1
|
Gui R, Ren Y, Wang Z, Li Y, Wu C, Li X, Li M, Li Y, Qian L, Xiong Y. Deciphering interleukin-18 in diabetes and its complications: Biological features, mechanisms, and therapeutic perspectives. Obes Rev 2024; 25:e13818. [PMID: 39191434 DOI: 10.1111/obr.13818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 07/16/2024] [Accepted: 08/02/2024] [Indexed: 08/29/2024]
Abstract
Interleukin-18 (IL-18), a potent and multifunctional pro-inflammatory cytokine, plays a critical role in regulating β-cell failure, β-cell death, insulin resistance, and various complications of diabetes mellitus (DM). It exerts its effects by triggering various signaling pathways, enhancing the production of pro-inflammatory cytokines and nitric oxide (NO), as well as promoting immune cells infiltration and β-cells death. Abnormal alterations in IL-18 levels have been revealed to be strongly associated with the onset and development of DM and its complications. Targeting IL-18 may present a novel and promising approach for DM therapy. An increasing number of IL-18 inhibitors, including chemical and natural inhibitors, have been developed and have been shown to protect against DM and diabetic complications. This review provides a comprehensive understanding of the production, biological functions, action mode, and activated signaling pathways of IL-18. Next, we shed light on how IL-18 contributes to the pathogenesis of DM and its associated complications with links to its roles in the modulation of β-cell failure and death, insulin resistance in various tissues, and pancreatitis. Furthermore, the therapeutic potential of targeting IL-18 for the diagnosis and treatment of DM is also highlighted. We hope that this review will help us better understand the functions of IL-18 in the pathogenesis of DM and its complications, providing novel strategies for DM diagnosis and treatment.
Collapse
Affiliation(s)
- Runlin Gui
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences and Medicine, Northwest University, Xi'an, Shaanxi, China
- Xi'an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Xi'an No.3 Hospital, the Affiliated Hospital of Northwest University, Xi'an, Shaanxi, China
| | - Yuanyuan Ren
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences and Medicine, Northwest University, Xi'an, Shaanxi, China
| | - Zhen Wang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences and Medicine, Northwest University, Xi'an, Shaanxi, China
| | - Yang Li
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences and Medicine, Northwest University, Xi'an, Shaanxi, China
| | - Chengsong Wu
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences and Medicine, Northwest University, Xi'an, Shaanxi, China
| | - Xiaofang Li
- Department of Gastroenterology, Xi'an No.3 Hospital, the Affiliated Hospital of Northwest University, Xi'an, Shaanxi, China
| | - Man Li
- Department of Endocrinology, Xi'an No.3 Hospital, the Affiliated Hospital of Northwest University, Xi'an, Shaanxi, China
| | - Yujia Li
- Department of Traditional Chinese Medicine, Xi'an No.3 Hospital, the Affiliated Hospital of Northwest University, Xi'an, Shaanxi, China
| | - Lu Qian
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences and Medicine, Northwest University, Xi'an, Shaanxi, China
- Xi'an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Xi'an No.3 Hospital, the Affiliated Hospital of Northwest University, Xi'an, Shaanxi, China
- Scientific Research Center, Xi'an Mental Health Center, Xi'an, Shaanxi, China
| | - Yuyan Xiong
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences and Medicine, Northwest University, Xi'an, Shaanxi, China
- Xi'an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Xi'an No.3 Hospital, the Affiliated Hospital of Northwest University, Xi'an, Shaanxi, China
| |
Collapse
|
2
|
Mohammad ZB, Yudin SCY, Goldberg BJ, Serra KL, Klegeris A. Exploring neuroglial signaling: diversity of molecules implicated in microglia-to-astrocyte neuroimmune communication. Rev Neurosci 2024:revneuro-2024-0081. [PMID: 39240134 DOI: 10.1515/revneuro-2024-0081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 08/12/2024] [Indexed: 09/07/2024]
Abstract
Effective communication between different cell types is essential for brain health, and dysregulation of this process leads to neuropathologies. Brain glial cells, including microglia and astrocytes, orchestrate immune defense and neuroimmune responses under pathological conditions during which interglial communication is indispensable. Our appreciation of the complexity of these processes is rapidly increasing due to recent advances in molecular biology techniques, which have identified numerous phenotypic states of both microglia and astrocytes. This review focuses on microglia-to-astrocyte communication facilitated by secreted neuroimmune modulators. The combinations of interleukin (IL)-1α, tumor necrosis factor (TNF), plus complement component C1q as well as IL-1β plus TNF are already well-established microglia-derived stimuli that induce reactive phenotypes in astrocytes. However, given the large number of inflammatory mediators secreted by microglia and the rapidly increasing number of distinct functional states recognized in astrocytes, it can be hypothesized that many more intercellular signaling molecules exist. This review identifies the following group of cytokines and gliotransmitters that, while not established as interglial mediators yet, are known to be released by microglia and elicit functional responses in astrocytes: IL-10, IL-12, IL-18, transforming growth factor (TGF)-β, interferon (IFN)-γ, C-C motif chemokine ligand (CCL)5, adenosine triphosphate (ATP), l-glutamate, and prostaglandin E2 (PGE2). The review of molecular mechanisms engaged by these mediators reveals complex, partially overlapping signaling pathways implicated in numerous neuropathologies. Additionally, lack of human-specific studies is identified as a significant knowledge gap. Further research on microglia-to-astrocyte communication is warranted, as it could discover novel interglial signaling-targeted therapies for diverse neurological disorders.
Collapse
Affiliation(s)
- Zainab B Mohammad
- Laboratory of Cellular and Molecular Pharmacology, Department of Biology, University of British Columbia Okanagan Campus, Kelowna, BC, V1V 1V7, Canada
| | - Samantha C Y Yudin
- Laboratory of Cellular and Molecular Pharmacology, Department of Biology, University of British Columbia Okanagan Campus, Kelowna, BC, V1V 1V7, Canada
| | - Benjamin J Goldberg
- Laboratory of Cellular and Molecular Pharmacology, Department of Biology, University of British Columbia Okanagan Campus, Kelowna, BC, V1V 1V7, Canada
| | - Kursti L Serra
- Laboratory of Cellular and Molecular Pharmacology, Department of Biology, University of British Columbia Okanagan Campus, Kelowna, BC, V1V 1V7, Canada
| | - Andis Klegeris
- Laboratory of Cellular and Molecular Pharmacology, Department of Biology, University of British Columbia Okanagan Campus, Kelowna, BC, V1V 1V7, Canada
| |
Collapse
|
3
|
Jiang L, Lunding LP, Webber WS, Beckmann K, Azam T, Falkesgaard Højen J, Amo-Aparicio J, Dinarello A, Nguyen TT, Pessara U, Parera D, Orlicky DJ, Fischer S, Wegmann M, Dinarello CA, Li S. An antibody to IL-1 receptor 7 protects mice from LPS-induced tissue and systemic inflammation. Front Immunol 2024; 15:1427100. [PMID: 38983847 PMCID: PMC11231367 DOI: 10.3389/fimmu.2024.1427100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 06/10/2024] [Indexed: 07/11/2024] Open
Abstract
Introduction Interleukin-18 (IL-18), a pro-inflammatory cytokine belonging to the IL-1 Family, is a key mediator ofautoinflammatory diseases associated with the development of macrophage activation syndrome (MAS).High levels of IL-18 correlate with MAS and COVID-19 severity and mortality, particularly in COVID-19patients with MAS. As an inflammation inducer, IL-18 binds its receptor IL-1 Receptor 5 (IL-1R5), leadingto the recruitment of the co-receptor, IL-1 Receptor 7 (IL-1R7). This heterotrimeric complex subsequentlyinitiates downstream signaling, resulting in local and systemic inflammation. Methods We reported earlier the development of a novel humanized monoclonal anti-human IL-1R7 antibody whichspecifically blocks the activity of human IL-18 and its inflammatory signaling in human cell and wholeblood cultures. In the current study, we further explored the strategy of blocking IL-1R7 inhyperinflammation in vivo using animal models. Results We first identified an anti-mouse IL-1R7 antibody that significantly suppressed mouse IL-18 andlipopolysaccharide (LPS)-induced IFNg production in mouse splenocyte and peritoneal cell cultures. Whenapplied in vivo, the antibody reduced Propionibacterium acnes and LPS-induced liver injury and protectedmice from tissue and systemic hyperinflammation. Importantly, anti-IL-1R7 significantly inhibited plasma,liver cell and spleen cell IFNg production. Also, anti-IL-1R7 downregulated plasma TNFa, IL-6, IL-1b,MIP-2 production and the production of the liver enzyme ALT. In parallel, anti-IL-1R7 suppressed LPSinducedinflammatory cell infiltration in lungs and inhibited the subsequent IFNg production andinflammation in mice when assessed using an acute lung injury model. Discussion Altogether, our data suggest that blocking IL-1R7 represents a potential therapeutic strategy to specificallymodulate IL-18-mediated hyperinflammation, warranting further investigation of its clinical application intreating IL-18-mediated diseases, including MAS and COVID-19.
Collapse
Affiliation(s)
- Liqiong Jiang
- Department of Medicine, University of Colorado Denver, Aurora, CO, United States
| | - Lars P. Lunding
- Division of Lung Immunology, Priority Area of Chronic Lung Diseases, Research Center Borstel-Leibniz Lung Center, Borstel, Germany
- Airway Research Center North, Member of the German Center for Lung Research (DZL), Giessen, Germany
| | - William S. Webber
- Department of Medicine, University of Colorado Denver, Aurora, CO, United States
| | | | - Tania Azam
- Department of Medicine, University of Colorado Denver, Aurora, CO, United States
| | - Jesper Falkesgaard Højen
- Department of Medicine, University of Colorado Denver, Aurora, CO, United States
- Department of Infectious Diseases, Aarhus University Hospital, Aarhus, Denmark
| | - Jesus Amo-Aparicio
- Department of Medicine, University of Colorado Denver, Aurora, CO, United States
| | - Alberto Dinarello
- Department of Medicine, University of Colorado Denver, Aurora, CO, United States
| | - Tom T. Nguyen
- Mucosal Inflammation Program and Division of Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, Children’s Hospital Colorado, University of Colorado, Aurora, CO, United States
| | - Ulrich Pessara
- MAB Discovery GmbH, Polling, Germany
- IcanoMAB GmbH, Polling, Germany
| | - Daniel Parera
- MAB Discovery GmbH, Polling, Germany
- IcanoMAB GmbH, Polling, Germany
| | - David J. Orlicky
- Department of Pathology, University of Colorado Denver Anschutz Medical Campus, Aurora, CO, United States
| | - Stephan Fischer
- MAB Discovery GmbH, Polling, Germany
- IcanoMAB GmbH, Polling, Germany
| | - Michael Wegmann
- Division of Lung Immunology, Priority Area of Chronic Lung Diseases, Research Center Borstel-Leibniz Lung Center, Borstel, Germany
- Airway Research Center North, Member of the German Center for Lung Research (DZL), Giessen, Germany
| | - Charles A. Dinarello
- Department of Medicine, University of Colorado Denver, Aurora, CO, United States
| | - Suzhao Li
- Department of Medicine, University of Colorado Denver, Aurora, CO, United States
| |
Collapse
|
4
|
Andreu-Sánchez S, Ripoll-Cladellas A, Culinscaia A, Bulut O, Bourgonje AR, Netea MG, Lansdorp P, Aubert G, Bonder MJ, Franke L, Vogl T, van der Wijst MG, Melé M, Van Baarle D, Fu J, Zhernakova A. Antibody signatures against viruses and microbiome reflect past and chronic exposures and associate with aging and inflammation. iScience 2024; 27:109981. [PMID: 38868191 PMCID: PMC11167443 DOI: 10.1016/j.isci.2024.109981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 04/16/2024] [Accepted: 05/13/2024] [Indexed: 06/14/2024] Open
Abstract
Encounters with pathogens and other molecules can imprint long-lasting effects on our immune system, influencing future physiological outcomes. Given the wide range of microbes to which humans are exposed, their collective impact on health is not fully understood. To explore relations between exposures and biological aging and inflammation, we profiled an antibody-binding repertoire against 2,815 microbial, viral, and environmental peptides in a population cohort of 1,443 participants. Utilizing antibody-binding as a proxy for past exposures, we investigated their impact on biological aging, cell composition, and inflammation. Immune response against cytomegalovirus (CMV), rhinovirus, and gut bacteria relates with telomere length. Single-cell expression measurements identified an effect of CMV infection on the transcriptional landscape of subpopulations of CD8 and CD4 T-cells. This examination of the relationship between microbial exposures and biological aging and inflammation highlights a role for chronic infections (CMV and Epstein-Barr virus) and common pathogens (rhinoviruses and adenovirus C).
Collapse
Affiliation(s)
- Sergio Andreu-Sánchez
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
- Department of Pediatrics, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Aida Ripoll-Cladellas
- Life Sciences Department, Barcelona Supercomputing Center, 08034 Barcelona, Catalonia, Spain
| | - Anna Culinscaia
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Ozlem Bulut
- Department of Internal Medicine and Radboud Center for Infectious Diseases (RCI), Radboudumc, Nijmegen, the Netherlands
| | - Arno R. Bourgonje
- Department of Gastroenterology and Hepatology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
- The Henry D. Janowitz Division of Gastroenterology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Mihai G. Netea
- Department of Internal Medicine and Radboud Center for Infectious Diseases (RCI), Radboudumc, Nijmegen, the Netherlands
- Department for Immunology & Metabolism, Life and Medical Sciences Institute (LIMES), University of Bonn, Bonn, Germany
| | - Peter Lansdorp
- Terry Fox Laboratory, British Columbia Cancer Research Center, Vancouver, BC, Canada
- Departments of Hematology and Medical Genetics, University of British Columbia, Vancouver, BC, Canada
| | - Geraldine Aubert
- Terry Fox Laboratory, British Columbia Cancer Research Center, Vancouver, BC, Canada
- Repeat Diagnostics Inc, Vancouver, BC, Canada
| | - Marc Jan Bonder
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Lude Franke
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Thomas Vogl
- Center for Cancer Research, Medical University of Vienna, Wien, Austria
| | - Monique G.P. van der Wijst
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Marta Melé
- Life Sciences Department, Barcelona Supercomputing Center, 08034 Barcelona, Catalonia, Spain
| | - Debbie Van Baarle
- Department of Medical Microbiology and Infection Prevention, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Jingyuan Fu
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
- Department of Pediatrics, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Alexandra Zhernakova
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| |
Collapse
|
5
|
Campbell RE, Chen CH, Edelstein CL. Overview of Antibiotic-Induced Nephrotoxicity. Kidney Int Rep 2023; 8:2211-2225. [PMID: 38025228 PMCID: PMC10658282 DOI: 10.1016/j.ekir.2023.08.031] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 08/14/2023] [Accepted: 08/21/2023] [Indexed: 12/01/2023] Open
Abstract
Drug-induced nephrotoxicity accounts for up to 60% of cases of acute kidney injury (AKI) in hospitalized patients and is associated with increased morbidity and mortality in both adults and children. Antibiotics are one of the most common causes of drug-induced nephrotoxicity. Mechanisms of antibiotic-induced nephrotoxicity include glomerular injury, tubular injury or dysfunction, distal tubular obstruction from casts, and acute interstitial nephritis (AIN) mediated by a type IV (delayed-type) hypersensitivity response. Clinical manifestations of antibiotic-induced nephrotoxicity include acute tubular necrosis (ATN), AIN, and Fanconi syndrome. Given the potential nephrotoxic effects of antibiotics on critically ill patients, the use of novel biomarkers can provide information to optimize dosing and duration of treatment and can help prevent nephrotoxicity when traditional markers, such as creatinine, are unreliable. Use of novel kidney specific biomarkers, such as cystatin C and urinary kidney injury molecule-1 (KIM-1), may result in earlier detection of AKI, dose adjustment, or discontinuation of antibiotic and development of nonnephrotoxic antibiotics.
