ganciclovir (GCV), most frequently used as anti-herpes drugs, are recommended for prophylaxis and therapy in human BV infection. In this study, we examined the property of BV thymidine kinase (TK) against anti-herpes drugs using a recombinant herpes simplex virus type 1 (HSV-1) carrying BV TK gene. We found that HSV-1 carrying BV TK was similarly sensitive to GCV as HSV-1 carrying varicella zoster virus TK. In addition, we demonstrated that BV TK was not mutated in the GCV- and ACV-resistant HSV-1 carrying BV TK, suggesting that ACV- or GCV-resistant BV might be rare during treatment with these antiviral drugs. These data can provide a new insight into the properties of BV TK in terms of the development of drug resistance.
Collapse
Affiliation(s)
- Phu Hoang Anh Nguyen
- Department of Virology 1, National Institute of Infectious Diseases, Tokyo, Japan
- Department of Developmental Medical Sciences, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
| | - Shuetsu Fukushi
- Department of Virology 1, National Institute of Infectious Diseases, Tokyo, Japan
| | - Souichi Yamada
- Department of Virology 1, National Institute of Infectious Diseases, Tokyo, Japan
| | - Shizuko Harada
- Department of Virology 1, National Institute of Infectious Diseases, Tokyo, Japan
| | - Tomoki Yoshikawa
- Department of Virology 1, National Institute of Infectious Diseases, Tokyo, Japan
| | - Hitomi Kinoshita
- Department of Virology 1, National Institute of Infectious Diseases, Tokyo, Japan
| | - Madoka Kawahara
- Department of Virology 1, National Institute of Infectious Diseases, Tokyo, Japan
| | - Takuma Ogawa
- Department of Virology 1, National Institute of Infectious Diseases, Tokyo, Japan
| | - Hideki Ebihara
- Department of Virology 1, National Institute of Infectious Diseases, Tokyo, Japan
| | - Meng Ling Moi
- Department of Developmental Medical Sciences, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
| | - Masayuki Saijo
- Department of Virology 1, National Institute of Infectious Diseases, Tokyo, Japan
- Health and Welfare Bureau, Sapporo City, Hokkaido, Japan
| |
Collapse
|
7
|
Lu J, Long Y, Sun J, Gong L. Towards a comprehensive view of the herpes B virus. Front Immunol 2023; 14:1281384. [PMID: 38035092 PMCID: PMC10687423 DOI: 10.3389/fimmu.2023.1281384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 10/31/2023] [Indexed: 12/02/2023] Open
Abstract
Herpes B virus is a biosafety level 4 pathogen and widespread in its natural host species, macaques. Although most infected monkeys show asymptomatic or mild symptoms, human infections with this virus can cause serious neurological symptoms or fatal encephalomyelitis with a high mortality rate. Herpes B virus can be latent in the sensory ganglia of monkeys and humans, often leading to missed diagnoses. Furthermore, the herpes B virus has extensive antigen crossover with HSV, SA8, and HVP-2, causing false-positive results frequently. Timely diagnosis, along with methods with sensitivity and specificity, are urgent for research on the herpes B virus. The lack of a clear understanding of the host invasion and life cycle of the herpes B virus has led to slow progress in the development of effective vaccines and drugs. This review discusses the research progress and problems of the epidemiology of herpes B virus, detection methods and therapy, hoping to inspire further investigation into important factors associated with transmission of herpes B virus in macaques and humans, and arouse the development of effective vaccines or drugs, to promote the establishment of specific pathogen-free (SPF) monkeys and protect humans to effectively avoid herpes B virus infection.
Collapse
Affiliation(s)
- Jiangling Lu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, China
| | - Yiru Long
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jianhua Sun
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, China
| | - Likun Gong
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, China
| |
Collapse
|
8
|
Thierry B. Studying the Tonkean macaques of Strasbourg, a tale full of sound and fury. Primates 2023; 64:559-572. [PMID: 37597117 DOI: 10.1007/s10329-023-01088-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 08/08/2023] [Indexed: 08/21/2023]
Abstract
In this paper, I chronicle the Strasbourg population of Tonkean macaques (Macaca tonkeana) over a period of half a century. In 1972, Tonkean macaques were imported from Sulawesi, Indonesia, to eastern France, leading to the establishment of two social groups in the Strasbourg region several years later. Our research team studied the social behavior and cognitive abilities of these Tonkean macaques for four decades. The species is characterized by a high degree of social tolerance. This has proven to be very informative in comparative studies of macaque social behavior, opening a new perspective on the evolution of primate societies. Over the years, the population has grown, and more social groups have been formed. However, the fact that some of the Tonkean macaques were healthy carriers of the herpes B virus led to disagreements over their management and eventually to the elimination of the positive individuals. Many individuals from the Strasbourg population are now kept in sanctuaries, and the number of captive breeding groups is limited. We still have much to learn about Tonkean macaques and there is a need for studies carried out in their native habitat in Sulawesi.
Collapse
Affiliation(s)
- Bernard Thierry
- Laboratoire de Psychologie Sociale et Cognitive, Centre National de la Recherche Scientifique, Université Clermont Auvergne, Clermont-Ferrand, France.
| |
Collapse
|
9
|
Amano M, Sapkanarak K, Thbthimthong W, Meesawat S, Kemthong T, Suttisan N, Abe H, Malaivijitnond S, Yasuda J. Development of Quantitative Real-Time PCR and Loop-Mediated Isothermal Amplification Assays for the Surveillance and Diagnosis of Herpes B Virus Infection. Viruses 2023; 15:2086. [PMID: 37896863 PMCID: PMC10611326 DOI: 10.3390/v15102086] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 10/03/2023] [Accepted: 10/11/2023] [Indexed: 10/29/2023] Open
Abstract
Herpes B virus (BV) is a zoonotic virus which can be transmitted from macaques to humans, which is often associated with high mortality rates. Because macaques often exhibit asymptomatic infections, individuals who come into contact with these animals face unexpected risks of BV infections. A serological test is widely performed to investigate BV infections. However, the assay's sensitivity and specificity appeared to be inadequate, and it does not necessarily indicate ongoing viral shedding. Here, we developed LAMP and qPCR assays aiming to detect BVs with a high sensitivity and specificity in various macaque species and validated them using oral swab samples collected from 97 wild cynomolgus macaques living in Thailand. Our LAMP and qPCR assays detected more than 50 and 10 copies of the target sequences per reaction, respectively. The LAMP assay could detect BV within 25 min, indicating its advantages for the rapid detection of BV. Collectively, our findings indicated that both assays developed in this study exhibit advantages and usefulness for BV surveillance and the diagnosis of BV infections in macaques. Furthermore, for the first time, we determined the partial genome sequences of BVs detected in cynomolgus macaques in Thailand. Phylogenetic analysis revealed the species-specific evolution of BV within macaques.
Collapse
Affiliation(s)
- Murasaki Amano
- Department of Emerging Infectious Diseases, National Research Center for the Control and Prevention of Infectious Diseases (CCPID), Nagasaki University, Nagasaki 852-8523, Japan; (M.A.); (H.A.)
- Program for Nurturing Global Leaders in Tropical and Emerging Communicable Diseases, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8523, Japan
- Department of Emerging Infectious Diseases, Institute of Tropical Medicine, Nagasaki University, Nagasaki 852-8523, Japan
| | - Krittiga Sapkanarak
- National Primate Research Center of Thailand, Chulalongkorn University, Saraburi 18110, Thailand; (K.S.); (W.T.); (S.M.); (T.K.); (N.S.); (S.M.)
- Department of Biology, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Wipaporn Thbthimthong
- National Primate Research Center of Thailand, Chulalongkorn University, Saraburi 18110, Thailand; (K.S.); (W.T.); (S.M.); (T.K.); (N.S.); (S.M.)
| | - Suthirote Meesawat
- National Primate Research Center of Thailand, Chulalongkorn University, Saraburi 18110, Thailand; (K.S.); (W.T.); (S.M.); (T.K.); (N.S.); (S.M.)
- Department of Biology, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Taratorn Kemthong
- National Primate Research Center of Thailand, Chulalongkorn University, Saraburi 18110, Thailand; (K.S.); (W.T.); (S.M.); (T.K.); (N.S.); (S.M.)
