1
|
Marangoni D, Placidi G, D'Agostino E, De Siena E, Attinà G, Mastrangelo S, Ruggiero A, Colosimo C, Falsini B. Longitudinal changes in retinal ganglion cell function in optic pathway glioma evaluated by photopic negative response. Exp Eye Res 2024; 246:110012. [PMID: 39059735 DOI: 10.1016/j.exer.2024.110012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 07/22/2024] [Accepted: 07/23/2024] [Indexed: 07/28/2024]
Abstract
Photopic negative response (PhNR), an index of retinal ganglion cell (RGC) function, is impaired in patients with optic pathway gliomas (OPGs). The aim of this longitudinal study was to evaluate whether PhNR deteriorates over time in OPG patients. Fourteen pediatric patients affected by OPG (4 males and 10 females, mean age 12.4 ± 5.7 years, 8 with neurofibromatosis type 1 [NF1]) with ≥12 months of follow-up and ≥2 evaluations, were included in this retrospective study. All patients had received chemotherapy, with or without OPG surgical resection, at least 5 years prior to the study. At baseline, all patients underwent a complete ophthalmological examination. Follow-up included clinical examination and PhNR measurement as well as brain MRI (according to pediatric oncologist indications) every 6 or 12 months. Mean follow-up duration was 16.7 ± 7.5 months (range 12-36 months). Photopic electroretinograms were elicited by 2.0 cd-s/m2 Ganzfeld white flashes presented on a steady 20 cd/m2 white background. The PhNR amplitude was measured as the difference between baseline and the maximal negative amplitude (minimum) of the negative wave, following the photopic b-wave. Compared to baseline, mean PhNR amplitude was significantly decreased at the end of follow-up (p = 0.008). NF1-related OPGs exhibited a decline in PhNR amplitude (p = 0.005) and an increase in PhNR peak-time during the follow-up (p = 0.013), whereas sporadic OPGs showed no significant changes. Tumor size remained stable in all patients on MRI. PhNR amplitude decreased over the observation period, suggesting progressive RGC dysfunction in NF1-related pediatric OPGs, despite stable size on MRI imaging. PhNR could serve as a non-invasive objective tool for assessing longitudinal changes in RGC function in the clinical management of childhood OPG.
Collapse
Affiliation(s)
- Dario Marangoni
- University Eye Clinic, Department of Medicine, Surgery and Health Science, University of Trieste, Strada di Fiume, 447, 34129, Trieste, Italy.
| | - Giorgio Placidi
- Ophthalmology Unit, Department of NeuroScience, Sensory Organs and Chest, Fondazione Policlinico Universitario A. Gemelli IRCCS, Largo Agostino Gemelli, 8, 00136, Rome, Italy
| | - Elena D'Agostino
- Ophthalmology Unit, Department of NeuroScience, Sensory Organs and Chest, Fondazione Policlinico Universitario A. Gemelli IRCCS, Largo Agostino Gemelli, 8, 00136, Rome, Italy
| | - Elisa De Siena
- Ophthalmology Unit, Department of NeuroScience, Sensory Organs and Chest, Fondazione Policlinico Universitario A. Gemelli IRCCS, Largo Agostino Gemelli, 8, 00136, Rome, Italy
| | - Giorgio Attinà
- Pediatric Oncology Unit, Department of Women, Children and Public Health Sciences, Fondazione Policlinico Universitario A. Gemelli IRCCS, Largo Agostino Gemelli, 8, 00136, Rome, Italy
| | - Stefano Mastrangelo
- Pediatric Oncology Unit, Department of Women, Children and Public Health Sciences, Fondazione Policlinico Universitario A. Gemelli IRCCS, Largo Agostino Gemelli, 8, 00136, Rome, Italy
| | - Antonio Ruggiero
- Pediatric Oncology Unit, Department of Women, Children and Public Health Sciences, Fondazione Policlinico Universitario A. Gemelli IRCCS, Largo Agostino Gemelli, 8, 00136, Rome, Italy
| | - Cesare Colosimo
- Radiology and Neuroradiology Department, Fondazione Policlinico Universitario A. Gemelli IRCCS, Largo Agostino Gemelli, 8, 00136, Rome, Italy
| | - Benedetto Falsini
- Ophthalmology Unit, Department of NeuroScience, Sensory Organs and Chest, Fondazione Policlinico Universitario A. Gemelli IRCCS, Largo Agostino Gemelli, 8, 00136, Rome, Italy
| |
Collapse
|
2
|
Lin Y, Pal DS, Banerjee P, Banerjee T, Qin G, Deng Y, Borleis J, Iglesias PA, Devreotes PN. Ras suppression potentiates rear actomyosin contractility-driven cell polarization and migration. Nat Cell Biol 2024; 26:1062-1076. [PMID: 38951708 PMCID: PMC11364469 DOI: 10.1038/s41556-024-01453-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 05/31/2024] [Indexed: 07/03/2024]
Abstract
Ras has been extensively studied as a promoter of cell proliferation, whereas few studies have explored its role in migration. To investigate the direct and immediate effects of Ras activity on cell motility or polarity, we focused on RasGAPs, C2GAPB in Dictyostelium amoebae and RASAL3 in HL-60 neutrophils and macrophages. In both cellular systems, optically recruiting the respective RasGAP to the cell front extinguished pre-existing protrusions and changed migration direction. However, when these respective RasGAPs were recruited uniformly to the membrane, cells polarized and moved more rapidly, whereas targeting to the back exaggerated these effects. These unexpected outcomes of attenuating Ras activity naturally had strong, context-dependent consequences for chemotaxis. The RasGAP-mediated polarization depended critically on myosin II activity and commenced with contraction at the cell rear, followed by sustained mTORC2-dependent actin polymerization at the front. These experimental results were captured by computational simulations in which Ras levels control front- and back-promoting feedback loops. The discovery that inhibiting Ras activity can produce counterintuitive effects on cell migration has important implications for future drug-design strategies targeting oncogenic Ras.