Collapse
Affiliation(s)
- Ruth E. Campbell
- Division of Renal Diseases and Hypertension, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Chang Huei Chen
- Division of Renal Diseases and Hypertension, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Charles L. Edelstein
- Division of Renal Diseases and Hypertension, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| |
Collapse
|
6
|
Puasri P, Dechkhajorn W, Dekumyoy P, Yoonuan T, Ampawong S, Reamtong O, Boonyuen U, Benjathummarak S, Maneerat Y. Regulation of immune response against third-stage Gnathostoma spinigerum larvae by human genes. Front Immunol 2023; 14:1218965. [PMID: 37600806 PMCID: PMC10436992 DOI: 10.3389/fimmu.2023.1218965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 07/14/2023] [Indexed: 08/22/2023] Open
Abstract
Background Gnathostomiasis is an important zoonosis in tropical areas that is mainly caused by third-stage Gnathostoma spinigerum larvae (G. spinigerum L3). Objectives This study aimed to prove whether G. spinigerum L3 produces extracellular vesicles (EVs) and investigate human gene profiles related to the immune response against the larvae. Methods We created an immune cell model using normal human peripheral blood mononuclear cells (PBMCs) co-cultured with the larvae for 1 and 3 days, respectively. The PBMCs were harvested for transcriptome sequencing analysis. The EV ultrastructure was examined in the larvae and the cultured medium. Results Extracellular vesicle-like particles were observed under the larval teguments and in the pellets in the medium. RNA-seq analysis revealed that 2,847 and 3,118 genes were significantly expressed on days 1 and 3 after culture, respectively. The downregulated genes on day 1 after culture were involved in pro-inflammatory cytokines, the complement system and apoptosis, whereas those on day 3 were involved in T cell-dependent B cell activation and wound healing. Significantly upregulated genes related to cell proliferation, activation and development, as well as cytotoxicity, were observed on day 1, and genes regulating T cell maturation, granulocyte function, nuclear factor-κB and toll-like receptor pathways were predominantly observed on day 3 after culture. Conclusion G. spinigerum L3 produces EV-like particles and releases them into the excretory-secretory products. Overall, genotypic findings during our 3-day observation revealed that most significant gene expressions were related to T and B cell signalling, driving T helper 2 cells related to chronic infection, immune evasion of the larvae, and the pathogenesis of gnathostomiasis. Further in-depth studies are necessary to clarify gene functions in the pathogenesis and immune evasion mechanisms of the infective larvae.
Collapse
Affiliation(s)
- Pattarasuda Puasri
- Department of Tropical Pathology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Wilanee Dechkhajorn
- Department of Tropical Pathology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Paron Dekumyoy
- Department of Helminthology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Tippayarat Yoonuan
- Department of Helminthology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Sumate Ampawong
- Department of Tropical Pathology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Onrapak Reamtong
- Department of Molecular Tropical Medicine and Genetics, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Usa Boonyuen
- Department of Molecular Tropical Medicine and Genetics, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Surachet Benjathummarak
- Center of Excellence for Antibody Research (CEAR), Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Yaowapa Maneerat
- Department of Tropical Pathology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| |
Collapse
|
7
|
Shao C, Lu L. PAR2 Overexpression is Involved in the Occurrence of Hyperoxygen-Induced Bronchopulmonary Dysplasia in Rats. Fetal Pediatr Pathol 2023; 42:423-437. [PMID: 36657618 DOI: 10.1080/15513815.2023.2166799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
BACKGROUND Bronchopulmonary dysplasia is a chronic lung disease commonly seen in preterm infants. It is characterized by delayed development of the alveoli and lung fibrosis. Protease-activated receptor 2 (PAR2) is an inflammatory driver that plays a proinflammatory role mainly through the P38 MAPK/NF-κB signaling pathway. METHODS Newborn rat pups were kept under air or oxygen at >60% concentration. Lung tissues were collected at postnatal days (P) 1, 4, 7, and 10 to observe pathological changes and take measurements. RESULTS In the hyperoxic group, P4 and P7 rats showed delayed alveolar development, septal thickening, and disturbances in alveolar structure.PAR2, P38 MAPK, NF-κB, and IL-18 expression at P4, P7, and P10 was significantly higher than in the air group. CONCLUSION PAR2 is involved in lung injury induced by persistent hyperoxia. Activated PAR2 promotes IL-18 overexpression through the P38 MAPK/NF-κB signaling pathway, which may be an important mechanism of PAR2-mediated lung injury in bronchopulmonary dysplasia.
Collapse
Affiliation(s)
- Chunyan Shao
- Department of Pediatrics, Chengdu Medical College, Chengdu, China
| | - Liqun Lu
- Department of Pediatrics, The First Affiliated Hospital of Chengdu Medical College, Chengdu Medical College, Chengdu, China
| |
Collapse
|
8
|
Fan J, Jin S, Gilmartin L, Toth I, Hussein WM, Stephenson RJ. Advances in Infectious Disease Vaccine Adjuvants. Vaccines (Basel) 2022; 10:1120. [PMID: 35891284 PMCID: PMC9316175 DOI: 10.3390/vaccines10071120] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 07/01/2022] [Accepted: 07/04/2022] [Indexed: 02/01/2023] Open
Abstract
Vaccines are one of the most significant medical interventions in the fight against infectious diseases. Since their discovery by Edward Jenner in 1796, vaccines have reduced the worldwide transmission to eradication levels of infectious diseases, including smallpox, diphtheria, hepatitis, malaria, and influenza. However, the complexity of developing safe and effective vaccines remains a barrier for combating many more infectious diseases. Immune stimulants (or adjuvants) are an indispensable factor in vaccine development, especially for inactivated and subunit-based vaccines due to their decreased immunogenicity compared to whole pathogen vaccines. Adjuvants are widely diverse in structure; however, their overall function in vaccine constructs is the same: to enhance and/or prolong an immunological response. The potential for adverse effects as a result of adjuvant use, though, must be acknowledged and carefully managed. Understanding the specific mechanisms of adjuvant efficacy and safety is a key prerequisite for adjuvant use in vaccination. Therefore, rigorous pre-clinical and clinical research into adjuvant development is essential. Overall, the incorporation of adjuvants allows for greater opportunities in advancing vaccine development and the importance of immune stimulants drives the emergence of novel and more effective adjuvants. This article highlights recent advances in vaccine adjuvant development and provides detailed data from pre-clinical and clinical studies specific to infectious diseases. Future perspectives into vaccine adjuvant development are also highlighted.
Collapse
Affiliation(s)
- Jingyi Fan
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD 4072, Australia; (J.F.); (S.J.); (L.G.); (I.T.); (W.M.H.)
| | - Shengbin Jin
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD 4072, Australia; (J.F.); (S.J.); (L.G.); (I.T.); (W.M.H.)
| | - Lachlan Gilmartin
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD 4072, Australia; (J.F.); (S.J.); (L.G.); (I.T.); (W.M.H.)
| | - Istvan Toth
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD 4072, Australia; (J.F.); (S.J.); (L.G.); (I.T.); (W.M.H.)
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, QLD 4072, Australia
- School of Pharmacy, The University of Queensland, Woolloongabba, QLD 4102, Australia
| | - Waleed M. Hussein
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD 4072, Australia; (J.F.); (S.J.); (L.G.); (I.T.); (W.M.H.)
| | - Rachel J. Stephenson
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD 4072, Australia; (J.F.); (S.J.); (L.G.); (I.T.); (W.M.H.)
| |
Collapse
|
9
|
Tan M, Wang S, Li F, Xu H, Gao J, Zhu L. A methylation-driven genes prognostic signature and the immune microenvironment in epithelial ovarian cancer. Carcinogenesis 2022; 43:635-646. [PMID: 35639961 DOI: 10.1093/carcin/bgac048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 04/22/2022] [Accepted: 05/25/2022] [Indexed: 11/13/2022] Open
Abstract
Aberrant gene methylation has been implicated in the development and progression of tumors. In this study, we aimed to identity methylation driven genes involved in epithelial ovarian cancer (EOC) to establish a prognostic signature for patients with EOC. We identified and verified 6 MDGs that are closely related to the prognosis of ovarian cancer. A prognostic risk score model and nomogram for predicting the prognosis of ovarian cancer were constructed based on the six MDGs. It can also effectively reflect the immune environment and immunotherapy response of ovarian cancer. These MDGs have great significance to the implementation of individualized treatment and disease monitoring of ovarian cancer patients.
Collapse
Affiliation(s)
- Mingzi Tan
- Department of Gynecology, Cancer Hospital of China Medical University, No.44 Xiaoheyan Road, Dadong District, Shenyang 110042, Liaoning Province, P R China.,Department of Gynecology, Liaoning Cancer Hospital & Institute, No.44 Xiaoheyan Road, Dadong District, Shenyang 110042, Liaoning Province, P R China
| | - Shengtan Wang
- Department of Gynecology, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, 570011, P.R. China
| | - Feifei Li
- Department of Gynecology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, Shandong, China
| | - Haoya Xu
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, 36 Sanhao Street, Shenyang, 110004, P.R. China
| | - Jian Gao
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, 36 Sanhao Street, Shenyang, 110004, P.R. China
| | - Liancheng Zhu
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, 36 Sanhao Street, Shenyang, 110004, P.R. China
| |
Collapse
|
10
|
Yue M, Xiao L, Yan R, Li X, Yang W. Pyroptosis in neurodegenerative diseases: What lies beneath the tip of the iceberg? Int Rev Immunol 2022:1-16. [PMID: 35312447 DOI: 10.1080/08830185.2022.2052064] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Neurodegenerative diseases gradually receive attention with a rapidly aging global population. The hallmark of them is a progressive neuronal loss in the brain or peripheral nervous system due to complex reasons ranging from protein aggregation, immune dysregulation to abnormal cell death. The death style of nerve cell is no longer restricted to apoptosis, autophagy and necrosis as confirmed before. With the successive discoveries of the gasdermin (GSDM) protein family and key caspase molecules in the past several decades, pyroptosis emerges as a novel kind of programmed cell death. A substantial body of evidence has recognized the close connection between pyroptosis and the occurrence and development of neurodegenerative diseases. In this review, we summarize molecular mechanisms of pyroptosis, evidences for pyroptosis involvement in neurodegenerative diseases and finally we hope to provide a novel angle for clinical decision-making.
Collapse
Affiliation(s)
- Mengli Yue
- Department of Immunology, College of Basic Medical Sciences, JiLin University, Changchun City, Jilin Province, China
| | - Li Xiao
- Department of Immunology, College of Basic Medical Sciences, JiLin University, Changchun City, Jilin Province, China
| | - Rui Yan
- Department of Immunology, College of Basic Medical Sciences, JiLin University, Changchun City, Jilin Province, China
| | - Xinyi Li
- Department of Immunology, College of Basic Medical Sciences, JiLin University, Changchun City, Jilin Province, China
| | - Wei Yang
- Department of Immunology, College of Basic Medical Sciences, JiLin University, Changchun City, Jilin Province, China
| |
Collapse
|
11
|
Qu HQ, Snyder J, Connolly J, Glessner J, Kao C, Sleiman P, Hakonarson H. Circulating LIGHT (TNFSF14) and Interleukin-18 Levels in Sepsis-Induced Multi-Organ Injuries. Biomedicines 2022; 10:biomedicines10020264. [PMID: 35203474 PMCID: PMC8869623 DOI: 10.3390/biomedicines10020264] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 01/09/2022] [Accepted: 01/13/2022] [Indexed: 02/05/2023] Open
Abstract
The novel therapeutic target cytokine LIGHT (TNFSF14) was recently shown to play a major role in COVID-19-induced acute respiratory distress syndrome (ARDS). This study aims to investigate the associations of plasma LIGHT and another potentially targetable cytokine, interleukin-18 (IL-18), with ARDS, acute hypoxic respiratory failure (AHRF), or acute kidney injury (AKI), caused by non-COVID-19 viral or bacterial sepsis. A total of 280 subjects diagnosed with sepsis, including 91 cases with sepsis triggered by viral infections, were investigated in this cohort study. Day 0 plasma LIGHT and IL-18, as well as 59 other biomarkers (cytokines, chemokines, and acute-phase reactants) were measured by sensitive bead immunoassay and associated with symptom severity. We observed significantly increased LIGHT level in both bacterial sepsis patients (p = 1.80 × 10−5) and patients with sepsis from viral infections (p = 1.78 × 10−3). In bacterial sepsis, increased LIGHT level was associated with ARDS, AKI, and higher Apache III scores, findings also supported by correlations of LIGHT with other biomarkers of organ failure. IL-18 levels were highly variable across individuals and consistently correlated with Apache III scores, mortality, and AKI in both bacterial and viral sepsis. There was no correlation between LIGHT and IL-18. For the first time, we demonstrate independent effects of LIGHT and IL-18 in septic organ failure. The association of plasma LIGHT with AHRF suggests that targeting the pathway warrants exploration, and ongoing trials may soon elucidate whether this is beneficial. Given the large variance of plasma IL-18 among septic subjects, targeting this pathway requires precise application.
Collapse
Affiliation(s)
- Hui-Qi Qu
- The Center for Applied Genomics, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA; (H.-Q.Q.); (J.S.); (J.C.); (J.G.); (C.K.); (P.S.)
| | - James Snyder
- The Center for Applied Genomics, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA; (H.-Q.Q.); (J.S.); (J.C.); (J.G.); (C.K.); (P.S.)
| | - John Connolly
- The Center for Applied Genomics, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA; (H.-Q.Q.); (J.S.); (J.C.); (J.G.); (C.K.); (P.S.)
| | - Joseph Glessner
- The Center for Applied Genomics, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA; (H.-Q.Q.); (J.S.); (J.C.); (J.G.); (C.K.); (P.S.)
- Department of Pediatrics, The Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Division of Human Genetics, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Charlly Kao
- The Center for Applied Genomics, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA; (H.-Q.Q.); (J.S.); (J.C.); (J.G.); (C.K.); (P.S.)
| | - Patrick Sleiman
- The Center for Applied Genomics, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA; (H.-Q.Q.); (J.S.); (J.C.); (J.G.); (C.K.); (P.S.)
- Department of Pediatrics, The Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Division of Human Genetics, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Hakon Hakonarson
- The Center for Applied Genomics, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA; (H.-Q.Q.); (J.S.); (J.C.); (J.G.); (C.K.); (P.S.)
- Department of Pediatrics, The Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Division of Human Genetics, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Division of Pulmonary Medicine, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Correspondence: ; Tel.: +267-426-0088
| |
Collapse
|
12
|
Mirogabalin Decreases Pain-like Behaviours and Improves Opioid and Ketamine Antinociception in a Mouse Model of Neuropathic Pain. Pharmaceuticals (Basel) 2022; 15:ph15010088. [PMID: 35056145 PMCID: PMC8780738 DOI: 10.3390/ph15010088] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 01/11/2022] [Accepted: 01/12/2022] [Indexed: 02/05/2023] Open
Abstract
Neuropathic pain remains a difficult clinical challenge due to its diverse aetiology and complex pathomechanisms, which are yet to be fully understood. Despite the variety of available therapies, many patients suffer from ineffective pain relief; hence, the search for more efficacious treatments continues. The new gabapentinoid, mirogabalin has recently been approved for clinical use. Although its main mechanism of action occurs at the α2σ-1 and α2σ-2 subunits of calcium channels and is well documented, how the drug affects the disturbed neuropathic interactions at the spinal cord level has not been clarified, which is crucial information from a clinical perspective. The findings of our study suggest that several indirect mechanisms may be responsible for the beneficial analgesic effect of mirogabalin. This is the first study to report that mirogabalin enhances the mRNA expression of spinal antinociceptive factors, such as IL-10 and IL-18BP, and reduces the concentration of the pronociceptive substance P. Importantly, mirogabalin improves the morphine-, buprenorphine-, oxycodone-, and ketamine-induced antinociceptive effects in a neuropathic pain model. Our findings support the hypothesis that enhancing opioid and ketamine analgesia by combining these drugs with mirogabalin may represent a new strategy for the effective pharmacotherapy of neuropathic pain.
