1
|
McLean FE, Omondi BR, Diallo N, Otoboh S, Kifude C, Abdi AI, Lim R, Otto TD, Ghumra A, Rowe JA. Identification of novel PfEMP1 variants containing domain cassettes 11, 15 and 8 that mediate the Plasmodium falciparum virulence-associated rosetting phenotype. PLoS Pathog 2025; 21:e1012434. [PMID: 39804943 PMCID: PMC11759366 DOI: 10.1371/journal.ppat.1012434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 01/24/2025] [Accepted: 12/03/2024] [Indexed: 01/16/2025] Open
Abstract
Plasmodium falciparum erythrocyte membrane protein 1 (PfEMP1) is a diverse family of variant surface antigens, encoded by var genes, that mediates binding of infected erythrocytes to human cells and plays a key role in parasite immune evasion and malaria pathology. The increased availability of parasite genome sequence data has revolutionised the study of PfEMP1 diversity across multiple P. falciparum isolates. However, making functional sense of genomic data relies on the ability to infer binding phenotype from var gene sequence. For P. falciparum rosetting, the binding of infected erythrocytes to uninfected erythrocytes, the analysis of var gene/PfEMP1 sequences encoding the phenotype is limited, with only eight rosette-mediating PfEMP1 variants described to date. These known rosetting PfEMP1 variants fall into two types, characterised by N-terminal domains known as "domain cassette" 11 (DC11) and DC16. Here we test the hypothesis that DC11 and DC16 are the only PfEMP1 types in the P. falciparum genome that mediate rosetting, by examining a set of thirteen recent culture-adapted Kenyan parasite lines. We first analysed the var gene/PfEMP1 repertoires of the Kenyan lines and identified an average of three DC11 or DC16 PfEMP1 variants per genotype. In vitro rosette selection of the parasite lines yielded four with a high rosette frequency, and analysis of their var gene transcription, infected erythrocyte PfEMP1 surface expression, rosette disruption and erythrocyte binding function identified four novel rosette-mediating PfEMP1 variants. Two of these were of the predicted DC11 type (one showing the dual rosetting/IgM-Fc-binding phenotype), whereas two contained DC15 (DBLα1.2-CIDRα1.5b) a PfEMP1 type not previously associated with rosetting. We also showed that a Thai parasite line expressing a DC8-like PfEMP1 binds to erythrocytes to form rosettes. Hence, these data expand current knowledge of rosetting mechanisms and emphasize that the PfEMP1 types mediating rosetting are more diverse than previously recognised.
Collapse
Affiliation(s)
- Florence E. McLean
- Institute of Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Brian R. Omondi
- Institute of Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Nouhoum Diallo
- Institute of Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Stanley Otoboh
- Institute of Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Carolyne Kifude
- Institute of Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Abdirahman I. Abdi
- KEMRI-Wellcome Trust Research Programme: Centre for Geographic Medicine Research Coast, Kilifi, Kenya
| | - Rivka Lim
- Institute of Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Thomas D. Otto
- Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, United Kingdom
| | - Ashfaq Ghumra
- Institute of Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - J. Alexandra Rowe
- Institute of Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
2
|
Tukwasibwe S, Lewis SN, Taremwa Y, van der Ploeg K, Press KD, Ty M, Namirimu Nankya F, Musinguzi K, Nansubuga E, Bach F, Chamai M, Okitwi M, Tumusiime G, Nakimuli A, Colucci F, Kamya MR, Nankabirwa JI, Arinaitwe E, Greenhouse B, Dorsey G, Rosenthal PJ, Ssewanyana I, Jagannathan P. Natural killer cell antibody-dependent cellular cytotoxicity to Plasmodium falciparum is impacted by cellular phenotypes, erythrocyte polymorphisms, parasite diversity and intensity of transmission. Clin Transl Immunology 2024; 13:e70005. [PMID: 39493859 PMCID: PMC11528551 DOI: 10.1002/cti2.70005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 08/09/2024] [Accepted: 09/12/2024] [Indexed: 11/05/2024] Open
Abstract
Objectives Natural killer (NK) cells make important contributions to anti-malarial immunity through antibody-dependent cellular cytotoxicity (ADCC), but the role of different components of this pathway in promoting NK cell activation remains unclear. Methods We compared the functions and phenotypes of NK cells from malaria-exposed and malaria-naive donors, and then varied the erythrocyte genetic background, Plasmodium falciparum strain and opsonising plasma used in ADCC to observe their impacts on NK cell degranulation as measured by CD107a mobilisation. Results Natural killer cells from malaria-exposed adult Ugandan donors had enhanced ADCC, but an impaired pro-inflammatory response to cytokine stimulation, compared to NK cells obtained from malaria-naive adult North American donors. Cellular phenotypes from malaria-exposed donors reflected this specialisation for ADCC, with a compartment-wide downregulation of the Fc receptor γ-chain and enrichment of highly differentiated CD56dim and CD56neg populations. NK cell degranulation was enhanced in response to opsonised P. falciparum schizonts cultured in sickle cell heterozygous erythrocytes relative to wild-type erythrocytes, and when using opsonising plasma collected from donors living in a high transmission area compared to a lower transmission area despite similar levels of 3D7 schizont-specific IgG levels. However, degranulation was lowered in response to opsonised field isolate P. falciparum schizonts isolated from clinical malaria infections, compared to the 3D7 laboratory strain typically used in these assays. Conclusion This work highlights important host and parasite factors that contribute to ADCC efficacy that should be considered in the design of ADCC assays.
Collapse
Affiliation(s)
- Stephen Tukwasibwe
- Infectious Diseases Research CollaborationKampalaUganda
- School of Medicine, Uganda Christian UniversityMukonoUganda
| | | | | | | | | | - Maureen Ty
- Department of MedicineStanford UniversityStanfordCAUSA
| | | | | | | | - Florian Bach
- Department of MedicineStanford UniversityStanfordCAUSA
| | - Martin Chamai
- Infectious Diseases Research CollaborationKampalaUganda
| | - Martin Okitwi
- Infectious Diseases Research CollaborationKampalaUganda
| | | | | | - Francesco Colucci
- Department of Obstetrics and GynaecologyUniversity of CambridgeCambridgeUK
| | - Moses R Kamya
- Infectious Diseases Research CollaborationKampalaUganda
- School of Medicine, Makerere UniversityKampalaUganda
| | - Joaniter I Nankabirwa
- Infectious Diseases Research CollaborationKampalaUganda
- School of Medicine, Makerere UniversityKampalaUganda
| | | | - Bryan Greenhouse
- Department of MedicineUniversity of California San FranciscoSan FranciscoCAUSA
| | - Grant Dorsey
- Department of MedicineUniversity of California San FranciscoSan FranciscoCAUSA
| | - Philip J Rosenthal
- Department of MedicineUniversity of California San FranciscoSan FranciscoCAUSA
| | | | | |
Collapse
|
3
|
McLean FE, Azasi Y, Sutherland C, Toboh E, Ansong D, Agbenyega T, Awandare G, Rowe JA. Detection of naturally acquired, strain-transcending antibodies against rosetting Plasmodium falciparum strains in humans. Infect Immun 2024; 92:e0001524. [PMID: 38842304 PMCID: PMC11238554 DOI: 10.1128/iai.00015-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 04/29/2024] [Indexed: 06/07/2024] Open
Abstract
Strain-transcending antibodies against virulence-associated subsets of P. falciparum-infected erythrocyte surface antigens could protect children from severe malaria. However, the evidence supporting the existence of such antibodies is incomplete and inconsistent. One subset of surface antigens associated with severe malaria, rosette-mediating Plasmodium falciparum Erythrocyte Membrane Protein one (PfEMP1) variants, cause infected erythrocytes to bind to uninfected erythrocytes to form clusters of cells (rosettes) that contribute to microvascular obstruction and pathology. Here, we tested plasma from 80 individuals living in malaria-endemic regions for IgG recognition of the surface of four P. falciparum rosetting strains using flow cytometry. Broadly reactive plasma samples were then used in antibody elution experiments in which intact IgG was eluted from the surface of infected erythrocytes and transferred to heterologous rosetting strains to look for strain-transcending antibodies. We found that seroprevalence (percentage of positive plasma samples) against allopatric rosetting strains was high in adults (63%-93%) but lower in children (13%-48%). Strain-transcending antibodies were present in nine out of eleven eluted antibody experiments, with six of these recognizing multiple heterologous rosetting parasite strains. One eluate had rosette-disrupting activity against heterologous strains, suggesting PfEMP1 as the likely target of the strain-transcending antibodies. Naturally acquired strain-transcending antibodies to rosetting P. falciparum strains in humans have not been directly demonstrated previously. Their existence suggests that such antibodies could play a role in clinical protection and raises the possibility that conserved epitopes recognized by strain-transcending antibodies could be targeted therapeutically by monoclonal antibodies or vaccines.
Collapse
Affiliation(s)
- Florence E. McLean
- Institute of Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Yvonne Azasi
- Institute of Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Cameron Sutherland
- Institute of Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | | | - Daniel Ansong
- Kwame Nkrumah University of Science and Technology, School of Medical Sciences, Kumasi, Ghana
- Departments of Child Health and Medicine, Komfo Anokye Teaching Hospital, Kumasi, Ghana
- Malaria Research Centre, Agogo, Ghana
| | - Tsiri Agbenyega
- Kwame Nkrumah University of Science and Technology, School of Medical Sciences, Kumasi, Ghana
- Departments of Child Health and Medicine, Komfo Anokye Teaching Hospital, Kumasi, Ghana
- Malaria Research Centre, Agogo, Ghana
| | - Gordon Awandare
- West African Centre for Cell Biology of Infectious Pathogens, University of Ghana, Legon, Ghana
| | - J. Alexandra Rowe
- Institute of Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
4
|
Askonas C, Storm J, Camarda G, Craig A, Pain A. Transcriptional responses of brain endothelium to Plasmodium falciparum patient-derived isolates in vitro. Microbiol Spectr 2024; 12:e0072724. [PMID: 38864616 PMCID: PMC11218514 DOI: 10.1128/spectrum.00727-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 04/29/2024] [Indexed: 06/13/2024] Open
Abstract
A hallmark of cerebral malaria (CM) is sequestration of Plasmodium falciparum-infected erythrocytes (IE) within the brain microvasculature. Binding of IE to endothelium reduces microvascular flow and, combined with an inflammatory response, perturbs endothelial barrier function, resulting in breakdown of the blood-brain barrier (BBB). Cytoadherence leads to activation of the endothelium and alters a range of cell processes affecting signaling pathways, receptor expression, coagulation, and disruption of BBB integrity. Here, we investigated whether CM-derived parasites elicit differential effects on human brain microvascular endothelial cells (HBMECs), as compared to uncomplicated malaria (UM)-derived parasites. Patient-derived IE from UM and CM clinical cases, as well as non-binding skeleton-binding protein 1 knockout parasites, were overlaid onto tumour necrosis factor (TNF)-activated HBMECs. Gene expression analysis of endothelial responses was performed using probe-based assays of a panel of genes involved in inflammation, apoptosis, endothelial barrier function, and prostacyclin synthesis pathway. We observed a significant effect on endothelial transcriptional responses in the presence of IE, yet there was no significant correlation between HBMEC responses and type of clinical syndrome (UM or CM). Furthermore, there was no correlation between HBMEC gene expression and both binding itself and level of IE binding to HBMECs, as we detected the same change in endothelial responses when employing both binding and non-binding parasites. Our results suggest that interaction of IE with endothelial cells in this co-culture model induces some endothelial responses that are independent of clinical origin and independent of the expression of the major variant antigen Plasmodium falciparum erythrocyte membrane protein 1 on the IE surface. IMPORTANCE Cerebral malaria (CM) is the most prevalent and deadly complication of severe Plasmodium falciparum infection. A hallmark of this disease is sequestration of P. falciparum-infected erythrocytes (IE) in brain microvasculature that ultimately results in breakdown of the blood-brain barrier. Here, we compared the effect of P. falciparum parasites derived from uncomplicated malaria (UM) and CM cases on the relative gene expression of human brain microvascular endothelial cells (HBMECs) for a panel of genes. We observed a significant effect on the endothelial transcriptional response in the presence of IE, yet there is no significant correlation between HBMEC responses and the type of clinical syndrome (UM or CM). Furthermore, there was no correlation between HBMEC gene expression and both binding itself and the level of IE binding to HBMECs. Our results suggest that interaction of IE with endothelial cells induces endothelial responses that are independent of clinical origin and not entirely driven by surface Plasmodium falciparum erythrocyte membrane protein 1 expression.
Collapse
Affiliation(s)
- Caroline Askonas
- Pathogen Genomics Laboratory, Bioscience Program, Biological and Environmental Sciences and Engineering (BESE) Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Janet Storm
- Tropical Disease Biology, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Grazia Camarda
- Tropical Disease Biology, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Alister Craig
- Tropical Disease Biology, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Arnab Pain
- Pathogen Genomics Laboratory, Bioscience Program, Biological and Environmental Sciences and Engineering (BESE) Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| |
Collapse
|
5
|
Andradi-Brown C, Wichers-Misterek JS, von Thien H, Höppner YD, Scholz JAM, Hansson H, Filtenborg Hocke E, Gilberger TW, Duffy MF, Lavstsen T, Baum J, Otto TD, Cunnington AJ, Bachmann A. A novel computational pipeline for var gene expression augments the discovery of changes in the Plasmodium falciparum transcriptome during transition from in vivo to short-term in vitro culture. eLife 2024; 12:RP87726. [PMID: 38270586 PMCID: PMC10945709 DOI: 10.7554/elife.87726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2024] Open
Abstract
The pathogenesis of severe Plasmodium falciparum malaria involves cytoadhesive microvascular sequestration of infected erythrocytes, mediated by P. falciparum erythrocyte membrane protein 1 (PfEMP1). PfEMP1 variants are encoded by the highly polymorphic family of var genes, the sequences of which are largely unknown in clinical samples. Previously, we published new approaches for var gene profiling and classification of predicted binding phenotypes in clinical P. falciparum isolates (Wichers et al., 2021), which represented a major technical advance. Building on this, we report here a novel method for var gene assembly and multidimensional quantification from RNA-sequencing that outperforms the earlier approach of Wichers et al., 2021, on both laboratory and clinical isolates across a combination of metrics. Importantly, the tool can interrogate the var transcriptome in context with the rest of the transcriptome and can be applied to enhance our understanding of the role of var genes in malaria pathogenesis. We applied this new method to investigate changes in var gene expression through early transition of parasite isolates to in vitro culture, using paired sets of ex vivo samples from our previous study, cultured for up to three generations. In parallel, changes in non-polymorphic core gene expression were investigated. Modest but unpredictable var gene switching and convergence towards var2csa were observed in culture, along with differential expression of 19% of the core transcriptome between paired ex vivo and generation 1 samples. Our results cast doubt on the validity of the common practice of using short-term cultured parasites to make inferences about in vivo phenotype and behaviour.
