1
|
Illés A, Pikó H, Bartek V, Szepesi O, Rudas G, Benkő Z, Harmath Á, Kósa JP, Beke A. Heterogenic Genetic Background of Distal Arthrogryposis-Review of the Literature and Case Report. CHILDREN (BASEL, SWITZERLAND) 2024; 11:861. [PMID: 39062310 PMCID: PMC11276416 DOI: 10.3390/children11070861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 06/21/2024] [Accepted: 07/12/2024] [Indexed: 07/28/2024]
Abstract
Distal arthrogryposis (DA) is a skeletal muscle disorder that is characterized by the presence of joint contractures in various parts of the body, particularly in the distal extremities. In this study, after a systematic review of the literature, we present a case report of a non-consanguineous family. In our case, the first-trimester ultrasound was negative, and the presence of the affected mother was not enough for the parents to consent to us performing invasive amniotic fluid sampling. The second-trimester ultrasound showed clear abnormalities suggestive of arthrogryposis. Whole-exome sequencing was performed and an autosomal dominantly inherited disease-associated gene was identified. In our case, a pathogenic variant in the TNNT3 gene c.188G>A, p.Arg63His variant was identified. The mother, who had bilateral clubfoot and hand involvement in childhood, carried the same variant. The TNNT3 gene is associated with distal arthrogryposis type 2B2, which is characterized by congenital contractures of the distal limb joints and facial dysmorphism. In the ultrasound, prominent clubfoot was identified, and the mother, who also carried the same mutation, had undergone surgeries to correct the clubfoot, but facial dysmorphism was not detected. Our study highlights the importance of proper genetic counseling, especially in an affected parent(s), and close follow-up during pregnancy.
Collapse
Affiliation(s)
- Anett Illés
- Department of Internal Medicine and Oncology, Semmelweis University, 1085 Budapest, Hungary; (A.I.); (H.P.); (J.P.K.)
| | - Henriett Pikó
- Department of Internal Medicine and Oncology, Semmelweis University, 1085 Budapest, Hungary; (A.I.); (H.P.); (J.P.K.)
| | - Virág Bartek
- Department of Obstetrics and Gynecology, Semmelweis University, 1085 Budapest, Hungary; (V.B.); (O.S.); (Z.B.); (Á.H.)
| | - Olívia Szepesi
- Department of Obstetrics and Gynecology, Semmelweis University, 1085 Budapest, Hungary; (V.B.); (O.S.); (Z.B.); (Á.H.)
| | - Gábor Rudas
- Heim Pál National Pediatric Institute, 1085 Budapest, Hungary;
| | - Zsófia Benkő
- Department of Obstetrics and Gynecology, Semmelweis University, 1085 Budapest, Hungary; (V.B.); (O.S.); (Z.B.); (Á.H.)
| | - Ágnes Harmath
- Department of Obstetrics and Gynecology, Semmelweis University, 1085 Budapest, Hungary; (V.B.); (O.S.); (Z.B.); (Á.H.)
| | - János Pál Kósa
- Department of Internal Medicine and Oncology, Semmelweis University, 1085 Budapest, Hungary; (A.I.); (H.P.); (J.P.K.)
| | - Artúr Beke
- Department of Obstetrics and Gynecology, Semmelweis University, 1085 Budapest, Hungary; (V.B.); (O.S.); (Z.B.); (Á.H.)
| |
Collapse
|
2
|
Matsiukevich D, Kovacs A, Li T, Kokkonen-Simon K, Matkovich SJ, Oladipupo SS, Ornitz DM. Characterization of a robust mouse model of heart failure with preserved ejection fraction. Am J Physiol Heart Circ Physiol 2023; 325:H203-H231. [PMID: 37204871 DOI: 10.1152/ajpheart.00038.2023] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 05/12/2023] [Accepted: 05/12/2023] [Indexed: 05/21/2023]
Abstract
Heart failure (HF) is a leading cause of morbidity and mortality particularly in older adults and patients with multiple metabolic comorbidities. Heart failure with preserved ejection fraction (HFpEF) is a clinical syndrome with multisystem organ dysfunction in which patients develop symptoms of HF as a result of high left ventricular (LV) diastolic pressure in the context of normal or near normal LV ejection fraction (LVEF; ≥50%). Challenges to create and reproduce a robust rodent phenotype that recapitulates the multiple comorbidities that exist in this syndrome explain the presence of various animal models that fail to satisfy all the criteria of HFpEF. Using a continuous infusion of angiotensin II and phenylephrine (ANG II/PE), we demonstrate a strong HFpEF phenotype satisfying major clinically relevant manifestations and criteria of this pathology, including exercise intolerance, pulmonary edema, concentric myocardial hypertrophy, diastolic dysfunction, histological signs of microvascular impairment, and fibrosis. Conventional echocardiographic analysis of diastolic dysfunction identified early stages of HFpEF development and speckle tracking echocardiography analysis including the left atrium (LA) identified strain abnormalities indicative of contraction-relaxation cycle impairment. Diastolic dysfunction was validated by retrograde cardiac catheterization and analysis of LV end-diastolic pressure (LVEDP). Among mice that developed HFpEF, two major subgroups were identified with predominantly perivascular fibrosis and interstitial myocardial fibrosis. In addition to major phenotypic criteria of HFpEF that were evident at early stages of this model (3 and 10 days), accompanying RNAseq data demonstrate activation of pathways associated with myocardial metabolic changes, inflammation, activation of extracellular matrix (ECM) deposition, microvascular rarefaction, and pressure- and volume-related myocardial stress.NEW & NOTEWORTHY Heart failure with preserved ejection fraction (HFpEF) is an emerging epidemic affecting up to half of patients with heart failure. Here we used a chronic angiotensin II/phenylephrine (ANG II/PE) infusion model and instituted an updated algorithm for HFpEF assessment. Given the simplicity in generating this model, it may become a useful tool for investigating pathogenic mechanisms, identification of diagnostic markers, and for drug discovery aimed at both prevention and treatment of HFpEF.
Collapse
Affiliation(s)
- Dzmitry Matsiukevich
- Department of Developmental Biology, Washington University in St. Louis School of Medicine, St. Louis, Missouri, United States
- Department of Pediatrics, Washington University in St. Louis School of Medicine, St. Louis, Missouri, United States
| | - Attila Kovacs
- Department of Medicine, Washington University in St. Louis School of Medicine, St. Louis, Missouri, United States
| | - Tiandao Li
- Department of Developmental Biology, Washington University in St. Louis School of Medicine, St. Louis, Missouri, United States
| | | | - Scot J Matkovich
- Eli Lilly and Company, Lilly Corporate Center, Indianapolis, Indiana, United States
| | - Sunday S Oladipupo
- Eli Lilly and Company, Lilly Corporate Center, Indianapolis, Indiana, United States
| | - David M Ornitz
- Department of Developmental Biology, Washington University in St. Louis School of Medicine, St. Louis, Missouri, United States
| |
Collapse
|
3
|
Chong JX, Childers MC, Marvin CT, Marcello AJ, Gonorazky H, Hazrati LN, Dowling JJ, Al Amrani F, Alanay Y, Nieto Y, Gabriel MÁM, Aylsworth AS, Buckingham KJ, Shively KM, Sommers O, Anderson K, Regnier M, Bamshad MJ. Variants in ACTC1 underlie distal arthrogryposis accompanied by congenital heart defects. HGG ADVANCES 2023; 4:100213. [PMID: 37457373 PMCID: PMC10345160 DOI: 10.1016/j.xhgg.2023.100213] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 06/12/2023] [Indexed: 07/18/2023] Open
Abstract
Contraction of the human sarcomere is the result of interactions between myosin cross-bridges and actin filaments. Pathogenic variants in genes such as MYH7, TPM1, and TNNI3 that encode parts of the cardiac sarcomere cause muscle diseases that affect the heart, such as dilated cardiomyopathy and hypertrophic cardiomyopathy. In contrast, pathogenic variants in homologous genes such as MYH2, TPM2, and TNNI2 that encode parts of the skeletal muscle sarcomere cause muscle diseases affecting skeletal muscle, such as distal arthrogryposis (DA) syndromes and skeletal myopathies. To date, there have been few reports of genes (e.g., MYH7) encoding sarcomeric proteins in which the same pathogenic variant affects skeletal and cardiac muscle. Moreover, none of the known genes underlying DA have been found to contain pathogenic variants that also cause cardiac abnormalities. We report five families with DA because of heterozygous missense variants in the gene actin, alpha, cardiac muscle 1 (ACTC1). ACTC1 encodes a highly conserved actin that binds to myosin in cardiac and skeletal muscle. Pathogenic variants in ACTC1 have been found previously to underlie atrial septal defect, dilated cardiomyopathy, hypertrophic cardiomyopathy, and left ventricular noncompaction. Our discovery delineates a new DA condition because of variants in ACTC1 and suggests that some functions of ACTC1 are shared in cardiac and skeletal muscle.
Collapse
Affiliation(s)
- Jessica X. Chong
- Division of Genetic Medicine, Department of Pediatrics, University of Washington, Seattle, WA 98195, USA
- Brotman-Baty Institute, Seattle, WA 98195, USA
| | - Matthew Carter Childers
- Department of Bioengineering, University of Washington, Seattle, WA 98195, USA
- University of Washington Center for Translational Muscle Research, Seattle, WA 98195, USA
| | - Colby T. Marvin
- Division of Genetic Medicine, Department of Pediatrics, University of Washington, Seattle, WA 98195, USA
| | - Anthony J. Marcello
- Division of Genetic Medicine, Department of Pediatrics, University of Washington, Seattle, WA 98195, USA
| | - Hernan Gonorazky
- Division of Neurology, The Hospital for Sick Children, Toronto, ON M5G 1X8, Canada
| | - Lili-Naz Hazrati
- Department of Paediatric Laboratory Medicine, The Hospital for Sick Children, Toronto, ON M5G 1X8, Canada
| | - James J. Dowling
- Division of Neurology, The Hospital for Sick Children, Toronto, ON M5G 1X8, Canada
- Departments of Paediatrics and Molecular Genetics, University of Toronto, Toronto, ON M5G 0A4, Canada
| | - Fatema Al Amrani
- Division of Neurology, The Hospital for Sick Children, Toronto, ON M5G 1X8, Canada
- Division of Neurology, Department of Pediatrics, Sultan Qaboos University Hospital, Sultan Qaboos University, Muscat, Sultanate of Oman
| | - Yasemin Alanay
- Division of Pediatric Genetics, Department of Pediatrics, School of Medicine, Acibadem Mehmet Ali Aydinlar University, 34752 Istanbul, Turkey
| | - Yolanda Nieto
- Department of Basic Bio-Medical Sciences, European University of Madrid, Madrid, Spain
| | - Miguel Á Marín Gabriel
- Department of Pediatrics, Puerta de Hierro-Majadahonda University Hospital, 28221 Madrid, Spain
| | - Arthur S. Aylsworth
- Departments of Pediatrics and Genetics, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Kati J. Buckingham
- Division of Genetic Medicine, Department of Pediatrics, University of Washington, Seattle, WA 98195, USA
| | - Kathryn M. Shively
- Division of Genetic Medicine, Department of Pediatrics, University of Washington, Seattle, WA 98195, USA
| | - Olivia Sommers
- Division of Genetic Medicine, Department of Pediatrics, University of Washington, Seattle, WA 98195, USA
| | - Kailyn Anderson
- Division of Genetic Medicine, Department of Pediatrics, University of Washington, Seattle, WA 98195, USA
| | - University of Washington Center for Mendelian Genomics
- Division of Genetic Medicine, Department of Pediatrics, University of Washington, Seattle, WA 98195, USA
- Brotman-Baty Institute, Seattle, WA 98195, USA
- Department of Bioengineering, University of Washington, Seattle, WA 98195, USA
- University of Washington Center for Translational Muscle Research, Seattle, WA 98195, USA
- Division of Neurology, The Hospital for Sick Children, Toronto, ON M5G 1X8, Canada
- Department of Paediatric Laboratory Medicine, The Hospital for Sick Children, Toronto, ON M5G 1X8, Canada
- Departments of Paediatrics and Molecular Genetics, University of Toronto, Toronto, ON M5G 0A4, Canada
- Division of Neurology, Department of Pediatrics, Sultan Qaboos University Hospital, Sultan Qaboos University, Muscat, Sultanate of Oman
- Division of Pediatric Genetics, Department of Pediatrics, School of Medicine, Acibadem Mehmet Ali Aydinlar University, 34752 Istanbul, Turkey
- Department of Basic Bio-Medical Sciences, European University of Madrid, Madrid, Spain
- Department of Pediatrics, Puerta de Hierro-Majadahonda University Hospital, 28221 Madrid, Spain
- Departments of Pediatrics and Genetics, University of North Carolina, Chapel Hill, NC 27599, USA
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
- Seattle Children’s Hospital, Seattle, WA 98105, USA
| | - University of Washington Center for Rare Disease Research
- Division of Genetic Medicine, Department of Pediatrics, University of Washington, Seattle, WA 98195, USA
- Brotman-Baty Institute, Seattle, WA 98195, USA
- Department of Bioengineering, University of Washington, Seattle, WA 98195, USA
- University of Washington Center for Translational Muscle Research, Seattle, WA 98195, USA
- Division of Neurology, The Hospital for Sick Children, Toronto, ON M5G 1X8, Canada
- Department of Paediatric Laboratory Medicine, The Hospital for Sick Children, Toronto, ON M5G 1X8, Canada
- Departments of Paediatrics and Molecular Genetics, University of Toronto, Toronto, ON M5G 0A4, Canada
- Division of Neurology, Department of Pediatrics, Sultan Qaboos University Hospital, Sultan Qaboos University, Muscat, Sultanate of Oman
- Division of Pediatric Genetics, Department of Pediatrics, School of Medicine, Acibadem Mehmet Ali Aydinlar University, 34752 Istanbul, Turkey
- Department of Basic Bio-Medical Sciences, European University of Madrid, Madrid, Spain
- Department of Pediatrics, Puerta de Hierro-Majadahonda University Hospital, 28221 Madrid, Spain
- Departments of Pediatrics and Genetics, University of North Carolina, Chapel Hill, NC 27599, USA
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
- Seattle Children’s Hospital, Seattle, WA 98105, USA
| | - Michael Regnier
- Department of Bioengineering, University of Washington, Seattle, WA 98195, USA
- University of Washington Center for Translational Muscle Research, Seattle, WA 98195, USA
| | - Michael J. Bamshad
- Division of Genetic Medicine, Department of Pediatrics, University of Washington, Seattle, WA 98195, USA
- Brotman-Baty Institute, Seattle, WA 98195, USA
- University of Washington Center for Translational Muscle Research, Seattle, WA 98195, USA
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
- Seattle Children’s Hospital, Seattle, WA 98105, USA
| |
Collapse
|
4
|
Dabaj I, Carlier RY, Dieterich K, Desguerre I, Faure J, Romero NB, Trang W, Quijano-Roy S, Germain DP. Diagnostic work-up and phenotypic characteristics of a family with variable severity of distal arthrogryposis type 2B (Sheldon-Hall syndrome) and TNNT3 pathogenic variant. Front Genet 2023; 13:955041. [PMID: 36968005 PMCID: PMC10034368 DOI: 10.3389/fgene.2022.955041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 12/30/2022] [Indexed: 03/11/2023] Open
Abstract
Background: Sheldon–Hall syndrome (SHS) or distal arthrogryposis 2B (DA2B) is a rare clinically and genetically heterogeneous multiple congenital contracture syndrome characterized by contractures of the distal joints of the limbs and mild facial involvement, due to pathogenic variants in genes encoding the fast-twitch skeletal muscle contractile myofiber complex (TNNT3, TNNI2, TMP2, and MYH3 genes).Patients and methods: A 16-year-old boy with a history of congenital distal arthrogryposis developed severe kyphoscoliosis and respiratory insufficiency. His mother and younger sister had phenotypes compatible with SHS but to a much lesser extent. Diagnostic work-up included physical examination and whole-body muscular MRI (WBMRI) in all three patients and electroneuromyography (ENMG) and paravertebral muscle biopsy in the proband. DNA sequencing was used to confirm the diagnosis.Results: Physical examination suggested the diagnosis of SHS. No muscle signal abnormalities were found in WBMRI. Large motor unit potentials and reduced recruitment suggestive of neurogenic changes were observed on needle EMG in distal and paravertebral muscles in the proband. DNA sequencing revealed a pathogenic variant in TNNT3 (c.187C>T), which segregated as a dominant trait with the phenotype.Discussion: This is the first report on neurogenic features in a patient with DA2B and a pathogenic variant in TNNT3 encoding the fast-twitch skeletal muscle contractile myofiber complex. A superimposed length-dependent motor nerve involvement was unexpected. Whether developmental disarrangements in number, distribution, or innervation of the motor unit in fetal life might lead to pseudo-neurogenic EMG features warrants further studies, as well as the role of genetic modifiers in SHS variability.