Collapse
|
13
|
IL-18: The Forgotten Cytokine in Dengue Immunopathogenesis. J Immunol Res 2021; 2021:8214656. [PMID: 34840991 PMCID: PMC8626198 DOI: 10.1155/2021/8214656] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 10/25/2021] [Accepted: 11/05/2021] [Indexed: 12/28/2022] Open
Abstract
Dengue fever is an infection by the dengue virus (DENV) transmitted by vector mosquitoes. It causes many infections in tropical and subtropical countries every year, thus posing a severe disease threat. Cytokine storms, one condition where many proinflammatory cytokines are mass-produced, might lead to cellular dysfunction in tissue/organ failures and often facilitate severe dengue disease in patients. Interleukin- (IL-) 18, similar to IL-1β, is a proinflammatory cytokine produced during inflammation following inflammasome activation. Inflammatory stimuli, including microbial infections, damage signals, and cytokines, all induce the production of IL-18. High serum IL-18 is remarkably correlated with severely ill dengue patients; however, its possible roles have been less explored. Based on the clinical and basic findings, this review discusses the potential immunopathogenic role of IL-18 when it participates in DENV infection and dengue disease progression based on existing findings and related past studies.
Collapse
|
14
|
An Epigenetic Insight into NLRP3 Inflammasome Activation in Inflammation-Related Processes. Biomedicines 2021; 9:biomedicines9111614. [PMID: 34829842 PMCID: PMC8615487 DOI: 10.3390/biomedicines9111614] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 10/25/2021] [Accepted: 10/29/2021] [Indexed: 12/13/2022] Open
Abstract
Aberrant NLRP3 (NOD-, LRR-, and pyrin domain-containing protein 3) inflammasome activation in innate immune cells, triggered by diverse cellular danger signals, leads to the production of inflammatory cytokines (IL-1β and IL-18) and cell death by pyroptosis. These processes are involved in the pathogenesis of a wide range of diseases such as autoimmune, neurodegenerative, renal, metabolic, vascular diseases and cancer, and during physiological processes such as aging. Epigenetic dynamics mediated by changes in DNA methylation patterns, chromatin assembly and non-coding RNA expression are key regulators of the expression of inflammasome components and its further activation. Here, we review the role of the epigenome in the expression, assembly, and activation of the NLRP3 inflammasome, providing a critical overview of its involvement in the disease and discussing how targeting these mechanisms by epigenetic treatments could be a useful strategy for controlling NLRP3-related inflammatory diseases.
Collapse
|
15
|
AlRuwaisan AU, Al-Anazi MR, Shafeai MI, Rudiny FH, Motaen AM, Bin Dajem SM, Alothaid H, Morsy K, Alkahtani S, Al-Qahtani AA. Associations of Single Nucleotide Polymorphisms in IL-18 Gene with Plasmodium falciparum-Associated Malaria. J Inflamm Res 2021; 14:3587-3619. [PMID: 34345179 PMCID: PMC8323861 DOI: 10.2147/jir.s314638] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 06/23/2021] [Indexed: 11/23/2022] Open
Abstract
Introduction Interleukin-18 (IL-18) is a pro-inflammatory cytokine, reported to be involved in the initial immune responses against malaria. Genetic variations in the host are an important factor that influences the etiology of malaria at several disease levels. Polymorphisms within the IL-18 gene are associated with susceptibility and clinical outcome of several diseases. Methods We genotyped single nucleotide polymorphisms (SNPs) in IL-18 of patients infected with Plasmodium falciparum with varying extent of parasitemia and different age groups. Results SNPs rs5744292 (OR = 70.446; 95% CI = 4.318-1149.323; p<0.0001) and rs544354 (OR = 1.498; 95% CI = 1.088-2.063; p=0.013) were found to be significantly associated with parasitemia in P. falciparum-infected patients when compared with healthy control subjects. SNP rs5744292 (OR = 7.597; 95% CI=1.028-56.156; p=0.019) was associated with increased parasite density in infected patients. SNPs rs544354 (OR 0.407; 95% CI=0.204-0.812; p = 0.009) and rs360714 (OR of 0.256; 95% CI=0.119-0.554; p = 0.001) were significantly associated with parasite density in an age-dependent manner, with the risk alleles present more frequently among the younger (1-9 years) patients. Several haplotypes were found to have a significant association with parasitemia. In-vitro expression analysis using luciferase reporter assay showed that SNPs rs1946518 and rs187238 in the IL-18 gene promoter region and rs360728 and rs5744292 in the 3'-untranslated region of the IL-18 gene were associated with enhanced transcriptional activity. Conclusion Our results suggest that polymorphisms within the IL-18 gene are associated with the susceptibility to P. falciparum infection and related parasitemia among groups with different parasite density and across various age groups.
Collapse
Affiliation(s)
- Alaa U AlRuwaisan
- Zoology Department, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Mashael R Al-Anazi
- Department of Infection and Immunity, Research Centre, King Faisal Specialist Hospital & Research Centre, Riyadh, Saudi Arabia
| | | | | | | | - Saad M Bin Dajem
- Department of Biology, College of Science, King Khalid University, Abha, Saudi Arabia
| | - Hani Alothaid
- Department of Basic Sciences, Faculty of Applied Medical Sciences, Al-Baha University, Al-Baha, Saudi Arabia
| | - Kareem Morsy
- Department of Biology, College of Science, King Khalid University, Abha, Saudi Arabia.,Zoology Department, Faculty of Science, Cairo University, Cairo, Egypt
| | - Saad Alkahtani
- Zoology Department, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Ahmed A Al-Qahtani
- Department of Infection and Immunity, Research Centre, King Faisal Specialist Hospital & Research Centre, Riyadh, Saudi Arabia.,Department of Microbiology and Immunology, College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
| |
Collapse
|
16
|
Qu HQ, Qu J, Dunn T, Snyder J, Miano TA, Connolly J, Glessner J, Anderson BJ, Reilly JP, Jones TK, Giannini HM, Agyekum RS, Weisman AR, Ittner CAG, Rodrigues LG, Kao C, Shashaty MGS, Sleiman P, Meyer NJ, Hakonarson H. Elevation of Circulating LIGHT (TNFSF14) and Interleukin-18 Levels in Sepsis-Induced Multi-Organ Injuries. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2021. [PMID: 34075388 DOI: 10.1101/2021.05.25.21257799] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Objective The cytokines, LIGHT (TNFSF14) and Interleukin-18 (IL-18), are two important therapeutic targets due to their central roles in the function of activated T cells and inflammatory injury. LIGHT was recently shown to play a major role in COVID19 induced acute respiratory distress syndrome (ARDS), reducing mortality and hospital stay. This study aims to investigate the associations of LIGHT and IL-18 with non-COVID19 related ARDS, acute hypoxic respiratory failure (AHRF) or acute kidney injury (AKI), secondary to viral or bacterial sepsis. Research Design and Methods A cohort of 280 subjects diagnosed with sepsis, including 91 cases with sepsis triggered by viral infections, were investigated in this study and compared to healthy controls. Serum LIGHT, IL-18, and 59 other biomarkers (cytokines, chemokines and acute-phase reactants) were measured and associated with symptom severity. Results ARDS was observed in 36% of the patients, with 29% of the total patient cohort developing multi-organ failure (failure of two or more organs). We observed significantly increased LIGHT level (>2SD above mean of healthy subjects) in both bacterial sepsis patients (P=1.80E-05) and patients with sepsis from viral infections (P=1.78E-03). In bacterial sepsis, increased LIGHT level associated with ARDS, AKI and higher Apache III scores, findings also supported by correlations of LIGHT with other biomarkers of organ failures, suggesting LIGHT may be an inflammatory driver. IL-18 levels were highly variable across individuals, and consistently correlated with Apache III scores, mortality, and AKI, in both bacterial and viral sepsis. Conclusions For the first time, we demonstrate independent effects of LIGHT and IL-18 in septic organ failures. LIGHT levels are significantly elevated in non-COVID19 sepsis patients with ARDS and/or multi-organ failures suggesting that anti-LIGHT therapy may be effective therapy in a subset of patients with sepsis. Given the large variance of plasma IL-18 among septic subjects, targeting this pathway raises opportunities that require a precision application.
Collapse
|
17
|
A novel anti-human IL-1R7 antibody reduces IL-18-mediated inflammatory signaling. J Biol Chem 2021; 296:100630. [PMID: 33823154 PMCID: PMC8018910 DOI: 10.1016/j.jbc.2021.100630] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 03/29/2021] [Accepted: 04/01/2021] [Indexed: 12/17/2022] Open
Abstract
Unchecked inflammation can result in severe diseases with high mortality, such as macrophage activation syndrome (MAS). MAS and associated cytokine storms have been observed in COVID-19 patients exhibiting systemic hyperinflammation. Interleukin-18 (IL-18), a proinflammatory cytokine belonging to the IL-1 family, is elevated in both MAS and COVID-19 patients, and its level is known to correlate with the severity of COVID-19 symptoms. IL-18 binds its specific receptor IL-1 receptor 5 (IL-1R5, also known as IL-18 receptor alpha chain), leading to the recruitment of the coreceptor, IL-1 receptor 7 (IL-1R7, also known as IL-18 receptor beta chain). This heterotrimeric complex then initiates downstream signaling, resulting in systemic and local inflammation. Here, we developed a novel humanized monoclonal anti-IL-1R7 antibody to specifically block the activity of IL-18 and its inflammatory signaling. We characterized the function of this antibody in human cell lines, in freshly obtained peripheral blood mononuclear cells (PBMCs) and in human whole blood cultures. We found that the anti-IL-1R7 antibody significantly suppressed IL-18-mediated NFκB activation, reduced IL-18-stimulated IFNγ and IL-6 production in human cell lines, and reduced IL-18-induced IFNγ, IL-6, and TNFα production in PBMCs. Moreover, the anti-IL-1R7 antibody significantly inhibited LPS- and Candida albicans–induced IFNγ production in PBMCs, as well as LPS-induced IFNγ production in whole blood cultures. Our data suggest that blocking IL-1R7 could represent a potential therapeutic strategy to specifically modulate IL-18 signaling and may warrant further investigation into its clinical potential for treating IL-18-mediated diseases, including MAS and COVID-19.
Collapse
|
18
|
Rongkard P, Kronsteiner B, Hantrakun V, Jenjaroen K, Sumonwiriya M, Chaichana P, Chumseng S, Chantratita N, Wuthiekanun V, Fletcher HA, Teparrukkul P, Limmathurotsakul D, Day NPJ, Dunachie SJ. Human Immune Responses to Melioidosis and Cross-Reactivity to Low-Virulence Burkholderia Species, Thailand 1. Emerg Infect Dis 2021; 26:463-471. [PMID: 32091359 PMCID: PMC7045851 DOI: 10.3201/eid2603.190206] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Melioidosis is a neglected tropical disease with an estimated annual mortality rate of 89,000 in 45 countries across tropical regions. The causative agent is Burkholderia pseudomallei, a gram-negative soil-dwelling bacterium. In Thailand, B. pseudomallei can be found across multiple regions, along with the low-virulence B. thailandensis and the recently discovered B. thailandensis variant (BTCV), which expresses B. pseudomallei-like capsular polysaccharide. Comprehensive studies of human immune responses to B. thailandensis variants and cross-reactivity to B. pseudomallei are not complete. We evaluated human immune responses to B. pseudomallei, B. thailandensis, and BTCV in melioidosis patients and healthy persons in B. pseudomallei-endemic areas using a range of humoral and cellular immune assays. We found immune cross-reactivity to be strong for both humoral and cellular immunity among B. pseudomallei, B. thailandensis, and BTCV. Our findings suggest that environmental exposure to low-virulence strains may build cellular immunity to B. pseudomallei.
Collapse
|
19
|
Noyan H, Erdağ E, Tüzün E, Yaylım İ, Küçükhüseyin Ö, Hakan MT, Gülöksüz S, Rutten BPF, Saka MC, Atbaşoğlu C, Alptekin K, van Os J, Üçok A. Association of the kynurenine pathway metabolites with clinical, cognitive features and IL-1β levels in patients with schizophrenia spectrum disorder and their siblings. Schizophr Res 2021; 229:27-37. [PMID: 33609988 DOI: 10.1016/j.schres.2021.01.014] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 01/11/2021] [Accepted: 01/19/2021] [Indexed: 11/16/2022]
Abstract
OBJECTIVE There is evidence suggesting that tryptophan (TRP)-kynurenine (KYN) pathway dysregulation is involved in the pathophysiology of schizophrenia and is regulated by inflammatory cytokines. The study investigate for the first time whether this dysregulation occurs in advanced stages of the disease as a byproduct or emerges as one of the early and inherited manifestations of schizophrenia. METHOD Sera of 148 patients with schizophrenia spectrum disorders (SCZ), 139 unaffected siblings (SIB) and 210 controls were investigated. Serum interleukin (IL)-1β levels were measured by ELISA, and TRP, KYN and kynurenic acid (KYNA) levels were measured by a high-performance liquid chromatography system. Also, we collected clinical data by applying Comprehensive Assessment of Symptoms and History in SCZ, and SIS-R in SIB and control groups. RESULTS Compared to controls, SCZ and SIB groups had lower TRP and higher KYNA levels. TRP levels showed significant differences only between SCZ and controls (p < 0.01). KYNA levels of both SCZ (p ≤ 0.001) and SIB (p < 0.05) were higher than controls. No statistical significance was found for KYN levels across groups. SCZ and SIB groups had higher serum IL-1β levels than controls (p ≤ 0.001). CONCLUSIONS Patients with SCZ and their siblings exhibited similar clinical features and TRP metabolite levels suggesting that TRP-KYN dysregulation may be an inherited component of the disease putatively conferring increased risk to schizophrenia. Elevation of IL-1β is one of the factors promoting overconsumption of the TRP-KYN pathway leading to increased production of neuroregulatory KYNA and presumably to neurodegeneration.