Collapse
Affiliation(s)
- Clare Andradi-Brown
- Section of Paediatric Infectious Disease, Department of Infectious Disease, Imperial College LondonLondonUnited Kingdom
- Department of Life Sciences, Imperial College London, South KensingtonLondonUnited Kingdom
- Centre for Paediatrics and Child Health, Imperial College LondonLondonUnited Kingdom
| | - Jan Stephan Wichers-Misterek
- Bernhard Nocht Institute for Tropical Medicine, Bernhard-Nocht-StrasseHamburgGermany
- Centre for Structural Systems BiologyHamburgGermany
- Biology Department, University of HamburgHamburgGermany
| | - Heidrun von Thien
- Bernhard Nocht Institute for Tropical Medicine, Bernhard-Nocht-StrasseHamburgGermany
- Centre for Structural Systems BiologyHamburgGermany
- Biology Department, University of HamburgHamburgGermany
| | - Yannick D Höppner
- Bernhard Nocht Institute for Tropical Medicine, Bernhard-Nocht-StrasseHamburgGermany
- Centre for Structural Systems BiologyHamburgGermany
- Biology Department, University of HamburgHamburgGermany
| | - Judith AM Scholz
- Bernhard Nocht Institute for Tropical Medicine, Bernhard-Nocht-StrasseHamburgGermany
| | - Helle Hansson
- Center for Medical Parasitology, Department of Immunology and Microbiology, University of CopenhagenCopenhagenDenmark
- Department of Infectious Diseases, Copenhagen University HospitalCopenhagenDenmark
| | - Emma Filtenborg Hocke
- Center for Medical Parasitology, Department of Immunology and Microbiology, University of CopenhagenCopenhagenDenmark
- Department of Infectious Diseases, Copenhagen University HospitalCopenhagenDenmark
| | - Tim Wolf Gilberger
- Bernhard Nocht Institute for Tropical Medicine, Bernhard-Nocht-StrasseHamburgGermany
- Centre for Structural Systems BiologyHamburgGermany
- Biology Department, University of HamburgHamburgGermany
| | - Michael F Duffy
- Department of Microbiology and Immunology, University of MelbourneMelbourneAustralia
| | - Thomas Lavstsen
- Center for Medical Parasitology, Department of Immunology and Microbiology, University of CopenhagenCopenhagenDenmark
- Department of Infectious Diseases, Copenhagen University HospitalCopenhagenDenmark
| | - Jake Baum
- Department of Life Sciences, Imperial College London, South KensingtonLondonUnited Kingdom
- School of Biomedical Sciences, Faculty of Medicine & Health, UNSW, KensingtonSydneyUnited Kingdom
| | - Thomas D Otto
- School of Infection & Immunity, MVLS, University of GlasgowGlasgowUnited Kingdom
| | - Aubrey J Cunnington
- Section of Paediatric Infectious Disease, Department of Infectious Disease, Imperial College LondonLondonUnited Kingdom
- Centre for Paediatrics and Child Health, Imperial College LondonLondonUnited Kingdom
| | - Anna Bachmann
- Bernhard Nocht Institute for Tropical Medicine, Bernhard-Nocht-StrasseHamburgGermany
- Centre for Structural Systems BiologyHamburgGermany
- Biology Department, University of HamburgHamburgGermany
- German Center for Infection Research (DZIF), partner site Hamburg-Borstel-Lübeck-RiemsHamburgGermany
| |
Collapse
|
6
|
Wichers-Misterek JS, Krumkamp R, Held J, von Thien H, Wittmann I, Höppner YD, Ruge JM, Moser K, Dara A, Strauss J, Esen M, Fendel R, Sulyok Z, Jeninga MD, Kremsner PG, Sim BKL, Hoffman SL, Duffy MF, Otto TD, Gilberger TW, Silva JC, Mordmüller B, Petter M, Bachmann A. The exception that proves the rule: Virulence gene expression at the onset of Plasmodium falciparum blood stage infections. PLoS Pathog 2023; 19:e1011468. [PMID: 37384799 DOI: 10.1371/journal.ppat.1011468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 06/07/2023] [Indexed: 07/01/2023] Open
Abstract
Controlled human malaria infections (CHMI) are a valuable tool to study parasite gene expression in vivo under defined conditions. In previous studies, virulence gene expression was analyzed in samples from volunteers infected with the Plasmodium falciparum (Pf) NF54 isolate, which is of African origin. Here, we provide an in-depth investigation of parasite virulence gene expression in malaria-naïve European volunteers undergoing CHMI with the genetically distinct Pf 7G8 clone, originating in Brazil. Differential expression of var genes, encoding major virulence factors of Pf, PfEMP1s, was assessed in ex vivo parasite samples as well as in parasites from the in vitro cell bank culture that was used to generate the sporozoites (SPZ) for CHMI (Sanaria PfSPZ Challenge (7G8)). We report broad activation of mainly B-type subtelomeric located var genes at the onset of a 7G8 blood stage infection in naïve volunteers, mirroring the NF54 expression study and suggesting that the expression of virulence-associated genes is generally reset during transmission from the mosquito to the human host. However, in 7G8 parasites, we additionally detected a continuously expressed single C-type variant, Pf7G8_040025600, that was most highly expressed in both pre-mosquito cell bank and volunteer samples, suggesting that 7G8, unlike NF54, maintains expression of some previously expressed var variants during transmission. This suggests that in a new host, the parasite may preferentially express the variants that previously allowed successful infection and transmission. Trial registration: ClinicalTrials.gov - NCT02704533; 2018-004523-36.
Collapse
Affiliation(s)
- Jan Stephan Wichers-Misterek
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
- Centre for Structural Systems Biology, Hamburg, Germany, Hamburg, Germany
- Biology Department, University of Hamburg, Hamburg, Germany
| | - Ralf Krumkamp
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
- German Center for Infection Research (DZIF), partner site Hamburg-Borstel-Lübeck-Riems, Hamburg/Borstel/Lübeck/Riems, Germany
| | - Jana Held
- Institute of Tropical Medicine, University of Tübingen, Tübingen, Germany
- German Center for Infection Research (DZIF), partner site Tübingen, Tübingen, Germany
| | - Heidrun von Thien
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
- Centre for Structural Systems Biology, Hamburg, Germany, Hamburg, Germany
- Biology Department, University of Hamburg, Hamburg, Germany
| | - Irene Wittmann
- Institute of Microbiology, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Yannick Daniel Höppner
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
- Centre for Structural Systems Biology, Hamburg, Germany, Hamburg, Germany
- Biology Department, University of Hamburg, Hamburg, Germany
- German Center for Infection Research (DZIF), partner site Hamburg-Borstel-Lübeck-Riems, Hamburg/Borstel/Lübeck/Riems, Germany
| | - Julia M Ruge
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
- Centre for Structural Systems Biology, Hamburg, Germany, Hamburg, Germany
- Biology Department, University of Hamburg, Hamburg, Germany
- German Center for Infection Research (DZIF), partner site Hamburg-Borstel-Lübeck-Riems, Hamburg/Borstel/Lübeck/Riems, Germany
| | - Kara Moser
- Institute for Genome Sciences, University of Maryland, School of Medicine, Baltimore, Maryland, United States of America
| | - Antoine Dara
- Institute for Genome Sciences, University of Maryland, School of Medicine, Baltimore, Maryland, United States of America
| | - Jan Strauss
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
- Centre for Structural Systems Biology, Hamburg, Germany, Hamburg, Germany
- Biology Department, University of Hamburg, Hamburg, Germany
| | - Meral Esen
- Institute of Tropical Medicine, University of Tübingen, Tübingen, Germany
- German Center for Infection Research (DZIF), partner site Tübingen, Tübingen, Germany
- Cluster of Excellence: EXC 2124: Controlling Microbes to Fight Infection, Tübingen, Germany
| | - Rolf Fendel
- Institute of Tropical Medicine, University of Tübingen, Tübingen, Germany
- German Center for Infection Research (DZIF), partner site Tübingen, Tübingen, Germany
| | - Zita Sulyok
- Institute of Tropical Medicine, University of Tübingen, Tübingen, Germany
- German Center for Infection Research (DZIF), partner site Tübingen, Tübingen, Germany
| | - Myriam D Jeninga
- Institute of Microbiology, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Peter G Kremsner
- Institute of Tropical Medicine, University of Tübingen, Tübingen, Germany
- German Center for Infection Research (DZIF), partner site Tübingen, Tübingen, Germany
- Centre de Recherches Médicales de Lambaréné, Lambaréné, Gabon
| | - B Kim Lee Sim
- Sanaria Inc., Rockville, Maryland, United States of America
| | | | - Michael F Duffy
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, Victoria, Australia
| | - Thomas D Otto
- School of Infection & Immunity, University of Glasgow, Glasgow, United Kingdom
| | - Tim-Wolf Gilberger
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
- Centre for Structural Systems Biology, Hamburg, Germany, Hamburg, Germany
- Biology Department, University of Hamburg, Hamburg, Germany
| | - Joana C Silva
- Institute for Genome Sciences, University of Maryland, School of Medicine, Baltimore, Maryland, United States of America
- Department of Microbiology and Immunology, University of Maryland, School of Medicine, Baltimore, Maryland, United States of America
- Global Health and Tropical Medicine, GHTM, Instituto de Higiene e Medicina Tropical, IHMT, Universidade NOVA de Lisboa, UNL, Lisboa, Portugal
| | - Benjamin Mordmüller
- Institute of Tropical Medicine, University of Tübingen, Tübingen, Germany
- German Center for Infection Research (DZIF), partner site Tübingen, Tübingen, Germany
| | - Michaela Petter
- Institute of Microbiology, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, Victoria, Australia
| | - Anna Bachmann
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
- Centre for Structural Systems Biology, Hamburg, Germany, Hamburg, Germany
- Biology Department, University of Hamburg, Hamburg, Germany
- German Center for Infection Research (DZIF), partner site Hamburg-Borstel-Lübeck-Riems, Hamburg/Borstel/Lübeck/Riems, Germany
| |
Collapse
|
7
|
Chew M, Ye W, Omelianczyk RI, Pasaje CF, Hoo R, Chen Q, Niles JC, Chen J, Preiser P. Selective expression of variant surface antigens enables Plasmodium falciparum to evade immune clearance in vivo. Nat Commun 2022; 13:4067. [PMID: 35831417 PMCID: PMC9279368 DOI: 10.1038/s41467-022-31741-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 06/30/2022] [Indexed: 11/09/2022] Open
Abstract
Plasmodium falciparum has developed extensive mechanisms to evade host immune clearance. Currently, most of our understanding is based on in vitro studies of individual parasite variant surface antigens and how this relates to the processes in vivo is not well-understood. Here, we have used a humanized mouse model to identify parasite factors important for in vivo growth. We show that upregulation of the specific PfEMP1, VAR2CSA, provides the parasite with protection from macrophage phagocytosis and clearance in the humanized mice. Furthermore, parasites adapted to thrive in the humanized mice show reduced NK cell-mediated killing through interaction with the immune inhibitory receptor, LILRB1. Taken together, these findings reveal new insights into the molecular and cellular mechanisms that the parasite utilizes to coordinate immune escape in vivo. Identification and targeting of these specific parasite variant surface antigens crucial for immune evasion provides a unique approach for therapy.
Collapse
Affiliation(s)
- Marvin Chew
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore.,Singapore-MIT Alliance for Research and Technology, Antimicrobial Resistance Interdisciplinary Research Group, Singapore, Singapore
| | - Weijian Ye
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore.,Singapore-MIT Alliance for Research and Technology, Antimicrobial Resistance Interdisciplinary Research Group, Singapore, Singapore
| | | | - Charisse Flerida Pasaje
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Regina Hoo
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore.,Wellcome Sanger Institute, Hinxton, Cambridgeshire, CB101SA, UK
| | - Qingfeng Chen
- Humanized Mouse Unit, Institute of Molecular and Cell Biology, Agency of Science, Technology and Research, Singapore, Singapore
| | - Jacquin C Niles
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Jianzhu Chen
- Singapore-MIT Alliance for Research and Technology, Antimicrobial Resistance Interdisciplinary Research Group, Singapore, Singapore. .,Koch Institute for Integrative Cancer Research and Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA.
| | - Peter Preiser
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore. .,Singapore-MIT Alliance for Research and Technology, Antimicrobial Resistance Interdisciplinary Research Group, Singapore, Singapore.
| |
Collapse
|
8
|
Shao J. Labeling Strategies for Surface-Exposed Protein Visualization and Determination in Plasmodium falciparum Malaria. Front Cell Infect Microbiol 2022; 12:914297. [PMID: 35755836 PMCID: PMC9226428 DOI: 10.3389/fcimb.2022.914297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 05/11/2022] [Indexed: 11/13/2022] Open
Affiliation(s)
- Jinfeng Shao
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, United States
| |
Collapse
|
9
|
Kimingi HW, Kinyua AW, Achieng NA, Wambui KM, Mwangi S, Nguti R, Kivisi CA, Jensen ATR, Bejon P, Kapulu MC, Abdi AI, Kinyanjui SM. Breadth of Antibodies to Plasmodium falciparum Variant Surface Antigens Is Associated With Immunity in a Controlled Human Malaria Infection Study. Front Immunol 2022; 13:894770. [PMID: 35711446 PMCID: PMC9195513 DOI: 10.3389/fimmu.2022.894770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Accepted: 04/27/2022] [Indexed: 11/05/2022] Open
Abstract
Background Plasmodium falciparum variant surface antigens (VSAs) contribute to malaria pathogenesis by mediating cytoadhesion of infected red blood cells to the microvasculature endothelium. In this study, we investigated the association between anti-VSA antibodies and clinical outcome in a controlled human malaria infection (CHMI) study. Method We used flow cytometry and ELISA to measure levels of IgG antibodies to VSAs of five heterologous and one homologous P. falciparum parasite isolates, and to two PfEMP1 DBLβ domains in blood samples collected a day before the challenge and 14 days after infection. We also measured the ability of an individual's plasma to inhibit the interaction between PfEMP1 and ICAM1 using competition ELISA. We then assessed the association between the antibody levels, function, and CHMI defined clinical outcome during a 21-day follow-up period post infection using Cox proportional hazards regression. Results Antibody levels to the individual isolate VSAs, or to two ICAM1-binding DBLβ domains of PfEMP1, were not associated with a significantly reduced risk of developing parasitemia or of meeting treatment criteria after the challenge after adjusting for exposure. However, anti-VSA antibody breadth (i.e., cumulative response to all the isolates) was a significant predictor of reduced risk of requiring treatment [HR 0.23 (0.10-0.50) p= 0.0002]. Conclusion The breadth of IgG antibodies to VSAs, but not to individual isolate VSAs, is associated with protection in CHMI.
