1
|
Li M, Li Y, Wen T, Zhou H, Xie W. Clinical features of a novel compound heterozygous genotype of the BBS2 gene: a case report. J Int Med Res 2024; 52:3000605241274239. [PMID: 39175229 PMCID: PMC11344895 DOI: 10.1177/03000605241274239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 07/18/2024] [Indexed: 08/24/2024] Open
Abstract
Bardet-Biedl syndrome is a rare autosomal recessive genetic disorder with heterogenous clinical manifestations. The present study reports the clinical features of a novel compound heterozygous genotype of the BBS2 gene in a 14-year-old girl and her 6-year-old sister who had complaints of early-onset low vision. Fundus images revealed retinitis pigmentosa-like changes, and full-field electroretinograms showed no amplitude for the rod or cone response in both patients. Interestingly, nystagmus was observed in the older sister. On physical examination, the sisters had moderate obesity without polydactyly, hypogonadism, or intellectual disability. Exome sequencing revealed a novel compound heterozygous genotype of BBS2 in the sisters, namely the paternally inherited NM_031885.5:c.534 + 1G > T variant and the maternally inherited NM_031885.5:c.700C > T (p.Arg234Ter) variant. Both variants were classified as pathogenic according to the American College of Medical Genetics and Genomics guidelines. This study provides useful information on the genotype-phenotype relationships of the BBS2 gene for genetic counseling and diagnosis.
Collapse
Affiliation(s)
- Mojiang Li
- Optometry Center, Liuyang Jili Hospital (Liuyang Eye Hospital), Changsha, China
| | - Yingshu Li
- Optometry Center, Liuyang Jili Hospital (Liuyang Eye Hospital), Changsha, China
| | - Ting Wen
- Optometry Center, Liuyang Jili Hospital (Liuyang Eye Hospital), Changsha, China
| | - Haiyan Zhou
- National Health Commission Key Laboratory of Birth Defects for Research and Prevention, Hunan Provincial Maternal and Child Health Care Hospital, Changsha, China
| | - Wanqin Xie
- National Health Commission Key Laboratory of Birth Defects for Research and Prevention, Hunan Provincial Maternal and Child Health Care Hospital, Changsha, China
| |
Collapse
|
2
|
Tian X, Zhao H, Zhou J. Organization, functions, and mechanisms of the BBSome in development, ciliopathies, and beyond. eLife 2023; 12:e87623. [PMID: 37466224 DOI: 10.7554/elife.87623] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 07/06/2023] [Indexed: 07/20/2023] Open
Abstract
The BBSome is an octameric protein complex that regulates ciliary transport and signaling. Mutations in BBSome subunits are closely associated with ciliary defects and lead to ciliopathies, notably Bardet-Biedl syndrome. Over the past few years, there has been significant progress in elucidating the molecular organization and functions of the BBSome complex. An improved understanding of BBSome-mediated biological events and molecular mechanisms is expected to help advance the development of diagnostic and therapeutic approaches for BBSome-related diseases. Here, we review the current literature on the structural assembly, transport regulation, and molecular functions of the BBSome, emphasizing its roles in cilium-related processes. We also provide perspectives on the pathological role of the BBSome in ciliopathies as well as how these can be exploited for therapeutic benefit.
Collapse
Affiliation(s)
- Xiaoyu Tian
- Center for Cell Structure and Function, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, College of Life Sciences, Shandong Normal University, Jinan, China
| | - Huijie Zhao
- Center for Cell Structure and Function, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, College of Life Sciences, Shandong Normal University, Jinan, China
| | - Jun Zhou
- Center for Cell Structure and Function, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, College of Life Sciences, Shandong Normal University, Jinan, China
- State Key Laboratory of Medicinal Chemical Biology, Haihe Laboratory of Cell Ecosystem, College of Life Sciences, Nankai University, Tianjin, China
| |
Collapse
|
3
|
Mancuso CA, Liu R, Krishnan A. PyGenePlexus: a Python package for gene discovery using network-based machine learning. Bioinformatics 2023; 39:7017525. [PMID: 36721325 PMCID: PMC9900208 DOI: 10.1093/bioinformatics/btad064] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 11/29/2022] [Accepted: 01/30/2023] [Indexed: 02/02/2023] Open
Abstract
SUMMARY PyGenePlexus is a Python package that enables a user to gain insight into any gene set of interest through a molecular interaction network informed supervised machine learning model. PyGenePlexus provides predictions of how associated every gene in the network is to the input gene set, offers interpretability by comparing the model trained on the input gene set to models trained on thousands of known gene sets, and returns the network connectivity of the top predicted genes. AVAILABILITY AND IMPLEMENTATION https://pypi.org/project/geneplexus/ and https://github.com/krishnanlab/PyGenePlexus. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Christopher A Mancuso
- Department of Computational Mathematics, Science and Engineering, Michigan State University, East Lansing, MI 48824, USA.,Department of Biostatistics and Informatics, Colorado School of Public Health, University of Colorado-Denver Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Renming Liu
- Department of Computational Mathematics, Science and Engineering, Michigan State University, East Lansing, MI 48824, USA
| | - Arjun Krishnan
- Department of Computational Mathematics, Science and Engineering, Michigan State University, East Lansing, MI 48824, USA.,Department of Biomedical Informatics, University of Colorado-Denver Anschutz Medical Campus, Aurora, CO 80045, USA
| |
Collapse
|
4
|
Arora E, Fuks A, Meyer J, Chervenak J. Prenatal diagnosis of Bardet Biedl Syndrome: A case report. Radiol Case Rep 2023; 18:326-330. [DOI: 10.1016/j.radcr.2022.10.040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 10/10/2022] [Accepted: 10/13/2022] [Indexed: 11/16/2022] Open
|
5
|
Valentini G, Saia M, Farello G, Salpietro V, Mancuso A, Ceravolo I, Colucci PV, Torre M, Iapadre G, Rosa GD, Cucinotta F. Meckel Syndrome: A Clinical and Molecular Overview. JOURNAL OF PEDIATRIC NEUROLOGY 2022. [DOI: 10.1055/s-0042-1759531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
AbstractMeckel syndrome (MKS) is a lethal, autosomal recessive, congenital syndrome caused by mutations in genes that encode proteins structurally or functionally related to the primary cilium. MKS is a malformative syndrome, most commonly characterized by occipital meningoencephalocele, polycystic kidney disease, liver fibrosis, and post- and (occasionally) preaxial polydactyly. To date, more than 10 genes are known to constitute the molecular background of MKS, displaying genetic heterogeneity. Individuals with MKS may resemble some phenotypic features of Joubert syndrome and related disorders, thus making diagnostic setting quite challenging. Here, we systematically reviewed the main clinical and genetic characteristics of MKS and its role among ciliopathies.
Collapse
Affiliation(s)
- Giulia Valentini
- Unit of Child Neurology and Psychiatry, Department of Human Pathology of the Adult and Developmental Age “G. Barresi,” University Hospital of Messina, Messina, Italy
| | - Maria Saia
- Unit of Child Neurology and Psychiatry, Department of Human Pathology of the Adult and Developmental Age “G. Barresi,” University Hospital of Messina, Messina, Italy
| | - Giovanni Farello
- Pediatric Clinic–Department of Life, Health and Environmental Sciences–Piazzale Salvatore Tommasi 1, Coppito (AQ), Italy
| | | | - Alessio Mancuso
- Unit of Pediatric Emergency, Department of Human Pathology of the Adult and Developmental Age “Gaetano Barresi,” University of Messina, Messina, Italy
| | - Ida Ceravolo
- Department of Clinical and Experimental Medicine, University of Messina, Via C. Valeria, Messina, Italy
| | - Pia V. Colucci
- Unit of Child Neurology and Psychiatry, Department of Human Pathology of the Adult and Developmental Age “G. Barresi,” University Hospital of Messina, Messina, Italy
| | - Manuela Torre
- Unit of Child Neurology and Psychiatry, Department of Human Pathology of the Adult and Developmental Age “G. Barresi,” University Hospital of Messina, Messina, Italy
| | - Giulia Iapadre
- Department of Pediatrics, University of L'Aquila, L'Aquila, Italy
| | - Gabriella Di Rosa
- Unit of Child Neurology and Psychiatry, Department of Human Pathology of the Adult and Developmental Age “G. Barresi,” University Hospital of Messina, Messina, Italy
| | | |
Collapse
|
6
|
Malinda RR. Clinical management approaches in Bardet-Biedl syndrome. Eur J Hum Genet 2022; 30:1203-1204. [PMID: 36319749 PMCID: PMC9626476 DOI: 10.1038/s41431-022-01187-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 08/22/2022] [Accepted: 08/30/2022] [Indexed: 02/04/2023] Open
|
7
|
Nasser F, Kohl S, Kurtenbach A, Kempf M, Biskup S, Zuleger T, Haack TB, Weisschuh N, Stingl K, Zrenner E. Ophthalmic and Genetic Features of Bardet Biedl Syndrome in a German Cohort. Genes (Basel) 2022; 13:genes13071218. [PMID: 35886001 PMCID: PMC9322102 DOI: 10.3390/genes13071218] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 06/29/2022] [Accepted: 07/02/2022] [Indexed: 12/04/2022] Open
Abstract
The aim of this study was to characterize the ophthalmic and genetic features of Bardet Biedl (BBS) syndrome in a cohort of patients from a German specialized ophthalmic care center. Sixty-one patients, aged 5−56 years, underwent a detailed ophthalmic examination including visual acuity and color vision testing, electroretinography (ERG), visually evoked potential recording (VEP), fundus examination, and spectral domain optical coherence tomography (SD-OCT). Adaptive optics flood illumination ophthalmoscopy was performed in five patients. All patients had received diagnostic genetic testing and were selected upon the presence of apparent biallelic variants in known BBS-associated genes. All patients had retinal dystrophy with morphologic changes of the retina. Visual acuity decreased from ~0.2 (decimal) at age 5 to blindness 0 at 50 years. Visual field examination could be performed in only half of the patients and showed a concentric constriction with remaining islands of function in the periphery. ERG recordings were mostly extinguished whereas VEP recordings were reduced in about half of the patients. The cohort of patients showed 51 different likely biallelic mutations—of which 11 are novel—in 12 different BBS-associated genes. The most common associated genes were BBS10 (32.8%) and BBS1 (24.6%), and by far the most commonly observed variants were BBS10 c.271dup;p.C91Lfs*5 (21 alleles) and BBS1 c.1169T>G;p.M390R (18 alleles). The phenotype associated with the different BBS-associated genes and genotypes in our cohort is heterogeneous, with diverse features without genotype−phenotype correlation. The results confirm and expand our knowledge of this rare disease.
Collapse
Affiliation(s)
- Fadi Nasser
- Centre for Ophthalmology, University of Tübingen, 72076 Tuebingen, Germany; (S.K.); (A.K.); (M.K.); (N.W.); (K.S.); (E.Z.)
- Department of Ophthalmology, University of Leipzig, 04103 Leipzig, Germany
- Correspondence:
| | - Susanne Kohl
- Centre for Ophthalmology, University of Tübingen, 72076 Tuebingen, Germany; (S.K.); (A.K.); (M.K.); (N.W.); (K.S.); (E.Z.)
| | - Anne Kurtenbach
- Centre for Ophthalmology, University of Tübingen, 72076 Tuebingen, Germany; (S.K.); (A.K.); (M.K.); (N.W.); (K.S.); (E.Z.)
| | - Melanie Kempf
- Centre for Ophthalmology, University of Tübingen, 72076 Tuebingen, Germany; (S.K.); (A.K.); (M.K.); (N.W.); (K.S.); (E.Z.)
- Center for Rare Eye Diseases, University of Tübingen, 72076 Tuebingen, Germany
| | | | - Theresia Zuleger
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, 72076 Tuebingen, Germany; (T.Z.); (T.B.H.)
| | - Tobias B. Haack
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, 72076 Tuebingen, Germany; (T.Z.); (T.B.H.)
| | - Nicole Weisschuh
- Centre for Ophthalmology, University of Tübingen, 72076 Tuebingen, Germany; (S.K.); (A.K.); (M.K.); (N.W.); (K.S.); (E.Z.)
| | - Katarina Stingl
- Centre for Ophthalmology, University of Tübingen, 72076 Tuebingen, Germany; (S.K.); (A.K.); (M.K.); (N.W.); (K.S.); (E.Z.)
- Center for Rare Eye Diseases, University of Tübingen, 72076 Tuebingen, Germany
| | - Eberhart Zrenner
- Centre for Ophthalmology, University of Tübingen, 72076 Tuebingen, Germany; (S.K.); (A.K.); (M.K.); (N.W.); (K.S.); (E.Z.)