Collapse
Affiliation(s)
- Ivana Dabaj
- APHP Université Paris-Saclay, Neuromuscular Unit, Department of Pediatric Neurology and ICU, Raymond Poincaré University Hospital (UVSQ), Garches, France
- Department of Neonatal and Pediatric Intensive Care, Charles Nicolle University Hospital, INSERM 1245, Rouen University, Rouen, France
- Nord-Est Ile de France National Neuromuscular Center, French Network (FILNEMUS) and European Reference Network (Euro-NMD), Paris, France
| | - Robert Y. Carlier
- Nord-Est Ile de France National Neuromuscular Center, French Network (FILNEMUS) and European Reference Network (Euro-NMD), Paris, France
- APHP Université Paris-Saclay, Medical Imaging Department, Raymond Poincaré Universiy Hospital (UVSQ), Garches, France
| | - Klaus Dieterich
- University Grenoble Alpes, Inserm, U1216, CHU Grenoble Alpes, Medical Genetics, Grenoble Institute of Neurosciences, Grenoble, France
| | - Isabelle Desguerre
- Assistance Publique-Hôpitaux de Paris, Paediatric Neurology Department - CHU Necker-Enfants-Malades, Paris, France
| | - Julien Faure
- University Grenoble Alpes, Inserm, U1216, CHU Grenoble Alpes, Medical Genetics, Grenoble Institute of Neurosciences, Grenoble, France
| | - Norma B. Romero
- Sorbonne Universités, UPMC University, INSERM UMRS974, CNRS FRE3617, Center for Research in Myology, Institut de Myologie, APHP GHU Pitié-Salpêtrière, Paris, France
| | - Wenting Trang
- AnDDI-RARE Paris Referral Center for Birth Defects, Division of Medical Genetics, APHP Paris Saclay University, Paris, France
| | - Susana Quijano-Roy
- APHP Université Paris-Saclay, Neuromuscular Unit, Department of Pediatric Neurology and ICU, Raymond Poincaré University Hospital (UVSQ), Garches, France
- Nord-Est Ile de France National Neuromuscular Center, French Network (FILNEMUS) and European Reference Network (Euro-NMD), Paris, France
| | - Dominique P. Germain
- AnDDI-RARE Paris Referral Center for Birth Defects, Division of Medical Genetics, APHP Paris Saclay University, Paris, France
- University of Versailles, Division of Medical Genetics, Montigny, France
- *Correspondence: Dominique P. Germain,
| |
Collapse
|
5
|
Chong JX, Childers MC, Marvin CT, Marcello AJ, Gonorazky H, Hazrati LN, Dowling JJ, Amrani FA, Alanay Y, Nieto Y, Marín Gabriel MÁ, Aylsworth AS, Buckingham KJ, Shively KM, Sommers O, Anderson K, Regnier M, Bamshad MJ. Variants in ACTC1 underlie distal arthrogryposis accompanied by congenital heart defects. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023. [PMID: 36945405 PMCID: PMC10029015 DOI: 10.1101/2023.03.07.23286862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/11/2023]
Abstract
Contraction of the human sarcomere is the result of interactions between myosin cross-bridges and actin filaments. Pathogenic variants in genes such as MYH7 , TPM1 , and TNNI3 that encode parts of the cardiac sarcomere cause muscle diseases that affect the heart, such as dilated cardiomyopathy and hypertrophic cardiomyopathy. In contrast, pathogenic variants in homologous genes MYH2 , TPM2 , and TNNI2 , that encode parts of the skeletal muscle sarcomere, cause muscle diseases affecting skeletal muscle, such as the distal arthrogryposis (DA) syndromes and skeletal myopathies. To date, there have been few reports of genes (e.g., MYH7 ) encoding sarcomeric proteins in which the same pathogenic variant affects both skeletal and cardiac muscle. Moreover, none of the known genes underlying DA have been found to contain mutations that also cause cardiac abnormalities. We report five families with DA due to heterozygous missense variants in the gene actin, alpha, cardiac muscle 1 ( ACTC1 ). ACTC1 encodes a highly conserved actin that binds to myosin in both cardiac and skeletal muscle. Mutations in ACTC1 have previously been found to underlie atrial septal defect, dilated cardiomyopathy, hypertrophic cardiomyopathy, and left ventricular noncompaction. Our discovery delineates a new DA condition due to mutations in ACTC1 and suggests that some functions of actin, alpha, cardiac muscle 1 are shared in cardiac and skeletal muscle.
Collapse
|
6
|
Huang R, Zhou H, Ma C, Fu F, Cheng K, Wang Y, Li R, Lei T, Yu Q, Wang D, Yan S, Yang X, Li D, Liao C. Whole exome sequencing improves genetic diagnosis of fetal clubfoot. Hum Genet 2023; 142:407-418. [PMID: 36566310 DOI: 10.1007/s00439-022-02516-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Accepted: 12/16/2022] [Indexed: 12/26/2022]
Abstract
OBJECTIVE This retrospective study aimed to investigate the value of whole exome sequencing (WES) for clubfoot (CF) fetuses with or without other structural abnormalities and to further explore the genetic causes of fetal CF. METHODS this study included 83 singleton pregnancies diagnosed with fetal CF referred to our center between January 2016 and March 2022; cases were divided into two groups: isolated CF and non-isolated CF. After excluding cases with positive karyotyping and chromosomal microarray analysis results, WES was performed for the eligible fetuses and parents. Monogenic variants detected by WES and perinatal outcomes were recorded and evaluated at postnatal follow-up. RESULTS overall, clinically significant variations were identified in 12.0% (10/83) of fetuses, and the detection rate was significantly higher in the non-isolated than in the isolated CF group (8/36, 22.2% vs. 2/47, 4.3%, p = 0.031). We additionally detected eight (9.6%) fetuses harboring variants of unknown significance. We identified 11 clinically significant variations correlating with clinical phenotypes in nine genes from ten fetuses, with KLHL40 being the most frequent (n = 2). Furthermore, we observed a significant difference in termination and survival rates between isolated and non-isolated CF cases (27.6 vs. 77.8% and 59.6 vs. 19.4%, p < 0.001 for both). CONCLUSION our data indicate that WES has a high additional diagnostic yield for the molecular diagnosis of fetal CF, markedly enhancing existing prenatal diagnostic capabilities and expanding our understanding of intrauterine genetic disorders, thus assisting us to better interpret fetal phenotype in the future.
Collapse
Affiliation(s)
- Ruibin Huang
- Prenatal Diagnostic Center, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangdong, 510620, Guangdong, China
| | - Hang Zhou
- Prenatal Diagnostic Center, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangdong, 510620, Guangdong, China
| | - Chunling Ma
- Prenatal Diagnostic Center, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangdong, 510620, Guangdong, China.,The First Clinical Medical College, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Fang Fu
- Prenatal Diagnostic Center, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangdong, 510620, Guangdong, China
| | - Ken Cheng
- Prenatal Diagnostic Center, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangdong, 510620, Guangdong, China.,School of Medicine, South China University of Technology, Guangzhou, 510641, Guangdong, China
| | - You Wang
- Prenatal Diagnostic Center, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangdong, 510620, Guangdong, China.,The First Clinical Medical College, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Ru Li
- Prenatal Diagnostic Center, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangdong, 510620, Guangdong, China
| | - Tingying Lei
- Prenatal Diagnostic Center, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangdong, 510620, Guangdong, China
| | - Qiuxia Yu
- Prenatal Diagnostic Center, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangdong, 510620, Guangdong, China
| | - Dan Wang
- Prenatal Diagnostic Center, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangdong, 510620, Guangdong, China
| | - Shujuan Yan
- Prenatal Diagnostic Center, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangdong, 510620, Guangdong, China
| | - Xin Yang
- Prenatal Diagnostic Center, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangdong, 510620, Guangdong, China
| | - Dongzhi Li
- Prenatal Diagnostic Center, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangdong, 510620, Guangdong, China
| | - Can Liao
- Prenatal Diagnostic Center, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangdong, 510620, Guangdong, China.
| |
Collapse
|
7
|
Aganezov S, Yan SM, Soto DC, Kirsche M, Zarate S, Avdeyev P, Taylor DJ, Shafin K, Shumate A, Xiao C, Wagner J, McDaniel J, Olson ND, Sauria MEG, Vollger MR, Rhie A, Meredith M, Martin S, Lee J, Koren S, Rosenfeld JA, Paten B, Layer R, Chin CS, Sedlazeck FJ, Hansen NF, Miller DE, Phillippy AM, Miga KH, McCoy RC, Dennis MY, Zook JM, Schatz MC. A complete reference genome improves analysis of human genetic variation. Science 2022; 376:eabl3533. [PMID: 35357935 PMCID: PMC9336181 DOI: 10.1126/science.abl3533] [Citation(s) in RCA: 149] [Impact Index Per Article: 74.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Compared to its predecessors, the Telomere-to-Telomere CHM13 genome adds nearly 200 million base pairs of sequence, corrects thousands of structural errors, and unlocks the most complex regions of the human genome for clinical and functional study. We show how this reference universally improves read mapping and variant calling for 3202 and 17 globally diverse samples sequenced with short and long reads, respectively. We identify hundreds of thousands of variants per sample in previously unresolved regions, showcasing the promise of the T2T-CHM13 reference for evolutionary and biomedical discovery. Simultaneously, this reference eliminates tens of thousands of spurious variants per sample, including reduction of false positives in 269 medically relevant genes by up to a factor of 12. Because of these improvements in variant discovery coupled with population and functional genomic resources, T2T-CHM13 is positioned to replace GRCh38 as the prevailing reference for human genetics.
Collapse
Affiliation(s)
- Sergey Aganezov
- Department of Computer Science, Johns Hopkins University, Baltimore, MD, USA
| | - Stephanie M. Yan
- Department of Biology, Johns Hopkins University, Baltimore, MD, USA
| | - Daniela C. Soto
- Department of Biochemistry and Molecular Medicine, Genome Center, MIND Institute, University of California, Davis, CA, USA
| | - Melanie Kirsche
- Department of Computer Science, Johns Hopkins University, Baltimore, MD, USA
| | - Samantha Zarate
- Department of Computer Science, Johns Hopkins University, Baltimore, MD, USA
| | - Pavel Avdeyev
- Genome Informatics Section, National Human Genome Research Institute, Bethesda, MD, USA
| | - Dylan J. Taylor
- Department of Biology, Johns Hopkins University, Baltimore, MD, USA
| | - Kishwar Shafin
- UC Santa Cruz Genomics Institute, University of California, Santa Cruz, CA, USA
| | - Alaina Shumate
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Chunlin Xiao
- National Center for Biotechnology Information, National Library of Medicine, Bethesda, MD, USA
| | - Justin Wagner
- National Institute of Standards and Technology, Gaithersburg, MD, USA
| | - Jennifer McDaniel
- National Institute of Standards and Technology, Gaithersburg, MD, USA
| | - Nathan D. Olson
- National Institute of Standards and Technology, Gaithersburg, MD, USA
| | | | | | - Arang Rhie
- Genome Informatics Section, National Human Genome Research Institute, Bethesda, MD, USA
| | - Melissa Meredith
- UC Santa Cruz Genomics Institute, University of California, Santa Cruz, CA, USA
| | - Skylar Martin
- Department of Computer Science and Biofrontiers Institute, University of Colorado, Boulder, CO, USA
| | - Joyce Lee
- Bionano Genomics, San Diego, CA, USA
| | - Sergey Koren
- Genome Informatics Section, National Human Genome Research Institute, Bethesda, MD, USA
| | | | - Benedict Paten
- UC Santa Cruz Genomics Institute, University of California, Santa Cruz, CA, USA
| | - Ryan Layer
- Department of Computer Science and Biofrontiers Institute, University of Colorado, Boulder, CO, USA
| | | | - Fritz J. Sedlazeck
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, USA
| | - Nancy F. Hansen
- Comparative Genomics Analysis Unit, National Human Genome Research Institute, Rockville, MD, USA
| | - Danny E. Miller
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
- Department of Pediatrics, Division of Genetic Medicine, University of Washington and Seattle Children’s Hospital, Seattle, WA, USA
| | - Adam M. Phillippy
- Genome Informatics Section, National Human Genome Research Institute, Bethesda, MD, USA
| | - Karen H. Miga
- UC Santa Cruz Genomics Institute, University of California, Santa Cruz, CA, USA
| | - Rajiv C. McCoy
- Department of Biology, Johns Hopkins University, Baltimore, MD, USA
| | - Megan Y. Dennis
- Department of Biochemistry and Molecular Medicine, Genome Center, MIND Institute, University of California, Davis, CA, USA
| | - Justin M. Zook
- National Institute of Standards and Technology, Gaithersburg, MD, USA
| | - Michael C. Schatz
- Department of Computer Science, Johns Hopkins University, Baltimore, MD, USA
- Department of Biology, Johns Hopkins University, Baltimore, MD, USA
- Simons Center for Quantitative Biology, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| |
Collapse
|
8
|
Aldubai AA, Alsadon AA, Migdadi HH, Alghamdi SS, Al-Faifi SA, Afzal M. Response of Tomato ( Solanum lycopersicum L.) Genotypes to Heat Stress Using Morphological and Expression Study. PLANTS (BASEL, SWITZERLAND) 2022; 11:615. [PMID: 35270087 PMCID: PMC8912326 DOI: 10.3390/plants11050615] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 02/12/2022] [Accepted: 02/18/2022] [Indexed: 06/14/2023]
Abstract
Due to unfavorable environmental conditions, heat stress is one of the significant production restrictions for the tomato (Solanum lycopersicum L.) crop. The tomato crop is considered an important vegetable crop globally and represents a model plant for fruit development research. The heat shock factor (HSF) gene family contains plant-specific transcription factors (TFs) that are highly conserved and play a key role in plant high-temperature stress responses. The current study was designed to determine the relative response of heat stress under three different temperatures in the field condition to determine its relative heat tolerance. Furthermore, the study also characterized heat shock genes in eight tomato genotypes under different temperature regimes. The expressions of each gene were quantified using qPCR. The descriptive statistics results suggested a high range of diversity among the studied variables growing under three different temperatures. The qPCR study revealed that the SlyHSF genes play an important role in plant heat tolerance pathways. The expression patterns of HSF genes in tomatoes have been described in various tissues were determined at high temperature stress. The genes, SlyHSFs-1, SlyHSFs-2, SlyHSFs-8, SlyHSFs-9 recorded upregulation expression relative to SlyHSFs-3, SlyHSFs-5, SlyHSFs-10, and SlyHSFs-11. The genotypes, Strain B, Marmande VF, Pearson's early, and Al-Qatif-365 recorded the tolerant tomato genotypes under high-temperature stress conditions relative to other genotypes. The heat map analysis also confirmed the upregulation and downregulation of heat shock factor genes among the tomato genotypes. These genotypes will be introduced in the breeding program to improve tomato responses to heat stress.
Collapse
Affiliation(s)
- Abdulhakim A. Aldubai
- Department of Plant Production, College of Food and Agriculture Sciences, King Saud University, Riyadh 11451, Saudi Arabia; (A.A.A.); (A.A.A.); (S.S.A.); (S.A.A.-F.); (M.A.)
| | - Abdullah A. Alsadon
- Department of Plant Production, College of Food and Agriculture Sciences, King Saud University, Riyadh 11451, Saudi Arabia; (A.A.A.); (A.A.A.); (S.S.A.); (S.A.A.-F.); (M.A.)
| | - Hussein H. Migdadi
- Department of Plant Production, College of Food and Agriculture Sciences, King Saud University, Riyadh 11451, Saudi Arabia; (A.A.A.); (A.A.A.); (S.S.A.); (S.A.A.-F.); (M.A.)