Collapse
Affiliation(s)
- Hannah W. Kimingi
- Kenya Medical Research Institute (KEMRI) Wellcome Trust Research Programme, Kilifi, Kenya
- Department of Biological Sciences, Pwani University, Kilifi, Kenya
| | - Ann W. Kinyua
- Kenya Medical Research Institute (KEMRI) Wellcome Trust Research Programme, Kilifi, Kenya
| | - Nicole A. Achieng
- Kenya Medical Research Institute (KEMRI) Wellcome Trust Research Programme, Kilifi, Kenya
| | - Kennedy M. Wambui
- Kenya Medical Research Institute (KEMRI) Wellcome Trust Research Programme, Kilifi, Kenya
- School of Public Health, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Shaban Mwangi
- Kenya Medical Research Institute (KEMRI) Wellcome Trust Research Programme, Kilifi, Kenya
| | - Roselyne Nguti
- Kenya Medical Research Institute (KEMRI) Wellcome Trust Research Programme, Kilifi, Kenya
- Department of Biological Sciences, Pwani University, Kilifi, Kenya
| | - Cheryl A. Kivisi
- Department of Biological Sciences, Pwani University, Kilifi, Kenya
- Pwani University Bioscience Research Centre, Pwani University, Kilifi, Kenya
| | - Anja T. R. Jensen
- Centre for Medical Parasitology, Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Philip Bejon
- Kenya Medical Research Institute (KEMRI) Wellcome Trust Research Programme, Kilifi, Kenya
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University Oxford, Oxford, United Kingdom
| | - Melisa C. Kapulu
- Kenya Medical Research Institute (KEMRI) Wellcome Trust Research Programme, Kilifi, Kenya
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University Oxford, Oxford, United Kingdom
| | - Abdirahman I. Abdi
- Kenya Medical Research Institute (KEMRI) Wellcome Trust Research Programme, Kilifi, Kenya
- Pwani University Bioscience Research Centre, Pwani University, Kilifi, Kenya
| | - Samson M. Kinyanjui
- Kenya Medical Research Institute (KEMRI) Wellcome Trust Research Programme, Kilifi, Kenya
- Pwani University Bioscience Research Centre, Pwani University, Kilifi, Kenya
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University Oxford, Oxford, United Kingdom
- School of Business Studies, Strathmore University, Nairobi, Kenya
- *Correspondence: Samson M. Kinyanjui,
| | | |
Collapse
|
10
|
Brown AC, Guler JL. From Circulation to Cultivation: Plasmodium In Vivo versus In Vitro. Trends Parasitol 2020; 36:914-926. [DOI: 10.1016/j.pt.2020.08.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 08/25/2020] [Accepted: 08/26/2020] [Indexed: 12/17/2022]
|
11
|
Llorà-Batlle O, Tintó-Font E, Cortés A. Transcriptional variation in malaria parasites: why and how. Brief Funct Genomics 2020; 18:329-341. [PMID: 31114839 DOI: 10.1093/bfgp/elz009] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 02/04/2019] [Accepted: 04/10/2019] [Indexed: 12/24/2022] Open
Abstract
Transcriptional differences enable the generation of alternative phenotypes from the same genome. In malaria parasites, transcriptional plasticity plays a major role in the process of adaptation to fluctuations in the environment. Multiple studies with culture-adapted parasites and field isolates are starting to unravel the different transcriptional alternatives available to Plasmodium falciparum and the underlying molecular mechanisms. Here we discuss how epigenetic variation, directed transcriptional responses and also genetic changes that affect transcript levels can all contribute to transcriptional variation and, ultimately, parasite survival. Some transcriptional changes are driven by stochastic events. These changes can occur spontaneously, resulting in heterogeneity within parasite populations that provides the grounds for adaptation by dynamic natural selection. However, transcriptional changes can also occur in response to external cues. A better understanding of the mechanisms that the parasite has evolved to alter its transcriptome may ultimately contribute to the design of strategies to combat malaria to which the parasite cannot adapt.
Collapse
Affiliation(s)
- Oriol Llorà-Batlle
- ISGlobal, Hospital Clínic - Universitat de Barcelona, 08036 Barcelona, Catalonia, Spain
| | - Elisabet Tintó-Font
- ISGlobal, Hospital Clínic - Universitat de Barcelona, 08036 Barcelona, Catalonia, Spain
| | | |
Collapse
|
12
|
Witmer K, Fraschka SA, Vlachou D, Bártfai R, Christophides GK. An epigenetic map of malaria parasite development from host to vector. Sci Rep 2020; 10:6354. [PMID: 32286373 PMCID: PMC7156373 DOI: 10.1038/s41598-020-63121-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 03/24/2020] [Indexed: 12/23/2022] Open
Abstract
The malaria parasite replicates asexually in the red blood cells of its vertebrate host employing epigenetic mechanisms to regulate gene expression in response to changes in its environment. We used chromatin immunoprecipitation followed by sequencing in conjunction with RNA sequencing to create an epigenomic and transcriptomic map of the developmental transition from asexual blood stages to male and female gametocytes and to ookinetes in the rodent malaria parasite Plasmodium berghei. Across the developmental stages examined, heterochromatin protein 1 associates with variantly expressed gene families localised at subtelomeric regions and variant gene expression based on heterochromatic silencing is observed only in some genes. Conversely, the euchromatin mark histone 3 lysine 9 acetylation (H3K9ac) is abundant in non-heterochromatic regions across all developmental stages. H3K9ac presents a distinct pattern of enrichment around the start codon of ribosomal protein genes in all stages but male gametocytes. Additionally, H3K9ac occupancy positively correlates with transcript abundance in all stages but female gametocytes suggesting that transcription in this stage is independent of H3K9ac levels. This finding together with known mRNA repression in female gametocytes suggests a multilayered mechanism operating in female gametocytes in preparation for fertilization and zygote development, coinciding with parasite transition from host to vector.
Collapse
Affiliation(s)
- Kathrin Witmer
- Department of Life Sciences, Imperial College London, SW7 2AZ, London, UK.
| | - Sabine A Fraschka
- Department of Molecular Biology, Radboud University, 6525, GA, Nijmegen, The Netherlands.,Institute of Medical Genetics and Applied Genomics, University of Tübingen, 72076, Tübingen, Germany
| | - Dina Vlachou
- Department of Life Sciences, Imperial College London, SW7 2AZ, London, UK
| | - Richárd Bártfai
- Department of Molecular Biology, Radboud University, 6525, GA, Nijmegen, The Netherlands
| | | |
Collapse
|
13
|
Brown AC, Moore CC, Guler JL. Cholesterol-dependent enrichment of understudied erythrocytic stages of human Plasmodium parasites. Sci Rep 2020; 10:4591. [PMID: 32165667 PMCID: PMC7067793 DOI: 10.1038/s41598-020-61392-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 02/26/2020] [Indexed: 01/01/2023] Open
Abstract
For intracellular pathogens, the host cell provides needed protection and nutrients. A major challenge of intracellular parasite research is collection of high parasite numbers separated from host contamination. This situation is exemplified by the malaria parasite, which spends a substantial part of its life cycle inside erythrocytes as rings, trophozoites, and schizonts, before egress and reinvasion. Erythrocytic Plasmodium parasite forms refractory to enrichment remain understudied due to high host contamination relative to low parasite numbers. Here, we present a method for separating all stages of Plasmodium-infected erythrocytes through lysis and removal of uninfected erythrocytes. The Streptolysin O-Percoll (SLOPE) method is effective on previously inaccessible forms, including circulating rings from malaria-infected patients and artemisinin-induced quiescent parasites. SLOPE can be used on multiple parasite species, under multiple media formulations, and lacks measurable impacts on parasite viability. We demonstrate erythrocyte membrane cholesterol levels modulate the preferential lysis of uninfected host cells by SLO, and therefore modulate the effectiveness of SLOPE. Targeted metabolomics of SLOPE-enriched ring stage samples confirms parasite-derived metabolites are increased and contaminating host material is reduced compared to non-enriched samples. Due to consumption of cholesterol by other intracellular bacteria and protozoa, SLOPE holds potential for improving research on organisms beyond Plasmodium.
Collapse
Affiliation(s)
- Audrey C Brown
- Department of Biology, University of Virginia, Charlottesville, VA, USA
| | - Christopher C Moore
- Division of Infectious Diseases and International Health, University of Virginia, Charlottesville, VA, USA
| | - Jennifer L Guler
- Department of Biology, University of Virginia, Charlottesville, VA, USA. .,Division of Infectious Diseases and International Health, University of Virginia, Charlottesville, VA, USA.
| |
Collapse
|
14
|
McWilliam KR, Ivens A, Morrison LJ, Mugnier MR, Matthews KR. Developmental competence and antigen switch frequency can be uncoupled in Trypanosoma brucei. Proc Natl Acad Sci U S A 2019; 116:22774-22782. [PMID: 31636179 PMCID: PMC6842576 DOI: 10.1073/pnas.1912711116] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
African trypanosomes use an extreme form of antigenic variation to evade host immunity, involving the switching of expressed variant surface glycoproteins by a stochastic and parasite-intrinsic process. Parasite development in the mammalian host is another feature of the infection dynamic, with trypanosomes undergoing quorum sensing (QS)-dependent differentiation between proliferative slender forms and arrested, transmissible, stumpy forms. Longstanding experimental studies have suggested that the frequency of antigenic variation and transmissibility may be linked, antigen switching being higher in developmentally competent, fly-transmissible, parasites ("pleomorphs") than in serially passaged "monomorphic" lines that cannot transmit through flies. Here, we have directly tested this tenet of the infection dynamic by using 2 experimental systems to reduce pleomorphism. Firstly, lines were generated that inducibly lose developmental capacity through RNAi-mediated silencing of the QS signaling machinery ("inducible monomorphs"). Secondly, de novo lines were derived that have lost the capacity for stumpy formation by serial passage ("selected monomorphs") and analyzed for their antigenic variation in comparison to isogenic preselected populations. Analysis of both inducible and selected monomorphs has established that antigen switch frequency and developmental capacity are independently selected traits. This generates the potential for diverse infection dynamics in different parasite populations where the rate of antigenic switching and transmission competence are uncoupled. Further, this may support the evolution, maintenance, and spread of important trypanosome variants such as Trypanosoma brucei evansi that exploit mechanical transmission.
Collapse
Affiliation(s)
- Kirsty R McWilliam
- Institute for Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, EH9 3FL Edinburgh, Scotland, United Kingdom
- Department of Veterinary Sciences, Experimental Parasitology, Ludwig Maximilians Universität München, 80752 Munich, Germany
- Biomedical Center Munich, Department of Physiological Chemistry, Ludwig Maximilians Universität München, 82152 Planegg-Martinsried, Germany
| | - Alasdair Ivens
- Institute for Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, EH9 3FL Edinburgh, Scotland, United Kingdom
| | - Liam J Morrison
- Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, EH25 9RG Midlothian, Scotland, United Kingdom
| | - Monica R Mugnier
- Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205
| | - Keith R Matthews
- Institute for Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, EH9 3FL Edinburgh, Scotland, United Kingdom;
| |
Collapse
|
15
|
Hoo R, Bruske E, Dimonte S, Zhu L, Mordmüller B, Sim BKL, Kremsner PG, Hoffman SL, Bozdech Z, Frank M, Preiser PR. Transcriptome profiling reveals functional variation in Plasmodium falciparum parasites from controlled human malaria infection studies. EBioMedicine 2019; 48:442-452. [PMID: 31521613 PMCID: PMC6838377 DOI: 10.1016/j.ebiom.2019.09.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 08/29/2019] [Accepted: 09/01/2019] [Indexed: 11/03/2022] Open
Abstract
BACKGROUND The transcriptome of Plasmodium falciparum clinical isolates varies according to strain, mosquito bites, disease severity and clinical history. Therefore, it remains a challenge to directly interpret the parasite's transcriptomic information into a more general biological signature in a natural human malaria infection. These confounding variations can be potentially overcome with parasites derived from controlled-human malaria infection (CHMI) studies. METHODS We performed CHMI studies in healthy and immunologically naïve volunteers receiving the same P. falciparum strain ((Sanaria® PfSPZ Challenge (NF54)), but with different sporozoite dosage and route of infection. Parasites isolated from these volunteers at the day of patency were subjected to in vitro culture for several generations and synchronized ring-stage parasites were subjected to transcriptome profiling. FINDINGS We observed clear deviations between CHMI-derived parasites from volunteer groups receiving different PfSPZ dose and route. CHMI-derived parasites and the pre-mosquito strain used for PfSPZ generation showed significant transcriptional variability for gene clusters associated with malaria pathogenesis, immune evasion and transmission. These transcriptional variation signature clusters were also observed in the transcriptome of P. falciparum isolates from acute clinical infections. INTERPRETATION Our work identifies a previously unrecognized transcriptional pattern in malaria infections in a non-immune background. Significant transcriptome heterogeneity exits between parasites derived from human infections and the pre-mosquito strain, implying that the malaria parasites undergo a change in functional state to adapt to its host environment. Our work also highlights the potential use of transcriptomics data from CHMI study advance our understanding of malaria parasite adaptation and transmission in humans. FUND: This work is supported by German Israeli Foundation, German ministry for education and research, MOE Tier 1 from the Singapore Ministry of Education Academic Research Fund, Singapore Ministry of Health's National Medical Research Council, National Institute of Allergy and Infectious Diseases, National Institutes of Health, USA and the German Centre for Infection Research (Deutsches Zentrum für Infektionsforschung-DZIF).
Collapse
Affiliation(s)
- Regina Hoo
- School of Biological Sciences, Nanyang Technological University, Singapore
| | - Ellen Bruske
- Institute of Tropical Medicine, Wilhelmstr. 27, University of Tübingen, 72074 Tübingen, Germany
| | - Sandra Dimonte
- Institute of Tropical Medicine, Wilhelmstr. 27, University of Tübingen, 72074 Tübingen, Germany
| | - Lei Zhu
- School of Biological Sciences, Nanyang Technological University, Singapore
| | - Benjamin Mordmüller
- Institute of Tropical Medicine, Wilhelmstr. 27, University of Tübingen, 72074 Tübingen, Germany; German Center for Infection Research, partner site Tübingen, Germany
| | - B Kim Lee Sim
- Sanaria Inc, 9800 Medical Center Dr A209, Rockville, MD 20850, USA
| | - Peter G Kremsner
- Institute of Tropical Medicine, Wilhelmstr. 27, University of Tübingen, 72074 Tübingen, Germany; Centre de Recherches Médicales de Lambaréné, BP 242 Lambaréné, Gabon
| | | | - Zbynek Bozdech
- School of Biological Sciences, Nanyang Technological University, Singapore
| | - Matthias Frank
- Institute of Tropical Medicine, Wilhelmstr. 27, University of Tübingen, 72074 Tübingen, Germany.
| | - Peter R Preiser
- School of Biological Sciences, Nanyang Technological University, Singapore.
| |
Collapse
|
16
|
Storm J, Jespersen JS, Seydel KB, Szestak T, Mbewe M, Chisala NV, Phula P, Wang CW, Taylor TE, Moxon CA, Lavstsen T, Craig AG. Cerebral malaria is associated with differential cytoadherence to brain endothelial cells. EMBO Mol Med 2019; 11:emmm.201809164. [PMID: 30610112 PMCID: PMC6365927 DOI: 10.15252/emmm.201809164] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Sequestration of Plasmodium falciparum‐infected erythrocytes (IE) within the brain microvasculature is a hallmark of cerebral malaria (CM). Using a microchannel flow adhesion assay with TNF‐activated primary human microvascular endothelial cells, we demonstrate that IE isolated from Malawian paediatric CM cases showed increased binding to brain microvascular endothelial cells compared to IE from uncomplicated malaria (UM) cases. Further, UM isolates showed significantly greater adhesion to dermal than to brain microvascular endothelial cells. The major mediator of parasite adhesion is P. falciparum erythrocyte membrane protein 1, encoded by var genes. Higher levels of var gene transcripts predicted to bind host endothelial protein C receptor (EPCR) and ICAM‐1 were detected in CM isolates. These data provide further evidence for differential tissue binding in severe and uncomplicated malaria syndromes, and give additional support to the hypothesis that CM pathology is based on increased cytoadherence of IE in the brain microvasculature.