Collapse
Affiliation(s)
- Yiyan Lin
- Department of Cell Biology and Center for Cell Dynamics, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
- Department of Biological Chemistry, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Dhiman Sankar Pal
- Department of Cell Biology and Center for Cell Dynamics, School of Medicine, Johns Hopkins University, Baltimore, MD, USA.
| | - Parijat Banerjee
- Department of Physics and Astronomy, Johns Hopkins University, Baltimore, MD, USA
| | - Tatsat Banerjee
- Department of Cell Biology and Center for Cell Dynamics, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
- Department of Chemical and Biomolecular Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Guanghui Qin
- Department of Computer Science, Whiting School of Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Yu Deng
- Department of Cell Biology and Center for Cell Dynamics, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
- Department of Chemical and Biomolecular Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Jane Borleis
- Department of Cell Biology and Center for Cell Dynamics, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Pablo A Iglesias
- Department of Cell Biology and Center for Cell Dynamics, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
- Department of Electrical and Computer Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Peter N Devreotes
- Department of Cell Biology and Center for Cell Dynamics, School of Medicine, Johns Hopkins University, Baltimore, MD, USA.
- Department of Biological Chemistry, School of Medicine, Johns Hopkins University, Baltimore, MD, USA.
| |
Collapse
|
3
|
Nguyen HTL, Kohl E, Bade J, Eng SE, Tosevska A, Al Shihabi A, Tebon PJ, Hong JJ, Dry S, Boutros PC, Panossian A, Gosline SJC, Soragni A. A platform for rapid patient-derived cutaneous neurofibroma organoid establishment and screening. CELL REPORTS METHODS 2024; 4:100772. [PMID: 38744290 PMCID: PMC11133839 DOI: 10.1016/j.crmeth.2024.100772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 02/10/2024] [Accepted: 04/19/2024] [Indexed: 05/16/2024]
Abstract
Localized cutaneous neurofibromas (cNFs) are benign tumors that arise in the dermis of patients affected by neurofibromatosis type 1 syndrome. cNFs are benign lesions: they do not undergo malignant transformation or metastasize. Nevertheless, they can cover a significant proportion of the body, with some individuals developing hundreds to thousands of lesions. cNFs can cause pain, itching, and disfigurement resulting in substantial socio-emotional repercussions. Currently, surgery and laser desiccation are the sole treatment options but may result in scarring and potential regrowth from incomplete removal. To identify effective systemic therapies, we introduce an approach to establish and screen cNF organoids. We optimized conditions to support the ex vivo growth of genomically diverse cNFs. Patient-derived cNF organoids closely recapitulate cellular and molecular features of parental tumors as measured by immunohistopathology, methylation, RNA sequencing, and flow cytometry. Our cNF organoid platform enables rapid screening of hundreds of compounds in a patient- and tumor-specific manner.
Collapse
Affiliation(s)
- Huyen Thi Lam Nguyen
- Department of Orthopaedic Surgery, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Emily Kohl
- Department of Orthopaedic Surgery, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Jessica Bade
- Pacific Northwest National Laboratories, Seattle, WA, USA
| | - Stefan E Eng
- Department of Human Genetics, University of California, Los Angeles, Los Angeles, CA, USA; Institute for Precision Health, University of California, Los Angeles, Los Angeles, CA, USA; Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, CA, USA
| | - Anela Tosevska
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Ahmad Al Shihabi
- Department of Orthopaedic Surgery, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA; Department of Pathology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Peyton J Tebon
- Department of Orthopaedic Surgery, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Jenny J Hong
- Division of Hematology-Oncology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Sarah Dry
- Department of Pathology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Paul C Boutros
- Department of Human Genetics, University of California, Los Angeles, Los Angeles, CA, USA; Institute for Precision Health, University of California, Los Angeles, Los Angeles, CA, USA; Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, CA, USA; Department of Urology, University of California, Los Angeles, Los Angeles, CA, USA; Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Los Angeles, CA, USA
| | | | - Sara J C Gosline
- Pacific Northwest National Laboratories, Seattle, WA, USA; Department of Biomedical Engineering, Oregon Health and Sciences University, Portland, OR, USA.
| | - Alice Soragni
- Department of Orthopaedic Surgery, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA; Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, CA, USA; Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
4
|
Bettinaglio P, Tritto V, Paterra R, Eoli M, Riva P. Expression analysis of NF1-mutated alleles in a rare compound heterozygous spinal NF1 patient by digital PCR. Ann Hum Genet 2024; 88:183-193. [PMID: 38018226 DOI: 10.1111/ahg.12540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 11/03/2023] [Accepted: 11/06/2023] [Indexed: 11/30/2023]
Abstract
BACKGROUD Neurofibromatosis type 1 (NF1) is a heterogeneous neurocutaneous disorder. Spinal neurofibromatosis (SNF) is a distinct clinical entity of NF1, characterized by bilateral neurofibromas involving all spinal nerve roots. Although both forms are caused by intragenic heterozygous variants of NF1, missense variants have been associated with SNF, according to a dominant inheritance model causing haploinsufficiency. Most patients carry pathogenic variants in one of the NF1 alleles; nevertheless, patients with both NF1-mutated copies have been described. Interestingly, all NF1 variants carried by the known SNF compound heterozygotes were missense/splicing variants or in-frame insertion-deletions. AIMS To investigate whether there is a differential expression of NF1 variant alleles in an NF1 compound heterozygous SNF patient possibly contributing to clinical phenotype. MATERIALS & METHODS We performed an allele-specific expression study, by chip-based digital PCR, in an SNF family carrying two NF1 missense variants. We evaluated the expression levels of the two NF1-mutated alleles both carried by the compound heterozygous SNF patient and his relatives. RESULTS Both alleles were expressed at comparable levels in the patient and hyper-expressed compared to the wild-type alleles of healthy controls. DISCUSSION Here we provide new insights into expression studies of NF1-mutated transcripts suggesting that a novel pathogenetic mechanism, caused by gain-of-function variants, could be associated with SNF. CONCLUSIONS Further studies should be performed in larger cohorts, opening new perspectives in the NF1 pathogenesis comprehension.
