1
|
Lennox RJ, Eldøy SH, Dahlmo LS, Matley JK, Vollset KW. Acoustic accelerometer transmitters and their growing relevance to aquatic science. MOVEMENT ECOLOGY 2023; 11:45. [PMID: 37501158 PMCID: PMC10375738 DOI: 10.1186/s40462-023-00403-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 06/26/2023] [Indexed: 07/29/2023]
Abstract
There has recently been great interest in the use of accelerometers onboard electronic transmitters to characterise various aspects of the ecology of wild animals. We review use cases and outline how these tools can provide opportunities for studying activity and survival, exercise physiology of wild animals, the response to stressors, energy landscapes and conservation planning tools, and the means with which to identify behaviours remotely from transmitted data. Accelerometer transmitters typically send data summaries to receivers at fixed intervals after filtering out static acceleration and calculating root-mean square error or overall dynamic body action of 2- or 3-axis acceleration values (often at 5-12.5 Hz) from dynamic acceleration onboard the tag. Despite the popularity of these transmitters among aquatic ecologists, we note that there is wide variation in the sampling frequencies and windows used among studies that will potentially affect the ability to make comparisons in the future. Accelerometer transmitters will likely become increasingly popular tools for studying finer scale details about cryptic species that are difficult to recapture and hence not suitable for studies using data loggers. We anticipate that there will continue to be opportunities to adopt methods used for analysing data from loggers to datasets generated from acceleration transmitters, to generate new knowledge about the ecology of aquatic animals.
Collapse
Affiliation(s)
- Robert J Lennox
- Norwegian Institute for Nature Research, Trondheim, Høgskoleringen 9, 7034, Norway.
- NORCE Norwegian Research Centre Laboratory for Freshwater Ecology and Inland Fisheries, Nygaardsgaten 112, 5008, Bergen, Norway.
- Ocean Tracking Network, Dalhousie University, 1335 Oxford St, B3H 3Z1, Halifax, Canada.
| | - Sindre H Eldøy
- NTNU Vitenskapsmuseet, Erling Skakkes gate 47B, 7012, Trondheim, Norway
| | - Lotte S Dahlmo
- NORCE Norwegian Research Centre Laboratory for Freshwater Ecology and Inland Fisheries, Nygaardsgaten 112, 5008, Bergen, Norway
| | - Jordan K Matley
- College of Science and Engineering, Flinders University, Adelaide, SA, 5042, Australia
| | - Knut Wiik Vollset
- NORCE Norwegian Research Centre Laboratory for Freshwater Ecology and Inland Fisheries, Nygaardsgaten 112, 5008, Bergen, Norway
| |
Collapse
|
2
|
Raboin M, Plumb JM, Sholtis MD, Smith DL, Jackson PR, Rivera JM, Suski CD, Cupp AR. Movement and behavioral states of common carp (Cyprinus carpio) in response to a behavioral deterrent in a navigational lock. MOVEMENT ECOLOGY 2023; 11:42. [PMID: 37496021 PMCID: PMC10373248 DOI: 10.1186/s40462-023-00396-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 05/30/2023] [Indexed: 07/28/2023]
Abstract
BACKGROUND Freshwater ecosystems are some of the most affected by biological invasions due, in part, to the introduction of invasive carp worldwide. Where carp have become established, management programs often seek to limit further range expansion into new areas by reducing their movement through interconnected rivers and waterways. Lock and dams are important locations for non-physical deterrents, such as carbon dioxide (CO2), to reduce unwanted fish passage without disrupting human use. The purpose of this study was to evaluate the behavioral responses of common carp (Cyprinus carpio) to non-physical deterrents within a navigation structure on the Fox River, Wisconsin. Acoustic telemetry combined with hidden Markov models (HMMs) was used to analyze variation in carp responses to treatments. Outcomes may inform CO2 effectiveness at preventing invasive carp movement through movement pinch-points. METHODS Carbon dioxide (CO2) was recently registered as a pesticide in the United States for use as a deterrent to invasive carp movement. As a part of a multi-component study to test a large-scale CO2 delivery system within a navigation lock, we characterized the influence of elevated CO2 and forced water circulation in the lock chamber on carp movements and behavior. Through time-to-event analyses, we described the responses of acoustic-tagged carp to experimental treatments including (1) CO2 injection in water with forced water circulation, (2) forced water circulation without CO2 and (3) no forced water circulation or CO2. We then used hidden Markov models (HMMs) to define fine-scale carp movement and evaluate the relationships between carp behavioral states and CO2 concentration, forced water circulation, and temperature. RESULTS Forced water circulation with and without CO2 injection were effective at expelling carp from the lock chamber relative to null treatments where no stimulus was applied. A portion of carp exposed to forced water circulation with CO2 transitioned from an exploratory to an encamped behavioral state with shorter step-lengths and a unimodal distribution in turning angles, resulting in some carp remaining in the lock chamber. Whereas carp exposed to forced water circulation only remained primarily in an exploratory behavioral state, resulting in all carp exiting the lock chamber. CONCLUSION Our findings illustrate the potential of forced water circulation, alone, as a non-physical deterrent and the efficacy of CO2 injection with forced water circulation in expelling carp from a navigation lock. Results demonstrate how acoustic telemetry and HMMs in an experimental context can describe fish behavior and inform management strategies.
Collapse
Affiliation(s)
- Maggie Raboin
- Contractor to U.S. Geological Survey, Upper Midwest Environmental Sciences Center, 2630 Fanta Reed Rd, La Crosse, WI, 54603, USA.
| | - John M Plumb
- U.S. Geological Survey, Columbia River Research Laboratory, 5501A Cook-Underwood Rd., Cook, WA, 98605, USA
| | - Matthew D Sholtis
- U.S. Geological Survey, Columbia River Research Laboratory, 5501A Cook-Underwood Rd., Cook, WA, 98605, USA
| | - David L Smith
- Engineer Research and Development Center, U.S. Army Corps of Engineers, 3909 Halls Ferry Rd., Vicksburg, MS, 39180, USA
| | - P Ryan Jackson
- U.S. Geological Survey Central Midwest Water Science Center, 405 N Goodwin Ave, Urbana, IL, 61801, USA
| | - Jose M Rivera
- U.S. Geological Survey, Upper Midwest Environmental Sciences Center, 2630 Fanta Reed Rd., La Crosse, WI, 54603, USA
| | - Cory D Suski
- Department of Natural Resources and Environmental Sciences, University of Illinois, 1102 S Goodwin Ave, Urbana, IL, 61801, USA
| | - Aaron R Cupp
- U.S. Geological Survey, Upper Midwest Environmental Sciences Center, 2630 Fanta Reed Rd., La Crosse, WI, 54603, USA
| |
Collapse
|
3
|
Winberg S, Sneddon L. Impact of intraspecific variation in teleost fishes: aggression, dominance status and stress physiology. J Exp Biol 2022; 225:278485. [DOI: 10.1242/jeb.169250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
ABSTRACT
Dominance-based social hierarchies are common among teleost fishes. The rank of an animal greatly affects its behaviour, physiology and development. The outcome of fights for social dominance is affected by heritable factors and previous social experience. Divergent stress-coping styles have been demonstrated in a large number of teleosts, and fish displaying a proactive coping style have an advantage in fights for social dominance. Coping style has heritable components, but it appears to be largely determined by environmental factors, especially social experience. Agonistic behaviour is controlled by the brain's social decision-making network, and its monoaminergic systems play important roles in modifying the activity of this neuronal network. In this Review, we discuss the development of dominance hierarchies, how social rank is signalled through visual and chemical cues, and the neurobiological mechanisms controlling or correlating with agonistic behaviour. We also consider the effects of social interactions on the welfare of fish reared in captivity.
Collapse
Affiliation(s)
- Svante Winberg
- Uppsala University 1 Behavioural Neuroendocrinology, Department of Medical Cell Biology , , 751 23 Uppsala , Sweden
| | - Lynne Sneddon
- University of Gothenburg 2 Department of Biological and Environmental Sciences , , PO Box: 463, 405 31 Gothenburg , Sweden
| |
Collapse
|
4
|
Hu Y, Li H, Zhou C, Liu Y, Ma Z. Effects of the 5-HT 1A receptor agonist 8-OH-DPAT on aggressive behavior in juvenile pufferfish, Takifugu rubripes. Aggress Behav 2022; 48:197-204. [PMID: 34904727 DOI: 10.1002/ab.22010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 11/24/2021] [Accepted: 11/30/2021] [Indexed: 11/08/2022]
Abstract
Severe aggressive behavior of juvenile pufferfish affects economic efficiency and fish welfare in aquaculture. 5-HT plays an important role in regulating the aggressive behavior of fish in aquaculture environment. This study examined the effects of different concentrations (0, 0.25, 0.5, 1 mg/kg) of 8-OH-DPAT, a selective 5-HT1A receptor agonist, on the aggressive behavior of juvenile pufferfish. Forty-five minutes after drug injection, the aggressive behavior of juvenile fish was recorded for 20 min, including the latency to the first attack and the frequency of aggressive behaviors. The results showed no significant differences in the latency to the first attack of juvenile fish among treatment groups. During the first 10 min of the observation period, there was no significant difference in the total aggressive acts and locomotor activity among treatment groups. Total aggressive acts and locomotor activity were the least in the 1 mg/kg 8-OH-DPAT-treated during the 20 min observation period. Both aggressive behavior and locomotor activity were negatively correlated with 8-OH-DPAT treatment overall, respectively. The above results suggested that the serotonergic system activation had suppressive effects on aggressive behavior and locomotor activity in juvenile pufferfish.