- Department of Biology, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Nutchanat Suttisan
- National Primate Research Center of Thailand, Chulalongkorn University, Saraburi 18110, Thailand; (K.S.); (W.T.); (S.M.); (T.K.); (N.S.); (S.M.)
| | - Haruka Abe
- Department of Emerging Infectious Diseases, National Research Center for the Control and Prevention of Infectious Diseases (CCPID), Nagasaki University, Nagasaki 852-8523, Japan; (M.A.); (H.A.)
- Vietnam Research Station, Institute of Tropical Medicine (NEKKEN), Nagasaki University, Nagasaki 852-8523, Japan
| | - Suchinda Malaivijitnond
- National Primate Research Center of Thailand, Chulalongkorn University, Saraburi 18110, Thailand; (K.S.); (W.T.); (S.M.); (T.K.); (N.S.); (S.M.)
- Department of Biology, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Jiro Yasuda
- Department of Emerging Infectious Diseases, National Research Center for the Control and Prevention of Infectious Diseases (CCPID), Nagasaki University, Nagasaki 852-8523, Japan; (M.A.); (H.A.)
- Program for Nurturing Global Leaders in Tropical and Emerging Communicable Diseases, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8523, Japan
- Department of Emerging Infectious Diseases, Institute of Tropical Medicine, Nagasaki University, Nagasaki 852-8523, Japan
| |
Collapse
|
10
|
Shakoor T, Grider Cook R, Milliron ML. Prophylaxis for the Unexpected: An Unusual Case of Herpes B Coverage for an Orangutan Bite in an Emergency Department Patient. Cureus 2023; 15:e46857. [PMID: 37954713 PMCID: PMC10637726 DOI: 10.7759/cureus.46857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Accepted: 10/11/2023] [Indexed: 11/14/2023] Open
Abstract
Patients presenting to the emergency department (ED) with an orangutan bite require a series of prophylactic treatments. We present a unique case of an orangutan bite in a 29-year-old male ED patient who was brought by Emergency Medical Services (EMS) for evaluation of an orangutan bite to the right upper extremity with a suspected fourth proximal phalanx fracture. He was referred to hand surgery for a washout and open reduction. Upon discharge, prophylactic medical treatments for unusual pathologies such as herpes B were considered. Appropriate evaluation and treatment of this unique ED condition is necessary to prevent additional patient morbidity.
Collapse
Affiliation(s)
- Tayyab Shakoor
- Emergency Medicine, Lake Erie College of Osteopathic Medicine, Erie, USA
| | - Rachel Grider Cook
- Emergency Medicine, Allegheny Health Network- Saint Vincent Hospital, Erie, USA
| | - Melody L Milliron
- Emergency Medicine, Allegheny Health Network- Saint Vincent Hospital, Erie, USA
| |
Collapse
|
11
|
Herpes B virus: History, zoonotic potential, and public health implications. BIOSAFETY AND HEALTH 2022. [DOI: 10.1016/j.bsheal.2022.05.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
12
|
Abstract
Animal and human bite injuries are a public health burden. Dog bites outnumber cat bites, but cat bites pose the greatest risk for infection. Skin and soft tissue infections are the most frequent infectious manifestations resulting from bite injury, although invasive infection may occur through direct inoculation or dissemination through the bloodstream. Although contemporary, well-designed trials are needed to inform clinical practice, preemptive antibiotic therapy after a bite injury is warranted for injuries posing high risk for infection and for patients at risk of developing severe infection; antibiotics should target aerobic and anaerobic microbes that comprise the oral and skin flora.
Collapse
Affiliation(s)
- Sarah E Greene
- Department of Pediatrics, Washington University School of Medicine, 660 South Euclid Avenue, Campus Box 8116, St Louis, MO 63110, USA
| | - Stephanie A Fritz
- Department of Pediatrics, Washington University School of Medicine, 660 South Euclid Avenue, Campus Box 8116, St Louis, MO 63110, USA.
| |
Collapse
|
13
|
Pandey P, Lee K, Amatya B, Angelo KM, Shlim DR, Murphy H. Health problems in travellers to Nepal visiting CIWEC clinic in Kathmandu - A GeoSentinel analysis. Travel Med Infect Dis 2021; 40:101999. [PMID: 33639265 DOI: 10.1016/j.tmaid.2021.101999] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 09/21/2020] [Accepted: 02/18/2021] [Indexed: 12/16/2022]
Abstract
BACKGROUND Nepal has always been a popular international travel destination. There is limited published data, however, on the spectrum of illnesses acquired by travellers to Nepal. METHODS GeoSentinel is a global data collection network of travel and tropical medicine providers that monitors travel-related morbidity. Records for ill travellers with at least one confirmed or probable diagnosis, were extracted from the GeoSentinel database for the CIWEC Clinic Kathmandu site from January 1, 2009 to December 31, 2017. RESULTS A total of 24,271 records were included. The median age was 30 years (range: 0-91); 54% were female. The top 3 system-based diagnoses in travellers were: gastrointestinal (32%), pulmonary (16%), and dermatologic (9%). Altitude illness comprised 9% of all diagnoses. There were 278 vaccine-preventable diseases, most frequently influenza A (41%) and typhoid fever (19%; S. typhi 52 and S. paratyphi 62). Of 64 vector-borne illnesses, dengue was the most frequent (64%), followed by imported malaria (14%). There was a single traveller with Japanese encephalitis. Six deaths were reported. CONCLUSIONS Travellers to Nepal face a wide spectrum of illnesses, particularly diarrhoea, respiratory disease, and altitude illness. Pre-travel consultations for travellers to Nepal should focus on prevention and treatment of diarrhoea and altitude illness, along with appropriate immunizations and travel advice.
Collapse
Affiliation(s)
- Prativa Pandey
- CIWEC Hospital and Travel Medicine Center, Lainchaur, Kathmandu, Nepal.
| | - Keun Lee
- Centers for Disease Control and Prevention, Division of Global Migration and Quarantine, Atlanta, GA, USA.
| | - Bhawana Amatya
- CIWEC Hospital and Travel Medicine Center, Lainchaur, Kathmandu, Nepal.
| | - Kristina M Angelo
- Centers for Disease Control and Prevention, Division of Global Migration and Quarantine, Atlanta, GA, USA.
| | - David R Shlim
- Jackson Hole Travel and Tropical, Jackson Hole, WY, USA.
| | - Holly Murphy
- IHA Infectious Diseases Consultants, 5333 McAuley Dr., Ypsilanti, MI, USA.
| |
Collapse
|
14
|
Minakshi P, Ghosh M, Kumar R, Brar B, Lambe UP, Banerjee S, Ranjan K, Kumar B, Goel P, Malik YS, Prasad G. An Insight into Nanomedicinal Approaches to Combat Viral Zoonoses. Curr Top Med Chem 2021; 20:915-962. [PMID: 32209041 DOI: 10.2174/1568026620666200325114400] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 12/31/2019] [Accepted: 12/31/2019] [Indexed: 12/12/2022]
Abstract
BACKGROUND Emerging viral zoonotic diseases are one of the major obstacles to secure the "One Health" concept under the current scenario. Current prophylactic, diagnostic and therapeutic approaches often associated with certain limitations and thus proved to be insufficient for customizing rapid and efficient combating strategy against the highly transmissible pathogenic infectious agents leading to the disastrous socio-economic outcome. Moreover, most of the viral zoonoses originate from the wildlife and poor knowledge about the global virome database renders it difficult to predict future outbreaks. Thus, alternative management strategy in terms of improved prophylactic vaccines and their delivery systems; rapid and efficient diagnostics and effective targeted therapeutics are the need of the hour. METHODS Structured literature search has been performed with specific keywords in bibliographic databases for the accumulation of information regarding current nanomedicine interventions along with standard books for basic virology inputs. RESULTS Multi-arrayed applications of nanomedicine have proved to be an effective alternative in all the aspects regarding the prevention, diagnosis, and control of zoonotic viral diseases. The current review is focused to outline the applications of nanomaterials as anti-viral vaccines or vaccine/drug delivery systems, diagnostics and directly acting therapeutic agents in combating the important zoonotic viral diseases in the recent scenario along with their potential benefits, challenges and prospects to design successful control strategies. CONCLUSION This review provides significant introspection towards the multi-arrayed applications of nanomedicine to combat several important zoonotic viral diseases.
