1
|
Li R, Dai X, Zheng J, Larsen RS, Qi Y, Zhang X, Vizueta J, Boomsma JJ, Liu W, Zhang G. Juvenile hormone as a key regulator for asymmetric caste differentiation in ants. Proc Natl Acad Sci U S A 2024; 121:e2406999121. [PMID: 39495909 DOI: 10.1073/pnas.2406999121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 08/28/2024] [Indexed: 11/06/2024] Open
Abstract
Caste differentiation involves many functional traits that diverge during larval growth and metamorphosis to produce adults irreversibly adapted to reproductive division of labor. Investigating developmental differentiation is important for general biological understanding and has increasingly been explored for social phenotypes that diverge in parallel from similar genotypes. Here, we use Monomorium pharaonis ants to investigate the extent to which canalized worker development can be shifted toward gyne (virgin-queen) phenotypes by juvenile hormone (JH) treatment. We show that excess JH can activate gyne-biased development in workers so that wing-buds, ocelli, antennal and genital imaginal discs, flight muscles, and gyne-like fat bodies and brains emerge after pupation. However, ovary development remained unresponsive to JH treatment, indicating that JH-sensitive germline sequestration happens well before somatic differentiation. Our findings reveal important qualitative restrictions in the extent to which JH treatment can redirect larval development and that these constraints are independent of body size. Our findings corroborate that JH is a key hormone for inducing caste differentiation but show that this process can be asymmetric for higher colony-level germline versus somatic caste differentiation in superorganisms as defined a century ago by Wheeler. We quantified gene expression changes in response to JH treatment throughout development and identified a set of JH-sensitive genes responsible for the emergence of gyne-like somatic traits. Our study suggests that the gonadotropic role of JH in ovary maturation has shifted from the individual level in solitary insects to the colony level in an evolutionary-derived and highly polygynous superorganism like the pharaoh ant.
Collapse
Affiliation(s)
- Ruyan Li
- Section for Ecology and Evolution, Department of Biology, University of Copenhagen, Copenhagen 2100, Denmark
| | - Xueqin Dai
- Key Laboratory of Genetic Evolution & Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650201, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming 650204, China
| | - Jixuan Zheng
- Centre for Evolutionary and Organismal Biology, Women's Hospital, & Liangzhu Laboratory, School of Medicine, Zhejiang University, Hangzhou 310058, China
| | - Rasmus Stenbak Larsen
- Section for Ecology and Evolution, Department of Biology, University of Copenhagen, Copenhagen 2100, Denmark
| | - Yanmei Qi
- Key Laboratory of Genetic Evolution & Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650201, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming 650204, China
| | - Xiafang Zhang
- Key Laboratory of Genetic Evolution & Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650201, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming 650204, China
| | - Joel Vizueta
- Section for Ecology and Evolution, Department of Biology, University of Copenhagen, Copenhagen 2100, Denmark
| | - Jacobus J Boomsma
- Centre for Social Evolution, Section for Ecology and Evolution, Department of Biology, University of Copenhagen, Copenhagen 2100, Denmark
| | - Weiwei Liu
- Key Laboratory of Genetic Evolution & Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650201, China
| | - Guojie Zhang
- Centre for Evolutionary and Organismal Biology, Women's Hospital, & Liangzhu Laboratory, School of Medicine, Zhejiang University, Hangzhou 310058, China
- Villum Center for Biodiversity Genomics, Department of Biology, University of Copenhagen, Copenhagen 2100, Denmark
| |
Collapse
|
2
|
House CM, Rapkin J, Janicot Bale M, Hunt J, Hosken DJ. Nutrition affects larval survival and the development of morphological traits in male and female flour beetles, but genital size and shape remains canalised. J Evol Biol 2024; 37:1298-1311. [PMID: 39288235 DOI: 10.1093/jeb/voae113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 06/24/2024] [Accepted: 09/16/2024] [Indexed: 09/19/2024]
Abstract
The caloric content and macronutrient ratio of diet consumed is a major source of phenotypic variation in most animal populations. While these nutritional effects have been well-documented for a variety of life-history and morphological traits, the effects of nutrition on male genitals are poorly understood but genitals are thought to be more canalised than general morphology and hence less susceptible to variation in nutrition. Even less is known about the effects of nutrition on female genital form, which to our knowledge, have never been investigated. Here we tested for effects of juvenile dietary macronutrients (protein and carbohydrate) on larval survival, adult morphology, including genital size and shape in male and female flour beetles (Tribolium castaneum). We found there was nutritionally induced plasticity in larval survival and morphology, although the latter effect was variable, with body size being most responsive to dietary macronutrients and genital size and shape being least responsive. Functionally equivalent morphological traits in the sexes responded similarly to nutrition. Previously, we showed that the genitalia of male and female T. castaneum are subject to strong stabilising sexual selection, and our current findings suggest that developmental mechanisms reduce the nutritional sensitivity of male and female genitals, possibly to ensure matching during mating.
Collapse
Affiliation(s)
- Clarissa M House
- School of Science, Western Sydney University, Hawkesbury Campus, Richmond, NSW, Australia
| | - James Rapkin
- Centre for Ecology & Conservation, College of Life and Environmental Sciences, University of Exeter, Cornwall Campus, United Kingdom
| | - Mathilda Janicot Bale
- Centre for Ecology & Conservation, College of Life and Environmental Sciences, University of Exeter, Cornwall Campus, United Kingdom
| | - John Hunt
- School of Science, Western Sydney University, Hawkesbury Campus, Richmond, NSW, Australia
| | - David J Hosken
- Centre for Ecology & Conservation, College of Life and Environmental Sciences, University of Exeter, Cornwall Campus, United Kingdom
| |
Collapse
|
3
|
Sniegula S, Stoks R, Golab MJ. Insect responses to seasonal time constraints under global change are facilitated by warming and counteracted by invasive alien predators. Sci Rep 2024; 14:24565. [PMID: 39427019 PMCID: PMC11490650 DOI: 10.1038/s41598-024-76057-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 10/10/2024] [Indexed: 10/21/2024] Open
Abstract
In seasonal environments, organisms with complex life cycles not only contend with seasonal time constraints (TC) but also increasingly face global change stressors that may interfere with responses to TC. Here, we tested how warming and predator stress imposed during the egg and larval stages shaped life history and behavioural responses to TC in the temperate damselfly Ischnura elegans. Eggs from early and late clutches in the season were subjected to ambient and 4 °C warming temperature and the presence or absence of predator cues from perch and signal crayfish. After hatching, larvae were retained at the same thermal regime, and the predator treatment was continued or not up to emergence. The late eggs decreased their development time, especially under warming and when not exposed to predator cues. However, the late eggs increased their development time when exposed to predator cues, especially to crayfish cues. The TC decreased survival of late larvae that were as eggs exposed to crayfish cues, indicating a carry-over effect. The TC and warming additively reduced late larvae development time to emergence. Independent of the TC, predator cue effects on development time were stronger during the egg than during the larval stage. The late individuals expressed lower mass at emergence, which mirrored the size difference between field-collected mothers. Warming caused a higher mass at emergence. The late individuals increased their boldness and showed a higher number of moves, whereas warming caused a decreased boldness. There was no predator cue effect on larval behaviour. The results indicate that late individuals compensate for late season egg laying, which is facilitated under warming but counteracted under predation risk, especially when imposed by the crayfish.
Collapse
Affiliation(s)
- Szymon Sniegula
- Institute of Nature Conservation Polish Academy of Sciences, al. Adama Mickiewicza 33, 31-120, Kraków, Poland.
| | - Robby Stoks
- Evolutionary Stress Ecology and Ecotoxicology, University of Leuven, Leuven, Belgium
| | - Maria J Golab
- Institute of Nature Conservation Polish Academy of Sciences, al. Adama Mickiewicza 33, 31-120, Kraków, Poland.
| |
Collapse
|
4
|
Muyobela J, Pirk CWW, Yusuf AA, Sole CL. Phenotypic divergence of Glossina morsitans (Diptera: Glossinidae) populations in Zambia: Application of landmark-based wing geometric morphometrics to discriminate population-level variation. Ecol Evol 2024; 14:e70348. [PMID: 39355111 PMCID: PMC11442019 DOI: 10.1002/ece3.70348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 07/31/2024] [Accepted: 09/09/2024] [Indexed: 10/03/2024] Open
Abstract
An important consequence of the discontinuous distribution of insect populations within their geographic range is phenotypic divergence. Detection of this divergence can be challenging when it occurs through subtle shifts in morphological traits with complex geometries, such as insect wing venation. Here, we used landmark-based wing geometric morphometrics to investigate the population-level phenotypic variation of the two subspecies of Glossina morsitans, G. m. centralis Machado and G. m. morsitans Westwood that occur in Zambia. Twelve homologous landmarks digitised on the right wings of 720 specimens collected from four and five sites (80 per site with 1:1 sex ratio) within the G. m. centralis and G. m. morsitans range respectively, were subjected to generalised Procrustes analysis to obtain wing centroid size (CS) and wing shape variables. Linear permutation models and redundancy analysis were then used to compare CS and wing shape between male and female G. morsitans, the two subspecies G. m. centralis and G. m. morsitans, the sexes of each subspecies and between sample locations within each subspecies range, respectively. Significant differences in CS and wing shape were observed between G. morsitans sexes, subspecies and sample locations within each subspecies range. A neighbour-joining cladogram derived from the analysis of Procrustes distances showed that tsetse within each subspecies range were highly divergent. We conclude that G. morsitans populations in Zambia exhibit significant population-level variation in fly size and wing shape which suggests high levels of population structuring. The main drivers of this structuring could be random genetic drift in G. m. centralis demes and local adaptation to environmental conditions in G. m. morsitans populations. We therefore recommend molecular studies to estimate the levels of gene flow between these populations and identify possible barriers to genetic flow.
Collapse
Affiliation(s)
- Jackson Muyobela
- Department of Zoology and Entomology University of Pretoria Hatfield Pretoria South Africa
- Department of Veterinary Services, Tsetse and Trypanosomiasis Control Unit Ministry of Fisheries and Livestock Lusaka Zambia
| | - Christian W W Pirk
- Department of Zoology and Entomology University of Pretoria Hatfield Pretoria South Africa
| | - Abdullahi A Yusuf
- Department of Zoology and Entomology University of Pretoria Hatfield Pretoria South Africa
| | - Catherine L Sole
- Department of Zoology and Entomology University of Pretoria Hatfield Pretoria South Africa
| |
Collapse
|
5
|
Wang S, Callaway R. Associations Between Developmental Stability, Canalization, and Phenotypic Plasticity in Response to Heterogeneous Experience. Ecol Evol 2024; 14:e70436. [PMID: 39440214 PMCID: PMC11494154 DOI: 10.1002/ece3.70436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 09/18/2024] [Accepted: 09/27/2024] [Indexed: 10/25/2024] Open
Abstract
The processes of developmental stability, canalization, and phenotypic plasticity have ecological and evolutionary significance, and been studied extensively, but mostly separately and thus the relationships between them are not straightforward. Our objective was to better integrate these processes in the context of temporally heterogeneous environments. We did this by investigating the effects of early experience with temporal heterogeneity in water availability on associations between developmental stability, canalization, and phenotypic plasticity. We subjected eight plant species to a first round of alternating inundation and drought vs. constantly moderate water treatments (heterogeneous experience) and a second round of water conditions (to test plasticity). We measured fluctuating asymmetry (FA) in leaf size, intra- and inter-individual variation (CVintra and CVinter), and plasticity (PI) in traits and analyzed correlations between these variables across all species. Results showed little correlations between FA, CVintra and PI, several positive correlations between FA and CVinter in more stressful conditions, especially in as well as positive correlations between CVinter and PI initially and negative correlations between them later. These suggested the complexity of these relationships, which can depend on whether plasticity occurs. Greater inter-individual variation will more likely cooperate with plasticity before or during plastic response, whereas higher canalization may reflect phenotypic convergence. Both higher FA and CVintra can reflect faster growth, while CVintra may also reflect plant growth stage, and the two mechanisms should cooperate in response to environmental challenges. The complexity of these relationships suggests plants deal with environmental variation in elaborate and integrative ways which can be affected by many factors.