Collapse
Affiliation(s)
- Yu Hu
- Key Laboratory of Environment Controlled Aquaculture, Ministry of Education, Dalian Ocean University Dalian China
| | - Haixia Li
- Key Laboratory of Environment Controlled Aquaculture, Ministry of Education, Dalian Ocean University Dalian China
| | - Cheng Zhou
- Key Laboratory of Environment Controlled Aquaculture, Ministry of Education, Dalian Ocean University Dalian China
| | - Ying Liu
- Key Laboratory of Environment Controlled Aquaculture, Ministry of Education, Dalian Ocean University Dalian China
- College of Biosystems Engineering and Food Science Zhejiang University Hangzhou China
| | - Zhen Ma
- Key Laboratory of Environment Controlled Aquaculture, Ministry of Education, Dalian Ocean University Dalian China
| |
Collapse
|
5
|
Gaffney LP, Lavery JM. Research Before Policy: Identifying Gaps in Salmonid Welfare Research That Require Further Study to Inform Evidence-Based Aquaculture Guidelines in Canada. Front Vet Sci 2022; 8:768558. [PMID: 35155641 PMCID: PMC8835349 DOI: 10.3389/fvets.2021.768558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 11/24/2021] [Indexed: 11/30/2022] Open
Abstract
Aquaculture is a growing industry worldwide and Canadian finfish culture is dominated by marine salmonid farming. In part due to increasing public and stakeholder concerns around fish welfare protection, the first-ever Canadian Code of Practice for the Care and Handling of Farmed Salmonids was recently completed, following the National Farm Animal Care Council's (NFACC) rigorous Code development process. During this process, both the Scientific (responsible for reviewing existing literature and producing a peer-reviewed report that informs the Code) and Code Development (a diverse group of stakeholders including aquaculture producers, fish transporters, aquaculture veterinarians, animal welfare advocates, food retailers, government, and researchers) Committees identified research gaps in tandem, as they worked through the literature on salmonid physiology, health, husbandry, and welfare. When those lists are combined with the results of a public "top-of-mind" survey conducted by NFACC, they reveal several overlapping areas of scientific, stakeholder, and public concern where scientific evidence is currently lacking: (1) biodensity; (2) health monitoring and management, with a focus on sea lice infection prevention and management; (3) feed quality and management, particularly whether feed restriction or deprivation has consequences for welfare; (4) enclosure design, especially focused on environmental enrichment provision and lighting design; and (5) slaughter and euthanasia. For each of these five research areas, we provide a brief overview of current research on the topic and outline the specific research gaps present. The final section of this review identifies future research avenues that will help address these research gaps, including using existing paradigms developed by terrestrial animal welfare researchers, developing novel methods for assessing fish welfare, and the validation of new salmonid welfare indices. We conclude that there is no dearth of relevant research to be done in the realm of farmed salmonid welfare that can support crucial evidence-based fish welfare policy development.
Collapse
Affiliation(s)
- Leigh P. Gaffney
- National Animal Welfare Representative, Code Development Committee (NFACC) for the Code of Practice for the Care and Handling of Farm Animal Care Council (NFACC), Ottawa, ON, Canada
- Department of Biology, University of Victoria, Victoria, BC, Canada
| | - J. Michelle Lavery
- Scientific Committee (NFACC) for the Code of Practice for the Care and Handling of Farmed Salmonids, National Farm Animal Care Council (NFACC), Ottawa, ON, Canada
- Department of Integrative Biology, University of Guelph, Guelph, ON, Canada
| |
Collapse
|
6
|
Roth AM, Dingemanse NJ, Nakagawa S, McDonald GC, Løvlie H, Robledo-Ruiz DA, Pizzari T. Sexual selection and personality: Individual and group-level effects on mating behaviour in red junglefowl. J Anim Ecol 2021; 90:1288-1306. [PMID: 33630314 DOI: 10.1111/1365-2656.13454] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 02/01/2021] [Indexed: 11/28/2022]
Abstract
Despite increasing evidence of the importance of repeatable among-individual differences in behaviour (animal personality) in ecology and evolution, little remains known about the role of animal personalities in sexual selection. Here, we present an investigation of the hypothesis that the personalities of individuals and their sexual partners play a role in different episodes of sexual selection, and the extent to which these effects are modulated by the social environment. We first examined how two repeatable behaviours-exploration and boldness-are associated with pre- and postcopulatory sexual selection in male red junglefowl Gallus gallus, using replicate groups across three experimental sex ratio treatments. We further explored how the social environment modulates relationships between male personality and mating performance, and whether mating is assortative or disassortative with respect to exploration or boldness. Finally, we examined behavioural mechanisms linking personality with mating performance. Across all sex ratios, the fastest and slowest exploring males courted females proportionally less, and faster exploring males associated with females more and received more sexual solicitations. In female-biased groups, the fastest and slowest exploring males experienced the highest mating success and lowest sperm competition intensity. Faster exploring males also obtained more mates in female-biased groups when their competitors were, on average, slower exploring, and the proportion of matings obtained by fast-exploring males decreased with the proportion of fast-exploring males in a group, consistent with negative frequency-dependent sexual selection. While boldness did not predict mating performance, there was a tendency for individuals to mate disassortatively with respect to boldness. Collectively, our results suggest that male exploration can play a role in sexual selection, and that sexual selection on personality is complex and contingent on the social environment.
Collapse
Affiliation(s)
- Allison M Roth
- Edward Grey Institute, Department of Zoology, University of Oxford, Oxford, UK.,Department of Biology, University of Florida, Gainesville, FL, USA
| | - Niels J Dingemanse
- Behavioural Ecology, Department of Biology, Ludwig Maximilians University of Munich, Munich, Germany
| | - Shinichi Nakagawa
- Evolution and Ecology Research Centre and School of Biological and Environmental Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Grant C McDonald
- Edward Grey Institute, Department of Zoology, University of Oxford, Oxford, UK.,Department of Ecology, University of Veterinary Medicine Budapest, Budapest, Hungary
| | - Hanne Løvlie
- Department of Physics Chemistry and Biology, IFM Biology, Linköping University, Linköping, Sweden
| | | | - Tommaso Pizzari
- Edward Grey Institute, Department of Zoology, University of Oxford, Oxford, UK
| |
Collapse
|
7
|
Berlinghieri F, Panizzon P, Penry-Williams IL, Brown C. Laterality and fish welfare - A review. Appl Anim Behav Sci 2021. [DOI: 10.1016/j.applanim.2021.105239] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
8
|
An experimental task to measure proactive aggression under incentive condition: A Reward-Interference Task. PERSONALITY AND INDIVIDUAL DIFFERENCES 2019. [DOI: 10.1016/j.paid.2019.06.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
9
|
Gesto M. Consistent individual competitive ability in rainbow trout as a proxy for coping style and its lack of correlation with cortisol responsiveness upon acute stress. Physiol Behav 2019; 208:112576. [PMID: 31207270 DOI: 10.1016/j.physbeh.2019.112576] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 06/06/2019] [Accepted: 06/06/2019] [Indexed: 12/15/2022]
Abstract
For a given fish species, individuals are different in their ability to cope with stressors; each individual has its own set of physiological and behavioral responses to stress (stress-coping style). This individual diversity is of importance when considering the welfare of fish reared in aquaculture facilities. In this study with rainbow trout (Oncorhynchus mykiss) we investigated the link between the ability to compete for food of each individual (used as a proxy of dominance behavior/proactive stress-coping style) and its ability to cope with stress; we hypothesized that fish that are better competitors would be more robust against common aquaculture stressors. We screened 680 rainbow trout individuals for competition ability. This was done by submitting groups of 20 individuals to a 1-week competition trial where they were kept at low stocking density and were provided a restricted amount of food. A 15% of the screened fish were selected as "winners" and another 15% were selected as "losers", based on growth rates during the competition trials. Fish were re-tested in a second competition trial after several weeks, to assess for consistency of competitive ability. Winner and loser fish were individually exposed to confinement and their neuroendocrine stress response was evaluated (serotonergic activity in telencephalon and brain stem, plasma levels of cortisol, glucose and lactate). Furthermore, behavioral responses to confinement and net restraining tests were also investigated. The results showed good temporal consistency of competitive ability in the lapse of time of the experiments. Besides, competitive ability showed a positive association to fish activity during the net restraining tests. However, plasma stress marker data showed a lack of relevant differences between the acute stress responses of winner and loser fish, adding up to the body of evidence suggesting that stress responsiveness might not be consistently linked to SCS in vertebrates. This, together with the inability of winner fish to outperform loser fish in usual stocking density conditions, suggests that there is no clear welfare or performance benefits in selecting fish of a specific coping style for fish farming, at least in the domesticated trout population used in the current study.
Collapse
Affiliation(s)
- Manuel Gesto
- Section for Aquaculture, DTU Aqua, Technical University of Denmark, Willemoesvej 2, 9850 Hirtshals, Denmark.
| |
Collapse
|
10
|
Damsgård B, Evensen TH, Øverli Ø, Gorissen M, Ebbesson LOE, Rey S, Höglund E. Proactive avoidance behaviour and pace-of-life syndrome in Atlantic salmon. ROYAL SOCIETY OPEN SCIENCE 2019; 6:181859. [PMID: 31032038 PMCID: PMC6458412 DOI: 10.1098/rsos.181859] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Accepted: 02/18/2019] [Indexed: 06/09/2023]
Abstract
Individuals in a fish population differ in key life-history traits such as growth rate and body size. This raises the question of whether such traits cluster along a fast-slow growth continuum according to a pace-of-life syndrome (POLS). Fish species like salmonids may develop a bimodal size distribution, providing an opportunity to study the relationships between individual growth and behavioural responsiveness. Here we test whether proactive characteristics (bold behaviour coupled with low post-stress cortisol production) are related to fast growth and developmental rate in Atlantic salmon, Salmo salar. Boldness was tested in a highly controlled two-tank hypoxia test were oxygen levels were gradually decreased in one of the tanks. All fish became inactive close to the bottom at 70% oxygen saturation. At 40% oxygen saturation level a fraction of the fish actively sought to avoid hypoxia. A proactive stress coping style was verified by lower cortisol response to a standardized stressor. Two distinct clusters of bimodal growth trajectories were identified, with fast growth and early smoltification in 80% of the total population. There was a higher frequency of proactive than reactive individuals in this fast-developing fraction of fish. The smolts were associated with higher post-stress plasma cortisol than parr, and the proactive smolts leaving hypoxia had significant lower post-stress cortisol than the stayers. The study demonstrated a link between a proactive coping and fast growth and developmental ratio and suggests that selection for domestic production traits promotes this trait cluster.