- National Agricultural Research Center, Baqa, Amman 19381, Jordan
| | - Salem S. Alghamdi
- Department of Plant Production, College of Food and Agriculture Sciences, King Saud University, Riyadh 11451, Saudi Arabia; (A.A.A.); (A.A.A.); (S.S.A.); (S.A.A.-F.); (M.A.)
| | - Sulieman A. Al-Faifi
- Department of Plant Production, College of Food and Agriculture Sciences, King Saud University, Riyadh 11451, Saudi Arabia; (A.A.A.); (A.A.A.); (S.S.A.); (S.A.A.-F.); (M.A.)
| | - Muhammad Afzal
- Department of Plant Production, College of Food and Agriculture Sciences, King Saud University, Riyadh 11451, Saudi Arabia; (A.A.A.); (A.A.A.); (S.S.A.); (S.A.A.-F.); (M.A.)
| |
Collapse
|
9
|
Lu J, Li H, Zhang H, Lin Z, Xu C, Xu X, Hu L, Luan Z, Lou Y, Tang S. The distal arthrogryposis-linked p.R63C variant promotes the stability and nuclear accumulation of TNNT3. J Clin Lab Anal 2021; 35:e24089. [PMID: 34766372 PMCID: PMC8649346 DOI: 10.1002/jcla.24089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 09/13/2021] [Accepted: 10/09/2021] [Indexed: 11/11/2022] Open
Abstract
Background Distal arthrogryposis (DA) is comprised of a group of rare developmental disorders in muscle, characterized by multiple congenital contractures of the distal limbs. Fast skeletal muscle troponin‐T (TNNT3) protein is abundantly expressed in skeletal muscle and plays an important role in DA. Missense variants in TNNT3 are associated with DA, but few studies have fully clarified its pathogenic role. Methods Sanger sequencing was performed in three generation of a Chinese family with DA. To determine how the p.R63C variant contributed to DA, we identified a variant in TNNT3 (NM_006757.4): c.187C>T (p.R63C). And then we investigated the effects of the arginine to cysteine substitution on the distribution pattern and the half‐life of TNNT3 protein. Results The protein levels of TNNT3 in affected family members were 0.8‐fold higher than that without the disorder. TNNT3 protein could be degraded by the ubiquitin‐proteasome complex, and the p.R63C variant did not change TNNT3 nuclear localization, but significantly prolonged its half‐life from 2.5 to 7 h, to promote its accumulation in the nucleus. Conclusion The p.R63C variant increased the stability of TNNT3 and promoted nuclear accumulation, which suggested its role in DA.
Collapse
Affiliation(s)
- Jinfang Lu
- Wenzhou Key Laboratory of Sanitary Microbiology, Key Laboratory of Laboratory Medicine, Ministry of Education, China, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Huanzheng Li
- Key Laboratory of Birth Defects, Department of Genetics, Wenzhou Central Hospital, Wenzhou, China
| | - He Zhang
- Zhejiang Provincial Key Laboratory for Subtropical Water Environment and Marine Biological Resources Protection, College of Life and Environmental Sciences, Wenzhou University, Wenzhou, China
| | - Zhengxiu Lin
- The Second Affiliated Hospital and Yuying Children's Hospital of WMU, School of the Second Clinical Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Chenyang Xu
- Key Laboratory of Birth Defects, Department of Genetics, Wenzhou Central Hospital, Wenzhou, China
| | - Xueqin Xu
- Key Laboratory of Birth Defects, Department of Genetics, Wenzhou Central Hospital, Wenzhou, China
| | - Lin Hu
- Key Laboratory of Medical Genetic, School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, China
| | - Zhaotang Luan
- Key Laboratory of Medical Genetic, School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, China
| | - Yongliang Lou
- Wenzhou Key Laboratory of Sanitary Microbiology, Key Laboratory of Laboratory Medicine, Ministry of Education, China, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Shaohua Tang
- Key Laboratory of Birth Defects, Department of Genetics, Wenzhou Central Hospital, Wenzhou, China.,Key Laboratory of Medical Genetic, School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
10
|
Molecular and cellular basis of genetically inherited skeletal muscle disorders. Nat Rev Mol Cell Biol 2021; 22:713-732. [PMID: 34257452 PMCID: PMC9686310 DOI: 10.1038/s41580-021-00389-z] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/04/2021] [Indexed: 02/06/2023]
Abstract
Neuromuscular disorders comprise a diverse group of human inborn diseases that arise from defects in the structure and/or function of the muscle tissue - encompassing the muscle cells (myofibres) themselves and their extracellular matrix - or muscle fibre innervation. Since the identification in 1987 of the first genetic lesion associated with a neuromuscular disorder - mutations in dystrophin as an underlying cause of Duchenne muscular dystrophy - the field has made tremendous progress in understanding the genetic basis of these diseases, with pathogenic variants in more than 500 genes now identified as underlying causes of neuromuscular disorders. The subset of neuromuscular disorders that affect skeletal muscle are referred to as myopathies or muscular dystrophies, and are due to variants in genes encoding muscle proteins. Many of these proteins provide structural stability to the myofibres or function in regulating sarcolemmal integrity, whereas others are involved in protein turnover, intracellular trafficking, calcium handling and electrical excitability - processes that ensure myofibre resistance to stress and their primary activity in muscle contraction. In this Review, we discuss how defects in muscle proteins give rise to muscle dysfunction, and ultimately to disease, with a focus on pathologies that are most common, best understood and that provide the most insight into muscle biology.
Collapse
|
11
|
van de Locht M, Borsboom TC, Winter JM, Ottenheijm CAC. Troponin Variants in Congenital Myopathies: How They Affect Skeletal Muscle Mechanics. Int J Mol Sci 2021; 22:ijms22179187. [PMID: 34502093 PMCID: PMC8430961 DOI: 10.3390/ijms22179187] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 08/19/2021] [Accepted: 08/23/2021] [Indexed: 02/05/2023] Open
Abstract
The troponin complex is a key regulator of muscle contraction. Multiple variants in skeletal troponin encoding genes result in congenital myopathies. TNNC2 has been implicated in a novel congenital myopathy, TNNI2 and TNNT3 in distal arthrogryposis (DA), and TNNT1 and TNNT3 in nemaline myopathy (NEM). Variants in skeletal troponin encoding genes compromise sarcomere function, e.g., by altering the Ca2+ sensitivity of force or by inducing atrophy. Several potential therapeutic strategies are available to counter the effects of variants, such as troponin activators, introduction of wild-type protein through AAV gene therapy, and myosin modulation to improve muscle contraction. The mechanisms underlying the pathophysiological effects of the variants in skeletal troponin encoding genes are incompletely understood. Furthermore, limited knowledge is available on the structure of skeletal troponin. This review focusses on the physiology of slow and fast skeletal troponin and the pathophysiology of reported variants in skeletal troponin encoding genes. A better understanding of the pathophysiological effects of these variants, together with enhanced knowledge regarding the structure of slow and fast skeletal troponin, will direct the development of treatment strategies.
Collapse
|
12
|
Kamil G, Yoon JY, Yoo S, Cheon CK. Clinical relevance of targeted exome sequencing in patients with rare syndromic short stature. Orphanet J Rare Dis 2021; 16:297. [PMID: 34217350 PMCID: PMC8254301 DOI: 10.1186/s13023-021-01937-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 06/27/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Large-scale genomic analyses have provided insight into the genetic complexity of short stature (SS); however, only a portion of genetic causes have been identified. In this study, we identified disease-causing mutations in a cohort of Korean patients with suspected syndromic SS by targeted exome sequencing (TES). METHODS Thirty-four patients in South Korea with suspected syndromic disorders based on abnormal growth and dysmorphic facial features, developmental delay, or accompanying anomalies were enrolled in 2018-2020 and evaluated by TES. RESULTS For 17 of 34 patients with suspected syndromic SS, a genetic diagnosis was obtained by TES. The mean SDS values for height, IGF-1, and IGFBP-3 for these 17 patients were - 3.27 ± 1.25, - 0.42 ± 1.15, and 0.36 ± 1.31, respectively. Most patients displayed distinct facial features (16/17) and developmental delay or intellectual disability (12/17). In 17 patients, 19 genetic variants were identified, including 13 novel heterozygous variants, associated with 15 different genetic diseases, including many inherited rare skeletal disorders and connective tissue diseases (e.g., cleidocranial dysplasia, Hajdu-Cheney syndrome, Sheldon-Hall, acromesomelic dysplasia Maroteaux type, and microcephalic osteodysplastic primordial dwarfism type II). After re-classification by clinical reassessment, including family member testing and segregation studies, 42.1% of variants were pathogenic, 42.1% were likely pathogenic variant, and 15.7% were variants of uncertain significance. Ultra-rare diseases accounted for 12 out of 15 genetic diseases (80%). CONCLUSIONS A high positive result from genetic testing suggests that TES may be an effective diagnostic approach for patients with syndromic SS, with implications for genetic counseling. These results expand the mutation spectrum for rare genetic diseases related to SS in Korea.
Collapse
Affiliation(s)
- Gilyazetdinov Kamil
- Department of Pediatrics, National Children's Medical Center, Tashkent, Uzbekistan.,Research Institute for Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Yangsan, Korea
| | - Ju Young Yoon
- Division of Pediatric Endocrinology, Department of Pediatrics, Pusan National University Children's Hospital, Yangsan, Korea
| | - Sukdong Yoo
- Division of Pediatric Endocrinology, Department of Pediatrics, Pusan National University Children's Hospital, Yangsan, Korea
| | - Chong Kun Cheon
- Division of Pediatric Endocrinology, Department of Pediatrics, Pusan National University Children's Hospital, Yangsan, Korea. .,Research Institute for Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Yangsan, Korea.
| |
Collapse
|
13
|
Calame DG, Fatih J, Herman I, Akdemir ZC, Du H, Jhangiani SN, Gibbs RA, Marafi D, Pehlivan D, Posey JE, Lotze T, Mancias P, Bhattacharjee MB, Lupski JR. Biallelic Pathogenic Variants in TNNT3 Associated With Congenital Myopathy. Neurol Genet 2021; 7:e589. [PMID: 33977145 PMCID: PMC8105884 DOI: 10.1212/nxg.0000000000000589] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 03/11/2021] [Indexed: 12/26/2022]
Abstract
OBJECTIVE Pathogenic variants in TNNT3, the gene encoding fast skeletal muscle troponin T, were first described in autosomal dominant distal arthrogryposis type 2B2. Recently, a homozygous splice site variant, c.681+1G>A, was identified in a patient with nemaline myopathy and distal arthrogryposis. Here, we describe the second individual with congenital myopathy associated with biallelic TNNT3 variants. METHODS Clinical exome sequencing data from a patient with molecularly undiagnosed congenital myopathy underwent research reanalysis. Clinical and histopathologic data were collected and compared with the single reported patient with TNNT3-related congenital myopathy. RESULTS A homozygous TNNT3 variant, c.481-1G>A, was identified. This variant alters a consensus splice acceptor and is predicted to affect splicing by multiple in silico prediction tools. Both the patient reported here and the previously published patient exhibited limb, bulbar, and respiratory muscle weakness from birth, which improved over time. Other shared features include history of polyhydramnios, hypotonia, scoliosis, and high-arched palate. Distal arthrogryposis and nemaline rods, findings reported in the first patient with TNNT3-related congenital myopathy, were not observed in the patient reported here. CONCLUSIONS This report provides further evidence for the association of biallelic TNNT3 variants with severe recessive congenital myopathy with or without nemaline rods and distal arthrogryposis. TNNT3 sequencing and copy number analysis should be incorporated into the workup of congenital myopathies.
Collapse
Affiliation(s)
- Daniel G. Calame
- From the Division of Neurology and Developmental Neuroscience (D.G.C., I.H., D.P., T.L.), Department of Pediatrics, Baylor College of Medicine, Houston, TX; Texas Children's Hospital (D.G.C., I.H., D.P., J.R.L.), Houston, TX; Department of Molecular and Human Genetics (D.G.C., J.F., I.H., Z.C.A., H.D., R.A.G., D.M., D.P., J.E.P., J.R.L.), Baylor College of Medicine, Houston, TX; Human Genome Sequencing Center (S.N.J., R.A.G., J.R.L.), Baylor College of Medicine, Houston, TX; Department of Pediatrics (D.M.), Faculty of Medicine, Kuwait University, Safat, Kuwait; Division of Child and Adolescent Neurology (P.M.), Department of Pediatrics, University of Texas Health Science Center, Houston, TX; Pathology and Laboratory Medicine (M.B.B.), University of Texas Health Science Center at Houston-McGovern Medical School, Houston, TX; and Department of Pediatrics (J.R.L.), Baylor College of Medicine, Houston, TX
| | - Jawid Fatih
- From the Division of Neurology and Developmental Neuroscience (D.G.C., I.H., D.P., T.L.), Department of Pediatrics, Baylor College of Medicine, Houston, TX; Texas Children's Hospital (D.G.C., I.H., D.P., J.R.L.), Houston, TX; Department of Molecular and Human Genetics (D.G.C., J.F., I.H., Z.C.A., H.D., R.A.G., D.M., D.P., J.E.P., J.R.L.), Baylor College of Medicine, Houston, TX; Human Genome Sequencing Center (S.N.J., R.A.G., J.R.L.), Baylor College of Medicine, Houston, TX; Department of Pediatrics (D.M.), Faculty of Medicine, Kuwait University, Safat, Kuwait; Division of Child and Adolescent Neurology (P.M.), Department of Pediatrics, University of Texas Health Science Center, Houston, TX; Pathology and Laboratory Medicine (M.B.B.), University of Texas Health Science Center at Houston-McGovern Medical School, Houston, TX; and Department of Pediatrics (J.R.L.), Baylor College of Medicine, Houston, TX
| | - Isabella Herman
- From the Division of Neurology and Developmental Neuroscience (D.G.C., I.H., D.P., T.L.), Department of Pediatrics, Baylor College of Medicine, Houston, TX; Texas Children's Hospital (D.G.C., I.H., D.P., J.R.L.), Houston, TX; Department of Molecular and Human Genetics (D.G.C., J.F., I.H., Z.C.A., H.D., R.A.G., D.M., D.P., J.E.P., J.R.L.), Baylor College of Medicine, Houston, TX; Human Genome Sequencing Center (S.N.J., R.A.G., J.R.L.), Baylor College of Medicine, Houston, TX; Department of Pediatrics (D.M.), Faculty of Medicine, Kuwait University, Safat, Kuwait; Division of Child and Adolescent Neurology (P.M.), Department of Pediatrics, University of Texas Health Science Center, Houston, TX; Pathology and Laboratory Medicine (M.B.B.), University of Texas Health Science Center at Houston-McGovern Medical School, Houston, TX; and Department of Pediatrics (J.R.L.), Baylor College of Medicine, Houston, TX
| | - Zeynep Coban Akdemir
- From the Division of Neurology and Developmental Neuroscience (D.G.C., I.H., D.P., T.L.), Department of Pediatrics, Baylor College of Medicine, Houston, TX; Texas Children's Hospital (D.G.C., I.H., D.P., J.R.L.), Houston, TX; Department of Molecular and Human Genetics (D.G.C., J.F., I.H., Z.C.A., H.D., R.A.G., D.M., D.P., J.E.P., J.R.L.), Baylor College of Medicine, Houston, TX; Human Genome Sequencing Center (S.N.J., R.A.G., J.R.L.), Baylor College of Medicine, Houston, TX; Department of Pediatrics (D.M.), Faculty of Medicine, Kuwait University, Safat, Kuwait; Division of Child and Adolescent Neurology (P.M.), Department of Pediatrics, University of Texas Health Science Center, Houston, TX; Pathology and Laboratory Medicine (M.B.B.), University of Texas Health Science Center at Houston-McGovern Medical School, Houston, TX; and Department of Pediatrics (J.R.L.), Baylor College of Medicine, Houston, TX
