1
|
Schrom E, Kinzig A, Forrest S, Graham AL, Levin SA, Bergstrom CT, Castillo-Chavez C, Collins JP, de Boer RJ, Doupé A, Ensafi R, Feldman S, Grenfell BT, Halderman JA, Huijben S, Maley C, Moses M, Perelson AS, Perrings C, Plotkin J, Rexford J, Tiwari M. Challenges in cybersecurity: Lessons from biological defense systems. Math Biosci 2023:109024. [PMID: 37270102 DOI: 10.1016/j.mbs.2023.109024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 04/27/2023] [Accepted: 05/20/2023] [Indexed: 06/05/2023]
Abstract
Defending against novel, repeated, or unpredictable attacks, while avoiding attacks on the 'self', are the central problems of both mammalian immune systems and computer systems. Both systems have been studied in great detail, but with little exchange of information across the different disciplines. Here, we present a conceptual framework for structured comparisons across the fields of biological immunity and cybersecurity, by framing the context of defense, considering different (combinations of) defensive strategies, and evaluating defensive performance. Throughout this paper, we pose open questions for further exploration. We hope to spark the interdisciplinary discovery of general principles of optimal defense, which can be understood and applied in biological immunity, cybersecurity, and other defensive realms.
Collapse
Affiliation(s)
- Edward Schrom
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ 08544, United States of America
| | - Ann Kinzig
- School of Life Sciences, Arizona State University, Tempe, AZ 85287, United States of America
| | - Stephanie Forrest
- Biodesign Center for Biocomputation, Security and Society, Arizona State University, Tempe, AZ 85287, United States of America; School of Computing and Augmented Intelligence, Arizona State University, Tempe, AZ 85287, United States of America; Santa Fe Institute, Santa Fe, NM 87501, United States of America
| | - Andrea L Graham
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ 08544, United States of America; Santa Fe Institute, Santa Fe, NM 87501, United States of America
| | - Simon A Levin
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ 08544, United States of America.
| | - Carl T Bergstrom
- Department of Biology, University of Washington, Seattle, WA 98195, United States of America
| | - Carlos Castillo-Chavez
- School of Human Evolution and Social Change, Arizona State University, Tempe, AZ 85287, United States of America
| | - James P Collins
- School of Life Sciences, Arizona State University, Tempe, AZ 85287, United States of America
| | - Rob J de Boer
- Theoretical Biology and Bioinformatics, Utrecht University, 3584 CH Utrecht, The Netherlands
| | - Adam Doupé
- School of Computing and Augmented Intelligence, Arizona State University, Tempe, AZ 85287, United States of America; Center for Cybersecurity and Trusted Foundations, Global Security Initiative, Arizona State University, Tempe, AZ 85287, United States of America
| | - Roya Ensafi
- Department of Electrical Engineering and Computer Science, Computer Science and Engineering Division, University of Michigan, Ann Arbor, MI 48109, United States of America
| | - Stuart Feldman
- Schmidt Futures, New York, NY 10011, United States of America
| | - Bryan T Grenfell
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ 08544, United States of America; Princeton School of Public and International Affairs, Princeton University, Princeton, NJ 08544, United States of America
| | - J Alex Halderman
- Department of Electrical Engineering and Computer Science, Computer Science and Engineering Division, University of Michigan, Ann Arbor, MI 48109, United States of America; Center for Computer Security and Society, University of Michigan, Ann Arbor, MI 48109, United States of America
| | - Silvie Huijben
- School of Life Sciences, Arizona State University, Tempe, AZ 85287, United States of America
| | - Carlo Maley
- Arizona Cancer Evolution Center, Arizona State University, Tempe, AZ 85287, United States of America; Biodesign Center for Biocomputation, Security and Society, Arizona State University, Tempe, AZ 85287, United States of America
| | - Melanie Moses
- Department of Computer Science, University of New Mexico, Albuquerque, NM 87131, United States of America; Department of Biology, University of New Mexico, Albuquerque, NM 87131, United States of America; Santa Fe Institute, Santa Fe, NM 87501, United States of America
| | - Alan S Perelson
- Theoretical Biology and Biophysics Group, Los Alamos National Laboratory, Los Alamos, NM 87545, United States of America; Santa Fe Institute, Santa Fe, NM 87501, United States of America
| | - Charles Perrings
- School of Life Sciences, Arizona State University, Tempe, AZ 85287, United States of America
| | - Joshua Plotkin
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104, United States of America
| | - Jennifer Rexford
- Department of Computer Science, Princeton University, Princeton, NJ 08540, United States of America
| | - Mohit Tiwari
- Department of Electrical and Computer Engineering, University of Texas, Austin, TX 78712, United States of America
| |
Collapse
|
2
|
Hagen EH, Blackwell AD, Lightner AD, Sullivan RJ. Homo medicus: The transition to meat eating increased pathogen pressure and the use of pharmacological plants in Homo. AMERICAN JOURNAL OF BIOLOGICAL ANTHROPOLOGY 2023; 180:589-617. [PMID: 36815505 DOI: 10.1002/ajpa.24718] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 01/31/2023] [Accepted: 02/08/2023] [Indexed: 02/24/2023]
Abstract
The human lineage transitioned to a more carnivorous niche 2.6 mya and evolved a large body size and slower life history, which likely increased zoonotic pathogen pressure. Evidence for this increase includes increased zoonotic infections in modern hunter-gatherers and bushmeat hunters, exceptionally low stomach pH compared to other primates, and divergence in immune-related genes. These all point to change, and probably intensification, in the infectious disease environment of Homo compared to earlier hominins and other apes. At the same time, the brain, an organ in which immune responses are constrained, began to triple in size. We propose that the combination of increased zoonotic pathogen pressure and the challenges of defending a large brain and body from pathogens in a long-lived mammal, selected for intensification of the plant-based self-medication strategies already in place in apes and other primates. In support, there is evidence of medicinal plant use by hominins in the middle Paleolithic, and all cultures today have sophisticated, plant-based medical systems, add spices to food, and regularly consume psychoactive plant substances that are harmful to helminths and other pathogens. We propose that the computational challenges of discovering effective plant-based treatments, the consequent ability to consume more energy-rich animal foods, and the reduced reliance on energetically-costly immune responses helped select for increased cognitive abilities and unique exchange relationships in Homo. In the story of human evolution, which has long emphasized hunting skills, medical skills had an equal role to play.
Collapse
Affiliation(s)
- Edward H Hagen
- Department of Anthropology, Washington State University, Pullman, Washington, USA
| | - Aaron D Blackwell
- Department of Anthropology, Washington State University, Pullman, Washington, USA
| | - Aaron D Lightner
- Department of Anthropology, Washington State University, Pullman, Washington, USA
- Department of the Study of Religion, Aarhus University, Aarhus, Denmark
| | - Roger J Sullivan
- Department of Anthropology, California State University, Sacramento, California, USA
| |
Collapse
|
3
|
Downie AE, Mayer A, Metcalf CJE, Graham AL. Optimal immune specificity at the intersection of host life history and parasite epidemiology. PLoS Comput Biol 2021; 17:e1009714. [PMID: 34932551 PMCID: PMC8730424 DOI: 10.1371/journal.pcbi.1009714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 01/05/2022] [Accepted: 12/02/2021] [Indexed: 11/30/2022] Open
Abstract
Hosts diverge widely in how, and how well, they defend themselves against infection and immunopathology. Why are hosts so heterogeneous? Both epidemiology and life history are commonly hypothesized to influence host immune strategy, but the relationship between immune strategy and each factor has commonly been investigated in isolation. Here, we show that interactions between life history and epidemiology are crucial for determining optimal immune specificity and sensitivity. We propose a demographically-structured population dynamics model, in which we explore sensitivity and specificity of immune responses when epidemiological risks vary with age. We find that variation in life history traits associated with both reproduction and longevity alters optimal immune strategies-but the magnitude and sometimes even direction of these effects depends on how epidemiological risks vary across life. An especially compelling example that explains previously-puzzling empirical observations is that depending on whether infection risk declines or rises at reproductive maturity, later reproductive maturity can select for either greater or lower immune specificity, potentially illustrating why studies of lifespan and immune variation across taxa have been inconclusive. Thus, the sign of selection on the life history-immune specificity relationship can be reversed in different epidemiological contexts. Drawing on published life history data from a variety of chordate taxa, we generate testable predictions for this facet of the optimal immune strategy. Our results shed light on the causes of the heterogeneity found in immune defenses both within and among species and the ultimate variability of the relationship between life history and immune specificity.