Collapse
Affiliation(s)
- Janet Storm
- Department of Parasitology, Liverpool School of Tropical Medicine, Liverpool, UK .,Malawi-Liverpool-Wellcome Trust Clinical Research Programme, Blantyre, Malawi.,College of Medicine, University of Malawi, Blantyre, Malawi
| | - Jakob S Jespersen
- Department of International Health, Immunology & Microbiology, Centre for Medical Parasitology, University of Copenhagen, Copenhagen, Denmark.,Department of Infectious Diseases, Rigshospitalet, Copenhagen, Denmark
| | - Karl B Seydel
- College of Medicine, University of Malawi, Blantyre, Malawi.,Blantyre Malaria Project, College of Medicine, University of Malawi, Blantyre, Malawi.,Department of Osteopathic Medical Specialties, College of Osteopathic Medicine, Michigan State University, East Lansing, MI, USA
| | - Tadge Szestak
- Department of Parasitology, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Maurice Mbewe
- Malawi-Liverpool-Wellcome Trust Clinical Research Programme, Blantyre, Malawi
| | - Ngawina V Chisala
- Malawi-Liverpool-Wellcome Trust Clinical Research Programme, Blantyre, Malawi
| | - Patricia Phula
- Malawi-Liverpool-Wellcome Trust Clinical Research Programme, Blantyre, Malawi
| | - Christian W Wang
- Department of International Health, Immunology & Microbiology, Centre for Medical Parasitology, University of Copenhagen, Copenhagen, Denmark.,Department of Infectious Diseases, Rigshospitalet, Copenhagen, Denmark
| | - Terrie E Taylor
- Blantyre Malaria Project, College of Medicine, University of Malawi, Blantyre, Malawi.,Department of Osteopathic Medical Specialties, College of Osteopathic Medicine, Michigan State University, East Lansing, MI, USA
| | - Christopher A Moxon
- Institute of Infection and Global Health, University of Liverpool, Liverpool, UK.,Wellcome Centre for Molecular Parasitology, Institute of Infection, Immunity and Inflammation, College of Medical Veterinary & Life Sciences, University of Glasgow, Glasgow, UK
| | - Thomas Lavstsen
- Department of International Health, Immunology & Microbiology, Centre for Medical Parasitology, University of Copenhagen, Copenhagen, Denmark.,Department of Infectious Diseases, Rigshospitalet, Copenhagen, Denmark
| | - Alister G Craig
- Department of Parasitology, Liverpool School of Tropical Medicine, Liverpool, UK
| |
Collapse
|
17
|
Kim A, Popovici J, Menard D, Serre D. Plasmodium vivax transcriptomes reveal stage-specific chloroquine response and differential regulation of male and female gametocytes. Nat Commun 2019; 10:371. [PMID: 30670687 PMCID: PMC6342968 DOI: 10.1038/s41467-019-08312-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Accepted: 12/26/2018] [Indexed: 12/12/2022] Open
Abstract
Studies of Plasmodium vivax gene expression are complicated by the lack of in vitro culture system and the difficulties associated with studying clinical infections that often contain multiple clones and a mixture of parasite stages. Here, we characterize the transcriptomes of P. vivax parasites from 26 malaria patients. We show that most parasite mRNAs derive from trophozoites and that the asynchronicity of P. vivax infections is therefore unlikely to confound gene expression studies. Analyses of gametocyte genes reveal two distinct clusters of co-regulated genes, suggesting that male and female gametocytes are independently regulated. Finally, we analyze gene expression changes induced by chloroquine and show that this antimalarial drug efficiently eliminates most P. vivax parasite stages but, in contrast to P. falciparum, does not affect trophozoites.
Collapse
Affiliation(s)
- Adam Kim
- Institute for Genome Sciences, University of Maryland School of Medicine, 670 W Baltimore Street, Baltimore, MD, 21201, USA
| | - Jean Popovici
- Malaria Molecular Epidemiology Unit, Institut Pasteur in Cambodia, 5 Boulevard Monivong, PO Box 983, Phnom Penh, 12 201, Cambodia
| | - Didier Menard
- Malaria Molecular Epidemiology Unit, Institut Pasteur in Cambodia, 5 Boulevard Monivong, PO Box 983, Phnom Penh, 12 201, Cambodia
- Biology of Host-Parasite Interactions Unit, Institut Pasteur, 25-28 Rue du Dr. Roux, 75724, Paris, France
| | - David Serre
- Institute for Genome Sciences, University of Maryland School of Medicine, 670 W Baltimore Street, Baltimore, MD, 21201, USA.
| |
Collapse
|
18
|
Abstract
Eukaryotic pathogens must survive in different hosts, respond to changing environments, and exploit specialized niches to propagate. Plasmodium parasites cause human malaria during bloodstream infections, where they must persist long enough to be transmitted. Parasites have evolved diverse strategies of variant gene expression that control critical biological processes of blood-stage infections, including antigenic variation, erythrocyte invasion, innate immune evasion, and nutrient acquisition, as well as life-cycle transitions. Epigenetic mechanisms within the parasite are being elucidated, with discovery of epigenomic marks associated with gene silencing and activation, and the identification of epigenetic regulators and chromatin proteins that are required for the switching and maintenance of gene expression. Here, we review the key epigenetic processes that facilitate transition through the parasite life cycle and epigenetic regulatory mechanisms utilized by Plasmodium parasites to survive changing environments and consider epigenetic switching in the context of the outcome of human infections.
Collapse
Affiliation(s)
- Manoj T Duraisingh
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, Massachusetts 02115, USA; ,
| | - Kristen M Skillman
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, Massachusetts 02115, USA; ,
| |
Collapse
|
19
|
Carrington E, Otto TD, Szestak T, Lennartz F, Higgins MK, Newbold CI, Craig AG. In silico guided reconstruction and analysis of ICAM-1-binding var genes from Plasmodium falciparum. Sci Rep 2018; 8:3282. [PMID: 29459671 PMCID: PMC5818487 DOI: 10.1038/s41598-018-21591-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Accepted: 02/07/2018] [Indexed: 11/23/2022] Open
Abstract
The Plasmodium falciparum variant surface antigen PfEMP1 expressed on the surface of infected erythrocytes is thought to play a major role in the pathology of severe malaria. As the sequence pool of the var genes encoding PfEMP1 expands there are opportunities, despite the high degree of sequence diversity demonstrated by this gene family, to reconstruct full-length var genes from small sequence tags generated from patient isolates. To test whether this is possible we have used a set of recently laboratory adapted ICAM-1-binding parasite isolates to generate sequence tags and, from these, to identify the full-length PfEMP1 being expressed by them. In a subset of the strains available we were able to produce validated, full-length var gene sequences and use these to conduct biophysical analyses of the ICAM-1 binding regions.
Collapse
Affiliation(s)
- Eilidh Carrington
- Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK
- Malaria Gene Regulation Lab, Swiss Tropical and Public Health Institute, Socinstrasse 57, 4051, Basel, Switzerland
| | - Thomas D Otto
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
- Institute of Infection, Immunity and Inflammation, University of Glasgow, College of Medical, Veterinary and Life Sciences, Sir Graeme Davies Building, 120 University Place, Glasgow, G12 8TA, UK
| | - Tadge Szestak
- Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK
| | - Frank Lennartz
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK
| | - Matt K Higgins
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK
| | - Chris I Newbold
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
- Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Headington, Oxford, OX3 9DS, UK
| | - Alister G Craig
- Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK.
| |
Collapse
|
20
|
Infected erythrocytes expressing DC13 PfEMP1 differ from recombinant proteins in EPCR-binding function. Proc Natl Acad Sci U S A 2018; 115:1063-1068. [PMID: 29339517 PMCID: PMC5798336 DOI: 10.1073/pnas.1712879115] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Sequestration of Plasmodium falciparum-infected erythrocytes (IEs) in the brain microvasculature underlies the pathology of cerebral malaria. Parasites that express P. falciparum erythrocyte membrane protein 1 of domain cassette (DC) 8 and DC13 types bind to brain endothelial cells. Recent studies, largely based on recombinant proteins, have identified endothelial protein C receptor (EPCR) as the key receptor for endothelial cell binding. Using DC8- and DC13-expressing IEs, we show that binding of DC13 IEs to brain endothelial cells is not EPCR-dependent and that cytoadhesion of EPCR-binding DC8 IEs to brain endothelial cells is blocked by human serum. This study highlights differences between recombinant protein and native protein in EPCR-binding properties and suggests that other receptors are also required for sequestration in cerebral malaria. Recent advances have identified a new paradigm for cerebral malaria pathogenesis in which endothelial protein C receptor (EPCR) is a major host receptor for sequestration of Plasmodium falciparum-infected erythrocytes (IEs) in the brain and other vital organs. The parasite adhesins that bind EPCR are members of the IE variant surface antigen family Plasmodium falciparum erythrocyte membrane protein 1 (PfEMP1) containing specific adhesion domains called domain cassette (DC) 8 and DC13. The binding interaction site between PfEMP1 and EPCR has been mapped by biophysical and crystallography studies using recombinant proteins. However, studies examining the interaction of native PfEMP1 on the IE surface with EPCR are few. We aimed to study binding to EPCR by IEs expressing DC8 and DC13 PfEMP1 variants whose recombinant proteins have been used in key prior functional and structural studies. IE binding to EPCR immobilized on plastic and on human brain endothelial cells was examined in static and flow adhesion assays. Unexpectedly, we found that IEs expressing the DC13 PfEMP1 variant HB3var03 or IT4var07 did not bind to EPCR on plastic and the binding of these variants to brain endothelial cells was not dependent on EPCR. IEs expressing the DC8 variant IT4var19 did bind to EPCR, but this interaction was inhibited if normal human serum or plasma was present, raising the possibility that IE–EPCR interaction may be prevented by plasma components under physiological conditions. These data highlight a discrepancy in EPCR-binding activity between PfEMP1 recombinant proteins and IEs, and indicate the critical need for further research to understand the pathophysiological significance of the PfEMP1–EPCR interaction.
Collapse
|
21
|
Hamilton WL, Claessens A, Otto TD, Kekre M, Fairhurst RM, Rayner JC, Kwiatkowski D. Extreme mutation bias and high AT content in Plasmodium falciparum. Nucleic Acids Res 2017; 45:1889-1901. [PMID: 27994033 PMCID: PMC5389722 DOI: 10.1093/nar/gkw1259] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Accepted: 12/01/2016] [Indexed: 01/31/2023] Open
Abstract
For reasons that remain unknown, the Plasmodium falciparum genome has an exceptionally high AT content compared to other Plasmodium species and eukaryotes in general - nearly 80% in coding regions and approaching 90% in non-coding regions. Here, we examine how this phenomenon relates to genome-wide patterns of de novo mutation. Mutation accumulation experiments were performed by sequential cloning of six P. falciparum isolates growing in human erythrocytes in vitro for 4 years, with 279 clones sampled for whole genome sequencing at different time points. Genome sequence analysis of these samples revealed a significant excess of G:C to A:T transitions compared to other types of nucleotide substitution, which would naturally cause AT content to equilibrate close to the level seen across the P. falciparum reference genome (80.6% AT). These data also uncover an extremely high rate of small indel mutation relative to other species, primarily associated with repetitive AT-rich sequences, in addition to larger-scale structural rearrangements focused in antigen-coding var genes. In conclusion, high AT content in P. falciparum is driven by a systematic mutational bias and ultimately leads to an unusual level of microstructural plasticity, raising the question of whether this contributes to adaptive evolution.
Collapse
Affiliation(s)
- William L Hamilton
- Malaria Programme, Wellcome Trust Sanger Institute, Hinxton, CB10 1SA, UK.,University of Cambridge School of Clinical Medicine, Cambridge Biomedical Campus, Hills Road, Cambridge, CB2 0SP, UK
| | - Antoine Claessens
- Malaria Programme, Wellcome Trust Sanger Institute, Hinxton, CB10 1SA, UK.,Medical Research Council Unit The Gambia, Atlantic Road, Fajara, P.O. Box 273, Banjul, The Gambia.,Department of Pathogen Molecular Biology, London School of Hygiene and Tropical Medicine, London, WC1E 7HT, UK
| | - Thomas D Otto
- Malaria Programme, Wellcome Trust Sanger Institute, Hinxton, CB10 1SA, UK
| | - Mihir Kekre
- Malaria Programme, Wellcome Trust Sanger Institute, Hinxton, CB10 1SA, UK
| | - Rick M Fairhurst
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, USA
| | - Julian C Rayner
- Malaria Programme, Wellcome Trust Sanger Institute, Hinxton, CB10 1SA, UK
| | - Dominic Kwiatkowski
- Malaria Programme, Wellcome Trust Sanger Institute, Hinxton, CB10 1SA, UK.,Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, OX3 7BN, UK
| |
Collapse
|
22
|
Merrick CJ, Jiang RHY, Skillman KM, Samarakoon U, Moore RM, Dzikowski R, Ferdig MT, Duraisingh MT. Functional analysis of sirtuin genes in multiple Plasmodium falciparum strains. PLoS One 2015; 10:e0118865. [PMID: 25780929 PMCID: PMC4364008 DOI: 10.1371/journal.pone.0118865] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Accepted: 01/07/2015] [Indexed: 12/22/2022] Open
Abstract
Plasmodium falciparum, the causative agent of severe human malaria, employs antigenic variation to avoid host immunity. Antigenic variation is achieved by transcriptional switching amongst polymorphic var genes, enforced by epigenetic modification of chromatin. The histone-modifying 'sirtuin' enzymes PfSir2a and PfSir2b have been implicated in this process. Disparate patterns of var expression have been reported in patient isolates as well as in cultured strains. We examined var expression in three commonly used laboratory strains (3D7, NF54 and FCR-3) in parallel. NF54 parasites express significantly lower levels of var genes compared to 3D7, despite the fact that 3D7 was originally a clone of the NF54 strain. To investigate whether this was linked to the expression of sirtuins, genetic disruption of both sirtuins was attempted in all three strains. No dramatic changes in var gene expression occurred in NF54 or FCR-3 following PfSir2b disruption, contrasting with previous observations in 3D7. In 3D7, complementation of the PfSir2a genetic disruption resulted in a significant decrease in previously-elevated var gene expression levels, but with the continued expression of multiple var genes. Finally, rearranged chromosomes were observed in the 3D7 PfSir2a knockout line. Our results focus on the potential for parasite genetic background to contribute to sirtuin function in regulating virulence gene expression and suggest a potential role for sirtuins in maintaining genome integrity.