Collapse
Affiliation(s)
- Handan Noyan
- Department of Neuroscience, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey.
| | - Ece Erdağ
- Department of Neuroscience, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey
| | - Erdem Tüzün
- Department of Neuroscience, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey
| | - İlhan Yaylım
- Department of Molecular Medicine, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey
| | - Özlem Küçükhüseyin
- Department of Molecular Medicine, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey
| | - Mehmet Tolgahan Hakan
- Department of Molecular Medicine, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey
| | - Sinan Gülöksüz
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University Medical Center, Maastricht, the Netherlands.
| | - Bart P F Rutten
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University Medical Center, Maastricht, the Netherlands.
| | - Meram Can Saka
- Department of Psychiatry, School of Medicine, Ankara University, Ankara, Turkey
| | - Cem Atbaşoğlu
- Department of Psychiatry, School of Medicine, Ankara University, Ankara, Turkey
| | - Köksal Alptekin
- Department of Psychiatry, Dokuz Eylul University School of Medicine, Izmir, Turkey.
| | - Jim van Os
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University Medical Center, Maastricht, the Netherlands; Department of Psychiatry, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands; Department of Psychosis Studies, King's College London, Institute of Psychiatry, London, UK
| | - Alp Üçok
- Department of Psychiatry, Faculty of Medicine, Istanbul University, Istanbul, Turkey.
| |
Collapse
|
20
|
Weber G, Strocchio L, Del Bufalo F, Algeri M, Pagliara D, Arnone CM, De Angelis B, Quintarelli C, Locatelli F, Merli P, Caruana I. Identification of New Soluble Factors Correlated With the Development of Graft Failure After Haploidentical Hematopoietic Stem Cell Transplantation. Front Immunol 2021; 11:613644. [PMID: 33584698 PMCID: PMC7878541 DOI: 10.3389/fimmu.2020.613644] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 12/14/2020] [Indexed: 11/13/2022] Open
Abstract
Graft failure is a severe complication of allogeneic hematopoietic stem cell transplantation (HSCT). The mechanisms involved in this phenomenon are still not completely understood; data available suggest that recipient T lymphocytes surviving the conditioning regimen are the main mediators of immune-mediated graft failure. So far, no predictive marker or early detection method is available. In order to identify a non-invasive and efficient strategy to diagnose this complication, as well as to find possible targets to prevent/treat it, we performed a detailed analysis of serum of eight patients experiencing graft failure after T-cell depleted HLA-haploidentical HSCT. In this study, we confirm data describing graft failure to be a complex phenomenon involving different components of the immune system, mainly driven by the IFNγ pathway. We observed a significant modulation of IL7, IL8, IL18, IL27, CCL2, CCL5 (Rantes), CCL7, CCL20 (MIP3a), CCL24 (Eotaxin2), and CXCL11 in patients experiencing graft failure, as compared to matched patients not developing this complication. For some of these factors, the difference was already present at the time of infusion of the graft, thus allowing early risk stratification. Moreover, these cytokines/chemokines could represent possible targets, providing the rationale for exploring new therapeutic/preventive strategies.
Collapse
Affiliation(s)
- Gerrit Weber
- Department of Pediatric Hematology/Oncology, Cell and Gene Therapy, Scientific Institute for Research and Healthcare (IRCCS), Bambino Gesù Childrens' Hospital, Rome, Italy
| | - Luisa Strocchio
- Department of Pediatric Hematology/Oncology, Cell and Gene Therapy, Scientific Institute for Research and Healthcare (IRCCS), Bambino Gesù Childrens' Hospital, Rome, Italy
| | - Francesca Del Bufalo
- Department of Pediatric Hematology/Oncology, Cell and Gene Therapy, Scientific Institute for Research and Healthcare (IRCCS), Bambino Gesù Childrens' Hospital, Rome, Italy
| | - Mattia Algeri
- Department of Pediatric Hematology/Oncology, Cell and Gene Therapy, Scientific Institute for Research and Healthcare (IRCCS), Bambino Gesù Childrens' Hospital, Rome, Italy
| | - Daria Pagliara
- Department of Pediatric Hematology/Oncology, Cell and Gene Therapy, Scientific Institute for Research and Healthcare (IRCCS), Bambino Gesù Childrens' Hospital, Rome, Italy
| | - Claudia Manuela Arnone
- Department of Pediatric Hematology/Oncology, Cell and Gene Therapy, Scientific Institute for Research and Healthcare (IRCCS), Bambino Gesù Childrens' Hospital, Rome, Italy
| | - Biagio De Angelis
- Department of Pediatric Hematology/Oncology, Cell and Gene Therapy, Scientific Institute for Research and Healthcare (IRCCS), Bambino Gesù Childrens' Hospital, Rome, Italy
| | - Concetta Quintarelli
- Department of Pediatric Hematology/Oncology, Cell and Gene Therapy, Scientific Institute for Research and Healthcare (IRCCS), Bambino Gesù Childrens' Hospital, Rome, Italy
| | - Franco Locatelli
- Department of Pediatric Hematology/Oncology, Cell and Gene Therapy, Scientific Institute for Research and Healthcare (IRCCS), Bambino Gesù Childrens' Hospital, Rome, Italy.,Sapienza, University of Rome, Rome, Italy
| | - Pietro Merli
- Department of Pediatric Hematology/Oncology, Cell and Gene Therapy, Scientific Institute for Research and Healthcare (IRCCS), Bambino Gesù Childrens' Hospital, Rome, Italy
| | - Ignazio Caruana
- Department of Pediatric Hematology/Oncology, Cell and Gene Therapy, Scientific Institute for Research and Healthcare (IRCCS), Bambino Gesù Childrens' Hospital, Rome, Italy
| |
Collapse
|
21
|
Mutala LB, Deleine C, Karakachoff M, Dansette D, Ducoin K, Oger R, Rousseau O, Podevin J, Duchalais E, Fourquier P, Thomas WEA, Gourraud PA, Bennouna J, Brochier C, Gervois N, Bossard C, Jarry A. The Caspase-1/IL-18 Axis of the Inflammasome in Tumor Cells: A Modulator of the Th1/Tc1 Response of Tumor-Infiltrating T Lymphocytes in Colorectal Cancer. Cancers (Basel) 2021; 13:cancers13020189. [PMID: 33430344 PMCID: PMC7825767 DOI: 10.3390/cancers13020189] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 12/29/2020] [Accepted: 01/04/2021] [Indexed: 12/12/2022] Open
Abstract
In colorectal cancer (CRC), a high density of T lymphocytes represents a strong prognostic marker in subtypes of CRC. Optimized immunotherapy strategies to boost this T-cell response are still needed. A good candidate is the inflammasome pathway, an emerging player in cancer immunology that bridges innate and adaptive immunity. Its effector protein caspase-1 matures IL-18 that can promote a T-helper/cytotoxic (Th1/Tc1) response. It is still unknown whether tumor cells from CRC possess a functional caspase-1/IL-18 axis that could modulate the Th1/Tc1 response. We used two independent cohorts of CRC patients to assess IL-18 and caspase-1 expression by tumor cells in relation to the density of TILs and the microsatellite status of CRC. Functional and multiparametric approaches at the protein and mRNA levels were performed on an ex vivo CRC explant culture model. We show that, in the majority of CRCs, tumor cells display an activated and functional caspase-1/IL-18 axis that contributes to drive a Th1/Tc1 response elicited by TILs expressing IL-18Rα. Furthermore, unsupervised clustering identified three clusters of CRCs according to the caspase-1/IL-18/TIL density/interferon gamma (IFNγ) axis and microsatellite status. Together, our results strongly suggest that targeting the caspase-1/IL-18 axis can improve the anti-tumor immune response in subgroups of CRC.
Collapse
Affiliation(s)
- Linda Bilonda Mutala
- Institut Roche, 92100 Boulogne-Billancourt, France; (L.B.M.); (C.B.)
- Inserm, CRCINA, Université de Nantes, 44000 Nantes, France; (C.D.); (K.D.); (R.O.); (N.G.); (C.B.)
- LabEx IGO, Université de Nantes, 44000 Nantes, France
| | - Cécile Deleine
- Inserm, CRCINA, Université de Nantes, 44000 Nantes, France; (C.D.); (K.D.); (R.O.); (N.G.); (C.B.)
- LabEx IGO, Université de Nantes, 44000 Nantes, France
| | - Matilde Karakachoff
- Clinique des Données, CHU de Nantes, INSERM, CIC 1413, 44093 Nantes, France; (M.K.); (O.R.); (P.-A.G.)
| | | | - Kathleen Ducoin
- Inserm, CRCINA, Université de Nantes, 44000 Nantes, France; (C.D.); (K.D.); (R.O.); (N.G.); (C.B.)
- LabEx IGO, Université de Nantes, 44000 Nantes, France
| | - Romain Oger
- Inserm, CRCINA, Université de Nantes, 44000 Nantes, France; (C.D.); (K.D.); (R.O.); (N.G.); (C.B.)
- LabEx IGO, Université de Nantes, 44000 Nantes, France
| | - Olivia Rousseau
- Clinique des Données, CHU de Nantes, INSERM, CIC 1413, 44093 Nantes, France; (M.K.); (O.R.); (P.-A.G.)
| | - Juliette Podevin
- Digestive Surgery Department and IMAD, CHU Nantes, 44093 Nantes, France; (J.P.); (E.D.)
| | - Emilie Duchalais
- Digestive Surgery Department and IMAD, CHU Nantes, 44093 Nantes, France; (J.P.); (E.D.)
| | - Pierre Fourquier
- Digestive Surgery Department, Hôpital Privé du Confluent, 44200 Nantes, France;
| | | | - Pierre-Antoine Gourraud
- Clinique des Données, CHU de Nantes, INSERM, CIC 1413, 44093 Nantes, France; (M.K.); (O.R.); (P.-A.G.)
| | - Jaafar Bennouna
- Digestive Oncology Department and IMAD, CHU, 44093 Nantes, France;
| | - Camille Brochier
- Institut Roche, 92100 Boulogne-Billancourt, France; (L.B.M.); (C.B.)
| | - Nadine Gervois
- Inserm, CRCINA, Université de Nantes, 44000 Nantes, France; (C.D.); (K.D.); (R.O.); (N.G.); (C.B.)
- LabEx IGO, Université de Nantes, 44000 Nantes, France
| | - Céline Bossard
- Inserm, CRCINA, Université de Nantes, 44000 Nantes, France; (C.D.); (K.D.); (R.O.); (N.G.); (C.B.)
- LabEx IGO, Université de Nantes, 44000 Nantes, France
- Pathology Department, CHU Nantes, 44093 Nantes, France;
| | - Anne Jarry
- Inserm, CRCINA, Université de Nantes, 44000 Nantes, France; (C.D.); (K.D.); (R.O.); (N.G.); (C.B.)
- LabEx IGO, Université de Nantes, 44000 Nantes, France
- Correspondence:
| |
Collapse
|
22
|
Kozak M, Dabrowska-Zamojcin E, Mazurek-Mochol M, Pawlik A. Cytokines and Their Genetic Polymorphisms Related to Periodontal Disease. J Clin Med 2020; 9:E4045. [PMID: 33327639 PMCID: PMC7765090 DOI: 10.3390/jcm9124045] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Revised: 11/28/2020] [Accepted: 12/10/2020] [Indexed: 12/19/2022] Open
Abstract
Periodontal disease (PD) is a chronic inflammatory disease caused by the accumulation of bacterial plaque biofilm on the teeth and the host immune responses. PD pathogenesis is complex and includes genetic, environmental, and autoimmune factors. Numerous studies have suggested that the connection of genetic and environmental factors induces the disease process leading to a response by both T cells and B cells and the increased synthesis of pro-inflammatory mediators such as cytokines. Many studies have shown that pro-inflammatory cytokines play a significant role in the pathogenesis of PD. The studies have also indicated that single nucleotide polymorphisms (SNPs) in cytokine genes may be associated with risk and severity of PD. In this narrative review, we discuss the role of selected cytokines and their gene polymorphisms in the pathogenesis of periodontal disease.
Collapse
Affiliation(s)
- Małgorzata Kozak
- Chair and Department of Dental Prosthetics, Pomeranian Medical University, Powstańców Wlkp 72, 70-111 Szczecin, Poland;
| | - Ewa Dabrowska-Zamojcin
- Department of Pharmacology, Pomeranian Medical University, Powstańców Wlkp 72, 70-111 Szczecin, Poland;
| | - Małgorzata Mazurek-Mochol
- Department of Periodontology, Pomeranian Medical University, Powstańców Wlkp 72, 70-111 Szczecin, Poland;
| | - Andrzej Pawlik
- Department of Physiology, Pomeranian Medical University, Powstańców Wlkp 72, 70-111 Szczecin, Poland
| |
Collapse
|
23
|
Cytokine saga in visceral leishmaniasis. Cytokine 2020; 147:155322. [PMID: 33127259 DOI: 10.1016/j.cyto.2020.155322] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 09/21/2020] [Accepted: 09/25/2020] [Indexed: 12/12/2022]
Abstract
In humans, infection with Leishmania manifests into a spectrum of diseases. The manifestation of the diseases depend on the resultant evasion of the parasite to immune responses namely by macrophages, which is an exclusive host of Leishmania. The B cells valiantly mount antibody responses, however, to no avail as the Leishmania parasites occupy the intracellular niches of the macrophages and subvert the immune response. Extensive studies have been documented on the role of cell-mediated immunity (CMI) in protection and counter survival strategies of the parasites leading to downregulation of CMI. The present review attempts to discuss the cytokines in progression or resolution of visceral form of leishmaniasis or kala-azar, predominantly affecting the Indian subcontinent. The components/cytokine(s) responsible for the regulation of the critical balance of T helper cells and their subsets have been discussed in the perspective. Therefore, any strategy involving the treatment of visceral leishmania (VL) needs to consider the balance and regulation of T cell function.
Collapse
|
24
|
Zhao Y, Han Z, Zhang X, Zhang X, Sun J, Ma D, Liu S. Construction and immune protection evaluation of recombinant virus expressing Newcastle disease virus F protein by the largest intergenic region of fowlpox virus NX10. Virus Genes 2020; 56:734-748. [PMID: 33009986 DOI: 10.1007/s11262-020-01799-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 09/26/2020] [Indexed: 01/27/2023]
Abstract
Fowlpox virus (FPV) is used as a vaccine vector to prevent diseases in poultry and mammals. The insertion site is considered as one of the main factors influencing foreign gene expression. Therefore, the identification of insertion sites that can stably and efficiently express foreign genes is crucial for the construction of recombinant vaccines. In this study, we found that the insertion of foreign genes into ORF054 and the ORF161/ORF162 intergenic region of the FPV genome did not affect replication, and that the foreign genes inserted into the intergenic region were more efficiently expressed than when they were inserted into a gene. Based on these results, the recombinant virus rFPVNX10-NDV F-E was constructed and immune protection against virulent FPV and Newcastle disease virus (NDV) was evaluated. Tests for anti-FPV antibodies in the vaccinated chickens were positive within 14 days post-vaccination. After challenge with FPV102, no clinical signs of FP were observed in vaccinated chickens, as compared to that in the control group (unvaccinated), which showed 100% morbidity. Low levels of NDV-specific neutralizing antibodies were detected in vaccinated chickens before challenge. After challenge with NDV ck/CH/LHLJ/01/06, all control chickens died within 4 days post-challenge, whereas 5/15 vaccinated chickens died between 4 and 12 days post-challenge. Vaccination provided an immune protection rate of 66.7%, whereas the control group showed 100% mortality. These results indicate that the ORF161/ORF162 intergenic region of FPVNX10 can be used as a recombination site for foreign gene expression in vivo and in vitro.