- Werner Reichardt Centre for Integrative Neuroscience (CIN), University of Tübingen, 72076 Tuebingen, Germany
| |
Collapse
|
8
|
Hantel F, Liu H, Fechtner L, Neuhaus H, Ding J, Arlt D, Walentek P, Villavicencio-Lorini P, Gerhardt C, Hollemann T, Pfirrmann T. Cilia-localized GID/CTLH ubiquitin ligase complex regulates protein homeostasis of sonic hedgehog signaling components. J Cell Sci 2022; 135:jcs259209. [PMID: 35543157 PMCID: PMC9264362 DOI: 10.1242/jcs.259209] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 03/24/2022] [Indexed: 01/18/2023] Open
Abstract
Cilia are evolutionarily conserved organelles that orchestrate a variety of signal transduction pathways, such as sonic hedgehog (SHH) signaling, during embryonic development. Our recent studies have shown that loss of GID ubiquitin ligase function results in aberrant AMP-activated protein kinase (AMPK) activation and elongated primary cilia, which suggests a functional connection to cilia. Here, we reveal that the GID complex is an integral part of the cilium required for primary cilia-dependent signal transduction and the maintenance of ciliary protein homeostasis. We show that GID complex subunits localize to cilia in both Xenopus laevis and NIH3T3 cells. Furthermore, we report SHH signaling pathway defects that are independent of AMPK and mechanistic target of rapamycin (MTOR) activation. Despite correct localization of SHH signaling components at the primary cilium and functional GLI3 processing, we find a prominent reduction of some SHH signaling components in the cilium and a significant decrease in SHH target gene expression. Since our data reveal a critical function of the GID complex at the primary cilium, and because suppression of GID function in X. laevis results in ciliopathy-like phenotypes, we suggest that GID subunits are candidate genes for human ciliopathies that coincide with defects in SHH signal transduction.
Collapse
Affiliation(s)
- Friederike Hantel
- Institute of Physiological Chemistry, Martin-Luther University Halle-Wittenberg, 06114 Halle, Germany
| | - Huaize Liu
- Institute of Physiological Chemistry, Martin-Luther University Halle-Wittenberg, 06114 Halle, Germany
| | - Lisa Fechtner
- Institute of Physiological Chemistry, Martin-Luther University Halle-Wittenberg, 06114 Halle, Germany
| | - Herbert Neuhaus
- Institute of Physiological Chemistry, Martin-Luther University Halle-Wittenberg, 06114 Halle, Germany
| | - Jie Ding
- Institute of Physiological Chemistry, Martin-Luther University Halle-Wittenberg, 06114 Halle, Germany
| | - Danilo Arlt
- Institute of Physiological Chemistry, Martin-Luther University Halle-Wittenberg, 06114 Halle, Germany
| | - Peter Walentek
- Renal Division, Department of Medicine, University Hospital Freiburg, Freiburg University Faculty of Medicine, 79106 Freiburg, Germany
- CIBSS – Centre for Integrative Biological Signalling Studies, University of Freiburg, 79104 Freiburg, Germany
| | | | - Christoph Gerhardt
- Department of Medicine, Health and Medical University, 14471 Potsdam, Germany
| | - Thomas Hollemann
- Institute of Physiological Chemistry, Martin-Luther University Halle-Wittenberg, 06114 Halle, Germany
| | - Thorsten Pfirrmann
- Institute of Physiological Chemistry, Martin-Luther University Halle-Wittenberg, 06114 Halle, Germany
- Department of Medicine, Health and Medical University, 14471 Potsdam, Germany
| |
Collapse
|
9
|
Sloboda N, Lambert L, Ciorna V, Bruel AL, Tran Mau-Them F, Gomola V, Lemelle JL, Klein O, Camoin-Schweitzer MC, Magnavacca M, Legagneur C, Ezsto ML, Bonnet C, Philippe C, Leheup B. Atypical phenotype of a patient with Bardet-Biedl syndrome type 4. Mol Genet Genomic Med 2022; 10:e1869. [PMID: 35318824 PMCID: PMC9034675 DOI: 10.1002/mgg3.1869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Revised: 06/16/2021] [Accepted: 12/14/2021] [Indexed: 12/03/2022] Open
Abstract
Background Bardet–Biedl syndrome (BBS) is a multisystemic disorder characterized by rod–cone dystrophy, truncal obesity, postaxial polydactyly, cognitive impairment, male hypogonadotropic hypogonadism, complex female genitourinary malformations, and renal abnormalities. There is a large clinical and also genetic heterogeneity in BBS. Here, we report a patient with polydactyly, hyperechogenic kidneys increased in size with normal corticomedullary differentiation, anal imperforation, and malformation of genitals with presence of a genital tubercle with ventral urethral meatus associated with two unfused lateral genital swelling and absent urethral folds, in the context of 46, XY karyotype. Methods Karyotype and solo exome sequencing were performed to look for a genetic etiology for the features described in our patient. Results We identified a homozygous in‐frame deletion of exons 4 to 6 in the BBS4 gene (NM‐033028 (BBS4‐i001): c.[(157‐?)_(405 +?)del] p.(Ala53‐Trp135del), which is classified as pathogenic variant. This analysis allowed the molecular diagnosis of BBS type 4 in this patient. Conclusion Complex genital malformations are only reported in female BBS6 patients yet, and genital abnormalities and anal imperforation are not reported in male BBS4 patients to date. We discuss the possible hypotheses for this phenotype, including the phenotypic overlap between ciliopathies.
Collapse
Affiliation(s)
| | | | | | - Ange-Line Bruel
- Laboratoire de génétique, Innovation en diagnostic génomique des maladies rares UF6254, Plate-forme de Biologie Hospitalo-Universitaire, CHU Dijon, Dijon, France
| | - Frédéric Tran Mau-Them
- Laboratoire de génétique, Innovation en diagnostic génomique des maladies rares UF6254, Plate-forme de Biologie Hospitalo-Universitaire, CHU Dijon, Dijon, France.,INSERM U1231, LNC UMR1231 GAD, Université de Bourgogne, Dijon, France
| | - Vladimir Gomola
- Service de Chirurgie Viscérale Infantile, CHRU Nancy, Nancy, France
| | | | - Olivier Klein
- Service de Neurochirurgie Pédiatrique, CHRU Nancy, Nancy, France
| | | | - Marie Magnavacca
- Service de néphrologie pédiatrique, dialyse, transplantation rénale, CHRU Nancy, Nancy, France
| | - Carole Legagneur
- Unité d'Endocrinologie Pédiatrique et Diabétologie, CHRU Nancy, Nancy, France
| | | | | | - Christophe Philippe
- Laboratoire de génétique, Innovation en diagnostic génomique des maladies rares UF6254, Plate-forme de Biologie Hospitalo-Universitaire, CHU Dijon, Dijon, France.,INSERM U1231, LNC UMR1231 GAD, Université de Bourgogne, Dijon, France
| | - Bruno Leheup
- Service de Génétique Clinique, CHRU Nancy, Nancy, France
| |
Collapse
|
10
|
Jordan P, Dorval G, Arrondel C, Morinière V, Tournant C, Audrezet MP, Michel-Calemard L, Putoux A, Lesca G, Labalme A, Whalen S, Loeuillet L, Martinovic J, Attie-Bitach T, Bessières B, Schaefer E, Scheidecker S, Lambert L, Beneteau C, Patat O, Boute-Benejean O, Molin A, Guimiot F, Fontanarosa N, Nizon M, Lefebvre M, Jeanpierre C, Saunier S, Heidet L. Targeted next-generation sequencing in a large series of fetuses with severe renal diseases. Hum Mutat 2022; 43:347-361. [PMID: 35005812 DOI: 10.1002/humu.24324] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 11/23/2021] [Accepted: 12/14/2021] [Indexed: 11/07/2022]
Abstract
We report the screening of a large panel of genes in a series of 100 fetuses (98 families) affected with severe renal defects. Causative variants were identified in 22% of cases, greatly improving genetic counseling. The percentage of variants explaining the phenotype was different according to the type of phenotype. The highest diagnostic yield was found in cases affected with the ciliopathy-like phenotype (11/15 families and, in addition, a single heterozygous or a homozygous Class 3 variant in PKHD1 in three unrelated cases with autosomal recessive polycystic kidney disease). The lowest diagnostic yield was observed in cases with congenital anomalies of the kidney and urinary tract (9/78 families and, in addition, Class 3 variants in GREB1L in three unrelated cases with bilateral renal agenesis). Inheritance was autosomal recessive in nine genes (PKHD1, NPHP3, CEP290, TMEM67, DNAJB11, FRAS1, ACE, AGT, and AGTR1), and autosomal dominant in six genes (PKD1, PKD2, PAX2, EYA1, BICC1, and MYOCD). Finally, we developed an original approach of next-generation sequencing targeted RNA sequencing using the custom capture panel used for the sequencing of DNA, to validate one MYOCD heterozygous splicing variant identified in two male siblings with megabladder and inherited from their healthy mother.
Collapse
Affiliation(s)
- Penelope Jordan
- APHP Service de Génétique, Hôpital Universitaire Necker-Enfants Malades, Paris, France
| | - Guillaume Dorval
- APHP Service de Génétique, Hôpital Universitaire Necker-Enfants Malades, Paris, France.,Inserm U1163, Laboratoire des Maladies Rénales Héréditaires Institut Imagine, Université de Paris, Paris, France.,APHP Service de Néphrologie Pédiatrique, Centre de Référence des Maladies Rénales Héréditaires de l'Enfant et de l'Adulte (MARHEA), Hôpital Universitaire Necker-Enfants Malades, Paris, France
| | - Christelle Arrondel
- Inserm U1163, Laboratoire des Maladies Rénales Héréditaires Institut Imagine, Université de Paris, Paris, France
| | - Vincent Morinière
- APHP Service de Génétique, Hôpital Universitaire Necker-Enfants Malades, Paris, France
| | - Carole Tournant
- APHP Service de Génétique, Hôpital Universitaire Necker-Enfants Malades, Paris, France
| | - Marie-Pierre Audrezet
- Service de Génétique moléculaire, Génétique, Génomique et Biotechnologies, UMR 1078, Hôpital Universitaire de Brest, Brest, France
| | - Laurence Michel-Calemard
- Service Biochimie Biologie Moléculaire Grand Est, Hospices Civils de Lyon, Groupement Hospitalier Est, CBPE, Bron, France
| | - Audrey Putoux
- Service de Génétique, Hospices Civils de Lyon, Groupement Hospitalier Est, Bron, France
| | - Gaethan Lesca
- Service de Génétique, Hospices Civils de Lyon, Groupement Hospitalier Est, Bron, France
| | - Audrey Labalme
- Service de Génétique, Hospices Civils de Lyon, Groupement Hospitalier Est, Bron, France
| | - Sandra Whalen
- APHP UF de Génétique Clinique, Centre de Référence des Anomalies du Développement et Syndromes Malformatifs, APHP, Hôpital Armand Trousseau, ERN ITHACA, Sorbonne Université, Paris, France
| | - Laurence Loeuillet
- APHP Service d'Embryofœtopathologie, Hôpital Universitaire Necker-Enfants Malades, Paris, France
| | - Jelena Martinovic
- APHP Service de Fœtopathologie, Hôpital Universitaire Antoine Béclère, Clamart, France
| | - Tania Attie-Bitach
- APHP Service d'Embryofœtopathologie, Hôpital Universitaire Necker-Enfants Malades, Paris, France.,Inserm U 1163, Institut Imagine, Université de Paris, Paris, France
| | - Bettina Bessières
- APHP Service d'Embryofœtopathologie, Hôpital Universitaire Necker-Enfants Malades, Paris, France.,Inserm U 1163, Institut Imagine, Université de Paris, Paris, France
| | - Elise Schaefer
- Service de Génétique Médicale, Institut de Génétique médicale d'Alsace, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Sophie Scheidecker
- Service de Génétique Médicale, Institut de Génétique médicale d'Alsace, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Laetitia Lambert
- Service de Génétique Médicale, Centre Hospitalier Régional Universitaire de Nancy, Nancy, France
| | - Claire Beneteau
- Service de Génétique Médicale, Centre Hospitalier Universitaire de Nantes, Nantes, France
| | - Olivier Patat
- Service de Génétique Médicale, Centre Hospitalier Universitaire de Toulouse, Toulouse, France
| | - Odile Boute-Benejean
- Service de Génétique Médicale, Hôpital Jeanne de Flandre, Centre Hospitalier Universitaire de Lille, Lille, France
| | - Arnaud Molin
- Service de Génétique Médicale, Centre Hospitalier Universitaire de Caen, Caen, France
| | - Fabien Guimiot
- APHP Service d'Embryo-Fœtopathologie, Hôpital Universitaire Robert Debré, Paris, France
| | | | - Mathilde Nizon
- Service de Génétique Médicale, CHU Nantes, L'institut Du Thorax, INSERM, CNRS, UNIV Nantes, Nantes, France
| | - Mathilde Lefebvre
- APHP Service de Pathologie fœtale, Hôpital Universitaire Armand Trousseau, Paris, France
| | - Cécile Jeanpierre
- Inserm U1163, Laboratoire des Maladies Rénales Héréditaires Institut Imagine, Université de Paris, Paris, France
| | - Sophie Saunier
- Inserm U1163, Laboratoire des Maladies Rénales Héréditaires Institut Imagine, Université de Paris, Paris, France
| | - Laurence Heidet
- Inserm U1163, Laboratoire des Maladies Rénales Héréditaires Institut Imagine, Université de Paris, Paris, France.,APHP Service de Néphrologie Pédiatrique, Centre de Référence des Maladies Rénales Héréditaires de l'Enfant et de l'Adulte (MARHEA), Hôpital Universitaire Necker-Enfants Malades, Paris, France
| |
Collapse
|
11
|
Sablok A, Thakur S, Sharma A, Kaul A. Prenatal Diagnosis of Bardet-Biedl Syndrome: A Case Study and Review of Literature. JOURNAL OF FETAL MEDICINE 2020. [DOI: 10.1007/s40556-020-00278-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
12
|
Abstract
Olfactory sensory neurons (OSNs) are bipolar neurons, unusual because they turn over continuously and have a multiciliated dendrite. The extensive changes in gene expression accompanying OSN differentiation in mice are largely known, especially the transcriptional regulators responsible for altering gene expression, revealing much about how differentiation proceeds. Basal progenitor cells of the olfactory epithelium transition into nascent OSNs marked by Cxcr4 expression and the initial extension of basal and apical neurites. Nascent OSNs become immature OSNs within 24-48 h. Immature OSN differentiation requires about a week and at least 2 stages. Early-stage immature OSNs initiate expression of genes encoding key transcriptional regulators and structural proteins necessary for further neuritogenesis. Late-stage immature OSNs begin expressing genes encoding proteins important for energy production and neuronal homeostasis that carry over into mature OSNs. The transition to maturity depends on massive expression of one allele of one odorant receptor gene, and this results in expression of the last 8% of genes expressed by mature OSNs. Many of these genes encode proteins necessary for mature function of axons and synapses or for completing the elaboration of non-motile cilia, which began extending from the newly formed dendritic knobs of immature OSNs. The cilia from adjoining OSNs form a meshwork in the olfactory mucus and are the site of olfactory transduction. Immature OSNs also have a primary cilium, but its role is unknown, unlike the critical role in proliferation and differentiation played by the primary cilium of the olfactory epithelium's horizontal basal cell.