Collapse
Affiliation(s)
- Shu Wang
- College of Forestry, Forest Ecology Research CenterGuizhou UniversityGuiyangChina
- Division of Biological Sciences, Institute of EcosystemsThe University of MontanaMissoulaMontanaUSA
| | - Ragan M. Callaway
- Division of Biological Sciences, Institute of EcosystemsThe University of MontanaMissoulaMontanaUSA
| |
Collapse
|
6
|
Vercauteren S, Fiesack S, Maroc L, Verstraeten N, Dewachter L, Michiels J, Vonesch SC. The rise and future of CRISPR-based approaches for high-throughput genomics. FEMS Microbiol Rev 2024; 48:fuae020. [PMID: 39085047 PMCID: PMC11409895 DOI: 10.1093/femsre/fuae020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 07/19/2024] [Accepted: 07/30/2024] [Indexed: 08/02/2024] Open
Abstract
Clustered regularly interspaced short palindromic repeats (CRISPR) has revolutionized the field of genome editing. To circumvent the permanent modifications made by traditional CRISPR techniques and facilitate the study of both essential and nonessential genes, CRISPR interference (CRISPRi) was developed. This gene-silencing technique employs a deactivated Cas effector protein and a guide RNA to block transcription initiation or elongation. Continuous improvements and a better understanding of the mechanism of CRISPRi have expanded its scope, facilitating genome-wide high-throughput screens to investigate the genetic basis of phenotypes. Additionally, emerging CRISPR-based alternatives have further expanded the possibilities for genetic screening. This review delves into the mechanism of CRISPRi, compares it with other high-throughput gene-perturbation techniques, and highlights its superior capacities for studying complex microbial traits. We also explore the evolution of CRISPRi, emphasizing enhancements that have increased its capabilities, including multiplexing, inducibility, titratability, predictable knockdown efficacy, and adaptability to nonmodel microorganisms. Beyond CRISPRi, we discuss CRISPR activation, RNA-targeting CRISPR systems, and single-nucleotide resolution perturbation techniques for their potential in genome-wide high-throughput screens in microorganisms. Collectively, this review gives a comprehensive overview of the general workflow of a genome-wide CRISPRi screen, with an extensive discussion of strengths and weaknesses, future directions, and potential alternatives.
Collapse
Affiliation(s)
- Silke Vercauteren
- Center for Microbiology, VIB - KU Leuven, Gaston Geenslaan 1, 3001 Leuven, Belgium
- Centre of Microbial and Plant Genetics, KU Leuven, Kasteelpark Arenberg 20, box 2460, 3001 Leuven, Belgium
| | - Simon Fiesack
- Center for Microbiology, VIB - KU Leuven, Gaston Geenslaan 1, 3001 Leuven, Belgium
- Centre of Microbial and Plant Genetics, KU Leuven, Kasteelpark Arenberg 20, box 2460, 3001 Leuven, Belgium
| | - Laetitia Maroc
- Center for Microbiology, VIB - KU Leuven, Gaston Geenslaan 1, 3001 Leuven, Belgium
- Centre of Microbial and Plant Genetics, KU Leuven, Kasteelpark Arenberg 20, box 2460, 3001 Leuven, Belgium
| | - Natalie Verstraeten
- Center for Microbiology, VIB - KU Leuven, Gaston Geenslaan 1, 3001 Leuven, Belgium
- Centre of Microbial and Plant Genetics, KU Leuven, Kasteelpark Arenberg 20, box 2460, 3001 Leuven, Belgium
| | - Liselot Dewachter
- de Duve Institute, Université catholique de Louvain, Hippokrateslaan 75, 1200 Brussels, Belgium
| | - Jan Michiels
- Center for Microbiology, VIB - KU Leuven, Gaston Geenslaan 1, 3001 Leuven, Belgium
- Centre of Microbial and Plant Genetics, KU Leuven, Kasteelpark Arenberg 20, box 2460, 3001 Leuven, Belgium
| | - Sibylle C Vonesch
- Center for Microbiology, VIB - KU Leuven, Gaston Geenslaan 1, 3001 Leuven, Belgium
- Centre of Microbial and Plant Genetics, KU Leuven, Kasteelpark Arenberg 20, box 2460, 3001 Leuven, Belgium
| |
Collapse
|
7
|
Przelomska NAS, Diaz RA, Ávila FA, Ballen GA, Cortés-B R, Kistler L, Chitwood DH, Charitonidou M, Renner SS, Pérez-Escobar OA, Antonelli A. Morphometrics and Phylogenomics of Coca (Erythroxylum spp.) Illuminate Its Reticulate Evolution, With Implications for Taxonomy. Mol Biol Evol 2024; 41:msae114. [PMID: 38982580 PMCID: PMC11233275 DOI: 10.1093/molbev/msae114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 05/01/2024] [Accepted: 05/10/2024] [Indexed: 07/11/2024] Open
Abstract
South American coca (Erythroxylum coca and E. novogranatense) has been a keystone crop for many Andean and Amazonian communities for at least 8,000 years. However, over the last half-century, global demand for its alkaloid cocaine has driven intensive agriculture of this plant and placed it in the center of armed conflict and deforestation. To monitor the changing landscape of coca plantations, the United Nations Office on Drugs and Crime collects annual data on their areas of cultivation. However, attempts to delineate areas in which different varieties are grown have failed due to limitations around identification. In the absence of flowers, identification relies on leaf morphology, yet the extent to which this is reflected in taxonomy is uncertain. Here, we analyze the consistency of the current naming system of coca and its four closest wild relatives (the "coca clade"), using morphometrics, phylogenomics, molecular clocks, and population genomics. We include name-bearing type specimens of coca's closest wild relatives E. gracilipes and E. cataractarum. Morphometrics of 342 digitized herbarium specimens show that leaf shape and size fail to reliably discriminate between species and varieties. However, the statistical analyses illuminate that rounder and more obovate leaves of certain varieties could be associated with the subtle domestication syndrome of coca. Our phylogenomic data indicate extensive gene flow involving E. gracilipes which, combined with morphometrics, supports E. gracilipes being retained as a single species. Establishing a robust evolutionary-taxonomic framework for the coca clade will facilitate the development of cost-effective genotyping methods to support reliable identification.
Collapse
Affiliation(s)
- Natalia A S Przelomska
- School of Biological Sciences, University of Portsmouth, Portsmouth PO1 2DY, UK
- Royal Botanic Gardens, Kew, Richmond, Surrey TW9 3AE, UK
- Department of Anthropology, National Museum of Natural History, Smithsonian Institution, Washington DC 20560, USA
| | - Rudy A Diaz
- Royal Botanic Gardens, Kew, Richmond, Surrey TW9 3AE, UK
| | | | - Gustavo A Ballen
- Instituto de Biociências, Universidade Estadual Paulista, Botucatu, São Paulo, Brazil
- School of Biological and Behavioural Sciences, Queen Mary University of London, London E1 4NS, UK
| | - Rocío Cortés-B
- Herbario Forestal Universidad Distrital, Campus El Vivero, CR 5E 15-82 Bogotá, Colombia
| | - Logan Kistler
- Department of Anthropology, National Museum of Natural History, Smithsonian Institution, Washington DC 20560, USA
| | - Daniel H Chitwood
- Department of Horticulture, Michigan State University, East Lansing, MI 48824, USA
- Department of Computational Mathematics, Science & Engineering, Michigan State University, East Lansing, MI 48824, USA
| | - Martha Charitonidou
- Department of Biological Applications and Technology, University of Ioannina, 45110 Ioannina, Greece
| | - Susanne S Renner
- Department of Biology, Washington University, Saint Louis, MO 63130, USA
| | | | - Alexandre Antonelli
- Royal Botanic Gardens, Kew, Richmond, Surrey TW9 3AE, UK
- Gothenburg Global Biodiversity Centre, Department of Biological and Environmental Sciences, University of Gothenburg, SE 41319 Göteborg, Sweden
- Department of Biology, University of Oxford, Oxford OX1 3RB, UK
| |
Collapse
|
8
|
Kadelka C, Murrugarra D. Canalization reduces the nonlinearity of regulation in biological networks. NPJ Syst Biol Appl 2024; 10:67. [PMID: 38871768 DOI: 10.1038/s41540-024-00392-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 05/31/2024] [Indexed: 06/15/2024] Open
Abstract
Biological networks, such as gene regulatory networks, possess desirable properties. They are more robust and controllable than random networks. This motivates the search for structural and dynamical features that evolution has incorporated into biological networks. A recent meta-analysis of published, expert-curated Boolean biological network models has revealed several such features, often referred to as design principles. Among others, the biological networks are enriched for certain recurring network motifs, the dynamic update rules are more redundant, more biased, and more canalizing than expected, and the dynamics of biological networks are better approximable by linear and lower-order approximations than those of comparable random networks. Since most of these features are interrelated, it is paramount to disentangle cause and effect, that is, to understand which features evolution actively selects for, and thus truly constitute evolutionary design principles. Here, we compare published Boolean biological network models with different ensembles of null models and show that the abundance of canalization in biological networks can almost completely explain their recently postulated high approximability. Moreover, an analysis of random N-K Kauffman models reveals a strong dependence of approximability on the dynamical robustness of a network.
Collapse
Affiliation(s)
- Claus Kadelka
- Department of Mathematics, Iowa State University, 411 Morrill Rd, Ames, 50011, IA, USA.
| | - David Murrugarra
- Department of Mathematics, University of Kentucky, 719 Patterson Office Tower, Lexington, 40506, KY, USA
| |
Collapse
|
9
|
Petino Zappala MA. A framework for the integration of development and evolution: The forgotten legacy of James Meadows Rendel. STUDIES IN HISTORY AND PHILOSOPHY OF SCIENCE 2024; 105:41-49. [PMID: 38733743 DOI: 10.1016/j.shpsa.2024.05.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 12/04/2023] [Accepted: 05/04/2024] [Indexed: 05/13/2024]
Abstract
The historical challenges to bridge the gaps between developmental biology and population or statistical genetics under the explanatory dominance of the Modern Evolutionary Synthesis during the 20th century have been thoroughly documented. However, although several attempts to integrate these fields have been made, most have been deemed unsuccessful. As an example of those efforts, in this paper I discuss the work of James Meadows Rendel, a student of J. B. S. Haldane and disciple of Conrad Hal Waddington. I present his largely forgotten or unrecognized, but innovative, ideas about canalization and the role of development in phylogeny as a valuable piece to connect these fields that could still have important ramifications for today's evolutionary biology. In fact, it is expected that the legacy of J. M. Rendel will be rediscovered, and more importantly, incorporated and extended by future researchers, in light of the growth of evolutionary developmental biology in the last decades. What is more, this case offers a chance to critically revisit standard historiographies about the dichotomy between developmental and population genetics research frameworks in 20th century biology.
Collapse
Affiliation(s)
- María Alejandra Petino Zappala
- Institut für Philosophie I, Ruhr Universität Bochum, Universitätsstraße 150, Bochum, NRW D-44780, Germany; Facultad de Filosofía y Letras, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires (present address), Intendente Güiraldes 2160, Buenos Aires C1428EGA, Argentina.
| |
Collapse
|
10
|
DeLorenzo L, Powder KE. Epigenetics and the evolution of form: Experimental manipulation of a chromatin modification causes species-specific changes to the craniofacial skeleton. Evol Dev 2024; 26:e12461. [PMID: 37850843 PMCID: PMC10842503 DOI: 10.1111/ede.12461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 08/18/2023] [Accepted: 10/05/2023] [Indexed: 10/19/2023]
Abstract
A central question in biology is the molecular origins of phenotypic diversity. While genetic changes are key to the genotype-phenotype relationship, alterations to chromatin structure and the physical packaging of histone proteins may also be important drivers of vertebrate divergence. We investigate the impact of such an epigenetic mechanism, histone acetylation, within a textbook example of an adaptive radiation. Cichlids of Lake Malawi have adapted diverse craniofacial structures, and here we investigate how histone acetylation influences morphological variation in these fishes. Specifically, we assessed the effect of inhibiting histone deacetylation using the drug trichostatin A (TSA) on developing facial structures. We examined this during three critical developmental windows in two cichlid species with alternate adult morphologies. Exposure to TSA during neural crest cell (NCC) migration and as postmigratory NCCs proliferate in the pharyngeal arches resulted in significant changes in lateral and ventral shape in Maylandia, but not in Tropheops. This included an overall shortening of the head, widening of the lower jaw, and steeper craniofacial profile, all of which are paedomorphic morphologies. In contrast, treatment with TSA during early chondrogenesis did not result in significant morphological changes in either species. Together, these data suggest a sensitivity to epigenetic alterations that are both time- and species-dependent. We find that morphologies are due to nonautonomous or potentially indirect effects on NCC development, including in part a global developmental delay. Our research bolsters the understanding that proper histone acetylation is essential for early craniofacial development and identifies a species-specific robustness to developmental change. Overall, this study demonstrates how epigenetic regulation may play an important role in both generating and buffering morphological variation.