| | - Haowei Du
- From the Division of Neurology and Developmental Neuroscience (D.G.C., I.H., D.P., T.L.), Department of Pediatrics, Baylor College of Medicine, Houston, TX; Texas Children's Hospital (D.G.C., I.H., D.P., J.R.L.), Houston, TX; Department of Molecular and Human Genetics (D.G.C., J.F., I.H., Z.C.A., H.D., R.A.G., D.M., D.P., J.E.P., J.R.L.), Baylor College of Medicine, Houston, TX; Human Genome Sequencing Center (S.N.J., R.A.G., J.R.L.), Baylor College of Medicine, Houston, TX; Department of Pediatrics (D.M.), Faculty of Medicine, Kuwait University, Safat, Kuwait; Division of Child and Adolescent Neurology (P.M.), Department of Pediatrics, University of Texas Health Science Center, Houston, TX; Pathology and Laboratory Medicine (M.B.B.), University of Texas Health Science Center at Houston-McGovern Medical School, Houston, TX; and Department of Pediatrics (J.R.L.), Baylor College of Medicine, Houston, TX
| | - Shalini N. Jhangiani
- From the Division of Neurology and Developmental Neuroscience (D.G.C., I.H., D.P., T.L.), Department of Pediatrics, Baylor College of Medicine, Houston, TX; Texas Children's Hospital (D.G.C., I.H., D.P., J.R.L.), Houston, TX; Department of Molecular and Human Genetics (D.G.C., J.F., I.H., Z.C.A., H.D., R.A.G., D.M., D.P., J.E.P., J.R.L.), Baylor College of Medicine, Houston, TX; Human Genome Sequencing Center (S.N.J., R.A.G., J.R.L.), Baylor College of Medicine, Houston, TX; Department of Pediatrics (D.M.), Faculty of Medicine, Kuwait University, Safat, Kuwait; Division of Child and Adolescent Neurology (P.M.), Department of Pediatrics, University of Texas Health Science Center, Houston, TX; Pathology and Laboratory Medicine (M.B.B.), University of Texas Health Science Center at Houston-McGovern Medical School, Houston, TX; and Department of Pediatrics (J.R.L.), Baylor College of Medicine, Houston, TX
| | - Richard A. Gibbs
- From the Division of Neurology and Developmental Neuroscience (D.G.C., I.H., D.P., T.L.), Department of Pediatrics, Baylor College of Medicine, Houston, TX; Texas Children's Hospital (D.G.C., I.H., D.P., J.R.L.), Houston, TX; Department of Molecular and Human Genetics (D.G.C., J.F., I.H., Z.C.A., H.D., R.A.G., D.M., D.P., J.E.P., J.R.L.), Baylor College of Medicine, Houston, TX; Human Genome Sequencing Center (S.N.J., R.A.G., J.R.L.), Baylor College of Medicine, Houston, TX; Department of Pediatrics (D.M.), Faculty of Medicine, Kuwait University, Safat, Kuwait; Division of Child and Adolescent Neurology (P.M.), Department of Pediatrics, University of Texas Health Science Center, Houston, TX; Pathology and Laboratory Medicine (M.B.B.), University of Texas Health Science Center at Houston-McGovern Medical School, Houston, TX; and Department of Pediatrics (J.R.L.), Baylor College of Medicine, Houston, TX
| | - Dana Marafi
- From the Division of Neurology and Developmental Neuroscience (D.G.C., I.H., D.P., T.L.), Department of Pediatrics, Baylor College of Medicine, Houston, TX; Texas Children's Hospital (D.G.C., I.H., D.P., J.R.L.), Houston, TX; Department of Molecular and Human Genetics (D.G.C., J.F., I.H., Z.C.A., H.D., R.A.G., D.M., D.P., J.E.P., J.R.L.), Baylor College of Medicine, Houston, TX; Human Genome Sequencing Center (S.N.J., R.A.G., J.R.L.), Baylor College of Medicine, Houston, TX; Department of Pediatrics (D.M.), Faculty of Medicine, Kuwait University, Safat, Kuwait; Division of Child and Adolescent Neurology (P.M.), Department of Pediatrics, University of Texas Health Science Center, Houston, TX; Pathology and Laboratory Medicine (M.B.B.), University of Texas Health Science Center at Houston-McGovern Medical School, Houston, TX; and Department of Pediatrics (J.R.L.), Baylor College of Medicine, Houston, TX
| | - Davut Pehlivan
- From the Division of Neurology and Developmental Neuroscience (D.G.C., I.H., D.P., T.L.), Department of Pediatrics, Baylor College of Medicine, Houston, TX; Texas Children's Hospital (D.G.C., I.H., D.P., J.R.L.), Houston, TX; Department of Molecular and Human Genetics (D.G.C., J.F., I.H., Z.C.A., H.D., R.A.G., D.M., D.P., J.E.P., J.R.L.), Baylor College of Medicine, Houston, TX; Human Genome Sequencing Center (S.N.J., R.A.G., J.R.L.), Baylor College of Medicine, Houston, TX; Department of Pediatrics (D.M.), Faculty of Medicine, Kuwait University, Safat, Kuwait; Division of Child and Adolescent Neurology (P.M.), Department of Pediatrics, University of Texas Health Science Center, Houston, TX; Pathology and Laboratory Medicine (M.B.B.), University of Texas Health Science Center at Houston-McGovern Medical School, Houston, TX; and Department of Pediatrics (J.R.L.), Baylor College of Medicine, Houston, TX
| | - Jennifer E. Posey
- From the Division of Neurology and Developmental Neuroscience (D.G.C., I.H., D.P., T.L.), Department of Pediatrics, Baylor College of Medicine, Houston, TX; Texas Children's Hospital (D.G.C., I.H., D.P., J.R.L.), Houston, TX; Department of Molecular and Human Genetics (D.G.C., J.F., I.H., Z.C.A., H.D., R.A.G., D.M., D.P., J.E.P., J.R.L.), Baylor College of Medicine, Houston, TX; Human Genome Sequencing Center (S.N.J., R.A.G., J.R.L.), Baylor College of Medicine, Houston, TX; Department of Pediatrics (D.M.), Faculty of Medicine, Kuwait University, Safat, Kuwait; Division of Child and Adolescent Neurology (P.M.), Department of Pediatrics, University of Texas Health Science Center, Houston, TX; Pathology and Laboratory Medicine (M.B.B.), University of Texas Health Science Center at Houston-McGovern Medical School, Houston, TX; and Department of Pediatrics (J.R.L.), Baylor College of Medicine, Houston, TX
| | - Timothy Lotze
- From the Division of Neurology and Developmental Neuroscience (D.G.C., I.H., D.P., T.L.), Department of Pediatrics, Baylor College of Medicine, Houston, TX; Texas Children's Hospital (D.G.C., I.H., D.P., J.R.L.), Houston, TX; Department of Molecular and Human Genetics (D.G.C., J.F., I.H., Z.C.A., H.D., R.A.G., D.M., D.P., J.E.P., J.R.L.), Baylor College of Medicine, Houston, TX; Human Genome Sequencing Center (S.N.J., R.A.G., J.R.L.), Baylor College of Medicine, Houston, TX; Department of Pediatrics (D.M.), Faculty of Medicine, Kuwait University, Safat, Kuwait; Division of Child and Adolescent Neurology (P.M.), Department of Pediatrics, University of Texas Health Science Center, Houston, TX; Pathology and Laboratory Medicine (M.B.B.), University of Texas Health Science Center at Houston-McGovern Medical School, Houston, TX; and Department of Pediatrics (J.R.L.), Baylor College of Medicine, Houston, TX
| | - Pedro Mancias
- From the Division of Neurology and Developmental Neuroscience (D.G.C., I.H., D.P., T.L.), Department of Pediatrics, Baylor College of Medicine, Houston, TX; Texas Children's Hospital (D.G.C., I.H., D.P., J.R.L.), Houston, TX; Department of Molecular and Human Genetics (D.G.C., J.F., I.H., Z.C.A., H.D., R.A.G., D.M., D.P., J.E.P., J.R.L.), Baylor College of Medicine, Houston, TX; Human Genome Sequencing Center (S.N.J., R.A.G., J.R.L.), Baylor College of Medicine, Houston, TX; Department of Pediatrics (D.M.), Faculty of Medicine, Kuwait University, Safat, Kuwait; Division of Child and Adolescent Neurology (P.M.), Department of Pediatrics, University of Texas Health Science Center, Houston, TX; Pathology and Laboratory Medicine (M.B.B.), University of Texas Health Science Center at Houston-McGovern Medical School, Houston, TX; and Department of Pediatrics (J.R.L.), Baylor College of Medicine, Houston, TX
| | - Meenakshi Bidwai Bhattacharjee
- From the Division of Neurology and Developmental Neuroscience (D.G.C., I.H., D.P., T.L.), Department of Pediatrics, Baylor College of Medicine, Houston, TX; Texas Children's Hospital (D.G.C., I.H., D.P., J.R.L.), Houston, TX; Department of Molecular and Human Genetics (D.G.C., J.F., I.H., Z.C.A., H.D., R.A.G., D.M., D.P., J.E.P., J.R.L.), Baylor College of Medicine, Houston, TX; Human Genome Sequencing Center (S.N.J., R.A.G., J.R.L.), Baylor College of Medicine, Houston, TX; Department of Pediatrics (D.M.), Faculty of Medicine, Kuwait University, Safat, Kuwait; Division of Child and Adolescent Neurology (P.M.), Department of Pediatrics, University of Texas Health Science Center, Houston, TX; Pathology and Laboratory Medicine (M.B.B.), University of Texas Health Science Center at Houston-McGovern Medical School, Houston, TX; and Department of Pediatrics (J.R.L.), Baylor College of Medicine, Houston, TX
| | - James R. Lupski
- From the Division of Neurology and Developmental Neuroscience (D.G.C., I.H., D.P., T.L.), Department of Pediatrics, Baylor College of Medicine, Houston, TX; Texas Children's Hospital (D.G.C., I.H., D.P., J.R.L.), Houston, TX; Department of Molecular and Human Genetics (D.G.C., J.F., I.H., Z.C.A., H.D., R.A.G., D.M., D.P., J.E.P., J.R.L.), Baylor College of Medicine, Houston, TX; Human Genome Sequencing Center (S.N.J., R.A.G., J.R.L.), Baylor College of Medicine, Houston, TX; Department of Pediatrics (D.M.), Faculty of Medicine, Kuwait University, Safat, Kuwait; Division of Child and Adolescent Neurology (P.M.), Department of Pediatrics, University of Texas Health Science Center, Houston, TX; Pathology and Laboratory Medicine (M.B.B.), University of Texas Health Science Center at Houston-McGovern Medical School, Houston, TX; and Department of Pediatrics (J.R.L.), Baylor College of Medicine, Houston, TX
| |
Collapse
|
14
|
Zheng M, Xiao S, Guo T, Rao L, Li L, Zhang Z, Huang L. DNA methylomic homogeneity and heterogeneity in muscles and testes throughout pig adulthood. Aging (Albany NY) 2020; 12:25412-25431. [PMID: 33231562 PMCID: PMC7803572 DOI: 10.18632/aging.104143] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 09/09/2020] [Indexed: 01/24/2023]
Abstract
DNA methylome pattern is significantly different among tissues, ages, breeds, and genders. We assessed 20 methylome and transcriptome data in longissimus dorsi (LD) or testicles from Bamaxiang (BMX) and Large White pigs (LW) by deep sequencing technology. We identified ~55.7M CpGs and 5.30M, 0.20M, 1.20M, and 0.16M differential CpGs (P<0.01) between tissues, ages, breeds, and genders, respectively. Interestingly, 7.54% of differentially methylated regions (DMRs) are co-localized with promoters, which potentially regulate gene expression. RNA-seq analysis revealed that 23.42% CpGs are significantly correlated with gene expression (mean |r|=0.58, P<0.01), most of which are enriched in tissue-specific functions. Specially, we also found that the methylation levels in promoters of 655 genes were strongly associated with their expression levels (mean |r|=0.66, P<0.01). In addition, differentially methylated CpGs (DMCpGs) between breeds in HOXC gene cluster imply important regulatory roles in myocytes hypertrophy and intermuscular fat (IMF) deposition. Dramatically, higher similarity of methylation pattern was observed within pedigree than across pedigrees, which indicates the existence of heritable methylation regions. In summary, a part of CpGs in promoter can change its methylation pattern and play a marked regulatory function in different physiological or natural environments.
Collapse
Affiliation(s)
- Min Zheng
- State Key Laboratory for Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang, China
| | - Shijun Xiao
- State Key Laboratory for Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang, China
| | - Tianfu Guo
- State Key Laboratory for Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang, China
| | - Lin Rao
- State Key Laboratory for Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang, China
| | - Longyun Li
- State Key Laboratory for Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang, China
| | - Zhiyan Zhang
- State Key Laboratory for Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang, China
| | - Lusheng Huang
- State Key Laboratory for Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang, China
| |
Collapse
|
15
|
Reischer T, Liebmann-Reindl S, Bettelheim D, Balendran-Braun S, Streubel B. Genetic diagnosis and clinical evaluation of severe fetal akinesia syndrome. Prenat Diagn 2020; 40:1532-1539. [PMID: 32779773 PMCID: PMC7756553 DOI: 10.1002/pd.5809] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 07/10/2020] [Accepted: 07/28/2020] [Indexed: 12/16/2022]
Abstract
Objective In this retrospective study, we describe the clinical course, ultrasound findings and genetic investigations of fetuses affected by fetal akinesia. Materials and Methods We enrolled 22 eukaryotic fetuses of 18 families, diagnosed with fetal akinesia between 2008 and 2016 at the Department of Obstetrics and Feto‐Maternal Medicine at the Medical University of Vienna. Routine genetic evaluation included karyotyping and chromosomal microarray analysis. Retrospectively, exome sequencing was performed in the index case of 11 families, if stored DNA was available. Confirmation analyses and genetic diagnosis of siblings were performed by using Sanger sequencing. Results Whole exome sequencing identified pathogenic variants of CNTN1, RYR1, NEB, GLDN, HRAS and TNNT3 in six cases of 11 families. In three of these families, the variants were confirmed in the respective sibling. Conclusions The present study demonstrates a high diagnostic yield of exome sequencing in fetuses affected by akinesia syndrome, especially if family history is positive. Still, in a large part the underlying genetic cause remained unknown, whereas precise clinical evaluation in combination with exome sequencing shows to be the best tool to find the disease causing variants.
Collapse
Affiliation(s)
- Theresa Reischer
- Department of Obstetrics and Feto-Maternal Medicine, Medical University of Vienna, Vienna, Austria
| | | | - Dieter Bettelheim
- Department of Obstetrics and Feto-Maternal Medicine, Medical University of Vienna, Vienna, Austria
| | | | - Berthold Streubel
- Core Facility Genomics, Medical University of Vienna, Vienna, Austria.,Clinical Institute of Pathology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
16
|
Wang WB, Kong LC, Zuo RT, Kang QL. Identification of a novel pathogenic mutation of the MYH3 gene in a family with distal arthrogryposis type 2B. Mol Med Rep 2019; 21:438-444. [PMID: 31746383 DOI: 10.3892/mmr.2019.10820] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2018] [Accepted: 08/29/2018] [Indexed: 11/05/2022] Open
Abstract
Distal arthrogryposis (DA) type 2B (DA2B) is an autosomal dominant congenital disorder, characterized by camptodactyly, thumb adduction, ulnar deviation and facial features, including small mouth, down‑slanting palpebral fissure and slight nasolabial fold. It has been reported that four genes are associated with DA2B, including troponin I, fast‑twitch skeletal muscle isoform, troponin T3, fast skeletal, myosin heavy chain 3 (MYH3) and tropomyosin 2, which are all associated with embryonic limb morphogenesis and skeletal muscle contraction. In the present study, three affected family members and five unaffected individuals were identified through clinical and radiological assessment. Genomic DNA was obtained from the three patients, which then underwent whole‑exome sequencing, and candidate mutations were verified by Sanger sequencing in all available family members and 100 healthy volunteers. Then, the spatial models of embryonic MYH were further constructed. In the clinic, the three patients recruited to the present study were diagnosed with DA2B. Mutation analysis indicated that there was a novel heterogeneous missense mutation c.2506 A>G (p.K836E) in the MYH3 gene among the affected individuals, which was highly conserved and was not identified in the unaffected family members and healthy controls. Furthermore, protein modeling revealed that the altered position interacted with regulatory light chain. Thus, the present study identified a novel pathogenic mutation of the MYH3 gene in a Chinese family with DA2B, which expanded the mutational spectrum of MYH3 and provided additional information regarding the association between mutation locations and different types of DA.