Collapse
Affiliation(s)
- Timothy S McClintock
- Department of Physiology, University of Kentucky, Lexington, KY, USA
- Correspondence to be sent to: Timothy S. McClintock, Department of Physiology, University of Kentucky, 800 Rose St., Lexington, KY 40536-0298, USA. e-mail:
| | - Naazneen Khan
- Department of Physiology, University of Kentucky, Lexington, KY, USA
| | - Chao Xie
- Department of Pharmacology and Therapeutics, and Center for Smell and Taste, University of Florida College of Medicine, Gainesville, FL, USA
| | - Jeffrey R Martens
- Department of Pharmacology and Therapeutics, and Center for Smell and Taste, University of Florida College of Medicine, Gainesville, FL, USA
| |
Collapse
|
13
|
Mary L, Chennen K, Stoetzel C, Antin M, Leuvrey A, Nourisson E, Alanio-Detton E, Antal MC, Attié-Bitach T, Bouvagnet P, Bouvier R, Buenerd A, Clémenson A, Devisme L, Gasser B, Gilbert-Dussardier B, Guimiot F, Khau Van Kien P, Leroy B, Loget P, Martinovic J, Pelluard F, Perez MJ, Petit F, Pinson L, Rooryck-Thambo C, Poch O, Dollfus H, Schaefer E, Muller J. Bardet-Biedl syndrome: Antenatal presentation of forty-five fetuses with biallelic pathogenic variants in known Bardet-Biedl syndrome genes. Clin Genet 2020; 95:384-397. [PMID: 30614526 DOI: 10.1111/cge.13500] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 12/20/2018] [Accepted: 12/29/2018] [Indexed: 02/06/2023]
Abstract
Bardet-Biedl syndrome (BBS) is an emblematic ciliopathy associated with retinal dystrophy, obesity, postaxial polydactyly, learning disabilities, hypogonadism and renal dysfunction. Before birth, enlarged/cystic kidneys as well as polydactyly are the hallmark signs of BBS to consider in absence of familial history. However, these findings are not specific to BBS, raising the problem of differential diagnoses and prognosis. Molecular diagnosis during pregnancies remains a timely challenge for this heterogeneous disease (22 known genes). We report here the largest cohort of BBS fetuses to better characterize the antenatal presentation. Prenatal ultrasound (US) and/or autopsy data from 74 fetuses with putative BBS diagnosis were collected out of which molecular diagnosis was established in 51 cases, mainly in BBS genes (45 cases) following the classical gene distribution, but also in other ciliopathy genes (6 cases). Based on this, an updated diagnostic decision tree is proposed. No genotype/phenotype correlation could be established but postaxial polydactyly (82%) and renal cysts (78%) were the most prevalent symptoms. However, autopsy revealed polydactyly that was missed by prenatal US in 55% of the cases. Polydactyly must be carefully looked for in pregnancies with apparently isolated renal anomalies in fetuses.
Collapse
Affiliation(s)
- Laura Mary
- Laboratoire de Diagnostic Génétique, Hôpitaux Universitaires de Strasbourg, Strasbourg, France.,Laboratoire de Génétique Médicale, UMR_S INSERM U1112, IGMA, Faculté de Médecine FMTS, Université de Strasbourg, Strasbourg, France
| | - Kirsley Chennen
- Laboratoire de Génétique Médicale, UMR_S INSERM U1112, IGMA, Faculté de Médecine FMTS, Université de Strasbourg, Strasbourg, France.,Complex Systems and Translational Bioinformatics, ICube, University of Strasbourg, CNRS, Illkirch, France
| | - Corinne Stoetzel
- Laboratoire de Génétique Médicale, UMR_S INSERM U1112, IGMA, Faculté de Médecine FMTS, Université de Strasbourg, Strasbourg, France
| | - Manuela Antin
- Laboratoire de Diagnostic Génétique, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Anne Leuvrey
- Laboratoire de Diagnostic Génétique, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Elsa Nourisson
- Laboratoire de Diagnostic Génétique, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Elisabeth Alanio-Detton
- Gynécologie-obstétrique, Centre de Dépistage Anténatal, Hôpital Maison-Blanche, Reims, France
| | - Maria C Antal
- Institut d'Histologie, Icube, Université de Strasbourg, Strasbourg, France.,Service de Pathologie, UF6349 Fœtopathologie, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Tania Attié-Bitach
- INSERM U1163, Institut IMAGINE, Université Paris Descartes, Paris, France.,Service d'Histologie-Embryologie-Cytogénétique, Hôpital Necker-Enfants Malades, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Patrice Bouvagnet
- Laboratoire de Cardiogénétique, Malformations Cardiaques Congénitale, Hôpitaux Civils de Lyon, France
| | - Raymonde Bouvier
- Département de Pathologie, Centre Hospitalier Est, Hôpitaux Civils de Lyon, Lyon, France
| | - Annie Buenerd
- Département de Pathologie, Centre Hospitalier Est, Hôpitaux Civils de Lyon, Lyon, France
| | - Alix Clémenson
- Service d'Anatomie et Cytologie Pathologiques, CHU de Saint-Etienne, Saint-Étienne, France
| | - Louise Devisme
- Institut d'Anatomo-Pathologie, Centre de Biologie Pathologie, Centre Hospitalier Universitaire de Lille, Lille, France
| | - Bernard Gasser
- Laboratoire de Pathologie, GHR Mulhouse-Sud Alsace, Mulhouse, France
| | - Brigitte Gilbert-Dussardier
- Service de Génétique Médicale, Centre Hospitalier Universitaire de Poitiers, Poitiers, France.,EA3808 - NEUVACOD, Université de Poitiers, Poitiers, France
| | - Fabien Guimiot
- Unité Fonctionnelle de Fœtopathologie, Département de Génétique, Hôpital Robert Debré, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Philippe Khau Van Kien
- Unité de Génétique Médicale et Cytogénétique, Centre Hospitalier Universitaire de Nîmes, Nîmes, France
| | - Brigitte Leroy
- Service d'Anatomie Pathologique, CHI Poissy Saint Germain-en-Laye, Poissy, France
| | - Philippe Loget
- Service d'Anatomie Pathologique, Hôpital Pontchaillou, Université Rennes 1, Rennes, France
| | - Jelena Martinovic
- Unité de Fœtopathologie, Hôpital Antoine Béclère, Assistance Publique-Hôpitaux de Paris, Clamart, France
| | - Fanny Pelluard
- Service d'Anatomie-Cytologie Pathologique, Centre Hospitalier Universitaire de Bordeaux, Bordeaux, France.,INSERM UMR1053, Bordeaux Research in Translational Oncology, BaRITOn, Université de Bordeaux, Bordeaux, France
| | - Marie-Josée Perez
- Unité de Fœtopathologie, Service de Génétique Médicale, Centre Hospitalier Universitaire, Montpellier, France
| | - Florence Petit
- Clinique de Génétique Guy Fontaine, Centre Hospitalier Universitaire de Lille, Lille, France
| | - Lucile Pinson
- Département de Génétique Médicale, Centre Hospitalier Régional Universitaire de Montpellier, Montpellier, France
| | - Caroline Rooryck-Thambo
- Université Bordeaux, MRGM INSERM U1211, CHU de Bordeaux, Service de Génétique Médicale, Bordeaux, France
| | - Olivier Poch
- Complex Systems and Translational Bioinformatics, ICube, University of Strasbourg, CNRS, Illkirch, France
| | - Hélène Dollfus
- Laboratoire de Génétique Médicale, UMR_S INSERM U1112, IGMA, Faculté de Médecine FMTS, Université de Strasbourg, Strasbourg, France.,Service de Génétique Médicale, IGMA, Hôpitaux Universitaires de Strasbourg, Strasbourg, France.,Centre des Affections Rares en Génétique Ophtalmologique, FSMR SENSGENE, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Elise Schaefer
- Laboratoire de Génétique Médicale, UMR_S INSERM U1112, IGMA, Faculté de Médecine FMTS, Université de Strasbourg, Strasbourg, France.,Service de Génétique Médicale, IGMA, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Jean Muller
- Laboratoire de Diagnostic Génétique, Hôpitaux Universitaires de Strasbourg, Strasbourg, France.,Laboratoire de Génétique Médicale, UMR_S INSERM U1112, IGMA, Faculté de Médecine FMTS, Université de Strasbourg, Strasbourg, France
| |
Collapse
|
14
|
Kops SA, Kylat RI, Bhatia S, Seckeler MD, Barber BJ, Bader MY. Genetic Characterization of a Model Ciliopathy: Bardet-Biedl Syndrome. J Pediatr Genet 2020; 10:126-130. [PMID: 33996183 DOI: 10.1055/s-0040-1708844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Accepted: 02/13/2020] [Indexed: 10/24/2022]
Abstract
Bardet-Biedl syndrome (BBS) is a rare ciliopathy affecting multiple organ systems. Patients with BBS are usually diagnosed later in childhood when clinical features of the disease become apparent. In this article, we presented a case of BBS discovered by whole genome sequencing in a newborn with heterotaxy, duodenal atresia, and complex congenital heart disease. Early diagnosis is important not only for prognostication but also to explore ways to mitigate the cone-rod dysfunction and for exploring newer therapies. Our case highlights the importance of a high index of suspicion and the utility of advanced genetic testing to provide an early diagnosis for a rare disease.
Collapse
Affiliation(s)
- Samantha A Kops
- Department of Pediatrics, Banner University Medical Center, Arizona, United States
| | - Ranjit I Kylat
- Department of Pediatrics, Banner University Medical Center, Arizona, United States.,Department of Pediatrics, University of Arizona College of Medicine, Arizona, United States
| | - Shanti Bhatia
- Department of Pediatrics, Banner University Medical Center, Arizona, United States
| | - Michael D Seckeler
- Department of Pediatrics, Banner University Medical Center, Arizona, United States.,Department of Pediatrics, University of Arizona College of Medicine, Arizona, United States
| | - Brent J Barber
- Department of Pediatrics, Banner University Medical Center, Arizona, United States.,Department of Pediatrics, University of Arizona College of Medicine, Arizona, United States
| | - Mohammad Y Bader
- Department of Pediatrics, Banner University Medical Center, Arizona, United States.,Department of Pediatrics, University of Arizona College of Medicine, Arizona, United States
| |
Collapse
|
15
|
Goyal S, Singh IR, Vanita V. Novel mutation in MKKS/BBS6 linked with arRP and polydactyly in a family of North Indian origin. Clin Exp Ophthalmol 2020; 48:343-355. [PMID: 31989739 DOI: 10.1111/ceo.13719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 11/12/2019] [Accepted: 11/20/2019] [Indexed: 11/28/2022]
Abstract
BACKGROUND To identify the underlying genetic defect in a fourth-generation autosomal recessive retinitis pigmentosa (arRP) family. Detailed family history and clinical data were collected from nine members, including three affected, from an arRP family. METHODS Whole-exome sequencing (WES) was performed on DNA sample of an affected individual IV: 2. Variants obtained by WES were annotated using Ion Reporter Software (ver. 5.2). Potential pathogenic variants detected in an affected member were validated in other affected and unaffected family members by Sanger sequencing. Further 150 ethnically-matched controls were tested for the variant that co-segregated completely with disease in the family, so as to exclude it as a polymorphism. Various web-based bioinformatics tools were also applied to access pathogenic potential of the observed variant. RESULTS All the three patients had RP with polydactyly of both hands and feet, however, they did not show other symptoms of Bardet-Biedl syndrome (BBS) or McKusick-Kaufmann Syndrome (MKKS). A novel missense mutation, that is, c.518A>C (p.His173Pro) was identified in MKKS/BBS6 that co-segregated completely with the disease phenotype in all the three affected members and was not observed in six unaffected members of the family. Also the c.518A>C change was not observed in 150 ethnically matched controls (300 chromosomes), hence excluding it as a polymorphism. CONCLUSIONS Present study is the second report of identifying a novel mutation in MKKS/BBS6 that is linked with arRP in association with polydactyly, however, with no other signs of BBS or MKKS. These findings further expand the mutation spectrum of MKKS/BBS6 for arRP with polydactyly.