Collapse
Affiliation(s)
- Alexander E. Downie
- Department of Ecology & Evolutionary Biology, Princeton University, Princeton, New Jersey, United States of America
| | - Andreas Mayer
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey, United States of America
| | - C. Jessica E. Metcalf
- Department of Ecology & Evolutionary Biology, Princeton University, Princeton, New Jersey, United States of America
- School of Public and International Affairs, Princeton University, Princeton, New Jersey, United States of America
| | - Andrea L. Graham
- Department of Ecology & Evolutionary Biology, Princeton University, Princeton, New Jersey, United States of America
| |
Collapse
|
4
|
Singh P, Best A. Simultaneous evolution of host resistance and tolerance to parasitism. J Evol Biol 2021; 34:1932-1943. [PMID: 34704334 DOI: 10.1111/jeb.13947] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 09/17/2021] [Accepted: 10/11/2021] [Indexed: 12/22/2022]
Abstract
Tolerance and resistance are two modes of defence mechanisms used by hosts when faced with parasites. Here, we assume tolerance reduces infection-induced mortality rate and resistance reduces the susceptibility of getting infected. Importantly, a negative association between these two strategies has often been found experimentally. We study the simultaneous evolution of resistance and tolerance in a host population where they are related by such a trade-off. Using evolutionary invasion theory, we examine the patterns of optimal investment in each defence strategy, under different ecological scenarios. Our focus is on predicting which of the two strategies is favoured under various epidemiological and ecological conditions. Our key findings surround the impact of recovery and sterility of infected hosts. As the rate at which infected hosts recover from the infection, that is the recovery rate increases, the investment in tolerance increases (resistance decreases) when infected hosts are sterile, but this pattern reverses when infected hosts can reproduce. We further found that a change in the parameter determining the intraspecies competition for resources leading to a reduction in birth rate, that is the crowding factor affects investments in tolerance and resistance only when infected hosts can reproduce. These results emphasize the role of fecundity in driving the evolutionary dynamics of a host. We also find that disease prevalence can increase or decrease depending on whether or not the host evolves: prevalence is highest at low recovery rates when the host does not evolve, but the feedback of a change in tolerance and resistance reverses this pattern, leading to lower prevalence at low recovery rates as host evolves.
Collapse
Affiliation(s)
- Prerna Singh
- School of Mathematics and Statistics, University of Sheffield, Sheffield, UK
| | - Alex Best
- School of Mathematics and Statistics, University of Sheffield, Sheffield, UK
| |
Collapse
|
5
|
Boëte C, Seston M, Legros M. Strategies of host resistance to pathogens in spatially structured populations: An agent-based evaluation. Theor Popul Biol 2019; 130:170-181. [PMID: 31394115 DOI: 10.1016/j.tpb.2019.07.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 07/23/2019] [Accepted: 07/29/2019] [Indexed: 12/23/2022]
Abstract
There is growing theoretical evidence that spatial structure can affect the ecological and evolutionary outcomes of host-parasite interactions. Locally restricted interactions have been shown in particular to affect host resistance and tolerance. In this study we investigate the evolution of several types of host disease resistance strategies, alone or in combination, in spatially structured populations. We construct a spatially explicit, individual-based stochastic model where hosts and parasites interact with each other in a spatial lattice, and interactions are restricted to a given neighbourhood of varying size. We investigate several host resistance strategies, including constitutive (expressed in all resistant hosts), induced (expressed only upon infection), and combinations thereof. We show that a costly constitutive resistance cannot reach fixation, whereas an inducible resistance strategy may become fixed in the population if the cost remains low, particularly if it impacts host recovery. We also demonstrate that mixed strategies can be maintained in the host population, and that a higher investment in a recovery-boosting inducible resistance allows for a higher investment in a constitutive response. Our simulations reveal that the spatial structure of the population impacts the selection for resistance in a complex fashion. While single strategies of resistance are generally favoured in less structured populations, mixed strategies can sometimes prevail only in highly structured environments, e.g. when combining constitutive and transmission-blocking induced responses Overall these results shed new light on the dynamics of disease resistance in a spatially-structured host-pathogen system, and advance our theoretical understanding of the evolutionary dynamics of disease resistance, a necessary step to elaborate more efficient and sustainable strategies for disease management.
Collapse
Affiliation(s)
- Christophe Boëte
- ISEM, Université de Montpellier, CNRS, IRD, EPHE, Montpellier, France.
| | - Morgan Seston
- Unite des Virus Emergents (UVE: Aix-Marseille Univ- IRD 190 - INSERM 1207 - IHU Mediterranée Infection), Marseille, France
| | - Mathieu Legros
- ETH Zürich, Institut für Integrative Biologie, Universitätstrasse 16, 8092 Zürich, Switzerland; CSIRO Agriculture & Food, Canberra, ACT 2601, Australia
| |
Collapse
|
6
|
Tavalire HF, Beechler BR, Buss PE, Gorsich EE, Hoal EG, le Roex N, Spaan JM, Spaan RS, van Helden PD, Ezenwa VO, Jolles AE. Context-dependent costs and benefits of tuberculosis resistance traits in a wild mammalian host. Ecol Evol 2018; 8:12712-12726. [PMID: 30619576 PMCID: PMC6308860 DOI: 10.1002/ece3.4699] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2018] [Revised: 10/02/2018] [Accepted: 10/12/2018] [Indexed: 12/24/2022] Open
Abstract
Disease acts as a powerful driver of evolution in natural host populations, yet individuals in a population often vary in their susceptibility to infection. Energetic trade-offs between immune and reproductive investment lead to the evolution of distinct life history strategies, driven by the relative fitness costs and benefits of resisting infection. However, examples quantifying the cost of resistance outside of the laboratory are rare. Here, we observe two distinct forms of resistance to bovine tuberculosis (bTB), an important zoonotic pathogen, in a free-ranging African buffalo (Syncerus caffer) population. We characterize these phenotypes as "infection resistance," in which hosts delay or prevent infection, and "proliferation resistance," in which the host limits the spread of lesions caused by the pathogen after infection has occurred. We found weak evidence that infection resistance to bTB may be heritable in this buffalo population (h 2 = 0.10) and comes at the cost of reduced body condition and marginally reduced survival once infected, but also associates with an overall higher reproductive rate. Infection-resistant animals thus appear to follow a "fast" pace-of-life syndrome, in that they reproduce more quickly but die upon infection. In contrast, proliferation resistance had no apparent costs and was associated with measures of positive host health-such as having a higher body condition and reproductive rate. This study quantifies striking phenotypic variation in pathogen resistance and provides evidence for a link between life history variation and a disease resistance trait in a wild mammalian host population.