Collapse
Affiliation(s)
- Wen-Bo Wang
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, P.R. China
| | - Ling-Chi Kong
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, P.R. China
| | - Rong-Tai Zuo
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, P.R. China
| | - Qing-Lin Kang
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, P.R. China
| |
Collapse
|
17
|
Intrafamilial variability of clinical features in distal arthrogryposis type 2B. Clin Dysmorphol 2019; 28:35-37. [PMID: 30216196 DOI: 10.1097/mcd.0000000000000243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
18
|
Poling MI, Dufresne CR, Chamberlain RL. Freeman-Burian syndrome. Orphanet J Rare Dis 2019; 14:14. [PMID: 30630514 PMCID: PMC6327538 DOI: 10.1186/s13023-018-0984-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Accepted: 12/21/2018] [Indexed: 12/24/2022] Open
Abstract
Clinical description Freeman-Burian syndrome (FBS) is a rare congenital myopathic craniofacial syndrome. Considerable variability in severity is seen, but diagnosis requires the following: microstomia, whistling-face appearance (pursed lips), H or V-shaped chin defect, and prominent nasolabial folds. Some patients do not have limb malformations, but essentially all do, typically camptodactyly with ulnar deviation of the hand and talipes equinovarus. Neuro-cognitive function is not impaired. Epidemiology Population prevalence of FBS is unknown. Aetiology Environmental and parental factors are not implicated in pathogenesis. Allelic variations in embryonic myosin heavy chain gene are associated with FBS. White fibrous tissue within histologically normal muscle fibres and complete replacement of muscle by fibrous tissue, which behaves like tendinous tissue, are observed. Management Optimal care seems best achieved through a combination of early craniofacial reconstructive surgery and intensive physiotherapy for most other problems. Much of the therapeutic focus is on the areas of fibrous tissue replacement, which are either operatively released or gradually stretched with physiotherapy to reduce contractures. Operative procedures and techniques that do not account for the unique problems of the muscle and fibrous tissue replacement have poor clinical and functional outcomes. Important implications exist to facilitate patients’ legitimate opportunity to meaningfully overcome functional limitations and become well.
Collapse
Affiliation(s)
- Mikaela I Poling
- FSRG deGruyter-McKusick Institute of Health Sciences, Buckhannon, USA.
| | - Craig R Dufresne
- Department of Surgery, Georgetown University, Washington, DC, USA
| | | |
Collapse
|
19
|
Umair M, Khan A, Hayat A, Abbas S, Asiri A, Younus M, Amin W, Nawaz S, Khan S, Malik E, Alfadhel M, Ahmad F. Biallelic Missense Mutation in the ECEL1 Underlies Distal Arthrogryposis Type 5 (DA5D). Front Pediatr 2019; 7:343. [PMID: 31555621 PMCID: PMC6724761 DOI: 10.3389/fped.2019.00343] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2019] [Accepted: 07/31/2019] [Indexed: 12/16/2022] Open
Abstract
Distal arthrogryposis (DA) is a heterogeneous sub-group of arthrogryposis multiplex congenita (AMC), mostly characterized by having congenital contractures affecting hands, wrists, feet, and ankles. Distal arthrogryposis is mostly autosomal dominantly inherited, while only one sub-type DA type 5D is inherited in an autosomal recessive manner. Clinically, DA5D is described having knee extension contractures, micrognathia, distal joint contractures, clubfoot, ptosis, contractures (shoulders, elbows, and wrists), and scoliosis. Using whole exome sequencing (WES) followed by Sanger sequencing, we report on a first familial case of DA5D from Pakistani population having a novel biallelic missense mutation (c.158C>A, p.Pro53Leu) in the ECEL1 gene. Our result support that homozygous mutations in ECEL1 causes DA5D and expands the clinical and allelic spectrum of ECEL1 related contracture syndromes.
Collapse
Affiliation(s)
- Muhammad Umair
- Medical Genomics Research Department, King Abdullah International Medical Research Center (KAIMRC), Riyadh, Saudi Arabia.,Ministry of National Guard - Health Affairs (MNGHA), King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
| | - Amjad Khan
- Ministry of National Guard - Health Affairs (MNGHA), King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia.,Department of Developmental Medicine, King Abdullah International Medical Research Center (KAIMRC), Riyadh, Saudi Arabia
| | - Amir Hayat
- Department of Biochemistry, Faculty of Life and Chemical Sciences, Abdul Wali Khan University, Mardan, Pakistan
| | - Safdar Abbas
- Department of Biochemistry, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Abdulaziz Asiri
- Medical Genomics Research Department, King Abdullah International Medical Research Center (KAIMRC), Riyadh, Saudi Arabia.,Ministry of National Guard - Health Affairs (MNGHA), King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
| | - Muhammad Younus
- State Key Laboratory of Membrane Biology, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, Peking-Tsinghua Center for Life Sciences, PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing, China
| | - Wajid Amin
- Immunology and Genomic Medicine Lab, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Shoaib Nawaz
- Department of Biochemistry, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Shazia Khan
- Department of Biological Sciences, International Islamic University Islamabad, Islamabad, Pakistan
| | - Erum Malik
- Department of Biochemistry, Shah Abdul Latif University Khairpur, Sindh, Pakistan
| | - Majid Alfadhel
- Medical Genomics Research Department, King Abdullah International Medical Research Center (KAIMRC), Riyadh, Saudi Arabia.,Division of Genetics, Department of Pediatrics, King Abdullah Specialized Children Hospital, Riyadh, Saudi Arabia
| | - Farooq Ahmad
- Department of Chemistry, Women University Swabi, Swabi, Pakistan
| |
Collapse
|
20
|
Abstract
While officially designated as distal arthrogryposis type 2A, the condition commonly referred to as Freeman-Sheldon syndrome (FSS) also historically has been termed craniocarpotarsal dystrophy, whistling face syndrome, and craniocarpotarsal dysplasia and classified at different times as a skeletal dysplasia, nonprogressive myopathy, craniofacial syndrome, and distal arthrogryposis. Having previously provided evidence for FSS being a complex myopathic craniofacial syndrome with extra-craniofacial features in most patients, the rationale for revising the FSS eponym and supplanting the current official designation with a new one was based on considerations for educational usefulness, historical accuracy, communication fluency, and nosologic clarity underpinned by genetic, pathologic, and operative experience and outcomes.
Collapse
|
21
|
Behunova J, Gerykova Bujalkova M, Gras G, Taylor T, Ihm U, Kircher S, Rehder H, Laccone F. Distal Arthrogryposis with Impaired Proprioception and Touch: Description of an Early Phenotype in a Boy with Compound Heterozygosity of PIEZO2 Mutations and Review of the Literature. Mol Syndromol 2018; 9:287-294. [PMID: 30800044 DOI: 10.1159/000494451] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/27/2018] [Indexed: 12/16/2022] Open
Abstract
The recessive PIEZO2-associated disease, distal arthrogryposis with impaired proprioception and touch (DAIPT), is characterized by hypotonia, perinatal respiratory distress, significantly delayed motor milestones, and progressive symptoms of distal arthrogryposis and scoliosis. Here, we describe the youngest patient with DAIPT to date, who, at the age of 3.5 years, did not show a single clinical sign of distal arthrogryposis or contractures, but had a history of bilateral clubfoot operations. On the contrary, he presented with some features, not described thus far, such as syringohydromyelia, a small cyst of the spinal cord, moderate microcephaly with premature closure of anterior fontanelle, and spontaneous unilateral patella dislocation at the age of 32 months. Using whole exome sequencing, we identified 2 new different loss-of-function mutations in the PIEZO2 gene in our patient. We also review the phenotypes of all 16 previously published patients with DAIPT, summarize the distinctive clinical features of this rare genetic disorder, and recommend that DAIPT be included in the differential diagnosis of floppy infant. PIEZO2 is a unique ion channel that converts mechanical impulses into cellular signals and is involved in various mechanotransduction pathways. In addition to DAIPT, mutations in PIEZO2 have been described to cause 3 more distinct phenotypes of distal arthrogryposis, which are dominant and associated with gain-of-function mutations. On the contrary, recessive DAIPT is associated with loss-of-function PIEZO2 mutations.
Collapse
Affiliation(s)
- Jana Behunova
- Institute of Medical Genetics, Medical University of Vienna, Vienna, Austria
| | | | - Gabriel Gras
- VKKJ Center for Developmental Neurology and Social Pediatrics, Vienna, Austria
| | - Thomas Taylor
- Institute of Medical Genetics, Medical University of Vienna, Vienna, Austria
| | - Ulrike Ihm
- Institute of Medical Genetics, Medical University of Vienna, Vienna, Austria
| | - Susanne Kircher
- Institute of Medical Genetics, Medical University of Vienna, Vienna, Austria
| | - Helga Rehder
- Institute of Medical Genetics, Medical University of Vienna, Vienna, Austria
| | - Franco Laccone
- Institute of Medical Genetics, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
22
|
Xu Y, Kang QL, Zhang ZL. A MYH3 mutation identified for the first time in a Chinese family with Sheldon-Hall syndrome (DA2B). Neuromuscul Disord 2018; 28:456-462. [PMID: 29625835 DOI: 10.1016/j.nmd.2018.03.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 03/01/2018] [Accepted: 03/02/2018] [Indexed: 01/15/2023]
Abstract
Sheldon-Hall syndrome is the most common type of distal arthrogryposis syndromes, also known as distal arthrogryposis 2B (DA2B). Sheldon-Hall syndrome is caused by mutations in the TPM2, TNNI2, TNNT3 or MYH3 gene and characterized by ulnar deviation, camptodactyly, overlapping fingers and scoliosis from birth. We investigated a Chinese family with multiple members who clinically presented with distal arthrogryposis of the hands. In total, 261 subjects including one proband and ten family members from the non-consanguineous Chinese family and 250 healthy volunteers were included and had their genomic DNA extracted. A novel missense mutation in exon 13 of the MYH3 gene, c.1160A > G (p.Tyr387Cys), was identified in the proband and his father through whole-exome sequencing. The proband and six affected family members were confirmed to carry this mutation by Sanger sequencing, although the mutation was not detected in the four unaffected individuals or 250 volunteers. This is the first report of a novel MYH3 mutation being identified as the cause of DA2B in a Chinese family. Our findings confirm that MYH3 gene mutations can be a pathogenic cause of DA2B in Asian patients. This study increases the mutational spectrum in MYH3 and aids genetic counseling and prenatal diagnosis.
Collapse
Affiliation(s)
- Yang Xu
- Metabolic Bone Disease and Genetic Research Unit, Department of Osteoporosis and Bone Disease, Shanghai Jiao Tong University Affiliated Six People's Hospital, 600 Yi-Shan Rd., Shanghai, 200233, PR China
| | - Qing-Lin Kang
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Six People's Hospital, 600 Yi-Shan Rd., Shanghai, 200233, PR China.
| | - Zhen-Lin Zhang
- Metabolic Bone Disease and Genetic Research Unit, Department of Osteoporosis and Bone Disease, Shanghai Jiao Tong University Affiliated Six People's Hospital, 600 Yi-Shan Rd., Shanghai, 200233, PR China.
| |
Collapse
|
23
|
Sandaradura SA, Bournazos A, Mallawaarachchi A, Cummings BB, Waddell LB, Jones KJ, Troedson C, Sudarsanam A, Nash BM, Peters GB, Algar EM, MacArthur DG, North KN, Brammah S, Charlton A, Laing NG, Wilson MJ, Davis MR, Cooper ST. Nemaline myopathy and distal arthrogryposis associated with an autosomal recessive TNNT3 splice variant. Hum Mutat 2018; 39:383-388. [PMID: 29266598 DOI: 10.1002/humu.23385] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Revised: 11/23/2017] [Accepted: 12/13/2017] [Indexed: 12/12/2022]
Abstract
A male neonate presented with severe weakness, hypotonia, contractures and congenital scoliosis. Skeletal muscle specimens showed marked atrophy and degeneration of fast fibers with striking nemaline rods and hypertrophy of slow fibers that were ultrastructurally normal. A neuromuscular gene panel identified a homozygous essential splice variant in TNNT3 (chr11:1956150G > A, NM_006757.3:c.681+1G > A). TNNT3 encodes skeletal troponin-Tfast and is associated with autosomal dominant distal arthrogryposis. TNNT3 has not previously been associated with nemaline myopathy (NM), a rare congenital myopathy linked to defects in proteins associated with thin filament structure and regulation. cDNA studies confirmed pathogenic consequences of the splice variant, eliciting exon-skipping and intron retention events leading to a frameshift. Western blot showed deficiency of troponin-Tfast protein with secondary loss of troponin-Ifast . We establish a homozygous splice variant in TNNT3 as the likely cause of severe congenital NM with distal arthrogryposis, characterized by specific involvement of Type-2 fibers and deficiency of troponin-Tfast .
Collapse
Affiliation(s)
- Sarah A Sandaradura
- Institute for Neuroscience and Muscle Research, The Children's Hospital at Westmead, Sydney, New South Wales, Australia.,Discipline of Paediatrics and Child Health, University of Sydney, Sydney, New South Wales, Australia
| | - Adam Bournazos
- Institute for Neuroscience and Muscle Research, The Children's Hospital at Westmead, Sydney, New South Wales, Australia
| | - Amali Mallawaarachchi
- Department of Clinical Genetics, Children's Hospital at Westmead, Sydney, New South Wales, Australia
| | - Beryl B Cummings
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, Massachusetts.,Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Leigh B Waddell
- Institute for Neuroscience and Muscle Research, The Children's Hospital at Westmead, Sydney, New South Wales, Australia.,Discipline of Paediatrics and Child Health, University of Sydney, Sydney, New South Wales, Australia
| | - Kristi J Jones
- Institute for Neuroscience and Muscle Research, The Children's Hospital at Westmead, Sydney, New South Wales, Australia.,Discipline of Paediatrics and Child Health, University of Sydney, Sydney, New South Wales, Australia
| | - Christopher Troedson
- Department of Neurology, Children's Hospital at Westmead, Sydney, New South Wales, Australia
| | - Annapurna Sudarsanam
- Department of Neurology, Children's Hospital at Westmead, Sydney, New South Wales, Australia
| | - Benjamin M Nash
- Sydney Genome Diagnostics, Children's Hospital at Westmead, Sydney, New South Wales, Australia
| | - Gregory B Peters
- Sydney Genome Diagnostics, Children's Hospital at Westmead, Sydney, New South Wales, Australia
| | - Elizabeth M Algar
- Centre for Cancer Research, Hudson Institute of Medical Research, Clayton, Victoria, Australia.,Department of Molecular and Translational Science, Monash University, Clayton, Victoria, Australia
| | - Daniel G MacArthur
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, Massachusetts.,Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Kathryn N North
- Institute for Neuroscience and Muscle Research, The Children's Hospital at Westmead, Sydney, New South Wales, Australia.,Murdoch Children's Research Institute, Melbourne, Victoria, Australia.,Department of Paediatrics, Faculty of Medicine, University of Melbourne, Melbourne, Victoria, Australia
| | - Susan Brammah
- Electron Microscope Unit, Concord Repatriation General Hospital, Sydney, New South Wales, Australia
| | - Amanda Charlton
- Department of Anatomical Pathology, Middlemore Hospital, Auckland, New Zealand
| | - Nigel G Laing
- Department of Diagnostic Genomics, PathWest Laboratory Medicine, QEII Medical Centre, Perth, Western Australia, Australia.,Centre for Medical Research University of Western Australia, Harry Perkins Institute of Medical Research, Perth, Western Australia, Australia
| | - Meredith J Wilson
- Department of Clinical Genetics, Children's Hospital at Westmead, Sydney, New South Wales, Australia
| | - Mark R Davis
- Department of Diagnostic Genomics, PathWest Laboratory Medicine, QEII Medical Centre, Perth, Western Australia, Australia
| | - Sandra T Cooper
- Institute for Neuroscience and Muscle Research, The Children's Hospital at Westmead, Sydney, New South Wales, Australia.,Discipline of Paediatrics and Child Health, University of Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
24
|
Dissection of Myogenic Differentiation Signatures in Chickens by RNA-Seq Analysis. Genes (Basel) 2018; 9:genes9010034. [PMID: 29324704 PMCID: PMC5793186 DOI: 10.3390/genes9010034] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Revised: 12/22/2017] [Accepted: 01/03/2018] [Indexed: 12/22/2022] Open
Abstract
A series of elaborately regulated and orchestrated changes in gene expression profiles leads to muscle growth and development. In this study, RNA sequencing was used to profile embryonic chicken myoblasts and fused myotube transcriptomes, long non-coding RNAs (lncRNAs), and messenger RNAs (mRNAs) at four stages of myoblast differentiation. Of a total of 2484 lncRNA transcripts, 2288 were long intergenic non-coding RNAs (lincRNAs) and 198 were antisense lncRNAs. Additionally, 1530 lncRNAs were neighboring 2041 protein-coding genes (<10 kb upstream and downstream) and functionally enriched in several pathways related to skeletal muscle development that have been extensively studied, indicating that these genes may be in cis-regulatory relationships. In addition, Pearson’s correlation coefficients demonstrated that 990 lncRNAs and 7436 mRNAs were possibly in trans-regulatory relationships. These co-expressed mRNAs were enriched in various developmentally-related biological processes, such as myocyte proliferation and differentiation, myoblast differentiation, and myoblast fusion. The number of transcripts (906 lncRNAs and 4422 mRNAs) differentially expressed across various stages declined with the progression of differentiation. Then, 4422 differentially expressed genes were assigned to four clusters according to K-means analysis. Genes in the K1 cluster likely play important roles in myoblast proliferation and those in the K4 cluster were likely associated with the initiation of myoblast differentiation, while genes in the K2 and K3 clusters were likely related to myoblast fusion. This study provides a catalog of chicken lncRNAs and mRNAs for further experimental investigations and facilitates a better understanding of skeletal muscle development.