Collapse
Affiliation(s)
- Prasad Minakshi
- Department of Animal Biotechnology, LLR University of Veterinary and Animal Sciences, Hisar-125001, Haryana, 125004, India
| | - Mayukh Ghosh
- Department of Veterinary Physiology and Biochemistry, RGSC, Banaras Hindu University, Mirzapur (UP) - 231001, India
| | - Rajesh Kumar
- Department of Veterinary Physiology and Biochemistry, Lala Lajpat Rai University of Veterinary and Animal Sciences, Hisar-125001, Haryana, 125004, India
| | - Basanti Brar
- Department of Animal Biotechnology, LLR University of Veterinary and Animal Sciences, Hisar-125001, Haryana, 125004, India
| | - Upendra P Lambe
- Department of Animal Biotechnology, LLR University of Veterinary and Animal Sciences, Hisar-125001, Haryana, 125004, India
| | - Somesh Banerjee
- Department of Veterinary Microbiology, Immunology Section, LUVAS, Hisar-125004, India
| | - Koushlesh Ranjan
- Department of Veterinary Physiology and Biochemistry, Sardar Vallabhbhai Patel University of Agriculture and Technology, Meerut, 250110, India
| | | | - Parveen Goel
- Department of Veterinary Medicine, LLR University of Veterinary and Animal Sciences, Hisar, Haryana, 125004, India
| | - Yashpal S Malik
- Division of Standardisation, Indian Veterinary Research Institute Izatnagar - Bareilly (UP) - 243122, India
| | - Gaya Prasad
- Sardar Vallabhbhai Patel University of Agriculture and Technology, Meerut, UP, 250110, India
| |
Collapse
|
15
|
[B virus]. Uirusu 2021; 71:125-136. [PMID: 37245975 DOI: 10.2222/jsv.71.125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
B virus is a herpes virus that natutaly infects macaque monkeys. It is extremely neuropathogenic when infection occurs in humans. B virus infection has been reported only in laboratory workers and breeders of macaque monkeys in North America and the United Kingdom, and it is therefore recognized as a rare infectious disease. The first cases of B virus disease were reported in Japan in 2019 and in China in 2021, although no cases had been reported since 1997. Although B virus disease has not been reported for more than 20 years, the potential threat has always existed. The viral factors responsible for the strong neuropathogenicity of B virus to humans has not been identified. There are no reports of infection by contact with wild macaque monkeys, but the possibility can not been ruled out. In this paper, we describe its virological properties, findings from B virus disease from patient-reported cases, and the genotype of B virus.
Collapse
|
16
|
Hotchkiss CE, Young MA. Comparative Risk of Human Injury/Exposure While Collecting Blood from Sedated and Unsedated Nonhuman Primates. JOURNAL OF THE AMERICAN ASSOCIATION FOR LABORATORY ANIMAL SCIENCE : JAALAS 2020; 59:371-376. [PMID: 32527337 PMCID: PMC7338869 DOI: 10.30802/aalas-jaalas-19-000109] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 09/16/2019] [Accepted: 12/27/2019] [Indexed: 01/07/2023]
Abstract
Collection of blood samples for research or clinical evaluation is one of the most common procedures performed in non-human primates. Several possible methods can be used to obtain samples. In the early days of primate research, manual or physical restraint was used, which was stressful for the animal and risky for the human. As the field developed, chemical immobilization with ketamine or other anesthetics has become the most commonly used method. More recently, training using positive reinforcement has allowed collection of blood samples from unsedated primates that are unrestrained or minimally restrained. Elimination of anesthesia reduces risks to the animal. We wanted to determine whether the risks to humans were different between the sedated or unsedated blood collection. We evaluated injury and near-miss reports in conjunction with blood collection data from 2009 to 2019 at the Washington National Primate Research Center, which houses macaques (M. nemestrina, M. mulatta, and M. fasicularis) and squirrel monkeys (S. sciureus), and has housed baboons (Papio sp.) in the past. Injuries associated with sedated blood collection included those occurring during the sedation procedure and recovery as well as those directly associated with blood collection. Injuries associated with unsedated blood collection included those which occurred both during animal training and during blood collection. Overall, 22 human injury exposures and 5 near misses were associated with 73,626 blood collection procedures. Based on these numbers, 0.026% of sedated blood collections and 0.116% of unsedated blood collections were associated with exposure incidents. In conclusion, our data indicate a very low risk of exposure associated with blood collection. In this data set, the risk was statistically higher for unsedated animals, but the low number of incidents and the variability in the methods of blood collection make the general applicability of this finding questionable.
Collapse
Affiliation(s)
- Charlotte E Hotchkiss
- Washington National Primate Research Center, University of Washington, Seattle, Washington;,
| | - Melinda A Young
- Washington National Primate Research Center, University of Washington, Seattle, Washington
| |
Collapse
|
17
|
Kolb AW, Brandt CR. Genomic nucleotide-based distance analysis for delimiting old world monkey derived herpes simplex virus species. BMC Genomics 2020; 21:436. [PMID: 32590937 PMCID: PMC7318535 DOI: 10.1186/s12864-020-06847-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Accepted: 06/17/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Herpes simplex viruses form a genus within the alphaherpesvirus subfamily, with three identified viral species isolated from Old World monkeys (OWM); Macacine alphaherpesvirus 1 (McHV-1; herpes B), Cercopithecine alphaherpesvirus 2 (SA8), and Papiine alphaherpesvirus 2 (PaHV-2; herpes papio). Herpes B is endemic to macaques, while PaHV-2 and SA8 appear endemic to baboons. All three viruses are genetically and antigenically similar, with SA8 and PaHV-2 thought to be avirulent in humans, while herpes B is a biosafety level 4 pathogen. Recently, next-generation sequencing (NGS) has resulted in an increased number of published OWM herpes simplex genomes, allowing an encompassing phylogenetic analysis. RESULTS In this study, phylogenetic networks, in conjunction with a genome-based genetic distance cutoff method were used to examine 27 OWM monkey herpes simplex isolates. Genome-based genetic distances were calculated, resulting in distances between lion and pig-tailed simplex viruses themselves, and versus herpes B core strains that were higher than those between PaHV-2 and SA8 (approximately 14 and 10% respectively). The species distance cutoff was determined to be 8.94%, with the method recovering separate species status for PaHV-2 and SA8 and showed that lion and pig-tailed simplex viruses (vs core herpes B strains) were well over the distance species cutoff. CONCLUSIONS We propose designating lion and pig-tailed simplex viruses as separate, individual viral species, and that this may be the first identification of viral cryptic species.
Collapse
Affiliation(s)
- Aaron W Kolb
- Department of Ophthalmology and Visual Sciences, School of Medicine and Public Health, University of Wisconsin-Madison, 550 Bardeen Laboratories, 1300 University Ave, Madison, WI, 53706, USA.
| | - Curtis R Brandt
- Department of Ophthalmology and Visual Sciences, School of Medicine and Public Health, University of Wisconsin-Madison, 550 Bardeen Laboratories, 1300 University Ave, Madison, WI, 53706, USA.,McPherson Eye Research Institute, University of Wisconsin-Madison, Madison, WI, USA.,Department of Medical Microbiology and Immunology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| |
Collapse
|
18
|
Wu AC, Rekant SI, Baca ER, Jenkins RM, Perelygina LM, Hilliard JK, Schmid DS, Leman RF. Notes from the Field: Monkey Bite in a Public Park and Possible Exposure to Herpes B Virus — Thailand, 2018. MMWR. MORBIDITY AND MORTALITY WEEKLY REPORT 2020; 69:247-248. [PMID: 32134906 PMCID: PMC7384445 DOI: 10.15585/mmwr.mm6909a6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
19
|
Maxwell LK, Black DH, Wright GE, Breshears MA, Eberle R. Effective Prophylactic Therapy for Exposure to Monkey B Virus ( Macacine alphaherpesvirus 1). Comp Med 2019; 70:56-66. [PMID: 31810502 DOI: 10.30802/aalas-cm-18-000134] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Zoonotic monkey B virus (Macacine alphaherpesvirus 1; BV) infections are extremely serious and usually fatal. Drugs currently used for treatment were developed for the treatment of herpes simplex virus but are less effective against BV. Effective suppression of viral replication in the skin could prevent the virus from invading the nervous system. To test this hypothesis, the efficacy of topical administration of several drugs against lethal BV infection was evaluated in female BALB/c mice that were infected by scarification. Drugs were then applied to the site of inoculation. As 3% preparations, most drugs were only minimally effective or ineffective. In contrast, ganciclovir and cidofovir were very effective. The ED50 for cidofovir was 0.007%, compared with 1.1% for ganciclovir. At 0.5%, cidofovir protected against both death and neurologic signs, whereas 5% ganciclovir only protected against death but not neurologic involvement. All genotypes of BV were equally susceptible to cidofovir and ganciclovir. For maximal effectiveness, treatment with both cidofovir and ganciclovir had to be initiated within 8 h of infection. Cidofovir was completely protective when administered only on the day of infection, whereas a minimum of 5 d of treatment was required for maximal ganciclovir efficacy. These studies showed that topical cidofovir treatment started soon after BV exposure was very effective in preventing BV from invading the nervous system, whereas ganciclovir treatment was only partially effective. In addition, cidofovir was protective against a ganciclovir-resistant BV mutant, whereas ganciclovir was not. These studies showed that topical cidofovir treatment started soon after BV exposure is more effective than ganciclovir in preventing BV from invading the CNS.