Collapse
Affiliation(s)
- Hannah F. Tavalire
- Department of Integrative BiologyOregon State UniversityCorvallisOregon
- The Institute of Ecology and EvolutionUniversity of OregonEugeneOregon
- Present address:
Prevention Science InstituteUniversity of OregonEugeneOregon
- Present address:
Institute of Ecology and EvolutionUniversity of OregonEugeneOregon
| | | | | | - Erin E. Gorsich
- College of Veterinary MedicineOregon State UniversityCorvallisOregon
- Present address:
Erin E. Gorsich, Zeeman Institute: Systems Biology and Infectious Disease Epidemiology Research (SBIDER)University of WarwickCoventryUK
- Present address:
School of Life SciencesUniversity of WarwickCoventryUK
| | - Eileen G. Hoal
- South African Medical Research Council, DST/NRF Centre of Excellence for Biomedical TB Research, Division of Molecular Biology and Human Genetics, Faculty of Health SciencesStellenbosch UniversityTygerbergSouth Africa
| | - Nikki le Roex
- South African Medical Research Council, DST/NRF Centre of Excellence for Biomedical TB Research, Division of Molecular Biology and Human Genetics, Faculty of Health SciencesStellenbosch UniversityTygerbergSouth Africa
| | - Johannie M. Spaan
- Department of Integrative BiologyOregon State UniversityCorvallisOregon
| | - Robert S. Spaan
- Department of Fisheries and WildlifeOregon State UniversityCorvallisOregon
| | - Paul D. van Helden
- South African Medical Research Council, DST/NRF Centre of Excellence for Biomedical TB Research, Division of Molecular Biology and Human Genetics, Faculty of Health SciencesStellenbosch UniversityTygerbergSouth Africa
| | - Vanessa O. Ezenwa
- Odum School of Ecology and Department of Infectious Diseases, College of Veterinary MedicineUniversity of GeorgiaAthensGeorgia
| | - Anna E. Jolles
- Department of Integrative BiologyOregon State UniversityCorvallisOregon
- College of Veterinary MedicineOregon State UniversityCorvallisOregon
| |
Collapse
|
7
|
Glander S, He F, Schmitz G, Witten A, Telschow A, de Meaux J. Assortment of Flowering Time and Immunity Alleles in Natural Arabidopsis thaliana Populations Suggests Immunity and Vegetative Lifespan Strategies Coevolve. Genome Biol Evol 2018; 10:2278-2291. [PMID: 30215800 PMCID: PMC6133262 DOI: 10.1093/gbe/evy124] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/20/2018] [Indexed: 12/31/2022] Open
Abstract
The selective impact of pathogen epidemics on host defenses can be strong but remains transient. By contrast, life-history shifts can durably and continuously modify the balance between costs and benefits of immunity, which arbitrates the evolution of host defenses. Their impact on the evolutionary dynamics of host immunity, however, has seldom been documented. Optimal investment into immunity is expected to decrease with shortening lifespan, because a shorter life decreases the probability to encounter pathogens or enemies. Here, we document that in natural populations of Arabidopsis thaliana, the expression levels of immunity genes correlate positively with flowering time, which in annual species is a proxy for lifespan. Using a novel genetic strategy based on bulk-segregants, we partitioned flowering time-dependent from -independent immunity genes and could demonstrate that this positive covariation can be genetically separated. It is therefore not explained by the pleiotropic action of some major regulatory genes controlling both immunity and lifespan. Moreover, we find that immunity genes containing variants reported to impact fitness in natural field conditions are among the genes whose expression covaries most strongly with flowering time. Taken together, these analyses reveal that natural selection has likely assorted alleles promoting lower expression of immunity genes with alleles that decrease the duration of vegetative lifespan in A. thaliana and vice versa. This is the first study documenting a pattern of variation consistent with the impact that selection on flowering time is predicted to have on diversity in host immunity.
Collapse
Affiliation(s)
- Shirin Glander
- Department of Genetic Epidemiology, Institute of Human Genetics, University of Münster, Germany
| | - Fei He
- Institute of Botany, University of Cologne, Germany
| | | | - Anika Witten
- Department of Genetic Epidemiology, Institute of Human Genetics, University of Münster, Germany
| | - Arndt Telschow
- Institute for Evolution and Biodiversity, University of Münster, Germany
| | | |
Collapse
|
8
|
Donnelly R, White A, Boots M. Host lifespan and the evolution of resistance to multiple parasites. J Evol Biol 2017; 30:561-570. [PMID: 27983771 DOI: 10.1111/jeb.13025] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Revised: 11/07/2016] [Accepted: 12/07/2016] [Indexed: 12/29/2022]
Abstract
Hosts are typically challenged by multiple parasites, but to date theory on the evolution of resistance has mainly focused on single infections. We develop a series of models that examine the impact of multiple parasites on the evolution of resistance under the assumption that parasites coexist at the host population scale as a consequence of superinfection. In this way, we are able to explicitly examine the impact of ecological dynamics on the evolutionary outcome. We use our models to address a key question of how host lifespan affects investment in resistance to multiple parasites. We show that investment in costly resistance depends on the specificity of the immune response and on whether or not the focal parasite leads to more acute infection than the co-circulating parasite. A key finding is that investment in resistance always increases as the immune response becomes more general independently of whether it is the focal or the co-circulating parasite that exploits the host most aggressively. Long-lived hosts always invest more than short-lived hosts in both general resistance and resistance that is specific to relatively acute focal parasites. However, for specific resistance to parasites that are less acute than co-circulating parasites it is the short-lived hosts that are predicted to invest most. We show that these results apply whatever the mode of defence, that is whether it is through avoidance or through increased recovery, with or without acquired immunity, or through acquired immunity itself. As a whole, our results emphasize the importance of considering multiple parasites in determining optimal immune investment in eco-evolutionary systems.
Collapse
Affiliation(s)
- R Donnelly
- Department of Mathematics, Heriot-Watt University, Edinburgh, UK
| | - A White
- Department of Mathematics, Heriot-Watt University, Edinburgh, UK
| | - M Boots
- Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter, UK.,Department of Integrative Biology, University of California, Berkeley, CA, USA
| |
Collapse
|
9
|
Langeloh L, Behrmann-Godel J, Seppälä O. Natural selection on immune defense: A field experiment. Evolution 2017; 71:227-237. [PMID: 27925174 DOI: 10.1111/evo.13148] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Revised: 10/26/2016] [Accepted: 11/15/2016] [Indexed: 12/18/2022]
Abstract
Predicting the evolution of phenotypic traits requires an understanding of natural selection on them. Despite its indispensability in the fight against parasites, selection on host immune defense has remained understudied. Theory predicts immune traits to be under stabilizing selection due to associated trade-offs with other fitness-related traits. Empirical studies, however, report mainly positive directional selection. This discrepancy could be caused by low phenotypic variation in the examined individuals and/or variation in host resource level that confounds trade-offs in empirical studies. In a field experiment where we maintained Lymnaea stagnalis snails individually in cages in a lake, we investigated phenotypic selection on two immune defense traits, phenoloxidase (PO)-like activity and antibacterial activity, in hemolymph. We used a diverse laboratory population and manipulated snail resource level by limiting their food supply. For six weeks, we followed immune activity, growth, and two fitness components, survival and fecundity of snails. We found that PO-like activity and growth were under stabilizing selection, while antibacterial activity was under positive directional selection. Selection on immune traits was mainly driven by variation in survival. The form of selection on immune defense apparently depends on the particular trait, possibly due to its importance for countering the present parasite community.
Collapse
Affiliation(s)
- Laura Langeloh
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, 8600, Dübendorf, Switzerland.,Institute of Integrative Biology, ETH Zürich, 8092, Zürich, Switzerland
| | | | - Otto Seppälä
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, 8600, Dübendorf, Switzerland.,Institute of Integrative Biology, ETH Zürich, 8092, Zürich, Switzerland
| |
Collapse
|
10
|
Sebastiano M, Eens M, Angelier F, Pineau K, Chastel O, Costantini D. Corticosterone, inflammation, immune status and telomere length in frigatebird nestlings facing a severe herpesvirus infection. CONSERVATION PHYSIOLOGY 2017; 5:cow073. [PMID: 28070333 PMCID: PMC5214968 DOI: 10.1093/conphys/cow073] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Revised: 11/29/2016] [Accepted: 12/09/2016] [Indexed: 05/16/2023]
Abstract
Herpesvirus outbreaks are common in natural animal populations, but little is known about factors that favour the infection and its consequences for the organism. In this study, we examined the pathophysiological consequences of a disease probably attributable to herpesvirus infection for several markers of immune function, corticosterone, telomere length and inflammation. In addition, we assessed whether any markers used in this study might be associated with the occurrence of visible clinical signs of the disease and its impact on short-term survival perspectives. To address our questions, in spring 2015, we collected blood samples from nestlings of the magnificent frigatebird (Fregata magnificens) that were free of any clinical signs or showed visible signs of the disease. We found that the plasma concentration of haptoglobin was strongly associated with the infection status and could predict probabilities of survival. We also found that nestlings with clinical signs had lower baseline corticosterone concentrations and similar telomere length compared with healthy nestlings, whereas we did not find any association of the infection status with innate immune defenses or with nitric oxide concentration. Overall, our results suggest that the plasma concentration of haptoglobin might be a valuable tool to assess survival probabilities of frigatebird nestlings facing a herpesvirus outbreak.