Collapse
Affiliation(s)
- Leah DeLorenzo
- Department of Biological Sciences, Clemson University, Clemson, South Carolina, USA
| | - Kara E Powder
- Department of Biological Sciences, Clemson University, Clemson, South Carolina, USA
| |
Collapse
|
11
|
Cutter AD. Sexual conflict, heterochrony and tissue specificity as evolutionary problems of adaptive plasticity in development. Proc Biol Sci 2023; 290:20231854. [PMID: 37817601 PMCID: PMC10565415 DOI: 10.1098/rspb.2023.1854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 09/15/2023] [Indexed: 10/12/2023] Open
Abstract
Differential gene expression represents a fundamental cause and manifestation of phenotypic plasticity. Adaptive phenotypic plasticity in gene expression as a trait evolves when alleles that mediate gene regulation serve to increase organismal fitness by improving the alignment of variation in gene expression with variation in circumstances. Among the diverse circumstances that a gene encounters are distinct cell types, developmental stages and sexes, as well as an organism's extrinsic ecological environments. Consequently, adaptive phenotypic plasticity provides a common framework to consider diverse evolutionary problems by considering the shared implications of alleles that produce context-dependent gene expression. From this perspective, adaptive plasticity represents an evolutionary resolution to conflicts of interest that arise from any negatively pleiotropic effects of expression of a gene across ontogeny, among tissues, between the sexes, or across extrinsic environments. This view highlights shared properties within the general relation of fitness, trait expression and context that may nonetheless differ substantively in the grain of selection within and among generations to influence the likelihood of adaptive plasticity as an evolutionary response. Research programmes that historically have focused on these separate issues may use the insights from one another by recognizing their shared dependence on context-dependent gene regulatory evolution.
Collapse
Affiliation(s)
- Asher D. Cutter
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Ontario, Canada M5S 3B2
| |
Collapse
|
12
|
Araya-Ajoy YG, Dingemanse NJ, Westneat DF, Wright J. The evolutionary ecology of variation in labile traits: selection on its among- and within-individual components. Evolution 2023; 77:2246-2256. [PMID: 37490354 DOI: 10.1093/evolut/qpad136] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 07/03/2023] [Accepted: 07/21/2023] [Indexed: 07/27/2023]
Abstract
Closer integration between behavioral ecology and quantitative genetics has resulted in a recent increase in studies partitioning sources of variation in labile traits. Repeatable between-individual differences are commonly documented, and their existence is generally explained using adaptive arguments, implying that selection has shaped variation at the among- and within-individual level. However, predicting the expected pattern of non-adaptive phenotypic variation around an optimal phenotypic value is difficult, hampering our ability to provide quantitative assessments of the adaptive nature of observed patterns of phenotypic variation within a population. We argue that estimating the strength of selection on trait variation among and within individuals provides a way to test adaptive theory concerned with phenotypic variation. To achieve this aim, we describe a nonlinear selection analysis that enables the study of the selective pressures on trait means and their among- and within-individual variation. By describing an integrative approach for studying the strength of selection on phenotypic variation at different levels, we hope to stimulate empirical studies investigating the ecological factors that can shape the repeatability, heritability, and coefficients of variation of labile and other repeatedly expressed traits.
Collapse
Affiliation(s)
- Yimen G Araya-Ajoy
- Department of Biology, Centre for Biodiversity Dynamics (CBD), Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Niels J Dingemanse
- Behavioural Ecology, Department of Biology, Ludwig-Maximilians University of Munich, Planegg-Martinsried, Germany
| | - David F Westneat
- Department of Biology, University of Kentucky, Lexington, KY, United States
| | - Jonathan Wright
- Department of Biology, Centre for Biodiversity Dynamics (CBD), Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| |
Collapse
|
13
|
Marshall DJ, Mustapha N, Monaco CJ. Conservation of thermal physiology in tropical intertidal snails following an evolutionary transition to a cooler ecosystem: climate change implications. CONSERVATION PHYSIOLOGY 2023; 11:coad056. [PMID: 37533818 PMCID: PMC10393397 DOI: 10.1093/conphys/coad056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 07/04/2023] [Accepted: 07/21/2023] [Indexed: 08/04/2023]
Abstract
Predictions for animal responses to climate warming usually assume that thermal physiology is adapted to present-day environments, and seldom consider the influence of evolutionary background. Little is known about the conservation of warm-adapted physiology following an evolutionary transition to a cooler environment. We used cardiac thermal performance curves (cTPCs) of six neritid gastropod species to study physiological thermal trait variation associated with a lineage transition from warmer rocky shores to cooler mangroves. We distinguished between functional thermal performance traits, related to energy homeostasis (slope gradient, slope curvature, HRmax, maximum cardiac activity and Topt, the temperature that maximizes cardiac activity) and a trait that limits performance (ULT, the upper lethal temperature). Considering the theory of optimal thermal performance, we predicted that the functional traits should be under greater selective pressure to change directionally and in magnitude than the thermal limit, which is redundant in the cooler environment. We found little variation in all traits across species, habitats and ecosystems, despite a ~20°C reduction in maximum habitat temperature in the mangrove species over 50 million years. While slope gradient was significantly lowered in the mangrove species, the effect difference was negated by greater thermal plasticity in the rocky shore species. ULT showed the least variation and suggested thermal specialization in the warmest habitat studied. The observed muted variation of the functional traits among the species may be explained by their limited role in energy acquisition and rather their association with heat tolerance adaptation, which is redundant in the mangrove species. These findings have implications for the conservation of habitat of intertidal gastropods that transition to cooler environments. Furthermore, they highlight the significance of evolutionary history and physiological conservation when predicting species responses to climate change.
Collapse
Affiliation(s)
- David J Marshall
- Corresponding author: Environmental and Life Sciences, Faculty of Science, Jalan Tungku Link, Gadong, Universiti Brunei Darussalam, BE1410, Brunei Darussalam. E-mail:
| | - Nurshahida Mustapha
- Environmental and Life Sciences, Faculty of Science, Universiti Brunei Darussalam, Jalan Tungku Link, Gadong, BE1410, Brunei Darussalam
| | - Cristián J Monaco
- IFREMER, IRD, Institut Louis-Malardé, Univ Polynésie française, Tahiti, Polynésie française, EIO, F-98725 Taravao, France
| |
Collapse
|
14
|
Patel D, Amiji H, Shropshire W, Condic N, Lermi NO, Sabha Y, John B, Hanson B, Karras GI. Ethanol Drives Evolution of Hsp90-Dependent Robustness by Redundancy in Yeast Domestication. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.21.547572. [PMID: 37745611 PMCID: PMC10516021 DOI: 10.1101/2023.07.21.547572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
Protein folding promotes and constrains adaptive evolution. We uncover this surprising duality in the role the protein-folding chaperone Hsp90 plays in mediating the interplay between proteome and the genome which acts to maintain the integrity of yeast metabolism in the face of proteotoxic stressors in anthropic niches. Of great industrial relevance, ethanol concentrations generated by fermentation in the making of beer and bread disrupt critical Hsp90-dependent nodes of metabolism and exert strong selective pressure for increased copy number of key genes encoding components of these nodes, yielding the classical genetic signatures of beer and bread domestication. This work establishes a mechanism of adaptive canalization in an ecology of major economic significance and highlights Hsp90-contingent variation as an important source of phantom heritability in complex traits.
Collapse
|
15
|
Dantzer B. Frank Beach Award Winner: The centrality of the hypothalamic-pituitary-adrenal axis in dealing with environmental change across temporal scales. Horm Behav 2023; 150:105311. [PMID: 36707334 DOI: 10.1016/j.yhbeh.2023.105311] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 01/02/2023] [Accepted: 01/06/2023] [Indexed: 01/26/2023]
Abstract
Understanding if and how individuals and populations cope with environmental change is an enduring question in evolutionary ecology that has renewed importance given the pace of change in the Anthropocene. Two evolutionary strategies of coping with environmental change may be particularly important in rapidly changing environments: adaptive phenotypic plasticity and/or bet hedging. Adaptive plasticity could enable individuals to match their phenotypes to the expected environment if there is an accurate cue predicting the selective environment. Diversifying bet hedging involves the production of seemingly random phenotypes in an unpredictable environment, some of which may be adaptive. Here, I review the central role of the hypothalamic-pituitary-adrenal (HPA) axis and glucocorticoids (GCs) in enabling vertebrates to cope with environmental change through adaptive plasticity and bet hedging. I first describe how the HPA axis mediates three types of adaptive plasticity to cope with environmental change (evasion, tolerance, recovery) over short timescales (e.g., 1-3 generations) before discussing how the implications of GCs on phenotype integration may depend upon the timescale under consideration. GCs can promote adaptive phenotypic integration, but their effects on phenotypic co-variation could also limit the dimensions of phenotypic space explored by animals over longer timescales. Finally, I discuss how organismal responses to environmental stressors can act as a bet hedging mechanism and therefore enhance evolvability by increasing genetic or phenotypic variability or reducing patterns of genetic and phenotypic co-variance. Together, this emphasizes the crucial role of the HPA axis in understanding fundamental questions in evolutionary ecology.
Collapse
Affiliation(s)
- Ben Dantzer
- Department of Psychology, University of Michigan, MI 48109 Ann Arbor, MI, USA; Department of Ecology and Evolutionary Biology, University of Michigan, MI 48109, Ann Arbor, MI, USA.
| |
Collapse
|
16
|
Réalis-Doyelle E, Cottin N, Daufresne M, Naffrechoux E, Reynaud S, Guillard J. Evolution of pace-of-life syndrome under conditions of maternal PCB contamination and global warming in early life stages of cold stenothermic fish (Arctic char). AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2023; 255:106396. [PMID: 36657268 DOI: 10.1016/j.aquatox.2023.106396] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 12/14/2022] [Accepted: 01/07/2023] [Indexed: 06/17/2023]
Abstract
The end of the 20th century was characterised by rapid modifications of ecosystem functioning under different pressures (such as eutrophication and toxic pollution). Increasing temperatures in the context of global warming could have indirect consequences, such as increased bioavailability of hydrophobic organic pollutants amongst aquatic species. According to the "pace-of-life syndrome" (POLS) theory, these stressors could lead to covariations in many life traits. Lake Bourget is the largest natural lake in France and has been highly polluted from the fifties to the eighties both with a high load of nutrients (wastewater discharge) and polychlorinated biphenyls (PCBs) (industrial effluent discharge). Despite improvements in water quality since the 21st century, PCB levels are still higher than the United States Environmental Protection Agency cut-off for wildlife protection. The population of Arctic char, a cold stenothermic salmonid, has remained low in Lake Bourget for the last ten years despite restocking efforts and complete re-oligotrophication. We hypothesised that PCB pollution can affect the Arctic char population and that the increase in water temperature could magnify the effects of PCB. Thus, this study aimed to investigate the effects of maternal PCB contamination on offspring using a multiparametric and multiscale approach. Female Arctic char were contaminated with PCB before spawning, and each fertilised spawn was incubated at two temperatures (4 and 8.5 °C). The results showed that co-exposure to increased temperature and maternal PCB contamination influenced biodemographic, physiological, and behavioural parameters. The effects were highly dependant on the developmental stage. Based on the POLS theory, a continuum of life traits that may reflect potential physiological and behavioural modifications in response to these concurrent stressors is highlighted.
Collapse
Affiliation(s)
- Emilie Réalis-Doyelle
- Univ. Savoie Mont Blanc, INRAE, CARRTEL, 74200 Thonon-les-Bains, France; Pôle R&D ECLA (ECosystèmes LAcustres) (OFB - INRAE - USMB), France.
| | | | | | | | | | - Jean Guillard
- Univ. Savoie Mont Blanc, INRAE, CARRTEL, 74200 Thonon-les-Bains, France; Pôle R&D ECLA (ECosystèmes LAcustres) (OFB - INRAE - USMB), France
| |
Collapse
|
17
|
Fanara JJ, Beti MIL, Gandini L, Hasson E. Oviposition behaviour in Drosophila melanogaster: Genetic and behavioural decoupling between oviposition acceptance and preference for natural fruits. J Evol Biol 2023; 36:251-263. [PMID: 36357966 DOI: 10.1111/jeb.14109] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 06/28/2022] [Accepted: 07/05/2022] [Indexed: 11/12/2022]
Abstract
In phytophagous insects, oviposition behaviour is an important component of habitat selection and, given the multiplicity of genetic and environmental factors affecting its expression, is defined as a complex character resulting from the sum of interdependent traits. Here, we study two components of egg-laying behaviour: oviposition acceptance (OA) and oviposition preference (OP) in Drosophila melanogaster using three natural fruits as resources (grape, tomato and orange) by means of no-choice and two-choice experiments, respectively. This experimental design allowed us to show that the results obtained in two-choice assays (OP) cannot be accounted for by those resulting from no-choice assays (OA). Since the genomes of all lines used are completely sequenced, we perform a genome-wide association study to identify and characterize the genetic underpinnings of these oviposition behaviour traits. The analyses revealed different candidate genes affecting natural genetic variation of both OA and OP traits. Moreover, our results suggest behavioural and genetic decoupling between OA and OP and that egg-laying behaviour is plastic and context-dependent. Such independence in the genetic architectures of OA and OP variation may influence different aspects of oviposition behaviour, including plasticity, canalization, host shift and maintenance of genetic variability, which contributes to the adoption of adaptive strategies during habitat selection.