Collapse
Affiliation(s)
- Yan Zhao
- College of Animal Science and Technology, Northeast Agricultural University, No. 600 Changjiang Road, Xiangfang District, Harbin, 150030, China.,Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, The Chinese Academy of Agricultural Sciences, Xiangfang District, Harbin, 150069, China
| | - Zongxi Han
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, The Chinese Academy of Agricultural Sciences, Xiangfang District, Harbin, 150069, China
| | - Xiaocai Zhang
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, The Chinese Academy of Agricultural Sciences, Xiangfang District, Harbin, 150069, China
| | - Xuemei Zhang
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, The Chinese Academy of Agricultural Sciences, Xiangfang District, Harbin, 150069, China
| | - Junfeng Sun
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, The Chinese Academy of Agricultural Sciences, Xiangfang District, Harbin, 150069, China
| | - Deying Ma
- College of Animal Science and Technology, Northeast Agricultural University, No. 600 Changjiang Road, Xiangfang District, Harbin, 150030, China.
| | - Shengwang Liu
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, The Chinese Academy of Agricultural Sciences, Xiangfang District, Harbin, 150069, China.
| |
Collapse
|
25
|
Radujkovic A, Kordelas L, Bogdanov R, Müller-Tidow C, Beelen DW, Dreger P, Luft T. Interleukin-18 and Hematopoietic Recovery after Allogeneic Stem Cell Transplantation. Cancers (Basel) 2020; 12:cancers12102789. [PMID: 32998441 PMCID: PMC7601738 DOI: 10.3390/cancers12102789] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 09/25/2020] [Accepted: 09/26/2020] [Indexed: 12/16/2022] Open
Abstract
Simple Summary We have previously shown that high pre-conditioning levels of Interleukin-18 were associated with worse survival after allogeneic stem cell transplantation due to increased non-relapse mortality. While no correlations with acute graft-versus-host disease were observed, interleukin-18-related excess mortality was mainly driven by fatal infectious complications. In multiple studies, delayed hematopoietic recovery and poor graft function following allogeneic stem cell transplantation has been demonstrated as a powerful predictor of non-relapse mortality. The present study links high interleukin-18 to delayed platelet recovery in allografted patients. Given the functions of interleukin-18 in regulating the quiescence of hematopoietic stem/progenitor cells, our findings may be explained by Interferon gamma-independent inhibitory effects of interleukin-18 on stem cell proliferation and hematopoietic reconstitution in allografted patients. Importantly, considering recent successful interleukin-18-neutralizing approaches in autoimmune disorders, our results provide a rationale to explore modulation of interleukin-18 for improving hematopoietic recovery and outcomes in allogeneic stem cell transplantation recipients. Abstract Interleukin-18 (IL-18) is an immunoregulatory cytokine and a context-dependent regulator of hematopoietic stem/progenitor cell (HSPC) quiescence in murine models. In a previous study, high pre-conditioning levels of IL-18 were associated with increased non-relapse mortality (NRM) after allogeneic stem cell transplantation (alloSCT). To investigate the clinical impact of IL-18 status on hematopoietic function, the associations of pre-conditioning and day 0–3 cytokine levels with platelet and neutrophil recovery were analyzed in a training cohort of 714 allografted patients. In adjusted logistic regression analyses, both increasing pre-conditioning and day 0–3 IL-18 levels had a significantly higher adjusted odds ratio (aOR) of delayed platelet and neutrophil recovery on day +28 post-transplant (aOR per two-fold increase: 1.6–2.0). The adverse impact of high pre-conditioning IL-18 on day +28 platelet recovery was verified in an independent cohort of 673 allografted patients (aOR per two-fold increase: 1.8 and 1.7 for total and free IL-18, respectively). In both cohorts, a platelet count ≤20/nL on day +28 was associated with a significantly increased hazard of NRM (hazard ratio 2.13 and 2.94, respectively). Our findings support the hypothesis that elevated peritransplant IL-18 levels affect post-transplant HSPC function and may provide a rationale to explore modulation of IL-18 for improving alloSCT outcomes.
Collapse
Affiliation(s)
- Aleksandar Radujkovic
- Department of Internal Medicine V, University Hospital Heidelberg, 69120 Heidelberg, Germany; (C.M.-T.); (P.D.); (T.L.)
- Correspondence:
| | - Lambros Kordelas
- Department of Bone Marrow Transplantation, University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany; (L.K.); (R.B.); (D.W.B.)
| | - Rashit Bogdanov
- Department of Bone Marrow Transplantation, University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany; (L.K.); (R.B.); (D.W.B.)
| | - Carsten Müller-Tidow
- Department of Internal Medicine V, University Hospital Heidelberg, 69120 Heidelberg, Germany; (C.M.-T.); (P.D.); (T.L.)
| | - Dietrich W. Beelen
- Department of Bone Marrow Transplantation, University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany; (L.K.); (R.B.); (D.W.B.)
| | - Peter Dreger
- Department of Internal Medicine V, University Hospital Heidelberg, 69120 Heidelberg, Germany; (C.M.-T.); (P.D.); (T.L.)
| | - Thomas Luft
- Department of Internal Medicine V, University Hospital Heidelberg, 69120 Heidelberg, Germany; (C.M.-T.); (P.D.); (T.L.)
| |
Collapse
|
26
|
Shrivastava G, Valenzuela Leon PC, Calvo E. Inflammasome Fuels Dengue Severity. Front Cell Infect Microbiol 2020; 10:489. [PMID: 33014899 PMCID: PMC7511630 DOI: 10.3389/fcimb.2020.00489] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 08/06/2020] [Indexed: 01/10/2023] Open
Abstract
Dengue is an acute febrile disease triggered by dengue virus. Dengue is the widespread and rapidly transmitted mosquito-borne viral disease of humans. Diverse symptoms and diseases due to Dengue virus (DENV) infection ranges from dengue fever, dengue hemorrhagic fever (life-threatening) and dengue shock syndrome characterized by shock, endothelial dysfunction and vascular leakage. Several studies have linked the severity of dengue with the induction of inflammasome. DENV activates the NLRP3-specific inflammasome in DENV infected human patients, mice; specifically, mouse bone marrow derived macrophages (BMDMs), dendritic cells, endothelial cells, human peripheral blood mononuclear cells (PBMCs), keratinocytes, monocyte-differentiated macrophages (THP-1), and platelets. Dengue virus mediated inflammasome initiates the maturation of IL-1β and IL-18, which are critical for dengue pathology and inflammatory response. Several studies have reported the molecular mechanism through which (host and viral factors) dengue induces inflammasome, unravels the possible mechanisms of DENV pathogenesis and sets up the stage for the advancement of DENV therapeutics. In this perspective article, we discuss the potential implications and our understanding of inflammasome mechanisms of dengue virus and highlight research areas that have potential to inhibit the pathogenesis of viral diseases, specifically for dengue.
Collapse
Affiliation(s)
- Gaurav Shrivastava
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, United States
| | - Paola Carolina Valenzuela Leon
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, United States
| | - Eric Calvo
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, United States
| |
Collapse
|
27
|
Activation of ASC Inflammasome Driven by Toll-Like Receptor 4 Contributes to Host Immunity against Rickettsial Infection. Infect Immun 2020; 88:IAI.00886-19. [PMID: 32014896 DOI: 10.1128/iai.00886-19] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 01/23/2020] [Indexed: 02/07/2023] Open
Abstract
Rickettsiae are cytosolically replicating, obligately intracellular bacteria causing human infections worldwide with potentially fatal outcomes. We previously showed that Rickettsia australis activates ASC inflammasome in macrophages. In the present study, host susceptibility of ASC inflammasome-deficient mice to R. australis was significantly greater than that of C57BL/6 (B6) controls and was accompanied by increased rickettsial loads in various organs. Impaired host control of R. australis in vivo in ASC-/- mice was associated with dramatically reduced levels of interleukin 1β (IL-1β), IL-18, and gamma interferon (IFN-γ) in sera. The intracellular concentrations of R. australis in bone marrow-derived macrophages (BMMs) of TLR4-/- and ASC-/- mice were significantly greater than those in BMMs of B6 controls, highlighting the important role of inflammasome and these molecules in controlling rickettsiae in macrophages. Compared to B6 BMMs, TLR4-/- BMMs failed to secrete a significant level of IL-1β and had reduced expression levels of pro-IL-1β in response to infection with R. australis, suggesting that rickettsiae activate ASC inflammasome via a Toll-like receptor 4 (TLR4)-dependent mechanism. Further mechanistic studies suggest that the lipopolysaccharide (LPS) purified from R. australis together with ATP stimulation led to cleavage of pro-caspase-1 and pro-IL-1β, resulting in TLR4-dependent secretion of IL-1β. Taken together, these observations indicate that activation of ASC inflammasome, most likely driven by interaction of TLR4 with rickettsial LPS, contributes to host protective immunity against R. australis These findings provide key insights into defining the interactions of rickettsiae with the host innate immune system.
Collapse
|
28
|
De Biase D, Piegari G, Prisco F, Cimmino I, Pirozzi C, Mattace Raso G, Oriente F, Grieco E, Papparella S, Paciello O. Autophagy and NLRP3 inflammasome crosstalk in neuroinflammation in aged bovine brains. J Cell Physiol 2020; 235:5394-5403. [PMID: 31903559 DOI: 10.1002/jcp.29426] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Accepted: 12/19/2019] [Indexed: 12/16/2022]
Abstract
NLRP3 inflammasome is a multiprotein complex that can sense several stimuli such as autophagy dysregulation and increased reactive oxygen species production stimulating inflammation by priming the maturation of proinflammatory cytokines interleukin-1β and interleukin-18 in their active form. In the aging brain, these cytokines can mediate the innate immunity response priming microglial activation. Here, we describe the results of immunohistochemical and molecular analysis carried out on bovine brains. Our results support the hypothesis that the age-related impairment in cellular housekeeping mechanisms and the increased oxidative stress can trigger the inflammatory danger sensor NLRP3. Moreover, according to the recent scientific literature, we demonstrate the presence of an age-related proinflammatory environment in aged brains consisting in an upregulation of interleukin-1β, an increased microglial activation and increased NLRP3 expression. Finally, we suggest that bovine may potentially be a pivotal animal model for brain aging studies.
Collapse
Affiliation(s)
- Davide De Biase
- Department of Veterinary Medicine and Animal Production, University of Naples "Federico II", Naples, Italy
| | - Giuseppe Piegari
- Department of Veterinary Medicine and Animal Production, University of Naples "Federico II", Naples, Italy
| | - Francesco Prisco
- Department of Veterinary Medicine and Animal Production, University of Naples "Federico II", Naples, Italy
| | - Ilaria Cimmino
- Department of Translational Medicine, University of Naples "Federico II", Naples, Italy
| | - Claudio Pirozzi
- Department of Pharmacy, University of Naples "Federico II", Naples, Italy
| | | | - Francesco Oriente
- Department of Translational Medicine, University of Naples "Federico II", Naples, Italy
| | | | - Serenella Papparella
- Department of Veterinary Medicine and Animal Production, University of Naples "Federico II", Naples, Italy
| | - Orlando Paciello
- Department of Veterinary Medicine and Animal Production, University of Naples "Federico II", Naples, Italy
| |
Collapse
|
29
|
Radujkovic A, Kordelas L, Dai H, Schult D, Majer-Lauterbach J, Beelen D, Müller-Tidow C, Dreger P, Luft T. Interleukin-18 and outcome after allogeneic stem cell transplantation: A retrospective cohort study. EBioMedicine 2019; 49:202-212. [PMID: 31680001 PMCID: PMC6945194 DOI: 10.1016/j.ebiom.2019.10.024] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 10/07/2019] [Accepted: 10/14/2019] [Indexed: 12/11/2022] Open
Abstract
Background Interleukin-18 (IL-18) is involved in endothelial activation and dysfunction, and in the pathogenesis and severity of acute graft-versus-host disease (aGVHD). Its relevance for patient outcome after allogeneic stem cell transplantation (alloSCT) has not yet been comprehensively addressed. Methods Pre-transplant serum levels of free IL-18 were retrospectively assessed in a cohort of 589 patients (training cohort). Results were validated in 688 patients allografted in a different centre. The primary endpoint was overall survival (OS). Secondary endpoints included incidences of non-relapse mortality (NRM), relapse, and aGVHD. Findings In the training cohort, higher pre-transplant levels of free IL-18 were significantly associated with worse OS (hazard ratio [HR] per 1-log2 increase, 1.25, P = 0.008) in multivariable models. This was due to a higher hazard of NRM (HR per 1-log2 increase, 1.39, P = 0.001), rather than relapse. The associations of pre-transplant free IL-18 with higher NRM (HR per 1-log2 increase, 1.24, P = 0.02) and shorter OS (HR per 1-log2 increase, 1.22, P = 0.006) were confirmed in the validation cohort. In both cohorts, the correlations of higher pre-transplant free IL-18 serum levels with increased NRM and worse OS were mainly driven by fatal infectious complications. No associations with incidence of aGVHD were observed. Interpretation Higher pre-transplant levels of free IL-18 were associated with non-relapse and overall mortality after alloSCT. Our results may provide a rationale for prospective studies evaluating IL-18 status and inhibition of IL-18 activity in patients undergoing allografting.
Collapse
Affiliation(s)
- Aleksandar Radujkovic
- Department of Internal Medicine V, University Hospital Heidelberg, Im Neuenheimer Feld 410, 69120 Heidelberg Germany
| | - Lambros Kordelas
- Department of Bone Marrow Transplantation, University Hospital Essen, Germany
| | - Hao Dai
- Department of Epidemiology, German Cancer Research Centre (DKFZ), Heidelberg, Germany
| | - David Schult
- Department of Internal Medicine V, University Hospital Heidelberg, Im Neuenheimer Feld 410, 69120 Heidelberg Germany
| | - Joshua Majer-Lauterbach
- Department of Internal Medicine V, University Hospital Heidelberg, Im Neuenheimer Feld 410, 69120 Heidelberg Germany
| | - Dietrich Beelen
- Department of Bone Marrow Transplantation, University Hospital Essen, Germany
| | - Carsten Müller-Tidow
- Department of Internal Medicine V, University Hospital Heidelberg, Im Neuenheimer Feld 410, 69120 Heidelberg Germany
| | - Peter Dreger
- Department of Internal Medicine V, University Hospital Heidelberg, Im Neuenheimer Feld 410, 69120 Heidelberg Germany
| | - Thomas Luft
- Department of Internal Medicine V, University Hospital Heidelberg, Im Neuenheimer Feld 410, 69120 Heidelberg Germany.
| |
Collapse
|
30
|
Bolívar BE, Vogel TP, Bouchier-Hayes L. Inflammatory caspase regulation: maintaining balance between inflammation and cell death in health and disease. FEBS J 2019; 286:2628-2644. [PMID: 31090171 DOI: 10.1111/febs.14926] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 04/09/2019] [Accepted: 05/13/2019] [Indexed: 01/15/2023]
Abstract
Members of the mammalian inflammatory caspase family, including caspase-1, caspase-4, caspase-5, caspase-11, and caspase-12, are key regulators of the innate immune response. Most studies to date have focused on the role of caspase-1 in the maturation of the proinflammatory cytokine interleukin-1β and its upstream regulation by the inflammasome signaling complexes. However, an emerging body of research has supported a role for caspase-4, caspase-5, and caspase-11 in both regulating caspase-1 activation and inducing the inflammatory form of cell death called pyroptosis. This inflammatory caspase pathway appears essential for the regulation of cytokine processing. Consequently, insight into this noncanonical pathway may reveal important and, to date, understudied targets for the treatment of autoinflammatory disorders where the inflammasome pathway is dysregulated. Here, we will discuss the mechanisms of inflammasome and inflammatory caspase activation and how these pathways intersect to promote pathogen clearance.