Collapse
Affiliation(s)
- Paola Bettinaglio
- Department of Medical Biotechnology and Translational Medicine (BIOMETRA), University of Milan, Segrate, Italy
| | - Viviana Tritto
- Department of Medical Biotechnology and Translational Medicine (BIOMETRA), University of Milan, Segrate, Italy
| | - Rosina Paterra
- Molecular Neuroncology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milano, Italy
| | - Marica Eoli
- Molecular Neuroncology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milano, Italy
| | - Paola Riva
- Department of Medical Biotechnology and Translational Medicine (BIOMETRA), University of Milan, Segrate, Italy
| |
Collapse
|
5
|
White EE, Rhodes SD. The NF1+/- Immune Microenvironment: Dueling Roles in Neurofibroma Development and Malignant Transformation. Cancers (Basel) 2024; 16:994. [PMID: 38473354 PMCID: PMC10930863 DOI: 10.3390/cancers16050994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 02/12/2024] [Accepted: 02/16/2024] [Indexed: 03/14/2024] Open
Abstract
Neurofibromatosis type 1 (NF1) is a common genetic disorder resulting in the development of both benign and malignant tumors of the peripheral nervous system. NF1 is caused by germline pathogenic variants or deletions of the NF1 tumor suppressor gene, which encodes the protein neurofibromin that functions as negative regulator of p21 RAS. Loss of NF1 heterozygosity in Schwann cells (SCs), the cells of origin for these nerve sheath-derived tumors, leads to the formation of plexiform neurofibromas (PNF)-benign yet complex neoplasms involving multiple nerve fascicles and comprised of a myriad of infiltrating stromal and immune cells. PNF development and progression are shaped by dynamic interactions between SCs and immune cells, including mast cells, macrophages, and T cells. In this review, we explore the current state of the field and critical knowledge gaps regarding the role of NF1(Nf1) haploinsufficiency on immune cell function, as well as the putative impact of Schwann cell lineage states on immune cell recruitment and function within the tumor field. Furthermore, we review emerging evidence suggesting a dueling role of Nf1+/- immune cells along the neurofibroma to MPNST continuum, on one hand propitiating PNF initiation, while on the other, potentially impeding the malignant transformation of plexiform and atypical neurofibroma precursor lesions. Finally, we underscore the potential implications of these discoveries and advocate for further research directed at illuminating the contributions of various immune cells subsets in discrete stages of tumor initiation, progression, and malignant transformation to facilitate the discovery and translation of innovative diagnostic and therapeutic approaches to transform risk-adapted care.
Collapse
Affiliation(s)
- Emily E. White
- Medical Scientist Training Program, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Steven D. Rhodes
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Division of Pediatric Hematology/Oncology/Stem Cell Transplant, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- IU Simon Comprehensive Cancer Center, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| |
Collapse
|
6
|
Ramamoorthy S, Lebrecht D, Schanze D, Schanze I, Wieland I, Andrieux G, Metzger P, Hess M, Albert MH, Borkhardt A, Bresters D, Buechner J, Catala A, De Haas V, Dworzak M, Erlacher M, Hasle H, Jahnukainen K, Locatelli F, Masetti R, Stary J, Turkiewicz D, Vinci L, Wlodarski MW, Yoshimi A, Boerries M, Niemeyer CM, Zenker M, Flotho C. Biallelic inactivation of the NF1 tumour suppressor gene in juvenile myelomonocytic leukaemia: Genetic evidence of driver function and implications for diagnostic workup. Br J Haematol 2024; 204:595-605. [PMID: 37945316 DOI: 10.1111/bjh.19190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 10/11/2023] [Accepted: 10/25/2023] [Indexed: 11/12/2023]
Abstract
Juvenile myelomonocytic leukaemia (JMML) is characterized by gene variants that deregulate the RAS signalling pathway. Children with neurofibromatosis type 1 (NF-1) carry a defective NF1 allele in the germline and are predisposed to JMML, which presumably requires somatic inactivation of the NF1 wild-type allele. Here we examined the two-hit concept in leukaemic cells of 25 patients with JMML and NF-1. Ten patients with JMML/NF-1 exhibited a NF1 loss-of-function variant in combination with uniparental disomy of the 17q arm. Five had NF1 microdeletions combined with a pathogenic NF1 variant and nine carried two compound-heterozygous NF1 variants. We also examined 16 patients without clinical signs of NF-1 and no variation in the JMML-associated driver genes PTPN11, KRAS, NRAS or CBL (JMML-5neg) and identified eight patients with NF1 variants. Three patients had microdeletions combined with hemizygous NF1 variants, three had compound-heterozygous NF1 variants and two had heterozygous NF1 variants. In addition, we found a high incidence of secondary ASXL1 and/or SETBP1 variants in both groups. We conclude that the clinical diagnosis of JMML/NF-1 reliably indicates a NF1-driven JMML subtype, and that careful NF1 analysis should be included in the genetic workup of JMML even in the absence of clinical evidence of NF-1.