Collapse
Affiliation(s)
- Juan J Fanara
- Laboratorio de Evolución, Departamento de Ecología, Genética y Evolución, FCEN, Universidad de Buenos Aires, Pabellón II, Ciudad Universitaria, Buenos Aires, Argentina.,Laboratorio de Evolución, Instituto de Ecología, Genética y Evolución de Buenos Aires (IEGEBA), CONICET-UBA, FCEN, Universidad de Buenos Aires, Pabellón II, Ciudad Universitaria, Buenos Aires, Argentina
| | - Maria I L Beti
- Laboratorio de Evolución, Instituto de Ecología, Genética y Evolución de Buenos Aires (IEGEBA), CONICET-UBA, FCEN, Universidad de Buenos Aires, Pabellón II, Ciudad Universitaria, Buenos Aires, Argentina
| | - Luciano Gandini
- Laboratorio de Evolución, Departamento de Ecología, Genética y Evolución, FCEN, Universidad de Buenos Aires, Pabellón II, Ciudad Universitaria, Buenos Aires, Argentina
| | - Esteban Hasson
- Laboratorio de Evolución, Departamento de Ecología, Genética y Evolución, FCEN, Universidad de Buenos Aires, Pabellón II, Ciudad Universitaria, Buenos Aires, Argentina.,Laboratorio de Evolución, Instituto de Ecología, Genética y Evolución de Buenos Aires (IEGEBA), CONICET-UBA, FCEN, Universidad de Buenos Aires, Pabellón II, Ciudad Universitaria, Buenos Aires, Argentina
| |
Collapse
|
18
|
Gu X. A Simple Evolutionary Model of Genetic Robustness After Gene Duplication. J Mol Evol 2022; 90:352-361. [PMID: 35913597 DOI: 10.1007/s00239-022-10065-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 06/23/2022] [Indexed: 10/16/2022]
Abstract
When a dispensable gene is duplicated (referred to the ancestral dispensability denoted by O+), genetic buffering and duplicate compensation together maintain the duplicate redundancy, whereas duplicate compensation is the only mechanism when an essential gene is duplicated (referred to the ancestral essentiality denoted by O-). To investigate these evolutionary scenarios of genetic robustness, I formulated a simple mixture model for analyzing duplicate pairs with one of the following states: double dispensable (DD), semi-dispensable (one dispensable one essential, DE), or double essential (EE). This model was applied to the yeast duplicate pairs from a whole-genome duplication (WGD) occurred about 100 million years ago (mya), and the mouse duplicate pairs from a WGD occurred about more than 500 mya. Both case studies revealed that the proportion of essentiality for those duplicates with ancestral essentiality [PE(O-)] was much higher than that for those with ancestral dispensability [PE(O+)]. While it was negligible in the yeast duplicate pairs, PE(O+) (about 20%) was shown statistically significant in the mouse duplicate pairs. These findings, together, support the hypothesis that both sub-functionalization and neo-functionalization may play some roles after gene duplication, though the former may be much faster than the later.
Collapse
Affiliation(s)
- Xun Gu
- The Laurence H. Baker Center in Bioinformatics on Biological Statistics, Department of Genetics, Development and Cell Biology, Program of Ecological and Evolutionary Biology, Iowa State University, Ames, IA, 50011, USA.
| |
Collapse
|
19
|
Tadmor E, Juravel K, Morin S, Santos-Garcia D. Evolved transcriptional responses and their trade-offs after long-term adaptation of Bemisia tabaci to a marginally-suitable host. Genome Biol Evol 2022; 14:6649882. [PMID: 35880721 PMCID: PMC9372648 DOI: 10.1093/gbe/evac118] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/21/2022] [Indexed: 11/14/2022] Open
Abstract
Although generalist insect herbivores can migrate and rapidly adapt to a broad range of host plants, they can face significant difficulties when accidentally migrating to novel and marginally-suitable hosts. What happens, both in performance and gene expression regulation, if these marginally-suitable hosts must be used for multiple generations before migration to a suitable host can take place, largely remains unknown. In this study, we established multigenerational colonies of the whitefly Bemisia tabaci, a generalist phloem-feeding species, adapted to a marginally-suitable host (habanero pepper) or an optimal host (cotton). We used reciprocal host tests to estimate the differences in performance of the populations on both hosts under optimal (30 oC) and mild-stressful (24 oC) temperature conditions, and documented the associated transcriptomic changes. The habanero pepper-adapted population greatly improved its performance on habanero pepper but did not reach its performance level on cotton, the original host. It also showed reduced performance on cotton, relative to the non-adapted population, and an antagonistic effect of the lower-temperature stressor. The transcriptomic data revealed that most of the expression changes, associated with long-term adaptation to habanero pepper, can be categorized as "evolved" with no initial plastic response. Three molecular functions dominated: enhanced formation of cuticle structural constituents, enhanced activity of oxidation-reduction processes involved in neutralization of phytotoxins and reduced production of proteins from the cathepsin B family. Taken together, these findings indicate that generalist insects can adapt to novel host plants by modifying the expression of a relatively small set of specific molecular functions.
Collapse
Affiliation(s)
- Ella Tadmor
- Department of Entomology, the Hebrew University of Jerusalem, Rehovot, Israel
| | - Ksenia Juravel
- Koret School of Veterinary Medicine, The Robert H. Smith Faculty of Agricultural, Food & Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Shai Morin
- Department of Entomology, the Hebrew University of Jerusalem, Rehovot, Israel
| | - Diego Santos-Garcia
- Laboratory of Biometry and Evolutionary Biology University Lyon 1 - UMR CNRS 5558, Villeurbanne, France
| |
Collapse
|
20
|
Petino Zappala MA, Folguera G, Benitez-Vieyra S. Phenotypic decanalization driven by social determinants could explain variance patterns for glycemia in adult urban Argentinian population. Sci Rep 2022; 12:10865. [PMID: 35760831 PMCID: PMC9237041 DOI: 10.1038/s41598-022-15041-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 06/16/2022] [Indexed: 11/09/2022] Open
Abstract
Type 2 diabetes, one of the major causes of death and disability worldwide, is characterized by problems in the homeostasis of blood glucose. Current preventive policies focus mainly on individual behaviors (diet, exercise, salt and alcohol consumption). Recent hypotheses state that the higher incidence of metabolic disease in some human populations may be related to phenotypic decanalization causing a heightened phenotypic variance in response to unusual or stressful environmental conditions, although the nature of these conditions is under debate. Our aim was to explore variability patterns of fasting blood glucose to test phenotypic decanalization as a possible explanation of heightened prevalence for type 2 diabetes in some groups and to detect variables associated with its variance using a nation-wide survey of Argentinian adult population. We found patterns of higher local variance for fasting glycemia associated with lower income and educational attainment. We detected no meaningful association of glycemia or its variability with covariates related to individual behaviors (diet, physical activity, salt or alcohol consumption). Our results were consistent with the decanalization hypothesis for fasting glycemia, which appears associated to socioeconomic disadvantage. We therefore propose changes in public policy and discuss the implications for data gathering and further analyses.
Collapse
Affiliation(s)
- María Alejandra Petino Zappala
- Facultad de Ciencias Exactas y Naturales, Facultad de Filosofía y Letras, Universidad de Buenos Aires, CONICET, CABA, Intendente Güiraldes 2160, Pabellón II, C1428EGA, Buenos Aires, Argentina.
| | - Guillermo Folguera
- Facultad de Ciencias Exactas y Naturales, Facultad de Filosofía y Letras, Universidad de Buenos Aires, CONICET, CABA, Intendente Güiraldes 2160, Pabellón II, C1428EGA, Buenos Aires, Argentina
| | - Santiago Benitez-Vieyra
- Instituto Multidisciplinario de Biología Vegetal (IMBIV), Universidad Nacional de Córdoba, CONICET, Córdoba, Argentina
| |
Collapse
|
21
|
Dos Santos MM, Klaczko J, da Costa Prudente AL. Sexual dimorphism and allometry in malacophagus snakes (Dipsadidae: Dipsadinae). ZOOLOGY 2022; 153:126026. [PMID: 35759990 DOI: 10.1016/j.zool.2022.126026] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 06/11/2022] [Accepted: 06/19/2022] [Indexed: 11/24/2022]
Abstract
Sexual dimorphism in snakes is generally described in association with body or tail size and scale counts, with relatively few studies addressing intrasexual divergence in the skull. Here, we analyzed sexual dimorphism in the size and shape of skull and body in three malacophagous dipsadine snakes, Dipsas mikanii, Dipsas neuwiedi and Dipsas turgida, as well as allometric effect on these components. We used linear and geometric analysis to assess: (1) if there is sexual dimorphism in cranial components; (2) if there are differences between the sexes regarding body and tail size, number of ventral and subcaudal scales; (3) whether there is covariation between cranial components and body size; (4) if there are changes in cranial shape associated with increased size; and (5) whether there is an allometric relationship between body and tail size. Our results showed that all three species are dimorphic in cranial shape and size (except D. turgida for cranial size), with females having longer and thinner skulls than males. In the three species, the female skull was negatively allometric, whereas the male skull was isometric. Allometry related to cranial shape was significant only in males of D. turgida, which showed greater snout robustness and eye size associated with enlargement of the skull. Females of D. mikanii and D. neuwiedi were significantly larger than males. Only males of D. neuwiedi showed positive allometry for the tail, while dimorphism related to scale counts followed the pattern found in most snakes, with females having a greater number of ventrals and males subcaudals (except D. neuwiedi in the latter case). Based on our results, we hypothesize that patterns of sexual dimorphism and skull allometry in malacophagous snakes may be explained both by aspects related to diet and reproduction. Meanwhile, patterns associated with body size reflect advantages related to fecundity favoring greater reproductive success of females.
Collapse
Affiliation(s)
- Marina Meireles Dos Santos
- Laboratório de Herpetologia, Coordenação de Zoologia, Museu Paraense Emílio Goeldi, CxP 399, CEP 66017-970 Belém, Pará, Brazil.
| | - Julia Klaczko
- Department of Physiological Sciences, University of Brasilia, Brasília, Federal District, Brazil; Laboratory of Comparative Vertebrate Anatomy, University of Brasilia, Brasília, Federal District, Brazil
| | - Ana Lúcia da Costa Prudente
- Laboratório de Herpetologia, Coordenação de Zoologia, Museu Paraense Emílio Goeldi, CxP 399, CEP 66017-970 Belém, Pará, Brazil
| |
Collapse
|
22
|
Allen JM, Hodinka BL, Hall HM, Leonard KM, Williams TD. Flexible growth and body mass predict physiological condition at fledging in the synchronously breeding European starling, Sturnus vulgaris. ROYAL SOCIETY OPEN SCIENCE 2022; 9:220583. [PMID: 35706664 PMCID: PMC9174708 DOI: 10.1098/rsos.220583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 05/19/2022] [Indexed: 05/03/2023]
Abstract
Recent studies have reported beneficial carryover effects of juvenile development that predict interspecific survival differences at independence. Yet, traits relating to body size (i.e. morphological traits) have proven to be unreliable predictors of juvenile survival within species. Exploring individual variation of growth trajectories and how they covary with physiology could reveal species-specific developmental modes which have implications for our assessments of juvenile quality. Here, we investigated morphological development of European starlings (Sturnus vulgaris) approaching fledging in relation to three components of physiological condition at independence: aerobic capacity, energy state and oxidative status. We found evidence of flexible mass and wing growth which independently covaried with fledgling energy state and aerobic capacity, respectively. By comparison, tarsus and wing length at fledging were unrelated to any physiological trait, while mass was positively associated with principal component scores that comprised aerobic capacity and energy state. Thus, flexible growth trajectories were consistent with 'developmental plasticity': adaptive pre-fledging mass recession and compensatory wing growth, which seemingly came at a physiological cost, while fledgling body mass positively reflected overall physiological condition. This highlights how patterns of growth and absolute size may differently reflect fledgling physiology, potentially leading to variable relationships between morphological traits and juvenile fitness.
Collapse
Affiliation(s)
- Joshua M. Allen
- Department of Biological Sciences, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Brett L. Hodinka
- Department of Biological Sciences, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Hannah M. Hall
- Department of Biological Sciences, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Kathryn M. Leonard
- Department of Biological Sciences, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Tony D. Williams
- Department of Biological Sciences, Simon Fraser University, Burnaby, British Columbia, Canada
| |
Collapse
|
23
|
Nathoo R, Garant D, Réale D, Bergeron P. The feast and the famine: spring body mass variations and life-history traits in a pulse resource ecosystem. Am Nat 2022; 200:598-606. [DOI: 10.1086/720729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
24
|
Lalande LD, Lummaa V, Aung HH, Htut W, Nyein UK, Berger V, Briga M. Sex-specific body mass ageing trajectories in adult Asian elephants. J Evol Biol 2022; 35:752-762. [PMID: 35470907 DOI: 10.1111/jeb.14008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 03/17/2022] [Accepted: 03/28/2022] [Indexed: 11/29/2022]
Abstract
In species with marked sexual dimorphism, the classic prediction is that the sex which undergoes stronger intrasexual competition ages earlier or quicker. However, more recently, alternative hypotheses have been put forward, showing that this association can be disrupted. Here, we utilize a unique, longitudinal data set of a semi-captive population of Asian elephants (Elephas maximus), a species with marked male-biased intrasexual competition, with males being larger and having shorter lifespans, and investigate whether males show earlier and/or faster body mass ageing than females. We found evidence of sex-specific body mass ageing trajectories: adult males gained weight up to the age of 48 years old, followed by a decrease in body mass until natural death. In contrast, adult females gained body mass with age until a body mass decline in the last year of life. Our study shows sex-specific ageing patterns, with an earlier onset of body mass declines in males than females, which is consistent with the predictions of the classical theory of ageing.