Collapse
Affiliation(s)
- Beatriz E Bolívar
- Division of Hematology-Oncology, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA.,Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA.,William T. Shearer Center for Human Immunobiology, Texas Children's Hospital, Houston, TX, USA
| | - Tiphanie P Vogel
- William T. Shearer Center for Human Immunobiology, Texas Children's Hospital, Houston, TX, USA.,Division of Immunology, Allergy and Rheumatology, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Lisa Bouchier-Hayes
- Division of Hematology-Oncology, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA.,Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA.,William T. Shearer Center for Human Immunobiology, Texas Children's Hospital, Houston, TX, USA
| |
Collapse
|
31
|
Morales J, Pawle RH, Akkilic N, Luo Y, Xavierselvan M, Albokhari R, Calderon IAC, Selfridge S, Minns R, Takiff L, Mallidi S, Clark HA. DNA-Based Photoacoustic Nanosensor for Interferon Gamma Detection. ACS Sens 2019; 4:1313-1322. [PMID: 30973005 DOI: 10.1021/acssensors.9b00209] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Tracking protein levels in the body is vital in both research and medicine, where understanding their physiological roles provides insight into their regulation in homeostasis and diseases. In medicine, protein levels are actively sampled since they continuously fluctuate, reflecting the status of biological systems and provide insight into patient health. One such protein is interferon gamma, a clinically relevant protein with immunoregulatory functions that play critical roles against infection. New tools for continuously monitoring protein levels in vivo are invaluable in monitoring real-time conditions of patients to allow better care. Here, we developed a DNA-based nanosensor for the photoacoustic detection of interferon gamma. This work demonstrates how we transformed a simple DNA motif, receptors, and a novel phthalocyanine dye into a proof-of-concept photoacoustic nanosensor for protein detection. Surface plasmon resonance kinetic analysis demonstrated that the nanosensor is responsive and reversible to interferon gamma with an affinity in the nanomolar range, KD1 = 167 nM and KD2 = 316 nM. As a reporter, our design includes a novel phthalocyanine-based photoacoustic dye that stacks in a J-aggregate, causing a 22.5% increase in signal. Upon receptor binding, the DNA structure bends to induce phthalocyanine dye stacking, resulting in a 55% increase in photoacoustic signal in the presence of 10 μM interferon gamma. This proof-of-concept nanosensor is a novel approach to the development of a photoacoustic sensor and may be adapted for other proteins of interest in the future for in vivo tracking.
Collapse
Affiliation(s)
- Jennifer Morales
- Department of Bioengineering, Northeastern University, Boston, Massachusetts 02115, United States,
| | - Robert H. Pawle
- Akita Innovations LLC, Billerica, Massachusetts 01862, United States,
| | - Namik Akkilic
- Department of Pharmaceutical Sciences, Northeastern University, Boston, Massachusetts 02115, United States,
| | - Yi Luo
- Department of Pharmaceutical Sciences, Northeastern University, Boston, Massachusetts 02115, United States,
| | - Marvin Xavierselvan
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114, United States,
| | - Rayan Albokhari
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114, United States,
| | - Isen Andrew C. Calderon
- Department of Bioengineering, Northeastern University, Boston, Massachusetts 02115, United States,
| | - Scott Selfridge
- Akita Innovations LLC, Billerica, Massachusetts 01862, United States,
| | - Richard Minns
- Akita Innovations LLC, Billerica, Massachusetts 01862, United States,
| | - Larry Takiff
- Akita Innovations LLC, Billerica, Massachusetts 01862, United States,
| | - Srivalleesha Mallidi
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114, United States,
| | - Heather A. Clark
- Department of Bioengineering, Northeastern University, Boston, Massachusetts 02115, United States,
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, Massachusetts 02115, United States
| |
Collapse
|
32
|
Mierzchala-Pasierb M, Krzystek-Korpacka M, Lesnik P, Adamik B, Placzkowska S, Serek P, Gamian A, Lipinska-Gediga M. Interleukin-18 serum levels in sepsis: Correlation with disease severity and inflammatory markers. Cytokine 2019; 120:22-27. [PMID: 31003186 DOI: 10.1016/j.cyto.2019.04.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2018] [Revised: 03/11/2019] [Accepted: 04/05/2019] [Indexed: 12/19/2022]
Abstract
PURPOSE Sepsis is defined as a life-threatening organ dysfunction caused by a dysregulated host response to infection and a syndrome shaped by pathogen and host factors with characteristic that evolve over time. The study was conducted to evaluate the prognostic and discriminative value of IL-18 assessment in comparison to PCT, CRP, WBC in early stage of sepsis and septic shock. METHODS An observational and prospective study was conducted in the group of 40 ICU patients with diagnosis of sepsis or septic shock, serum PCT, IL-18, CRP and WBC measurements were performed on admission, and on the 2nd, 3rd and 5th therapy day. The level of IL-18 was determined with commercially available test according to manufacturer's protocol. RESULTS There were no statistically significant differences in IL-18 levels in survivors vs non-survivors and in sepsis vs septic shock subgroups the IL-18 levels were statistically significant in the course of the study except for the 5th day. CONCLUSION The PCT, CRP and WBC levels revealed no significant differences between any analyzed subgroups in all time points during study. According to our results the IL-18 is a biomarker better differentiating sepsis and septic shock status than PCT, CRP and WBC but with no prognostic impact.
Collapse
Affiliation(s)
| | | | - Patrycja Lesnik
- Department of Anesthesiology and Intensive Therapy, 4th Military Hospital of Wroclaw, Weigla 5, 50-981 Wroclaw, Poland; Department of Pathophysiology, Wroclaw Medical University, Marcinkowskiego 1, 50-368 Wroclaw, Poland.
| | - Barbara Adamik
- Department of Anesthesiology and Intensive Therapy, Wroclaw Medical University, Borowska 213, 50-556 Wroclaw, Poland.
| | - Sylwia Placzkowska
- Diagnostics Laboratory for Teaching and Research, Wroclaw Medical University, Borowska 211A, 50-556 Wroclaw, Poland.
| | - Pawel Serek
- Department of Medical Biochemistry, Wroclaw Medical University, Chalubinskiego 10, 50-368 Wroclaw, Poland.
| | - Andrzej Gamian
- Department of Medical Biochemistry, Wroclaw Medical University, Chalubinskiego 10, 50-368 Wroclaw, Poland.
| | - Malgorzata Lipinska-Gediga
- Department of Anesthesiology and Intensive Therapy, 4th Military Hospital of Wroclaw, Weigla 5, 50-981 Wroclaw, Poland; Faculty of Health Science, Wroclaw Medical University, Wroclaw, Poland.
| |
Collapse
|
33
|
Abstract
Blood urea nitrogen and serum creatinine are imperfect markers of kidney function because they are influenced by many renal and nonrenal factors independent of kidney function. A biomarker that is released directly into the blood or urine by the kidney in response to injury may be a better early marker of drug-induced kidney toxicity than blood urea nitrogen and serum creatinine. Urine albumin and urine protein, as well as urinary markers kidney injury molecule-1 (KIM-1), β2-microglobulin (B2M), cystatin C, clusterin, and trefoil factor-3 (TFF-3) have been accepted by the Food and Drug Administration and European Medicines Agency as highly sensitive and specific urinary biomarkers to monitor drug-induced kidney injury in preclinical studies and on a case-by-case basis in clinical trials. Other biomarkers of drug-induced kidney toxicity that have been detected in the urine of rodents or patients include IL-18, neutrophil gelatinase-associated lipocalin, netrin-1, liver-type fatty acid-binding protein (L-FABP), urinary exosomes, and TIMP2 (insulin-like growth factor-binding protein 7)/IGFBP7 (insulin-like growth factor-binding protein 7), also known as NephroCheck, the first Food and Drug Administration-approved biomarker testing platform to detect acute kidney injury in patients. In the future, a combined use of functional and damage markers may advance the field of biomarkers of drug-induced kidney toxicity. Earlier detection of drug-induced kidney toxicity with a kidney-specific biomarker may result in the avoidance of nephrotoxic agents in clinical studies and may allow for earlier intervention to repair damaged kidneys.
Collapse
Affiliation(s)
- Benjamin R Griffin
- Division of Renal Diseases and Hypertension, University of Colorado at Denver, Aurora, Colorado
| | | | | |
Collapse
|
34
|
Ge Y, Huang M, Yao YM. Recent advances in the biology of IL-1 family cytokines and their potential roles in development of sepsis. Cytokine Growth Factor Rev 2018; 45:24-34. [PMID: 30587411 DOI: 10.1016/j.cytogfr.2018.12.004] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2018] [Revised: 12/16/2018] [Accepted: 12/19/2018] [Indexed: 12/13/2022]
Abstract
The IL-1 family comprises two anti-inflammatory cytokines (IL-37, IL-38), two receptor antagonists (IL-1ra, IL-36ra), and seven ligand agonists (IL-1α, IL-1β, IL-33, IL-36α, IL-36β, IL-36γ). The members of this family exert pleiotropic effects on intercellular signaling, leading to pro- or anti-inflammatory responses. They initiate potent inflammatory and immune responses by binding to specific receptors in the IL-1 receptor family, and their activities are repressed by naturally occurring inhibitors. Various immune cells produce and are regulated by these crucial molecules, which appear to be involved in the pathogenesis of diverse diseases including cancer as well as inflammatory and autoimmune disorders. Recent decades have seen substantial progress in understanding how the IL-1 family contributes to the development of sepsis. In this review, we will briefly introduce the IL-1 family and discuss its critical role in inflammatory and immune responses. The potential significance of IL-1 members in sepsis will also be explored, together with the clinical implications for treating this dangerous condition.
Collapse
Affiliation(s)
- Yun Ge
- Department of General Intensive Care Unit, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310052, China
| | - Man Huang
- Department of General Intensive Care Unit, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310052, China
| | - Yong-Ming Yao
- Trauma Research Center, Fourth Medical Center of the Chinese PLA General Hospital, Beijing 100048, China.
| |
Collapse
|
35
|
Jurga AM, Rojewska E, Makuch W, Mika J. Lipopolysaccharide from Rhodobacter sphaeroides (TLR4 antagonist) attenuates hypersensitivity and modulates nociceptive factors. PHARMACEUTICAL BIOLOGY 2018; 56:275-286. [PMID: 29656686 PMCID: PMC6130482 DOI: 10.1080/13880209.2018.1457061] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
CONTEXT Accumulating evidence has demonstrated that Toll-like receptors (TLRs), especially TLR4 localized on microglia/macrophages, may play a significant role in nociception. OBJECTIVE We examine the role of TLR4 in a neuropathic pain model. Using behavioural/biochemical methods, we examined the influence of TLR4 antagonist on levels of hypersensitivity and nociceptive factors whose contribution to neuropathy development has been confirmed. MATERIALS AND METHODS Behavioural (von Frey's/cold plate) tests were performed with Wistar male rats after intrathecal administration of a TLR4 antagonist (LPS-RS ULTRAPURE (LPS-RSU), 20 μG: lipopolysaccharide from Rhodobacter sphaeroides, InvivoGen, San Diego, CA) 16 H and 1 h before chronic constriction injury (cci) to the sciatic nerve and then daily for 7 d. three groups were used: an intact group and two cci-exposed groups that received vehicle or LPS-RSU. tissue [spinal cord/dorsal root ganglia (DRG)] for western blot analysis was collected on day 7. RESULTS The pharmacological blockade of TLR4 diminished mechanical (from ca. 40% to 16% that in the INTACT group) and thermal (from ca. 51% to 32% that in the INTACT group) hypersensitivity despite the enhanced activation of IBA-1-positive cells in DRG. Moreover, LPS-RSU changed the ratio between IL-18/IL-18BP and MMP-9/TIMP-1 in favour of the increase of antinociceptive factors IL-18BP (25%-spinal; 96%-DRG) and TIMP-1 (15%-spinal; 50%-DRG) and additionally led to an increased IL-6 (40%-spinal; 161%-DRG), which is known to have analgesic properties in neuropathy. CONCLUSIONS Our results provide evidence that LPS-RSU influences pain through the expression of TLR4. TLR4 blockade has analgesic properties and restores the balance between nociceptive factors, which indicates its engagement in neuropathy development.
Collapse
Affiliation(s)
- Agnieszka M. Jurga
- Department of Pain Pharmacology, Institute of Pharmacology, Polish Academy of Sciences, Krakow, Poland
| | - Ewelina Rojewska
- Department of Pain Pharmacology, Institute of Pharmacology, Polish Academy of Sciences, Krakow, Poland
| | - Wioletta Makuch
- Department of Pain Pharmacology, Institute of Pharmacology, Polish Academy of Sciences, Krakow, Poland
| | - Joanna Mika
- Department of Pain Pharmacology, Institute of Pharmacology, Polish Academy of Sciences, Krakow, Poland
- CONTACT Joanna MikaDepartment of Pain Pharmacology, Institute of Pharmacology, Polish Academy of Sciences, 12 Smetna Str., 31343Krakow, Poland
| |
Collapse
|
36
|
Paving the way for precision medicine v2.0 in intensive care by profiling necroinflammation in biofluids. Cell Death Differ 2018; 26:83-98. [PMID: 30201975 PMCID: PMC6294775 DOI: 10.1038/s41418-018-0196-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 07/16/2018] [Accepted: 08/10/2018] [Indexed: 12/21/2022] Open
Abstract
Current clinical diagnosis is typically based on a combination of approaches including clinical examination of the patient, clinical experience, physiologic and/or genetic parameters, high-tech diagnostic medical imaging, and an extended list of laboratory values mostly determined in biofluids such as blood and urine. One could consider this as precision medicine v1.0. However, recent advances in technology and better understanding of molecular mechanisms underlying disease will allow us to better characterize patients in the future. These improvements will enable us to distinguish patients who have similar clinical presentations but different cellular and molecular responses. Treatments will be able to be chosen more “precisely”, resulting in more appropriate therapy, precision medicine v2.0. In this review, we will reflect on the potential added value of recent advances in technology and a better molecular understanding of necrosis and inflammation for improving diagnosis and treatment of critically ill patients. We give a brief overview on the mutual interplay between necrosis and inflammation, which are two crucial detrimental factors in organ and/or systemic dysfunction. One of the challenges for the future will thus be the cellular and molecular profiling of necroinflammation in biofluids. The huge amount of data generated by profiling biomolecules and single cells through, for example, different omic-approaches is needed for data mining methods to allow patient-clustering and identify novel biomarkers. The real-time monitoring of biomarkers will allow continuous (re)evaluation of treatment strategies using machine learning models. Ultimately, we may be able to offer precision therapies specifically designed to target the molecular set-up of an individual patient, as has begun to be done in cancer therapeutics. Critical care mostly implies life-threatening situations involving systemic infection, inflammation and necrosis. Biofluids are an easily accessible source of liquid biopsies that can be used to monitor the evolution of the patient’s critical illness. The cellular and molecular profiling of necrosis and inflammation in biofluids using cutting-edge technologies such as realtime immunodiagnostics, next-generation sequencing and mass spectrometry will pave the way for precision medicine v2.0 in critical care. This is needed for data mining approaches to allow patientclustering, identify novel biomarkers and develop novel intervention strategies controlling necrosis and inflammation. The real-time monitoring of biomarkers will allow continued (re)evaluation of treatment strategies using machine learning models. ![]()
Collapse
|
37
|
Brown ZJ, Heinrich B, Greten TF. Mouse models of hepatocellular carcinoma: an overview and highlights for immunotherapy research. Nat Rev Gastroenterol Hepatol 2018; 15:536-554. [PMID: 29904153 DOI: 10.1038/s41575-018-0033-6] [Citation(s) in RCA: 151] [Impact Index Per Article: 25.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Mouse models are the basis of preclinical and translational research in hepatocellular carcinoma (HCC). Multiple methods exist to induce tumour formation in mice, including genetically engineered mouse models, chemotoxic agents, intrahepatic or intrasplenic injection of tumour cells and xenograft approaches. Additionally, as HCC generally develops in the context of diseased liver, methods exist to induce liver disease in mice to mimic viral hepatitis, fatty liver disease, fibrosis, alcohol-induced liver disease and cholestasis. Similar to HCC in humans, response to therapy in mouse models is monitored with imaging modalities such as CT or MRI, as well as additional techniques involving bioluminescence. As immunotherapy is increasingly applied to HCC, mouse models for these approaches are required for preclinical data. In studying cancer immunotherapy, it is important to consider aspects of antitumour immune responses and to produce a model that mimics the complexity of the immune system. This Review provides an overview of the different mouse models of HCC, presenting techniques to prepare an HCC mouse model and discussing different approaches to help researchers choose an appropriate model for a specific hypothesis. Specific aspects of immunotherapy research in HCC and the applied mouse models in this field are also highlighted.