Collapse
Affiliation(s)
- Catherine J. Merrick
- Department of Immunology & Infectious Diseases, Harvard School of Public Health, Boston, Massachusetts, United States of America
| | - Rays H. Y. Jiang
- Department of Immunology & Infectious Diseases, Harvard School of Public Health, Boston, Massachusetts, United States of America
| | - Kristen M. Skillman
- Department of Immunology & Infectious Diseases, Harvard School of Public Health, Boston, Massachusetts, United States of America
| | - Upeka Samarakoon
- Department of Biological Sciences, Eck Institute for Global Health, University of Notre Dame, Notre Dame, Indiana, United States of America
| | - Rachel M. Moore
- Department of Immunology & Infectious Diseases, Harvard School of Public Health, Boston, Massachusetts, United States of America
| | - Ron Dzikowski
- Department of Microbiology & Molecular Genetics, The Kuvin Center for the Study of Infectious and Tropical Diseases, IMRIC, The Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Michael T. Ferdig
- Department of Biological Sciences, Eck Institute for Global Health, University of Notre Dame, Notre Dame, Indiana, United States of America
| | - Manoj T. Duraisingh
- Department of Immunology & Infectious Diseases, Harvard School of Public Health, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
23
|
Lapp SA, Mok S, Zhu L, Wu H, Preiser PR, Bozdech Z, Galinski MR. Plasmodium knowlesi gene expression differs in ex vivo compared to in vitro blood-stage cultures. Malar J 2015; 14:110. [PMID: 25880967 PMCID: PMC4369371 DOI: 10.1186/s12936-015-0612-8] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Accepted: 02/12/2015] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Plasmodium knowlesi is one of five Plasmodium species known to cause malaria in humans and can result in severe illness and death. While a zoonosis in humans, this simian malaria parasite species infects macaque monkeys and serves as an experimental model for in vivo, ex vivo and in vitro studies. It has underpinned malaria discoveries relating to host-pathogen interactions, the immune response and immune evasion strategies. This study investigated differences in P. knowlesi gene expression in samples from ex vivo and in vitro cultures. METHODS Gene expression profiles were generated using microarrays to compare the stage-specific transcripts detected for a clone of P. knowlesi propagated in the blood of a rhesus macaque host and then grown in an ex-vivo culture, and the same clone adapted to long-term in vitro culture. Parasite samples covering one blood-stage cycle were analysed at four-hour intervals. cDNA was generated and hybridized to an oligoarray representing the P. knowlesi genome. Two replicate experiments were developed from in vitro cultures. Expression values were filtered, normalized, and analysed using R and Perl language and applied to a sine wave model to determine changes in equilibrium and amplitude. Differentially expressed genes from ex vivo and in vitro time points were detected using limma R/Bioconductor and gene set enrichment analysis (GSEA). RESULTS Major differences were noted between the ex vivo and in vitro time courses in overall gene expression and the length of the cycle (25.5 hours ex vivo; 33.5 hours in vitro). GSEA of genes up-regulated ex vivo showed an enrichment of various genes including SICAvar, ribosomal- associated and histone acetylation pathway genes. In contrast, certain genes involved in metabolism and cell growth, such as porphobilinogen deaminase and tyrosine phosphatase, and one SICAvar gene, were significantly up-regulated in vitro. CONCLUSIONS This study demonstrates how gene expression in P. knowlesi blood-stage parasites can differ dramatically depending on whether the parasites are grown in vivo, with only one cycle of development ex vivo, or as an adapted isolate in long-term in vitro culture. These data bring emphasis to the importance of studying the parasite, its biology and disease manifestations in the context of the host.
Collapse
Affiliation(s)
- Stacey A Lapp
- Emory Vaccine Center, Yerkes National Primate Research Center, Emory University, Atlanta, GA, USA.
| | - Sachel Mok
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore.
| | - Lei Zhu
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore.
| | - Hao Wu
- Department of Biostatistics and Bioinformatics, Rollins School of Public Health, Emory University, Atlanta, GA, USA.
| | - Peter R Preiser
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore.
| | - Zybnek Bozdech
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore.
| | - Mary R Galinski
- Emory Vaccine Center, Yerkes National Primate Research Center, Emory University, Atlanta, GA, USA.
- Department of Medicine, Division of Infectious Diseases, Emory University, Atlanta, GA, USA.
| |
Collapse
|
24
|
Pelle KG, Oh K, Buchholz K, Narasimhan V, Joice R, Milner DA, Brancucci NM, Ma S, Voss TS, Ketman K, Seydel KB, Taylor TE, Barteneva NS, Huttenhower C, Marti M. Transcriptional profiling defines dynamics of parasite tissue sequestration during malaria infection. Genome Med 2015; 7:19. [PMID: 25722744 PMCID: PMC4342211 DOI: 10.1186/s13073-015-0133-7] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Accepted: 01/15/2015] [Indexed: 01/23/2023] Open
Abstract
BACKGROUND During intra-erythrocytic development, late asexually replicating Plasmodium falciparum parasites sequester from peripheral circulation. This facilitates chronic infection and is linked to severe disease and organ-specific pathology including cerebral and placental malaria. Immature gametocytes - sexual stage precursor cells - likewise disappear from circulation. Recent work has demonstrated that these sexual stage parasites are located in the hematopoietic system of the bone marrow before mature gametocytes are released into the bloodstream to facilitate mosquito transmission. However, as sequestration occurs only in vivo and not during in vitro culture, the mechanisms by which it is regulated and enacted (particularly by the gametocyte stage) remain poorly understood. RESULTS We generated the most comprehensive P. falciparum functional gene network to date by integrating global transcriptional data from a large set of asexual and sexual in vitro samples, patient-derived in vivo samples, and a new set of in vitro samples profiling sexual commitment. We defined more than 250 functional modules (clusters) of genes that are co-expressed primarily during the intra-erythrocytic parasite cycle, including 35 during sexual commitment and gametocyte development. Comparing the in vivo and in vitro datasets allowed us, for the first time, to map the time point of asexual parasite sequestration in patients to 22 hours post-invasion, confirming previous in vitro observations on the dynamics of host cell modification and cytoadherence. Moreover, we were able to define the properties of gametocyte sequestration, demonstrating the presence of two circulating gametocyte populations: gametocyte rings between 0 and approximately 30 hours post-invasion and mature gametocytes after around 7 days post-invasion. CONCLUSIONS This study provides a bioinformatics resource for the functional elucidation of parasite life cycle dynamics and specifically demonstrates the presence of the gametocyte ring stages in circulation, adding significantly to our understanding of the dynamics of gametocyte sequestration in vivo.
Collapse
Affiliation(s)
- Karell G Pelle
- Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston, MA 02115 USA
| | - Keunyoung Oh
- Department of Biostatistics, Harvard School of Public Health, Boston, MA 02115 USA
| | - Kathrin Buchholz
- Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston, MA 02115 USA
| | - Vagheesh Narasimhan
- Department of Biostatistics, Harvard School of Public Health, Boston, MA 02115 USA
| | - Regina Joice
- Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston, MA 02115 USA
| | - Danny A Milner
- Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston, MA 02115 USA ; Department of Pathology, Brigham and Women's Hospital, Boston, MA 02115 USA
| | - Nicolas Mb Brancucci
- Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston, MA 02115 USA ; Swiss Tropical and Public Health Institute, 4051 Basel, Switzerland
| | - Siyuan Ma
- Department of Biostatistics, Harvard School of Public Health, Boston, MA 02115 USA
| | - Till S Voss
- Swiss Tropical and Public Health Institute, 4051 Basel, Switzerland
| | - Ken Ketman
- Program in Cellular and Molecular Medicine, Children's Hospital, Boston, MA 02115 USA
| | - Karl B Seydel
- College of Osteopathic Medicine, Michigan State University, East Lansing, MI 48825 USA ; Blantyre Malaria Project, University of Malawi College of Medicine, Blantyre, 3 Malawi
| | - Terrie E Taylor
- College of Osteopathic Medicine, Michigan State University, East Lansing, MI 48825 USA ; Blantyre Malaria Project, University of Malawi College of Medicine, Blantyre, 3 Malawi
| | - Natasha S Barteneva
- Program in Cellular and Molecular Medicine, Children's Hospital, Boston, MA 02115 USA ; Department of Pediatrics, Harvard Medical School, Boston, MA 02115 USA
| | - Curtis Huttenhower
- Department of Biostatistics, Harvard School of Public Health, Boston, MA 02115 USA ; The Broad Institute of Harvard and MIT, Cambridge, MA 02142 USA
| | - Matthias Marti
- Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston, MA 02115 USA
| |
Collapse
|
25
|
Ye R, Zhang D, Chen B, Zhu Y, Zhang Y, Wang S, Pan W. Transcription of the var genes from a freshly-obtained field isolate of Plasmodium falciparum shows more variable switching patterns than long laboratory-adapted isolates. Malar J 2015; 14:66. [PMID: 25889871 PMCID: PMC4332720 DOI: 10.1186/s12936-015-0565-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Accepted: 01/15/2015] [Indexed: 11/15/2022] Open
Abstract
Background Antigenic variation in Plasmodium falciparum involves switching among multicopy var gene family and is responsible for immune evasion and the maintenance of chronic infections. Current understanding of var gene expression and switching patterns comes from experiments conducted on long laboratory-adapted strains, with little known about their wild counterparts. Methods Genome sequencing was used to obtain 50 var genes from a parasite isolated from the China-Myanmar border. Four clones with different dominant var genes were cultured in vitro in replicates for 50 generations. Transcription of the individual var gene was detected by real-time PCR and then the switching process was analysed. Results The expression of multicopy var genes is mutually exclusive in clones of a wild P. falciparum isolate. The activation of distinct primary dominant var genes leads to different and favoured switching patterns in the four clones. The on/off rates of individual var genes are variable and the choice of subsequent dominant var genes are random, which results in the different switching patterns among replicates of each clonal wild P. falciparum isolate with near identical initial transcription profiles. Conclusions This study suggests that the switching patterns of var genes are abundant, which consist of both conserved and random parts. Electronic supplementary material The online version of this article (doi:10.1186/s12936-015-0565-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Run Ye
- Department of Tropical Infectious Disease, Second Military Medical University, Shanghai, 200433, China.
| | - Dongmei Zhang
- Department of Tropical Infectious Disease, Second Military Medical University, Shanghai, 200433, China.
| | - Biaobang Chen
- Department of Tropical Infectious Disease, Second Military Medical University, Shanghai, 200433, China.
| | - Yongqiang Zhu
- Shanghai-Ministry of Science and Technology Key Laboratory of Health and Disease Genomics, Chinese National Human Genome Center at Shanghai, Shanghai, 201203, China.
| | - Yilong Zhang
- Institute for Infectious Diseases and Vaccine Development, Tongji University School of Medicine, Shanghai, 200092, China.
| | - Shengyue Wang
- Shanghai-Ministry of Science and Technology Key Laboratory of Health and Disease Genomics, Chinese National Human Genome Center at Shanghai, Shanghai, 201203, China.
| | - Weiqing Pan
- Department of Tropical Infectious Disease, Second Military Medical University, Shanghai, 200433, China. .,Institute for Infectious Diseases and Vaccine Development, Tongji University School of Medicine, Shanghai, 200092, China.
| |
Collapse
|
26
|
Immune characterization of Plasmodium falciparum parasites with a shared genetic signature in a region of decreasing transmission. Infect Immun 2014; 83:276-85. [PMID: 25368109 DOI: 10.1128/iai.01979-14] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
As the intensity of malaria transmission has declined, Plasmodium falciparum parasite populations have displayed decreased clonal diversity resulting from the emergence of many parasites with common genetic signatures (CGS). We have monitored such CGS parasite clusters from 2006 to 2013 in Thiès, Senegal, using the molecular barcode. The first, and one of the largest observed clusters of CGS parasites, was present in 24% of clinical isolates in 2008, declined to 3.4% of clinical isolates in 2009, and then disappeared. To begin to explore the relationship between the immune responses of the population and the emergence and decline of specific parasite genotypes, we have determined whether antibodies to CGS parasites correlate with their prevalence. We measured (i) antibodies capable of inhibiting parasite growth in culture and (ii) antibodies recognizing the surfaces of infected erythrocytes (RBCs). IgG obtained from volunteers in 2009 showed increased reactivity to the surfaces of CGS-parasitized erythrocytes over IgG from 2008. Since P. falciparum EMP-1 (PfEMP-1) is a major variant surface antigen, we used var Ups quantitative reverse transcription-PCR (qRT-PCR) and sequencing with degenerate DBL1α domain primers to characterize the var genes expressed by CGS parasites after short-term in vitro culture. CGS parasites show upregulation of UpsA var genes and 2-cysteine-containing PfEMP-1 molecules and express the same dominant var transcript. Our work indicates that the CGS parasites in this cluster express similar var genes, more than would be expected by chance in the population, and that there is year-to-year variation in immune recognition of surface antigens on CGS parasite-infected erythrocytes. This study lays the groundwork for detailed investigations of the mechanisms driving the expansion or contraction of specific parasite clones in the population.
Collapse
|
27
|
Chen N, LaCrue AN, Teuscher F, Waters NC, Gatton ML, Kyle DE, Cheng Q. Fatty acid synthesis and pyruvate metabolism pathways remain active in dihydroartemisinin-induced dormant ring stages of Plasmodium falciparum. Antimicrob Agents Chemother 2014; 58:4773-81. [PMID: 24913167 PMCID: PMC4135995 DOI: 10.1128/aac.02647-14] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Accepted: 06/01/2014] [Indexed: 11/20/2022] Open
Abstract
Artemisinin (ART)-based combination therapy (ACT) is used as the first-line treatment of uncomplicated falciparum malaria worldwide. However, despite high potency and rapid action, there is a high rate of recrudescence associated with ART monotherapy or ACT long before the recent emergence of ART resistance. ART-induced ring-stage dormancy and recovery have been implicated as possible causes of recrudescence; however, little is known about the characteristics of dormant parasites, including whether dormant parasites are metabolically active. We investigated the transcription of 12 genes encoding key enzymes in various metabolic pathways in P. falciparum during dihydroartemisinin (DHA)-induced dormancy and recovery. Transcription analysis showed an immediate downregulation for 10 genes following exposure to DHA but continued transcription of 2 genes encoding apicoplast and mitochondrial proteins. Transcription of several additional genes encoding apicoplast and mitochondrial proteins, particularly of genes encoding enzymes in pyruvate metabolism and fatty acid synthesis pathways, was also maintained. Additions of inhibitors for biotin acetyl-coenzyme A (CoA) carboxylase and enoyl-acyl carrier reductase of the fatty acid synthesis pathways delayed the recovery of dormant parasites by 6 and 4 days, respectively, following DHA treatment. Our results demonstrate that most metabolic pathways are downregulated in DHA-induced dormant parasites. In contrast, fatty acid and pyruvate metabolic pathways remain active. These findings highlight new targets to interrupt recovery of parasites from ART-induced dormancy and to reduce the rate of recrudescence following ART treatment.