Collapse
Affiliation(s)
- Lucas D Lalande
- Department of Biology, University of Turku, Turku, Finland.,Université Bourgogne Franche-Comté, Dijon, France.,Université de Lyon, Université Claude Bernard Lyon 1, Laboratoire de Biométrie et Biologie Evolutive, UMR 5558, Villeurbanne CEDEX, France
| | - Virpi Lummaa
- Department of Biology, University of Turku, Turku, Finland
| | - Htoo H Aung
- Myanma Timber Enterprise, Ministry of Natural Resources and Environmental Conservation, West Gyogone Forest Compound, Yangon, Myanmar
| | - Win Htut
- Myanma Timber Enterprise, Ministry of Natural Resources and Environmental Conservation, West Gyogone Forest Compound, Yangon, Myanmar
| | - U Kyaw Nyein
- Myanma Timber Enterprise, Ministry of Natural Resources and Environmental Conservation, West Gyogone Forest Compound, Yangon, Myanmar
| | - Vérane Berger
- Department of Biology, University of Turku, Turku, Finland
| | - Michael Briga
- Department of Biology, University of Turku, Turku, Finland.,Infectious Disease Epidemiology Group, Max Planck Institute for Infection Biology, Berlin, Germany
| |
Collapse
|
25
|
Nagpal S, Tandon R, Gibson G. Canalization of the Polygenic Risk for Common Diseases and Traits in the UK Biobank Cohort. Mol Biol Evol 2022; 39:6547257. [PMID: 35275999 PMCID: PMC9004416 DOI: 10.1093/molbev/msac053] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Since organisms develop and thrive in the face of constant perturbations due to environmental and genetic variation, species may evolve resilient genetic architectures. We sought evidence for this process, known as canalization, through a comparison of the prevalence of phenotypes as a function of the polygenic score (PGS) across environments in the UK Biobank cohort study. Contrasting seven diseases and three categorical phenotypes with respect to 151 exposures in 408,925 people, the deviation between the prevalence-risk curves was observed to increase monotonically with the PGS percentile in one-fifth of the comparisons, suggesting extensive PGS-by-Environment (PGS×E) interaction. After adjustment for the dependency of allelic effect sizes on increased prevalence in the perturbing environment, cases where polygenic influences are greater or lesser than expected are seen to be particularly pervasive for educational attainment, obesity, and metabolic condition type-2 diabetes. Inflammatory bowel disease analysis shows fewer interactions but confirms that smoking and some aspects of diet influence risk. Notably, body mass index has more evidence for decanalization (increased genetic influence at the extremes of polygenic risk), whereas the waist-to-hip ratio shows canalization, reflecting different evolutionary pressures on the architectures of these weight-related traits. An additional 10 % of comparisons showed evidence for an additive shift of prevalence independent of PGS between exposures. These results provide the first widespread evidence for canalization protecting against disease in humans and have implications for personalized medicine as well as understanding the evolution of complex traits. The findings can be explored through an R shiny app at https://canalization-gibsonlab.shinyapps.io/rshiny/.
Collapse
Affiliation(s)
- Sini Nagpal
- School of Biological Sciences, and Center for Integrative Genomics, Georgia Institute of Technology, Atlanta, GA, USA
| | - Raghav Tandon
- Wallace H. Coulter Department of Biomedical Engineering, and Center for Machine Learning, Georgia Institute of Technology, Atlanta, GA, USA
| | - Greg Gibson
- School of Biological Sciences, and Center for Integrative Genomics, Georgia Institute of Technology, Atlanta, GA, USA
| |
Collapse
|
26
|
Huang Y, Lack JB, Hoppel GT, Pool JE. Gene Regulatory Evolution in Cold-Adapted Fly Populations Neutralizes Plasticity and May Undermine Genetic Canalization. Genome Biol Evol 2022; 14:evac050. [PMID: 35380655 PMCID: PMC9017818 DOI: 10.1093/gbe/evac050] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/30/2022] [Indexed: 11/12/2022] Open
Abstract
The relationships between adaptive evolution, phenotypic plasticity, and canalization remain incompletely understood. Theoretical and empirical studies have made conflicting arguments on whether adaptive evolution may enhance or oppose the plastic response. Gene regulatory traits offer excellent potential to study the relationship between plasticity and adaptation, and they can now be studied at the transcriptomic level. Here, we take advantage of three closely related pairs of natural populations of Drosophila melanogaster from contrasting thermal environments that reflect three separate instances of cold tolerance evolution. We measure the transcriptome-wide plasticity in gene expression levels and alternative splicing (intron usage) between warm and cold laboratory environments. We find that suspected adaptive changes in both gene expression and alternative splicing tend to neutralize the ancestral plastic response. Further, we investigate the hypothesis that adaptive evolution can lead to decanalization of selected gene regulatory traits. We find strong evidence that suspected adaptive gene expression (but not splicing) changes in cold-adapted populations are more vulnerable to the genetic perturbation of inbreeding than putatively neutral changes. We find some evidence that these patterns may reflect a loss of genetic canalization accompanying adaptation, although other processes including hitchhiking recessive deleterious variants may contribute as well. Our findings augment our understanding of genetic and environmental effects on gene regulation in the context of adaptive evolution.
Collapse
Affiliation(s)
- Yuheng Huang
- Laboratory of Genetics, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
- Department of Ecology and Evolutionary Biology, University of California, Irvine, Irvine, CA 92697, USA
| | - Justin B Lack
- Laboratory of Genetics, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
- Advanced Biomedical Computational Science, Frederick National Laboratory for Cancer Research, Frederick, MD 21701, USA
| | - Grant T Hoppel
- Laboratory of Genetics, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - John E Pool
- Laboratory of Genetics, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| |
Collapse
|
27
|
Marjanovic J, Mulder HA, Rönnegård L, de Koning D, Bijma P. Capturing indirect genetic effects on phenotypic variability: Competition meets canalization. Evol Appl 2022; 15:694-705. [PMID: 35505880 PMCID: PMC9046766 DOI: 10.1111/eva.13353] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 01/31/2022] [Indexed: 11/30/2022] Open
Abstract
Phenotypic variability of a genotype is relevant both in natural and domestic populations. In the past two decades, variability has been studied as a heritable quantitative genetic trait in its own right, often referred to as inherited variability or environmental canalization. So far, studies on inherited variability have only considered genetic effects of the focal individual, that is, direct genetic effects on inherited variability. Observations from aquaculture populations and some plants, however, suggest that an additional source of genetic variation in inherited variability may be generated through competition. Social interactions, such as competition, are often a source of Indirect Genetic Effects (IGE). An IGE is a heritable effect of an individual on the trait value of another individual. IGEs may substantially affect heritable variation underlying the trait, and the direction and magnitude of response to selection. To understand the contribution of IGEs to evolution of environmental canalization in natural populations, and to exploit such inherited variability in animal and plant breeding, we need statistical models to capture this effect. To our knowledge, it is unknown to what extent the current statistical models commonly used for IGE and inherited variability capture the effect of competition on inherited variability. Here, we investigate the potential of current statistical models for inherited variability and trait values, to capture the direct and indirect genetic effects of competition on variability. Our results show that a direct model of inherited variability almost entirely captures the genetic sensitivity of individuals to competition, whereas an indirect model of inherited variability captures the cooperative genetic effects of individuals on their partners. Models for trait levels, however, capture only a small part of the genetic effects of competition. The estimation of direct and indirect genetic effects of competition, therefore, is possible with models for inherited variability but may require a two-step analysis.
Collapse
Affiliation(s)
- Jovana Marjanovic
- Animal Breeding and GenomicsWageningen University and ResearchWageningenThe Netherlands
- Department of Animal Breeding and GeneticsSwedish University of Agricultural SciencesUppsalaSweden
| | - Han A. Mulder
- Animal Breeding and GenomicsWageningen University and ResearchWageningenThe Netherlands
| | - Lars Rönnegård
- Department of Animal Breeding and GeneticsSwedish University of Agricultural SciencesUppsalaSweden
- Department of Information TechnologyDalarna UniversityFalunSweden
| | - Dirk‐Jan de Koning
- Department of Animal Breeding and GeneticsSwedish University of Agricultural SciencesUppsalaSweden
| | - Piter Bijma
- Animal Breeding and GenomicsWageningen University and ResearchWageningenThe Netherlands
| |
Collapse
|
28
|
Decrausaz SL, Cameron ME. A growth area: A review of the value of clinical studies of child growth for palaeopathology. Evol Med Public Health 2022; 10:108-122. [PMID: 35273803 PMCID: PMC8903130 DOI: 10.1093/emph/eoac005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 01/17/2022] [Indexed: 12/11/2022] Open
Abstract
Studies of living children demonstrate that early life stress impacts linear growth outcomes. Stresses affecting linear growth may also impact later life health outcomes, including increased cardiometabolic disease risk. Palaeopathologists also assess the growth of children recovered from bioarchaeological contexts. Early life stresses are inferred to affect linear growth outcomes, and measurements of skeletal linear dimensions alongside other bioarchaeological information may indicate the types of challenges faced by past groups. In clinical settings, the impacts of stress on growing children are typically measured by examining height. Palaeopathologists are limited to examining bone dimensions directly and must grapple with incomplete pictures of childhood experiences that may affect growth. Palaeopathologists may use clinical growth studies to inform observations among past children; however, there may be issues with this approach. Here, we review the relationship between contemporary and palaeopathological studies of child and adolescent growth. We identify approaches to help bridge the gap between palaeopathological and biomedical growth studies. We advocate for: the creation of bone-specific growth reference information using medical imaging and greater examination of limb proportions; the inclusion of children from different global regions and life circumstances in contemporary bone growth studies; and greater collaboration and dialogue between palaeopathologists and clinicians as new studies are designed to assess linear growth past and present. We advocate for building stronger bridges between these fields to improve interpretations of growth patterns across human history and to potentially improve interventions for children living and growing today.
Collapse
Affiliation(s)
- Sarah-Louise Decrausaz
- Department of Anthropology, University of Victoria, Cornett Building, Victoria, BC V8P 5C2, Canada
| | - Michelle E Cameron
- Department of Anthropology, University of Toronto, 19 Ursula Franklin Street, Toronto, ON M5S 2S2, Canada
| |
Collapse
|
29
|
Ascarrunz E, Sánchez-Villagra MR. The macroevolutionary and developmental evolution of the turtle carapacial scutes. VERTEBRATE ZOOLOGY 2022. [DOI: 10.3897/vz.72.e76256] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The scutes of the carapace of extant turtles exhibit common elements in a narrow range of topographical arrangements. The typical arrangement has remained constant since its origin in the clade Mesochelydia (Early Jurassic), after a period of apparent greater diversity in the Triassic. This contribution is a review of the development and evolutionary history of the scute patterns of the carapace, seen through the lens of recent developmental models. This yields insights on pattern variations in the fossil record. We reinterpret the “supracaudal” scute and propose that Proganochelys had five vertebral scutes. We discuss the relationship between supramarginal scutes and Turing processes, and we show how a simple change during embryogenesis could account for origin of the configuration of the caudal region of the carapace in mesochelydians. We also discuss the nature of the decrease in number of scutes over the course of evolution, and whether macroevolutionary trends can be discerned. We argue that turtles with complete loss of scutes (e.g., softshells) follow clade-specific macroevolutionary regimes, which are distinct from the majority of other turtles. Finally, we draw a parallel between the variation of scute patterns on the carapace of turtles and the scale patterns in the pileus region (roof of the head) of squamates. The size and numbers of scales in the pileus region can evolve over a wide range, but we recognized tentative evidence of convergence towards a typical configuration when the scales become larger and fewer. Thus, typical patterns could be a more general property of similar systems of integumentary appendages.