Collapse
Affiliation(s)
- Shiwali Goyal
- Department of Human Genetics, Guru Nanak Dev University, Amritsar, India
| | | | - Vanita Vanita
- Department of Human Genetics, Guru Nanak Dev University, Amritsar, India
| |
Collapse
|
16
|
Zelihić D, Hjardemaal FR, Lippe CVD. Caring for a child with Bardet-Biedl syndrome: A qualitative study of the parental experiences of daily coping and support. Eur J Med Genet 2020; 63:103856. [PMID: 31972368 DOI: 10.1016/j.ejmg.2020.103856] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 12/12/2019] [Accepted: 01/17/2020] [Indexed: 10/25/2022]
Abstract
This study aimed to explore the parental experiences of having a child with Bardet-Biedl syndrome (BBS) and how parents managed to cope with this situation. Five parents of children with BBS (0-18 years old) participated in semistructured in-depth interviews. Inductive thematic analysis was used to identify themes. The parents experienced distress due to a lack of knowledge on BBS in their support system (e.g., school staff, clinicians, and family members), and they found it stressful to coordinate with multiple support services. Socialization at work, support from family members, and communicating with other parents who are in a similar situation promoted better coping and adaptations to daily life. Results highlight the importance of parents receiving adequate support while they face daily challenges. An increased knowledge on how rare disorders impact family life is needed in the support system.
Collapse
Affiliation(s)
- Deniz Zelihić
- Centre for Rare Disorders, Rikshospitalet, Oslo University Hospital HF, Norway
| | | | | |
Collapse
|
17
|
Goetz SC, Bangs F, Barrington CL, Katsanis N, Anderson KV. The Meckel syndrome- associated protein MKS1 functionally interacts with components of the BBSome and IFT complexes to mediate ciliary trafficking and hedgehog signaling. PLoS One 2017; 12:e0173399. [PMID: 28291807 PMCID: PMC5349470 DOI: 10.1371/journal.pone.0173399] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Accepted: 02/20/2017] [Indexed: 12/04/2022] Open
Abstract
The importance of primary cilia in human health is underscored by the link between ciliary dysfunction and a group of primarily recessive genetic disorders with overlapping clinical features, now known as ciliopathies. Many of the proteins encoded by ciliopathy-associated genes are components of a handful of multi-protein complexes important for the transport of cargo to the basal body and/or into the cilium. A key question is whether different complexes cooperate in cilia formation, and whether they participate in cilium assembly in conjunction with intraflagellar transport (IFT) proteins. To examine how ciliopathy protein complexes might function together, we have analyzed double mutants of an allele of the Meckel syndrome (MKS) complex protein MKS1 and the BBSome protein BBS4. We find that Mks1; Bbs4 double mutant mouse embryos exhibit exacerbated defects in Hedgehog (Hh) dependent patterning compared to either single mutant, and die by E14.5. Cells from double mutant embryos exhibit a defect in the trafficking of ARL13B, a ciliary membrane protein, resulting in disrupted ciliary structure and signaling. We also examined the relationship between the MKS complex and IFT proteins by analyzing double mutant between Mks1 and a hypomorphic allele of the IFTB component Ift172. Despite each single mutant surviving until around birth, Mks1; Ift172avc1 double mutants die at mid-gestation, and exhibit a dramatic failure of cilia formation. We also find that Mks1 interacts genetically with an allele of Dync2h1, the IFT retrograde motor. Thus, we have demonstrated that the MKS transition zone complex cooperates with the BBSome to mediate trafficking of specific trans-membrane receptors to the cilium. Moreover, the genetic interaction of Mks1 with components of IFT machinery suggests that the transition zone complex facilitates IFT to promote cilium assembly and structure.
Collapse
Affiliation(s)
- Sarah C. Goetz
- Program in Developmental Biology, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, 1275 York Ave. New York, United States of America
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC, United States of America
| | - Fiona Bangs
- Program in Developmental Biology, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, 1275 York Ave. New York, United States of America
| | - Chloe L. Barrington
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC, United States of America
| | - Nicholas Katsanis
- Department of Cell Biology and Center for Human Disease Modeling, Duke University Medical Center, Durham, NC, United States of America
| | - Kathryn V. Anderson
- Program in Developmental Biology, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, 1275 York Ave. New York, United States of America
| |
Collapse
|
18
|
Hartill V, Szymanska K, Sharif SM, Wheway G, Johnson CA. Meckel-Gruber Syndrome: An Update on Diagnosis, Clinical Management, and Research Advances. Front Pediatr 2017; 5:244. [PMID: 29209597 PMCID: PMC5701918 DOI: 10.3389/fped.2017.00244] [Citation(s) in RCA: 95] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Accepted: 11/02/2017] [Indexed: 11/13/2022] Open
Abstract
Meckel-Gruber syndrome (MKS) is a lethal autosomal recessive congenital anomaly syndrome caused by mutations in genes encoding proteins that are structural or functional components of the primary cilium. Conditions that are caused by mutations in ciliary genes are collectively termed the ciliopathies, and MKS represents the most severe condition in this group of disorders. The primary cilium is a microtubule-based organelle, projecting from the apical surface of vertebrate cells. It acts as an "antenna" that receives and transduces chemosensory and mechanosensory signals, but also regulates diverse signaling pathways, such as Wnt and Shh, that have important roles during embryonic development. Most MKS proteins localize to a distinct ciliary compartment called the transition zone (TZ) that regulates the trafficking of cargo proteins or lipids. In this review, we provide an up-to-date summary of MKS clinical features, molecular genetics, and clinical diagnosis. MKS has a highly variable phenotype, extreme genetic heterogeneity, and displays allelism with other related ciliopathies such as Joubert syndrome, presenting significant challenges to diagnosis. Recent advances in genetic technology, with the widespread use of multi-gene panels for molecular testing, have significantly improved diagnosis, genetic counseling, and the clinical management of MKS families. These include the description of some limited genotype-phenotype correlations. We discuss recent insights into the molecular basis of disease in MKS, since the functions of some of the relevant ciliary proteins have now been determined. A common molecular etiology appears to be disruption of ciliary TZ structure and function, affecting essential developmental signaling and the regulation of secondary messengers.
Collapse
Affiliation(s)
- Verity Hartill
- Department of Clinical Genetics, Yorkshire Regional Genetics Service, Leeds Teaching Hospitals NHS Trust, Leeds, United Kingdom.,Leeds Institute of Biomedical and Clinical Sciences, University of Leeds, Leeds, United Kingdom
| | - Katarzyna Szymanska
- Leeds Institute of Biomedical and Clinical Sciences, University of Leeds, Leeds, United Kingdom
| | - Saghira Malik Sharif
- Department of Clinical Genetics, Yorkshire Regional Genetics Service, Leeds Teaching Hospitals NHS Trust, Leeds, United Kingdom
| | - Gabrielle Wheway
- Faculty of Health and Applied Sciences, Department of Applied Sciences, UWE Bristol, Bristol, United Kingdom
| | - Colin A Johnson
- Leeds Institute of Biomedical and Clinical Sciences, University of Leeds, Leeds, United Kingdom
| |
Collapse
|
19
|
Kang HG, Lee HK, Ahn YH, Joung JG, Nam J, Kim NKD, Ko JM, Cho MH, Shin JI, Kim J, Park HW, Park YS, Ha IS, Chung WY, Lee DY, Kim SY, Park WY, Cheong HI. Targeted exome sequencing resolves allelic and the genetic heterogeneity in the genetic diagnosis of nephronophthisis-related ciliopathy. Exp Mol Med 2016; 48:e251. [PMID: 27491411 PMCID: PMC5007639 DOI: 10.1038/emm.2016.63] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2015] [Revised: 02/29/2016] [Accepted: 03/11/2016] [Indexed: 01/02/2023] Open
Abstract
Nephronophthisis-related ciliopathy (NPHP-RC) is a common genetic cause of end-stage renal failure during childhood and adolescence and exhibits an autosomal recessive pattern of inheritance. Genetic diagnosis is quite limited owing to genetic heterogeneity in NPHP-RC. We designed a novel approach involving the step-wise screening of Sanger sequencing and targeted exome sequencing for the genetic diagnosis of 55 patients with NPHP-RC. First, five NPHP-RC genes were analyzed by Sanger sequencing in phenotypically classified patients. Known pathogenic mutations were identified in 12 patients (21.8%); homozygous deletions of NPHP1 in 4 juvenile nephronophthisis patients, IQCB1/NPHP5 mutations in 3 Senior–Løken syndrome patients, a CEP290/NPHP6 mutation in 1 Joubert syndrome patient, and TMEM67/MKS3 mutations in 4 Joubert syndrome patients with liver involvement. In the remaining undiagnosed patients, we applied targeted exome sequencing of 34 ciliopathy-related genes to detect known pathogenic mutations in 7 (16.3%) of 43 patients. Another 18 likely damaging heterozygous variants were identified in 13 NPHP-RC genes in 18 patients. In this study, we report a variety of pathogenic and candidate mutations identified in 55 patients with NPHP-RC in Korea using a step-wise application of two genetic tests. These results support the clinical utility of targeted exome sequencing to resolve the issue of allelic and genetic heterogeneity in NPHP-RC.
Collapse
Affiliation(s)
- Hee Gyung Kang
- Department of Pediatrics, Seoul National University Children's Hospital, Seoul, Republic of Korea
| | - Hyun Kyung Lee
- Department of Pediatrics, Seoul National University Children's Hospital, Seoul, Republic of Korea
| | - Yo Han Ahn
- Department of Pediatrics, Seoul National University Children's Hospital, Seoul, Republic of Korea
| | - Je-Gun Joung
- Samsung Genome Institute, Samsung Medical Center, Seoul, Republic of Korea
| | - Jaeyong Nam
- Samsung Genome Institute, Samsung Medical Center, Seoul, Republic of Korea
| | - Nayoung K D Kim
- Samsung Genome Institute, Samsung Medical Center, Seoul, Republic of Korea
| | - Jung Min Ko
- Department of Pediatrics, Seoul National University Children's Hospital, Seoul, Republic of Korea
| | - Min Hyun Cho
- Department of Pediatrics, Kyungpook National University School of Medicine, Daegu, Republic of Korea
| | - Jae Il Shin
- Department of Pediatrics, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Joon Kim
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| | - Hye Won Park
- Department of Pediatrics, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
| | - Young Seo Park
- Department of Pediatrics, Asian Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Il-Soo Ha
- Department of Pediatrics, Seoul National University Children's Hospital, Seoul, Republic of Korea
| | - Woo Yeong Chung
- Department of Pediatrics, College of Medicine, Inje University, Busan Paik Hospital, Busan, Republic of Korea
| | - Dae-Yeol Lee
- Department of Pediatrics, College of Medicine, Chonbuk National University, Jeonju, Republic of Korea
| | - Su Young Kim
- Department of Pediatrics, Pusan National University Children's Hospital, Pusan, Republic of Korea
| | - Woong Yang Park
- Samsung Genome Institute, Samsung Medical Center, Seoul, Republic of Korea.,Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Suwon, Republic of Korea
| | - Hae Il Cheong
- Department of Pediatrics, Seoul National University Children's Hospital, Seoul, Republic of Korea
| |
Collapse
|
20
|
Lindstrand A, Frangakis S, Carvalho C, Richardson E, McFadden K, Willer J, Pehlivan D, Liu P, Pediaditakis I, Sabo A, Lewis R, Banin E, Lupski J, Davis E, Katsanis N. Copy-Number Variation Contributes to the Mutational Load of Bardet-Biedl Syndrome. Am J Hum Genet 2016; 99:318-36. [PMID: 27486776 DOI: 10.1016/j.ajhg.2015.04.023] [Citation(s) in RCA: 97] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Accepted: 06/13/2016] [Indexed: 12/15/2022] Open
Abstract
Bardet-Biedl syndrome (BBS) is a defining ciliopathy, notable for extensive allelic and genetic heterogeneity, almost all of which has been identified through sequencing. Recent data have suggested that copy-number variants (CNVs) also contribute to BBS. We used a custom oligonucleotide array comparative genomic hybridization (aCGH) covering 20 genes that encode intraflagellar transport (IFT) components and 74 ciliopathy loci to screen 92 unrelated individuals with BBS, irrespective of their known mutational burden. We identified 17 individuals with exon-disruptive CNVs (18.5%), including 13 different deletions in eight BBS genes (BBS1, BBS2, ARL6/BBS3, BBS4, BBS5, BBS7, BBS9, and NPHP1) and a deletion and a duplication in other ciliopathy-associated genes (ALMS1 and NPHP4, respectively). By contrast, we found a single heterozygous exon-disruptive event in a BBS-associated gene (BBS9) in 229 control subjects. Superimposing these data with resequencing revealed CNVs to (1) be sufficient to cause disease, (2) Mendelize heterozygous deleterious alleles, and (3) contribute oligogenic alleles by combining point mutations and exonic CNVs in multiple genes. Finally, we report a deletion and a splice site mutation in IFT74, inherited under a recessive paradigm, defining a candidate BBS locus. Our data suggest that CNVs contribute pathogenic alleles to a substantial fraction of BBS-affected individuals and highlight how either deletions or point mutations in discrete splice isoforms can induce hypomorphic mutations in genes otherwise intolerant to deleterious variation. Our data also suggest that CNV analyses and resequencing studies unbiased for previous mutational burden is necessary to delineate the complexity of disease architecture.