Collapse
Affiliation(s)
- Nanhua Chen
- Drug Resistance and Diagnostics, Australian Army Malaria Institute, Brisbane, Australia
| | - Alexis N LaCrue
- Department of Global Health, University of South Florida, Tampa, Florida, USA
| | - Franka Teuscher
- Drug Resistance and Diagnostics, Australian Army Malaria Institute, Brisbane, Australia Malaria Drug Resistance and Chemotherapy, Queensland Institute of Medical Research, Brisbane, Australia
| | - Norman C Waters
- Experimental Therapeutics, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
| | - Michelle L Gatton
- Malaria Drug Resistance and Chemotherapy, Queensland Institute of Medical Research, Brisbane, Australia School of Public Health & Social Work, Queensland University of Technology, Brisbane, Australia
| | - Dennis E Kyle
- Department of Global Health, University of South Florida, Tampa, Florida, USA
| | - Qin Cheng
- Drug Resistance and Diagnostics, Australian Army Malaria Institute, Brisbane, Australia Malaria Drug Resistance and Chemotherapy, Queensland Institute of Medical Research, Brisbane, Australia
| |
Collapse
|
28
|
N'Dilimabaka N, Taoufiq Z, Zougbédé S, Bonnefoy S, Lorthiois A, Couraud PO, Rebollo A, Snounou G, Mazier D, Moreno Sabater A. P. falciparum isolate-specific distinct patterns of induced apoptosis in pulmonary and brain endothelial cells. PLoS One 2014; 9:e90692. [PMID: 24686750 PMCID: PMC3970966 DOI: 10.1371/journal.pone.0090692] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2013] [Accepted: 02/04/2014] [Indexed: 11/18/2022] Open
Abstract
The factors implicated in the transition from uncomplicated to severe clinical malaria such as pulmonary oedema and cerebral malaria remain unclear. It is known that alterations in vascular integrity due to endothelial cell (EC) activation and death occur during severe malaria. In this study, we assessed the ability of different P. falciparum clinical isolates to induce apoptosis in ECs derived from human lung and brain. We observed that induction of EC apoptosis was sensitive to the environmental pH and required direct contact between the parasite and the cell, though it was not correlated to the ability of the parasite to cytoadhere. Moreover, the extent of induced apoptosis in the two EC types varied with the isolate. Analysis of parasite genes transcript led us to propose that the activation of different pathways, such as Plasmodium apoptosis-linked pathogenicity factors (PALPF), PALPF-2, PALPF-5 and PF11_0521, could be implied in EC death. These observations provide an experimental framework to decipher the molecular mechanism implicated in the genesis of severe malaria.
Collapse
Affiliation(s)
- Nadine N'Dilimabaka
- Université Pierre et Marie Curie-Paris 6, UMRS 945, Paris, France
- Institut National de la Santé et de la Recherche Médicale, UMRS 945, Paris, France
| | - Zacharie Taoufiq
- Université Pierre et Marie Curie-Paris 6, UMRS 945, Paris, France
- Institut National de la Santé et de la Recherche Médicale, UMRS 945, Paris, France
| | - Sergine Zougbédé
- Université Pierre et Marie Curie-Paris 6, UMRS 945, Paris, France
- Institut National de la Santé et de la Recherche Médicale, UMRS 945, Paris, France
| | - Serge Bonnefoy
- Institut Pasteur, Unité d'Immunologie Moléculaire des Parasites, CNRS URA 2581, Paris, France
| | - Audrey Lorthiois
- Université Pierre et Marie Curie-Paris 6, UMRS 945, Paris, France
- Institut National de la Santé et de la Recherche Médicale, UMRS 945, Paris, France
| | - Pierre Oliver Couraud
- Institut National de la Santé et de la Recherche Médicale, U1016, Institut Cochin, Paris, France
- CNRS, UMR8104, Paris, France
- Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Angelita Rebollo
- Université Pierre et Marie Curie-Paris 6, UMRS 945, Paris, France
- Institut National de la Santé et de la Recherche Médicale, UMRS 945, Paris, France
| | - Georges Snounou
- Université Pierre et Marie Curie-Paris 6, UMRS 945, Paris, France
- Institut National de la Santé et de la Recherche Médicale, UMRS 945, Paris, France
| | - Dominique Mazier
- Université Pierre et Marie Curie-Paris 6, UMRS 945, Paris, France
- Institut National de la Santé et de la Recherche Médicale, UMRS 945, Paris, France
- Laboratoire de Parasitologie-Mycologie, AP-HP, Hôpital Pitié Salpêtrière, Paris, France
| | - Alicia Moreno Sabater
- Université Pierre et Marie Curie-Paris 6, UMRS 945, Paris, France
- Institut National de la Santé et de la Recherche Médicale, UMRS 945, Paris, France
- * E-mail:
| |
Collapse
|
29
|
Noble R, Christodoulou Z, Kyes S, Pinches R, Newbold CI, Recker M. The antigenic switching network of Plasmodium falciparum and its implications for the immuno-epidemiology of malaria. eLife 2013; 2:e01074. [PMID: 24062941 PMCID: PMC3778436 DOI: 10.7554/elife.01074] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2013] [Accepted: 08/19/2013] [Indexed: 12/23/2022] Open
Abstract
Antigenic variation in the human malaria parasite Plasmodium falciparum involves sequential and mutually exclusive expression of members of the var multi-gene family and appears to follow a non-random pattern. In this study, using a detailed in vitro gene transcription analysis of the culture-adapted HB3 strain of P. falciparum, we show that antigenic switching is governed by a global activation hierarchy favouring short and highly diverse genes in central chromosomal location. Longer and more conserved genes, which have previously been associated with severe infection in immunologically naive hosts, are rarely activated, however, implying an in vivo fitness advantage possibly through adhesion-dependent survival rates. We further show that a gene’s activation rate is positively associated sequence diversity, which could offer important new insights into the evolution and maintenance of antigenic diversity in P. falciparum malaria. DOI:http://dx.doi.org/10.7554/eLife.01074.001 Our ability to acquire immunity to a disease depends on our immune system learning to recognise foreign molecules—called antigens—that are specific to the disease-causing virus, bacterium or parasite. However, some pathogens, such as the malaria-causing parasite Plasmodium falciparum, get around this defence through a process called antigenic variation. This involves the parasite switching between different antigens over the course of an infection, preventing the host immune system from learning to recognise them and leading to infections that last many weeks or even months. The main antigen in P. falciparum is a protein called PfEMP1, which is encoded by a family of genes called var (‘variable’). Var genes have evolved to be highly diverse, and different parasites have different repertoires of around 50–60 var genes. This ensures that there are a huge number of distinct variants of the PfEMP1 antigen available within the population, allowing the malaria parasite to maintain long-lasting infections and also to infect the same individuals again and again. Previous work has shown that the expression of var genes is not random, but it is not clear what determines which genes are expressed at any given time. Now, Noble et al. have performed a detailed investigation of antigenic switching in P. falciparum. Using clonal parasites, they closely monitored the expression of the entire var gene repertoire during many generations of parasite culture. They observed that although different cultures initially expressed distinct var genes, most of them ended up expressing two particular genes—var27 and var29—at high levels, indicating a hard-wired gene ‘activation hierarchy’. Noble et al. found that whenever the parasites switched antigens, var genes that were centrally located on chromosomes—such as var27 and var29—were more likely to be activated than those at the ends of chromosomes. Moreover, var genes that were highly diverse were more likely to be activated than more conserved genes: this is the first evidence linking var gene evolution with gene activation probabilities. Together, these factors gave rise to the proposed activation hierarchy, which favours genes optimised for immune evasion and aids their continued evolution and diversification. Further work is now needed to identify the molecular mechanisms that control antigenic switching and to determine whether these could represent new therapeutic targets for malaria. DOI:http://dx.doi.org/10.7554/eLife.01074.002
Collapse
Affiliation(s)
- Robert Noble
- Department of Zoology , University of Oxford , Oxford , United Kingdom
| | | | | | | | | | | |
Collapse
|
30
|
Bachmann A, Petter M, Tilly AK, Biller L, Uliczka KA, Duffy MF, Tannich E, Bruchhaus I. Temporal expression and localization patterns of variant surface antigens in clinical Plasmodium falciparum isolates during erythrocyte schizogony. PLoS One 2012; 7:e49540. [PMID: 23166704 PMCID: PMC3499489 DOI: 10.1371/journal.pone.0049540] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2012] [Accepted: 10/10/2012] [Indexed: 11/19/2022] Open
Abstract
Avoidance of antibody-mediated immune recognition allows parasites to establish chronic infections and enhances opportunities for transmission. The human malaria parasite Plasmodium falciparum possesses a number of multi-copy gene families, including var, rif, stevor and pfmc-2tm, which encode variant antigens believed to be expressed on the surfaces of infected erythrocytes. However, most studies of these antigens are based on in vitro analyses of culture-adapted isolates, most commonly the laboratory strain 3D7, and thus may not be representative of the unique challenges encountered by P. falciparum in the human host. To investigate the expression of the var, rif-A, rif-B, stevor and pfmc-2tm family genes under conditions that mimic more closely the natural course of infection, ex vivo clinical P. falciparum isolates were analyzed using a novel quantitative real-time PCR approach. Expression patterns in the clinical isolates at various time points during the first intraerythrocytic developmental cycle in vitro were compared to those of strain 3D7. In the clinical isolates, in contrast to strain 3D7, there was a peak of expression of the multi-copy gene families rif-A, stevor and pfmc-2tm at the young ring stage, in addition to the already known expression peak in trophozoites. Furthermore, most of the variant surface antigen families were overexpressed in the clinical isolates relative to 3D7, with the exception of the pfmc-2tm family, expression of which was higher in 3D7 parasites. Immunofluorescence analyses performed in parallel revealed two stage-dependent localization patterns of RIFIN, STEVOR and PfMC-2TM. Proteins were exported into the infected erythrocyte at the young trophozoite stage, whereas they remained inside the parasite membrane during schizont stage and were subsequently observed in different compartments in the merozoite. These results reveal a complex pattern of expression of P. falciparum multi-copy gene families during clinical progression and are suggestive of diverse functional roles of the respective proteins.
Collapse
Affiliation(s)
- Anna Bachmann
- Department of Molecular Parasitology, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Ghumra A, Semblat JP, Ataide R, Kifude C, Adams Y, Claessens A, Anong DN, Bull PC, Fennell C, Arman M, Amambua-Ngwa A, Walther M, Conway DJ, Kassambara L, Doumbo OK, Raza A, Rowe JA. Induction of strain-transcending antibodies against Group A PfEMP1 surface antigens from virulent malaria parasites. PLoS Pathog 2012; 8:e1002665. [PMID: 22532802 PMCID: PMC3330128 DOI: 10.1371/journal.ppat.1002665] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2011] [Accepted: 03/08/2012] [Indexed: 12/22/2022] Open
Abstract
Sequence diversity in pathogen antigens is an obstacle to the development of interventions against many infectious diseases. In malaria caused by Plasmodium falciparum, the PfEMP1 family of variant surface antigens encoded by var genes are adhesion molecules that play a pivotal role in malaria pathogenesis and clinical disease. PfEMP1 is a major target of protective immunity, however, development of drugs or vaccines based on PfEMP1 is problematic due to extensive sequence diversity within the PfEMP1 family. Here we identified the PfEMP1 variants transcribed by P. falciparum strains selected for a virulence-associated adhesion phenotype (IgM-positive rosetting). The parasites transcribed a subset of Group A PfEMP1 variants characterised by an unusual PfEMP1 architecture and a distinct N-terminal domain (either DBLα1.5 or DBLα1.8 type). Antibodies raised in rabbits against the N-terminal domains showed functional activity (surface reactivity with live infected erythrocytes (IEs), rosette inhibition and induction of phagocytosis of IEs) down to low concentrations (<10 µg/ml of total IgG) against homologous parasites. Furthermore, the antibodies showed broad cross-reactivity against heterologous parasite strains with the same rosetting phenotype, including clinical isolates from four sub-Saharan African countries that showed surface reactivity with either DBLα1.5 antibodies (variant HB3var6) or DBLα1.8 antibodies (variant TM284var1). These data show that parasites with a virulence-associated adhesion phenotype share IE surface epitopes that can be targeted by strain-transcending antibodies to PfEMP1. The existence of shared surface epitopes amongst functionally similar disease-associated P. falciparum parasite isolates suggests that development of therapeutic interventions to prevent severe malaria is a realistic goal. Malaria remains one of the world's most deadly diseases. Life-threatening malaria is linked to a process called rosetting, in which malaria parasite-infected red blood cells bind to uninfected red cells to form aggregates that block blood flow in vital organs such as the brain. Current efforts to develop drugs or vaccines against rosetting are hindered by variation in the parasite rosette-mediating proteins, found on the surface of infected red cells. We studied these parasite-derived surface proteins and discovered that although they are variable, they share some common features. We raised antibodies against the rosette-mediating proteins, and found that they cross-reacted with multiple rosetting parasite strains from different countries around the world, including samples collected directly from African children with severe malaria. These findings provide new insights into malaria parasite interactions with human cells, and provide proof of principle that variable parasite molecules from virulent malaria parasites can induce strain-transcending antibodies. Hence, this work provides the foundation for the development of new therapies to treat or prevent life-threatening malaria.
Collapse
Affiliation(s)
- Ashfaq Ghumra
- Centre for Immunity, Infection and Evolution, Institute of Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Jean-Philippe Semblat
- Centre for Immunity, Infection and Evolution, Institute of Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Ricardo Ataide
- Centre for Immunity, Infection and Evolution, Institute of Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Carolyne Kifude
- Centre for Immunity, Infection and Evolution, Institute of Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
- Kenya Medical Research Institute-Wellcome Trust Research Programme, Kilifi, Kenya
| | - Yvonne Adams
- Centre for Immunity, Infection and Evolution, Institute of Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Antoine Claessens
- Centre for Immunity, Infection and Evolution, Institute of Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Damian N. Anong
- Biotechnology Unit, Faculty of Science, University of Buea, Buea, Cameroon
| | - Peter C. Bull
- Kenya Medical Research Institute-Wellcome Trust Research Programme, Kilifi, Kenya
| | - Clare Fennell
- Centre for Immunity, Infection and Evolution, Institute of Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Monica Arman
- Centre for Immunity, Infection and Evolution, Institute of Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | | | - Michael Walther
- Medical Research Council Laboratories, Fajara, Banjul, The Gambia
| | - David J. Conway
- Medical Research Council Laboratories, Fajara, Banjul, The Gambia
| | - Lalla Kassambara
- Malaria Research and Training Centre, University of Bamako, Bamako, Mali
| | - Ogobara K. Doumbo
- Malaria Research and Training Centre, University of Bamako, Bamako, Mali
| | - Ahmed Raza
- Centre for Immunity, Infection and Evolution, Institute of Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - J. Alexandra Rowe
- Centre for Immunity, Infection and Evolution, Institute of Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
- * E-mail:
| |
Collapse
|
32
|
Fastman Y, Noble R, Recker M, Dzikowski R. Erasing the epigenetic memory and beginning to switch--the onset of antigenic switching of var genes in Plasmodium falciparum. PLoS One 2012; 7:e34168. [PMID: 22461905 PMCID: PMC3312910 DOI: 10.1371/journal.pone.0034168] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2012] [Accepted: 02/23/2012] [Indexed: 11/19/2022] Open
Abstract
Antigenic variation in Plasmodium falciparum is regulated by transcriptional switches among members of the var gene family, each expressed in a mutually exclusive manner and encoding a different variant of the surface antigens collectively named PfEMP1. Antigenic switching starts when the first merozoites egress from the liver and begin their asexual proliferation within red blood cells. By erasing the epigenetic memory we created parasites with no var background, similar to merozoites that egress from the liver where no var gene is expressed. Creating a null-var background enabled us to investigate the onset of antigenic switches at the early phase of infection. At the onset of switching, var transcription pattern is heterogeneous with numerous genes transcribed at low levels including upsA vars, a subtype that was implicated in severe malaria, which are rarely activated in growing cultures. Analysis of subsequent in vitro switches shows that the probability of a gene to turn on or off is not associated with its chromosomal position or promoter type per se but on intrinsic properties of each gene. We concluded that var switching is determined by gene specific associated switch rates rather than general promoter type or locus associated switch rates. In addition, we show that fine tuned reduction in var transcription increases their switch rate, indicating that transcriptional perturbation can alter antigenic switching.