Collapse
Affiliation(s)
- Manrico Sebastiano
- Behavioural Ecology and Ecophysiology group, Department of Biology, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium
- Corresponding author:Behavioural Ecology and Ecophysiology group, Department of Biology, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium. Tel: +32484566385.
| | - Marcel Eens
- Behavioural Ecology and Ecophysiology group, Department of Biology, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium
| | - Frederic Angelier
- Centre d'Etudes Biologiques de Chizé (CEBC), UMR7372 – CNRS/Université La Rochelle, F-79360, France
| | - Kévin Pineau
- Groupe d'Etude et de Protection des Oiseaux en Guyane (GEPOG), 15 Avenue Pasteur 97300 Cayenne, France
| | - Olivier Chastel
- Centre d'Etudes Biologiques de Chizé (CEBC), UMR7372 – CNRS/Université La Rochelle, F-79360, France
| | - David Costantini
- Behavioural Ecology and Ecophysiology group, Department of Biology, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium
- Leibniz Institute for Zoo and Wildlife Research, Alfred-Kowalke-Straße 17, 10315 Berlin, Germany
- UMR 7221, Muséum National d'Histoire Naturelle, 7 rue Cuvier, 75231 Paris cedex 05, France
| |
Collapse
|
11
|
Stephenson JF, van Oosterhout C, Cable J. Pace of life, predators and parasites: predator-induced life-history evolution in Trinidadian guppies predicts decrease in parasite tolerance. Biol Lett 2016; 11:rsbl.2015.0806. [PMID: 26538541 DOI: 10.1098/rsbl.2015.0806] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
A common evolutionary response to predation pressure is increased investment in reproduction, ultimately resulting in a fast life history. Theory and comparative studies suggest that short-lived organisms invest less in defence against parasites than those that are longer lived (the pace of life hypothesis). Combining these tenets of evolutionary theory leads to the specific, untested prediction that within species, populations experiencing higher predation pressure invest less in defence against parasites. The Trinidadian guppy, Poecilia reticulata, presents an excellent opportunity to test this prediction: guppy populations in lower courses of rivers experience higher predation pressure, and as a consequence have evolved faster life histories, than those in upper courses. Data from a large-scale field survey showed that fish infected with Gyrodactylus parasites were of a lower body condition (quantified using the scaled mass index) than uninfected fish, but only in lower course populations. Although the evidence we present is correlational, it suggests that upper course guppies sustain lower fitness costs of infection, i.e. are more tolerant, than lower course guppies. The data are therefore consistent with the pace of life hypothesis of parasite defence allocation, and suggest that life-history traits mediate the indirect effect of predators on the parasites of their prey.
Collapse
Affiliation(s)
| | - C van Oosterhout
- School of Environmental Sciences, University of East Anglia, Norwich Research Park, Norwich, UK
| | - J Cable
- School of Biosciences, Cardiff University, Cardiff, UK
| |
Collapse
|
12
|
Donnelly R, White A, Boots M. The epidemiological feedbacks critical to the evolution of host immunity. J Evol Biol 2015; 28:2042-53. [PMID: 26285917 DOI: 10.1111/jeb.12719] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2015] [Revised: 07/06/2015] [Accepted: 08/06/2015] [Indexed: 11/28/2022]
Abstract
We examine in detail how epidemiological feedbacks combine with costs and benefits to determine the evolution of resistance by systematically analysing continuously stable strategies (CSS) for different host-parasite frameworks. The mode of resistance (innate versus acquired), the nature of the host (i.e. life-history and immunological memory) and the nature of the disease (effects on fertility or mortality) all impact on the feedbacks that are critical to the evolution of resistance. By identifying relationships between CSS investment and the underlying epidemiological feedback for each mode of resistance in each framework, we distil complex feedbacks into simple combinations of selection pressures. When the parasite does not affect fertility, CSS investment reflects only the benefit of resistance and we explain why this is markedly different for innate and acquired resistance. If infection has no effect on host fertility, CSS investment in acquired immunity increases with the square of disease prevalence. While in contrast for evolving innate resistance, CSS investment is greatest at intermediate prevalence. When disease impacts fertility, only a fraction of the host population reproduce, and this introduces new ecological feedbacks to both the cost of resistance and the damage from infection. The multiple feedbacks in this case lead to the alternative result that the higher the abundance of infecteds, the higher the investment in innate resistance. A key insight is that maximal investment occurs at intermediate lifespans in a range of different host-parasite interactions, but for disparate reasons which can only be understood by a detailed analysis of the feedbacks. We discuss the extension of our approach to structured host populations and parasite community dynamics.
Collapse
Affiliation(s)
- R Donnelly
- Department of Mathematics and the Maxwell Institute for Mathematical Sciences, Heriot-Watt University, Edinburgh, UK
| | - A White
- Department of Mathematics and the Maxwell Institute for Mathematical Sciences, Heriot-Watt University, Edinburgh, UK
| | - M Boots
- College of Life and Environmental Sciences, University of Exeter Cornwall Campus, Penryn, UK
| |
Collapse
|
13
|
Kada S, Lion S. Superinfection and the coevolution of parasite virulence and host recovery. J Evol Biol 2015; 28:2285-99. [PMID: 26353032 DOI: 10.1111/jeb.12753] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Revised: 07/16/2015] [Accepted: 07/18/2015] [Indexed: 12/25/2022]
Abstract
Parasite strategies of host exploitation may be affected by host defence strategies and multiple infections. In particular, within-host competition between multiple parasite strains has been shown to select for higher virulence. However, little is known on how multiple infections could affect the coevolution between host recovery and parasite virulence. Here, we extend a coevolutionary model introduced by van Baalen (Proc. R. Soc. B, 265, 1998, 317) to account for superinfection. When the susceptibility to superinfection is low, we recover van Baalen's results and show that there are two potential evolutionary endpoints: one with avirulent parasites and poorly defended hosts, and another one with high virulence and high recovery. However, when the susceptibility to superinfection is above a threshold, the only possible evolutionary outcome is one with high virulence and high investment into defence. We also show that within-host competition may select for lower host recovery, as a consequence of selection for more virulent strains. We discuss how different parasite and host strategies (superinfection facilitation, competitive exclusion) as well as demographic and environmental parameters, such as host fecundity or various costs of defence, may affect the interplay between multiple infections and host-parasite coevolution. Our model shows the interplay between coevolutionary dynamics and multiple infections may be affected by crucial mechanistic or ecological details.
Collapse
Affiliation(s)
- S Kada
- Centre d'Écologie Fonctionnelle et Évolutive - UMR 5175, CNRS - Université de Montpellier - Université Paul-Valéry Montpellier - EPHE, Montpellier Cedex 5, France
| | - S Lion
- Centre d'Écologie Fonctionnelle et Évolutive - UMR 5175, CNRS - Université de Montpellier - Université Paul-Valéry Montpellier - EPHE, Montpellier Cedex 5, France
| |
Collapse
|
14
|
Affiliation(s)
- J E Bradley
- School of Life Sciences, University of Nottingham, University Park, Nottingham, Nottingham, UK
| |
Collapse
|
15
|
Seppälä O. Natural selection on quantitative immune defence traits: a comparison between theory and data. J Evol Biol 2014; 28:1-9. [PMID: 25400248 DOI: 10.1111/jeb.12528] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Revised: 10/07/2014] [Accepted: 10/10/2014] [Indexed: 12/21/2022]
Abstract
Parasites present a threat for free-living species and affect several ecological and evolutionary processes. Immune defence is the main physiological barrier against infections, and understanding its evolution is central for predicting disease dynamics. I review theoretical predictions and empirical data on natural selection on quantitative immune defence traits in the wild. Evolutionary theory predicts immune traits to be under stabilizing selection owing to trade-offs between immune function and life-history traits. Empirical data, however, support mainly positive directional selection, but also show variation in the form of selection among study systems, immune traits and fitness components. I argue that the differences between theory and empirical data may at least partly arise from methodological difficulties in testing stabilizing selection as well as measuring fitness. I also argue that the commonness of positive directional selection and the variation in selection may be caused by several biological factors. First, selection on immune function may show spatial and temporal variation as epidemics are often local/seasonal. Second, factors affecting the range of phenotypic variation in immune traits could alter potential for selection. Third, different parasites may impose different selective pressures depending on their characteristics. Fourth, condition dependence of immune defence can obscure trade-offs related to it, thus possibly modifying observed selection gradients. Fifth, nonimmunological defences could affect the form of selection by reducing the benefits of strong immune function. To comprehensively understand the evolution of immune defence, the role of above factors should be considered in future studies.