Collapse
|
30
|
Walters RJ, Berger D, Blanckenhorn WU, Bussière LF, Rohner PT, Jochmann R, Thüler K, Schäfer MA. Growth rate mediates hidden developmental plasticity of female yellow dung fly reproductive morphology in response to environmental stressors. Evol Dev 2022; 24:3-15. [PMID: 35072984 PMCID: PMC9285807 DOI: 10.1111/ede.12396] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 10/19/2021] [Accepted: 11/24/2021] [Indexed: 01/08/2023]
Abstract
Understanding how environmental variation influences even cryptic traits is important to clarify the roles of selection and developmental constraints in past evolutionary divergence and to predict future adaptation under environmental change. Female yellow dung flies (Scathophaga stercoraria) typically have three sperm storage compartments (3S), but occasionally four (4S). More spermathecae are thought to be a female adaptation facilitating sperm sorting after mating, but the phenotype is very rare in nature. We manipulated the flies' developmental environment by food restriction, pesticides, and hot temperatures to investigate the nature and extent of developmental plasticity of this trait, and whether spermatheca expression correlates with measures of performance and developmental stability, as would be expected if 4S expression is a developmental aberration. The spermathecal polymorphism of yellow dung fly females is heritable, but also highly developmentally plastic, varying strongly with rearing conditions. 4S expression is tightly linked to growth rate, and weakly positively correlated with fluctuating asymmetry of wings and legs, suggesting that the production of a fourth spermatheca could be a nonadaptive developmental aberration. However, spermathecal plasticity is opposite in the closely related and ecologically similar Scathophaga suilla, demonstrating that overexpression of spermathecae under developmental stress is not universal. At the same time, we found overall mortality costs as well as benefits of 4S pheno‐ and genotypes (also affecting male siblings), suggesting that a life history trade‐off may potentially moderate 4S expression. We conclude that the release of cryptic genetic variation in spermatheca number in the face of strong environmental variation may expose hidden traits (here reproductive morphology) to natural selection (here under climate warming or food augmentation). Once exposed, hidden traits can potentially undergo rapid genetic assimilation, even in cases when trait changes are first triggered by random errors that destabilize developmental processes. Female yellow dung flies naturally vary in number of sperm storage compartments (3S or 4S). This spermathecal polymorphism is strongly heritable but also developmentally plastic. 4S expression is linked to growth rate and weakly correlated with fluctuating asymmetry, so potentially a developmental aberration. There are mortality costs as well as benefits for 4S phenotypes, suggesting adaptive life‐history trade‐offs. Spermathecal plasticity differs in the closely related and ecologically similar Scathophaga suilla. Environmental changes can expose hidden traits with initially no function to natural selection.
Collapse
Affiliation(s)
- Richard J. Walters
- Department of Evolutionary Biology and Environmental Studies University of Zurich Zurich Switzerland
- Centre for Environmental and Climate Research Lund University Lund Sweden
| | - David Berger
- Department of Evolutionary Biology and Environmental Studies University of Zurich Zurich Switzerland
- Evolutionary Biology Centre University of Uppsala Uppsala Sweden
| | - Wolf U. Blanckenhorn
- Department of Evolutionary Biology and Environmental Studies University of Zurich Zurich Switzerland
| | - Luc F. Bussière
- Department of Evolutionary Biology and Environmental Studies University of Zurich Zurich Switzerland
- Biological and Environmental Sciences University of Stirling Stirling Scotland UK
- Biology and Environmental Sciences University of Gothenburg Gothenburg Sweden
| | - Patrick T. Rohner
- Department of Evolutionary Biology and Environmental Studies University of Zurich Zurich Switzerland
- Department of Biology Indiana University Bloomington Indiana USA
| | - Ralf Jochmann
- Department of Evolutionary Biology and Environmental Studies University of Zurich Zurich Switzerland
| | - Karin Thüler
- Department of Evolutionary Biology and Environmental Studies University of Zurich Zurich Switzerland
| | - Martin A. Schäfer
- Department of Evolutionary Biology and Environmental Studies University of Zurich Zurich Switzerland
| |
Collapse
|
31
|
Moorad J, Ravindran S. Natural selection and the evolution of asynchronous aging. Am Nat 2021; 199:551-563. [DOI: 10.1086/718589] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
32
|
Ćmiel AM, Dołęga J, Aldridge DC, Lipińska A, Tang F, Zając K, Lopes-Lima M, Zając T. The size and shape of parasitic larvae of naiads (Unionidae) are not dependent on female size. Sci Rep 2021; 11:23755. [PMID: 34887477 PMCID: PMC8660881 DOI: 10.1038/s41598-021-03143-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 11/24/2021] [Indexed: 11/23/2022] Open
Abstract
The naiads, large freshwater mussels (Unionida), have very long life spans, are large-bodied, and produce thousands to millions of larvae (glochidia) which typically must attach to host fish tissues to metamorphose into a juvenile mussel. Glochidia develop within a female's marsupial gill demibranch, thus their number is restricted by female size. However, larger mussels acquire more energy, which could be invested in either larger-sized glochidia, in a more glochidia, or a combination of both. The high level of host specialization seen in many naiads may constrain glochidial size and shape around a narrow optimum, while naiads that use a wide range of host fishes may be predicted to possess greater plasticity in glochidial morphology. In this paper, we investigated the relationship between maternal body size and progeny body size and shape, aided by modern digital microscopy. We analyzed the between- and within- species variation of glochidia size and shape relative to female size in four widespread species of European naiads: Anodonta anatina, Anodonta cygnea, Unio crassus and Unio tumidus. Whereas the total reproductive output is collinear with female body size, substantial differences between species in glochidia size were found within genus Anodonta, but not genus Unio where glochidial size is remarkably consistent. The glochidial shape, however, differed within both Unio and Anodonta. We interpret this constant within-species glochidial size in Unio as reflecting a constraint imposed by the likelihood of successful transmission onto and off from a narrow range of hosts, whereas their shape seems to be less constrained. The Anodonta species, inhabiting a wide spectrum of habitats and using more than twice the number of fish hosts than Unio spp., have larger glochidia with greater variation in size and shape. Our results suggest that measures of glochidial variability may also serve as an indicator of host specificity in other naiads.
Collapse
Affiliation(s)
- Adam M Ćmiel
- Institute of Nature Conservation, Polish Academy of Sciences, al. A. Mickiewicza 33, 31-120, Kraków, Poland
| | - Jacek Dołęga
- Institute of Nature Conservation, Polish Academy of Sciences, al. A. Mickiewicza 33, 31-120, Kraków, Poland.
| | - David C Aldridge
- Department of Zoology, The David Attenborough Building, University of Cambridge, Pembroke Street, Cambridge, CB2 3QZ, UK
| | - Anna Lipińska
- Institute of Nature Conservation, Polish Academy of Sciences, al. A. Mickiewicza 33, 31-120, Kraków, Poland
| | - Feng Tang
- Department of Zoology, The David Attenborough Building, University of Cambridge, Pembroke Street, Cambridge, CB2 3QZ, UK
| | - Katarzyna Zając
- Institute of Nature Conservation, Polish Academy of Sciences, al. A. Mickiewicza 33, 31-120, Kraków, Poland
| | - Manuel Lopes-Lima
- CIBIO/InBIO-Research Center in Biodiversity and Genetic Resources, University of Porto, Campus Agrário de Vairão, 4485-661, Vairão, Portugal
| | - Tadeusz Zając
- Institute of Nature Conservation, Polish Academy of Sciences, al. A. Mickiewicza 33, 31-120, Kraków, Poland
| |
Collapse
|
33
|
O'Dea RE, Noble DWA, Nakagawa S. Unifying individual differences in personality, predictability and plasticity: A practical guide. Methods Ecol Evol 2021. [DOI: 10.1111/2041-210x.13755] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Rose E. O'Dea
- Evolution & Ecology Research Centre School of Biological and Environmental Sciences University of New South Wales Sydney NSW Australia
- Diabetes and Metabolism Division Garvan Institute of Medical Research Sydney NSW Australia
| | - Daniel W. A. Noble
- Division of Ecology and Evolution Research School of Biology The Australian National University Canberra ACT Australia
| | - Shinichi Nakagawa
- Evolution & Ecology Research Centre School of Biological and Environmental Sciences University of New South Wales Sydney NSW Australia
- Diabetes and Metabolism Division Garvan Institute of Medical Research Sydney NSW Australia
| |
Collapse
|
34
|
Lai WY, Schlötterer C. Evolution of phenotypic variance in response to a novel hot environment. Mol Ecol 2021; 31:934-945. [PMID: 34775658 DOI: 10.1111/mec.16274] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 10/21/2021] [Accepted: 11/05/2021] [Indexed: 12/13/2022]
Abstract
Shifts in trait means are widely considered as evidence for adaptive responses, but the impact on phenotypic variance remains largely unexplored. Classic quantitative genetics provides a theoretical framework to predict how selection on phenotypic mean affects the variance. In addition to this indirect effect, it is also possible that the variance of the trait is the direct target of selection, but experimentally characterized cases are rare. Here, we studied gene expression variance of Drosophila simulans males before and after 100 generations of adaptation to a novel hot laboratory environment. In each of the two independently evolved populations, the variance of 125 and 97 genes was significantly reduced. We propose that the drastic loss in environmental complexity from nature to the laboratory may have triggered selection for reduced variance. Our observation that selection could drive changes in the variance of gene expression could have important implications for studies of adaptation processes in natural and experimental populations.
Collapse
Affiliation(s)
- Wei-Yun Lai
- Institut für Populationsgenetik, Vetmeduni Vienna, Vienna, Austria.,Vienna Graduate School of Population Genetics, Vetmeduni Vienna, Vienna, Austria
| | | |
Collapse
|
35
|
Lee CE. Ion Transporter Gene Families as Physiological Targets of Natural Selection During Salinity Transitions in a Copepod. Physiology (Bethesda) 2021; 36:335-349. [PMID: 34704854 DOI: 10.1152/physiol.00009.2021] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Salinity is a key factor that structures biodiversity on the planet. With anthropogenic change, such as climate change and species invasions, many populations are facing rapid and dramatic changes in salinity throughout the globe. Studies on the copepod Eurytemora affinis species complex have implicated ion transporter gene families as major loci contributing to salinity adaptation during freshwater invasions. Laboratory experiments and population genomic surveys of wild populations have revealed evolutionary shifts in genome-wide gene expression and parallel genomic signatures of natural selection during independent salinity transitions. Our results suggest that balancing selection in the native range and epistatic interactions among specific ion transporter paralogs could contribute to parallel freshwater adaptation. Overall, these studies provide unprecedented insights into evolutionary mechanisms underlying physiological adaptation during rapid salinity change.
Collapse
Affiliation(s)
- Carol Eunmi Lee
- Department of Integrative Biology, University of Wisconsin, Madison, Wisconsin
| |
Collapse
|
36
|
Candolin U, Jensen I. Phenotypic plasticity in courtship exposed to selection in a human-disturbed environment. Evol Appl 2021; 14:2392-2401. [PMID: 34745333 PMCID: PMC8549619 DOI: 10.1111/eva.13225] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 03/08/2021] [Accepted: 03/09/2021] [Indexed: 12/22/2022] Open
Abstract
When environments change rapidly, evolutionary processes may be too slow to rescue populations from decline. Persistence then hinges on plastic adjustments of critical traits to the altered conditions. However, the degree to which species harbour the necessary plasticity and the degree to which the plasticity is exposed to selection in human-disturbed environments are poorly known. We show that a population of the threespine stickleback (Gasterosteus aculeatus) harbours variation in plasticity in male courtship behaviour, which is exposed to selection when visibility deteriorates because of enhanced algal growth. Females in clear water show no preference for plastic males, while females in algal-rich, turbid water switch their mate preference towards males with adaptive plasticity. Thus, while the plasticity is not selected for in the original clear water environment, it comes under selection in turbid water. However, much maladaptive plasticity is present in the population, probably because larger turbidity fluctuations have been rare in the past. Thus, the probability that the plasticity will improve the ability of the population to cope with human-induced increases in turbidity-and possibly facilitate genetic adaptation-depends on its prevalence and genetic basis. In conclusion, our results show that rapid human-induced environmental change can expose phenotypic plasticity to selection, but that much of the plasticity can be maladaptive, also when the altered conditions represent extremes of earlier encountered conditions. Thus, whether the plasticity will improve population viability remains questionable.
Collapse
Affiliation(s)
- Ulrika Candolin
- Organismal and Evolutionary BiologyUniversity of HelsinkiHelsinkiFinland
| | - Irene Jensen
- Organismal and Evolutionary BiologyUniversity of HelsinkiHelsinkiFinland
| |
Collapse
|
37
|
Fuchs S, Leuschner C, Mathias Link R, Schuldt B. Hydraulic variability of three temperate broadleaf tree species along a water availability gradient in central Europe. THE NEW PHYTOLOGIST 2021; 231:1387-1400. [PMID: 33964029 DOI: 10.1111/nph.17448] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 05/01/2021] [Indexed: 06/12/2023]
Abstract
Plant hydraulic traits are key for understanding and predicting tree drought responses. Information about the degree of the traits' intra-specific variability may guide the selection of drought-resistant genotypes and is crucial for trait-based modelling approaches. For the three temperate minor broadleaf tree species Acer platanoides, Carpinus betulus and Tilia cordata, we measured xylem embolism resistance (P50 ), leaf turgor loss point (PTLP ), specific hydraulic conductivity (KS ), Huber values (HVs), and hydraulic safety margins in adult trees across a precipitation gradient. We further quantified trait variability on different organizational levels (inter-specific to within-canopy variation), and analysed its relationship to climatic and soil water availability. Although we observed a certain intra-specific trait variability (ITV) in safety-related traits (P50 , PTLP ) with higher within-tree and between-tree than between populations variability, the magnitude was small compared to inter-specific differences, which explained 78.4% and 58.3% of the variance in P50 and PTLP , respectively. In contrast, efficiency-related traits (KS , HV) showed a high ITV both within populations and within the crowns of single trees. Surprisingly, the observed ITV of all traits was neither driven by climatic nor soil water availability. In conclusion, the high degree of conservatism in safety-related traits highlights their potential for trait-based modelling approaches.