Collapse
Affiliation(s)
- Yair Fastman
- Department of Microbiology & Molecular Genetics, The Kuvin Center for the Study of Infectious and Tropical Diseases, IMRIC, The Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Robert Noble
- Department of Zoology, University of Oxford, Oxford, United Kingdom
| | - Mario Recker
- Department of Zoology, University of Oxford, Oxford, United Kingdom
| | - Ron Dzikowski
- Department of Microbiology & Molecular Genetics, The Kuvin Center for the Study of Infectious and Tropical Diseases, IMRIC, The Hebrew University-Hadassah Medical School, Jerusalem, Israel
- * E-mail:
| |
Collapse
|
33
|
Witmer K, Schmid CD, Brancucci NMB, Luah YH, Preiser PR, Bozdech Z, Voss TS. Analysis of subtelomeric virulence gene families in Plasmodium falciparum by comparative transcriptional profiling. Mol Microbiol 2012; 84:243-59. [PMID: 22435676 PMCID: PMC3491689 DOI: 10.1111/j.1365-2958.2012.08019.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The Plasmodium falciparum genome is equipped with several subtelomeric gene families that are implicated in parasite virulence and immune evasion. Members of these families are uniformly positioned within heterochromatic domains and are thus subject to variegated expression. The best-studied example is that of the var family encoding the major parasite virulence factor P. falciparum erythrocyte membrane protein 1 (PfEMP1). PfEMP1 undergoes antigenic variation through switches in mutually exclusive var gene transcription. var promoters function as crucial regulatory elements in the underlying epigenetic control strategy. Here, we analysed promoters of upsA, upsB and upsC var, rifA1-type rif, stevor, phist and pfmc-2tm genes and investigated their role in endogenous gene transcription by comparative genome-wide expression profiling of transgenic parasite lines. We find that the three major var promoter types are functionally equal and play an essential role in singular gene choice. Unlike var promoters, promoters of non-var families are not silenced by default, and transcription of non-var families is not subject to the same mode of mutually exclusive transcription as has been observed for var genes. Our findings identified a differential logic in the regulation of var and other subtelomeric virulence gene families, which will have important implications for our understanding and future analyses of phenotypic variation in malaria parasites.
Collapse
Affiliation(s)
- Kathrin Witmer
- Swiss Tropical and Public Health Institute, 4051 Basel, Switzerland
| | | | | | | | | | | | | |
Collapse
|
34
|
Ferrer J, Prats C, López D, Vidal-Mas J, Gargallo-Viola D, Guglietta A, Giró A. Thermodynamic concepts in the study of microbial populations: age structure in Plasmodium falciparum infected red blood cells. PLoS One 2011; 6:e26690. [PMID: 22066004 PMCID: PMC3204994 DOI: 10.1371/journal.pone.0026690] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2011] [Accepted: 10/03/2011] [Indexed: 11/30/2022] Open
Abstract
Variability is a hallmark of microbial systems. On the one hand, microbes are subject to environmental heterogeneity and undergo changeable conditions in their immediate surroundings. On the other hand, microbial populations exhibit high cellular diversity. The relation between microbial diversity and variability of population dynamics is difficult to assess. This connection can be quantitatively studied from a perspective that combines in silico models and thermodynamic methods and interpretations. The infection process of Plasmodium falciparum parasitizing human red blood cells under laboratory cultivation conditions is used to illustrate the potential of Individual-based models in the context of predictive microbiology and parasitology. Experimental data from several in vitro cultures are compared to the outcome of an individual-based model and analysed from a thermodynamic perspective. This approach allows distinguishing between intrinsic and external constraints that give rise to the diversity in the infection forms, and it provides a criterion to quantitatively define transient and stationary regimes in the culture. Increasing the ability of models to discriminate between different states of microbial populations enhances their predictive capability which finally leads to a better the control over culture systems. The strategy here presented is of general application and it can substantially improve modelling of other types of microbial communities.
Collapse
Affiliation(s)
- Jordi Ferrer
- Departament de Física i Enginyeria Nuclear, Escola Superior d'Agricultura de Barcelona, Universitat Politècnica de Catalunya, Castelldefels, Spain.
| | | | | | | | | | | | | |
Collapse
|
35
|
Rovira-Vallbona E, Dobaño C, Bardají A, Cisteró P, Romagosa C, Serra-Casas E, Quintó L, Bassat Q, Sigaúque B, Alonso PL, Ordi J, Menéndez C, Mayor A. Transcription of var genes other than var2csa in Plasmodium falciparum parasites infecting Mozambican pregnant women. J Infect Dis 2011; 204:27-35. [PMID: 21628655 DOI: 10.1093/infdis/jir217] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Increased susceptibility to Plasmodium falciparum infection during pregnancy has been attributed to the accumulation of infected erythrocytes in the placenta. This phenomenon is mediated by a var gene coding for VAR2CSA, which adheres to chondroitin sulphate A. However, the contribution of parasites transcribing other var genes to maternal infections has not been well characterized. METHODS Transcription of var2csa and var groups A, B, and C was measured by real-time polymerase chain reaction in 30 placental and 21 peripheral P. falciparum isolates from pregnant women and in 42 isolates from nonpregnant adults and children. Associations of infections with non-var2csa isolates with maternal parasitemia and immune responses were assessed. RESULTS Placental parasites showed the highest levels of var2csa. ABC var genes were transcribed by 20 (67%) of 30 placental isolates and were associated with higher parasitemia compared with infections by parasites only transcribing var2csa (P = .004). Peripheral isolates from pregnant women transcribed ABC var genes at levels similar to those of parasites infecting nonpregnant adults with clinical malaria (P[varA] = .420, P[varB] = .808, and P[varC] = .619). CONCLUSIONS Transcripts of var2csa are abundant in pregnancy-associated P. falciparum infections; however, ABC var types are also common, especially in peripheral blood, with transcription levels similar to those of infections out of pregnancy. These findings are of interest for the design of malaria vaccines for pregnant women.
Collapse
Affiliation(s)
- Eduard Rovira-Vallbona
- Barcelona Centre for International Health Research, Hospital Clínic-Universitat de Barcelona, Barcelona, Spain
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Bachmann A, Predehl S, May J, Harder S, Burchard GD, Gilberger TW, Tannich E, Bruchhaus I. Highly co-ordinated var gene expression and switching in clinical Plasmodium falciparum isolates from non-immune malaria patients. Cell Microbiol 2011; 13:1397-409. [PMID: 21740496 DOI: 10.1111/j.1462-5822.2011.01629.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Antigenic variation to fool the immune system is one of the molecular tricks Plasmodium uses to maintain infection in its human host. The exclusive expression of the surface-exposed PfEMP1 molecules, encoded by var genes, is the best example for this. Central questions regarding the dynamics of antigenic variation, namely the rate of switching and the regulation of var gene expression in Plasmodium falciparum, are yet unanswered. To elucidate the in vivo situation, we studied var gene switching by analysing the var transcripts from parasites isolated from 20 non-immune malaria patients as well as during subsequent in vitro generations. Parasites were found to be highly co-ordinated as the whole population isolated from individual patients usually expressed only one dominant - preferentially group A -var gene. While some isolates have very low switching rates, others switched their var gene expression in every generation. However, during extended cultivation the co-ordinated expression and switching is lost resulting in random expression of all var gene groups. Switching as observed on the RNA level was also supported on the protein level using PfEMP1-specific antibodies. The results suggest that var genes switch in an ordered, hierarchical manner at much higher rates than previously described.
Collapse
Affiliation(s)
- Anna Bachmann
- Department of Molecular Parasitology, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Boeuf P, Hasang W, Hanssen E, Glazier JD, Rogerson SJ. Relevant assay to study the adhesion of Plasmodium falciparum-infected erythrocytes to the placental epithelium. PLoS One 2011; 6:e21126. [PMID: 21731654 PMCID: PMC3123321 DOI: 10.1371/journal.pone.0021126] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2011] [Accepted: 05/19/2011] [Indexed: 11/26/2022] Open
Abstract
In placental malaria, Plasmodium falciparum-infected erythrocytes adhere to the apical plasma membrane of the placental epithelium, triggering an impairment of placental function detrimental to the fetus. The design of anti-adhesion intervention strategies requires a detailed understanding of the mechanisms involved. However, most adhesion assays lack in vivo relevance and are hardly quantitative. Here, we describe a flow cytometry-based adhesion assay that is fully relevant by using apical epithelial plasma membrane vesicles as the adhesion matrix, and being applicable to infected erythrocytes directly isolated from patients. Adhesion is measured both as the percentage of pathogens bound to epithelial membrane vesicles as well as the mean number of vesicles bound per infected erythrocytes. We show that adhesins alternative to those currently identified could be involved. This demonstrates the power of this assay to advance our understanding of epithelial adhesion of infected erythrocytes and in the design of intervention strategies.
Collapse
Affiliation(s)
- Philippe Boeuf
- Department of Medicine (RMH/WH), The University of Melbourne, Royal Melbourne Hospital, Melbourne, Australia.
| | | | | | | | | |
Collapse
|
38
|
Zhang Q, Zhang Y, Huang Y, Xue X, Yan H, Sun X, Wang J, McCutchan TF, Pan W. From in vivo to in vitro: dynamic analysis of Plasmodium falciparum var gene expression patterns of patient isolates during adaptation to culture. PLoS One 2011; 6:e20591. [PMID: 21674009 PMCID: PMC3108956 DOI: 10.1371/journal.pone.0020591] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2011] [Accepted: 05/04/2011] [Indexed: 11/18/2022] Open
Abstract
Plasmodium falciparum erythrocyte membrane protein 1 (PfEMP1), encoded by the var gene family, plays a crucial role in disease virulence through its involvement in binding to various host cellular receptors during infection. Growing evidence suggests that differential expression of the various var subgroups may be involved in parasite virulence. To further explore this issue, we have collected isolates from symptomatic patients in south China-Myanmar border, and characterized their sequence diversity and transcription profiles over time of var gene family, and cytoadherence properties from the time of their initial collection and extending through a two month period of adaptation to culture. Initially, we established a highly diverse, DBLα (4 cysteines) subtype-enriched, but unique local repertoire of var-DBL1α sequences by cDNA cloning and sequencing. Next we observed a rapid transcriptional decline of upsA- and upsB-subtype var genes at ring stage through qRT-PCR assays, and a switching event from initial ICAM-I binding to the CD36-binding activity during the first week of adaptive cultivation in vitro. Moreover, predominant transcription of upsA var genes was observed to be correlated with those isolates that showed a higher parasitemia at the time of collection and the ICAM-1-binding phenotype in culture. Taken together, these data indicate that the initial stage of adaptive process in vitro significantly influences the transcription of virulence-related var subtypes and expression of PfEMP1 variants. Further, the specific upregulation of the upsA var genes is likely linked to the rapid propagation of the parasite during natural infection due to the A-type PfEMP1 variant-mediated growth advantages.
Collapse
Affiliation(s)
- Qingfeng Zhang
- Institute of Infectious Disease and Vaccine Development, Tongji University School of Medicine, Shanghai, China
| | - Yilong Zhang
- Institute of Infectious Disease and Vaccine Development, Tongji University School of Medicine, Shanghai, China
| | - Yufu Huang
- Department of Pathogen Biology, Second Military Medical University, Shanghai, China
| | - Xiangyang Xue
- Institute of Infectious Disease and Vaccine Development, Tongji University School of Medicine, Shanghai, China
| | - He Yan
- Institute of Infectious Disease and Vaccine Development, Tongji University School of Medicine, Shanghai, China
| | - Xiaodong Sun
- Yunnan Institute of Parasitic Diseases, Puer, China
| | - Jian Wang
- Yunnan Institute of Parasitic Diseases, Puer, China
| | - Thomas F. McCutchan
- Department of Pathogen Biology, Second Military Medical University, Shanghai, China
| | - Weiqing Pan
- Institute of Infectious Disease and Vaccine Development, Tongji University School of Medicine, Shanghai, China
- Department of Pathogen Biology, Second Military Medical University, Shanghai, China
- * E-mail:
| |
Collapse
|
39
|
Janes JH, Wang CP, Levin-Edens E, Vigan-Womas I, Guillotte M, Melcher M, Mercereau-Puijalon O, Smith JD. Investigating the host binding signature on the Plasmodium falciparum PfEMP1 protein family. PLoS Pathog 2011; 7:e1002032. [PMID: 21573138 PMCID: PMC3088720 DOI: 10.1371/journal.ppat.1002032] [Citation(s) in RCA: 104] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2010] [Accepted: 03/01/2011] [Indexed: 12/03/2022] Open
Abstract
The Plasmodium falciparum erythrocyte membrane protein 1
(PfEMP1) family plays a central role in antigenic variation and cytoadhesion of
P. falciparum infected erythrocytes. PfEMP1
proteins/var genes are classified into three main
subfamilies (UpsA, UpsB, and UpsC) that are hypothesized to have different roles
in binding and disease. To investigate whether these subfamilies have diverged
in binding specificity and test if binding could be predicted by adhesion domain
classification, we generated a panel of 19 parasite lines that primarily
expressed a single dominant var transcript and assayed binding
against 12 known host receptors. By limited dilution cloning, only UpsB and UpsC
var genes were isolated, indicating that UpsA
var gene expression is rare under in vitro
culture conditions. Consequently, three UpsA variants were obtained by rosette
purification and selection with specific monoclonal antibodies to create a more
representative panel. Binding assays showed that CD36 was the most common
adhesion partner of the parasite panel, followed by ICAM-1 and TSP-1, and that
CD36 and ICAM-1 binding variants were highly predicted by adhesion domain
sequence classification. Binding to other host receptors, including CSA, VCAM-1,
HABP1, CD31/PECAM, E-selectin, Endoglin, CHO receptor “X”, and
Fractalkine, was rare or absent. Our findings identify a category of larger
PfEMP1 proteins that are under dual selection for ICAM-1 and CD36 binding. They
also support that the UpsA group, in contrast to UpsB and UpsC
var genes, has diverged from binding to the major
microvasculature receptor CD36 and likely uses other mechanisms to sequester in
the microvasculature. These results demonstrate that CD36 and ICAM-1 have left
strong signatures of selection on the PfEMP1 family that can be detected by
adhesion domain sequence classification and have implications for how this
family of proteins is specializing to exploit hosts with varying levels of
anti-malaria immunity. The malaria parasite Plasmodium falciparum persists in the human
host partly by avoiding elimination in the spleen during blood stage infection.