Collapse
Affiliation(s)
- O Seppälä
- Department of Aquatic Ecology, EAWAG, Dübendorf, Switzerland; Institute of Integrative Biology, ETH Zürich, Zürich, Switzerland
| |
Collapse
|
16
|
Hily JM, García A, Moreno A, Plaza M, Wilkinson MD, Fereres A, Fraile A, García-Arenal F. The relationship between host lifespan and pathogen reservoir potential: an analysis in the system Arabidopsis thaliana--cucumber mosaic virus. PLoS Pathog 2014; 10:e1004492. [PMID: 25375140 PMCID: PMC4223077 DOI: 10.1371/journal.ppat.1004492] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Accepted: 09/29/2014] [Indexed: 11/18/2022] Open
Abstract
Identification of the determinants of pathogen reservoir potential is central to understand disease emergence. It has been proposed that host lifespan is one such determinant: short-lived hosts will invest less in costly defenses against pathogens, so that they will be more susceptible to infection, more competent as sources of infection and/or will sustain larger vector populations, thus being effective reservoirs for the infection of long-lived hosts. This hypothesis is sustained by analyses of different hosts of multihost pathogens, but not of different genotypes of the same host species. Here we examined this hypothesis by comparing two genotypes of the plant Arabidopsis thaliana that differ largely both in life-span and in tolerance to its natural pathogen Cucumber mosaic virus (CMV). Experiments with the aphid vector Myzus persicae showed that both genotypes were similarly competent as sources for virus transmission, but the short-lived genotype was more susceptible to infection and was able to sustain larger vector populations. To explore how differences in defense against CMV and its vector relate to reservoir potential, we developed a model that was run for a set of experimentally-determined parameters, and for a realistic range of host plant and vector population densities. Model simulations showed that the less efficient defenses of the short-lived genotype resulted in higher reservoir potential, which in heterogeneous host populations may be balanced by the longer infectious period of the long-lived genotype. This balance was modulated by the demography of both host and vector populations, and by the genetic composition of the host population. Thus, within-species genetic diversity for lifespan and defenses against pathogens will result in polymorphisms for pathogen reservoir potential, which will condition within-population infection dynamics. These results are relevant for a better understanding of host-pathogen co-evolution, and of the dynamics of pathogen emergence. Understanding pathogen emergence is a major goal of pathology, because of the high impact of emerging diseases. Pathogens emerge onto a new host from a reservoir, hence the relevance of identifying the determinants of host's reservoir potential. Host lifespan is considered as one such determinant: short-lived hosts will invest less in defenses, being more susceptible to infection, more competent as infection sources and/or will sustain larger vector populations, and thus, are effective reservoirs for long-lived host infection. Evidence for this hypothesis derives from analyses of different hosts of multihost pathogens, and here we examine whether it holds at the within-species level by comparing two genotypes of the plant Arabidopsis thaliana that differ in life-span and in tolerance to its natural pathogen Cucumber mosaic virus. Experiments showed that defenses to the virus and its aphid vector were less efficient in the short-lived genotype that, according to model simulations, was an effective reservoir under a large range of conditions. Reservoir potential, though, was modulated by the demography of host and vector and by the genetic composition of the host population. Thus, within-species genetic diversity for lifespan and pathogen defense will result in differences in reservoir potential, which will condition infection dynamics and host-pathogen co-evolution.
Collapse
Affiliation(s)
- Jean Michel Hily
- Centro de Biotecnología y Genómica de Plantas (UPM-INIA), and E.T.S.I. Agrónomos, Campus de Montegancedo, Universidad Politécnica de Madrid, Madrid, Spain
| | - Adrián García
- Centro de Biotecnología y Genómica de Plantas (UPM-INIA), Campus de Montegancedo, Universidad Politécnica de Madrid, Madrid, Spain
| | - Arancha Moreno
- Instituto de Ciencias Agrarias, Consejo Superior de Investigaciones Científicas (ICA-CSIC), Madrid, Spain
| | - María Plaza
- Instituto de Ciencias Agrarias, Consejo Superior de Investigaciones Científicas (ICA-CSIC), Madrid, Spain
| | - Mark D. Wilkinson
- Centro de Biotecnología y Genómica de Plantas (UPM-INIA), Campus de Montegancedo, Universidad Politécnica de Madrid, Madrid, Spain
| | - Alberto Fereres
- Instituto de Ciencias Agrarias, Consejo Superior de Investigaciones Científicas (ICA-CSIC), Madrid, Spain
| | - Aurora Fraile
- Centro de Biotecnología y Genómica de Plantas (UPM-INIA), and E.T.S.I. Agrónomos, Campus de Montegancedo, Universidad Politécnica de Madrid, Madrid, Spain
| | - Fernando García-Arenal
- Centro de Biotecnología y Genómica de Plantas (UPM-INIA), and E.T.S.I. Agrónomos, Campus de Montegancedo, Universidad Politécnica de Madrid, Madrid, Spain
- * E-mail:
| |
Collapse
|
17
|
Brock PM, Murdock CC, Martin LB. The history of ecoimmunology and its integration with disease ecology. Integr Comp Biol 2014; 54:353-62. [PMID: 24838746 DOI: 10.1093/icb/icu046] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Ecoimmunology is an example of how fruitful integrative approaches to biology can be. Since its emergence, ecoimmunology has sparked constructive debate on a wide range of topics, from the molecular mechanics of immune responses to the role of immunity in shaping the evolution of life histories. To complement the symposium Methods and Mechanisms in Ecoimmunology and commemorate the inception of the Division of Ecoimmunology and Disease Ecology within the Society for Integrative and Comparative Biology, we appraise the origins of ecoimmunology, with a focus on its continuing and valuable integration with disease ecology. Arguably, the greatest contribution of ecoimmunology to wider biology has been the establishment of immunity as an integral part of organismal biology, one that may be regulated to maximize fitness in the context of costs, constraints, and complex interactions. We discuss historical impediments and ongoing progress in ecoimmunology, in particular the thorny issue of what ecoimmunologists should, should not, or cannot measure, and what novel contributions ecoimmunologists have made to the understanding of host-parasite interactions. Finally, we highlight some areas to which ecoimmunology is likely to contribute in the near future.
Collapse
Affiliation(s)
- Patrick M Brock
- *Department of Infectious Disease Epidemiology, Imperial College London, London, UK; Center for Infectious Disease Dynamics, Penn State University, PA, USA; Department of Integrative Biology, University of South Florida, Tampa, FL 33620, USA
| | - Courtney C Murdock
- *Department of Infectious Disease Epidemiology, Imperial College London, London, UK; Center for Infectious Disease Dynamics, Penn State University, PA, USA; Department of Integrative Biology, University of South Florida, Tampa, FL 33620, USA
| | - Lynn B Martin
- *Department of Infectious Disease Epidemiology, Imperial College London, London, UK; Center for Infectious Disease Dynamics, Penn State University, PA, USA; Department of Integrative Biology, University of South Florida, Tampa, FL 33620, USA
| |
Collapse
|
18
|
Best A, Hoyle A. The evolution of costly acquired immune memory. Ecol Evol 2013; 3:2223-32. [PMID: 23919164 PMCID: PMC3728959 DOI: 10.1002/ece3.611] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2013] [Revised: 04/17/2013] [Accepted: 04/24/2013] [Indexed: 11/12/2022] Open
Abstract
A key feature of the vertebrate adaptive immune system is acquired immune memory, whereby hosts launch a faster and heightened response when challenged by previously encountered pathogens, preventing full infection. Here, we use a mathematical model to explore the role of ecological and epidemiological processes in shaping selection for costly acquired immune memory. Applying the framework of adaptive dynamics to the classic SIR (Susceptible-Infected-Recovered) epidemiological model, we focus on the conditions that may lead hosts to evolve high levels of immunity. Linking our work to previous theory, we show how investment in immune memory may be greatest at long or intermediate host lifespans depending on whether immunity is long lasting. High initial costs to gain immunity are also found to be essential for a highly effective immune memory. We also find that high disease infectivity and sterility, but intermediate virulence and immune period, increase selection for immunity. Diversity in host populations through evolutionary branching is found to be possible but only for a limited range of parameter space. Our model suggests that specific ecological and epidemiological conditions have to be met for acquired immune memory to evolve.