Collapse
|
21
|
Burnicka-Turek O, Steimle JD, Huang W, Felker L, Kamp A, Kweon J, Peterson M, Reeves RH, Maslen CL, Gruber PJ, Yang XH, Shendure J, Moskowitz IP. Cilia gene mutations cause atrioventricular septal defects by multiple mechanisms. Hum Mol Genet 2016; 25:3011-3028. [PMID: 27340223 DOI: 10.1093/hmg/ddw155] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Revised: 05/13/2016] [Accepted: 05/18/2016] [Indexed: 01/13/2023] Open
Abstract
Atrioventricular septal defects (AVSDs) are a common severe form of congenital heart disease (CHD). In this study we identified deleterious non-synonymous mutations in two cilia genes, Dnah11 and Mks1, in independent N-ethyl-N-nitrosourea-induced mouse mutant lines with heritable recessive AVSDs by whole-exome sequencing. Cilia are required for left/right body axis determination and second heart field (SHF) Hedgehog (Hh) signaling, and we find that cilia mutations affect these requirements differentially. Dnah11avc4 did not disrupt SHF Hh signaling and caused AVSDs only concurrently with heterotaxy, a left/right axis abnormality. In contrast, Mks1avc6 disrupted SHF Hh signaling and caused AVSDs without heterotaxy. We performed unbiased whole-genome SHF transcriptional profiling and found that cilia motility genes were not expressed in the SHF whereas cilia structural and signaling genes were highly expressed. SHF cilia gene expression predicted the phenotypic concordance between AVSDs and heterotaxy in mice and humans with cilia gene mutations. A two-step model of cilia action accurately predicted the AVSD/heterotaxyu phenotypic expression pattern caused by cilia gene mutations. We speculate that cilia gene mutations contribute to both syndromic and non-syndromic AVSDs in humans and provide a model that predicts the phenotypic consequences of specific cilia gene mutations.
Collapse
Affiliation(s)
- Ozanna Burnicka-Turek
- Departments of Pediatrics, Pathology, and Human Genetics, The University of Chicago, Chicago, IL 60637, USA,
| | - Jeffrey D Steimle
- Departments of Pediatrics, Pathology, and Human Genetics, The University of Chicago, Chicago, IL 60637, USA
| | - Wenhui Huang
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | - Lindsay Felker
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | - Anna Kamp
- Departments of Pediatrics, Pathology, and Human Genetics, The University of Chicago, Chicago, IL 60637, USA
| | - Junghun Kweon
- Departments of Pediatrics, Pathology, and Human Genetics, The University of Chicago, Chicago, IL 60637, USA
| | - Michael Peterson
- Departments of Pediatrics, Pathology, and Human Genetics, The University of Chicago, Chicago, IL 60637, USA
| | - Roger H Reeves
- Department of Physiology and Institute for Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Cheryl L Maslen
- Knight Cardiovascular Institute and Department of Molecular and Medical Genetics, Oregon Health & Science University, Portland, OR 97239, USA and
| | - Peter J Gruber
- Department of Cardiothoracic Surgery, University of Iowa, Iowa City, IA 52245, USA
| | - Xinan H Yang
- Departments of Pediatrics, Pathology, and Human Genetics, The University of Chicago, Chicago, IL 60637, USA
| | - Jay Shendure
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | - Ivan P Moskowitz
- Departments of Pediatrics, Pathology, and Human Genetics, The University of Chicago, Chicago, IL 60637, USA,
| |
Collapse
|
22
|
Gerhardt C, Leu T, Lier JM, Rüther U. The cilia-regulated proteasome and its role in the development of ciliopathies and cancer. Cilia 2016; 5:14. [PMID: 27293550 PMCID: PMC4901515 DOI: 10.1186/s13630-016-0035-3] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Accepted: 02/29/2016] [Indexed: 12/21/2022] Open
Abstract
The primary cilium is an essential structure for the mediation of numerous signaling pathways involved in the coordination and regulation of cellular processes essential for the development and maintenance of health. Consequently, ciliary dysfunction results in severe human diseases called ciliopathies. Since many of the cilia-mediated signaling pathways are oncogenic pathways, cilia are linked to cancer. Recent studies demonstrate the existence of a cilia-regulated proteasome and that this proteasome is involved in cancer development via the progression of oncogenic, cilia-mediated signaling. This review article investigates the association between primary cilia and cancer with particular emphasis on the role of the cilia-regulated proteasome.
Collapse
Affiliation(s)
- Christoph Gerhardt
- Institute for Animal Developmental and Molecular Biology, Heinrich-Heine University Düsseldorf, 40225 Düsseldorf, Germany
| | - Tristan Leu
- Institute for Animal Developmental and Molecular Biology, Heinrich-Heine University Düsseldorf, 40225 Düsseldorf, Germany
| | - Johanna Maria Lier
- Institute for Animal Developmental and Molecular Biology, Heinrich-Heine University Düsseldorf, 40225 Düsseldorf, Germany
| | - Ulrich Rüther
- Institute for Animal Developmental and Molecular Biology, Heinrich-Heine University Düsseldorf, 40225 Düsseldorf, Germany
| |
Collapse
|
23
|
Abstract
Bardet-Biedl syndrome (BBS) is a rare autosomal recessive genetic disorder. It is characterized by heterogeneous clinical manifestations including primary features of the disease (rod-cone dystrophy, polydactyly, obesity, genital abnormalities, renal defects, and learning difficulties) and secondary BBS characteristics (developmental delay, speech deficit, brachydactyly or syndactyly, dental defects, ataxia or poor coordination, olfactory deficit, diabetes mellitus, congenital heart disease, etc.); most of these symptoms may not be present at birth but appear and progressively worsen during the first and second decades of life. At least 20 BBS genes have already been identified, and all of them are involved in primary cilia functioning. Genetic diagnosis of BBS is complicated due to lack of gene-specific disease symptoms; however, it is gradually becoming more accessible with the invention of multigene sequencing technologies. Clinical management of BBS is largely limited to a symptomatic treatment. Mouse experiments demonstrate that the most debilitating complication of BBS, blindness, can be rescued by topical gene therapy. There is a published case report describing the delay of BBS symptoms by nutritional compensation of the disease-related biochemical deficiencies. Progress in DNA testing technologies is likely to rapidly resolve all limitations in BBS diagnosis; however, much slower improvement is expected with regard to BBS treatment.
Collapse
Affiliation(s)
- Evgeny N Suspitsin
- N.N. Petrov Institute of Oncology, St. Petersburg, Russia; St. Petersburg Pediatric Medical University, St. Petersburg, Russia
| | - Evgeny N Imyanitov
- N.N. Petrov Institute of Oncology, St. Petersburg, Russia; St. Petersburg Pediatric Medical University, St. Petersburg, Russia; I.I. Mechnikov North-Western Medical University, St. Petersburg, Russia; St. Petersburg State University, St. Petersburg, Russia
| |
Collapse
|
24
|
Khan S, Muhammad N, Khan M, Kamal A, Rehman Z, Khan S. Genetics of human Bardet-Biedl syndrome, an updates. Clin Genet 2016; 90:3-15. [DOI: 10.1111/cge.12737] [Citation(s) in RCA: 98] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2015] [Revised: 12/21/2015] [Accepted: 01/03/2016] [Indexed: 12/22/2022]
Affiliation(s)
- S.A. Khan
- Department of Biotechnology and Genetic Engineering; Kohat University of Science and Technology; Khyber Pakhtunkhwa Pakistan
| | - N. Muhammad
- Department of Biotechnology and Genetic Engineering; Kohat University of Science and Technology; Khyber Pakhtunkhwa Pakistan
| | - M.A. Khan
- Gomal Centre of Biochemistry and Biotechnology; Gomal University; Khyber Pakhtunkhwa Pakistan
- Genomic Core Facility; Interim Translational Research Institute; Doha Qatar
| | - A. Kamal
- Department of Biotechnology and Genetic Engineering; Kohat University of Science and Technology; Khyber Pakhtunkhwa Pakistan
| | - Z.U. Rehman
- Department of Biotechnology and Genetic Engineering; Kohat University of Science and Technology; Khyber Pakhtunkhwa Pakistan
| | - S. Khan
- Department of Biotechnology and Genetic Engineering; Kohat University of Science and Technology; Khyber Pakhtunkhwa Pakistan
- Genomic Core Facility; Interim Translational Research Institute; Doha Qatar
| |
Collapse
|
25
|
Hulleman JD, Nguyen A, Ramprasad V, Murugan S, Gupta R, Mahindrakar A, Angara R, Sankurathri C, Mootha VV. A novel H395R mutation in MKKS/BBS6 causes retinitis pigmentosa and polydactyly without other findings of Bardet-Biedl or McKusick-Kaufman syndrome. Mol Vis 2016; 22:73-81. [PMID: 26900326 PMCID: PMC4734152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Accepted: 01/21/2016] [Indexed: 11/16/2022] Open
Abstract
PURPOSE To identify the causative mutation in two siblings from a consanguineous family in India with retinitis pigmentosa (RP) and polydactyly without other findings of Bardet-Biedl syndrome (BBS). We also performed functional characterization of the mutant protein to explore its role in this limited form of BBS. METHODS The siblings underwent a thorough ophthalmological examination, including retinal optical coherence tomography (OCT) imaging, and an extensive physical examination with abdominal ultrasonography to characterize the disease phenotype. Next-generation sequencing (NGS) using a panel targeting retinal degeneration genes was performed on genomic DNA samples from the siblings and parents. Upon identification of the causative mutation, functional characterization was accomplished by performing protein-protein interaction studies in human embryonic kidney (HEK-293T) and human adult retinal pigmented epithelium (ARPE-19) cells. RESULTS The two siblings showed signs of RP and polydactyly. The patients did not have truncal obesity, renal anomalies, hydrometrocolpos, congenital heart disease, or overt cognitive defects. NGS identified a homozygous c.1184A>G mutation in the MKKS/BBS6 gene in both patients resulting in a p.H395R substitution in the MKKS/BBS6 protein. This mutant protein decreased the interaction of MKKS/BBS6 with BBS12 but did so to a different extent in the HEK-293T versus ARPE-19 cells. Nonetheless, the effect of the H395R variant on disrupting interactions with BBS12 was not as profound as other reported MKKS/BBS6 mutations associated with syndromic RP. CONCLUSIONS We identified a novel H395R substitution in MKKS/BBS6 that results in a unique phenotype of only RP and polydactyly. Our observations reaffirm the notion that mutations in MKKS/BBS6 cause phenotypic heterogeneity and do not always result in classic MKKS or BBS findings.