Collapse
Affiliation(s)
- Senthilkumar Ramamoorthy
- Division of Pediatric Hematology and Oncology, Department of Pediatrics and Adolescent Medicine, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Institute of Medical Bioinformatics and Systems Medicine, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Dirk Lebrecht
- Division of Pediatric Hematology and Oncology, Department of Pediatrics and Adolescent Medicine, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Denny Schanze
- Human Genetics, University of Magdeburg, Magdeburg, Germany
| | - Ina Schanze
- Human Genetics, University of Magdeburg, Magdeburg, Germany
| | - Ilse Wieland
- Human Genetics, University of Magdeburg, Magdeburg, Germany
| | - Geoffroy Andrieux
- Institute of Medical Bioinformatics and Systems Medicine, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Patrick Metzger
- Institute of Medical Bioinformatics and Systems Medicine, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Maria Hess
- Institute of Medical Bioinformatics and Systems Medicine, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Michael H Albert
- Department of Pediatric Hematology and Oncology, Dr. v. Hauner Children's Hospital, University Hospital, LMU, Munich, Germany
| | - Arndt Borkhardt
- Department of Pediatric Oncology, Hematology and Immunology, University of Dusseldorf, Dusseldorf, Germany
| | - Dorine Bresters
- Princess Maxima Center for Pediatric Oncology, Utrecht, Netherlands
| | - Jochen Buechner
- Department of Pediatric Hematology and Oncology, Oslo University Hospital, Oslo, Norway
| | - Albert Catala
- Department of Hematology and Oncology, Hospital Sant Joan de Déu, Barcelona, Spain
| | - Valerie De Haas
- Diagnostic Laboratory/DCOG Laboratory, Princess Maxima Center for Pediatric Oncology, Utrecht, Netherlands
| | - Michael Dworzak
- St. Anna Children's Cancer Research Institute, Vienna, Austria
- Department of Pediatrics and Adolescent Medicine, St. Anna Children's Hospital, Medical University of Vienna, Vienna, Austria
| | - Miriam Erlacher
- Division of Pediatric Hematology and Oncology, Department of Pediatrics and Adolescent Medicine, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), partner site Freiburg, Freiburg, Germany
| | - Henrik Hasle
- Department of Pediatrics, Aarhus University Hospital Skejby, Aarhus, Denmark
| | - Kirsi Jahnukainen
- Division of Hematology-Oncology and Stem Cell Transplantation, Children's Hospital, Helsinki University Hospital, Helsinki, Finland
| | - Franco Locatelli
- Department of Pediatric Hematology and Oncology, Bambino Gesù Children's Hospital, Catholic University of the Sacred Heart, Rome, Italy
| | - Riccardo Masetti
- Pediatric Oncology and Hematology Unit "Lalla Seràgnoli", IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Jan Stary
- Department of Pediatric Hematology/ Oncology, Charles University and Univ Hospital Motol, Prague, Czech Republic
| | - Dominik Turkiewicz
- Department of Pediatric Oncology/Hematology, Skåne University Hospital, Lund, Sweden
| | - Luca Vinci
- Division of Pediatric Hematology and Oncology, Department of Pediatrics and Adolescent Medicine, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Marcin W Wlodarski
- Division of Pediatric Hematology and Oncology, Department of Pediatrics and Adolescent Medicine, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Ayami Yoshimi
- Division of Pediatric Hematology and Oncology, Department of Pediatrics and Adolescent Medicine, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Melanie Boerries
- Institute of Medical Bioinformatics and Systems Medicine, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), partner site Freiburg, Freiburg, Germany
| | - Charlotte M Niemeyer
- Division of Pediatric Hematology and Oncology, Department of Pediatrics and Adolescent Medicine, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), partner site Freiburg, Freiburg, Germany
| | - Martin Zenker
- Human Genetics, University of Magdeburg, Magdeburg, Germany
| | - Christian Flotho
- Division of Pediatric Hematology and Oncology, Department of Pediatrics and Adolescent Medicine, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), partner site Freiburg, Freiburg, Germany
| |
Collapse
|
7
|
Raut NG, Maile LA, Oswalt LM, Mitxelena I, Adlakha A, Sprague KL, Rupert AR, Bokros L, Hofmann MC, Patritti-Cram J, Rizvi TA, Queme LF, Choi K, Ratner N, Jankowski MP. Schwann cells modulate nociception in neurofibromatosis 1. JCI Insight 2024; 9:e171275. [PMID: 38258905 PMCID: PMC10906222 DOI: 10.1172/jci.insight.171275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 11/28/2023] [Indexed: 01/24/2024] Open
Abstract
Pain of unknown etiology is frequent in individuals with the tumor predisposition syndrome neurofibromatosis 1 (NF1), even when tumors are absent. Nerve Schwann cells (SCs) were recently shown to play roles in nociceptive processing, and we find that chemogenetic activation of SCs is sufficient to induce afferent and behavioral mechanical hypersensitivity in wild-type mice. In mouse models, animals showed afferent and behavioral hypersensitivity when SCs, but not neurons, lacked Nf1. Importantly, hypersensitivity corresponded with SC-specific upregulation of mRNA encoding glial cell line-derived neurotrophic factor (GDNF), independently of the presence of tumors. Neuropathic pain-like behaviors in the NF1 mice were inhibited by either chemogenetic silencing of SC calcium or by systemic delivery of GDNF-targeting antibodies. Together, these findings suggest that alterations in SCs directly modulate mechanical pain and suggest cell-specific treatment strategies to ameliorate pain in individuals with NF1.
Collapse
Affiliation(s)
- Namrata G.R. Raut
- Department of Anesthesia, Division of Pain Management, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
| | - Laura A. Maile
- Department of Anesthesia, Division of Pain Management, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
| | - Leila M. Oswalt
- Department of Anesthesia, Division of Pain Management, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
| | - Irati Mitxelena
- Department of Anesthesia, Division of Pain Management, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
| | - Aaditya Adlakha
- Department of Anesthesia, Division of Pain Management, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
| | - Kourtney L. Sprague
- Department of Anesthesia, Division of Pain Management, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
| | - Ashley R. Rupert
- Department of Anesthesia, Division of Pain Management, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
| | - Lane Bokros
- Department of Anesthesia, Division of Pain Management, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
| | - Megan C. Hofmann
- Department of Anesthesia, Division of Pain Management, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
| | - Jennifer Patritti-Cram
- Graduate Program in Neuroscience, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
- Division of Cancer Biology and Experimental Hematology and
| | - Tilat A. Rizvi
- Division of Cancer Biology and Experimental Hematology and
| | - Luis F. Queme
- Department of Anesthesia, Division of Pain Management, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
- Pediatric Pain Research Center, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
| | - Kwangmin Choi
- Division of Cancer Biology and Experimental Hematology and
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Nancy Ratner
- Division of Cancer Biology and Experimental Hematology and
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Michael P. Jankowski
- Department of Anesthesia, Division of Pain Management, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
- Pediatric Pain Research Center, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| |
Collapse
|
8
|
Lin Y, Pal DS, Banerjee P, Banerjee T, Qin G, Deng Y, Borleis J, Iglesias PA, Devreotes PN. Ras-mediated homeostatic control of front-back signaling dictates cell polarity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.30.555648. [PMID: 37693515 PMCID: PMC10491231 DOI: 10.1101/2023.08.30.555648] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
Studies in the model systems, Dictyostelium amoebae and HL-60 neutrophils, have shown that local Ras activity directly regulates cell motility or polarity. Localized Ras activation on the membrane is spatiotemporally regulated by its activators, RasGEFs, and inhibitors, RasGAPs, which might be expected to create a stable 'front' and 'back', respectively, in migrating cells. Focusing on C2GAPB in amoebae and RASAL3 in neutrophils, we investigated how Ras activity along the cortex controls polarity. Since existing gene knockout and overexpression studies can be circumvented, we chose optogenetic approaches to assess the immediate, local effects of these Ras regulators on the cell cortex. In both cellular systems, optically targeting the respective RasGAPs to the cell front extinguished existing protrusions and changed the direction of migration, as might be expected. However, when the expression of C2GAPB was induced globally, amoebae polarized within hours. Furthermore, within minutes of globally recruiting either C2GAPB in amoebae or RASAL3 in neutrophils, each cell type polarized and moved more rapidly. Targeting the RasGAPs to the cell backs exaggerated these effects on migration and polarity. Overall, in both cell types, RasGAP-mediated polarization was brought about by increased actomyosin contractility at the back and sustained, localized F-actin polymerization at the front. These experimental results were accurately captured by computational simulations in which Ras levels control front and back feedback loops. The discovery that context-dependent Ras activity on the cell cortex has counterintuitive, unanticipated effects on cell polarity can have important implications for future drug-design strategies targeting oncogenic Ras.