Collapse
Affiliation(s)
- Sebastian Fuchs
- Plant Ecology, Albrecht von Haller Institute for Plant Sciences, University of Goettingen, Untere Karspüle 2, Goettingen, 37073, Germany
| | - Christoph Leuschner
- Plant Ecology, Albrecht von Haller Institute for Plant Sciences, University of Goettingen, Untere Karspüle 2, Goettingen, 37073, Germany
- Centre for Biodiversity and Sustainable Land Use (CBL), University of Goettingen, Goettingen, 37075, Germany
| | - Roman Mathias Link
- Plant Ecology, Albrecht von Haller Institute for Plant Sciences, University of Goettingen, Untere Karspüle 2, Goettingen, 37073, Germany
| | - Bernhard Schuldt
- Plant Ecology, Albrecht von Haller Institute for Plant Sciences, University of Goettingen, Untere Karspüle 2, Goettingen, 37073, Germany
| |
Collapse
|
38
|
Szabó B, Lang Z, Kövér S, Bakonyi G. The inter-individual variance can provide additional information for the ecotoxicologists beside the mean. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 217:112260. [PMID: 33910068 DOI: 10.1016/j.ecoenv.2021.112260] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 04/13/2021] [Indexed: 06/12/2023]
Abstract
The hypothesis that the inter-individual parameter variability is an unexploited area of ecotoxicology was proposed several decades ago. Although some illustrative examples were presented to support this hypothesis in the last decades, it has never been tested on an extensive, coherent database. In this study, variance changes of 105 dose-response curves were analysed. All data originated from the same experiment, where the effects of the insecticide Trebon EC were investigated in a dose-response manner on 15 traits of the collembolan Folsomia candida in four subsequent generations and two types of insecticide treatments. A consistent relationship between inter-individual variance and insecticide application was found in 2 (first clutch size and growth-reproduction trade-off) out of the 15 of the parameters. Contrary to the mean, the variance of the first clutch size showed consistent differences compared to the control. Furthermore, the variance of the growth-reproduction trade-off was consistently different from the control except in one case (F3 generation of the transgenerational treatment). Higher first clutch size variances were found in F1 and a lower one in the F2 and F3 generations than in that of the control. This overall pattern of the variance changes of the first clutch size and the trade-off seems to be a quick response to the insecticide application. In the short term, we have found that variance increased with insecticide treatment (P and F1 generation), because phenotypic variance generally increases due to environmental stress. Disruptive selection could be another mechanism between the more detoxification less reproduction strategy and the more reproduction less detoxification strategy. However, in the later generations (F2-F3) the variance decreases compared to the control, which could be because on short term selection stronger on the viability parameters and in long-term selection on reproduction becomes stronger. According to our results, analysis of the variance changes of some parameters may give information about the effects of the pesticide even when the mean does not predict any impact. Testing variance changes are important in ecotoxicology because variance change can signalise toxicant impact even when the mean does not change in certain cases.
Collapse
Affiliation(s)
- Borbála Szabó
- Department of Zoology and Animal Ecology, Szent István University, Páter K. st. 1, 2100 Gödöllő, Hungary; Centre for Ecological Research, Danube Research Institute, Environmental Chemistry and Ecotoxicology Group, Karolina st. 29, 1113 Budapest, Hungary; Centre for Ecological Research, Institute of Ecology and Botany, "Lendület" Landscape and Conservation Ecology Research Group, Alkotmány u. 2-4, 2163 Vácrátót, Hungary.
| | - Zsolt Lang
- Department of Biomathematics and Informatics, University of Veterinary Medicine Budapest, István st. 2, 1078 Budapest, Hungary
| | - Szilvia Kövér
- Department of Ecology, University of Veterinary Medicine Budapest, István st. 2, 1078 Budapest, Hungary
| | - Gábor Bakonyi
- Department of Zoology and Animal Ecology, Szent István University, Páter K. st. 1, 2100 Gödöllő, Hungary
| |
Collapse
|
39
|
Thomasson KM, Franks A, Teotónio H, Proulx SR. Testing the adaptive value of sporulation in budding yeast using experimental evolution. Evolution 2021; 75:1889-1897. [PMID: 34029382 DOI: 10.1111/evo.14265] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 04/16/2021] [Indexed: 11/28/2022]
Abstract
Saccharomyces yeast grow through mitotic cell division, converting resources into biomass. When cells experience starvation, sporulation is initiated and meiosis produces haploid cells inside a protective ascus. The protected spore state does not acquire resources and is partially protected from desiccation, heat, and caustic chemicals. Because cells cannot both be protected and acquire resources simultaneously, committing to sporulation represents a trade-off between current and future reproduction. Recent work has suggested that passaging through insect guts selects for spore formation, as surviving insect ingestion represents a major way that yeasts are vectored to new food sources. We subjected replicate populations from five yeast strains to passaging through insects, and evolved control populations by pipette passaging. We assayed populations for their propensity to sporulate after resource depletion. We found that ancestral domesticated strains produced fewer spores, and all strains evolved increased spore production in response to passaging through flies, but domesticated strains responded less. Exposure to flies led to a more rapid shift to sporulation that was more extreme in wild-derived strains. Our results indicate that insect passaging selects for spore production and suggest that domestication led to genetic canalization of the response to cues in the environment and initiation of sporulation.
Collapse
Affiliation(s)
- Kelly M Thomasson
- Department of Ecology, Evolution, and Marine Biology, UC Santa Barbara, Santa Barbara, California 93106
| | - Alexander Franks
- Department of Probability and Statistics, UC Santa Barbara, Santa Barbara, California 93106
| | - Henrique Teotónio
- Institut de Biologie de l'ENS (IBENS), Ecole Normale Superieure, CNRS, INSERM, PSL University, Paris, 75005, France
| | - Stephen R Proulx
- Department of Ecology, Evolution, and Marine Biology, UC Santa Barbara, Santa Barbara, California 93106
| |
Collapse
|
40
|
Cochrane PV, Jonz MG, Wright PA. The development of the O 2-sensing system in an amphibious fish: consequences of variation in environmental O 2 levels. J Comp Physiol B 2021; 191:681-699. [PMID: 34023926 DOI: 10.1007/s00360-021-01379-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 03/04/2021] [Accepted: 05/07/2021] [Indexed: 11/25/2022]
Abstract
Proper development of the O2-sensing system is essential for survival. Here, we characterized the development of the O2-sensing system in the mangrove rivulus (Kryptolebias marmoratus), an amphibious fish that transitions between hypoxic aquatic environments and O2-rich terrestrial environments. We found that NECs formed in the gills and skin of K. marmoratus during embryonic development and that both NEC populations are retained from the embryonic stage to adulthood. We also found that the hyperventilatory response to acute hypoxia was present in embryonic K. marmoratus, indicating that functional O2-sensing pathways are formed during embryonic development. We then exposed embryos to aquatic normoxia, aquatic hyperoxia, aquatic hypoxia, or terrestrial conditions for the first 30 days of embryonic development and tested the hypothesis that environmental O2 availability during embryonic development modulates the development of the O2-sensing system in amphibious fishes. Surprisingly, we found that O2 availability during embryonic development had little impact on the density and morphology of NECs in the gills and skin of K. marmoratus. Collectively, our results demonstrate that, unlike the only other species of fish in which NEC development has been studied to date (i.e., zebrafish), NEC development in K. marmoratus is largely unaffected by environmental O2 levels during the embryonic stage, indicating that there is interspecies variation in O2-induced plasticity in the O2-sensing system of fishes.
Collapse
Affiliation(s)
- Paige V Cochrane
- Department of Integrative Biology, University of Guelph, Guelph, ON, N1G 2W1, Canada.
| | - Michael G Jonz
- Department of Biology, University of Ottawa, Ottawa, ON, K1N 6N5, Canada
| | - Patricia A Wright
- Department of Integrative Biology, University of Guelph, Guelph, ON, N1G 2W1, Canada
| |
Collapse
|
41
|
Miller WB, Enguita FJ, Leitão AL. Non-Random Genome Editing and Natural Cellular Engineering in Cognition-Based Evolution. Cells 2021; 10:1125. [PMID: 34066959 PMCID: PMC8148535 DOI: 10.3390/cells10051125] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 04/27/2021] [Accepted: 05/05/2021] [Indexed: 12/16/2022] Open
Abstract
Neo-Darwinism presumes that biological variation is a product of random genetic replication errors and natural selection. Cognition-Based Evolution (CBE) asserts a comprehensive alternative approach to phenotypic variation and the generation of biological novelty. In CBE, evolutionary variation is the product of natural cellular engineering that permits purposive genetic adjustments as cellular problem-solving. CBE upholds that the cornerstone of biology is the intelligent measuring cell. Since all biological information that is available to cells is ambiguous, multicellularity arises from the cellular requirement to maximize the validity of available environmental information. This is best accomplished through collective measurement purposed towards maintaining and optimizing individual cellular states of homeorhesis as dynamic flux that sustains cellular equipoise. The collective action of the multicellular measurement and assessment of information and its collaborative communication is natural cellular engineering. Its yield is linked cellular ecologies and mutualized niche constructions that comprise biofilms and holobionts. In this context, biological variation is the product of collective differential assessment of ambiguous environmental cues by networking intelligent cells. Such concerted action is enabled by non-random natural genomic editing in response to epigenetic impacts and environmental stresses. Random genetic activity can be either constrained or deployed as a 'harnessing of stochasticity'. Therefore, genes are cellular tools. Selection filters cellular solutions to environmental stresses to assure continuous cellular-organismal-environmental complementarity. Since all multicellular eukaryotes are holobionts as vast assemblages of participants of each of the three cellular domains (Prokaryota, Archaea, Eukaryota) and the virome, multicellular variation is necessarily a product of co-engineering among them.
Collapse
Affiliation(s)
| | - Francisco J. Enguita
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028 Lisboa, Portugal;
| | - Ana Lúcia Leitão
- MEtRICs, Department of Sciences and Technology of Biomass, NOVA School of Science and Technology, FCT NOVA, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal;
| |
Collapse
|
42
|
Kimmel CB, Wind AL, Oliva W, Ahlquist SD, Walker C, Dowd J, Blanco-Sánchez B, Titus TA, Batzel P, Talbot JC, Postlethwait JH, Nichols JT. Transgene-mediated skeletal phenotypic variation in zebrafish. JOURNAL OF FISH BIOLOGY 2021; 98:956-970. [PMID: 32112658 PMCID: PMC7483860 DOI: 10.1111/jfb.14300] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 01/13/2020] [Accepted: 02/25/2020] [Indexed: 05/03/2023]
Abstract
When considering relationships between genotype and phenotype we frequently ignore the fact that the genome of a typical animal, notably including that of a fish and a human, harbours a huge amount of foreign DNA. Such DNA, in the form of transposable elements, can affect genome function in a major way, and transgene biology needs to be included in our understanding of the genome. Here we examine an unexpected phenotypic effect of the chromosomally integrated transgene fli1a-F-hsp70l:Gal4VP16 that serves as a model for transgene function generally. We examine larval fras1 mutant zebrafish (Danio rerio). Gal4VP16 is a potent transcriptional activator that is already well known for toxicity and mediating unusual transcriptional effects. In the presence of the transgene, phenotypes in the neural crest-derived craniofacial skeleton, notably fusions and shape changes associated with loss of function fras1 mutations, are made more severe, as we quantify by scoring phenotypic penetrance, the fraction of mutants expressing the trait. A very interesting feature is that the enhancements are highly specific for fras1 mutant phenotypes, occurring in the apparent absence of more widespread changes. Except for the features due to the fras1 mutation, the transgene-bearing larvae appear generally healthy and to be developing normally. The transgene behaves as a genetic partial dominant: a single copy is sufficient for the enhancements, yet, for some traits, two copies may exert a stronger effect. We made new strains bearing independent insertions of the fli1a-F-hsp70l:Gal4VP16 transgene in new locations in the genome, and observed increased severities of the same phenotypes as observed for the original insertion. This finding suggests that sequences within the transgene, for example Gal4VP16, are responsible for the enhancements, rather than the effect on neighbouring host sequences (such as an insertional mutation). The specificity and biological action underlying the traits are subjects of considerable interest for further investigation, as we discuss. Our findings show that work with transgenes needs to be undertaken with caution and attention to detail.