Collapse
|
25
|
Overexpression of miRNA-9 Generates Muscle Hypercontraction Through Translational Repression of Troponin-T in Drosophila melanogaster Indirect Flight Muscles. G3-GENES GENOMES GENETICS 2017; 7:3521-3531. [PMID: 28866639 PMCID: PMC5633399 DOI: 10.1534/g3.117.300232] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
MicroRNAs (miRNAs) are small noncoding endogenous RNAs, typically 21-23 nucleotides long, that regulate gene expression, usually post-transcriptionally, by binding to the 3'-UTR of target mRNA, thus blocking translation. The expression of several miRNAs is significantly altered during cardiac hypertrophy, myocardial ischemia, fibrosis, heart failure, and other cardiac myopathies. Recent studies have implicated miRNA-9 (miR-9) in myocardial hypertrophy. However, a detailed mechanism remains obscure. In this study, we have addressed the roles of miR-9 in muscle development and function using a genetically tractable model system, the indirect flight muscles (IFMs) of Drosophila melanogaster Bioinformatics analysis identified 135 potential miR-9a targets, of which 27 genes were associated with Drosophila muscle development. Troponin-T (TnT) was identified as major structural gene target of miR-9a. We show that flies overexpressing miR-9a in the IFMs have abnormal wing position and are flightless. These flies also exhibit a loss of muscle integrity and sarcomeric organization causing an abnormal muscle condition known as "hypercontraction." Additionally, miR-9a overexpression resulted in the reduction of TnT protein levels while transcript levels were unaffected. Furthermore, muscle abnormalities associated with miR-9a overexpression were completely rescued by overexpression of TnT transgenes which lacked the miR-9a binding site. These findings indicate that miR-9a interacts with the 3'-UTR of the TnT mRNA and downregulates the TnT protein levels by translational repression. The reduction in TnT levels leads to a cooperative downregulation of other thin filament structural proteins. Our findings have implications for understanding the cellular pathophysiology of cardiomyopathies associated with miR-9 overexpression.
Collapse
|
26
|
Basit S, Khoshhal KI. Genetics of clubfoot; recent progress and future perspectives. Eur J Med Genet 2017; 61:107-113. [PMID: 28919208 DOI: 10.1016/j.ejmg.2017.09.006] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Revised: 09/05/2017] [Accepted: 09/10/2017] [Indexed: 12/20/2022]
Abstract
Clubfoot or talipes equinovarus (TEV) is an inborn three-dimensional deformity of leg, ankle and foot. It results from structural defects of several tissues of foot and lower leg leading to abnormal positioning of foot and ankle joints. TEV can lead to long-lasting functional disability, malformation and discomfort if left untreated. Substantial progress has been achieved in the management and diagnosis of limb defects; however, not much is known about the molecular players and signalling pathways underlying TEV disorder. The homeostasis and development of the limb depends on the complex interactions between the lateral plate mesoderm cells and outer ectoderm. These complex interactions include HOX signalling and PITX1-TBX4 pathways. The susceptibility to develop TEV is determined by a number of environmental and genetic factors, although the nature and level of interplay between them remains unclear. Familial occurrence and inter and intra phenotypic variability of TEV is well documented. Variants in genes that code for contractile proteins of skeletal myofibers might play a role in the aetiology of TEV but, to date, no strong candidate genes conferring increased risk have emerged, although variants in TBX4, PITX1, HOXA, HOXC and HOXD clusters genes, NAT2 and others have been shown to be associated with TEV. The mechanisms by which variants in these genes confer risk and the nature of the physical and genetic interaction between them remains to be determined. Elucidation of genetic players and cellular pathways underlying TEV will certainly increase our understanding of the pathophysiology of this deformity.
Collapse
Affiliation(s)
- Sulman Basit
- Centre for Genetics and Inherited Diseases, Taibah University Almadinah Almunawwarah, Saudi Arabia.
| | - Khalid I Khoshhal
- College of Medicine, Taibah University Almadinah Almunawwarah, Saudi Arabia
| |
Collapse
|
27
|
Arthrogryposis multiplex congenita: classification, diagnosis, perioperative care, and anesthesia. Front Med 2017; 11:48-52. [DOI: 10.1007/s11684-017-0500-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2016] [Accepted: 11/24/2016] [Indexed: 01/12/2023]
|
28
|
Distal arthrogryposis with variable clinical expression caused by TNNI2 mutation. Hum Genome Var 2016; 3:16035. [PMID: 27790376 PMCID: PMC5061862 DOI: 10.1038/hgv.2016.35] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2016] [Revised: 09/02/2016] [Accepted: 09/06/2016] [Indexed: 11/28/2022] Open
Abstract
Distal arthrogryposis (DA) is a clinically and genetically heterogeneous disorder with multiple joint contractures. We describe a female DA patient with hand and foot deformities, and right-sided torticollis. Using exome sequencing, we identified a novel TNNI2 mutation (c.485>A, p.Arg162Lys) in the patient and her father. The father has no typical DA but hip dysplasia. This may explain the clinical features of DA2B in this family, but with variable clinical expression.
Collapse
|
29
|
Nagata K, Kiryu-Seo S, Tamada H, Okuyama-Uchimura F, Kiyama H, Saido TC. ECEL1 mutation implicates impaired axonal arborization of motor nerves in the pathogenesis of distal arthrogryposis. Acta Neuropathol 2016; 132:111-26. [PMID: 26951213 DOI: 10.1007/s00401-016-1554-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Revised: 02/23/2016] [Accepted: 02/25/2016] [Indexed: 01/15/2023]
Abstract
The membrane-bound metalloprotease endothelin-converting enzyme-like 1 (ECEL1) has been newly identified as a causal gene of a specific type of distal arthrogryposis (DA). In contrast to most causal genes of DA, ECEL1 is predominantly expressed in neuronal cells, suggesting a unique neurogenic pathogenesis in a subset of DA patients with ECEL1 mutation. The present study analyzed developmental motor innervation and neuromuscular junction formation in limbs of the rodent homologue damage-induced neuronal endopeptidase (DINE)-deficient mouse. Whole-mount immunostaining was performed in DINE-deficient limbs expressing motoneuron-specific GFP to visualize motor innervation throughout the limb. Although DINE-deficient motor nerves displayed normal trajectory patterns from the spinal cord to skeletal muscles, they indicated impaired axonal arborization in skeletal muscles in the forelimbs and hindlimbs. Systematic examination of motor innervation in over 10 different hindlimb muscles provided evidence that DINE gene disruption leads to insufficient arborization of motor nerves after arriving at the skeletal muscle. Interestingly, the axonal arborization defect in foot muscles appeared more severe than in other hindlimb muscles, which was partially consistent with the proximal-distal phenotypic discordance observed in DA patients. Additionally, the number of innervated neuromuscular junction was significantly reduced in the severely affected DINE-deficient muscle. Furthermore, we generated a DINE knock-in (KI) mouse model with a pathogenic mutation, which was recently identified in DA patients. Axonal arborization defects were clearly detected in motor nerves of the DINE KI limb, which was identical to the DINE-deficient limb. Given that the encoded sequences, as well as ECEL1 and DINE expression profiles, are highly conserved between mouse and human, abnormal arborization of motor axons and subsequent failure of NMJ formation could be a primary cause of DA with ECEL1 mutation.
Collapse
Affiliation(s)
- Kenichi Nagata
- Laboratory for Proteolytic Neuroscience, RIKEN Brain Science Institute, Saitama, 351-0198, Japan.
| | - Sumiko Kiryu-Seo
- Department of Functional Anatomy and Neuroscience, Graduate School of Medicine, Nagoya University, 65 Tsurumaicho, Showa-ku, Nagoya, 466-8550, Japan
| | - Hiromi Tamada
- Department of Functional Anatomy and Neuroscience, Graduate School of Medicine, Nagoya University, 65 Tsurumaicho, Showa-ku, Nagoya, 466-8550, Japan
| | - Fumi Okuyama-Uchimura
- Laboratory for Proteolytic Neuroscience, RIKEN Brain Science Institute, Saitama, 351-0198, Japan
| | - Hiroshi Kiyama
- Department of Functional Anatomy and Neuroscience, Graduate School of Medicine, Nagoya University, 65 Tsurumaicho, Showa-ku, Nagoya, 466-8550, Japan.
| | - Takaomi C Saido
- Laboratory for Proteolytic Neuroscience, RIKEN Brain Science Institute, Saitama, 351-0198, Japan.
| |
Collapse
|
30
|
Bayram Y, Karaca E, Coban Akdemir Z, Yilmaz EO, Tayfun GA, Aydin H, Torun D, Bozdogan ST, Gezdirici A, Isikay S, Atik MM, Gambin T, Harel T, El-Hattab AW, Charng WL, Pehlivan D, Jhangiani SN, Muzny DM, Karaman A, Celik T, Yuregir OO, Yildirim T, Bayhan IA, Boerwinkle E, Gibbs RA, Elcioglu N, Tuysuz B, Lupski JR. Molecular etiology of arthrogryposis in multiple families of mostly Turkish origin. J Clin Invest 2016; 126:762-78. [PMID: 26752647 DOI: 10.1172/jci84457] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Accepted: 11/25/2015] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Arthrogryposis, defined as congenital joint contractures in 2 or more body areas, is a clinical sign rather than a specific disease diagnosis. To date, more than 400 different disorders have been described that present with arthrogryposis, and variants of more than 220 genes have been associated with these disorders; however, the underlying molecular etiology remains unknown in the considerable majority of these cases. METHODS We performed whole exome sequencing (WES) of 52 patients with clinical presentation of arthrogryposis from 48 different families. RESULTS Affected individuals from 17 families (35.4%) had variants in known arthrogryposis-associated genes, including homozygous variants of cholinergic γ nicotinic receptor (CHRNG, 6 subjects) and endothelin converting enzyme-like 1 (ECEL1, 4 subjects). Deleterious variants in candidate arthrogryposis-causing genes (fibrillin 3 [FBN3], myosin IXA [MYO9A], and pleckstrin and Sec7 domain containing 3 [PSD3]) were identified in 3 families (6.2%). Moreover, in 8 families with a homozygous mutation in an arthrogryposis-associated gene, we identified a second locus with either a homozygous or compound heterozygous variant in a candidate gene (myosin binding protein C, fast type [MYBPC2] and vacuolar protein sorting 8 [VPS8], 2 families, 4.2%) or in another disease-associated genes (6 families, 12.5%), indicating a potential mutational burden contributing to disease expression. CONCLUSION In 58.3% of families, the arthrogryposis manifestation could be explained by a molecular diagnosis; however, the molecular etiology in subjects from 20 families remained unsolved by WES. Only 5 of these 20 unrelated subjects had a clinical presentation consistent with amyoplasia; a phenotype not thought to be of genetic origin. Our results indicate that increased use of genome-wide technologies will provide opportunities to better understand genetic models for diseases and molecular mechanisms of genetically heterogeneous disorders, such as arthrogryposis. FUNDING This work was supported in part by US National Human Genome Research Institute (NHGRI)/National Heart, Lung, and Blood Institute (NHLBI) grant U54HG006542 to the Baylor-Hopkins Center for Mendelian Genomics, and US National Institute of Neurological Disorders and Stroke (NINDS) grant R01NS058529 to J.R. Lupski.
Collapse
|
31
|
Abstract
Arthrogryposis multiplex congenita (AMC) is a heterogeneous condition defined as multiple congenital joint contractures in two or more body areas. The common pathogenesis is impaired fetal movements. Amyoplasia, the most frequent form, is a sporadically occurring condition with hypoplastic muscles and joint contractures. Distal arthrogryposis (DA) syndromes are often hereditary, and joint involvement is predominantly in the hands and feet. In a Swedish study, 131 patients with arthrogryposis were investigated. The most frequent diagnoses were amyoplasia and DA. In amyoplasia, muscle strength was found to be more important than joint range of motion (ROM) for motor function. In DA, muscle weakness was present in 44 % of investigated patients. The clinical findings were found to be highly variable between families and also within families with DA. Fetal myopathy due to sarcomeric protein dysfunction can cause DA. An early multidisciplinary team evaluation of the child with arthrogryposis for specific diagnosis and planning of treatment is recommended. Attention should be directed at the development of muscle strength with early stimulation of active movements. Immobilization should be minimized.
Collapse
Affiliation(s)
- Eva Kimber
- Department of Pediatrics, Institute of Clinical Sciences at Sahlgrenska Academy, The Queen Silvia Children´s Hospital, Gothenburg, Sweden
| |
Collapse
|
32
|
Wang B, Zheng Z, Wang Z, Zhang X, Yang H, Cai H, Fu Q. A novel missense mutation of TNNI2 in a Chinese family cause distal arthrogryposis type 1. Am J Med Genet A 2015; 170A:135-41. [PMID: 26374086 DOI: 10.1002/ajmg.a.37391] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Accepted: 09/06/2015] [Indexed: 01/03/2023]
Abstract
The distal arthrogryposis (DA) syndromes are a group of disorders characterized by congenital contractures of limbs. According to phenotypical characteristics, DA syndromes have been clinically classified into 10 types. Currently, at least nine disease causing genes have been identified for different types of DA. Here, we report a 3-generation Chinese pedigree with three DA affected members. We performed whole exome sequencing on two affected and one unaffected individuals of this family and successfully identified a novel missense mutation in TNNI2 as the pathogenic mutation. The TNNI2 gene encodes a subunit of the troponin complex, a contractile machinery of the muscle. The mutation p.F178C that could change the H-bond formation of a neighboring residue occurs at a highly conserved position, suggesting that this variation probably affects the TNNI2 protein function. Our study also demonstrates the power of whole exome sequencing in causal mutation identification for phenotypically variable and genetically heterogeneous disorders.
Collapse
Affiliation(s)
- Bo Wang
- Department of Laboratory Medicine, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China
| | - Zhaojing Zheng
- Department of Laboratory Medicine, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China
| | - Zhigang Wang
- Department of Pediatric Orthopedic, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China
| | - Xiaoqing Zhang
- Department of Laboratory Medicine, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China
| | - Haiou Yang
- Department of Laboratory Medicine, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China
| | - Haiqing Cai
- Department of Pediatric Orthopedic, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China
| | - Qihua Fu
- Department of Laboratory Medicine, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China
| |
Collapse
|
33
|
Sailani MR, Santoni FA, Letourneau A, Borel C, Makrythanasis P, Hibaoui Y, Popadin K, Bonilla X, Guipponi M, Gehrig C, Vannier A, Carre-Pigeon F, Feki A, Nizetic D, Antonarakis SE. DNA-Methylation Patterns in Trisomy 21 Using Cells from Monozygotic Twins. PLoS One 2015; 10:e0135555. [PMID: 26317209 PMCID: PMC4552626 DOI: 10.1371/journal.pone.0135555] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Accepted: 07/23/2015] [Indexed: 11/19/2022] Open
Abstract
DNA methylation is essential in mammalian development. We have hypothesized that methylation differences induced by trisomy 21 (T21) contribute to the phenotypic characteristics and heterogeneity in Down syndrome (DS). In order to determine the methylation differences in T21 without interference of the interindividual genomic variation, we have used fetal skin fibroblasts from monozygotic (MZ) twins discordant for T21. We also used skin fibroblasts from MZ twins concordant for T21, normal MZ twins without T21, and unrelated normal and T21 individuals. Reduced Representation Bisulfite Sequencing (RRBS) revealed 35 differentially methylated promoter regions (DMRs) (Absolute methylation differences = 25%, FDR < 0.001) in MZ twins discordant for T21 that have also been observed in comparison between unrelated normal and T21 individuals. The identified DMRs are enriched for genes involved in embryonic organ morphogenesis (FDR = 1.60 e -03) and include genes of the HOXB and HOXD clusters. These DMRs are maintained in iPS cells generated from this twin pair and are correlated with the gene expression changes. We have also observed an increase in DNA methylation level in the T21 methylome compared to the normal euploid methylome. This observation is concordant with the up regulation of DNA methyltransferase enzymes (DNMT3B and DNMT3L) and down regulation of DNA demethylation enzymes (TET2 and TET3) observed in the iPSC of the T21 versus normal twin. Altogether, the results of this study highlight the epigenetic effects of the extra chromosome 21 in T21 on loci outside of this chromosome that are relevant to DS associated phenotypes.