Collapse
Affiliation(s)
- Børge Damsgård
- The University Centre in Svalbard (UNIS), 9171 Longyearbyen, Norway
- Nofima, 9291 Tromsø, Norway
| | | | - Øyvind Øverli
- Department of Food Safety and Infection Biology, Norwegian University of Life Sciences, 0454 Oslo, Norway
| | - Marnix Gorissen
- Department of Animal Ecology and Physiology, Institute of Water and Wetland Research, Radboud University, 6525AJ Nijmegen, The Netherlands
| | | | - Sonia Rey
- Institute of Aquaculture, University of Stirling, FK9 4LA Stirling, UK
| | - Erik Höglund
- Center of Coastal Research, University of Agder, 4604 Kristiansand, Norway
- Norwegian Institute of Water Research, 0349 Oslo, Norway
| |
Collapse
|
11
|
Soares MC, Gerlai R, Maximino C. The integration of sociality, monoamines and stress neuroendocrinology in fish models: applications in the neurosciences. JOURNAL OF FISH BIOLOGY 2018; 93:170-191. [PMID: 30043474 DOI: 10.1111/jfb.13757] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Accepted: 07/12/2018] [Indexed: 06/08/2023]
Abstract
Animal-focused research has been crucial for scientific advancement, but rodents are still taking a starring role. Starting as merely supporting evidence found in rodents, the use of fish models has slowly taken a more central role and expanded its overall contributions in areas such as social sciences, evolution, physiology and recently in translational medical research. In the neurosciences, zebrafish Danio rerio have been widely adopted, contributing to our understanding of the genetic control of brain processes and the effects of pharmacological manipulations. However, discussion continues regarding the paradox of function versus structure, when fishes and mammals are compared and on the potentially evolutionarily conserved nature of behaviour across fish species. From a behavioural standpoint, we explore aversive-stress and social behaviour in selected fish models and refer to the extensive contributions of stress and monoaminergic systems. We suggest that, in spite of marked neuroanatomical differences between fishes and mammals, stress and sociality are conserved at the behavioural and molecular levels. We also suggest that stress and sociality are mediated by monoamines in predictable and non-trivial ways and that monoamines could bridge the relationship between stress and social behaviour. To reconcile the level of divergence with the level of similarity, we need neuroanatomical, pharmacological, behavioural and ecological studies conducted in the laboratory and in nature. These areas need to add to each other to enhance our understanding of fish behaviour and ultimately how this all may lead to better model systems for translational studies.
Collapse
Affiliation(s)
- Marta C Soares
- Centro de Investigação em Biodiversidade e Recursos Genéticos - CIBIO, Universidade do Porto, Vairão, Portugal
| | - Robert Gerlai
- Department of Psychology, University of Toronto Mississauga, Mississauga, Canada
| | - Caio Maximino
- Laboratório de Neurociências e Comportamento 'Frederico Guilherme Graeff', Instituto de Estudos em Saúde e Biológicas - IESB, Universidade Federal do Sul e Sudeste do Pará, Marabá, Brazil
| |
Collapse
|
12
|
Gattuso A, Garofalo F, Cerra MC, Imbrogno S. Hypoxia Tolerance in Teleosts: Implications of Cardiac Nitrosative Signals. Front Physiol 2018; 9:366. [PMID: 29706897 PMCID: PMC5906588 DOI: 10.3389/fphys.2018.00366] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Accepted: 03/26/2018] [Indexed: 12/18/2022] Open
Abstract
Changes in environmental oxygen (O2) are naturally occurring phenomena which ectotherms have to face on. Many species exhibit a striking capacity to survive and remain active for long periods under hypoxia, even tolerating anoxia. Some fundamental adaptations contribute to this capacity: metabolic suppression, tolerance of pH and ionic unbalance, avoidance and/or repair of free-radical-induced cell injury during reoxygenation. A remarkable feature of these species is their ability to preserve a normal cardiovascular performance during hypoxia/anoxia to match peripheral (tissue pO2) requirements. In this review, we will refer to paradigms of hypoxia- and anoxia-tolerant teleost fish to illustrate cardiac physiological strategies that, by involving nitric oxide and its metabolites, play a critical role in the adaptive responses to O2 limitation. The information here reported may contribute to clarify the molecular and cellular mechanisms underlying heart vulnerability vs. resistance in relation to O2 availability.
Collapse
Affiliation(s)
- Alfonsina Gattuso
- Department of Biology, Ecology and Earth Sciences, University of Calabria, Rende, Italy
| | - Filippo Garofalo
- Department of Biology, Ecology and Earth Sciences, University of Calabria, Rende, Italy
| | - Maria C Cerra
- Department of Biology, Ecology and Earth Sciences, University of Calabria, Rende, Italy
| | - Sandra Imbrogno
- Department of Biology, Ecology and Earth Sciences, University of Calabria, Rende, Italy
| |
Collapse
|
13
|
Rosengren M, Thörnqvist PO, Winberg S, Sundell K. The brain-gut axis of fish: Rainbow trout with low and high cortisol response show innate differences in intestinal integrity and brain gene expression. Gen Comp Endocrinol 2018; 257:235-245. [PMID: 28947388 DOI: 10.1016/j.ygcen.2017.09.020] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Revised: 05/23/2017] [Accepted: 09/21/2017] [Indexed: 11/16/2022]
Abstract
In fish, the stress hormone cortisol is released through the action of the hypothalamic pituitary interrenal axis (HPI-axis). The reactivity of this axis differs between individuals and previous studies have linked this to different behavioural characteristics and stress coping styles. In the current study, low and high responding (LR and HR) rainbow trout in terms of cortisol release during stress were identified, using a repeated confinements stress test. The expression of stress related genes in the forebrain and the integrity of the stress sensitive primary barrier of the intestine was examined. The HR trout displayed higher expression levels of mineralocorticoid and serotonergic receptors and serotonergic re-uptake pumps in the telencephalon during both basal and stressed conditions. This confirms that HPI-axis reactivity is linked also to other neuronal behavioural modulators, as both the serotonergic and the corticoid system in the telencephalon are involved in behavioural reactivity and cognitive processes. Involvement of the HPI-axis in the brain-gut-axis was also found. LR trout displayed a lower integrity in the primary barrier of the intestine during basal conditions compared to the HR trout. However, following stress exposure, LR trout showed an unexpected increase in intestinal integrity whereas the HR trout instead suffered a reduction. This could make the LR individuals more susceptible to pathogens during basal conditions where instead HR individuals would be more vulnerable during stressed conditions. We hypothesize that these barrier differences are caused by regulation/effects on tight junction proteins possibly controlled by secondary effects of cortisol on the intestinal immune barrier or differences in parasympathetic reactivity.
Collapse
Affiliation(s)
- Malin Rosengren
- Department of Biological and Environmental Sciences, University of Gothenburg, PO Box: 463, SE-405 31 Gothenburg, Sweden.
| | - Per-Ove Thörnqvist
- Department of Neuroscience, Uppsala University, PO Box: 593, SE-75124 Uppsala, Sweden.
| | - Svante Winberg
- Department of Neuroscience, Uppsala University, PO Box: 593, SE-75124 Uppsala, Sweden.
| | - Kristina Sundell
- Department of Biological and Environmental Sciences, University of Gothenburg, PO Box: 463, SE-405 31 Gothenburg, Sweden.
| |
Collapse
|
14
|
Belanger C, Peiman K, Vera-Chang M, Moon T, Cooke S. Pumpkinseed sunfish ( Lepomis gibbosus) from littoral and limnetic habitats differ in stress responsiveness independent of environmental complexity and presence of conspecifics. CAN J ZOOL 2017. [DOI: 10.1139/cjz-2016-0202] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In the face of a changing world, there has been increasing interest in the behavioural and physiological responses of wild animals to stressors. Many factors can influence stress responsiveness, but two that have not been extensively studied during the stress-induced phase are environmental complexity and the presence of conspecifics. Using wild pumpkinseed sunfish (Lepomis gibbosus (L., 1758)) collected from limnetic and littoral sites, we tested whether glucose and cortisol were affected by environmental complexity and the density of conspecifics during the period of maximum response following a standardized air stressor. Overall, environmental complexity and conspecific density did not have a significant effect on maximum stress. However, in the environmental complexity experiment, fish collected from the littoral site had significantly higher concentrations of maximum glucose and cortisol, and tended to have higher glucose and cortisol responsiveness, than limnetic fish. This indicates that although the collection site did not affect a fish’s baseline values, intraspecific variation in site use is associated with divergent sensitivity of the hypothalamic–pituitary–interrenal axis to stressors. The importance of capture location on maximal response from stressors represents a potential sampling bias and source of variation, and may be even more pronounced in species that are habitat specialists.