Collapse
Affiliation(s)
- Zachary J Brown
- Gastrointestinal Malignancy Section, Thoracic and Gastrointestinal Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Bernd Heinrich
- Gastrointestinal Malignancy Section, Thoracic and Gastrointestinal Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Tim F Greten
- Gastrointestinal Malignancy Section, Thoracic and Gastrointestinal Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
38
|
Tanaka K, Miyake Y, Hanioka T, Furukawa S, Miyatake N, Arakawa M. The IL18 Promoter Polymorphism, rs1946518, Is Associated with the Risk of Periodontitis in Japanese Women: The Kyushu Okinawa Maternal and Child Health Study. TOHOKU J EXP MED 2018; 243:159-164. [PMID: 29129846 DOI: 10.1620/tjem.243.159] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Interleukin-18 (IL-18) is a proinflammatory cytokine that plays an important role in periodontitis and its polymorphisms might modulate the individual susceptibility to periodontitis. Only a limited number of studies on the association between IL18 single-nucleotide polymorphisms (SNPs) and the risk of periodontitis have been realized, however. The aim of this case-control study among young post-partum Japanese women (18 to 45 years) was to determine the impact of SNPs, rs1946518 (-607 C/A) and rs187238 (-137G/C), on periodontitis. The two SNPs may be located within a transcription factor-binding element, thereby influencing transcription from the IL18 promoter. Subjects were 131 cases who had at least one tooth with a probing pocket depth of ≥ 4.0 mm and 1,017 periodontally healthy controls. Probing pocket depth measurements were performed between 1 and 12 months post-partum. In this population, the A allele of rs1946518 and the C allele of rs187238 are more common. After adjustment for age, education, smoking, and use of an interdental brush, compared with subjects with the AA or AC genotype of SNP rs1946518, those with the CC genotype had a significantly reduced risk of periodontitis (adjusted odds ratio = 0.54, 95% confidence interval = 0.29-0.97). No significant association was observed between rs187238 and the risk of periodontitis. Our study did not reveal any evidence of interaction between the IL18 polymorphisms and smoking. Our findings indicate that the IL18 promoter SNP, rs1946518, is a potential risk factor of periodontitis among young Japanese women.
Collapse
Affiliation(s)
- Keiko Tanaka
- Department of Epidemiology and Preventive Medicine, Ehime University Graduate School of Medicine.,Epidemiology and Medical Statistics Unit, Translational Research Center, Ehime University Hospital
| | - Yoshihiro Miyake
- Department of Epidemiology and Preventive Medicine, Ehime University Graduate School of Medicine.,Epidemiology and Medical Statistics Unit, Translational Research Center, Ehime University Hospital
| | - Takashi Hanioka
- Department of Preventive and Public Health Dentistry, Fukuoka Dental College
| | - Shinya Furukawa
- Department of Epidemiology and Preventive Medicine, Ehime University Graduate School of Medicine.,Epidemiology and Medical Statistics Unit, Translational Research Center, Ehime University Hospital
| | | | - Masashi Arakawa
- Health Tourism Research Fields, Graduate School of Tourism Sciences, University of the Ryukyus
| |
Collapse
|
39
|
Flaherty RA, Donahue DL, Carothers KE, Ross JN, Ploplis VA, Castellino FJ, Lee SW. Neutralization of Streptolysin S-Dependent and Independent Inflammatory Cytokine IL-1β Activity Reduces Pathology During Early Group A Streptococcal Skin Infection. Front Cell Infect Microbiol 2018; 8:211. [PMID: 30018884 PMCID: PMC6037840 DOI: 10.3389/fcimb.2018.00211] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Accepted: 06/05/2018] [Indexed: 12/12/2022] Open
Abstract
The bacterial pathogen Group A Streptococcus (GAS) has been shown to induce a variety of human diseases ranging in severity from pharyngitis to toxic shock syndrome and necrotizing fasciitis. GAS produces a powerful peptide toxin known as Streptolysin S (SLS). Though long recognized as a potent cytolysin, recent evidence from our lab has shown that SLS-dependent cytotoxicity is mediated through activation of the pro-inflammatory mediators p38 MAPK and NFκB. These findings led us to hypothesize that activation of p38 MAPK and NFκB signaling drive the production of pro-inflammatory cytokines which, in turn, serve as positive feedback signals to initiate cytotoxicity in infected host cells. To address this hypothesis, we utilized a cytokine array to characterize the SLS-dependent pro-inflammatory cytokine response to GAS infection in human keratinocytes. From these studies, IL-1β was found to be markedly upregulated in the presence of SLS, and further investigation revealed that this cytokine contributes to cytotoxicity in human keratinocytes during infection. Subcutaneous infection studies were performed in mice to address the physiological impact of increased IL-1β production. These studies demonstrated that IL-1β is produced during GAS skin infection in an SLS-dependent manner. Furthermore, inhibition of this cytokine and the upstream kinases and other signaling mediators that drive its production reduced SLS-mediated lesion formation early in the infection process. Together, our findings indicate that pharmacological inhibition of this inflammatory axis holds promise as a therapeutic strategy to reduce tissue destruction during severe invasive Group A Streptococcal infections.
Collapse
Affiliation(s)
- Rebecca A Flaherty
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, United States.,Eck Institute for Global Health, University of Notre Dame, Notre Dame, IN, United States
| | - Deborah L Donahue
- W. M. Keck Center for Transgene Research, University of Notre Dame, Notre Dame, IN, United States
| | - Katelyn E Carothers
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, United States.,Eck Institute for Global Health, University of Notre Dame, Notre Dame, IN, United States
| | - Jessica N Ross
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, United States.,Eck Institute for Global Health, University of Notre Dame, Notre Dame, IN, United States
| | - Victoria A Ploplis
- W. M. Keck Center for Transgene Research, University of Notre Dame, Notre Dame, IN, United States
| | - Francis J Castellino
- W. M. Keck Center for Transgene Research, University of Notre Dame, Notre Dame, IN, United States
| | - Shaun W Lee
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, United States.,Eck Institute for Global Health, University of Notre Dame, Notre Dame, IN, United States.,W. M. Keck Center for Transgene Research, University of Notre Dame, Notre Dame, IN, United States
| |
Collapse
|
40
|
Rozas-Serri M, Peña A, Arriagada G, Enríquez R, Maldonado L. Comparison of gene expression in post-smolt Atlantic salmon challenged by LF-89-like and EM-90-like Piscirickettsia salmonis isolates reveals differences in the immune response associated with pathogenicity. JOURNAL OF FISH DISEASES 2018; 41:539-552. [PMID: 29143962 DOI: 10.1111/jfd.12756] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Revised: 10/14/2017] [Accepted: 10/17/2017] [Indexed: 06/07/2023]
Abstract
Piscirickettsiosis is the main bacterial disease affecting the Chilean salmon farming industry and is responsible for high economic losses. The aim of this study was to describe and comparatively quantify the immune response of post-smolt Atlantic salmon infected by cohabitation with fish bearing LF-89-like and EM-90-like Piscirickettsia salmonis. The expression of 17 genes related to the immune response was studied in head kidney from cohabitant fish by RT-qPCR. Our results at the transcriptomic level suggest that P. salmonis is able to manipulate the kinetics of cytokine production in a way that might constitute a virulence mechanism that promotes intracellular bacterial replication in cells of Atlantic salmon. This strategy involves the creation of an ideal environment for the microorganism based on induction of the inflammatory and IFN-mediated response, modulation of Th1 polarization, reduced antigen processing and presentation, modulation of the evasion of the immune response mediated by CD8+ T cells and promotion of the CD4+ T-cell response during the late stage of infection as a mechanism to escape host defences. This response was significantly exacerbated in fish infected by PS-EM-90 compared with fish infected by PS-LF-89, a finding that is probably associated with the higher pathogenicity of PS-EM-90.
Collapse
Affiliation(s)
- M Rozas-Serri
- Pathovet Laboratory Ltd., Puerto Montt, Chile
- Faculty of Veterinary Sciences, Graduate School, Austral University of Chile, Valdivia, Chile
| | - A Peña
- Pathovet Laboratory Ltd., Puerto Montt, Chile
| | - G Arriagada
- EPI-data Research & Consulting, Santiago, Chile
| | - R Enríquez
- Laboratory of Aquatic Pathology and Biotechnology, Faculty of Veterinary Sciences, Animal Pathology Institute, Universidad Austral de Chile, Valdivia, Chile
| | - L Maldonado
- Pathovet Laboratory Ltd., Puerto Montt, Chile
| |
Collapse
|
41
|
Zasada M, Lenart M, Rutkowska-Zapała M, Stec M, Czyz O, Mól N, Siedlar M, Kwinta P. Inflammasome function in monocyte subsets and a risk of late-onset sepsis in preterm very low birth weight neonates. Minerva Pediatr (Torino) 2018; 74:121-131. [PMID: 29381011 DOI: 10.23736/s2724-5276.18.05034-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
BACKGROUND Immature immune systems predispose very low birth weight (VLBW) neonates to systemic infections in early life. Defective inflammasome function may increase a neonate's susceptibility to late-onset sepsis (LOS). METHODS Blood samples were taken on the 5th day of life (DOL) for all VLBW neonates (non-LOS and before-LOS groups; N.=76), and within 24 hours of sepsis onset (LOS group; N.=39). Monocyte (MO) subsets and intracellular interleukin-1β (IL-1β) expression were analyzed using flow cytometry. Inflammasome function, defined as level of IL-1β and interleukin-18 (IL-18) was measured with enzyme-linked immunosorbent assay. IRA B cells were reported as a fraction of all B cells. RESULTS Stimulation of classical MO in non-LOS cells demonstrated a higher expression of intracellular IL-1β in comparison to MO from before LOS group. Serum from the LOS group revealed a higher level of IL-18. Stimulation of mononuclear cultures from samples taken during LOS resulted in significantly increased supernatant level of IL-1β and IL-18 in comparison to samples taken on 5th DOL. No changes in the levels of IRA B cells were detected with the onset of sepsis. CONCLUSIONS We did not observe a difference in the functioning of the inflammasome within monocytes taken on 5th DOL from premature VLBW neonates. Furthermore, there was no observable change in the IRA B cells of the septic and non-septic groups. The decreased expression of intracellular IL-1β within classical MO of the before-LOS group may be an independent risk factor for LOS development.
Collapse
Affiliation(s)
- Magdalena Zasada
- Department of Pediatrics, Institute of Pediatrics, Faculty of Medicine, Jagiellonian University, Krakow, Poland -
| | - Marzena Lenart
- Department of Clinical Immunology, Institute of Pediatrics, Faculty of Medicine, Jagiellonian University, Krakow, Poland
| | - Magdalena Rutkowska-Zapała
- Department of Clinical Immunology, Institute of Pediatrics, Faculty of Medicine, Jagiellonian University, Krakow, Poland
| | - Małgorzata Stec
- Department of Clinical Immunology, Institute of Pediatrics, Faculty of Medicine, Jagiellonian University, Krakow, Poland
| | - Ola Czyz
- Jagiellonian University, Krakow, Poland
| | - Nina Mól
- Department of Pediatrics, Institute of Pediatrics, Faculty of Medicine, Jagiellonian University, Krakow, Poland
| | - Maciej Siedlar
- Department of Clinical Immunology, Institute of Pediatrics, Faculty of Medicine, Jagiellonian University, Krakow, Poland
| | - Przemko Kwinta
- Department of Pediatrics, Institute of Pediatrics, Faculty of Medicine, Jagiellonian University, Krakow, Poland
| |
Collapse
|
42
|
Abstract
Traumatic injury as one of the world's most relevant but neglected health concerns results in modulated inflammasome activity, which is closely linked to the development of post-injury complications. Cytokine-producing capacity of cells is important for the appropriate immune response to trauma and requires not only synthesis and transcription of inflammasome components but also their activation. Unfortunately, the precise role of inflammasome in trauma is still largely unknown. However, in the following chapter, we provide an overview on the best described inflammasomes in the various settings of trauma, introducing the recent findings on the up-to-date best described NLRP inflammasomes and underlying cytokines in the inflammatory response to trauma.
Collapse
Affiliation(s)
- Borna Relja
- Department of Trauma, Hand and Reconstructive Surgery, University Hospital Frankfurt, Goethe University, Frankfurt am Main, Germany.
| | | |
Collapse
|
43
|
Inflammasomes in Mycobacterium tuberculosis-Driven Immunity. CANADIAN JOURNAL OF INFECTIOUS DISEASES & MEDICAL MICROBIOLOGY 2017; 2017:2309478. [PMID: 29348763 PMCID: PMC5733865 DOI: 10.1155/2017/2309478] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Revised: 09/30/2017] [Accepted: 10/18/2017] [Indexed: 12/17/2022]
Abstract
The development of effective innate and subsequent adaptive host immune responses is highly dependent on the production of proinflammatory cytokines that increase the activity of immune cells. The key role in this process is played by inflammasomes, multimeric protein complexes serving as a platform for caspase-1, an enzyme responsible for proteolytic cleavage of IL-1β and IL-18 precursors. Inflammasome activation, which triggers the multifaceted activity of these two proinflammatory cytokines, is a prerequisite for developing an efficient inflammatory response against pathogenic Mycobacterium tuberculosis (M.tb). This review focuses on the role of NLRP3 and AIM2 inflammasomes in M.tb-driven immunity.
Collapse
|
44
|
Di Prisco G, Iannaccone M, Ianniello F, Ferrara R, Caprio E, Pennacchio F, Capparelli R. The neonicotinoid insecticide Clothianidin adversely affects immune signaling in a human cell line. Sci Rep 2017; 7:13446. [PMID: 29044138 PMCID: PMC5647381 DOI: 10.1038/s41598-017-13171-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Accepted: 09/18/2017] [Indexed: 12/17/2022] Open
Abstract
Clothianidin is a widely used neonicotinoid insecticide, which is a potent agonist of the nicotinic acetylcholine receptor in insects. This neurotoxic compound has a negative impact on insect immunity, as it down-regulates the activation of the transcription factor NF-κB. Given the evolutionary conserved role of NF-κB in the modulation of the immune response in the animal kingdom, here we want to assess any effect of Clothianidin on vertebrate defense barriers. In presence of this neonicotinoid insecticide, a pro-inflammatory challenge with LPS on the human monocytic cell line THP-1 results both in a reduced production of the cytokine TNF-α and in a down-regulation of a reporter gene under control of NF-κB promoter. This finding is corroborated by a significant impact of Clothianidin on the transcription levels of different immune genes, characterized by a core disruption of TRAF4 and TRAF6 that negatively influences NF-κB signaling. Moreover, exposure to Clothianidin concurrently induces a remarkable up-regulation of NGFR, which supports the occurrence of functional ties between the immune and nervous systems. These results suggest a potential risk of immunotoxicity that neonicotinoids may have on vertebrates, which needs to be carefully assessed at the organism level.