Collapse
|
9
|
Rhodes SD, McCormick F, Cagan RL, Bakker A, Staedtke V, Ly I, Steensma MR, Lee SY, Romo CG, Blakeley JO, Sarin KY. RAS Signaling Gone Awry in the Skin: The Complex Role of RAS in Cutaneous Neurofibroma Pathogenesis, Emerging Biological Insights. J Invest Dermatol 2023; 143:1358-1368. [PMID: 37245145 PMCID: PMC10409534 DOI: 10.1016/j.jid.2023.01.043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 01/13/2023] [Accepted: 01/20/2023] [Indexed: 05/29/2023]
Abstract
Cutaneous neurofibromas (cNFs) are the most common tumor in people with the rasopathy neurofibromatosis type 1. They number in hundreds or even thousands throughout the body, and currently, there are no effective interventions to prevent or treat these skin tumors. To facilitate the identification of novel and effective therapies, essential studies including a more refined understanding of cNF biology and the role of RAS signaling and downstream effector pathways responsible for cNF initiation, growth, and maintenance are needed. This review highlights the current state of knowledge of RAS signaling in cNF pathogenesis and therapeutic development for cNF treatment.
Collapse
Affiliation(s)
- Steven D Rhodes
- Division of Hematology-Oncology, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, Indiana, USA; Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, Indiana, USA; Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, Indiana, USA; Melvin and Bren Simon Comprehensive Cancer Center, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Frank McCormick
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, California, USA; Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Ross L Cagan
- School of Cancer Sciences, University of Glasgow, Glasgow, Scotland
| | | | - Verena Staedtke
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Ina Ly
- Stephen E. and Catherine Pappas Center for Neuro-Oncology, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Matthew R Steensma
- Center for Cancer and Cell Biology, Van Andel Research Institute, Grand Rapids, Michigan, USA; Helen DeVos Children's Hospital, Spectrum Health System, Grand Rapids, Michigan, USA; College of Human Medicine, Michigan State University, Grand Rapids, Michigan, USA
| | - Sang Y Lee
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Carlos G Romo
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Jaishri O Blakeley
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Kavita Y Sarin
- Department of Dermatology, Stanford University School of Medicine, Stanford, California, USA.
| |
Collapse
|
10
|
Jiang C, McKay RM, Lee SY, Romo CG, Blakeley JO, Haniffa M, Serra E, Steensma MR, Largaespada D, Le LQ. Cutaneous Neurofibroma Heterogeneity: Factors that Influence Tumor Burden in Neurofibromatosis Type 1. J Invest Dermatol 2023; 143:1369-1377. [PMID: 37318402 PMCID: PMC11173230 DOI: 10.1016/j.jid.2022.12.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Revised: 12/01/2022] [Accepted: 12/05/2022] [Indexed: 06/16/2023]
Abstract
Neurofibromatosis type 1 is one of the most common genetic disorders of the nervous system and predisposes patients to develop benign and malignant tumors. Cutaneous neurofibromas (cNFs) are NF1-associated benign tumors that affect nearly 100% of patients with NF1. cNFs dramatically reduce patients' QOL owing to their unaesthetic appearance, physical discomfort, and corresponding psychological burden. There is currently no effective drug therapy option, and treatment is restricted to surgical removal. One of the greatest hurdles for cNF management is the variability of clinical expressivity in NF1, resulting in intrapatient and interpatient cNF tumor burden heterogeneity, that is, the variability in the presentation and evolution of these tumors. There is growing evidence that a wide array of factors are involved in the regulation of cNF heterogeneity. Understanding the mechanisms underlying this heterogeneity of cNF at the molecular, cellular, and environmental levels can facilitate the development of innovative and personalized treatment regimens.
Collapse
Affiliation(s)
- Chunhui Jiang
- Department of Dermatology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Renée M McKay
- Department of Dermatology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Sang Y Lee
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Carlos G Romo
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Jaishri O Blakeley
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Muzlifah Haniffa
- Biosciences Institute, Newcastle University, Newcastle Upon Tyne, United Kingdom; NIHR Newcastle Biomedical Research Center Dermatology, Newcastle University, Newcastle Upon Tyne, United Kingdom
| | - Eduard Serra
- Hereditary Cancer Group, Germans Trias i Pujol Research Institute (IGTP), Barcelona, Spain
| | - Matthew R Steensma
- Center for Cancer and Cell Biology, Van Andel Research Institute, Grand Rapids, Michigan, USA
| | - David Largaespada
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, USA; Division of Hematology and Oncology, Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota, USA
| | - Lu Q Le
- Department of Dermatology, University of Texas Southwestern Medical Center, Dallas, Texas, USA; Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, Texas, USA; Comprehensive Neurofibromatosis Clinic, University of Texas Southwestern Medical Center, Dallas, Texas, USA; Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA; O'Donnell Brain Institute, University of Texas Southwestern Medical Center, Dallas, Texas, USA.