Collapse
Affiliation(s)
- C.B. Belanger
- Fish Ecology and Conservation Physiology Laboratory, Department of Biology and Institute of Environmental Science, Carleton University, 1125 Colonel By Drive, Ottawa, ON K1S 5B6, Canada
| | - K.S. Peiman
- Fish Ecology and Conservation Physiology Laboratory, Department of Biology and Institute of Environmental Science, Carleton University, 1125 Colonel By Drive, Ottawa, ON K1S 5B6, Canada
| | - M.N. Vera-Chang
- Department of Biology and Centre for Advanced Research in Environmental Genomics, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| | - T.W. Moon
- Department of Biology and Centre for Advanced Research in Environmental Genomics, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| | - S.J. Cooke
- Fish Ecology and Conservation Physiology Laboratory, Department of Biology and Institute of Environmental Science, Carleton University, 1125 Colonel By Drive, Ottawa, ON K1S 5B6, Canada
| |
Collapse
|
15
|
|
16
|
Sadoul B, Foucard A, Valotaire C, Labbé L, Goardon L, LeCalvez JM, Médale F, Quillet E, Dupont-Nivet M, Geurden I, Prunet P, Colson V. Adaptive capacities from survival to stress responses of two isogenic lines of rainbow trout fed a plant-based diet. Sci Rep 2016; 6:35957. [PMID: 27808103 PMCID: PMC5093906 DOI: 10.1038/srep35957] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Accepted: 10/03/2016] [Indexed: 12/02/2022] Open
Abstract
The composition of feed for farmed salmonids has strongly evolved during the last decades due to the substitution of fishery-derived fish oil and fishmeal by ingredients of plant origin. Little information is available regarding the effects of this transition on adaptive capacities in fish. Two rainbow trout isogenic lines, known for their divergent ability to grow on a plant-based diet (PBD), were fed for seven months from first feeding either a fully PBD or a control marine-resources diet and were compared for their growing and survival capacities over time and their behavioral and stress responses at similar sizes but different ages. Although fish displayed similar appetitive behaviour, the two lines were highly affected by the PBD translated in decreased growth and apathetic behaviour, but also stronger stress responses displayed by stronger cortisol increases and more stress-related behaviour when isolated. The two lines were found to be similarly sensitive to a PBD for the assessed stress-related parameters, but one line displayed a lower survival during the early rearing period. Overall, these results suggest that a PBD supplied to fish from the alevin stage has strong effects on physiological and behavioural parameters, with possible impairment of fish welfare, but also genome-dependent survival.
Collapse
Affiliation(s)
- B Sadoul
- INRA, UR1037, Fish Physiology and Genomics, 35042 Rennes, France
| | - A Foucard
- INRA, UR1037, Fish Physiology and Genomics, 35042 Rennes, France
| | - C Valotaire
- INRA, UR1037, Fish Physiology and Genomics, 35042 Rennes, France
| | - L Labbé
- INRA, UE937 Pisciculture expérimentale des Monts d'Arrée, 29450 Sizun, France
| | - L Goardon
- INRA, UE937 Pisciculture expérimentale des Monts d'Arrée, 29450 Sizun, France
| | - J M LeCalvez
- INRA, UE937 Pisciculture expérimentale des Monts d'Arrée, 29450 Sizun, France
| | - F Médale
- INRA, UR1419 Nutrition Métabolisme Aquaculture, 64310 St-Pée-sur-Nivelle, France
| | - E Quillet
- INRA, UMR1313 Génétique Animale et Biologie Intégrative, 78352 Jouy-en-Josas, France
| | - M Dupont-Nivet
- INRA, UMR1313 Génétique Animale et Biologie Intégrative, 78352 Jouy-en-Josas, France
| | - I Geurden
- INRA, UR1419 Nutrition Métabolisme Aquaculture, 64310 St-Pée-sur-Nivelle, France
| | - P Prunet
- INRA, UR1037, Fish Physiology and Genomics, 35042 Rennes, France
| | - V Colson
- INRA, UR1037, Fish Physiology and Genomics, 35042 Rennes, France
| |
Collapse
|
17
|
Byrnes EE, Brown C. Individual personality differences in Port Jackson sharks Heterodontus portusjacksoni. JOURNAL OF FISH BIOLOGY 2016; 89:1142-1157. [PMID: 27228221 DOI: 10.1111/jfb.12993] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Accepted: 04/07/2016] [Indexed: 06/05/2023]
Abstract
This study examined interindividual personality differences between Port Jackson sharks Heterodontus portusjacksoni utilizing a standard boldness assay. Additionally, the correlation between differences in individual boldness and stress reactivity was examined, exploring indications of individual coping styles. Heterodontus portusjacksoni demonstrated highly repeatable individual differences in boldness and stress reactivity. Individual boldness scores were highly repeatable across four trials such that individuals that were the fastest to emerge in the first trial were also the fastest to emerge in subsequent trials. Additionally, individuals that were the most reactive to a handling stressor in the first trial were also the most reactive in a second trial. The strong link between boldness and stress response commonly found in teleosts was also evident in this study, providing evidence of proactive-reactive coping styles in H. portusjacksoni. These results demonstrate the presence of individual personality differences in sharks for the first time. Understanding how personality influences variation in elasmobranch behaviour such as prey choice, habitat use and activity levels is critical to better managing these top predators which play important ecological roles in marine ecosystems.
Collapse
Affiliation(s)
- E E Byrnes
- Department of Biological Sciences, Macquarie University, North Ryde, NSW, 2109, Australia
| | - C Brown
- Department of Biological Sciences, Macquarie University, North Ryde, NSW, 2109, Australia
| |
Collapse
|
18
|
Winberg S, Thörnqvist PO. Role of brain serotonin in modulating fish behavior. Curr Zool 2016; 62:317-323. [PMID: 29491919 PMCID: PMC5804243 DOI: 10.1093/cz/zow037] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Accepted: 02/17/2016] [Indexed: 12/22/2022] Open
Abstract
The organization of the brain serotonergic system appears to have been highly conserved across the vertebrate subphylum. In fish as well as in other vertebrates, brain serotonin (5-HT), mainly acts as a neuromodulator with complex effects on multiple functions. It is becoming increasingly clear that acute and chronic increase in brain 5-HT neurotransmission have very different effects. An acute 5-HT activation, which is seen in both winners and losers of agonistic interactions, could be related to a general arousal effect, whereas the chronic activation observed in subordinate fish is clearly linked to the behavioral inhibition displayed by these individuals. Fish displaying divergent stress coping styles (proactive vs. reactive) differ in 5-HT functions. In teleost fish, brain monoaminergic function is also related to life history traits.
Collapse
Affiliation(s)
- Svante Winberg
- Department of Neuroscience, Comparative Behavioral Neuroendocrinology Lab, Uppsala University, Box 593, 751 24 Uppsala, Sweden
| | - Per-Ove Thörnqvist
- Department of Neuroscience, Comparative Behavioral Neuroendocrinology Lab, Uppsala University, Box 593, 751 24 Uppsala, Sweden
| |
Collapse
|
19
|
Maria Poli B. Farmed fish welfare-suffering assessment and impact on product quality. ITALIAN JOURNAL OF ANIMAL SCIENCE 2016. [DOI: 10.4081/ijas.2009.s1.139] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
20
|
Hau M, Casagrande S, Ouyang J, Baugh A. Glucocorticoid-Mediated Phenotypes in Vertebrates. ADVANCES IN THE STUDY OF BEHAVIOR 2016. [DOI: 10.1016/bs.asb.2016.01.002] [Citation(s) in RCA: 107] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
21
|
Husak JF. Measuring Selection on Physiology in the Wild and Manipulating Phenotypes (in Terrestrial Nonhuman Vertebrates). Compr Physiol 2015; 6:63-85. [PMID: 26756627 DOI: 10.1002/cphy.c140061] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
To understand why organisms function the way that they do, we must understand how evolution shapes physiology. This requires knowledge of how selection acts on physiological traits in nature. Selection studies in the wild allow us to determine how variation in physiology causes variation in fitness, revealing how evolution molds physiology over evolutionary time. Manipulating phenotypes experimentally in a selection study shifts the distribution of trait variation in a population to better explore potential constraints and the adaptive value of physiological traits. There is a large database of selection studies in the wild on a variety of traits, but very few of those are physiological traits. Nevertheless, data available so far suggest that physiological traits, including metabolic rate, thermal physiology, whole-organism performance, and hormone levels, are commonly subjected to directional selection in nature, with stabilizing and disruptive selection less common than predicted if physiological traits are optimized to an environment. Selection studies on manipulated phenotypes, including circulating testosterone and glucocorticoid levels, reinforce this notion, but reveal that trade-offs between survival and reproduction or correlational selection can constrain the evolution of physiology. More studies of selection on physiological traits in nature that quantify multiple traits are necessary to better determine the manner in which physiological traits evolve and whether different types of traits (dynamic performance vs. regulatory) evolve differently.
Collapse
Affiliation(s)
- Jerry F Husak
- Department of Biology, University of St. Thomas, St. Paul, Minnesota, USA
| |
Collapse
|
22
|
Thörnqvist PO, Höglund E, Winberg S. Natural selection constrains personality and brain gene expression differences in Atlantic salmon (Salmo salar). J Exp Biol 2015; 218:1077-83. [DOI: 10.1242/jeb.114314] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Accepted: 02/05/2015] [Indexed: 01/10/2023]
Abstract
ABSTRACT
In stream-spawning salmonid fishes there is a considerable variation in the timing of when fry leave the spawning nests and establish a feeding territory. The timing of emergence from spawning nests appears to be related to behavioural and physiological traits, e.g. early emerging fish are bolder and more aggressive. In the present study, emerging Atlantic salmon (Salmo salar L.) alevins were sorted into three fractions: early, intermediate and late emerging. At the parr stage, behaviour, stress responses, hindbrain monoaminergic activity and forebrain gene expression were explored in fish from the early and late emerging fractions (first and last 25%). The results show that when subjected to confinement stress, fish from the late emerging fraction respond with a larger activation of the brain serotonergic system than fish from the early fraction. Similarly, in late emerging fish, stress resulted in elevated expression of mRNA coding for serotonin 1A receptors (5-HT1A), GABA-A receptor-associated protein and ependymin, effects not observed in fish from the early emerging fraction. Moreover, fish from the early emerging fraction displayed bolder behaviour than their late emerging littermates. Taken together, these results suggest that time of emergence, boldness and aggression are linked to each other, forming a behavioural syndrome in juvenile salmon. Differences in brain gene expression between early and late emerging salmon add further support to a relationship between stress coping style and timing of emergence. However, early and late emerging salmon do not appear to differ in hypothalamus–pituitary–interrenal (HPI) axis reactivity, another characteristic of divergent stress coping styles.