Collapse
Affiliation(s)
- John D. Hulleman
- Department of Ophthalmology, University of Texas Southwestern Medical Center, Dallas, TX,Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX
| | - Annie Nguyen
- Department of Ophthalmology, University of Texas Southwestern Medical Center, Dallas, TX
| | | | | | | | | | - Ravi Angara
- Sai Sudha Hospital, Kakinada, Andhra Pradesh, India
| | | | - V. Vinod Mootha
- Department of Ophthalmology, University of Texas Southwestern Medical Center, Dallas, TX,Srikiran Institute of Ophthalmology, Kakinada, Andhra Pradesh, India,McDermott Center for Human Growth and Development/Center for Human Genetics, University of Texas Southwestern Medical Center, Dallas, TX
| |
Collapse
|
26
|
Suratanee A, Plaimas K. DDA: A Novel Network-Based Scoring Method to Identify Disease-Disease Associations. Bioinform Biol Insights 2015; 9:175-86. [PMID: 26673408 PMCID: PMC4674013 DOI: 10.4137/bbi.s35237] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Revised: 11/11/2015] [Accepted: 11/14/2015] [Indexed: 12/15/2022] Open
Abstract
Categorizing human diseases provides higher efficiency and accuracy for disease diagnosis, prognosis, and treatment. Disease–disease association (DDA) is a precious information that indicates the large-scale structure of complex relationships of diseases. However, the number of known and reliable associations is very small. Therefore, identification of DDAs is a challenging task in systems biology and medicine. Here, we developed a novel network-based scoring algorithm called DDA to identify the relationships between diseases in a large-scale study. Our method is developed based on a random walk prioritization in a protein–protein interaction network. This approach considers not only whether two diseases directly share associated genes but also the statistical relationships between two different diseases using known disease-related genes. Predicted associations were validated by known DDAs from a database and literature supports. The method yielded a good performance with an area under the curve of 71% and outperformed other standard association indices. Furthermore, novel DDAs and relationships among diseases from the clusters analysis were reported. This method is efficient to identify disease–disease relationships on an interaction network and can also be generalized to other association studies to further enhance knowledge in medical studies.
Collapse
Affiliation(s)
- Apichat Suratanee
- Department of Mathematics, Faculty of Applied Science, King Mongkut's University of Technology North Bangkok, Bangkok, Thailand
| | - Kitiporn Plaimas
- Integrative Bioinformatics and System Biology Group, Advanced Virtual and Intelligent Computing (AVIC) Research Center, Department of Mathematics and Computer Science, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
27
|
Bales KL, Gross AK. Aberrant protein trafficking in retinal degenerations: The initial phase of retinal remodeling. Exp Eye Res 2015; 150:71-80. [PMID: 26632497 DOI: 10.1016/j.exer.2015.11.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Revised: 11/04/2015] [Accepted: 11/09/2015] [Indexed: 12/18/2022]
Abstract
Retinal trafficking proteins are involved in molecular assemblies that govern protein transport, orchestrate cellular events involved in cilia formation, regulate signal transduction, autophagy and endocytic trafficking, all of which if not properly controlled initiate retinal degeneration. Improper function and or trafficking of these proteins and molecular networks they are involved in cause a detrimental cascade of neural retinal remodeling due to cell death, resulting as devastating blinding diseases. A universal finding in retinal degenerative diseases is the profound detection of retinal remodeling, occurring as a phased modification of neural retinal function and structure, which begins at the molecular level. Retinal remodeling instigated by aberrant trafficking of proteins encompasses many forms of retinal degenerations, such as the diverse forms of retinitis pigmentosa (RP) and disorders that resemble RP through mutations in the rhodopsin gene, retinal ciliopathies, and some forms of glaucoma and age-related macular degeneration (AMD). As a large majority of genes associated with these different retinopathies are overlapping, it is imperative to understand their underlying molecular mechanisms. This review will discuss some of the most recent discoveries in vertebrate retinal remodeling and retinal degenerations caused by protein mistrafficking.
Collapse
Affiliation(s)
- Katie L Bales
- University of Alabama at Birmingham, Birmingham, AL, United States
| | - Alecia K Gross
- University of Alabama at Birmingham, Birmingham, AL, United States.
| |
Collapse
|
28
|
Knopp C, Rudnik-Schöneborn S, Eggermann T, Bergmann C, Begemann M, Schoner K, Zerres K, Ortiz Brüchle N. Syndromic ciliopathies: From single gene to multi gene analysis by SNP arrays and next generation sequencing. Mol Cell Probes 2015; 29:299-307. [DOI: 10.1016/j.mcp.2015.05.008] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Revised: 05/13/2015] [Accepted: 05/19/2015] [Indexed: 01/23/2023]
|
29
|
Yavarna T, Al-Dewik N, Al-Mureikhi M, Ali R, Al-Mesaifri F, Mahmoud L, Shahbeck N, Lakhani S, AlMulla M, Nawaz Z, Vitazka P, Alkuraya FS, Ben-Omran T. High diagnostic yield of clinical exome sequencing in Middle Eastern patients with Mendelian disorders. Hum Genet 2015; 134:967-80. [PMID: 26077850 DOI: 10.1007/s00439-015-1575-0] [Citation(s) in RCA: 149] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2015] [Accepted: 05/30/2015] [Indexed: 12/16/2022]
Abstract
Clinical exome sequencing (CES) has become an increasingly popular diagnostic tool in patients with heterogeneous genetic disorders, especially in those with neurocognitive phenotypes. Utility of CES in consanguineous populations has not yet been determined on a large scale. A clinical cohort of 149 probands from Qatar with suspected Mendelian, mainly neurocognitive phenotypes, underwent CES from July 2012 to June 2014. Intellectual disability and global developmental delay were the most common clinical presentations but our cohort displayed other phenotypes, such as epilepsy, dysmorphism, microcephaly and other structural brain anomalies and autism. A pathogenic or likely pathogenic mutation, including pathogenic CNVs, was identified in 89 probands for a diagnostic yield of 60%. Consanguinity and positive family history predicted a higher diagnostic yield. In 5% (7/149) of cases, CES implicated novel candidate disease genes (MANF, GJA9, GLG1, COL15A1, SLC35F5, MAGE4, NEUROG1). CES uncovered two coexisting genetic disorders in 4% (6/149) and actionable incidental findings in 2% (3/149) of cases. Average time to diagnosis was reduced from 27 to 5 months. CES, which already has the highest diagnostic yield among all available diagnostic tools in the setting of Mendelian disorders, appears to be particularly helpful diagnostically in the highly consanguineous Middle Eastern population.
Collapse
Affiliation(s)
- Tarunashree Yavarna
- Clinical and Metabolic Genetics, Department of Pediatrics, Hamad Medical Corporation, P.O.BOX. 3050, Doha, Qatar
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Abstract
Primary cilia are essential cellular organelles projecting from the cell surface to sense and transduce developmental signaling. They are tiny but have complicated structures containing microtubule (MT)-based internal structures (the axoneme) and mother centriole formed basal body. Intraflagellar transport (Ift) operated by Ift proteins and motors are indispensable for cilia formation and function. Mutations in Ift proteins or Ift motors cause various human diseases, some of which have severe bone defects. Over the last few decades, major advances have occurred in understanding the roles of these proteins and cilia in bone development and remodeling by examining cilia/Ift protein-related human diseases and establishing mouse transgenic models. In this review, we describe current advances in the understanding of the cilia/Ift structure and function. We further summarize cilia/Ift-related human diseases and current mouse models with an emphasis on bone-related phenotypes, cilia morphology, and signaling pathways.
Collapse
Affiliation(s)
- Xue Yuan
- Department of Oral Biology, School of Dental Medicine, University at Buffalo, The State University of New York, 3435 Main Street, Buffalo, NY, 14214, USA
| | - Shuying Yang
- Department of Oral Biology, School of Dental Medicine, University at Buffalo, The State University of New York, 3435 Main Street, Buffalo, NY, 14214, USA
- Developmental Genomics Group, New York State Center of Excellence in Bioinformatics and Life Sciences, University at Buffalo, The State University of New York, 701 Ellicott St, Buffalo, NY, 14203, USA
| |
Collapse
|
31
|
Yuan X, Serra RA, Yang S. Function and regulation of primary cilia and intraflagellar transport proteins in the skeleton. Ann N Y Acad Sci 2015; 1335:78-99. [PMID: 24961486 PMCID: PMC4334369 DOI: 10.1111/nyas.12463] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Primary cilia are microtubule-based organelles that project from the cell surface to enable transduction of various developmental signaling pathways. The process of intraflagellar transport (IFT) is crucial for the building and maintenance of primary cilia. Ciliary dysfunction has been found in a range of disorders called ciliopathies, some of which display severe skeletal dysplasias. In recent years, interest has grown in uncovering the function of primary cilia/IFT proteins in bone development, mechanotransduction, and cellular regulation. We summarize recent advances in understanding the function of cilia and IFT proteins in the regulation of cell differentiation in osteoblasts, osteocytes, chondrocytes, and mesenchymal stem cells (MSCs). We also discuss the mechanosensory function of cilia and IFT proteins in bone cells, cilia orientation, and other functions of cilia in chondrocytes.
Collapse
Affiliation(s)
- Xue Yuan
- Department of Oral Biology, School of Dental Medicine, University at Buffalo, The State University of New York, Buffalo, NY
| | - Rosa A. Serra
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Shuying Yang
- Department of Oral Biology, School of Dental Medicine, University at Buffalo, The State University of New York, Buffalo, NY
- Developmental Genomics Group, New York State Center of Excellence in Bioinformatics and Life Sciences, University at Buffalo, The State University of New York, Buffalo, NY
| |
Collapse
|
32
|
Chavali PL, Pütz M, Gergely F. Small organelle, big responsibility: the role of centrosomes in development and disease. Philos Trans R Soc Lond B Biol Sci 2014; 369:20130468. [PMID: 25047622 PMCID: PMC4113112 DOI: 10.1098/rstb.2013.0468] [Citation(s) in RCA: 114] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
The centrosome, a key microtubule organizing centre, is composed of centrioles, embedded in a protein-rich matrix. Centrosomes control the internal spatial organization of somatic cells, and as such contribute to cell division, cell polarity and migration. Upon exiting the cell cycle, most cell types in the human body convert their centrioles into basal bodies, which drive the assembly of primary cilia, involved in sensing and signal transduction at the cell surface. Centrosomal genes are targeted by mutations in numerous human developmental disorders, ranging from diseases exclusively affecting brain development, through global growth failure syndromes to diverse pathologies associated with ciliary malfunction. Despite our much-improved understanding of centrosome function in cellular processes, we know remarkably little of its role in the organismal context, especially in mammals. In this review, we examine how centrosome dysfunction impacts on complex physiological processes and speculate on the challenges we face when applying knowledge generated from in vitro and in vivo model systems to human development.
Collapse
Affiliation(s)
- Pavithra L Chavali
- Cancer Research UK Cambridge Institute, Li Ka Shing Centre, Robinson Way, Cambridge CB2 0RE, UK
| | - Monika Pütz
- Cancer Research UK Cambridge Institute, Li Ka Shing Centre, Robinson Way, Cambridge CB2 0RE, UK
| | - Fanni Gergely
- Cancer Research UK Cambridge Institute, Li Ka Shing Centre, Robinson Way, Cambridge CB2 0RE, UK
| |
Collapse
|
33
|
Diagnosis of bardet-biedl syndrome in consecutive pregnancies affected with echogenic kidneys and polydactyly in a consanguineous couple. Case Rep Genet 2013; 2013:159143. [PMID: 23533844 PMCID: PMC3603615 DOI: 10.1155/2013/159143] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2012] [Accepted: 02/03/2013] [Indexed: 11/18/2022] Open
Abstract
Bardet-Biedl syndrome (BBS) is an autosomal recessive ciliopathic human genetic disorder with variable expression that is difficult to diagnose in pregnancy without known risk factors. Homozygosity testing has been shown to be a useful tool in identifying BBS mutations and candidate genes in affected individuals. We present the first case of prenatal diagnosis of BBS in consecutive pregnancies aided by homozygosity testing via SNP microarray analysis. This case demonstrates a novel approach to the evaluation of recurrent echogenic kidneys in consanguineous couple with no significant family history.
Collapse
|
34
|
|
35
|
Ashkinadze E, Rosen T, Brooks SS, Katsanis N, Davis EE. Combining fetal sonography with genetic and allele pathogenicity studies to secure a neonatal diagnosis of Bardet-Biedl syndrome. Clin Genet 2012; 83:553-9. [PMID: 22998390 DOI: 10.1111/cge.12022] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2012] [Revised: 09/16/2012] [Accepted: 09/17/2012] [Indexed: 02/06/2023]
Abstract
Bardet-Biedl syndrome (BBS) is a rare pediatric ciliopathy characterized by marked clinical variability and extensive genetic heterogeneity. Typical diagnosis of BBS is secured at a median of 9 years of age, and sometimes well into adolescence. Here, we report a patient in whom prenatal detection of increased nuchal fold, enlarged echogenic kidneys, and polydactyly prompted us to screen the most commonly mutated genes in BBS and the phenotypically and genetically overlapping ciliopathy, Meckel-Gruber syndrome (MKS). We identified the common Met390Arg mutation in BBS1 in compound heterozygosity with a novel intronic variant of unknown significance (VUS). Testing of mRNA harvested from primary foreskin fibroblasts obtained shortly after birth revealed the VUS to induce a cryptic splice site, which in turn led to a premature termination and mRNA degradation. To our knowledge, this is the earliest diagnosis of BBS in the absence of other affected individuals in the family, and exemplifies how combining clinical assessment with genetic and timely assays of variant pathogenicity can inform clinical diagnosis and assist with patient management in the prenatal and neonatal setting.