| |
Collapse
|
11
|
Veres K, Bene J, Hadzsiev K, Garami M, Pálla S, Happle R, Medvecz M, Szalai ZZ. Superimposed Mosaicism in the Form of Extremely Extended Segmental Plexiform Neurofibroma Caused by a Novel Pathogenic Variant in the NF1 Gene. Int J Mol Sci 2023; 24:12154. [PMID: 37569527 PMCID: PMC10418935 DOI: 10.3390/ijms241512154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/19/2023] [Accepted: 07/25/2023] [Indexed: 08/13/2023] Open
Abstract
Plexiform neurofibromas occurring in approximately 20-50% of all neurofibromatosis type-1 (NF1) cases are histologically benign tumors, but they can be fatal due to compression of vital structures or transformation to malignant sarcomas or malignant peripheral nerve sheath tumors. All sizeable plexiform neurofibromas are thought to result from an early second mutation giving rise to a loss of heterozygosity of the NF1 gene. In this unusual case, a 12-year-old girl presented with a rapidly growing, extremely extensive plexiform neurofibroma with segmental distribution over the entire right arm, extending to the right chest wall and mediastinum, superimposed on classic cutaneous lesions of NF1. After several surgical interventions, the patient was efficiently treated with an oral selective MEK inhibitor, selumetinib, which resulted in a rapid reduction of the tumor volume. Molecular analysis of the NF1 gene revealed a c.2326-2 A>G splice-site mutation in the clinically unaffected skin, peripheral blood sample, and plexiform neurofibroma, which explains the general clinical symptoms. Furthermore, a novel likely pathogenic variant, c.4933dupC (p.Leu1645Profs*7), has been identified exclusively in the girl's plexiform neurofibromas. This second-hit mutation can explain the extremely extensive segmental involvement.
Collapse
Affiliation(s)
- Klára Veres
- Department of Pediatric Dermatology, Heim Pal National Children’s Institute, 1089 Budapest, Hungary; (K.V.)
| | - Judit Bene
- Department of Medical Genetics, Clinical Center, Medical School, University of Pécs, 7622 Pécs, Hungary
| | - Kinga Hadzsiev
- Department of Medical Genetics, Clinical Center, Medical School, University of Pécs, 7622 Pécs, Hungary
| | - Miklós Garami
- Pediatric Center, Faculty of Medicine, Semmelweis University, 1085 Budapest, Hungary
| | - Sára Pálla
- Department of Dermatology, Venereology and Dermatooncology, Semmelweis University, 1085 Budapest, Hungary
| | - Rudolf Happle
- Department of Dermatology, Medical Center–University of Freiburg, 79104 Freiburg, Germany
| | - Márta Medvecz
- Department of Dermatology, Venereology and Dermatooncology, Semmelweis University, 1085 Budapest, Hungary
| | - Zsuzsanna Zsófia Szalai
- Department of Pediatric Dermatology, Heim Pal National Children’s Institute, 1089 Budapest, Hungary; (K.V.)
| |
Collapse
|
12
|
Khoshkhoo S, Wang Y, Chahine Y, Erson-Omay EZ, Robert SM, Kiziltug E, Damisah EC, Nelson-Williams C, Zhu G, Kong W, Huang AY, Stronge E, Phillips HW, Chhouk BH, Bizzotto S, Chen MH, Adikari TN, Ye Z, Witkowski T, Lai D, Lee N, Lokan J, Scheffer IE, Berkovic SF, Haider S, Hildebrand MS, Yang E, Gunel M, Lifton RP, Richardson RM, Blümcke I, Alexandrescu S, Huttner A, Heinzen EL, Zhu J, Poduri A, DeLanerolle N, Spencer DD, Lee EA, Walsh CA, Kahle KT. Contribution of Somatic Ras/Raf/Mitogen-Activated Protein Kinase Variants in the Hippocampus in Drug-Resistant Mesial Temporal Lobe Epilepsy. JAMA Neurol 2023; 80:578-587. [PMID: 37126322 PMCID: PMC10152377 DOI: 10.1001/jamaneurol.2023.0473] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 12/31/2022] [Indexed: 05/02/2023]
Abstract
Importance Mesial temporal lobe epilepsy (MTLE) is the most common focal epilepsy subtype and is often refractory to antiseizure medications. While most patients with MTLE do not have pathogenic germline genetic variants, the contribution of postzygotic (ie, somatic) variants in the brain is unknown. Objective To test the association between pathogenic somatic variants in the hippocampus and MTLE. Design, Setting, and Participants This case-control genetic association study analyzed the DNA derived from hippocampal tissue of neurosurgically treated patients with MTLE and age-matched and sex-matched neurotypical controls. Participants treated at level 4 epilepsy centers were enrolled from 1988 through 2019, and clinical data were collected retrospectively. Whole-exome and gene-panel sequencing (each genomic region sequenced more than 500 times on average) were used to identify candidate pathogenic somatic variants. A subset of novel variants was functionally evaluated using cellular and molecular assays. Patients with nonlesional and lesional (mesial temporal sclerosis, focal cortical dysplasia, and low-grade epilepsy-associated tumors) drug-resistant MTLE who underwent anterior medial temporal lobectomy were eligible. All patients with available frozen tissue and appropriate consents were included. Control brain tissue was obtained from neurotypical donors at brain banks. Data were analyzed from June 2020 to August 2022. Exposures Drug-resistant MTLE. Main Outcomes and Measures Presence and abundance of pathogenic somatic variants in the hippocampus vs the unaffected temporal neocortex. Results Of 105 included patients with MTLE, 53 (50.5%) were female, and the median (IQR) age was 32 (26-44) years; of 30 neurotypical controls, 11 (36.7%) were female, and the median (IQR) age was 37 (18-53) years. Eleven pathogenic somatic variants enriched in the hippocampus relative to the unaffected temporal neocortex (median [IQR] variant allele frequency, 1.92 [1.5-2.7] vs 0.3 [0-0.9]; P = .01) were detected in patients with MTLE but not in controls. Ten of these variants were in PTPN11, SOS1, KRAS, BRAF, and NF1, all predicted to constitutively activate Ras/Raf/mitogen-activated protein kinase (MAPK) signaling. Immunohistochemical studies of variant-positive hippocampal tissue demonstrated increased Erk1/2 phosphorylation, indicative of Ras/Raf/MAPK activation, predominantly in glial cells. Molecular assays showed abnormal liquid-liquid phase separation for the PTPN11 variants as a possible dominant gain-of-function mechanism. Conclusions and Relevance Hippocampal somatic variants, particularly those activating Ras/Raf/MAPK signaling, may contribute to the pathogenesis of sporadic, drug-resistant MTLE. These findings may provide a novel genetic mechanism and highlight new therapeutic targets for this common indication for epilepsy surgery.