Collapse
Affiliation(s)
- Per-Ove Thörnqvist
- Department of Neuroscience, Physiology Unit, Biomedical Centre (BMC), Uppsala University, Box 593, Uppsala SE-75124, Sweden
| | - Erik Höglund
- National Institute of Aquatic Resources, Section for Aquaculture, Technical University of Denmark, PO Box 101, Hirtshals DK-9850, Denmark
- Research secretariat, University of Agder, 4630 Kristiansand, Norway
| | - Svante Winberg
- Department of Neuroscience, Physiology Unit, Biomedical Centre (BMC), Uppsala University, Box 593, Uppsala SE-75124, Sweden
| |
Collapse
|
23
|
Campbell JM, Carter PA, Wheeler PA, Thorgaard GH. Aggressive behavior, brain size and domestication in clonal rainbow trout lines. Behav Genet 2015; 45:245-54. [PMID: 25647468 DOI: 10.1007/s10519-014-9696-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Accepted: 11/22/2014] [Indexed: 11/25/2022]
Abstract
Domestication causes behavior and brain size changes in many species. We addressed three questions using clonal rainbow trout lines: What are the mirror-elicited aggressive tendencies in lines with varying degrees of domestication? How does brain size relate to genotype and domestication level? Finally, is there a relationship between aggressive behavior and brain size? Clonal lines, although sampling a limited subset of the species variation, provide us with a reproducible experimental system with which we can develop hypotheses for further research. We performed principal component analyses on 12 continuous behavior and brain/body size variables and one discrete behavioral variable ("yawn") and detected several aggression syndromes. Two behaviors, "freeze" and "escape", associated with high domestication; "display" and "yawn" behavior associated with wild lines and "swim against the mirror" behavior associated with semi-wild and domestic lines. Two brain size traits, total brain and olfactory volume, were significantly related to domestication level when taking total body size into account, with domesticated lines having larger total brain volume and olfactory regions. The aggression syndromes identified indicate that future QTL mapping studies on domestication-related traits would likely be fruitful.
Collapse
Affiliation(s)
- Janet M Campbell
- School of Biological Sciences and Center for Reproductive Biology, Washington State University, PO Box 644236, Pullman, WA, 99164-4236, USA
| | | | | | | |
Collapse
|
24
|
Tudorache C, ter Braake A, Tromp M, Slabbekoorn H, Schaaf MJM. Behavioral and physiological indicators of stress coping styles in larval zebrafish. Stress 2015; 18:121-8. [PMID: 25407298 DOI: 10.3109/10253890.2014.989205] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Different individuals cope with stressors in different ways. Stress coping styles are defined as a coherent set of individual behavioral and physiological differences in the response to a stressor which remain consistent across time and context. In the present study, we have investigated coping styles in larval zebrafish (Danio rerio) at 8 days post-fertilization. Larvae were separated into two groups, according to the emergence sequence from a darkened into a novel well-lit environment, early (EE) and late (LE) emergers. We used brief periods of netting as a stressor. Swimming behavior and kinematics before and after netting stress were analyzed, as were whole-body cortisol levels before and at 10, 30 and 60 min after the stress event. The results show that general swimming activity was different between EE and LE larvae, with lower baseline cumulative distance and more erratic swimming movements in EE than in LE larvae. EE larvae showed a faster recovery to baseline levels after stress than LE larvae. Cortisol baseline levels were not different between EE and LE larvae, but peak levels after stress were higher and the recovery towards basal levels was faster in EE than in LE larvae. This study shows that coping styles are manifest in zebrafish larvae, and that behavior and swimming kinematics are associated with different cortisol responses to stress. A better understanding of the expression of coping styles may be of great value for medical applications, animal welfare issues and conservation.
Collapse
|
25
|
Baugh AT, van Oers K, Dingemanse NJ, Hau M. Baseline and stress-induced glucocorticoid concentrations are not repeatable but covary within individual great tits (Parus major). Gen Comp Endocrinol 2014; 208:154-63. [PMID: 25218170 DOI: 10.1016/j.ygcen.2014.08.014] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2014] [Revised: 08/19/2014] [Accepted: 08/22/2014] [Indexed: 11/17/2022]
Abstract
In evolutionary endocrinology, there is a growing interest in the extent and basis of individual variation in endocrine traits, especially circulating concentrations of hormones. This is important because if targeted by selection, such individual differences present the opportunity for an evolutionary response to selection. It is therefore necessary to examine whether hormone traits are repeatable in natural populations. However, research in this area is complicated by the fact that different hormone traits can be correlated. The nature of these trait correlations (i.e., phenotypic, within-, or among-individual) is critically relevant in terms of the evolutionary implications, and these in turn, depend on the repeatability of each hormone trait. By decomposing phenotypic correlations between hormone traits into their within- and among-individual components it is possible to describe the multivariate nature of endocrine traits and generate inferences about their evolution. In the present study, we repeatedly captured individual great tits (Parus major) from a wild population and measured plasma concentrations of corticosterone. Using a mixed-modeling approach, we estimated repeatabilities in both initial (cf. baseline; CORT0) and stress-induced concentrations (CORT30) and the correlations between those traits among- and within-individuals. We found a lack of repeatability in both CORT0 and CORT30. Moreover, we found a strong phenotypic correlation between CORT0 and CORT30, and due to the lack of repeatability for both traits, there was no among-individual correlation between these two traits-i.e., an individual's average concentration of CORT0 was not correlated with its average concentration of CORT30. Instead, the phenotypic correlation was the result of a strong within-individual correlation, which implies that an underlying environmental factor co-modulates changes in initial and stress-induced concentrations within the same individual over time. These results demonstrate that (i) a phenotypic correlation between two hormone traits does not imply that the traits are correlated among individuals; (ii) the importance of repeated sampling to partition within- and among-individual variances and correlations among labile physiological traits; and (iii) that environmental factors explain a considerable fraction of the variation and co-variation in hormone concentrations.
Collapse
Affiliation(s)
- Alexander T Baugh
- Department of Biology, Swarthmore College, 500 College Avenue, Swarthmore, PA 19081, USA; Evolutionary Physiology Group, Max Planck Institute for Ornithology, Am Obstberg 1, 78315 Radolfzell, Germany.
| | - Kees van Oers
- Department of Animal Ecology, Netherlands Institute of Ecology (NIOO-KNAW), P.O. Box 50, 6708 PB Wageningen, The Netherlands.
| | - Niels J Dingemanse
- Evolutionary Ecology of Variation Research Group, Max Planck Institute for Ornithology, Eberhard-Gwinner-Str., 82319 Seewiesen, Germany; Behavioural Ecology, Department of Biology, Ludwig-Maximilians University of Munich, Planegg-Martinsried, Germany.
| | - Michaela Hau
- Evolutionary Physiology Group, Max Planck Institute for Ornithology, Am Obstberg 1, 78315 Radolfzell, Germany; Evolutionary Physiology Group, Max Planck Institute for Ornithology, Eberhard-Gwinner-Str., 82319 Seewiesen, Germany; Department of Biology, University of Konstanz, Universitätsstrasse 10, Konstanz, Germany.
| |
Collapse
|
26
|
Silva PIM, Martins CIM, Höglund E, Gjøen HM, Øverli Ø. Feeding motivation as a personality trait in Nile tilapia (Oreochromis niloticus): role of serotonergic neurotransmission. FISH PHYSIOLOGY AND BIOCHEMISTRY 2014; 40:1547-1557. [PMID: 24858238 DOI: 10.1007/s10695-014-9947-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2014] [Accepted: 05/08/2014] [Indexed: 06/03/2023]
Abstract
Consistent individual variation in behaviour and physiology (i.e. animal personality or coping style) has emerged as a central topic in many biological disciplines. Yet, underlying mechanisms of crucial personality traits like feeding behaviour in novel environments remain unclear. Comparative studies, however, reveal a strong degree of evolutionary conservation of neural mechanisms controlling such behaviours throughout the vertebrate lineage. Previous studies have indicated duration of stress-induced anorexia as a consistent individual characteristic in teleost fishes. This study aims to determine to what degree brain 5-hydroxytryptamine (5-HT, serotonin) activity pertains to this aspect of animal personality, as a correlate to feed anticipatory behaviour and recovery of feed intake after transfer to a novel environment. Crucial to the definition of animal personality, a strong degree of individual consistency in different measures of feeding behaviour (feeding latency and feeding score), was demonstrated. Furthermore, low serotonergic activity in the hypothalamus was highly correlated with a personality characterized by high feeding motivation, with feeding motivation represented as an overall measure incorporating several behavioural parameters in a Principle Component Analyses (PCA). This study thus confirms individual variation in brain 5-HT neurotransmission as a correlate to complex behavioural syndromes related to feeding motivation.