Collapse
Affiliation(s)
- Lara K Maxwell
- Department of Physiological Sciences, Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, Oklahoma;,
| | - Darla H Black
- Department of Veterinary Pathobiology, Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, Oklahoma
| | | | - Melanie A Breshears
- Department of Veterinary Pathobiology, Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, Oklahoma
| | - Richard Eberle
- Department of Veterinary Pathobiology, Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, Oklahoma
| |
Collapse
|
20
|
Devaux CA, Mediannikov O, Medkour H, Raoult D. Infectious Disease Risk Across the Growing Human-Non Human Primate Interface: A Review of the Evidence. Front Public Health 2019; 7:305. [PMID: 31828053 PMCID: PMC6849485 DOI: 10.3389/fpubh.2019.00305] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 10/07/2019] [Indexed: 12/22/2022] Open
Abstract
Most of the human pandemics reported to date can be classified as zoonoses. Among these, there is a long history of infectious diseases that have spread from non-human primates (NHP) to humans. For millennia, indigenous groups that depend on wildlife for their survival were exposed to the risk of NHP pathogens' transmission through animal hunting and wild meat consumption. Usually, exposure is of no consequence or is limited to mild infections. In rare situations, it can be more severe or even become a real public health concern. Since the emergence of acquired immune deficiency syndrome (AIDS), nobody can ignore that an emerging infectious diseases (EID) might spread from NHP into the human population. In large parts of Central Africa and Asia, wildlife remains the primary source of meat and income for millions of people living in rural areas. However, in the past few decades the risk of exposure to an NHP pathogen has taken on a new dimension. Unprecedented breaking down of natural barriers between NHP and humans has increased exposure to health risks for a much larger population, including people living in urban areas. There are several reasons for this: (i) due to road development and massive destruction of ecosystems for agricultural needs, wildlife and humans come into contact more frequently; (ii) due to ecological awareness, many long distance travelers are in search of wildlife discovery, with a particular fascination for African great apes; (iii) due to the attraction for ancient temples and mystical practices, others travelers visit Asian places colonized by NHP. In each case, there is a risk of pathogen transmission through a bite or another route of infection. Beside the individual risk of contracting a pathogen, there is also the possibility of starting a new pandemic. This article reviews the known cases of NHP pathogens' transmission to humans whether they are hunters, travelers, ecotourists, veterinarians, or scientists working on NHP. Although pathogen transmission is supposed to be a rare outcome, Rabies virus, Herpes B virus, Monkeypox virus, Ebola virus, or Yellow fever virus infections are of greater concern and require quick countermeasures from public health professionals.
Collapse
Affiliation(s)
- Christian A. Devaux
- Aix-Marseille Univ, IRD, APHM, MEPHI, IHU-Méditerranée Infection, Marseille, France
- CNRS, Marseille, France
| | - Oleg Mediannikov
- Aix-Marseille Univ, IRD, APHM, MEPHI, IHU-Méditerranée Infection, Marseille, France
| | - Hacene Medkour
- Aix-Marseille Univ, IRD, APHM, MEPHI, IHU-Méditerranée Infection, Marseille, France
| | - Didier Raoult
- Aix-Marseille Univ, IRD, APHM, MEPHI, IHU-Méditerranée Infection, Marseille, France
| |
Collapse
|
21
|
Sawaswong V, Fahsbender E, Altan E, Kemthong T, Deng X, Malaivijitnond S, Payungporn S, Delwart E. High Diversity and Novel Enteric Viruses in Fecal Viromes of Healthy Wild and Captive Thai Cynomolgus Macaques ( Macaca fascicularis). Viruses 2019; 11:E971. [PMID: 31652508 PMCID: PMC6832579 DOI: 10.3390/v11100971] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 10/06/2019] [Accepted: 10/07/2019] [Indexed: 02/06/2023] Open
Abstract
Cynomolgus macaques are common across South East Asian countries including Thailand. The National Primate Research Center of Thailand, Chulalongkorn University (NPRCT-CU) captures wild-borne cynomolgus macaque for research use. Limited information is available on the enteric viruses and possible zoonotic infections into or from cynomolgus macaques. We characterized and compare the fecal virome of two populations; healthy wild-originated captive cynomolgus macaques (n = 43) reared in NPRCT-CU and healthy wild cynomolgus macaques (n = 35). Over 90% of recognized viral sequence reads amplified from feces were from bacterial viruses. Viruses from seven families of mammalian viruses were also detected (Parvoviridae, Anelloviridae, Picornaviridae, Adenoviridae, Papillomaviridae, Herpesviridae, and Caliciviridae). The genomes of a member of a new picornavirus genus we named Mafapivirus, a primate chapparvovirus, and a circular Rep-encoding single-strand (CRESS) DNA virus were also characterized. Higher abundance of CRESS DNA viruses of unknown tropism and invertebrate-tropic ambidensovirus were detected in wild versus captive macaques likely reflecting dietary differences. Short term rearing in captivity did not have a pronounced effect on the diversity of mammalian viruses of wild cynomolgus macaques. This study is the first report of the fecal virome of cynomolgus macaques, non-human primates frequently used in biomedical research and vaccination studies.
Collapse
Affiliation(s)
- Vorthon Sawaswong
- Vitalant Research Institute, San Francisco, CA 94118, USA.
- Department of Biochemistry, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand.
| | - Elizabeth Fahsbender
- Vitalant Research Institute, San Francisco, CA 94118, USA.
- Department of Laboratory Medicine, University of California San Francisco, San Francisco, CA 9413, USA.
| | - Eda Altan
- Vitalant Research Institute, San Francisco, CA 94118, USA.
- Department of Laboratory Medicine, University of California San Francisco, San Francisco, CA 9413, USA.
| | - Taratorn Kemthong
- National Primate Research Center-Chulalongkorn University, Saraburi 18110, Thailand.
| | - Xutao Deng
- Vitalant Research Institute, San Francisco, CA 94118, USA.
| | | | - Sunchai Payungporn
- Department of Biochemistry, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand.
- Center of Excellence in Systems Biology, Chulalongkorn University (CUSB), Bangkok 10330, Thailand.
| | - Eric Delwart
- Vitalant Research Institute, San Francisco, CA 94118, USA.
- Department of Laboratory Medicine, University of California San Francisco, San Francisco, CA 9413, USA.
| |
Collapse
|
22
|
Barkati S, Taher HB, Beauchamp E, Yansouni CP, Ward BJ, Libman MD. Decision Tool for Herpes B Virus Antiviral Prophylaxis after Macaque-Related Injuries in Research Laboratory Workers. Emerg Infect Dis 2019; 25:e190045. [PMID: 31441751 PMCID: PMC6711206 DOI: 10.3201/eid2509.190045] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Macaque-related injuries among primate workers can lead to a potentially fatal B virus encephalomyelitis. We describe a decision tool for evaluating the need for antiviral postexposure prophylaxis and provide a retrospective review of the injuries assessed in our center after its implementation in 2010. Among the injuries studied (n = 251), 40.6% were categorized as high-risk (prophylaxis recommended), 44.2% moderate-risk (consider prophylaxis), and 15.1% low-risk (prophylaxis not recommended). Ten percent of low-risk and 98% of high-risk injuries received prophylaxis (p<0.001). Compared with using universal postexposure prophylaxis, using a decision tool can lead to a standardization of practice and a reduction in prescriptions for antiviral medication.