Collapse
Affiliation(s)
- Gennaro Di Prisco
- Department of Agricultural Sciences, University of Napoli "Federico II" - Via Università 100, 80055 Portici, Napoli, Italy
| | - Marco Iannaccone
- Department of Agricultural Sciences, University of Napoli "Federico II" - Via Università 100, 80055 Portici, Napoli, Italy
| | - Flora Ianniello
- Department of Agricultural Sciences, University of Napoli "Federico II" - Via Università 100, 80055 Portici, Napoli, Italy
| | - Rosalba Ferrara
- Department of Agricultural Sciences, University of Napoli "Federico II" - Via Università 100, 80055 Portici, Napoli, Italy
| | - Emilio Caprio
- Department of Agricultural Sciences, University of Napoli "Federico II" - Via Università 100, 80055 Portici, Napoli, Italy
| | - Francesco Pennacchio
- Department of Agricultural Sciences, University of Napoli "Federico II" - Via Università 100, 80055 Portici, Napoli, Italy.
| | - Rosanna Capparelli
- Department of Agricultural Sciences, University of Napoli "Federico II" - Via Università 100, 80055 Portici, Napoli, Italy.
| |
Collapse
|
45
|
Pallett MA, Crepin VF, Serafini N, Habibzay M, Kotik O, Sanchez-Garrido J, Di Santo JP, Shenoy AR, Berger CN, Frankel G. Bacterial virulence factor inhibits caspase-4/11 activation in intestinal epithelial cells. Mucosal Immunol 2017; 10:602-612. [PMID: 27624779 PMCID: PMC5159625 DOI: 10.1038/mi.2016.77] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Accepted: 08/01/2016] [Indexed: 02/07/2023]
Abstract
The human pathogen enteropathogenic Escherichia coli (EPEC), as well as the mouse pathogen Citrobacter rodentium, colonize the gut mucosa via attaching and effacing lesion formation and cause diarrheal diseases. EPEC and C. rodentium type III secretion system (T3SS) effectors repress innate immune responses and infiltration of immune cells. Inflammatory caspases such as caspase-1 and caspase-4/11 are crucial mediators of host defense and inflammation in the gut via their ability to process cytokines such as interleukin (IL)-1β and IL-18. Here we report that the effector NleF binds the catalytic domain of caspase-4 and inhibits its proteolytic activity. Following infection of intestinal epithelial cells (IECs) EPEC inhibited caspase-4 and IL-18 processing in an NleF-dependent manner. Depletion of caspase-4 in IECs prevented the secretion of mature IL-18 in response to infection with EPECΔnleF. NleF-dependent inhibition of caspase-11 in colons of mice prevented IL-18 secretion and neutrophil influx at early stages of C. rodentium infection. Neither wild-type C. rodentium nor C. rodentiumΔnleF triggered neutrophil infiltration or IL-18 secretion in Cas11 or Casp1/11-deficient mice. Thus, IECs have a key role in modulating early innate immune responses in the gut via a caspase-4/11-IL-18 axis, which is targeted by virulence factors encoded by enteric pathogens.
Collapse
Affiliation(s)
- Mitchell A. Pallett
- Department of Life Sciences, MRC Centre for Molecular Bacteriology and Infection, Imperial College London, UK
| | - Valerie F. Crepin
- Department of Life Sciences, MRC Centre for Molecular Bacteriology and Infection, Imperial College London, UK
| | - Nicolas Serafini
- Innate Immunity Unit, Institut Pasteur, Paris, France,Inserm U668, Paris, France
| | - Maryam Habibzay
- Department of Life Sciences, MRC Centre for Molecular Bacteriology and Infection, Imperial College London, UK
| | - Olga Kotik
- Department of Life Sciences, MRC Centre for Molecular Bacteriology and Infection, Imperial College London, UK
| | - Julia Sanchez-Garrido
- Department of Medicine, MRC Centre for Molecular Bacteriology and Infection, Imperial College London, UK
| | - James P. Di Santo
- Innate Immunity Unit, Institut Pasteur, Paris, France,Inserm U668, Paris, France
| | - Avinash R. Shenoy
- Department of Medicine, MRC Centre for Molecular Bacteriology and Infection, Imperial College London, UK
| | - Cedric N. Berger
- Department of Life Sciences, MRC Centre for Molecular Bacteriology and Infection, Imperial College London, UK
| | - Gad Frankel
- Department of Life Sciences, MRC Centre for Molecular Bacteriology and Infection, Imperial College London, UK,Corresponding author, Gad Frankel, MRC CMBI, Flowers Building, Imperial College, London, SW7 2AZ,
| |
Collapse
|
46
|
Torii Y, Kawada JI, Murata T, Yoshiyama H, Kimura H, Ito Y. Epstein-Barr virus infection-induced inflammasome activation in human monocytes. PLoS One 2017; 12:e0175053. [PMID: 28369146 PMCID: PMC5378412 DOI: 10.1371/journal.pone.0175053] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Accepted: 03/20/2017] [Indexed: 01/15/2023] Open
Abstract
Inflammasomes are cytoplasmic sensors that regulate the activity of caspase-1 and the secretion of interleukin-1β (IL-1β) or interleukin-18 (IL-18) in response to foreign molecules, including viral pathogens. They are considered to be an important link between the innate and adaptive immune responses. However, the mechanism by which inflammasome activation occurs during primary Epstein-Barr virus (EBV) infection remains unknown. Human B lymphocytes and epithelial cells are major targets of EBV, although it can also infect a variety of other cell types. In this study, we found that EBV could infect primary human monocytes and the monocyte cell line, THP-1, inducing inflammasome activation. We incubated cell-free EBV with THP-1 cells or primary human monocytes, then confirmed EBV infection using confocal microscopy and flow cytometry. Lytic and latent EBV genes were detected by real-time RT-PCR in EBV-infected monocytes. EBV infection of THP-1 cells and primary human monocytes induced caspase-dependent IL-1β production, while EBV infection of B-cell or T-cell lines did not induce IL-1β production. To identify the sensor molecule responsible for inflammasome activation during EBV infection, we examined the mRNA and the protein levels of NLR family pyrin domain-containing 3 (NLRP3), absent in melanoma 2 (AIM2), and interferon-inducible protein 16 (IFI16). Increased AIM2 levels were observed in EBV-infected THP-1 cells and primary human monocytes, whereas levels of IFI16 and NLRP3 did not show remarkable change. Furthermore, knockdown of AIM2 by small interfering RNA attenuated caspase-1 activation. Taken together, our results suggest that EBV infection of human monocytes induces caspase-1-dependent IL-1β production, and that AIM2, acting as an inflammasome, is involved in this response.
Collapse
Affiliation(s)
- Yuka Torii
- Department of Pediatrics, Nagoya University Graduate School of Medicine, Nagoya, Japan
- Department of Virology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Jun-ichi Kawada
- Department of Pediatrics, Nagoya University Graduate School of Medicine, Nagoya, Japan
- * E-mail:
| | - Takayuki Murata
- Department of Virology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Hironori Yoshiyama
- Department of Microbiology, Shimane University Faculty of Medicine, Izumo, Shimane
| | - Hiroshi Kimura
- Department of Virology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yoshinori Ito
- Department of Pediatrics, Nagoya University Graduate School of Medicine, Nagoya, Japan
| |
Collapse
|
47
|
The RS504393 Influences the Level of Nociceptive Factors and Enhances Opioid Analgesic Potency in Neuropathic Rats. J Neuroimmune Pharmacol 2017; 12:402-419. [PMID: 28337574 PMCID: PMC5527054 DOI: 10.1007/s11481-017-9729-6] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Accepted: 02/13/2017] [Indexed: 12/19/2022]
Abstract
Increasing evidence has indicated that activated glial cells releasing nociceptive factors, such as interleukins and chemokines, are of key importance for neuropathic pain. Significant changes in the production of nociceptive factors are associated with the low effectiveness of opioids in neuropathic pain. Recently, it has been suggested that CCL2/CCR2 signaling is important for nociception. Here, we studied the time course changes in the mRNA/protein level of CD40/Iba-1, CCL2 and CCR2 in the spinal cord/dorsal root ganglia (DRG) in rats following chronic constriction injury (CCI) of the sciatic nerve. Moreover, we examined the influence of intrathecal preemptive and repeated (daily for 7 days) administration of RS504393, CCR2 antagonist, on pain-related behavior and the associated biochemical changes of some nociceptive factors as well as its influence on opioid effectiveness. We observed simultaneous upregulation of Iba-1, CCL2, CCR2 in the spinal cord on 7th day after CCI. Additionally, we demonstrated that repeated administration of RS504393 not only attenuated tactile/thermal hypersensitivity but also enhanced the analgesic properties of morphine and buprenorphine under neuropathy. Our results proof that repeated administration of RS504393 reduced the mRNA and/or protein levels of pronociceptive factors, such as IL-1beta, IL-18, IL-6 and inducible nitric oxide synthase (iNOS), and some of their receptors in the spinal cord and/or DRG. Furthermore, RS504393 elevated the spinal protein level of antinociceptive IL-1alpha and IL-18 binding protein. Our data provide new evidence that CCR2 is a promising target for diminishing neuropathic pain and enhancing the opioid analgesic effects.
Collapse
|
48
|
Hayakawa T, Hata M, Kuwahara-Otani S, Yagi H, Okamura H. Postnatal changes of interleukin-18 receptor immunoreactivity in neurons of the retrosplenial cortex in wild-type and interleukin-18 knock out mice. Okajimas Folia Anat Jpn 2017; 94:93-99. [PMID: 29681594 DOI: 10.2535/ofaj.94.93] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Interleukin-18 (IL-18), which is involved in the inflammatory response, is also found in the cerebral cortex. IL-18 receptor-immunoreactive (IL-18R-ir) neurons are present in layer V of the retrosplenial cortex (RSC). In the adult IL-18 knock out (KO) mice, no IL-18R-ir neurons but many degenerated neurons are present in layer V of the RSC, suggesting that any changes in the neurons of layer V have occurred during postnatal development. We examined changes of IL-18R expression during postnatal development. In the wild-type mice, many IL-18R-ir neurons were present in layers II, III and VI of the RSC in 2-week-old mice, whereas they were sparsely observed in only layer III in 3-week-old mice. No IL-18R-ir neurons were present in 4- and 5-week-old mice. In older than 6-week-old mice, many IL-18R-ir neurons were present in layers V and VI. The IL-18KO mice showed IL-18R-ir neurons in layers II, III and VI at 2-weeks-old, and a few in layer III at 3-week-old mice, similar to that in the wild-type mice. No IL-18R-ir neurons were found in mice older than 4 weeks of age. Thus, IL-18 or IL-18R seem to be involved in the construction of neural circuits corresponding to events after 3-weeks of age.
Collapse
Affiliation(s)
- Tetsu Hayakawa
- Laboratory of Tumor Immunology and Cell Therapy Hyogo College of Medicine Mukogawa
| | - Masaki Hata
- Laboratory of Tumor Immunology and Cell Therapy Hyogo College of Medicine Mukogawa
| | | | - Hideshi Yagi
- Department of Anatomy Hyogo College of Medicine Mukogawa
| | - Haruki Okamura
- Laboratory of Tumor Immunology and Cell Therapy Hyogo College of Medicine Mukogawa
| |
Collapse
|
49
|
Maspi N, Abdoli A, Ghaffarifar F. Pro- and anti-inflammatory cytokines in cutaneous leishmaniasis: a review. Pathog Glob Health 2016; 110:247-260. [PMID: 27660895 DOI: 10.1080/20477724.2016.1232042] [Citation(s) in RCA: 142] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Cutaneous leishmaniasis (CL) is caused by different species of the genus Leishmania. Pro- and anti-inflammatory cytokines play different roles in resistance/susceptibility and the immunopathogenesis of Leishmania infection. The balance and dynamic changes in cytokines may control or predict clinical outcome. T helper 1 (Th1) inflammatory cytokines (especially interferon-γ, tumor necrosis factor-α and interleukin-12) are the crucial factors in the initiation of protective immunity against L. major infection, whereas T helper 2 cytokines including IL-5, IL-4, and IL-13 facilitate the persistence of parasites by downregulating the Th1 immune response. On the other hand, aggravation of inflammatory reactions leads to collateral tissue damage and formation of ulcer. For this reason, immunity system such as T regulatory cells produce regulatory cytokines such as transforming growth factor-β and IL-10 to inhibit possible injures caused by increased inflammatory responses in infection site. In this article, we review the role of pro- and anti-inflammatory cytokines in the immunoprotection and immunopathology of CL.
Collapse
Affiliation(s)
- Nahid Maspi
- a Faculty of Medical Sciences, Department of Parasitology , Tarbiat Modares University , Tehran , Iran
| | - Amir Abdoli
- a Faculty of Medical Sciences, Department of Parasitology , Tarbiat Modares University , Tehran , Iran
| | - Fathemeh Ghaffarifar
- a Faculty of Medical Sciences, Department of Parasitology , Tarbiat Modares University , Tehran , Iran
| |
Collapse
|
50
|
Chen YL, Chen YS, Hung YC, Liu PJ, Tasi HY, Ni WF, Hseuh PT, Lin HH. Improvement in T helper 1-related immune responses in BALB/c mice immunized with an HIV-1 gag plasmid combined with a chimeric plasmid encoding interleukin-18 and flagellin. Microbiol Immunol 2016; 59:483-94. [PMID: 26094825 DOI: 10.1111/1348-0421.12274] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Revised: 06/04/2015] [Accepted: 06/09/2015] [Indexed: 11/28/2022]
Abstract
Both flagellin (fliC) and IL-18 (INF-γ-inducing factor) have been developed as adjuvants for improving immunogenicity in DNA-vaccinated hosts. An HIV-1 gag plasmid encodes a protein harboring broad epitopes for cytotoxic T-lymphocytes. In this study, the immunogenicity of BALB/c mice immunized with an HIV-1 gag plasmid (pVAX/gag) combined with a chimeric plasmid encoding IL-18 fused to flagellin (pcDNA3/IL-18_fliC) or a single plasmid encoding IL-18 (pcDNA3/IL-18) and/or flagellin (pcDNA3/fliC) was assessed. Through in vitro transcription and translation, it was demonstrated that both mRNA and protein were appropriately expressed by each construct. The IL-18 and flagellin fusion protein, which could be detected in supernatants from transfected cells, was effective in inducing IFN-γ by lymphocytes. Following i.m. immunization, expressions of flagellin or IL-18 were detected in muscle cells by immunohistochemistry analysis from 72 hr. At 12 weeks post-immunization, both gag-specific IgG in sera and spleen cell proliferation were high in all murine groups. However, the IgG2a/IgG1 ratio, Th1 cytokine (IL-2 and IFN-γ) production and proportion of gag-specific CD3(+) CD8(+) IFN-γ-secreting cells were significantly higher in the murine group co-immunized with pVAX/gag plasmid and pcDNA3/IL-18_fliC than in the mice immunized with pVAX/gag plasmid combined with either pcDNA3/fliC or pcDNA3/IL-18 plasmid or both. These findings suggest that a chimeric plasmid encoding IL-18 fused to flagellin can be used as an adjuvant-like plasmid to improve the Th1 immune response, particularly for induction of CD3(+) CD8(+) IFN-γ-secreting cells in gag plasmid-vaccinated mice.
Collapse
Affiliation(s)
- Ya-Lei Chen
- Department of Biotechnology, National Kaohsiung Normal University, Kaohsiung, Taiwan
| | - Yao-Shen Chen
- Department of Internal Medicine, Division of Infectious Diseases, Kaohsiung Veterans General Hospital, Kaohsiung/National Yang-Ming University, Taipei
| | - Yi-Chien Hung
- Department of Medicine, Section of Infectious Disease, E-Da Hospital/I-Shou University, Kaohsiung
| | - Pei-Ju Liu
- Department of Biotechnology, National Kaohsiung Normal University, Kaohsiung, Taiwan
| | - Hsi-Ying Tasi
- Department of Biotechnology, National Kaohsiung Normal University, Kaohsiung, Taiwan
| | - Wei-Feng Ni
- Department of Biotechnology, National Kaohsiung Normal University, Kaohsiung, Taiwan
| | - Pei-Tan Hseuh
- Department of Biological Science, National Sun Yat-sen University, Kaohsiung, Taiwan
| | - Hsi-Hsun Lin
- Department of Medicine, Section of Infectious Disease, E-Da Hospital/I-Shou University, Kaohsiung
| |
Collapse
|