Collapse
Affiliation(s)
- E Ashkinadze
- Department of Obstetrics and Gynecology, UMDNJ Robert Wood Johnson Medical School, New Brunswick, NJ, USA.
| | | | | | | | | |
Collapse
|
36
|
Redin C, Le Gras S, Mhamdi O, Geoffroy V, Stoetzel C, Vincent MC, Chiurazzi P, Lacombe D, Ouertani I, Petit F, Till M, Verloes A, Jost B, Chaabouni HB, Dollfus H, Mandel JL, Muller J. Targeted high-throughput sequencing for diagnosis of genetically heterogeneous diseases: efficient mutation detection in Bardet-Biedl and Alström syndromes. J Med Genet 2012; 49:502-12. [PMID: 22773737 PMCID: PMC3436454 DOI: 10.1136/jmedgenet-2012-100875] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
BACKGROUND Bardet-Biedl syndrome (BBS) is a pleiotropic recessive disorder that belongs to the rapidly growing family of ciliopathies. It shares phenotypic traits with other ciliopathies, such as Alström syndrome (ALMS), nephronophthisis (NPHP) or Joubert syndrome. BBS mutations have been detected in 16 different genes (BBS1-BBS16) without clear genotype-to-phenotype correlation. This extensive genetic heterogeneity is a major concern for molecular diagnosis and genetic counselling. While various strategies have been recently proposed to optimise mutation detection, they either fail to detect mutations in a majority of patients or are time consuming and costly. METHOD We tested a targeted exon-capture strategy coupled with multiplexing and high-throughput sequencing on 52 patients: 14 with known mutations as proof-of-principle and 38 with no previously detected mutation. Thirty genes were targeted in total including the 16 BBS genes, the 12 known NPHP genes, the single ALMS gene ALMS1 and the proposed modifier CCDC28B. RESULTS This strategy allowed the reliable detection of causative mutations (including homozygous/heterozygous exon deletions) in 68% of BBS patients without previous molecular diagnosis and in all proof-of-principle samples. Three probands carried homozygous truncating mutations in ALMS1 confirming the major phenotypic overlap between both disorders. The efficiency of detecting mutations in patients was positively correlated with their compliance with the classical BBS phenotype (mutations were identified in 81% of 'classical' BBS patients) suggesting that only a few true BBS genes remain to be identified. We illustrate some interpretation problems encountered due to the multiplicity of identified variants. CONCLUSION This strategy is highly efficient and cost effective for diseases with high genetic heterogeneity, and guarantees a quality of coverage in coding sequences of target genes suited for diagnosis purposes.
Collapse
Affiliation(s)
- Claire Redin
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), CNRS UMR7104, INSERM U964, Université de Strasbourg, Illkirch, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Abstract
Bardet-Biedl syndrome (BBS) is a rare autosomal recessive ciliopathy characterised by retinal dystrophy, obesity, post-axial polydactyly, renal dysfunction, learning difficulties and hypogonadism. Many associated minor features can be helpful in making a diagnosis and are important in the clinical management of BBS. The diagnosis is based on clinical findings and can be confirmed by sequencing of known disease-causing genes in 80% of patients. BBS genes encode proteins that localise to the cilia and basal body and are involved in cilia biogenesis and function. Mutations lead to defective cilia accounting in part for the pleiotropic effects observed in BBS. We provide an overview of BBS including the clinical findings, current understanding of cilia biology, and a practical approach to diagnosis, genetic counselling and up-to-date management.
Collapse
Affiliation(s)
- Elizabeth Forsythe
- Molecular Medicine Unit, Institute of Child Health, University College London, London, UK
| | | |
Collapse
|
38
|
Davis EE, Katsanis N. The ciliopathies: a transitional model into systems biology of human genetic disease. Curr Opin Genet Dev 2012; 22:290-303. [PMID: 22632799 DOI: 10.1016/j.gde.2012.04.006] [Citation(s) in RCA: 98] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2012] [Revised: 04/24/2012] [Accepted: 04/24/2012] [Indexed: 01/19/2023]
Abstract
The last decade has witnessed an explosion in the identification of genes, mutations in which appear sufficient to cause clinical phenotypes in humans. This is especially true for disorders of ciliary dysfunction in which an excess of 50 causal loci are now known; this discovery was driven partly by an improved understanding of the protein composition of the cilium and the co-occurrence of clinical phenotypes associated with ciliary dysfunction. Despite this progress, the fundamental challenge of predicting phenotype and or clinical progression based on single locus information remains unsolved. Here, we explore how the combinatorial knowledge of allele quality and quantity, an improved understanding of the biological composition of the primary cilium, and the expanded appreciation of the subcellular roles of this organelle can be synthesized to generate improved models that can explain both causality but also variable penetrance and expressivity.
Collapse
Affiliation(s)
- Erica E Davis
- Center for Human Disease Modeling, Department of Pediatrics, Duke University Medical Center, Durham, NC 27710, USA
| | | |
Collapse
|
39
|
Putoux A, Attie-Bitach T, Martinovic J, Gubler MC. Phenotypic variability of Bardet-Biedl syndrome: focusing on the kidney. Pediatr Nephrol 2012; 27:7-15. [PMID: 21246219 DOI: 10.1007/s00467-010-1751-3] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2010] [Revised: 11/26/2010] [Accepted: 11/30/2010] [Indexed: 12/12/2022]
Abstract
Bardet-Biedl syndrome (BBS) is a multisystemic developmental disorder diagnosed on the basis of the presence of obesity, retinal defects, polydactyly, hypogonadism, renal dysfunction, and learning disabilities. The syndrome is genetically heterogeneous with 14 BBS genes identified to date. Since the cloning of the first gene in 2000, a combination of genetic, in vitro, and in vivo studies have highlighted ciliary dysfunction as a primary cause of BBS pathology. Pleiotropy of ciliopathy phenotypes and complex genetic interactions between causal and modifying alleles of ciliary genes contribute to phenotypic variability. In particular, kidney disease in BBS is clinically heterogeneous, but is now recognized as a cardinal feature and a major cause of mortality in BBS.
Collapse
Affiliation(s)
- Audrey Putoux
- INSERM U-781, Hôpital Necker-Enfants Malades, Paris, France
| | | | | | | |
Collapse
|
40
|
Wang H, Chen X, Dudinsky L, Patenia C, Chen Y, Li Y, Wei Y, Abboud EB, Al-Rajhi AA, Lewis RA, Lupski JR, Mardon G, Gibbs RA, Perkins BD, Chen R. Exome capture sequencing identifies a novel mutation in BBS4. Mol Vis 2011; 17:3529-40. [PMID: 22219648 PMCID: PMC3250376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2011] [Accepted: 12/26/2011] [Indexed: 11/02/2022] Open
Abstract
PURPOSE Leber congenital amaurosis (LCA) is one of the most severe eye dystrophies characterized by severe vision loss at an early stage and accounts for approximately 5% of all retinal dystrophies. The purpose of this study was to identify a novel LCA disease allele or gene and to develop an approach combining genetic mapping with whole exome sequencing. METHODS Three patients from King Khaled Eye Specialist Hospital (KKESH205) underwent whole genome single nucleotide polymorphism genotyping, and a single candidate region was identified. Taking advantage of next-generation high-throughput DNA sequencing technologies, whole exome capture sequencing was performed on patient KKESH205#7. Sanger direct sequencing was used during the validation step. The zebrafish model was used to examine the function of the mutant allele. RESULTS A novel missense mutation in Bardet-Biedl syndrome 4 protein (BBS4) was identified in a consanguineous family from Saudi Arabia. This missense mutation in the fifth exon (c.253G>C;p.E85Q) of BBS4 is likely a disease-causing mutation as it segregates with the disease. The mutation is not found in the single nucleotide polymorphism (SNP) database, the 1000 Genomes Project, or matching normal controls. Functional analysis of this mutation in zebrafish indicates that the G253C allele is pathogenic. Coinjection of the G253C allele cannot rescue the mislocalization of rhodopsin in the retina when BBS4 is knocked down by morpholino injection. Immunofluorescence analysis in cell culture shows that this missense mutation in BBS4 does not cause obvious defects in protein expression or pericentriolar localization. CONCLUSIONS This mutation likely mainly reduces or abolishes BBS4 function in the retina. Further studies of this allele will provide important insights concerning the pleiotropic nature of BBS4 function.
Collapse
Affiliation(s)
- Hui Wang
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX
| | - Xianfeng Chen
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX
| | - Lynn Dudinsky
- Department of Biology, Texas A&M University, College Station, TX
| | - Claire Patenia
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX
| | - Yiyun Chen
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX
| | - Yumei Li
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX
| | - Yue Wei
- Leukemia Department, University of Texas, M. D. Anderson Cancer Center, Houston, TX
| | - Emad B. Abboud
- King Khaled Eye Specialist Hospital, Riyadh, Kingdom of Saudi Arabia
| | - Ali A. Al-Rajhi
- King Khaled Eye Specialist Hospital, Riyadh, Kingdom of Saudi Arabia
| | - Richard Alan Lewis
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX
- Department of Ophthalmology, Baylor College of Medicine, Houston, TX
- Texas Children’s Hospital, Baylor College of Medicine, Houston, TX
| | - James R. Lupski
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX
- Texas Children’s Hospital, Baylor College of Medicine, Houston, TX
- Department of Neurology, Baylor College of Medicine, Houston, TX
| | - Graeme Mardon
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX
- Department of Neurology, Baylor College of Medicine, Houston, TX
- Department of Neuroscience, Baylor College of Medicine, Houston, TX
- Department of Pathology, Baylor College of Medicine, Houston, TX
- Program in Developmental Biology, Baylor College of Medicine, Houston, TX
| | - Richard A. Gibbs
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX
| | - Brian D. Perkins
- Department of Biology, Texas A&M University, College Station, TX
| | - Rui Chen
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX
- Program in Developmental Biology, Baylor College of Medicine, Houston, TX
| |
Collapse
|
41
|
Cystic diseases of the kidney: ciliary dysfunction and cystogenic mechanisms. Pediatr Nephrol 2011; 26:1181-95. [PMID: 21113628 PMCID: PMC3640323 DOI: 10.1007/s00467-010-1697-5] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2010] [Revised: 09/15/2010] [Accepted: 10/15/2010] [Indexed: 01/26/2023]
Abstract
Ciliary dysfunction has emerged as a common factor underlying the pathogenesis of both syndromic and isolated kidney cystic disease, an observation that has contributed to the unification of human genetic disorders of the cilium, the ciliopathies. Such grouping is underscored by two major observations: the fact that genes encoding ciliary proteins can contribute causal and modifying mutations across several clinically discrete ciliopathies, and the emerging realization that an understanding of the clinical pathology of one ciliopathy can provide valuable insight into the pathomechanism of renal cyst formation elsewhere in the ciliopathy spectrum. In this review, we discuss and attempt to stratify the different lines of proposed cilia-driven mechanisms for cystogenesis, ranging from mechano- and chemo-sensation, to cell shape and polarization, to the transduction of a variety of signaling cascades. We evaluate both common trends and differences across the models and discuss how each proposed mechanism can contribute to the development of novel therapeutic paradigms.
Collapse
|
42
|
Keppler-Noreuil KM, Blumhorst C, Sapp JC, Brinckman D, Johnston J, Nopoulos PC, Biesecker LG. Brain tissue- and region-specific abnormalities on volumetric MRI scans in 21 patients with Bardet-Biedl syndrome (BBS). BMC MEDICAL GENETICS 2011; 12:101. [PMID: 21794117 PMCID: PMC3199749 DOI: 10.1186/1471-2350-12-101] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/11/2011] [Accepted: 07/27/2011] [Indexed: 11/10/2022]
Abstract
Background Bardet-Biedl syndrome (BBS) is a heterogeneous human disorder inherited in an autosomal recessive pattern, and characterized by the primary findings of obesity, polydactyly, hypogonadism, and learning and behavioural problems. BBS mouse models have a neuroanatomical phenotype consisting of third and lateral ventriculomegaly, thinning of the cerebral cortex, and reduction in the size of the corpus striatum and hippocampus. These abnormalities raise the question of whether humans with BBS have a characteristic morphologic brain phenotype. Further, although behavioral, developmental, neurological and motor defects have been noted in patients with BBS, to date, there are limited reports of brain findings in BBS. The present study represents the largest systematic evaluation for the presence of structural brain malformations and/or progressive changes, which may contribute to these functional problems. Methods A case-control study of 21 patients, most aged 13-35 years, except for 2 patients aged 4 and 8 years, who were diagnosed with BBS by clinical criteria and genetic analysis of known BBS genes, and were evaluated by qualitative and volumetric brain MRI scans. Healthy controls were matched 3:1 by age, sex and race. Statistical analysis was performed using SAS language with SAS STAT procedures. Results All 21 patients with BBS were found to have statistically significant region- and tissue-specific patterns of brain abnormalities. There was 1) normal intracranial volume; 2) reduced white matter in all regions of the brain, but most in the occipital region; 3) preserved gray matter volume, with increased cerebral cortex volume in only the occipital lobe; 4) reduced gray matter in the subcortical regions of the brain, including the caudate, putamen and thalamus, but not in the cerebellum; and 5) increased cerebrospinal fluid volume. Conclusions There are distinct and characteristic abnormalities in tissue- and region- specific volumes of the brain in patients with BBS, which parallel the findings, described in BBS mutant mouse models. Some of these brain abnormalities may be progressive and associated with the reported neurological and behavioral problems. Further future correlation of these MRI scan findings with detailed neurologic and neuropsychological exams together with genotype data will provide better understanding of the pathophysiology of BBS.