Collapse
Affiliation(s)
| | | | - Whitney Oliva
- Institute of Neuroscience, University of Oregon, Eugene, OR, USA
| | | | - Charline Walker
- Institute of Neuroscience, University of Oregon, Eugene, OR, USA
| | - John Dowd
- Institute of Neuroscience, University of Oregon, Eugene, OR, USA
| | - Bernardo Blanco-Sánchez
- Institute of Neuroscience, University of Oregon, Eugene, OR, USA
- Current address: Laboratory of Embryology and Genetics of Congenital Malformations, INSERM UMR 1163, Institut Imagine, 75015 Paris, France
| | - Tom A. Titus
- Institute of Neuroscience, University of Oregon, Eugene, OR, USA
| | - Peter Batzel
- Institute of Neuroscience, University of Oregon, Eugene, OR, USA
| | - Jared C. Talbot
- School of Biology and Ecology, University of Maine, Orono, ME 04469, USA
| | | | - James T. Nichols
- Department of Craniofacial Biology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| |
Collapse
|
43
|
Briga M, Verhulst S. Mosaic metabolic ageing: Basal and standard metabolic rates age in opposite directions and independent of environmental quality, sex and life span in a passerine. Funct Ecol 2021. [DOI: 10.1111/1365-2435.13785] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Michael Briga
- Groningen Institute for Evolutionary Life Sciences University of Groningen Groningen The Netherlands
| | - Simon Verhulst
- Groningen Institute for Evolutionary Life Sciences University of Groningen Groningen The Netherlands
| |
Collapse
|
44
|
Schrader L, Winter M, Errbii M, Delabie J, Oettler J, Gadau J. Inhibition of HSP90 causes morphological variation in the invasive ant
Cardiocondyla obscurior. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2021; 336:333-340. [DOI: 10.1002/jez.b.23035] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 01/13/2021] [Accepted: 02/04/2021] [Indexed: 01/16/2023]
Affiliation(s)
- Lukas Schrader
- Institute for Evolution and Biodiversity University of Münster Münster Germany
| | - Miles Winter
- Institute for Evolution and Biodiversity University of Münster Münster Germany
| | - Mohammed Errbii
- Institute for Evolution and Biodiversity University of Münster Münster Germany
| | - Jacques Delabie
- Laboratório de Mirmecologia Cocoa Research Center‐CEPLAC & UESC‐DCAA Itabuna Bahia Brazil
| | - Jan Oettler
- Lehrstuhl für Zoologie/Evolutionsbiologie University of Regensburg Regensburg Germany
| | - Jürgen Gadau
- Institute for Evolution and Biodiversity University of Münster Münster Germany
| |
Collapse
|
45
|
Mitteroecker P, Stansfield E. A model of developmental canalization, applied to human cranial form. PLoS Comput Biol 2021; 17:e1008381. [PMID: 33591964 PMCID: PMC7909690 DOI: 10.1371/journal.pcbi.1008381] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Revised: 02/26/2021] [Accepted: 01/14/2021] [Indexed: 11/26/2022] Open
Abstract
Developmental mechanisms that canalize or compensate perturbations of organismal development (targeted or compensatory growth) are widely considered a prerequisite of individual health and the evolution of complex life, but little is known about the nature of these mechanisms. It is even unclear if and how a “target trajectory” of individual development is encoded in the organism’s genetic-developmental system or, instead, emerges as an epiphenomenon. Here we develop a statistical model of developmental canalization based on an extended autoregressive model. We show that under certain assumptions the strength of canalization and the amount of canalized variance in a population can be estimated, or at least approximated, from longitudinal phenotypic measurements, even if the target trajectories are unobserved. We extend this model to multivariate measures and discuss reifications of the ensuing parameter matrix. We apply these approaches to longitudinal geometric morphometric data on human postnatal craniofacial size and shape as well as to the size of the frontal sinuses. Craniofacial size showed strong developmental canalization during the first 5 years of life, leading to a 50% reduction of cross-sectional size variance, followed by a continual increase in variance during puberty. Frontal sinus size, by contrast, did not show any signs of canalization. Total variance of craniofacial shape decreased slightly until about 5 years of age and increased thereafter. However, different features of craniofacial shape showed very different developmental dynamics. Whereas the relative dimensions of the nasopharynx showed strong canalization and a reduction of variance throughout postnatal development, facial orientation continually increased in variance. Some of the signals of canalization may owe to independent variation in developmental timing of cranial components, but our results indicate evolved, partly mechanically induced mechanisms of canalization that ensure properly sized upper airways and facial dimensions. Developmental mechanisms that canalize or compensate perturbations of organismal development are a prerequisite of individual health and the evolution of complex life. However, surprisingly little is known about these mechanisms, partly because the “target trajectories” of individual development cannot be directly observed. Here we develop a statistical model of developmental canalization that allows one to estimate the strength of canalization and the amount of canalized variance in a population even if the target trajectories are unobserved. We applied these approaches to data on human postnatal craniofacial growth. Whereas overall craniofacial size was strongly canalized during the first 5 years of age, frontal sinus size did not show any signs of canalization. The relative dimensions of the nasopharynx showed strong canalization and a reduction of variance throughout postnatal development, whereas other shape features, such as facial orientation, continually increased in variance. Our results indicate evolved, partly mechanically induced mechanisms of canalization that ensure properly sized upper airways and facial dimensions.
Collapse
Affiliation(s)
- Philipp Mitteroecker
- Department of Evolutionary Biology, University of Vienna, Vienna, Austria
- * E-mail:
| | | |
Collapse
|
46
|
Cameron ME, Pfeiffer S, Stock J. Small body size phenotypes among Middle and Later Stone Age Southern Africans. J Hum Evol 2021; 152:102943. [PMID: 33571806 DOI: 10.1016/j.jhevol.2020.102943] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 12/17/2020] [Accepted: 12/18/2020] [Indexed: 11/25/2022]
Abstract
Modern humans originated between 300 and 200 ka in structured populations throughout Africa, characterized by regional interaction and diversity. Acknowledgment of this complex Pleistocene population structure raises new questions about the emergence of phenotypic diversity. Holocene Southern African Later Stone Age (LSA) skeletons and descendant Khoe-San peoples have small adult body sizes that may reflect long-term adaptation to the Cape environment. Pleistocene Southern African adult body sizes are not well characterized, but some postcranial elements are available. The most numerous Pleistocene postcranial skeletal remains come from Klasies River Mouth on the Southern Cape coast of South Africa. We compare the morphology of these skeletal elements with globally sampled Holocene groups encompassing diverse adult body sizes and shapes (n = 287) to investigate whether there is evidence for phenotypic patterning. The adult Klasies River Mouth bones include most of a lumbar vertebra, and portions of a left clavicle, left proximal radius, right proximal ulna, and left first metatarsal. Linear dimensions, shape characteristics, and cross-sectional geometric properties of the Klasies River Mouth elements were compared using univariate and multivariate methods. Between-group principal component analyses group Klasies River Mouth elements, except the proximal ulna, with LSA Southern Africans. The similarity is driven by size. Klasies River Mouth metatarsal cross-sectional geometric properties indicate similar torsional and compressive strength to those from LSA Southern Africans. Phenotypic expressions of small-bodied adult morphology in Marine Isotope Stages 5 and 1 suggest this phenotype may represent local convergent adaptation to life in the Cape.
Collapse
Affiliation(s)
- Michelle E Cameron
- Department of Anthropology, University of Toronto, 19 Russell Street, Toronto, ON, M5S 2S2, Canada.
| | - Susan Pfeiffer
- Department of Anthropology, University of Toronto, 19 Russell Street, Toronto, ON, M5S 2S2, Canada; Department of Archaeology, University of Cape Town, Private Bag X3, Rondebosch, 7701, South Africa; Department of Anthropology and Center for Advanced Study of Human Paleobiology, The George Washington University, Science and Engineering Hall, 800 22nd St NW, Suite 6000, Washington, DC 20052, USA
| | - Jay Stock
- Department of Archaeology, University of Cambridge, Cambridge, Cambridgeshire, CB2 3QG, UK; Department of Anthropology, University of Western Ontario, London, ON, N6A 5C2, UK; Department of Archaeology, Max Planck Institute for the Science of Human History, Kahlaische Str. 10, Jena, 07745, Germany
| |
Collapse
|
47
|
Marques E, Krieg CP, Dacosta-Calheiros E, Bueno E, Sessa E, Penmetsa RV, von Wettberg E. The Impact of Domestication on Aboveground and Belowground Trait Responses to Nitrogen Fertilization in Wild and Cultivated Genotypes of Chickpea ( Cicer sp.). Front Genet 2020; 11:576338. [PMID: 33343625 PMCID: PMC7738563 DOI: 10.3389/fgene.2020.576338] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 11/06/2020] [Indexed: 02/02/2023] Open
Abstract
Despite the importance of crop responses to low fertility conditions, few studies have examined the extent to which domestication may have limited crop responses to low-fertility environments in aboveground and belowground traits. Moreover, studies that have addressed this topic have used a limited number of wild accessions, therefore overlooking the genotypic and phenotypic diversity of wild relatives. To examine how domestication has affected the response of aboveground and belowground agronomic traits, we measured root and leaf functional traits in an extensive set of wild and domesticated chickpea accessions grown in low and high nitrogen soil environments. Unlike previous studies, the wild accessions used in this study broadly capture the genetic and phenotypic diversity of domesticated chickpea’s (Cicer arietinum) closest compatible wild relative (C. reticulatum). Our results suggest that the domestication of chickpea led to greater capacities for plasticity in morphological and biomass related traits but may have lowered the capacity to modify physiological traits related to gas exchange. Wild chickpea displayed greater phenotypic plasticity for physiological traits including stomatal conductance, canopy level photosynthesis, leaf level photosynthesis, and leaf C/N ratio. In contrast to domesticated chickpea, wild chickpea displayed phenotypes consistent with water loss prevention, by exhibiting lower specific leaf area, stomatal conductance and maintaining efficient water-use. In addition to these general patterns, our results indicate that the domestication dampened the variation in response type to higher nitrogen environments for belowground and aboveground traits, which suggests reduced genetic diversity in current crop germplasm collections.
Collapse
Affiliation(s)
- Edward Marques
- Department of Plant and Soil Science and Gund Institute for the Environment, University of Vermont, Burlington, VT, United States.,Department of Biological Sciences, Florida International University, Miami, FL, United States
| | - Christopher P Krieg
- Department of Biology, University of Florida, Gainesville, FL, United States
| | | | - Erika Bueno
- Department of Biological Sciences, Florida International University, Miami, FL, United States
| | - Emily Sessa
- Department of Biology, University of Florida, Gainesville, FL, United States
| | - R Varma Penmetsa
- Department of Plant Sciences, University of California, Davis, Davis, CA, United States
| | - Eric von Wettberg
- Department of Plant and Soil Science and Gund Institute for the Environment, University of Vermont, Burlington, VT, United States.,Department of Biological Sciences, Florida International University, Miami, FL, United States
| |
Collapse
|
48
|
DeVore JL, Crossland MR, Shine R. Trade‐offs affect the adaptive value of plasticity: stronger cannibal‐induced defenses incur greater costs in toad larvae. ECOL MONOGR 2020. [DOI: 10.1002/ecm.1426] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Jayna L. DeVore
- School of Life and Environmental Sciences The University of Sydney Sydney2006New South Wales Australia
| | - Michael R. Crossland
- School of Life and Environmental Sciences The University of Sydney Sydney2006New South Wales Australia
| | - Richard Shine
- School of Life and Environmental Sciences The University of Sydney Sydney2006New South Wales Australia
- Department of Biological Sciences Macquarie University Sydney2109 New South Wales Australia
| |
Collapse
|
49
|
Hämäläinen AM, Guenther A, Patrick SC, Schuett W. Environmental effects on the covariation among pace‐of‐life traits. Ethology 2020. [DOI: 10.1111/eth.13098] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Anni M. Hämäläinen
- Department of Biological Sciences University of Alberta Edmonton Alberta Canada
- Institute of Environmental Science Jagiellonian University Kraków Poland
- Department of Biological and Environmental Science University of Jyväskylä Jyväskylä Finland
| | - Anja Guenther
- Department of Evolutionary Biology Bielefeld University Bielefeld Germany
- Department of Evolutionary Genetics Max Planck Institute for Evolutionary Biology Plön Germany
| | | | - Wiebke Schuett
- Institute of Zoology Universität Hamburg Hamburg Germany
- School of Life Sciences University of Sussex Brighton UK
| |
Collapse
|
50
|
Abstract
Canalization refers to the evolution of populations such that the number of individuals who deviate from the optimum trait, or experience disease, is minimized. In the presence of rapid cultural, environmental, or genetic change, the reverse process of decanalization may contribute to observed increases in disease prevalence. This review starts by defining relevant concepts, drawing distinctions between the canalization of populations and robustness of individuals. It then considers evidence pertaining to three continuous traits and six domains of disease. In each case, existing genetic evidence for genotype-by-environment interactions is insufficient to support a strong inference of decanalization, but we argue that the advent of genome-wide polygenic risk assessment now makes an empirical evaluation of the role of canalization in preventing disease possible. Finally, the contributions of both rare and common variants to congenital abnormality and adult onset disease are considered in light of a new kerplunk model of genetic effects.
Collapse
Affiliation(s)
- Greg Gibson
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia 30332, USA;
| | - Kristine A Lacek
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia 30332, USA;
| |
Collapse
|