Collapse
Affiliation(s)
- Alex Best
- Mathematics and Statistics, University of SheffieldSheffield, S3 7RH, U.K
- Biosciences, University of Exeter, Cornwall CampusPenryn, TR10 9EZ
| | - Andy Hoyle
- Computing Science and Mathematics, University of StirlingStirling, FK9 4LA
| |
Collapse
|
19
|
Brock PM, Hall AJ, Goodman SJ, Cruz M, Acevedo-Whitehouse K. Immune activity, body condition and human-associated environmental impacts in a wild marine mammal. PLoS One 2013; 8:e67132. [PMID: 23840603 PMCID: PMC3695956 DOI: 10.1371/journal.pone.0067132] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2012] [Accepted: 05/19/2013] [Indexed: 11/23/2022] Open
Abstract
Within individuals, immunity may compete with other life history traits for resources, such as energy and protein, and the damage caused by immunopathology can sometimes outweigh the protective benefits that immune responses confer. However, our understanding of the costs of immunity in the wild and how they relate to the myriad energetic demands on free-ranging organisms is limited. The endangered Galapagos sea lion (Zalophus wollebaeki) is threatened simultaneously by disease from domestic animals and rapid changes in food availability driven by unpredictable environmental variation. We made use of this unique ecology to investigate the relationship between changes in immune activity and changes in body condition. We found that during the first three months of life, changes in antibody concentration were negatively correlated with changes in mass per unit length, skinfold thickness and serum albumin concentration, but only in a sea lion colony exposed to anthropogenic environmental impacts. It has previously been shown that changes in antibody concentration during early Galapagos sea lion development were higher in a colony exposed to anthropogenic environmental impacts than in a control colony. This study allows for the possibility that these relatively large changes in antibody concentration are associated with negative impacts on fitness through an effect on body condition. Our findings suggest that energy availability and the degree of plasticity in immune investment may influence disease risk in natural populations synergistically, through a trade-off between investment in immunity and resistance to starvation. The relative benefits of such investments may change quickly and unpredictably, which allows for the possibility that individuals fine-tune their investment strategies in response to changes in environmental conditions. In addition, our results suggest that anthropogenic environmental impacts may impose subtle energetic costs on individuals, which could contribute to population declines, especially in times of energy shortage.
Collapse
Affiliation(s)
- Patrick M. Brock
- Institute of Zoology, Zoological Society of London, Regents Park, London, United Kingdom
- Institute of Integrative and Comparative Biology, University of Leeds, Leeds, United Kingdom
- * E-mail: (PMB); (KAW)
| | - Ailsa J. Hall
- Sea Mammal Research Unit, University of St. Andrews, Fife, United Kingdom
| | - Simon J. Goodman
- Institute of Integrative and Comparative Biology, University of Leeds, Leeds, United Kingdom
| | - Marilyn Cruz
- Galapagos Genetics, Epidemiology and Pathology Laboratory, Galapagos National Park, Puerto Ayora, Ecuador
| | - Karina Acevedo-Whitehouse
- Institute of Zoology, Zoological Society of London, Regents Park, London, United Kingdom
- Unit for Basic and Applied Microbiology, Autonomous University of Queretaro, Queretaro, Mexico
- * E-mail: (PMB); (KAW)
| |
Collapse
|
20
|
Best A, Tidbury H, White A, Boots M. The evolutionary dynamics of within-generation immune priming in invertebrate hosts. J R Soc Interface 2013; 10:20120887. [PMID: 23269850 PMCID: PMC3565738 DOI: 10.1098/rsif.2012.0887] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2012] [Accepted: 12/04/2012] [Indexed: 12/22/2022] Open
Abstract
While invertebrates lack the machinery necessary for 'acquired immunity', there is increasing empirical evidence that exposure to low levels of disease may 'prime' an invertebrate's immune response, increasing its defence to subsequent exposure. Despite this increasing empirical data, there has been little theoretical attention paid to immune priming. Here, we investigate the evolution of immune priming, focusing on the role of the unique feedbacks generated by a newly developed susceptible-primed-infected epidemiological model. Contrasting our results with previous models on the evolution of acquired immunity, we highlight that there are important implications to the evolution of immunity through priming owing to these different epidemiological feedbacks. In particular, we find that in contrast to acquired immunity, priming is strongly selected for at high as well as intermediate pathogen virulence. We also find that priming may be greatest at either intermediate or high host lifespans depending on the severity of disease. Furthermore, hosts faced with more severe pathogens are more likely to evolve diversity in priming. Finally, we show when the evolution of priming leads to the exclusion of the pathogens or hosts experiencing population cycles. Overall the model acts as a baseline for understanding the evolution of priming in host-pathogen systems.
Collapse
Affiliation(s)
- Alex Best
- School of Mathematics and Statistics, University of Sheffield, Sheffield S3 7RH, UK.
| | | | | | | |
Collapse
|
21
|
Vetter MM, Kronholm I, He F, Häweker H, Reymond M, Bergelson J, Robatzek S, de Meaux J. Flagellin perception varies quantitatively in Arabidopsis thaliana and its relatives. Mol Biol Evol 2012; 29:1655-67. [PMID: 22319159 DOI: 10.1093/molbev/mss011] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Much is known about the evolution of plant immunity components directed against specific pathogen strains: They show pervasive functional variation and have the potential to coevolve with pathogen populations. However, plants are effectively protected against most microbes by generalist immunity components that detect conserved pathogen-associated molecular patterns (PAMPs) and control the onset of PAMP-triggered immunity. In Arabidopsis thaliana, the receptor kinase flagellin sensing 2 (FLS2) confers recognition of bacterial flagellin (flg22) and activates a manifold defense response. To decipher the evolution of this system, we performed functional assays across a large set of A. thaliana genotypes and Brassicaceae relatives. We reveal extensive variation in flg22 perception, most of which results from changes in protein abundance. The observed variation correlates with both the severity of elicited defense responses and bacterial proliferation. We analyzed nucleotide variation segregating at FLS2 in A. thaliana and detected a pattern of variation suggestive of the rapid fixation of a novel adaptive allele. However, our study also shows that evolution at the receptor locus alone does not explain the evolution of flagellin perception; instead, components common to pathways downstream of PAMP perception likely contribute to the observed quantitative variation. Within and among close relatives, PAMP perception evolves quantitatively, which contrasts with the changes in recognition typically associated with the evolution of R genes.
Collapse
Affiliation(s)
- M Madlen Vetter
- Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Alcázar R, Reymond M, Schmitz G, de Meaux J. Genetic and evolutionary perspectives on the interplay between plant immunity and development. CURRENT OPINION IN PLANT BIOLOGY 2011; 14:378-84. [PMID: 21561797 DOI: 10.1016/j.pbi.2011.04.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2011] [Revised: 03/23/2011] [Accepted: 04/05/2011] [Indexed: 05/08/2023]
Abstract
There is now ample evidence that plant development, responses to abiotic environments, and immune responses are tightly intertwined in their physiology. Thus optimization of the immune system during evolution will occur in coordination with that of plant development. Two alternative and possibly complementary forces are at play: genetic constraints due to the pleiotropic action of players in both systems, and coevolution, if developmental changes modulate the cost-benefit balance of immunity. A current challenge is to elucidate the ecological forces driving evolution of quantitative variation for defense at molecular level. The analysis of natural co-variation for developmental and immunity traits in Arabidopsis thaliana promises to bring important insights.