Collapse
Affiliation(s)
- Patricia I M Silva
- Department of Animal and Aquacultural Sciences, Norwegian University of Life Sciences, P.O. Box 5003, 1432, Aas, Norway,
| | | | | | | | | |
Collapse
|
27
|
Farwell M, Fuzzen MLM, Bernier NJ, McLaughlin RL. Individual differences in foraging behavior and cortisol levels in recently emerged brook charr (Salvelinus fontinalis). Behav Ecol Sociobiol 2014. [DOI: 10.1007/s00265-014-1691-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
28
|
Chichinadze K, Chichinadze N, Gachechiladze L, Lazarashvili A, Nikolaishvili M. Physical predictors, behavioural/emotional attributes and neurochemical determinants of dominant behaviour. Biol Rev Camb Philos Soc 2014; 89:1005-20. [DOI: 10.1111/brv.12091] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2013] [Revised: 01/20/2014] [Accepted: 01/30/2014] [Indexed: 01/25/2023]
Affiliation(s)
- Konstantin Chichinadze
- Laboratory of Behavior and Cognitive Functions; I. Beritashvili Center of Experimental Biomedicine; Gotua Street 14 0160 Tbilisi Georgia
- Department of Pathology; I. Javakhishvili Tbilisi State University; 0128 Tbilisi Georgia
- Laboratory of Theoretical Investigations, Systemic Research Center; 0179 Tbilisi Georgia
| | - Nodar Chichinadze
- Department of Andrology; A. Natishvili Institute of Morphology; 0159 Tbilisi Georgia
| | - Ledi Gachechiladze
- Laboratory of Theoretical Investigations, Systemic Research Center; 0179 Tbilisi Georgia
| | - Ann Lazarashvili
- Laboratory of Theoretical Investigations, Systemic Research Center; 0179 Tbilisi Georgia
| | - Marina Nikolaishvili
- Laboratory of Problems of Radiation Safety, Department of Radiobiology; I. Beritashvili Center of Experimental Biomedicine; 0160 Tbilisi Georgia
| |
Collapse
|
29
|
Backström T, Brännäs E, Nilsson J, Magnhagen C. Behaviour, physiology and carotenoid pigmentation in Arctic charr Salvelinus alpinus. JOURNAL OF FISH BIOLOGY 2014; 84:1-9. [PMID: 24383798 DOI: 10.1111/jfb.12240] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Accepted: 08/19/2013] [Indexed: 06/03/2023]
Abstract
The behaviour during an exploration task and the response to a confinement stress of Arctic charr Salvelinus alpinus were evaluated. Behaviour of individuals during 90 min of exploration was classified into high and low activity. High-activity individuals had higher plasma cortisol levels following stress compared to low-activity individuals. This indicates that high- and low-activity individuals correspond to reactive and proactive stress-coping styles. Further, a pigmentation analysis showed that high-activity individuals had a higher number of carotenoid spots cm⁻² than low-activity individuals. Thus, carotenoid pigmentation, as melanin pigmentation in other salmonids, could be linked to stress-coping style in S. alpinus.
Collapse
Affiliation(s)
- T Backström
- Department of Wildlife, Fish, and Environmental Studies, Swedish University of Agricultural Sciences, Umeå, Sweden
| | | | | | | |
Collapse
|
30
|
Tudorache C, Schaaf MJM, Slabbekoorn H. Covariation between behaviour and physiology indicators of coping style in zebrafish (Danio rerio). J Endocrinol 2013; 219:251-8. [PMID: 24198397 DOI: 10.1530/joe-13-0225] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
All vertebrates exhibit physiological responses to a wide variety of stressors. The amplitude and profile of the response depend on the intensity, duration, controllability and predictability of the stressor, but there is also individual variation in the response, termed coping style. A better understanding of the expression of coping styles is of great value for medical applications, animal welfare issues and conservation. Here, we investigated the effect of repeated netting stress on proactive and reactive zebrafish (Danio rerio) as an upcoming model system for stress research. Fish were separated by coping styles according to the order of entering a novel environment. Subsequently, repeated netting stress was applied as stressor, over a period of 21 days. Full-body cortisol levels were determined at 0, 15, 30, 60 and 120 min after the last repeated stress event. Our results show that reactive fish display i) increased basal cortisol concentrations after being repeatedly stressed, ii) higher cortisol secretion over time and iii) slow recovery of cortisol concentration towards basal levels after the last repeated stress event. This study shows for the first time in zebrafish that different coping styles are associated with different cortisol responses during the recovery from stress over time and that coping styles can explain otherwise unaccounted variation in physiological stress responses.
Collapse
MESH Headings
- Allostasis
- Animals
- Behavior, Animal
- Brain/growth & development
- Brain/metabolism
- Disease Models, Animal
- Disease Susceptibility
- Female
- Gene Expression Regulation, Developmental
- Hydrocortisone/metabolism
- Male
- Nerve Tissue Proteins/biosynthesis
- Nerve Tissue Proteins/genetics
- Nerve Tissue Proteins/metabolism
- Neurons/metabolism
- RNA, Messenger/metabolism
- Receptors, Glucocorticoid/biosynthesis
- Receptors, Glucocorticoid/genetics
- Receptors, Glucocorticoid/metabolism
- Receptors, Mineralocorticoid/biosynthesis
- Receptors, Mineralocorticoid/genetics
- Receptors, Mineralocorticoid/metabolism
- Stress, Physiological
- Stress, Psychological/metabolism
- Zebrafish/growth & development
- Zebrafish/physiology
- Zebrafish Proteins/biosynthesis
- Zebrafish Proteins/genetics
- Zebrafish Proteins/metabolism
Collapse
Affiliation(s)
- Christian Tudorache
- Departments of Molecular Cell Biology Behavioral Biology, Institute of Biology, Leiden University, Sylviusweg 72, 2333 BE Leiden, The Netherlands
| | | | | |
Collapse
|
31
|
Backström T, Winberg S. Central corticotropin releasing factor and social stress. Front Neurosci 2013; 7:117. [PMID: 23847465 PMCID: PMC3705187 DOI: 10.3389/fnins.2013.00117] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2013] [Accepted: 06/19/2013] [Indexed: 12/23/2022] Open
Abstract
Social interactions are a main source of stress in vertebrates. Social stressors, as well as other stressors, activate the hypothalamic–pituitary–adrenal (HPA) axis resulting in glucocorticoid release. One of the main components of the HPA axis is corticotropin releasing factor (CRF). The neuropeptide CRF is part of a peptide family including CRF, urocortin 1–3, urotensin 1–3, and sauvagine. The actions of the CRF family are mediated by at least two different receptors with different anatomical distribution and affinities for the peptides. The CRF peptides affect several behavioral and physiological responses to stress including aggression, feeding, and locomotor activity. This review will summarize recent research in vertebrates concerning how social stress interacts with components of the CRF system. Consideration will be taken to the different models used for social stress ranging from social isolation, dyadic interactions, to group dominance hierarchies. Further, the temporal effect of social stressor from acute, intermittent, to chronic will be considered. Finally, strains selected for specific behavior or physiology linked to social stress will also be discussed.
Collapse
Affiliation(s)
- Tobias Backström
- Department of Wildlife, Fish, and Environmental Studies, Swedish University of Agricultural Sciences Umeå, Sweden
| | | |
Collapse
|
32
|
Andersson MÅ, Khan UW, Overli O, Gjøen HM, Höglund E. Coupling between stress coping style and time of emergence from spawning nests in salmonid fishes: evidence from selected rainbow trout strains (Oncorhynchus mykiss). Physiol Behav 2013; 116-117:30-4. [PMID: 23535245 DOI: 10.1016/j.physbeh.2013.03.019] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2012] [Revised: 03/12/2013] [Accepted: 03/19/2013] [Indexed: 10/27/2022]
Abstract
Correlations between behavioral and physiological traits, often referred to as stress coping styles, have been demonstrated in numerous animal groups. Such trait variations often cluster in two contrasting styles, with animals characterized as either proactive or reactive. In natural populations of salmonid fishes, emergence from spawning nests, when fry establish a territory and shifts from exogenous to endogenous feeding, is a crucial niche shift with a high selection pressure. The timing of this event is correlated to behavioral and physiological traits such as aggression, boldness/shyness, dominance, and metabolic rate; resembling those of proactive and reactive stress coping styles. In farmed fish populations, however the relation between emergence and stress coping styles seems to be absent, an effect which has been related to lack of selection pressure during emergence. In the present study two rainbow trout strains genetically selected as LR (low-responsive) and HR (high-responsive) trout, characterized with proactive (LR) and reactive (HR) stress coping traits, was used to further investigate the relationship between the time of emergence and stress coping style in salmonid fishes. For this task LR and HR larvae were hatched in mixed batches, and thirty individuals from the earliest and latest 25% of emerging larvae were randomly collected. Thereafter, a line specific genetic marker was used to distinguish the proportion of LR and HR occurring in early and late fractions. The result demonstrates a higher proportion of LR fry in the early fraction in comparison to the HR fry, which emerged at a higher proportion during the late period. Early emerging individuals had larger yolk reserves at emergence, lending further support to a relationship between emergence times, yolk reserves at emergence and stress coping styles in salmonids. Smaller larval bodies in early compared to late emerging individuals suggest that this difference in yolk size reflects differences in developmental stages at emergence. These data suggests that a genetic link between emergence time and stress coping style persists in captive salmonid fishes.
Collapse
Affiliation(s)
- Madelene Åberg Andersson
- Section for Aquaculture, Technical University of Denmark, DTU Aqua, The North Sea Research Centre, PO Box 101, DK-9850 Hirtshals, Denmark.
| | | | | | | | | |
Collapse
|
33
|
Sørensen C, Johansen IB, Øverli Ø. Neural plasticity and stress coping in teleost fishes. Gen Comp Endocrinol 2013; 181:25-34. [PMID: 23274407 DOI: 10.1016/j.ygcen.2012.12.003] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2012] [Revised: 11/28/2012] [Accepted: 12/03/2012] [Indexed: 12/25/2022]
Abstract
Physiological and behavioural responses to environmental change are individually variable traits, which manifest phenotypically and are subject to natural selection as correlated trait-clusters (coping styles, behavioural syndromes, or personality traits). Comparative research has revealed a range of neuroendocrine-behavioural associations which are conserved throughout the vertebrate subphylum. Regulatory mechanisms universally mediate a switch between proactive (e.g. active/aggressive) and reactive (e.g. conservation/withdrawal) behaviour in response to unpredictable and uncontrollable events. Thresholds for switching from active coping to behavioural inhibition are individually variable, and depend on experience and genetic factors. Such factors affect physiological stress responses as well as perception, learning, and memory. Here we review the role of an important contributor to neural processing, the set of biochemical, molecular, and structural processes collectively referred to as neural plasticity. We will concentrate on work in teleost fishes, while also elucidating conserved aspects. In fishes, environmental and physiological control of brain cell proliferation and neurogenesis has received recent attention. This work has revealed that the expression of genes involved in CNS plasticity is affected by heritable variation in stress coping style, and is also differentially affected by short- and long-term stress. Chronic stress experienced by subordinate fish in social hierarchies leads to a marked suppression of brain cell proliferation. Interestingly, typically routine dependent and inflexible behaviour in proactive individuals is also associated with low transcription of neurogenesis related genes. The potential for these findings to illuminate stress-related neurobiological disorders in other vertebrates is also discussed.