Collapse
Affiliation(s)
- M. Reza Sailani
- Department of Genetic Medicine and Development, University of Geneva, Geneva, Switzerland
- National Center of Competence in Research Frontiers in Genetics Program, University of Geneva, Geneva, Switzerland
| | - Federico A. Santoni
- Department of Genetic Medicine and Development, University of Geneva, Geneva, Switzerland
| | - Audrey Letourneau
- Department of Genetic Medicine and Development, University of Geneva, Geneva, Switzerland
- National Center of Competence in Research Frontiers in Genetics Program, University of Geneva, Geneva, Switzerland
| | - Christelle Borel
- Department of Genetic Medicine and Development, University of Geneva, Geneva, Switzerland
| | - Periklis Makrythanasis
- Department of Genetic Medicine and Development, University of Geneva, Geneva, Switzerland
| | - Youssef Hibaoui
- Stem Cell Research Laboratory, Department of Obstetrics and Gynecology, Geneva University Hospitals, Geneva, Switzerland
- Department of Obstetrics and Gynecology, Hôpital Cantonal Fribourgeois, Fribourg, Switzerland
| | - Konstantin Popadin
- Department of Genetic Medicine and Development, University of Geneva, Geneva, Switzerland
| | - Ximena Bonilla
- Department of Genetic Medicine and Development, University of Geneva, Geneva, Switzerland
| | - Michel Guipponi
- Department of Genetic Medicine and Development, University of Geneva, Geneva, Switzerland
| | - Corinne Gehrig
- Department of Genetic Medicine and Development, University of Geneva, Geneva, Switzerland
| | - Anne Vannier
- Department of Genetic Medicine and Development, University of Geneva, Geneva, Switzerland
| | - Frederique Carre-Pigeon
- Centre Hospitalier Universitaire Reims, Service de Genetique et de Biologie de la Reproduction, CECOS, Hopital Maison Blanche, F-51092 Reims, France
| | - Anis Feki
- Stem Cell Research Laboratory, Department of Obstetrics and Gynecology, Geneva University Hospitals, Geneva, Switzerland
- Department of Obstetrics and Gynecology, Hôpital Cantonal Fribourgeois, Fribourg, Switzerland
| | - Dean Nizetic
- The Blizard Institute, Barts and The London School of Medicine, Queen Mary University of London, 4 Newark Street, London E1 2AT, United Kingdom
- Lee Kong Chian School of Medicine, Nanyang Technological University, Unit 04–11, Proteos Building, 61 Biopolis Drive, Singapore 138673, Singapore
| | - Stylianos E. Antonarakis
- Department of Genetic Medicine and Development, University of Geneva, Geneva, Switzerland
- National Center of Competence in Research Frontiers in Genetics Program, University of Geneva, Geneva, Switzerland
- iGE3 institute of Genetics and Genomics of Geneva, University of Geneva, Geneva, Switzerland
- * E-mail:
| |
Collapse
|
34
|
Borovikov YS, Avrova SV, Rysev NA, Sirenko VV, Simonyan AO, Chernev AA, Karpicheva OE, Piers A, Redwood CS. Aberrant movement of β-tropomyosin associated with congenital myopathy causes defective response of myosin heads and actin during the ATPase cycle. Arch Biochem Biophys 2015; 577-578:11-23. [PMID: 25978979 DOI: 10.1016/j.abb.2015.05.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Revised: 04/22/2015] [Accepted: 05/07/2015] [Indexed: 01/07/2023]
Abstract
We have investigated the effect of the E41K, R91G, and E139del β-tropomyosin (TM) mutations that cause congenital myopathy on the position of TM and orientation of actin monomers and myosin heads at different mimicked stages of the ATPase cycle in troponin-free ghost muscle fibers by polarized fluorimetry. A multi-step shifting of wild-type TM to the filament center accompanied by an increase in the amount of switched on actin monomers and the strongly bound myosin heads was observed during the ATPase cycle. The R91G mutation shifts TM further towards the inner and outer domains of actin at the strong- and weak-binding stages, respectively. The E139del mutation retains TM near the inner domains, while the E41K mutation captures it near the outer domains. The E41K and R91G mutations can induce the strong binding of myosin heads to actin, when TM is located near the outer domains. The E139del mutation inhibits the amount of strongly bound myosin heads throughout the ATPase cycle.
Collapse
Affiliation(s)
- Yurii S Borovikov
- Institute of Cytology, Russian Academy of Sciences, 4 Tikhoretsky Avenue, St. Petersburg 194064, Russia.
| | - Stanislava V Avrova
- Institute of Cytology, Russian Academy of Sciences, 4 Tikhoretsky Avenue, St. Petersburg 194064, Russia
| | - Nikita A Rysev
- Institute of Cytology, Russian Academy of Sciences, 4 Tikhoretsky Avenue, St. Petersburg 194064, Russia
| | - Vladimir V Sirenko
- Institute of Cytology, Russian Academy of Sciences, 4 Tikhoretsky Avenue, St. Petersburg 194064, Russia
| | - Armen O Simonyan
- Institute of Cytology, Russian Academy of Sciences, 4 Tikhoretsky Avenue, St. Petersburg 194064, Russia; Saint Petersburg State University, Universitetskaya nab., 7-9, Saint Petersburg 199034, Russia
| | - Aleksey A Chernev
- Institute of Cytology, Russian Academy of Sciences, 4 Tikhoretsky Avenue, St. Petersburg 194064, Russia; Saint Petersburg State University, Universitetskaya nab., 7-9, Saint Petersburg 199034, Russia
| | - Olga E Karpicheva
- Institute of Cytology, Russian Academy of Sciences, 4 Tikhoretsky Avenue, St. Petersburg 194064, Russia
| | - Adam Piers
- University of Oxford, John Radcliffe Hospital, Oxford OX3 9DU, United Kingdom
| | - Charles S Redwood
- University of Oxford, John Radcliffe Hospital, Oxford OX3 9DU, United Kingdom
| |
Collapse
|
35
|
Abstract
Various human diseases can disrupt the balance between muscle contraction and relaxation. Sarcomeric modulators can be used to readjust this balance either indirectly by intervening in signalling pathways or directly through interaction with the muscle proteins that control contraction. Such agents represent a novel approach to treating any condition in which striated muscle function is compromised, including heart failure, cardiomyopathies, skeletal myopathies and a wide range of neuromuscular conditions. Here, we review agents that modulate the mechanical function of the sarcomere, focusing on emerging compounds that target myosin or the troponin complex.
Collapse
|
36
|
Chong J, McMillin M, Shively K, Beck A, Marvin C, Armenteros J, Buckingham K, Nkinsi N, Boyle E, Berry M, Bocian M, Foulds N, Uzielli M, Haldeman-Englert C, Hennekam R, Kaplan P, Kline A, Mercer C, Nowaczyk M, Klein Wassink-Ruiter J, McPherson E, Moreno R, Scheuerle A, Shashi V, Stevens C, Carey J, Monteil A, Lory P, Tabor H, Smith J, Shendure J, Nickerson D, Bamshad MJ, Bamshad M, Shendure J, Nickerson D, Abecasis G, Anderson P, Blue E, Annable M, Browning B, Buckingham K, Chen C, Chin J, Chong J, Cooper G, Davis C, Frazar C, Harrell T, He Z, Jain P, Jarvik G, Jimenez G, Johanson E, Jun G, Kircher M, Kolar T, Krauter S, Krumm N, Leal S, Luksic D, Marvin C, McMillin M, McGee S, O’Reilly P, Paeper B, Patterson K, Perez M, Phillips S, Pijoan J, Poel C, Reinier F, Robertson P, Santos-Cortez R, Shaffer T, Shephard C, Shively K, Siegel D, Smith J, Staples J, Tabor H, Tackett M, Underwood J, Wegener M, Wang G, Wheeler M, Yi Q. De novo mutations in NALCN cause a syndrome characterized by congenital contractures of the limbs and face, hypotonia, and developmental delay. Am J Hum Genet 2015; 96:462-73. [PMID: 25683120 DOI: 10.1016/j.ajhg.2015.01.003] [Citation(s) in RCA: 104] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Accepted: 01/07/2015] [Indexed: 12/13/2022] Open
Abstract
Freeman-Sheldon syndrome, or distal arthrogryposis type 2A (DA2A), is an autosomal-dominant condition caused by mutations in MYH3 and characterized by multiple congenital contractures of the face and limbs and normal cognitive development. We identified a subset of five individuals who had been putatively diagnosed with "DA2A with severe neurological abnormalities" and for whom congenital contractures of the limbs and face, hypotonia, and global developmental delay had resulted in early death in three cases; this is a unique condition that we now refer to as CLIFAHDD syndrome. Exome sequencing identified missense mutations in the sodium leak channel, non-selective (NALCN) in four families affected by CLIFAHDD syndrome. We used molecular-inversion probes to screen for NALCN in a cohort of 202 distal arthrogryposis (DA)-affected individuals as well as concurrent exome sequencing of six other DA-affected individuals, thus revealing NALCN mutations in ten additional families with "atypical" forms of DA. All 14 mutations were missense variants predicted to alter amino acid residues in or near the S5 and S6 pore-forming segments of NALCN, highlighting the functional importance of these segments. In vitro functional studies demonstrated that NALCN alterations nearly abolished the expression of wild-type NALCN, suggesting that alterations that cause CLIFAHDD syndrome have a dominant-negative effect. In contrast, homozygosity for mutations in other regions of NALCN has been reported in three families affected by an autosomal-recessive condition characterized mainly by hypotonia and severe intellectual disability. Accordingly, mutations in NALCN can cause either a recessive or dominant condition characterized by varied though overlapping phenotypic features, perhaps based on the type of mutation and affected protein domain(s).
Collapse
|
37
|
Racca AW, Beck AE, McMillin MJ, Korte FS, Bamshad MJ, Regnier M. The embryonic myosin R672C mutation that underlies Freeman-Sheldon syndrome impairs cross-bridge detachment and cycling in adult skeletal muscle. Hum Mol Genet 2015; 24:3348-58. [PMID: 25740846 DOI: 10.1093/hmg/ddv084] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Accepted: 03/02/2015] [Indexed: 02/06/2023] Open
Abstract
Distal arthrogryposis is the most common known heritable cause of congenital contractures (e.g. clubfoot) and results from mutations in genes that encode proteins of the contractile complex of skeletal muscle cells. Mutations are most frequently found in MYH3 and are predicted to impair the function of embryonic myosin. We measured the contractile properties of individual skeletal muscle cells and the activation and relaxation kinetics of isolated myofibrils from two adult individuals with an R672C substitution in embryonic myosin and distal arthrogryposis syndrome 2A (DA2A) or Freeman-Sheldon syndrome. In R672C-containing muscle cells, we observed reduced specific force, a prolonged time to relaxation and incomplete relaxation (elevated residual force). In R672C-containing muscle myofibrils, the initial, slower phase of relaxation had a longer duration and slower rate, and time to complete relaxation was greatly prolonged. These observations can be collectively explained by a small subpopulation of myosin cross-bridges with greatly reduced detachment kinetics, resulting in a slower and less complete deactivation of thin filaments at the end of contractions. These findings have important implications for selecting and testing directed therapeutic options for persons with DA2A and perhaps congenital contractures in general.
Collapse
Affiliation(s)
| | - Anita E Beck
- Department of Pediatrics, Seattle Children's Hospital, Seattle, WA 98105, USA
| | | | | | - Michael J Bamshad
- Department of Pediatrics, Department of Genome Sciences, Seattle Children's Hospital, Seattle, WA 98105, USA
| | - Michael Regnier
- Department of Bioengineering, Center for Cardiovascular Biology, University of Washington, Seattle, WA 98195, USA and
| |
Collapse
|
38
|
Li X, Zhong B, Han W, Zhao N, Liu W, Sui Y, Wang Y, Lu Y, Wang H, Li J, Jiang M. Two novel mutations in myosin binding protein C slow causing distal arthrogryposis type 2 in two large Han Chinese families may suggest important functional role of immunoglobulin domain C2. PLoS One 2015; 10:e0117158. [PMID: 25679999 PMCID: PMC4332675 DOI: 10.1371/journal.pone.0117158] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Accepted: 12/18/2014] [Indexed: 12/19/2022] Open
Abstract
Distal arthrogryposes (DAs) are a group of disorders that mainly involve the distal parts of the limbs and at least ten different DAs have been described to date. DAs are mostly described as autosomal dominant disorders with variable expressivity and incomplete penetrance, but recently autosomal recessive pattern was reported in distal arthrogryposis type 5D. Mutations in the contractile genes are found in about 50% of all DA patients. Of these genes, mutations in the gene encoding myosin binding protein C slow MYBPC1 were recently identified in two families with distal arthrogryposis type 1B. Here, we described two large Chinese families with autosomal dominant distal arthrogryposis type 2(DA2) with incomplete penetrance and variable expressivity. Some unique overextension contractures of the lower limbs and some distinctive facial features were present in our DA2 pedigrees. We performed follow-up DNA sequencing after linkage mapping and first identified two novel MYBPC1 mutations (c.1075G>A [p.E359K] and c.956C>T [p.P319L]) responsible for these Chinese DA2 families of which one introduced by germline mosacism. Each mutation was found to cosegregate with the DA2 phenotype in each family but not in population controls. Both substitutions occur within C2 immunoglobulin domain, which together with C1 and the M motif constitute the binding site for the S2 subfragment of myosin. Our results expand the phenotypic spectrum of MYBPC1-related arthrogryposis multiplex congenita (AMC). We also proposed the possible molecular mechanisms that may underlie the pathogenesis of DA2 myopathy associated with these two substitutions in MYBPC1.
Collapse
Affiliation(s)
- Xuefu Li
- Key Laboratory of Reproductive Health of Liaoning Province, Shenyang, China
| | - Bomeng Zhong
- Emergency department, Nanjing First Hospital, Nanjing, China
| | - Weitian Han
- Key Laboratory of Reproductive Health of Liaoning Province, Shenyang, China
| | - Ning Zhao
- Key Laboratory of Reproductive Health of Liaoning Province, Shenyang, China
| | - Wei Liu
- Key Laboratory of Reproductive Health of Liaoning Province, Shenyang, China
| | - Yu Sui
- Key Laboratory of Reproductive Health of Liaoning Province, Shenyang, China
| | - Yawen Wang
- Key Laboratory of Reproductive Health of Liaoning Province, Shenyang, China
| | - Yongping Lu
- Key Laboratory of Reproductive Health of Liaoning Province, Shenyang, China
| | - Hong Wang
- Key Laboratory of Reproductive Health of Liaoning Province, Shenyang, China
| | - Jianxin Li
- Key Laboratory of Reproductive Health of Liaoning Province, Shenyang, China
| | - Miao Jiang
- Key Laboratory of Reproductive Health of Liaoning Province, Shenyang, China
- * E-mail:
| |
Collapse
|
39
|
Beck AE, McMillin MJ, Gildersleeve HIS, Shively KMB, Tang A, Bamshad MJ. Genotype-phenotype relationships in Freeman-Sheldon syndrome. Am J Med Genet A 2014; 164A:2808-13. [PMID: 25256237 DOI: 10.1002/ajmg.a.36762] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2014] [Accepted: 08/08/2014] [Indexed: 11/06/2022]
Abstract
Distal arthrogryposis (DA) syndromes are a group of disorders characterized by multiple congenital contractures. DA type 2A (DA2A or Freeman-Sheldon syndrome), caused by mutations in MYH3, is typically considered the most severe of the DA syndromes. However, there is wide phenotypic variability among individuals with DA2A. We characterized genotype-phenotype relationships in 46 families with DA2A. MYH3 mutations were found in 43/46 (93%) kindreds, with three mutations (p.T178I, p.R672C, and p.R672H) explaining 39/43 (91%) of cases. Phenotypic severity varied significantly by genotype (P=0.0055). Individuals with p.T178I were the most severely affected with both facial contractures and congenital scoliosis. Classification of individuals with DA2A into phenotypic groups of varying severity should facilitate providing families with more accurate information about natural history and suggests that individuals might benefit from personalized medical management motivated by MYH3 genotype.