This strategy depends principally upon members of the large and diverse PfEMP1
family of proteins that are exported to the surface of infected erythrocytes.
PfEMP1 proteins are important targets for host protective antibody responses and
encode binding to several different host receptor proteins. Switches in PfEMP1
expression allow parasites to evade host antibodies and may precipitate severe
disease when infected erythrocytes accumulate in brain or placenta.
Consequently, the severity of malaria infection may depend on the type of PfEMP1
protein expressed. In this study, we employ a representative panel of distinct
PfEMP1 types and host receptor proteins to demonstrate that CD36 and ICAM-1
binding properties of full-length PfEMP1 are highly predicted by their domain
composition. We also find that CD36 binding is under strong selection in many
PfEMP1 proteins, but that a group of PfEMP1s associated with more severe
infections does not bind CD36 and may utilize alternative means to sequester
infected erythrocytes. These findings have implications for understanding the
molecular basis for severe malaria.
Collapse
Affiliation(s)
- Joel H. Janes
- Department of Global Health, University of Washington, Seattle,
Washington, United States of America
| | - Christopher P. Wang
- Seattle Biomedical Research Institute, Seattle, Washington, United States
of America
| | - Emily Levin-Edens
- Seattle Biomedical Research Institute, Seattle, Washington, United States
of America
| | - Inès Vigan-Womas
- Institut Pasteur, Unité d'Immunologie Moléculaire des
Parasites, Paris, France
| | - Micheline Guillotte
- Institut Pasteur, Unité d'Immunologie Moléculaire des
Parasites, Paris, France
| | - Martin Melcher
- Seattle Biomedical Research Institute, Seattle, Washington, United States
of America
| | - Odile Mercereau-Puijalon
- Institut Pasteur, Unité d'Immunologie Moléculaire des
Parasites, Paris, France
- CNRS URA 2581, Paris, France
| | - Joseph D. Smith
- Department of Global Health, University of Washington, Seattle,
Washington, United States of America
- Seattle Biomedical Research Institute, Seattle, Washington, United States
of America
- * E-mail:
| |
Collapse
|
40
|
Leitgeb AM, Blomqvist K, Cho-Ngwa F, Samje M, Nde P, Titanji V, Wahlgren M. Low anticoagulant heparin disrupts Plasmodium falciparum rosettes in fresh clinical isolates. Am J Trop Med Hyg 2011; 84:390-6. [PMID: 21363975 DOI: 10.4269/ajtmh.2011.10-0256] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
The binding of Plasmodium falciparum parasitized erythrocytes to uninfected erythrocytes (rosetting) is associated with severe malaria. The glycosaminoglycan heparan sulfate is an important receptor for rosetting. The related glycosaminoglycan heparin was previously used in treatment of severe malaria, although abandoned because of the occurrence of severe bleedings. Instead, low anticoagulant heparin (LAH) has been suggested for treatment. LAH has successfully been evaluated in safety studies and found to disrupt rosettes and cytoadherence in vitro and in vivo in animal models, but the effect of LAH on fresh parasite isolates has not been studied. Herein, we report that two different LAHs (DFX232 and Sevuparin) disrupt rosettes in the majority of fresh isolates from Cameroonian children with malaria. The rosette disruption effect was more pronounced in isolates from complicated cases than from mild cases. The data support LAH as adjunct therapy in severe malaria.
Collapse
Affiliation(s)
- Anna M Leitgeb
- Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institutet, Stockholm, Sweden.
| | | | | | | | | | | | | |
Collapse
|
41
|
Parity and placental infection affect antibody responses against Plasmodium falciparum during pregnancy. Infect Immun 2011; 79:1654-9. [PMID: 21300778 DOI: 10.1128/iai.01000-10] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Women are at higher risk of Plasmodium falciparum infection when pregnant. The decreasing risk of malaria with subsequent pregnancies is attributed to parity-dependent acquisition of antibodies against placental parasites expressing variant surface antigens, VAR2CSA, that mediate placental sequestration through adhesion to chondroitin sulfate A (CSA). However, modulation of immunity during pregnancy may also contribute to increase the risk of malaria. We compared antibody responses among 30 Mozambican primigravidae and 60 multigravidae at delivery, 40 men, and 40 children. IgG levels were measured against the surface antigens of erythrocytes infected with P. falciparum isolated from 12 pregnant women (4 placental and 8 peripheral blood isolates) and 26 nonpregnant hosts. We also measured IgG levels against merozoite recombinant antigens and total IgG. Placental P. falciparum infection was associated with increased levels of total IgG as well as IgG levels against merozoite antigens and parasite isolates from pregnant and nonpregnant hosts. We therefore stratified comparisons of antibody levels by placental infection. Compared to multigravidae, uninfected primigravidae had lower total IgG as well as lower levels of IgGs against peripheral blood isolates from both pregnant and nonpregnant hosts. These differences were not explained by use of bed nets, season at delivery, neighborhood of residence, or age. Compared to men, infected primigravidae had higher levels of IgGs against isolates from pregnant women and CSA-binding lines but not against other isolates, supporting the concept of a pregnancy-specific development of immunity to these parasite variants. Results of this study show that parity and placental infection can modulate immune responses during pregnancy against malaria parasites.
Collapse
|
42
|
Abstract
In the burgeoning field of Plasmodium gene expression, there are--to borrow some famous words from a former U.S. Secretary of Defense--"known knowns, known unknowns, and unknown unknowns." This is in itself an important achievement, since it is only in the past decade that facts have begun to move from the third category into the first. Nevertheless, much remains in the middle ground of known or suspected "unknowns." It is clear that the malaria parasite controls vital virulence processes such as host cell invasion and cytoadherence at least partly via epigenetic mechanisms, so a proper understanding of epigenetic transcriptional control in this organism should have great clinical relevance. Plasmodium, however, is an obligate intracellular parasite: it operates not in a vacuum but rather in the complicated context of its metazoan hosts. Therefore, as valuable data about the parasite's basic epigenetic machinery begin to emerge, it becomes increasingly important to relate in vitro studies to the situation in vivo. This review will focus upon the challenge of understanding Plasmodium epigenetics in an integrated manner, in the human and insect hosts as well as the petri dish.
Collapse
|
43
|
Blomqvist K, Normark J, Nilsson D, Ribacke U, Orikiriza J, Trillkott P, Byarugaba J, Egwang TG, Kironde F, Andersson B, Wahlgren M. var gene transcription dynamics in Plasmodium falciparum patient isolates. Mol Biochem Parasitol 2009; 170:74-83. [PMID: 20006652 DOI: 10.1016/j.molbiopara.2009.12.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2009] [Revised: 12/01/2009] [Accepted: 12/05/2009] [Indexed: 10/20/2022]
Abstract
A major feature of Plasmodium falciparum parasitized red blood cells (pRBC) is their capacity to sequester in the microcirculation. The binding is mediated by PfEMP1 (P. falciparum erythrocyte membrane protein 1), a variable protein encoded by the var gene family. P. falciparum avoids the host antibody response generated against previously used variants by switching the expression of PfEMP1, which may affect the disease outcome. We have here studied var gene transcription over time within the life cycle of the parasite by semi-quantitative PCR and sequencing by employing three sets of degenerate primers to the 5-prime end of the var genes (corresponding to the DBL1alpha-domain). To accurately determine transcript levels, subsequent in-depth analysis was made by amplifying the 10 most frequently expressed var sequences identified in each developmental stage by quantitative PCR (Q-PCR). The maximum peak in var gene transcription seems to vary in time among parasites. In five out of seven parasites, var gene transcription was found to be higher or equal at 22-26h post-invasion compared to 4-10h post-invasion. Our data indicate that the intra-isolate var gene transcription dominance order may change between different developmental stages. The transcription of var genes in field isolates is more complex than in laboratory strains and often changes after in vitro adaption of the parasite. By using semi-quantitative PCR employing degenerate primers combined with quantitative-PCR using specific primers it is possible to monitor var gene transcription in detail during the life cycle of the parasite. The work presented here suggests that trophozoite pRBC is likely to be the optimal source of RNA for predicting the translated var gene species.
Collapse
Affiliation(s)
- Karin Blomqvist
- Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institutet, Stockholm, Sweden
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Rosenberg E, Ben-Shmuel A, Shalev O, Sinay R, Cowman A, Pollack Y. Differential, positional-dependent transcriptional response of antigenic variation (var) genes to biological stress in Plasmodium falciparum. PLoS One 2009; 4:e6991. [PMID: 19730749 PMCID: PMC2734987 DOI: 10.1371/journal.pone.0006991] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2009] [Accepted: 08/04/2009] [Indexed: 01/15/2023] Open
Abstract
1% of the genes of the human malaria causing agent Plasmodium falciparum belong to the heterogeneous var gene family which encodes P. falciparum erythrocyte membrane protein 1 (PFEMP1). This protein mediates part of the pathogenesis of the disease by causing adherence of infected erythrocytes (IE) to the host endothelium. At any given time, only one copy of the family is expressed on the IE surface. The cues which regulate the allelic exclusion of these genes are not known. We show the existence of a differential expression pattern of these genes upon exposure to biological stress in relation to their positional placement on the chromosome – expression of centrally located var genes is induced while sub-telomeric copies of the family are repressed - this phenomenon orchestrated by the histone deacetylase pfsir2. Moreover, stress was found to cause a switch in the pattern of the expressed var genes thus acting as a regulatory cue. By using pharmacological compounds which putatively affect pfsir2 activity, distinct changes of var gene expression patterns were achieved which may have therapeutic ramifications. As disease severity is partly associated with expression of particular var gene subtypes, manipulation of the IE environment may serve as a mechanism to direct transcription towards less virulent genes.
Collapse
Affiliation(s)
- Elli Rosenberg
- The Shraga Segal Department of Microbiology and Immunology, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Amir Ben-Shmuel
- The Shraga Segal Department of Microbiology and Immunology, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Oshrit Shalev
- The Shraga Segal Department of Microbiology and Immunology, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Rosa Sinay
- The Shraga Segal Department of Microbiology and Immunology, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Alan Cowman
- Department of Infection and Immunity, The Walter & Eliza Hall Institute of Medical Research, Melbourne, Australia
| | - Yaakov Pollack
- The Shraga Segal Department of Microbiology and Immunology, Ben-Gurion University of the Negev, Beer-Sheva, Israel
- * E-mail:
| |
Collapse
|
45
|
Plasmodium falciparum biology: analysis of in vitro versus in vivo growth conditions. Trends Parasitol 2009; 25:474-81. [PMID: 19747879 DOI: 10.1016/j.pt.2009.07.005] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2009] [Revised: 06/12/2009] [Accepted: 07/09/2009] [Indexed: 11/22/2022]
Abstract
Recent studies of Plasmodium falciparum isolated directly from infected patients indicate that alternative parasite biological states occur in the natural host that are not observed with in vitro cultivated parasites. Variation in host substrates, immune responses and other factors probably induce modifications in parasite biology. These biological states could have important implications for pathogenesis, transmission and therapy. We review the differences between P. falciparum in vitro culture systems and in vivo host environments, as well as evidence that host conditions can alter pathogen biology. For select biological questions, the incorporation of naturally occurring conditions into in vitro experimental manipulation of microbes may provide novel insight into pathogen biology.
Collapse
|
46
|
A var gene promoter implicated in severe malaria nucleates silencing and is regulated by 3' untranslated region and intronic cis-elements. Int J Parasitol 2009; 39:1425-39. [PMID: 19463825 DOI: 10.1016/j.ijpara.2009.05.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2008] [Revised: 04/27/2009] [Accepted: 05/05/2009] [Indexed: 11/23/2022]
Abstract
Questions surround the mechanism of mutually exclusive expression by which Plasmodium falciparum mediates activation and silencing of var genes. These encode PfEMP1 proteins, which function as cytoadherent and immunomodulatory molecules at the surface of parasitised erythrocytes. Current evidence suggests that promoter silencing by var introns might play a key role in var gene regulation. To evaluate the impact of cis-acting regulatory regions on var silencing, we generated P. falciparum lines in which luciferase was placed under the control of an UpsA var promoter. By utilising the Bxb1 integrase system, these reporter cassettes were targeted to a genomic region that was not in apposition to var subtelomeric domains. This eliminated possible effects from surrounding telomeric elements and removed the variability inherent in episomal systems. Studies with highly synchronised parasites revealed that the UpsA element possessed minimal activity in comparison with a heterologous (hrp3) promoter. This may result from the integrated UpsA promoter being largely silenced by the neighbouring cg6 promoter. Our analyses also revealed that the DownsA 3' untranslated region further decreased the luciferase activity from both cassettes, whereas the var A intron repressed the UpsA promoter specifically. By applying multivariate analysis over the entire cell cycle, we confirmed the significance of these cis-elements and found the parasite stage to be the major factor regulating UpsA-promoter activity. Additionally, we observed that the UpsA promoter was capable of nucleating reversible silencing that spread to a downstream promoter. We believe these studies are the first to analyse promoter activity of Group A var genes, which have been implicated in severe malaria, and support the model that var introns can further suppress var expression. These data also suggest an important suppressive role for the DownsA terminator. Our findings imply the existence of multiple levels of var gene regulation in addition to intrinsic promoter-dependent silencing.
Collapse
|
47
|
Beck HP, Tetteh K. Molecular approaches to field studies of malaria. Trends Parasitol 2008; 24:585-9. [PMID: 18938109 DOI: 10.1016/j.pt.2008.09.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2008] [Revised: 08/19/2008] [Accepted: 09/05/2008] [Indexed: 10/21/2022]
Abstract
The third 'Molecular Approaches to Malaria' conference was held in Lorne, Australia, in February 2008 and provided extensive information on the application of molecular tools in field studies on malaria. In recent years, technological advances and capacity building in malaria-endemic countries have permitted molecular tools to be applied much more frequently and successfully with exciting new findings. In this review, Hans-Peter Beck and Kevin Tetteh report on the most recent findings using molecular tools in field studies.
Collapse
Affiliation(s)
- Hans-Peter Beck
- Swiss Tropical Institute, Socinstrasse 57, CH 4002 Basel, Switzerland.
| | | |
Collapse
|