Collapse
Affiliation(s)
| | | | - Elizabeth Beauchamp
- McGill University Health Centre, Montreal, Quebec, Canada (S. Barkati, C.P. Yansouni, B.J. Ward, M.D. Libman)
- Sultan Qaboos University Hospital, Muscat, Oman (H.B. Taher)
- Hôpital Pierre-Boucher, Longueuil, Quebec (E. Beauchamp)
| | - Cédric P. Yansouni
- McGill University Health Centre, Montreal, Quebec, Canada (S. Barkati, C.P. Yansouni, B.J. Ward, M.D. Libman)
- Sultan Qaboos University Hospital, Muscat, Oman (H.B. Taher)
- Hôpital Pierre-Boucher, Longueuil, Quebec (E. Beauchamp)
| | - Brian J. Ward
- McGill University Health Centre, Montreal, Quebec, Canada (S. Barkati, C.P. Yansouni, B.J. Ward, M.D. Libman)
- Sultan Qaboos University Hospital, Muscat, Oman (H.B. Taher)
- Hôpital Pierre-Boucher, Longueuil, Quebec (E. Beauchamp)
| | - Michael D. Libman
- McGill University Health Centre, Montreal, Quebec, Canada (S. Barkati, C.P. Yansouni, B.J. Ward, M.D. Libman)
- Sultan Qaboos University Hospital, Muscat, Oman (H.B. Taher)
- Hôpital Pierre-Boucher, Longueuil, Quebec (E. Beauchamp)
| |
Collapse
|
23
|
Kennedy M, Sahota A, Wiselka M, van Kampen JJ, Koopmans MP, Tang JW. Managing monkey bites in returning travellers. J Infect 2019; 78:491-503. [DOI: 10.1016/j.jinf.2019.03.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 02/25/2019] [Accepted: 03/01/2019] [Indexed: 11/17/2022]
|
24
|
LeCher JC, Diep N, Krug PW, Hilliard JK. Genistein Has Antiviral Activity against Herpes B Virus and Acts Synergistically with Antiviral Treatments to Reduce Effective Dose. Viruses 2019; 11:v11060499. [PMID: 31159175 PMCID: PMC6630448 DOI: 10.3390/v11060499] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 05/21/2019] [Accepted: 05/30/2019] [Indexed: 11/16/2022] Open
Abstract
Herpes B virus is a deadly zoonotic agent that can be transmitted to humans from the macaque monkey, an animal widely used in biomedical research. Currently, there is no cure for human B virus infection and treatments require a life-long daily regimen of antivirals, namely acyclovir and ganciclovir. Long-term antiviral treatments have been associated with significant debilitating side effects, thus, there is an ongoing search for alternative efficacious antiviral treatment. In this study, the antiviral activity of genistein was quantified against B virus in a primary cell culture model system. Genistein prevented plaque formation of B virus and reduced virus production with an IC50 value of 33 and 46 μM for human and macaque fibroblasts, respectively. Genistein did not interfere directly with viral entry, but instead targeted an event post-viral replication. Finally, we showed that genistein could be used at its IC50 concentration in conjunction with both acyclovir and ganciclovir to reduce their effective dose against B virus with a 93% and 99% reduction in IC50 values, respectively. The results presented here illuminate the therapeutic potential of genistein as an effective antiviral agent against B virus when used alone or in combination with current antiviral therapies.
Collapse
Affiliation(s)
- Julia C LeCher
- Department of Molecular and Cellular Biology, Kennesaw State University, Kennesaw, GA 30189, USA.
- Viral Immunology Center, Department of Biology, Georgia State University, Atlanta, GA 30303, USA.
| | - Nga Diep
- Viral Immunology Center, Department of Biology, Georgia State University, Atlanta, GA 30303, USA.
| | - Peter W Krug
- Viral Immunology Center, Department of Biology, Georgia State University, Atlanta, GA 30303, USA.
| | - Julia K Hilliard
- Viral Immunology Center, Department of Biology, Georgia State University, Atlanta, GA 30303, USA.
| |
Collapse
|
25
|
Clayton AM, Hayes J, Lathrop GW, Powell N. Development of an Occupational Risk Assessment Tool for Laboratory Animal Facilities. APPLIED BIOSAFETY 2019; 24:72-82. [DOI: 10.1177/1535676019831915] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Introduction: Laboratory animal facilities aim to provide excellence in animal care and welfare and support scientific research. Critical to these goals is to ensure a safe work environment for personnel comprising veterinary and animal care, laboratory research, and maintenance staff. Objective: Thus, performing occupational risk assessments allows for evaluation of risks from identified hazards associated with a variety of tasks ongoing in laboratory animal facilities. Methods: Herein, we present the development of an occupational risk assessment tool purposed to capture the dynamics of work performed in laboratory animal facilities, calculate and prioritize identified risks associated with procedures and processes, and inform and evaluate risk mitigations. Results: We also discuss a risk assessment for refining sharps use in nonhuman primate husbandry and care to demonstrate the utility of this tool to improve occupational safety in our animal facility. Conclusion: This tool and framework evolve into a holistic occupational risk management system that identifies, evaluates, and mitigates occupational risks; determines risk acceptability; consistently ensures communication and consultation with frontline personnel, stakeholders, senior leadership, and subject matter experts in biosafety, science, and animal care and welfare; and continuously strives to improve and enhance the operations of laboratory animal facilities.
Collapse
Affiliation(s)
- April M. Clayton
- Division of Scientific Resources, Comparative Medicine Branch, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - James Hayes
- Division of Scientific Resources, Comparative Medicine Branch, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - George W. Lathrop
- Division of Scientific Resources, Comparative Medicine Branch, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Nathaniel Powell
- Division of Scientific Resources, Comparative Medicine Branch, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| |
Collapse
|
26
|
Daly RF, House J, Stanek D, Stobierski MG. Compendium of Measures to Prevent Disease Associated with Animals in Public Settings, 2017. J Am Vet Med Assoc 2018; 251:1268-1292. [PMID: 29154705 DOI: 10.2460/javma.251.11.1268] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
27
|
Wallace JM, Trundy RL. Animal Research Pathology: Regulatory and Safety Considerations. ILAR J 2018; 59:111-118. [PMID: 30715402 DOI: 10.1093/ilar/ily027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Revised: 10/19/2018] [Indexed: 11/13/2022] Open
Abstract
Animal research pathology encompasses a wide array of procedures and may involve work with a variety of animal species and hazards. To protect laboratory personnel and ensure data integrity, pathologists must be familiar with the activities performed in their laboratories and the applicable regulatory and safety requirements. Failure to address issues proactively may result in exposure of personnel to hazardous materials and/or collection of data in a manner that does not conform to animal welfare or quality control standards. This manuscript provides a brief introduction to important animal research pathology regulatory and safety considerations. The importance of close communication between the principal investigator, pathologist, laboratory personnel, Institutional Animal Care and Use Committee, and institutional safety office/experts is emphasized and a mechanism for improving communication is discussed.
Collapse
Affiliation(s)
- J M Wallace
- Vanderbilt University Medical Center in Nashville, Tennessee
| | - R L Trundy
- Biological and Animal Care Safety Section, Vanderbilt Environmental Health & Safety, Vanderbilt University Medical Center, Nashville, Tennessee
| |
Collapse
|
28
|
Management of adult infectious encephalitis in metropolitan France. Med Mal Infect 2017; 47:206-220. [PMID: 28336304 DOI: 10.1016/j.medmal.2017.01.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Accepted: 01/23/2017] [Indexed: 02/06/2023]
Abstract
Infectious encephalitis is a severe disease leading to a high mortality and morbidity. The most frequent causes include Herpes simplex virus, Varicella Zoster virus, Listeria monocytogenes, and Mycobacterium tuberculosis. Urgent treatment is required (anti-infective therapy and nonspecific supportive care). The aim of this study was to define treatment strategy, empirical and after microbiological documentation at 48hours, through a systematic literature review.
Collapse
|
29
|
Abstract
Viruses related to the herpes simplex viruses of humans are present in all nonhuman primate (NHP) species tested and cross species transmission has been documented. The herpesvirus present in macaques, Herpes B virus (BV) rarely causes disease in its natural macaque host. However, when transmitted to a nonnative host, BV has occasionally caused severe and even fatal disease if not treated immediately. Here we present a comprehensive review of the taxonomy, molecular biology, physiology, epidemiology, diagnosis and treatment of BV. We also summarizes what is known about related herpesviruses of other NHP species and the zoonotic potential of these viruses.