Collapse
Affiliation(s)
- Kim M Keppler-Noreuil
- Department of Pediatrics, Division of Medical Genetics, The University of Iowa Children's Hospital, Iowa City, IA 52242, USA.
| | | | | | | | | | | | | |
Collapse
|
43
|
Hopp K, Heyer CM, Hommerding CJ, Henke SA, Sundsbak JL, Patel S, Patel P, Consugar MB, Czarnecki PG, Gliem TJ, Torres VE, Rossetti S, Harris PC. B9D1 is revealed as a novel Meckel syndrome (MKS) gene by targeted exon-enriched next-generation sequencing and deletion analysis. Hum Mol Genet 2011; 20:2524-34. [PMID: 21493627 DOI: 10.1093/hmg/ddr151] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Meckel syndrome (MKS) is an embryonic lethal, autosomal recessive disorder characterized by polycystic kidney disease, central nervous system defects, polydactyly and liver fibrosis. This disorder is thought to be associated with defects in primary cilia; therefore, it is classed as a ciliopathy. To date, six genes have been commonly associated with MKS (MKS1, TMEM67, TMEM216, CEP290, CC2D2A and RPGRIP1L). However, mutation screening of these genes revealed two mutated alleles in only just over half of our MKS cohort (46 families), suggesting an even greater level of genetic heterogeneity. To explore the full genetic complexity of MKS, we performed exon-enriched next-generation sequencing of 31 ciliopathy genes in 12 MKS pedigrees using RainDance microdroplet-PCR enrichment and IlluminaGAIIx next-generation sequencing. In family M456, we detected a splice-donor site change in a novel MKS gene, B9D1. The B9D1 protein is structurally similar to MKS1 and has been shown to be of importance for ciliogenesis in Caenorhabditis elegans. Reverse transcriptase-PCR analysis of fetal RNA revealed, hemizygously, a single smaller mRNA product with a frameshifting exclusion of B9D1 exon 4. ArrayCGH showed that the second mutation was a 1.713 Mb de novo deletion completely deleting the B9D1 allele. Immunofluorescence analysis highlighted a significantly lower level of ciliated patient cells compared to controls, confirming a role for B9D1 in ciliogenesis. The fetus inherited an additional likely pathogenic novel missense change to a second MKS gene, CEP290; p.R2210C, suggesting oligogenic inheritance in this disorder.
Collapse
Affiliation(s)
- Katharina Hopp
- Department of Biochemistry and Molecular Biology, Mayo Clinic, 200 First Street SW,Rochester, MN 55905, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Mockel A, Perdomo Y, Stutzmann F, Letsch J, Marion V, Dollfus H. Retinal dystrophy in Bardet-Biedl syndrome and related syndromic ciliopathies. Prog Retin Eye Res 2011; 30:258-74. [PMID: 21477661 DOI: 10.1016/j.preteyeres.2011.03.001] [Citation(s) in RCA: 98] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2010] [Revised: 03/03/2011] [Accepted: 03/04/2011] [Indexed: 01/26/2023]
Abstract
Primary cilia are almost ubiquitously expressed in eukaryotic cells where they function as sensors relaying information either from the extracellular environment or between two compartments of the same cell, such as in the photoreceptor cell. In ciliopathies, a continuously growing class of genetic disorders related to ciliary defects, the modified primary cilium of the photoreceptor, also known as the connecting cilium, is frequently defective. Ciliary dysfunction involves disturbances in the trafficking and docking of specific proteins involved in its biogenesis or maintenance. The main well-conserved ciliary process, intraflagellar transport (IFT), is a complex process carried out by multimeric ciliary particles and molecular motors of major importance in the photoreceptor cell. It is defective in a growing number of ciliopathies leading to retinal degeneration. Retinitis pigmentosa related to ciliary dysfunction can be an isolated feature or a part of a syndrome such as Bardet-Biedl syndrome (BBS). Research on ciliopathies and BBS has led to the discovery of several major cellular processes carried out by the primary cilium structure and has highlighted their genetic heterogeneity.
Collapse
Affiliation(s)
- A Mockel
- Laboratoire de physiopathologie des syndromes rares et héréditaires, Strasbourg, France
| | | | | | | | | | | |
Collapse
|
45
|
|
46
|
Coppieters F, Lefever S, Leroy BP, De Baere E. CEP290, a gene with many faces: mutation overview and presentation of CEP290base. Hum Mutat 2011; 31:1097-108. [PMID: 20690115 DOI: 10.1002/humu.21337] [Citation(s) in RCA: 211] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Ciliopathies are an emerging group of disorders, caused by mutations in ciliary genes. One of the most intriguing disease genes associated with ciliopathies is CEP290, in which mutations cause a wide variety of distinct phenotypes, ranging from isolated blindness over Senior-Loken syndrome (SLS), nephronophthisis (NPHP), Joubert syndrome (related disorders) (JS[RD]), Bardet-Biedl syndrome (BBS), to the lethal Meckel-Grüber syndrome (MKS). Despite the identification of over 100 unique CEP290 mutations, no clear genotype-phenotype correlations could yet be established, and consequently the predictive power of a CEP290-related genotype remains limited. One of the challenges is a better understanding of second-site modifiers. In this respect, there is a growing interest in the potential modifying effects of variations in genes encoding other members of the ciliary proteome that interact with CEP290. Here, we provide an overview of all CEP290 mutations identified so far, with their associated phenotypes. To this end, we developed CEP290base, a locus-specific mutation database that links mutations with patients and their phenotypes (medgen.ugent.be/cep290base).
Collapse
Affiliation(s)
- Frauke Coppieters
- Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium
| | | | | | | |
Collapse
|
47
|
Logan CV, Abdel-Hamed Z, Johnson CA. Molecular genetics and pathogenic mechanisms for the severe ciliopathies: insights into neurodevelopment and pathogenesis of neural tube defects. Mol Neurobiol 2010; 43:12-26. [PMID: 21110233 DOI: 10.1007/s12035-010-8154-0] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2010] [Accepted: 11/16/2010] [Indexed: 01/05/2023]
Abstract
Meckel-Gruber syndrome (MKS) is a severe autosomal recessively inherited disorder characterized by developmental defects of the central nervous system that comprise neural tube defects that most commonly present as occipital encephalocele. MKS is considered to be the most common syndromic form of neural tube defect. MKS is genetically heterogeneous with six known disease genes: MKS1, MKS2/TMEM216, MKS3/TMEM67, RPGRIP1L, CEP290, and CC2D2A with the encoded proteins all implicated in the correct function of primary cilia. Primary cilia are microtubule-based organelles that project from the apical surface of most epithelial cell types. Recent progress has implicated the involvement of cilia in the Wnt and Shh signaling pathways and has led to an understanding of their role in normal mammalian neurodevelopment. The aim of this review is to provide an overview of the molecular genetics of the human disorder, and to assess recent insights into the etiology and molecular cell biology of severe ciliopathies from mammalian animal models of MKS.
Collapse
Affiliation(s)
- Clare V Logan
- Section of Ophthalmology and Neurosciences, Wellcome Trust Brenner Building, Leeds Institute of Molecular Medicine, St James's University Hospital, Beckett Street, Leeds LS9 7TF, UK
| | | | | |
Collapse
|
48
|
Harville HM, Held S, Diaz-Font A, Davis EE, Diplas BH, Lewis RA, Borochowitz Z, Zhou W, Chaki M, MacDonald J, Kayserili H, Beales PL, Katsanis N, Otto E, Hildebrandt F. Identification of 11 novel mutations in eight BBS genes by high-resolution homozygosity mapping. J Med Genet 2010; 47:262-7. [PMID: 19797195 PMCID: PMC3017466 DOI: 10.1136/jmg.2009.071365] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
BACKGROUND Bardet-Biedl syndrome (BBS) is primarily an autosomal recessive disorder characterised by the five cardinal features retinitis pigmentosa, postaxial polydactyly, mental retardation, obesity and hypogenitalism. In addition, renal cysts and other anomalies of the kidney and urinary tract can be present. To date, mutations in 12 BBS genes as well as in MKS1 and CEP290 have been identified as causing BBS. The vast genetic heterogeneity of BBS renders molecular genetic diagnosis difficult in terms of the time and cost required to screen all 204 coding exons. METHOD Here, the use of genome-wide homozygosity mapping as a tool to identify homozygous segments at known BBS loci, in BBS individuals from inbred and outbred background, is reported. RESULTS In a worldwide cohort of 45 families, causative homozygous mutations in 20 families were identified via direct exon sequencing. Eleven of these mutations were novel, thereby increasing the number of known BBS mutations by 5% (11/218). CONCLUSIONS Thus, in the presence of extreme genetic locus heterogeneity, homozygosity mapping provides a valuable approach to the molecular genetic diagnosis of BBS and will facilitate the discovery of novel pathogenic mutations.
Collapse
Affiliation(s)
- Heather M. Harville
- Howard Hughes Medical Institute and Departments of Pediatrics and of Human Genetics, University of Michigan School of Medicine, Ann Arbor, MI, USA
| | - Susanne Held
- Howard Hughes Medical Institute and Departments of Pediatrics and of Human Genetics, University of Michigan School of Medicine, Ann Arbor, MI, USA
| | - Anna Diaz-Font
- Molecular Medicine Unit, UCL Institute of Child Health, London, UK
| | - Erica E. Davis
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Center for Human Disease Modeling, Department of Cell Biology, Duke University Medical Center, Durham, NC, USA
| | - Bill H. Diplas
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Richard A. Lewis
- Departments of Ophthalmology, Molecular and Human Genetics, Pediatrics and Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Zvi Borochowitz
- The Simon Winter Institute for Human Genetics, Bnai-Zion Medical Center and The Rappaport Faculty of Medicine and Research Institute, Technion-Israel Institute of Technology, Haifa, Israel
| | - Weibin Zhou
- Howard Hughes Medical Institute and Departments of Pediatrics and of Human Genetics, University of Michigan School of Medicine, Ann Arbor, MI, USA
| | - Moumita Chaki
- Howard Hughes Medical Institute and Departments of Pediatrics and of Human Genetics, University of Michigan School of Medicine, Ann Arbor, MI, USA
| | - Jim MacDonald
- Howard Hughes Medical Institute and Departments of Pediatrics and of Human Genetics, University of Michigan School of Medicine, Ann Arbor, MI, USA
| | - Hulya Kayserili
- Institute of Child Health, University of Istanbul, Istanbul, Turkey
| | - Philip L. Beales
- Molecular Medicine Unit, UCL Institute of Child Health, London, UK
| | - Nicholas Katsanis
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Center for Human Disease Modeling, Department of Cell Biology, Duke University Medical Center, Durham, NC, USA
| | - Edgar Otto
- Howard Hughes Medical Institute and Departments of Pediatrics and of Human Genetics, University of Michigan School of Medicine, Ann Arbor, MI, USA
| | - Friedhelm Hildebrandt
- Howard Hughes Medical Institute and Departments of Pediatrics and of Human Genetics, University of Michigan School of Medicine, Ann Arbor, MI, USA
| |
Collapse
|
49
|
Zaghloul NA, Katsanis N. Functional modules, mutational load and human genetic disease. Trends Genet 2010; 26:168-76. [PMID: 20226561 DOI: 10.1016/j.tig.2010.01.006] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2009] [Revised: 01/14/2010] [Accepted: 01/22/2010] [Indexed: 11/17/2022]
Abstract
The ability to generate a massive amount of sequencing and genotyping data is transforming the study of human genetic disorders. Driven by such innovation, it is likely that whole exome and whole-genome resequencing will replace regionally focused approaches for gene discovery and clinical testing in the next few years. However, this opportunity brings a significant interpretative challenge to assigning function and phenotypic variance to common and rare alleles. Understanding the effect of individual mutations in the context of the remaining genomic variation represents a major challenge to our interpretation of disease. Here, we discuss the challenges of assigning mutation functionality and, drawing from the examples of ciliopathies as well as cohesinopathies and channelopathies, discuss possibilities for the functional modularization of the human genome. Functional modularization in addition to the development of physiologically relevant assays to test allele functionality will accelerate our understanding of disease architecture and enable the use of genome-wide sequence data for disease diagnosis and phenotypic prediction in individuals.
Collapse
Affiliation(s)
- Norann A Zaghloul
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | | |
Collapse
|
50
|
Hjortshøj TD, Grønskov K, Philp AR, Nishimura DY, Riise R, Sheffield VC, Rosenberg T, Brøndum-Nielsen K. Bardet-Biedl syndrome in Denmark-report of 13 novel sequence variations in six genes. Hum Mutat 2010; 31:429-36. [DOI: 10.1002/humu.21204] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|