Collapse
Affiliation(s)
- Christina Sørensen
- Department of Molecular Biosciences, University of Oslo, PO Box 1041, N-0316 Oslo, Norway
| | | | | |
Collapse
|
34
|
Huntingford F, Tamilselvan P, Jenjan H. Why Do Some Fish Fight More than Others? Physiol Biochem Zool 2012; 85:585-93. [DOI: 10.1086/668204] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
35
|
Stress responsiveness, age and body condition interactively affect flight initiation distance in breeding female eiders. Anim Behav 2012. [DOI: 10.1016/j.anbehav.2012.07.012] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
36
|
Condition dependent intra-individual repeatability of stress-induced cortisol in a freshwater fish. Comp Biochem Physiol A Mol Integr Physiol 2012; 161:337-43. [DOI: 10.1016/j.cbpa.2011.12.002] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2011] [Revised: 12/01/2011] [Accepted: 12/02/2011] [Indexed: 11/20/2022]
|
37
|
Basic D, Winberg S, Schjolden J, Krogdahl Å, Höglund E. Context-dependent responses to novelty in Rainbow trout (Oncorhynchus mykiss), selected for high and low post-stress cortisol responsiveness. Physiol Behav 2012; 105:1175-81. [DOI: 10.1016/j.physbeh.2011.12.021] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2011] [Revised: 12/04/2011] [Accepted: 12/19/2011] [Indexed: 11/24/2022]
|
38
|
Boulton K, Sinderman B, Pearce M, Earley R, Wilson A. He who dares only wins sometimes: physiological stress and contest behaviour in Xiphophorus helleri. BEHAVIOUR 2012. [DOI: 10.1163/1568539x-00003021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
While many factors influence contest outcome and social dominance in animals,
there is increasing interest in behavioural-physiological stress-coping styles.
Causality, however, is often ambiguous; is physiological state determined by
contest outcome or vice versa? Furthermore, experimental
protocols may themselves induce stress responses that impact individual
behaviour and, thus, potentially contest outcome. Here we test whether latency
to recover from acute stress, measured both physiologically and behaviourally,
predicts who initiates and who wins dyadic contests between pairs of male green
swordtails (Xiphophorous helleri). In line with our
predictions, animals that recovered faster (behaviourally) from disturbance
created by the experimental protocol prior to meeting an opponent were more
likely to initiate contests; however, they were not more likely to win and,
contrary to expectations, had higher pre-contest cortisol levels than their
opponents. They also showed greater physiological stress responses to the
experiment as determined from the difference between pre- and post-contest
cortisol levels. Moreover, stress response was independent of whether a contest
escalated. In contradiction to evidence found in other taxa and fish systems,
the suite of traits that we measured were not correlated in a manner that
allowed classification of the animals into the usual reactive and proactive
stress-coping styles. Our results suggest that coping style may play a key role
in determining which individual initiates a contest, but that other factors
govern contest outcome.
Collapse
Affiliation(s)
- K. Boulton
- aInstitute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Ashworth Laboratories, King’s Buildings, West Mains Road, Edinburgh, EH9 3JT, UK
| | - B. Sinderman
- bDepartment of Biological Sciences, University of Alabama, 300 Hackberry Lane, Box 870344, SEC Building, Tuscaloosa, AL 35487, USA
| | - M.R. Pearce
- bDepartment of Biological Sciences, University of Alabama, 300 Hackberry Lane, Box 870344, SEC Building, Tuscaloosa, AL 35487, USA
| | - R.L. Earley
- bDepartment of Biological Sciences, University of Alabama, 300 Hackberry Lane, Box 870344, SEC Building, Tuscaloosa, AL 35487, USA
| | - A.J. Wilson
- cDaphne du Maurier Building, Centre for Ecology and Conservation, Biosciences, College of Life and Environmental Sciences, University of Exeter, Cornwall Campus, Treliever Road, Penryn, Cornwall, TR10 9EZ, UK
| |
Collapse
|
39
|
Hall IC, Sell GL, Chester EM, Hurley LM. Stress-evoked increases in serotonin in the auditory midbrain do not directly result from elevations in serum corticosterone. Behav Brain Res 2012; 226:41-9. [DOI: 10.1016/j.bbr.2011.08.042] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2011] [Revised: 08/26/2011] [Accepted: 08/27/2011] [Indexed: 11/26/2022]
|
40
|
LeBlanc S, Höglund E, Gilmour KM, Currie S. Hormonal modulation of the heat shock response: insights from fish with divergent cortisol stress responses. Am J Physiol Regul Integr Comp Physiol 2012; 302:R184-92. [DOI: 10.1152/ajpregu.00196.2011] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Acute temperature stress in animals results in increases in heat shock proteins (HSPs) and stress hormones. There is evidence that stress hormones influence the magnitude of the heat shock response; however, their role is equivocal. To determine whether and how stress hormones may affect the heat shock response, we capitalized on two lines of rainbow trout specifically bred for their high (HR) and low (LR) cortisol response to stress. We predicted that LR fish, with a low cortisol but high catecholamine response to stress, would induce higher levels of HSPs after acute heat stress than HR trout. We found that HR fish have significantly higher increases in both catecholamines and cortisol compared with LR fish, and LR fish had no appreciable stress hormone response to heat shock. This unexpected finding prevented further interpretation of the hormonal modulation of the heat shock response but provided insight into stress-coping styles and environmental stress. HR fish also had a significantly greater and faster heat shock response and less oxidative protein damage than LR fish. Despite these clear differences in the physiological and cellular responses to heat shock, there were no differences in the thermal tolerance of HR and LR fish. Our results support the hypothesis that responsiveness to environmental change underpins the physiological differences in stress-coping styles. Here, we demonstrate that the heat shock response is a distinguishing feature of the HR and LR lines and suggest that it may have been coselected with the hormonal responses to stress.
Collapse
Affiliation(s)
- Sacha LeBlanc
- Department of Biology, Mount Allison University, Sackville, New Brunswick, Canada
| | - Erik Höglund
- North Sea Research Center, Technical University of Denmark, Hirtshals, Denmark; and
| | | | - Suzanne Currie
- Department of Biology, Mount Allison University, Sackville, New Brunswick, Canada
| |
Collapse
|
41
|
Cook KV, O’Connor CM, Gilmour KM, Cooke SJ. The glucocorticoid stress response is repeatable between years in a wild teleost fish. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2011; 197:1189-96. [DOI: 10.1007/s00359-011-0680-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2011] [Revised: 09/08/2011] [Accepted: 09/09/2011] [Indexed: 10/17/2022]
|
42
|
|
43
|
Dahlbom SJ, Lagman D, Lundstedt-Enkel K, Sundström LF, Winberg S. Boldness predicts social status in zebrafish (Danio rerio). PLoS One 2011; 6:e23565. [PMID: 21858168 PMCID: PMC3157393 DOI: 10.1371/journal.pone.0023565] [Citation(s) in RCA: 140] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2011] [Accepted: 07/21/2011] [Indexed: 12/15/2022] Open
Abstract
This study explored if boldness could be used to predict social status. First, boldness was assessed by monitoring individual zebrafish behaviour in (1) an unfamiliar barren environment with no shelter (open field), (2) the same environment when a roof was introduced as a shelter, and (3) when the roof was removed and an unfamiliar object (Lego® brick) was introduced. Next, after a resting period of minimum one week, social status of the fish was determined in a dyadic contest and dominant/subordinate individuals were determined as the winner/loser of two consecutive contests. Multivariate data analyses showed that males were bolder than females and that the behaviours expressed by the fish during the boldness tests could be used to predict which fish would later become dominant and subordinate in the ensuing dyadic contest. We conclude that bold behaviour is positively correlated to dominance in zebrafish and that boldness is not solely a consequence of social dominance.
Collapse
|
44
|
|
45
|
Chen CC, Fernald RD. Visual information alone changes behavior and physiology during social interactions in a cichlid fish (Astatotilapia burtoni). PLoS One 2011; 6:e20313. [PMID: 21633515 PMCID: PMC3102105 DOI: 10.1371/journal.pone.0020313] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2011] [Accepted: 04/26/2011] [Indexed: 11/18/2022] Open
Abstract
Social behavior can influence physiological systems dramatically yet the sensory
cues responsible are not well understood. Behavior of male African cichlid fish,
Astatotilapia burtoni, in their natural habitat suggests
that visual cues from conspecifics contribute significantly to regulation of
social behavior. Using a novel paradigm, we asked whether visual cues alone from
a larger conspecific male could influence behavior, reproductive physiology and
the physiological stress response of a smaller male. Here we show that just
seeing a larger, threatening male through a clear barrier can suppress dominant
behavior of a smaller male for up to 7 days. Smaller dominant males being
“attacked” visually by larger dominant males through a clear barrier
also showed physiological changes for up to 3 days, including up-regulation of
reproductive- and stress-related gene expression levels and lowered plasma
11-ketotestesterone concentrations as compared to control animals. The smaller
males modified their appearance to match that of non-dominant males when exposed
to a larger male but they maintained a physiological phenotype similar to that
of a dominant male. After 7 days, reproductive- and stress- related gene
expression, circulating hormone levels, and gonad size in the smaller males
showed no difference from the control group suggesting that the smaller male
habituated to the visual intruder. However, the smaller male continued to
display subordinate behaviors and assumed the appearance of a subordinate male
for a full week despite his dominant male physiology. These data suggest that
seeing a larger male alone can regulate the behavior of a smaller male but that
ongoing reproductive inhibition depends on additional sensory cues. Perhaps,
while experiencing visual social stressors, the smaller male uses an
opportunistic strategy, acting like a subordinate male while maintaining the
physiology of a dominant male.