Collapse
Affiliation(s)
- Rubén Alcázar
- Department of Plant Breeding and Genetics, Max Planck Institute for Plant Breeding Research, Carl-von-Linné Weg, 10. 50829 Cologne, Germany
| | | | | | | |
Collapse
|
23
|
Labbé P, Vale PF, Little TJ. Successfully resisting a pathogen is rarely costly in Daphnia magna. BMC Evol Biol 2010; 10:355. [PMID: 21083915 PMCID: PMC2998533 DOI: 10.1186/1471-2148-10-355] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2010] [Accepted: 11/17/2010] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND A central hypothesis in the evolutionary ecology of parasitism is that trade-offs exist between resistance to parasites and other fitness components such as fecundity, growth, survival, and predator avoidance, or resistance to other parasites. These trade-offs are called costs of resistance. These costs fall into two broad categories: constitutive costs of resistance, which arise from a negative genetic covariance between immunity and other fitness-related traits, and inducible costs of resistance, which are the physiological costs incurred by hosts when mounting an immune response. We sought to study inducible costs in depth using the crustacean Daphnia magna and its bacterial parasite Pasteuria ramosa. RESULTS We designed specific experiments to study the costs induced by exposure to this parasite, and we re-analysed previously published data in an effort to determine the generality of such costs. However, despite the variety of genetic backgrounds of both hosts and parasites, and the different exposure protocols and environmental conditions used in these experiment, this work showed that costs of exposure can only rarely be detected in the D. magna-P. ramosa system. CONCLUSIONS We discuss possible reasons for this lack of detectable costs, including scenarios where costs of resistance to parasites might not play a major role in the co-evolution of hosts and parasites.
Collapse
Affiliation(s)
- Pierrick Labbé
- University of Edinburgh, Institute of Evolutionary Biology, King's Buildings, Edinburgh, EH9 3JT, UK.
| | | | | |
Collapse
|
24
|
van den Berg F, Gilligan CA, Bailey DJ, van den Bosch F. Periodicity in host availability does not account for evolutionary branching as observed in many plant pathogens: an application to Gaeumannomyces graminis var. tritici. PHYTOPATHOLOGY 2010; 100:1169-1175. [PMID: 20932165 DOI: 10.1094/phyto-10-09-0282] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Periodicity in host availability is common in agricultural systems. Although it is known to have profound effects on plant pathogen abundance, the evolutionary consequences of periodicity for the pathogen population have not previously been analyzed. An epidemiological model incorporating periodic absence of the host crop is combined with the theory of adaptive dynamics to determine whether or not seasonality in host presence plays a role in the occurrence of evolutionary branching, leading to coexisting yet genetically distinct pathogen phenotypes. The study is motivated and illustrated by the specific example of take-all disease of wheat, caused by the pathogen Gaeumannomyces graminis var. tritici, for which two coexisting but genetically distinct types and a trade-off related to seasonality in host presence have been identified. Numerical simulations are used to show that a trade-off between the pathogen transmission rate and the survival of the pathogen between cropping seasons cannot account for the evolutionary branching observed in many pathogens. Model elaborations show that this conclusion holds for a broad range of putative mechanisms. Although the analysis is motivated and illustrated by the specific example of take-all of wheat, the results apply to a broad range of pathogens.
Collapse
Affiliation(s)
- F van den Berg
- Department of Biomathematics and Bioinformatics, Rothamsted Research, Harpenden, Hertfordshire, UK.
| | | | | | | |
Collapse
|
25
|
Abstract
Evolutionary conflicts involving mimicry are found throughout nature. Diverse pathogens produce a range of 'mimics' that resemble host components in both form and function. Such mimics subvert crucial cellular processes, including the cell cycle, apoptosis, cytoskeletal dynamics and immunity. Here, we review the mounting evidence that mimicry of host processes is a highly successful strategy for pathogens. Discriminating mimics can be crucial for host survival, and host factors exist that effectively counteract mimics, using strategies that combine rapid evolution and an unexpected degree of flexibility in protein-protein interactions. Even in these instances, mimicry may alter the evolutionary course of fundamental cellular processes in host organisms.
Collapse
|
26
|
Boots M, Best A, Miller MR, White A. The role of ecological feedbacks in the evolution of host defence: what does theory tell us? Philos Trans R Soc Lond B Biol Sci 2009; 364:27-36. [PMID: 18930880 DOI: 10.1098/rstb.2008.0160] [Citation(s) in RCA: 150] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Hosts have evolved a diverse range of defence mechanisms in response to challenge by infectious organisms (parasites and pathogens). Whether defence is through avoidance of infection, control of the growth of the parasite once infected, clearance of the infection, tolerance to the disease caused by infection or innate and/or acquired immunity, it will have important implications for the population ecology (epidemiology) of the host-parasite interaction. As a consequence, it is important to understand the evolutionary dynamics of defence in the light of the ecological feedbacks that are intrinsic to the interaction. Here, we review the theoretical models that examine how these feedbacks influence the nature and extent of the defence that will evolve. We begin by briefly comparing different evolutionary modelling approaches and discuss in detail the modern game theoretical approach (adaptive dynamics) that allows ecological feedbacks to be taken into account. Next, we discuss a number of models of host defence in detail and, in particular, make a distinction between 'resistance' and 'tolerance'. Finally, we discuss coevolutionary models and the potential use of models that include genetic and game theoretical approaches. Our aim is to review theoretical approaches that investigate the evolution of defence and to explain how the type of defence and the costs associated with its acquisition are important in determining the level of defence that evolves.
Collapse
Affiliation(s)
- Michael Boots
- Department of Animal & Plant Sciences, University of Sheffield, Sheffield S10 2TN, UK.
| | | | | | | |
Collapse
|
27
|
McKean KA, Yourth CP, Lazzaro BP, Clark AG. The evolutionary costs of immunological maintenance and deployment. BMC Evol Biol 2008; 8:76. [PMID: 18315877 PMCID: PMC2292698 DOI: 10.1186/1471-2148-8-76] [Citation(s) in RCA: 143] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2008] [Accepted: 03/03/2008] [Indexed: 11/22/2022] Open
Abstract
Background The evolution of disease resistance and immune function may be limited if increased immunocompetence comes at the expense of other fitness-determining traits. Both the maintenance of an immune system and the deployment of an immune response can be costly, and the observed costs may be evaluated as either physiological or evolutionary in origin. Evolutionary costs of immunological maintenance are revealed as negative genetic correlations between immunocompetence and fitness in the absence of infection. Costs of deployment are most often studied as physiological costs associated with immune system induction, however, evolutionary costs of deployment may also be present if genotypes vary in the extent of the physiological cost experienced. Results In this study we analyzed evolutionary and physiological costs of immunity in two environments representing food-limited and food-unlimited conditions. Patterns of genetic variation were estimated in females from 40 'hemiclone families' isolated from a population of D. melanogaster. Phenotypes evaluated included fecundity, weight measures at different time periods and resistance to Providencia rettgeri, a naturally occurring Gram-negative pathogen of D. melanogaster. In the food-limited environment we found a negative genetic correlation between fecundity in the absence of infection and resistance, indicative of an evolutionary cost of maintenance. No such correlation was observed in the food-unlimited environment, and the slopes of these correlations significantly differed, demonstrating a genotype-by-environment interaction for the cost of maintenance. Physiological costs of deployment were also observed, but costs were primarily due to wounding. Deployment costs were slightly exaggerated in the food-limited environment. Evolutionary costs of immunological deployment on fecundity were not observed, and there was only marginally significant genetic variation in the cost expressed by changes in dry weight. Conclusion Our results suggest that the costs of immunity may be an important factor limiting the evolution of resistance in food-limited environments. However, the significant genotype-by-environment interaction for maintenance costs, combined with the observation that deployment costs were partially mitigated in the food-unlimited environment, emphasizes the importance of considering environmental variation when estimating patterns of genetic variance and covariance, and the dubious nature of predicting evolutionary responses to selection from quantitative genetic estimates carried out in a single environment.