Collapse
Affiliation(s)
- Anita E Beck
- Division of Genetic Medicine, Department of Pediatrics, University of Washington, Seattle, Washington; Seattle Children's Hospital, Seattle, Washington
| | | | | | | | | | | |
Collapse
|
40
|
Daly SB, Shah H, O'Sullivan J, Anderson B, Bhaskar S, Williams S, Al-Sheqaih N, Mueed Bidchol A, Banka S, Newman WG, Girisha KM. Exome Sequencing Identifies a Dominant TNNT3 Mutation in a Large Family with Distal Arthrogryposis. Mol Syndromol 2014; 5:218-28. [PMID: 25337069 DOI: 10.1159/000365057] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/16/2013] [Indexed: 01/26/2023] Open
Abstract
Distal arthrogryposis (DA) is a group of rare, clinically and genetically heterogeneous disorders primarily characterized by congenital contractures of the distal limb joints without a neuromuscular disease. Mutations in at least 8 different genes have been shown to cause DA. Here, we report a 4-generation Indian family with 18 affected members presenting variable features of camptodactyly, brachydactyly, syndactyly, decreased flexion palmar creases, ulnar deviation of the hands, sandal gaps and club feet. We undertook exome sequencing of 3 distantly related affected individuals. Bioinformatics filtering revealed a known pathogenic missense mutation c.188G>A (p.Arg63His) in TNNT3 in all 3 affected individuals that segregated with the phenotype. The affected individuals exhibit significant phenotypic variability. This study demonstrates the value of exome sequencing helping to define the causative variant in genetically heterogeneous disorders.
Collapse
Affiliation(s)
- Sarah B Daly
- Manchester Centre for Genomic Medicine, University of Manchester, Manchester, UK ; Manchester Centre for Genomic Medicine, Central Manchester University Hospitals NHS Foundation Trust, Manchester, UK
| | - Hitesh Shah
- Pediatric Orthopedics Services, Department of Orthopedics, Manipal, India
| | - James O'Sullivan
- Manchester Centre for Genomic Medicine, University of Manchester, Manchester, UK ; Manchester Centre for Genomic Medicine, Central Manchester University Hospitals NHS Foundation Trust, Manchester, UK
| | - Beverley Anderson
- Manchester Centre for Genomic Medicine, University of Manchester, Manchester, UK ; Manchester Centre for Genomic Medicine, Central Manchester University Hospitals NHS Foundation Trust, Manchester, UK
| | - Sanjeev Bhaskar
- Manchester Centre for Genomic Medicine, University of Manchester, Manchester, UK ; Manchester Centre for Genomic Medicine, Central Manchester University Hospitals NHS Foundation Trust, Manchester, UK
| | - Simon Williams
- Manchester Centre for Genomic Medicine, University of Manchester, Manchester, UK ; Manchester Centre for Genomic Medicine, Central Manchester University Hospitals NHS Foundation Trust, Manchester, UK
| | - Nada Al-Sheqaih
- Manchester Centre for Genomic Medicine, University of Manchester, Manchester, UK ; Manchester Centre for Genomic Medicine, Central Manchester University Hospitals NHS Foundation Trust, Manchester, UK
| | - Abdul Mueed Bidchol
- Department of Medical Genetics, Kasturba Medical College, Manipal University, Manipal, India
| | - Siddharth Banka
- Manchester Centre for Genomic Medicine, University of Manchester, Manchester, UK ; Manchester Centre for Genomic Medicine, Central Manchester University Hospitals NHS Foundation Trust, Manchester, UK
| | - William G Newman
- Manchester Centre for Genomic Medicine, University of Manchester, Manchester, UK ; Manchester Centre for Genomic Medicine, Central Manchester University Hospitals NHS Foundation Trust, Manchester, UK
| | - Katta M Girisha
- Department of Medical Genetics, Kasturba Medical College, Manipal University, Manipal, India
| |
Collapse
|
41
|
Barnett CP, Todd EJ, Ong R, Davis MR, Atkinson V, Allcock R, Laing N, Ravenscroft G. Distal arthrogryposis type 5D with novel clinical features and compound heterozygous mutations in ECEL1. Am J Med Genet A 2014; 164A:1846-9. [PMID: 24782201 DOI: 10.1002/ajmg.a.36342] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2013] [Accepted: 10/06/2013] [Indexed: 11/09/2022]
Affiliation(s)
- Christopher P Barnett
- Pediatric & Reproductive Genetics, SA Clinical Genetics Service, Women's and Children's Hospital/SA Pathology, North Adelaide, South Australia, Australia
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Hofmann K, Zweier M, Sticht H, Zweier C, Wittmann W, Hoyer J, Uebe S, van Haeringen A, Thiel CT, Ekici AB, Reis A, Rauch A. Biallelic SEMA3A defects cause a novel type of syndromic short stature. Am J Med Genet A 2013; 161A:2880-9. [PMID: 24124006 DOI: 10.1002/ajmg.a.36250] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2013] [Accepted: 08/30/2013] [Indexed: 12/14/2022]
Abstract
Chromosomal microarray testing is commonly used to identify disease causing de novo copy number variants in patients with developmental delay and multiple congenital anomalies. In such a patient we now observed an 150 kb deletion on chromosome 7q21.11 affecting the first exon of the axon guidance molecule gene SEMA3A (sema domain, immunoglobulin domain (Ig), short basic domain, secreted, (semaphorin) 3A). This deletion was inherited from the healthy father, but considering the function of SEMA3A and phenotypic similarity to the knock-out mice, we still assumed a pathogenic relevance and tested for a recessive second defect. Sequencing of SEMA3A in the patient indeed revealed the de novo in-frame mutation p.Phe316_Lys317delinsThrSerSerAsnGlu. Cloning of the mutated allele in combination with two informative SNPs confirmed compound heterozygosity in the patient. While the altered protein structure was predicted to be benign, aberrant splicing resulting in a premature stop codon was proven by RT-PCR to occur in about half of the transcripts from this allele. Expression profiling in human fetal and adult cDNA panels, confirmed a high expression of SEMA3A in all brain regions as well as in adult and fetal heart and fetal skeletal muscle. Normal intellectual development in the patient was surprising but may be explained by the remaining 20% of SEMA3A expression level demonstrated by quantitative RT-PCR. We therefore report a novel autosomal recessive syndrome characterized by postnatal short stature with relative macrocephaly, camptodactyly, septal heart defect and several minor anomalies caused by biallelic mutations in SEMA3A.
Collapse
Affiliation(s)
- Kristin Hofmann
- Institute of Human Genetics, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Eymard B, Ferreiro A, Ben Yaou R, Stojkovic T. Muscle diseases with prominent joint contractures: Main entities and diagnostic strategy. Rev Neurol (Paris) 2013; 169:546-63. [DOI: 10.1016/j.neurol.2013.07.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2013] [Revised: 07/23/2013] [Accepted: 07/24/2013] [Indexed: 01/13/2023]
|
44
|
Shaheen R, Al-Owain M, Khan AO, Zaki MS, Hossni HAA, Al-Tassan R, Eyaid W, Alkuraya FS. Identification of three novel ECEL1 mutations in three families with distal arthrogryposis type 5D. Clin Genet 2013; 85:568-72. [PMID: 23829171 DOI: 10.1111/cge.12226] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2013] [Revised: 07/02/2013] [Accepted: 07/02/2013] [Indexed: 02/05/2023]
Abstract
Arthrogryposis refers to congenital contracture in at least two different body parts. When distal joints are primarily involved, the term distal arthrogryposis (DA) is used. The recognition of clinically distinct subtypes of DA has proven very useful in mapping the disease genes for this genetically heterogeneous condition. DA5D is characterized by ocular involvement usually in the form of ptosis and incomitant strabismus, but extraocular manifestations have also been reported. In a multiplex consanguineous family with DA5D, we combined autozygosity mapping and exome sequencing to identify a novel mutation in ECEL1. This was followed by targeted sequencing of this gene in another two extended consanguineous family with the same phenotype, which revealed two additional novel homozygous mutations. Our results support the recent identification of mutations in ECEL1 as a disease gene in DA5D and expand the clinical and allelic spectrum of this condition.
Collapse
|
45
|
Marston S, Memo M, Messer A, Papadaki M, Nowak K, McNamara E, Ong R, El-Mezgueldi M, Li X, Lehman W. Mutations in repeating structural motifs of tropomyosin cause gain of function in skeletal muscle myopathy patients. Hum Mol Genet 2013; 22:4978-87. [PMID: 23886664 DOI: 10.1093/hmg/ddt345] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The congenital myopathies include a wide spectrum of clinically, histologically and genetically variable neuromuscular disorders many of which are caused by mutations in genes for sarcomeric proteins. Some congenital myopathy patients have a hypercontractile phenotype. Recent functional studies demonstrated that ACTA1 K326N and TPM2 ΔK7 mutations were associated with hypercontractility that could be explained by increased myofibrillar Ca(2+) sensitivity. A recent structure of the complex of actin and tropomyosin in the relaxed state showed that both these mutations are located in the actin-tropomyosin interface. Tropomyosin is an elongated molecule with a 7-fold repeated motif of around 40 amino acids corresponding to the 7 actin monomers it interacts with. Actin binds to tropomyosin electrostatically at two points, through Asp25 and through a cluster of amino acids that includes Lys326, mutated in the gain-of-function mutation. Asp25 interacts with tropomyosin K6, next to K7 that was mutated in the other gain-of-function mutation. We identified four tropomyosin motifs interacting with Asp25 (K6-K7, K48-K49, R90-R91 and R167-K168) and three E-E/D-K/R motifs interacting with Lys326 (E139, E181 and E218), and we predicted that the known skeletal myopathy mutations ΔK7, ΔK49, R91G, ΔE139, K168E and E181K would cause a gain of function. Tests by an in vitro motility assay confirmed that these mutations increased Ca(2+) sensitivity, while mutations not in these motifs (R167H, R244G) decreased Ca(2+) sensitivity. The work reported here explains the molecular mechanism for 6 out of 49 known disease-causing mutations in the TPM2 and TPM3 genes, derived from structural data of the actin-tropomyosin interface.
Collapse
|
46
|
Ha K, Buchan JG, Alvarado DM, McCall K, Vydyanath A, Luther PK, Goldsmith MI, Dobbs MB, Gurnett CA. MYBPC1 mutations impair skeletal muscle function in zebrafish models of arthrogryposis. Hum Mol Genet 2013; 22:4967-77. [PMID: 23873045 DOI: 10.1093/hmg/ddt344] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Myosin-binding protein C1 (MYBPC1) is an abundant skeletal muscle protein that is expressed predominantly in slow-twitch muscle fibers. Human MYBPC1 mutations are associated with distal arthrogryposis type 1 and lethal congenital contracture syndrome type 4. As MYBPC1 function is incompletely understood, the mechanism by which human mutations result in contractures is unknown. Here, we demonstrate using antisense morpholino knockdown, that mybpc1 is required for embryonic motor activity and survival in a zebrafish model of arthrogryposis. Mybpc1 morphant embryos have severe body curvature, cardiac edema, impaired motor excitation and are delayed in hatching. Myofibril organization is selectively impaired in slow skeletal muscle and sarcomere numbers are greatly reduced in mybpc1 knockdown embryos, although electron microscopy reveals normal sarcomere structure. To evaluate the effects of human distal arthrogryposis mutations, mybpc1 mRNAs containing the corresponding human W236R and Y856H MYBPC1 mutations were injected into embryos. Dominant-negative effects of these mutations were suggested by the resultant mild bent body curvature, decreased motor activity, as well as impaired overall survival compared with overexpression of wild-type RNA. These results demonstrate a critical role for mybpc1 in slow skeletal muscle development and establish zebrafish as a tractable model of human distal arthrogryposis.
Collapse
|
47
|
Ju Y, Li J, Xie C, Ritchlin CT, Xing L, Hilton MJ, Schwarz EM. Troponin T3 expression in skeletal and smooth muscle is required for growth and postnatal survival: characterization of Tnnt3(tm2a(KOMP)Wtsi) mice. Genesis 2013; 51:667-75. [PMID: 23775847 DOI: 10.1002/dvg.22407] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2012] [Revised: 05/20/2013] [Accepted: 05/31/2013] [Indexed: 01/16/2023]
Abstract
The troponin complex, which consists of three regulatory proteins (troponin C, troponin I, and troponin T), is known to regulate muscle contraction in skeletal and cardiac muscle, but its role in smooth muscle remains controversial. Troponin T3 (TnnT3) is a fast skeletal muscle troponin believed to be expressed only in skeletal muscle cells. To determine the in vivo function and tissue-specific expression of Tnnt3, we obtained the heterozygous Tnnt3+/flox/lacZ mice from Knockout Mouse Project (KOMP) Repository. Tnnt3(lacZ/+) mice are smaller than their WT littermates throughout development but do not display any gross phenotypes. Tnnt3(lacZ/lacZ) embryos are smaller than heterozygotes and die shortly after birth. Histology revealed hemorrhagic tissue in Tnnt3(lacZ/lacZ) liver and kidney, which was not present in Tnnt3(lacZ/+) or WT, but no other gross tissue abnormalities. X-gal staining for Tnnt3 promoter-driven lacZ transgene expression revealed positive staining in skeletal muscle and diaphragm and smooth muscle cells located in the aorta, bladder, and bronchus. Collectively, these findings suggest that troponins are expressed in smooth muscle and are required for normal growth and breathing for postnatal survival. Moreover, future studies with this mouse model can explore TnnT3 function in adult muscle function using the conditional-inducible gene deletion approach
Collapse
Affiliation(s)
- Yawen Ju
- Center for Musculoskeletal Research, University of Rochester School of Medicine and Dentistry, Rochester, New York; Department of Pathology and Laboratory Medicine, University of Rochester School of Medicine and Dentistry, Rochester, New York
| | | | | | | | | | | | | |
Collapse
|
48
|
Ochala J, Iwamoto H. Myofilament lattice structure in presence of a skeletal myopathy-related tropomyosin mutation. J Muscle Res Cell Motil 2013; 34:171-5. [PMID: 23686574 DOI: 10.1007/s10974-013-9345-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2013] [Accepted: 05/10/2013] [Indexed: 10/26/2022]
Abstract
Human tropomyosin mutations deregulate skeletal muscle contraction at the cellular level. One key feature is the slowing of the kinetics of force development. The aim of the present study was to characterize the potential underlying molecular mechanisms by recording and analyzing the X-ray diffraction patterns of human membrane-permeabilized muscle cells expressing a particular β-tropomyosin mutation (E41K). During resting conditions, the d1,0 lattice spacing, Δ1,0 and I1,1 to I1,0 ratio were not different from control values. These results suggest that, in presence of the E41K β-tropomyosin mutation, the myofilament lattice geometry is well maintained and therefore may not have any detrimental influence on the contraction mechanisms and thus, on the rate of force generation.
Collapse
Affiliation(s)
- Julien Ochala
- Centre of Human & Aerospace Physiological Sciences, King's College London, Room 3.3, Shepherd's House, Guy's Campus, London, SE1 1UL, UK,
| | | |
Collapse
|
49
|
Ko JM, Choi IH, Baek GH, Kim KW. First Korean family with a mutation in TPM2 associated with Sheldon-Hall syndrome. J Korean Med Sci 2013; 28:780-3. [PMID: 23678273 PMCID: PMC3653094 DOI: 10.3346/jkms.2013.28.5.780] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2012] [Accepted: 01/31/2013] [Indexed: 01/22/2023] Open
Abstract
Sheldon-Hall syndrome (SHS) is a rare autosomal dominant, inherited arthrogryposis syndrome characterized by multiple congenital contractures of the distal limbs. To date, four genes that encode the skeletal muscle fiber complex have been confirmed as the causative genes. Mutations in MYH3 have been identified most frequently and few cases of SHS caused by TPM2 mutations have been reported worldwide. This report describes, for the first time, a Korean family with two generations of SHS resulting from a rare TPM2 mutation, p.R133W. The affected mother and daughter manifested typical facial features of SHS including a triangular face with downslanting palpebral fissures, small mouth, high arched palate, and prominent nasolabial folds, and showed camptodactyly of fingers and deformities of feet with congenital vertical tali. Generalized myopathy with relative sparing of the slow-twitch muscle fibers was also revealed by electromyography in the affected mother.
Collapse
Affiliation(s)
- Jung Min Ko
- Department of Pediatrics, Seoul National University College of Medicine, Seoul, Korea.
| | | | | | | |
Collapse
|
50
|
Verhagen J, Schrander-Stumpel C, Blezer M, Weber J, Schrander J, Rubio-Gozalbo M, Bakker J, Stegmann A, Vos Y, Frints S. Adducted thumbs: A clinical clue to genetic diagnosis. Eur J Med Genet 2013; 56:153-8. [DOI: 10.1016/j.ejmg.2012.11.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2012] [Accepted: 11/28/2012] [Indexed: 10/27/2022]
|