Collapse
Affiliation(s)
- Chun-Chun Chen
- Stanford University, Stanford, California, United States of America.
| | | |
Collapse
|
46
|
Tota B, Angelone T, Mancardi D, Cerra MC. Hypoxia and anoxia tolerance of vertebrate hearts: an evolutionary perspective. Antioxid Redox Signal 2011; 14:851-62. [PMID: 20518703 DOI: 10.1089/ars.2010.3310] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Extreme changes in environmental oxygen (O(2)) is a constant issue that ectotherm vertebrates have to deal with, whereas for endotherms severe hypoxia and reoxygenation are usually related to a pathological state. The physiological mechanisms of hypoxia tolerance in ectotherms are based on biochemical evolutionary adaptations and may serve in understanding endogenous phenomena of protection against diminished O(2) availability in the heart. In this review, we will, therefore, describe different species of fish, amphibian, and reptile that are well-known examples of cardiac tolerance to O(2) deficiency. We will then focus on a subset of Antarctic fishes which have lost physiological transporters of O(2) such as hemoglobin and myoglobin (Mb) and that have reached a surprising adaptation to this extreme environment. Moreover, we will concentrate on the cardio-protective effects of the interaction between Mb and nitric oxide with particular emphasis on the nitrite-reductase function of Mb. Finally, the role of a recently described gasotransmitter, the free diffusible hydrogen sulfide, will be briefly discussed in relation to hypoxia. This evolutionary and comparative perspective may provide a useful and heuristic stimulus for medically oriented research aimed at elucidating the environmental and genetic risk factors underlying the vulnerability of the human heart.
Collapse
Affiliation(s)
- Bruno Tota
- Laboratory of Cardiovascular Physiology, Department of Cell Biology, University of Calabria, Arcavacata di Rende, Italy.
| | | | | | | |
Collapse
|
47
|
Conrad JL, Weinersmith KL, Brodin T, Saltz JB, Sih A. Behavioural syndromes in fishes: a review with implications for ecology and fisheries management. JOURNAL OF FISH BIOLOGY 2011; 78:395-435. [PMID: 21284626 DOI: 10.1111/j.1095-8649.2010.02874.x] [Citation(s) in RCA: 282] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
This review examines the contribution of research on fishes to the growing field of behavioural syndromes. Current knowledge of behavioural syndromes in fishes is reviewed with respect to five main axes of animal personality: (1) shyness-boldness, (2) exploration-avoidance, (3) activity, (4) aggressiveness and (5) sociability. Compared with other taxa, research on fishes has played a leading role in describing the shy-bold personality axis and has made innovative contributions to the study of the sociability dimension by incorporating social network theory. Fishes are virtually the only major taxon in which behavioural correlations have been compared between populations. This research has guided the field in examining how variation in selection regime may shape personality. Recent research on fishes has also made important strides in understanding genetic and neuroendocrine bases for behavioural syndromes using approaches involving artificial selection, genetic mapping, candidate gene and functional genomics. This work has illustrated consistent individual variation in highly complex neuroendocrine and gene expression pathways. In contrast, relatively little work on fishes has examined the ontogenetic stability of behavioural syndromes or their fitness consequences. Finally, adopting a behavioural syndrome framework in fisheries management issues including artificial propagation, habitat restoration and invasive species, may promote restoration success. Few studies, however, have examined the ecological relevance of behavioural syndromes in the field. Knowledge of how behavioural syndromes play out in the wild will be crucial to incorporating such a framework into management practices.
Collapse
Affiliation(s)
- J L Conrad
- Department of Environmental Science and Policy, University of California-Davis, One Shields Avenue, Davis, CA 95616, U.S.A.
| | | | | | | | | |
Collapse
|
48
|
Imbrogno S, Garofalo F, Cerra MC, Mahata SK, Tota B. The catecholamine release-inhibitory peptide catestatin (chromogranin A344-363) modulates myocardial function in fish. ACTA ACUST UNITED AC 2011; 213:3636-43. [PMID: 20952611 DOI: 10.1242/jeb.045567] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Catestatin (CST), the 21-amino acid, cationic and hydrophobic peptide proteolytically derived from the ubiquitous chromogranin A (CgA), is an endogenous inhibitor of catecholamine release, a potent vasodilator in vivo and an anti-hypertensive agent in mammals, including humans. Recently, we discovered that CST also functions as an important negative modulator of heart performance in frog and rat. To gain an evolutionary perspective on CST cardiotropism in fish, we analysed the influence of bovine CST (CgA₃₄₄₋₃₆₄) on the eel heart, as well as the eventual species-specific mechanisms of its myocardial action. Experiments were carried out on fresh-water eels (Anguilla anguilla L.) using an electrically paced isolated working heart preparation. Stroke volume and stroke work were used as measures of ventricular performance. Under basal conditions, CST (from 11 nmol l⁻¹ to 165 nmol l⁻¹) caused a concentration-dependent negative inotropism, which was abolished by inhibitors of either β₁/β₂ (propranolol) or β₃ (SR₅₉₂₃₀) adrenergic receptors, or by G(i/o) protein (PTx) or nitric oxide synthase (L-NMMA), or guanylate cyclase (ODQ) blockers. This suggests a β-adrenergic receptor-G(i/o) protein-NO-cGMP-dependent mechanism. By contrast, the CST-induced cardio-suppression was not influenced by atropine, unspecific muscarinic antagonist, thus excluding cholinergic receptor involvement. CST also counteracted the adrenergic (isoproterenol)-mediated positive inotropism. Under increased preload (i.e. Frank-Starling response) conditions, CST induced a significant increase of the Frank-Starling response, which was blocked by L-NMMA and thapsigargin, but independent from guanylate cyclase. In conclusion, this is the first report in fish that CST modulates myocardial performance under basal, as well as under increased preload, conditions and counteracts the adrenergic-mediated positive inotropism, which strikingly supports the evolutionary significance and establishes the cardioactive role of this peptide.
Collapse
Affiliation(s)
- Sandra Imbrogno
- Department of Cell Biology, University of Calabria, 87030 Arcavacata di Rende (CS), Italy
| | | | | | | | | |
Collapse
|
49
|
Chase ID, Seitz K. Self-structuring properties of dominance hierarchies a new perspective. ADVANCES IN GENETICS 2011; 75:51-81. [PMID: 22078477 DOI: 10.1016/b978-0-12-380858-5.00001-0] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Using aggressive behavior, animals of many species establish dominance hierarchies in both nature and the laboratory. Rank in these hierarchies influences many aspects of animals' lives including their health, physiology, weight gain, genetic expression, and ability to reproduce and raise viable offspring. In this chapter, we define dominance relationships and dominance hierarchies, discuss several model species used in dominance studies, and consider factors that predict the outcomes of dominance encounters in dyads and small groups of animals. Researchers have shown that individual differences in attributes, as well as in states (recent behavioral experiences), influence the outcomes of dominance encounters in dyads. Attributes include physical, physiological, and genetic characteristics while states include recent experiences such as winning or losing earlier contests. However, surprisingly, we marshal experimental and theoretical evidence to demonstrate that these differences have significantly less or no ability to predict the outcomes of dominance encounters for animals in groups as small as three or four individuals. Given these results, we pose an alternative research question: How do animals of so many species form hierarchies with characteristic linear structures despite the relatively low predictability based upon individual differences? In answer to this question, we review the evidence for an alternative approach suggesting that dominance hierarchies are self-structuring. That is, we suggest that linear forms of organization in hierarchies emerge from several kinds of behavioral processes, or sequences of interaction, that are common across many different species of animals from ants to chickens and fish and even some primates. This new approach inspires a variety of further questions for research.
Collapse
Affiliation(s)
- Ivan D Chase
- Department of Sociology, Stony Brook University, Stony Brook, New York, USA
| | | |
Collapse
|
50
|
Backström T, Schjolden J, Øverli Ø, Thörnqvist PO, Winberg S. Stress effects on AVT and CRF systems in two strains of rainbow trout (Oncorhynchus mykiss) divergent in stress responsiveness. Horm Behav 2011; 59:180-6. [PMID: 21087609 DOI: 10.1016/j.yhbeh.2010.11.008] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2010] [Revised: 11/07/2010] [Accepted: 11/09/2010] [Indexed: 11/29/2022]
Abstract
The aim for this study was to examine whether the F4 generation of two strains of rainbow trout divergent in their plasma cortisol response to confinement stress (HR: high responder or LR: low responder) would also differ in stress-induced effects on forebrain concentrations of mRNA for corticotropin-releasing factor (CRF), arginine vasotocin (AVT), CRF receptor type 1 (CRF-R1), CRF receptor type 2 (CRF-R2) and AVT receptor (AVT-R). In addition, plasma cortisol concentrations, brainstem levels of monoamines and monoamine metabolites, and behaviour during confinement were monitored. The results confirm that HR and LR trout differ in their cortisol response to confinement and show that fish of these strains also differ in their behavioural response to confinement. The HR trout displayed significantly higher locomotor activity while in confinement than LR trout. Moreover, following 180 min of confinement HR fish showed significantly higher forebrain concentrations of CRF mRNA than LR fish. Also, when subjected to 30 min of confinement HR fish showed significantly lower CRF-R2 mRNA concentrations than LR fish, whereas there were no differences in CRF-R1, AVT or AVT-R mRNA expression between LR and HR fish either at 30 or 180 min of confinement. Differences in the expression of CRF and CRF-R2 mRNA may be related to the divergence in stress coping displayed by these rainbow trout strains.
Collapse
Affiliation(s)
- Tobias Backström
- Evolutionary Biology Centre, Department of Comparative Physiology, Uppsala University, Norbyvägen 18A, SE-752 36 Uppsala, Sweden
| | | | | | | | | |
Collapse
|