Collapse
Affiliation(s)
- Kurt A McKean
- Department of Biological Sciences, SUNY at Albany, Albany NY 12222, USA.
| | | | | | | |
Collapse
|
28
|
Houston AI, McNamara JM, Barta Z, Klasing KC. The effect of energy reserves and food availability on optimal immune defence. Proc Biol Sci 2008; 274:2835-42. [PMID: 17848371 PMCID: PMC2373797 DOI: 10.1098/rspb.2007.0934] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
In order to avoid both starvation and disease, animals must allocate resources between energy reserves and immune defence. We investigate the optimal allocation. We find that animals with low reserves choose to allocate less to defence than animals with higher reserves because when reserves are low it is more important to increase reserves to reduce the risk of starvation in the future. In general, investment in immune defence increases monotonically with energy reserves. An exception is when the animal can reduce its probability of death from disease by reducing its foraging rate. In this case, allocation to immune defence can peak at intermediate reserves. When food changes over time, the optimal response depends on the frequency of changes. If the environment is relatively stable, animals forage most intensively when the food is scarce and invest more in immune defence when the food is abundant than when it is scarce. If the environment changes quickly, animals forage at low intensity when the food is scarce, but at high intensity when the food is abundant. As the rate of environmental change increases, immune defence becomes less dependent on food availability. We show that the strength of selection on reserve-dependent immune defence depends on how foraging intensity and immune defence determine the probability of death from disease.
Collapse
Affiliation(s)
- Alasdair I Houston
- School of Biological Sciences, University of Bristol, Woodland Road, Bristol BS8 1UG, UK.
| | | | | | | |
Collapse
|
29
|
Kuo CH, Corby-Harris V, Promislow DEL. The unavoidable costs and unexpected benefits of parasitism: population and metapopulation models of parasite-mediated competition. J Theor Biol 2007; 250:244-56. [PMID: 18023820 DOI: 10.1016/j.jtbi.2007.10.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2007] [Revised: 09/27/2007] [Accepted: 10/05/2007] [Indexed: 10/22/2022]
Abstract
When faced with limited resources, organisms have to determine how to allocate their resources to maximize fitness. In the presence of parasites, hosts may be selected for their ability to balance between the two competing needs of reproduction and immunity. These decisions can have consequences not only for host fitness, but also for the ability of parasites to persist within the population, and for the competitive dynamics between different host species. We develop two mathematical models to investigate how resource allocation strategies evolve at both population and metapopulation levels. The evolutionarily stable strategy (ESS) at the population level is a balanced investment between reproduction and immunity that maintains parasites, even though the host has the capacity to eliminate parasites. The host exhibiting the ESS can always invade other host populations through parasite-mediated competition, effectively using the parasites as biological weapons. At the metapopulation level, the dominant strategy is sometimes different from the population-level ESS, and depends on the ratio of local extinction rate to host colonization rate. This study may help to explain why parasites are as common as they are, and can serve as a modeling framework for investigating parasite-mediated ecological invasions. Furthermore, this work highlights the possibility that the 'introduction of enemies' process may facilitate species invasion.
Collapse
Affiliation(s)
- Chih-Horng Kuo
- Department of Genetics, University of Georgia, Athens, GA 30602, USA.
| | | | | |
Collapse
|
30
|
Houston AI, McNamara JM, Steer MD. Do we expect natural selection to produce rational behaviour? Philos Trans R Soc Lond B Biol Sci 2007; 362:1531-43. [PMID: 17428782 PMCID: PMC2440770 DOI: 10.1098/rstb.2007.2051] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
We expect that natural selection should result in behavioural rules which perform well; however, animals (including humans) sometimes make bad decisions. Researchers account for these with a variety of explanations; we concentrate on two of them. One explanation is that the outcome is a side effect; what matters is how a rule performs (in terms of reproductive success). Several rules may perform well in the environment in which they have evolved, but their performance may differ in a 'new' environment (e.g. the laboratory). Some rules may perform very badly in this environment. We use the debate about whether animals follow the matching law rather than maximizing their gains as an illustration. Another possibility is that we were wrong about what is optimal. Here, the general idea is that the setting in which optimal decisions are investigated is too simple and may not include elements that add extra degrees of freedom to the situation.
Collapse
Affiliation(s)
- Alasdair I Houston
- Centre for Behavioural Biology, University of Bristol, Bristol BS8 1RJ, UK.
| | | | | |
Collapse
|
31
|
Affiliation(s)
- Hanna Kokko
- Laboratory of Ecological and Evolutionary Dynamics, Department of Biological and Environmental Science, University of Helsinki, FIN‐00014 Helsinki, Finland E‐mail:
| | - Indrek Ots
- Institute of Zoology and Hydrobiology, Tartu University, Estonia E‐mail:
| |
Collapse
|
32
|
|
33
|
Stoehr AM, Kokko H. Sexual dimorphism in immunocompetence: what does life-history theory predict? Behav Ecol 2006. [DOI: 10.1093/beheco/ark018] [Citation(s) in RCA: 121] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
34
|
Positive correlation between helpers at nest and nestling immune response in a cooperative breeding bird. Behav Ecol Sociobiol 2006. [DOI: 10.1007/s00265-006-0179-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
35
|
|
36
|
Graham AL, Allen JE, Read AF. Evolutionary Causes and Consequences of Immunopathology. ANNUAL REVIEW OF ECOLOGY EVOLUTION AND SYSTEMATICS 2005. [DOI: 10.1146/annurev.ecolsys.36.102003.152622] [Citation(s) in RCA: 291] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Andrea L. Graham
- Institutes of Evolution, Immunology & Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh, Scotland EH9 3JT; , ,
| | - Judith E. Allen
- Institutes of Evolution, Immunology & Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh, Scotland EH9 3JT; , ,
| | - Andrew F. Read
- Institutes of Evolution, Immunology & Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh, Scotland EH9 3JT; , ,
| |
Collapse
|
37
|
van Boven M, Mooi FR, Schellekens JFP, de Melker HE, Kretzschmar M. Pathogen adaptation under imperfect vaccination: implications for pertussis. Proc Biol Sci 2005; 272:1617-24. [PMID: 16048777 PMCID: PMC1559845 DOI: 10.1098/rspb.2005.3108] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Mass vaccination campaigns have drastically reduced the burden of infectious diseases. Unfortunately, in recent years several infectious diseases have re-emerged. Pertussis poses a well-known example. Inspired by pertussis, we study, by means of an epidemic model, the population and evolutionary dynamics of a pathogen population under the pressure of vaccination. A distinction is made between infection in immunologically naive individuals (primary infection) and infection in individuals whose immune system has been primed by vaccination or infection (secondary infection). The results show that (i) vaccination with an imperfect vaccine may not succeed in reducing the infection pressure if the transmissibility of secondary infections is higher than that of primary infections; (ii) pathogen strains that are able to evade the immunity induced by vaccination can only spread if escape mutants incur no or only a modest fitness cost and (iii) the direction of evolution depends crucially on the distribution of the different types of susceptibles in the population. We discuss the implications of these results for the design and use of vaccines that provide temporary immunity.
Collapse
Affiliation(s)
- Michiel van Boven
- Animal Sciences Group, Wageningen University and Research Centre, PO Box 65, 8200 AB Lelystad, The Netherlands.
| | | | | | | | | |
Collapse
|
38
|
Abstract
Evolutionary ecology seeks to understand the selective reasons for the design features of the immune defense, especially with respect to parasitism. The molecular processes thereby set limitations, such as the failure to recognize an antigen, response specificity, the cost of defense, and the risk of autoimmunity. Sex, resource availability, and interference by parasites also affect a response. In turn, the defense repertoire consists of different kinds of immune responses--constitutive or induced, general or specific--and involves memory and lasting protection. Because the situation often defies intuition, mathematical analysis is typically required to identify the costs and benefits of variation in design, but such studies are few. In all, insect immune defense is much more similar to that of vertebrates than previously thought. In addition, the field is now rapidly becoming revolutionized by molecular data and methods that allow unprecedented access to study evolution in action.
Collapse
Affiliation(s)
- Paul Schmid-Hempel
- Ecology and Evolution, ETH Zürich, ETH-Zentrum NW, CH-8092 Zürich, Switzerland.
| |
Collapse
|