Collapse
Affiliation(s)
- R Eberle
- Department of Veterinary Pathobiology, Center for Veterinary Health Sciences, Oklahoma State University, Oklahoma, USA
| | - L Jones-Engel
- Department of Anthropology and Center for Studies in Demography and Ecology, University of Washington, Washington, USA
| |
Collapse
|
30
|
Lee MH, Rostal MK, Hughes T, Sitam F, Lee CY, Japning J, Harden ME, Griffiths A, Basir M, Wolfe ND, Epstein JH, Daszak P. Macacine Herpesvirus 1 in Long-Tailed Macaques, Malaysia, 2009-2011. Emerg Infect Dis 2016; 21:1107-13. [PMID: 26080081 PMCID: PMC4480374 DOI: 10.3201/eid2107.140162] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Virus shedding by 39% of wild-caught macaques creates potential occupational risk for humans. Macacine herpesvirus 1 (MaHV1; B virus) naturally infects macaques (Macaca spp.) and can cause fatal encephalitis in humans. In Peninsular Malaysia, wild macaques are abundant, and translocation is used to mitigate human–macaque conflict. Most adult macaques are infected with MaHV1, although the risk for transmission to persons who handle them during capture and translocation is unknown. We investigated MaHV1 shedding among 392 long-tailed macaques (M. fascicularis) after capture and translocation by the Department of Wildlife and National Parks in Peninsular Malaysia, during 2009–2011. For detection of MaHV1 DNA, PCR was performed on urogenital and oropharyngeal swab samples. Overall, 39% of macaques were shedding MaHV1 DNA; rates of DNA detection did not differ between sample types. This study demonstrates that MaHV1 was shed by a substantial proportion of macaques after capture and transport and suggests that persons handling macaques under these circumstances might be at risk for exposure to MaHV1.
Collapse
|
31
|
Bréhin C, Debuisson C, Mansuy JM, Niphuis H, Buitendijk H, Mengelle C, Grouteau E, Claudet I. Keep children away from macaque monkeys! J Travel Med 2016; 23:taw006. [PMID: 26984356 DOI: 10.1093/jtm/taw006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/29/2016] [Indexed: 11/12/2022]
Abstract
To warn physicians and parents about the risk of macaque bites, we present two pediatric cases (a 4-year-old boy and a 10-year-old girl) of bites sustained while on holiday. The young boy developed febrile dermohypodermitis and was hospitalized for IV antibiotic treatment. He received an initial antirabies vaccine while still in the holiday destination. Except for local wound disinfection and antibiotic ointment, the girl did not receive any specific treatment while abroad. Both were negative for simian herpes PCR. When travelling in countries or cities with endemic simian herpes virus, parents should keep children away from monkeys. Travel agencies, pediatricians and family physicians should better inform families about the zoonotic risk.
Collapse
Affiliation(s)
- Camille Bréhin
- Service d'Accueil des Urgences Pédiatriques, Hôpital des Enfants, CHU Toulouse, France,
| | - Cécile Debuisson
- Service d'Accueil des Urgences Pédiatriques, Hôpital des Enfants, CHU Toulouse, France
| | | | - Henk Niphuis
- Department of Virology, Biomedical Primate Research Centre, Rijswijk, The Netherlands
| | - Hester Buitendijk
- Department of Virology, Biomedical Primate Research Centre, Rijswijk, The Netherlands
| | | | - Erick Grouteau
- Service d'Accueil des Urgences Pédiatriques, Hôpital des Enfants, CHU Toulouse, France
| | - Isabelle Claudet
- Service d'Accueil des Urgences Pédiatriques, Hôpital des Enfants, CHU Toulouse, France
| |
Collapse
|
32
|
Abstract
B virus is endemic in macaque monkeys, which are frequently used for research studies. B virus is a risk for every employee working with macaque monkeys, their tissues or cells. Although the risk for B virus infection is low, the risk of death or permanent neurological deficit is high if an exposure is not promptly evaluated and treated. Researcher training, routine use of personal protective equipment, first aid protocols, and prompt reporting to a provider knowledgeable about B virus treatment are essential to prevent this 70% lethal infection in untreated humans. This article presents the history and pathogenesis of B virus, first aid, treatment, and prevention.
Collapse
|
33
|
Animal and human mucosal tissue models to study HIV biomedical interventions: can we predict success? J Int AIDS Soc 2015; 18:20301. [PMID: 26530077 PMCID: PMC4631705 DOI: 10.7448/ias.18.1.20301] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Revised: 09/10/2015] [Accepted: 09/28/2015] [Indexed: 12/20/2022] Open
Abstract
Introduction Preclinical testing plays an integral role in the development of HIV prevention modalities. Several models are used including humanized mice, non-human primates and human mucosal tissue cultures. Discussion Pharmaceutical development traditionally uses preclinical models to evaluate product safety. The HIV prevention field has extended this paradigm to include models of efficacy, encompassing humanized mice, non-human primates (typically Asian macaques) and human mucosal tissue (such as cervical and colorectal). As our understanding of the biology of HIV transmission improves and includes the influence of human behaviour/biology and co-pathogens, these models have evolved as well to address more complex questions. These three models have demonstrated the effectiveness of systemic (oral) and topical use of antiretroviral drugs. Importantly, pharmacokinetic/pharmacodynamic relationships are being developed and linked to information gathered from human clinical trials. The models are incorporating co-pathogens (bacterial and viral) and the effects of coitus (mucosal fluids) on drug distribution and efficacy. Humanized mice are being tailored in their immune reconstitution to better represent humans. Importantly, human mucosal tissue cultures are now being used in early clinical trials to provide information on product efficacy to more accurately characterize efficacious products to advance to larger clinical trials. While all of these models have made advancements in product development, each has limitations and the data need to be interpreted by keeping these limitations in mind. Conclusions Development and refinement of each of these models has been an iterative process and linkages to data generated among each of them and from human clinical trials are needed to determine their reliability. Preclinical testing has evolved from simply identifying products that demonstrate efficacy prior to clinical trials to defining essential pharmacokinetic/pharmacodynamic relationships under a variety of conditions and has the potential to improve product selection prior to the initiation of large-scale human clinical trials. The goal is to provide researchers with ample information to make conversant decisions that guide optimized and efficient product development.
Collapse
|
34
|
Abstract
BACKGROUND The herpes B virus is a zoonotic agent that is endemic among macaque monkeys only, but can cause fatal encephalomyelitis in humans. CASE REPORT A 26-year-old female presented to a U.S. emergency department after being bitten by a wild macaque monkey. The emergency medicine team administered rabies immunoglobulin and rabies vaccine. The team also prescribed acyclovir for prophylactic coverage against herpes B, a deadly zoonotic agent that is endemic among macaque monkeys. A discussion of background, exposure, transmission, symptoms, treatment for herpes B, including latest data available, literature, and Centers for Disease Control and Prevention guidelines are included. WHY SHOULD AN EMERGENCY PHYSICIAN BE AWARE OF THIS?: Zoonotic exposures can cause infectious diseases, which are unfamiliar and deadly. The emergency physician's knowledge of the association between the deadly herpes B infection and wild macaque monkey may expedite treatment and be instrumental in patient morbidity and survival.
Collapse
|
35
|
Riesland NJ, Wilde H. Expert Review of Evidence Bases for Managing Monkey Bites in Travelers. J Travel Med 2015; 22:259-62. [PMID: 26031198 DOI: 10.1111/jtm.12214] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Revised: 02/26/2015] [Accepted: 04/06/2015] [Indexed: 11/28/2022]
Affiliation(s)
| | - Henry Wilde
- Department of Infectious Diseases, Chulalongkorn University Faculty of Medicine, Bangkok, Thailand
| |
Collapse
|
36
|
Bauer C. The baboon (Papio sp.) as a model for female reproduction studies. Contraception 2015; 92:120-3. [PMID: 26072741 DOI: 10.1016/j.contraception.2015.06.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Revised: 06/01/2015] [Accepted: 06/04/2015] [Indexed: 01/11/2023]
Abstract
BIOLOGY AND REPRODUCTION Due to their size and anatomical similarity to humans, baboons make an excellent model for reproductive studies. Baboons have a simple short cervix, muscular uterus, ovaries just lateral to the uterus and similar vasculature to that of humans. Because of the size of the animals, instruments designed for use in women can be readily used on baboons. Noninvasive determination of phase of estrous cycle is readily made by observation of changes in perineal sexual skin turgor and color. ADVANTAGES Some advantages of use of baboons compared to other nonhuman primates is that they are nonseasonal breeders allowing for studies to be conducted year round, have minimal infectious disease risks to humans as they do not carry Herpes B and have a social structure allowing for easy group formation. Baboons serve as good models for many conditions in humans and should be considered for studies investigating reproductive issues.
Collapse
Affiliation(s)
- Cassondra Bauer
- Southwest National Primate Research Center, Texas Biomedical Research Institute, PO Box 760549, San Antonio, TX 78245-0549, USA.
| |
Collapse
|
37
|
Abstract
Human risks of acquiring a zoonotic disease from animals used in biomedical research have declined over the last decade because higher quality research animals have defined microbiologic profiles. Even with diminished risks, the potential for exposure to infectious agents still exists, especially from larger species such as nonhuman primates, which may be obtained from the wild, and from livestock, dogs, ferrets, and cats, which are generally not raised in barrier facilities and are not subject to the intensive health monitoring performed routinely on laboratory rodents and rabbits. Additionally, when laboratory animals are used as models for infectious disease studies, exposure to microbial pathogens presents a threat to human health. Also, with the recognition of emerging diseases, some of which are zoonotic, constant vigilance and surveillance of laboratory animals for zoonotic diseases are still required.
Collapse
Affiliation(s)
- James G. Fox
- Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Glen Otto
- Animal Resources Ctr University Texas Austin, Austin, TX, USA
| | - Lesley A. Colby
- Department of comparative Medicine University of Washington, Seattle, WA, USA
| |
Collapse
|
38
|
Xenozoonoses. LABORATORY ANIMAL MEDICINE 2015. [PMCID: PMC7150069 DOI: 10.1016/b978-0-12-409527-4.00029-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Immunological and technical advances have led to tremendous increases in the number of people potentially able to benefit from allotransplantation. Ironically, it is the success of the field that has led to a renewed interest in xenotransplantation during the past several decades. To a large part, this has occurred because of the great scarcity of human organ and tissue donors. However, it has expanded to include the use of cells from animals into humans such as porcine islet cells for diabetes or extracorporeal perfusion of human blood through animal organs or cells. Similar to allotransplantation, issues regarding transmission of infections from the graft to the human recipient were brought up for consideration with these procedures in the 1990s (Michaels and Simmons, 1994; Chapman et al., 1995; Hammel et al., 1998; Fishman et al., 1998). A risk for infection exists with the use of any biologic agent regardless of whether it is from a human or an animal source. Accordingly, transmission of infections from human organs, tissues, or cells is a well-recognized cause of disease after allotransplantation (Ison and Grossi, 2013; Green and Michaels, 2012). As the human graft shortage continues, newer cellular therapies are explored. Thus, attention continues to be given to the potential use of xenogeneic organs, tissues, or cells for human maladies through xenotransplantation. The potential for novel zoonotic infections to emerge because of xenotransplantation (xenozoonoses or xenosis) led to a debate on whether the field should be permitted to progress. This chapter reviews the issues of xenotransplantation related to infections from animals to humans. Lessons learned from infections with prior nonhuman primate xenotransplantation and human allotransplantation are used to help inform about risks with newer xenogeneic procedures. In addition, information on known zoonoses is reviewed to better develop constructs to decrease the hazard of infection with these novel procedures.
Collapse
|
39
|
Imura K, Chambers JK, Uchida K, Nomura S, Suzuki S, Nakayama H, Miwa Y. Herpes simplex virus type 1 infection in two pet marmosets in Japan. J Vet Med Sci 2014; 76:1667-70. [PMID: 25649955 PMCID: PMC4300388 DOI: 10.1292/jvms.14-0374] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
An 8-month-old common marmoset
(Callithrix jacchus) was presented with tic-like symptoms, and a
2-year-old pigmy marmoset (Callithrix pygmaea) was presented with dyspnea
and hypersalivation. Both monkeys died within a few days, and necropsies were performed.
Histopathological examinations revealed ulcerative stomatitis with epithelial cell
swelling and eosinophilic intranuclear inclusion bodies in the oral epithelium of both
cases. In the central and peripheral nervous systems, neuronal cell degeneration with
intranuclear inclusion bodies was observed. Immunohistochemical examination using
anti-herpes simplex virus type 1 antibody revealed virus antigens in both cases. Both
animals had been kept as pets with limited exposure to the ambient environment except via
their owners. Therefore, herpes simplex virus type-1 was probably acquired from close
contact with their owners.
Collapse
Affiliation(s)
- Kei Imura
- Miwa Exotic Animal Hospital, 1-25-5, Komagome, Toshima-ku, Tokyo 170-0003, Japan
| | | | | | | | | | | | | |
Collapse
|
40
|
Bowman JJ, Burbelo PD, Gill RB, Sauri MA, Schmitt JM, Cohen JI. A seroprevalence study of primate workers for asymptomatic rhesus cytomegalovirus infection. J Clin Virol 2014; 60:411-3. [PMID: 24890818 DOI: 10.1016/j.jcv.2013.07.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2013] [Revised: 07/10/2013] [Accepted: 07/12/2013] [Indexed: 10/25/2022]
Abstract
BACKGROUND Human cytomegalovirus (HCMV) infection can cause severe disease in neonates and immunocompromised persons, and infectious mononucleosis in healthy adults. While, rhesus CMV (RhCMV) infects human cells in culture, it is unknown whether the virus can infect humans. OBJECTIVES We sought to determine whether primate workers, including those with injuries from animals, might be infected asymptomatically with RhCMV. STUDY DESIGN We developed serologic assays that distinguish RhCMV from HCMV antibodies. We tested two groups of primate workers: those with documented injuries or mucosal splashes associated with rhesus macaques, and those with no documented exposure who worked with these animals. RESULTS None of over 200 primate workers, including 119 with injuries or mucosal splashes associated with exposures to macaques, were seropositive for RhCMV. CONCLUSIONS The frequency of asymptomatic RhCMV infection in persons who work with rhesus macaques was <0.5% (<1/200 primate workers).
Collapse
Affiliation(s)
- J Jason Bowman
- Medical Virology Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Peter D Burbelo
- Neurobiology and Pain Therapeutics Section, Laboratory of Sensory Biology, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, United States
| | - Rachel B Gill
- Medical Virology Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Michael A Sauri
- Occupational Health Consultants, Rockville, MD, United States
| | - James M Schmitt
- Occupational Medical Service, Division of Occupational Safety and Health, Office of the Director, National Institutes of Health, Bethesda, MD, United States
| | - Jeffrey I Cohen
- Medical Virology Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States.
| |
Collapse
|
41
|
Compendium of measures to prevent disease associated with animals in public settings, 2013. J Am Vet Med Assoc 2014; 243:1270-88. [PMID: 24134577 DOI: 10.2460/javma.243.9.1270] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
42
|
Encefaliti infettive. Neurologia 2014. [DOI: 10.1016/s1634-7072(14)66664-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
43
|
Affiliation(s)
- Nour Akhras
- Children's Hospital of Michigan, Detroit, MI 48201, USA.
| | | |
Collapse
|
44
|
Abstract
Central nervous system (CNS) infections—i.e., infections involving the brain (cerebrum and cerebellum), spinal cord, optic nerves, and their covering membranes—are medical emergencies that are associated with substantial morbidity, mortality, or long-term sequelae that may have catastrophic implications for the quality of life of affected individuals. Acute CNS infections that warrant neurointensive care (ICU) admission fall broadly into three categories—meningitis, encephalitis, and abscesses—and generally result from blood-borne spread of the respective microorganisms. Other causes of CNS infections include head trauma resulting in fractures at the base of the skull or the cribriform plate that can lead to an opening between the CNS and the sinuses, mastoid, the middle ear, or the nasopharynx. Extrinsic contamination of the CNS can occur intraoperatively during neurosurgical procedures. Also, implanted medical devices or adjunct hardware (e.g., shunts, ventriculostomies, or external drainage tubes) and congenital malformations (e.g., spina bifida or sinus tracts) can become colonized and serve as sources or foci of infection. Viruses, such as rabies, herpes simplex virus, or polioviruses, can spread to the CNS via intraneural pathways resulting in encephalitis. If infection occurs at sites (e.g., middle ear or mastoid) contiguous with the CNS, infection may spread directly into the CNS causing brain abscesses; alternatively, the organism may reach the CNS indirectly via venous drainage or the sheaths of cranial and spinal nerves. Abscesses also may become localized in the subdural or epidural spaces. Meningitis results if bacteria spread directly from an abscess to the subarachnoid space. CNS abscesses may be a result of pyogenic meningitis or from septic emboli associated with endocarditis, lung abscess, or other serious purulent infections. Breaches of the blood–brain barrier (BBB) can result in CNS infections. Causes of such breaches include damage (e.g., microhemorrhage or necrosis of surrounding tissue) to the BBB; mechanical obstruction of microvessels by parasitized red blood cells, leukocytes, or platelets; overproduction of cytokines that degrade tight junction proteins; or microbe-specific interactions with the BBB that facilitate transcellular passage of the microorganism. The microorganisms that cause CNS infections include a wide range of bacteria, mycobacteria, yeasts, fungi, viruses, spirochaetes (e.g., neurosyphilis), and parasites (e.g., cerebral malaria and strongyloidiasis). The clinical picture of the various infections can be nonspecific or characterized by distinct, recognizable clinical syndromes. At some juncture, individuals with severe acute CNS infections require critical care management that warrants neuro-ICU admission. The implications for CNS infections are serious and complex and include the increased human and material resources necessary to manage very sick patients, the difficulties in triaging patients with vague or mild symptoms, and ascertaining the precise cause and degree of CNS involvement at the time of admission to the neuro-ICU. This chapter addresses a wide range of severe CNS infections that are better managed in the neuro-ICU. Topics covered include the medical epidemiology of the respective CNS infection; discussions of the relevant neuroanatomy and blood supply (essential for understanding the pathogenesis of CNS infections) and pathophysiology; symptoms and signs; diagnostic procedures, including essential neuroimaging studies; therapeutic options, including empirical therapy where indicated; and the perennial issue of the utility and effectiveness of steroid therapy for certain CNS infections. Finally, therapeutic options and alternatives are discussed, including the choices of antimicrobial agents best able to cross the BBB, supportive therapy, and prognosis.
Collapse
Affiliation(s)
- A Joseph Layon
- Pulmonary and Critical Care Medicine, Geisinger Health System, Danville, Pennsylvania USA
| | - Andrea Gabrielli
- Departments of Anesthesiology & Surgery, University of Florida College of Medicine, Gainesville, Florida USA
| | | |
Collapse
|
45
|
Dugan MA, Courtney C, Howerth EW. Pathology in practice. B virus infection in a rhesus macaque. J Am Vet Med Assoc 2013; 242:1233-5. [PMID: 23600779 DOI: 10.2460/javma.242.9.1233] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Affiliation(s)
- Melissa A Dugan
- Department of Pathology, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA
| | | | | |
Collapse
|
46
|
Abstract
Bites from Macaca mulatta monkeys, native to Afghanistan, can cause serious infections. To determine risk for US military members in Afghanistan, we reviewed records for September-December 2011. Among 126 animal bites and exposures, 10 were monkey bites. Command emphasis is vital for preventing monkey bites; provider training and bite reporting promote postexposure treatment.
Collapse
Affiliation(s)
- Luke E Mease
- US Army Combined Joint Task Force–1, Bagram Air Field, Afghanistan.
| | | |
Collapse
|
47
|
Vasireddi M, Hilliard J. Herpes B virus, macacine herpesvirus 1, breaks simplex virus tradition via major histocompatibility complex class I expression in cells from human and macaque hosts. J Virol 2012; 86:12503-11. [PMID: 22973043 PMCID: PMC3497696 DOI: 10.1128/jvi.01350-12] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2012] [Accepted: 09/07/2012] [Indexed: 01/15/2023] Open
Abstract
B virus of the family Herpesviridae is endemic to rhesus macaques but results in 80% fatality in untreated humans who are zoonotically infected. Downregulation of major histocompatibility complex (MHC) class I in order to evade CD8(+) T-cell activation is characteristic of most herpesviruses. Here we examined the cell surface presence and total protein expression of MHC class I molecules in B virus-infected human foreskin fibroblast cells and macaque kidney epithelial cells in culture, which are representative of foreign and natural host initial target cells of B virus. Our results show <20% downregulation of surface MHC class I molecules in either type of host cells infected with B virus, which is statistically insignificantly different from that observed in uninfected cells. We also examined the surface expression of MHC class Ib molecules, HLA-E and HLA-G, involved in NK cell inhibition. Our results showed significant upregulation of HLA-E and HLA-G in host cells infected with B virus relative to the amounts observed in other herpesvirus-infected cells. These results suggest that B virus-infected cell surfaces maintain normal levels of MHC class Ia molecules, a finding unique among simplex viruses. This is a unique divergence in immune evasion for B virus, which, unlike human simplex viruses, does not inhibit the transport of peptides for loading onto MHC class Ia molecules because B virus ICP47 lacks a transporter-associated protein binding domain. The fact that MHC class Ib molecules were significantly upregulated has additional implications for host-pathogen interactions.
Collapse
Affiliation(s)
- Mugdha Vasireddi
- Viral Immunology Center, Department of Biology, Georgia State University, Atlanta, Georgia, USA
| | | |
Collapse
|
48
|
Johnson B. Animal Bytes. APPLIED BIOSAFETY 2012. [DOI: 10.1177/153567601201700207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
49
|
Schapiro SJ, Bernacky BJ. Socialization strategies and disease transmission in captive colonies of nonhuman primates. Am J Primatol 2012; 74:518-27. [PMID: 21905063 PMCID: PMC3247624 DOI: 10.1002/ajp.21001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2011] [Revised: 08/02/2011] [Accepted: 08/14/2011] [Indexed: 11/11/2022]
Abstract
In captive research environments for nonhuman primates (NHP), social housing strategies are often in conflict with protocols designed to minimize disease transmission. This is particularly true in breeding colonies, and is especially relevant when attempting to eliminate specific pathogens from a population of primates. Numerous strategies have been used to establish such specific pathogen free (SPF) breeding colonies (primarily of macaques), ranging from nursery rearing of neonates to single housing of socially reared yearlings to the rearing of infants in large social groups. All these strategies attempt to balance the effects of the chosen socialization strategy on parameters related to disease transmission, including the ultimate elimination of the target pathogens. Such strategies may affect the overall disease states of NHP breeding colonies through selective breeding processes. This can occur either by creating subpopulations of animals that do not have target diseases (SPF colonies), but may have other issues; or by creating situations in which the "best" animals are sold and the breeding colony is stocked with animals that may be more disease susceptible than those that were sold. The disease states of NHP research colonies also may be affected by selective utilization programs, in which animals removed from the breeding colony for health/behavior reasons, are preferentially chosen for use in scientific investigations. Such utilization criteria raise the question of whether ideal subjects are being chosen for use in research. Finally, captive primate colonies, where both socialization and disease states are intensely managed, may provide opportunities for those testing predictions from models of the interactions of socialization and disease transmission in the evolution of wild populations of NHP. This would be especially true for some extreme conditions of these disease ecology models, given the exceedingly high social densities and levels of pathogen control that exist in many captive nonhuman primate colonies.
Collapse
Affiliation(s)
- Steven J Schapiro
- Department of Veterinary Sciences, Michale E. Keeling Center for Comparative Medicine and Research, The University of Texas MD Anderson Cancer Center, Bastrop, Texas, USA.
| | | |
Collapse
|
50
|
Zhu L, Han JB, Zhang XH, Ma JP, Lv LB, Zhang GH, Zheng YT. [Epidemiological survey of a captive Chinese rhesus macaque breeding colony in Yunnan for SRV, STLV and BV]. DONG WU XUE YAN JIU = ZOOLOGICAL RESEARCH 2012; 33:49-54. [PMID: 22345008 DOI: 10.3724/sp.j.1141.2012.01049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Nonhuman primates are critical resources for biomedical research. Rhesus macaque is a popularly used laboratory nonhuman primate that share many characteristics with humans. However, rhesus macaques are the natural host of two exogenous retroviruses, SRV (simian type D retrovirus) and STLV (simian T lymphotropic virus). SRV and STLV may introduce potentially significant confounding factors into the study of AIDS model. Moreover, B virus (ceropithecine herpesvirus 1) is likely to harm not only rhesus macaque but also humans in experiments involving rhesus macaque. Yunnan province has large-scale breeding colonies of Chinese rhesus macaque. Therefore there is an urgent need for SPF Chinese rhesus macaque colonies. Here we investigated SRV, STLV and BV infections in 411 Chinese rhesus macaque by PCR technique. The results showed that the prevalence of SRV, STLV and BV among Chinese rhesus macaque breeding colony was 19.71% (81/411), 13.38% (55/411) and 23.11% (95/411), respectively. Comparison of viruses infection in different age-groups and male/female of Chinese rhesus macaque was also analyzed. This study will contribute to establishment of SPF Chinese rhesus macaque breeding colony.
Collapse
Affiliation(s)
- Lin Zhu
- Chinese Academy of Sciences, Kunming, China
| | | | | | | | | | | | | |
Collapse
|