Collapse
Affiliation(s)
- Sattar Khoshkhoo
- Department of Neurology, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts
- Division of Genetics and Genomics, Manton Center for Orphan Disease Research, Boston Children’s Hospital, Boston, Massachusetts
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts
| | - Yilan Wang
- Division of Genetics and Genomics, Manton Center for Orphan Disease Research, Boston Children’s Hospital, Boston, Massachusetts
- Program in Biological and Biomedical Sciences, Harvard Medical School, Boston, Massachusetts
| | - Yasmine Chahine
- Division of Genetics and Genomics, Manton Center for Orphan Disease Research, Boston Children’s Hospital, Boston, Massachusetts
| | - E. Zeynep Erson-Omay
- Department of Neurosurgery, Yale University School of Medicine, New Haven, Connecticut
| | - Stephanie M. Robert
- Department of Neurosurgery, Yale University School of Medicine, New Haven, Connecticut
| | - Emre Kiziltug
- Department of Neurosurgery, Yale University School of Medicine, New Haven, Connecticut
| | - Eyiyemisi C. Damisah
- Department of Neurosurgery, Yale University School of Medicine, New Haven, Connecticut
| | | | - Guangya Zhu
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China
| | - Wenna Kong
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China
| | - August Yue Huang
- Division of Genetics and Genomics, Manton Center for Orphan Disease Research, Boston Children’s Hospital, Boston, Massachusetts
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts
- Department of Pediatrics, Harvard Medical School, Boston, Massachusetts
| | - Edward Stronge
- Division of Genetics and Genomics, Manton Center for Orphan Disease Research, Boston Children’s Hospital, Boston, Massachusetts
- Harvard Medical School, Boston, Massachusetts
| | - H. Westley Phillips
- Division of Genetics and Genomics, Manton Center for Orphan Disease Research, Boston Children’s Hospital, Boston, Massachusetts
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts
- Department of Neurosurgery, David Geffen School of Medicine, University of California, Los Angeles
| | - Brian H. Chhouk
- Division of Genetics and Genomics, Manton Center for Orphan Disease Research, Boston Children’s Hospital, Boston, Massachusetts
| | - Sara Bizzotto
- Sorbonne University, Paris Brain Institute (ICM), National Institute of Health and Medical Research (INSERM), National Center for Scientific Research (CNRS), Paris, France
| | - Ming Hui Chen
- Division of Genetics and Genomics, Manton Center for Orphan Disease Research, Boston Children’s Hospital, Boston, Massachusetts
| | - Thiuni N. Adikari
- Department of Medicine (Austin Health), University of Melbourne, Heidelberg, Australia
| | - Zimeng Ye
- Department of Medicine (Austin Health), University of Melbourne, Heidelberg, Australia
| | - Tom Witkowski
- Department of Medicine (Austin Health), University of Melbourne, Heidelberg, Australia
| | - Dulcie Lai
- Division of Pharmacotherapy and Experimental Therapeutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill
| | - Nadine Lee
- Division of Genetics and Genomics, Manton Center for Orphan Disease Research, Boston Children’s Hospital, Boston, Massachusetts
| | - Julie Lokan
- Department of Anatomical Pathology, Austin Health, Heidelberg, Australia
| | - Ingrid E. Scheffer
- Department of Medicine (Austin Health), University of Melbourne, Heidelberg, Australia
- Murdoch Children’s Research Institute, Parkville, Australia
- Florey Institute of Neuroscience and Mental Health, Heidelberg, Australia
- Department of Pediatrics, University of Melbourne, Royal Children’s Hospital, Parkville, Australia
- Bladin-Berkovic Comprehensive Epilepsy Program, Department of Neurology, Austin Health, Heidelberg, Australia
| | - Samuel F. Berkovic
- Department of Medicine (Austin Health), University of Melbourne, Heidelberg, Australia
- Bladin-Berkovic Comprehensive Epilepsy Program, Department of Neurology, Austin Health, Heidelberg, Australia
| | - Shozeb Haider
- Department of Pharmaceutical and Biological Chemistry, University College London School of Pharmacy, London, United Kingdom
| | - Michael S. Hildebrand
- Department of Medicine (Austin Health), University of Melbourne, Heidelberg, Australia
- Murdoch Children’s Research Institute, Parkville, Australia
| | - Edward Yang
- Department of Radiology, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts
| | - Murat Gunel
- Department of Neurosurgery, Yale University School of Medicine, New Haven, Connecticut
| | - Richard P. Lifton
- Department of Genetics, Yale University School of Medicine, New Haven, Connecticut
- Laboratory of Human Genetics and Genomics, The Rockefeller University, New York, New York
| | | | - Ingmar Blümcke
- Department of Neuropathology, University Hospitals Erlangen, Erlangen, Germany
- Epilepsy Center, Cleveland Clinic, Cleveland, Ohio
| | - Sanda Alexandrescu
- Department of Pathology, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts
| | - Anita Huttner
- Department of Pathology, Yale University School of Medicine, New Haven, Connecticut
| | - Erin L. Heinzen
- Division of Pharmacotherapy and Experimental Therapeutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill
- Department of Genetics, School of Medicine, University of North Carolina at Chapel Hill
| | - Jidong Zhu
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China
| | - Annapurna Poduri
- Epilepsy Genetics Program, Division of Epilepsy and Neurophysiology, Department of Neurology, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts
| | - Nihal DeLanerolle
- Department of Neurosurgery, Yale University School of Medicine, New Haven, Connecticut
| | - Dennis D. Spencer
- Department of Neurosurgery, Yale University School of Medicine, New Haven, Connecticut
| | - Eunjung Alice Lee
- Division of Genetics and Genomics, Manton Center for Orphan Disease Research, Boston Children’s Hospital, Boston, Massachusetts
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts
- Department of Pediatrics, Harvard Medical School, Boston, Massachusetts
| | - Christopher A. Walsh
- Division of Genetics and Genomics, Manton Center for Orphan Disease Research, Boston Children’s Hospital, Boston, Massachusetts
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts
- Department of Neurology and Pediatrics, Harvard Medical School, Boston, Massachusetts
- Allen Discovery Center for Human Brain Evolution, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts
- Howard Hughes Medical Institute, Boston, Massachusetts
| | - Kristopher T. Kahle
- Division of Genetics and Genomics, Manton Center for Orphan Disease Research, Boston Children’s Hospital, Boston, Massachusetts
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts
- Laboratory of Human Genetics and Genomics, The Rockefeller University, New York, New York
- Department of Neurosurgery, Boston Children’s Hospital, Boston, Massachusetts
| |
Collapse
|
13
|
Lai D, Gade M, Yang E, Koh HY, Lu J, Walley NM, Buckley AF, Sands TT, Akman CI, Mikati MA, McKhann GM, Goldman JE, Canoll P, Alexander AL, Park KL, Von Allmen GK, Rodziyevska O, Bhattacharjee MB, Lidov HGW, Vogel H, Grant GA, Porter BE, Poduri AH, Crino PB, Heinzen EL. Somatic variants in diverse genes leads to a spectrum of focal cortical malformations. Brain 2022; 145:2704-2720. [PMID: 35441233 PMCID: PMC9612793 DOI: 10.1093/brain/awac117] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 02/19/2022] [Accepted: 03/13/2022] [Indexed: 11/14/2022] Open
Abstract
Post-zygotically acquired genetic variants, or somatic variants, that arise during cortical development have emerged as important causes of focal epilepsies, particularly those due to malformations of cortical development. Pathogenic somatic variants have been identified in many genes within the PI3K-AKT-mTOR-signalling pathway in individuals with hemimegalencephaly and focal cortical dysplasia (type II), and more recently in SLC35A2 in individuals with focal cortical dysplasia (type I) or non-dysplastic epileptic cortex. Given the expanding role of somatic variants across different brain malformations, we sought to delineate the landscape of somatic variants in a large cohort of patients who underwent epilepsy surgery with hemimegalencephaly or focal cortical dysplasia. We evaluated samples from 123 children with hemimegalencephaly (n = 16), focal cortical dysplasia type I and related phenotypes (n = 48), focal cortical dysplasia type II (n = 44), or focal cortical dysplasia type III (n = 15). We performed high-depth exome sequencing in brain tissue-derived DNA from each case and identified somatic single nucleotide, indel and large copy number variants. In 75% of individuals with hemimegalencephaly and 29% with focal cortical dysplasia type II, we identified pathogenic variants in PI3K-AKT-mTOR pathway genes. Four of 48 cases with focal cortical dysplasia type I (8%) had a likely pathogenic variant in SLC35A2. While no other gene had multiple disease-causing somatic variants across the focal cortical dysplasia type I cohort, four individuals in this group had a single pathogenic or likely pathogenic somatic variant in CASK, KRAS, NF1 and NIPBL, genes previously associated with neurodevelopmental disorders. No rare pathogenic or likely pathogenic somatic variants in any neurological disease genes like those identified in the focal cortical dysplasia type I cohort were found in 63 neurologically normal controls (P = 0.017), suggesting a role for these novel variants. We also identified a somatic loss-of-function variant in the known epilepsy gene, PCDH19, present in a small number of alleles in the dysplastic tissue from a female patient with focal cortical dysplasia IIIa with hippocampal sclerosis. In contrast to focal cortical dysplasia type II, neither focal cortical dysplasia type I nor III had somatic variants in genes that converge on a unifying biological pathway, suggesting greater genetic heterogeneity compared to type II. Importantly, we demonstrate that focal cortical dysplasia types I, II and III are associated with somatic gene variants across a broad range of genes, many associated with epilepsy in clinical syndromes caused by germline variants, as well as including some not previously associated with radiographically evident cortical brain malformations.
Collapse
Affiliation(s)
- Dulcie Lai
- Division of Pharmacology and Experimental Therapeutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Meethila Gade
- Division of Pharmacology and Experimental Therapeutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Edward Yang
- Department of Radiology, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Hyun Yong Koh
- Division of Epilepsy and Clinical Neurophysiology, Department of Neurology, Boston Children's Hospital, Boston, MA 02115, USA.,Epilepsy Genetics Program, Department of Neurology, Boston Children's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Jinfeng Lu
- Division of Pharmacology and Experimental Therapeutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Nicole M Walley
- Division of Medical Genetics, Department of Pediatrics, Duke University School of Medicine, Durham, NC 27710, USA
| | - Anne F Buckley
- Department of Pathology, Duke University Medical Center, Durham, NC 27710, USA
| | - Tristan T Sands
- Institute for Genomic Medicine, Columbia University Medical Center, New York, NY 10032, USA.,Department of Neurology, Columbia University Medical Center, New York, NY 10032, USA
| | - Cigdem I Akman
- Department of Neurology, Columbia University Medical Center, New York, NY 10032, USA
| | - Mohamad A Mikati
- Department of Neurobiology, Duke University, Durham, NC 27708, USA.,Division of Pediatric Neurology, Duke University Medical Center, Durham, NC 27710, USA
| | - Guy M McKhann
- Department of Neurosurgery, Columbia University, New York Presbyterian Hospital, New York, NY 10032, USA
| | - James E Goldman
- Department of Pathology and Cell Biology, Columbia University, New York, NY 10032, USA
| | - Peter Canoll
- Department of Pathology and Cell Biology, Columbia University, New York, NY 10032, USA
| | - Allyson L Alexander
- Department of Neurosurgery, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Kristen L Park
- Department of Pediatrics and Neurology, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Gretchen K Von Allmen
- Department of Neurology, McGovern Medical School, Houston, TX 77030, USA.,Division of Child Neurology, Department of Pediatrics, McGovern Medical School, Houston, TX 77030, USA
| | - Olga Rodziyevska
- Division of Child Neurology, Department of Pediatrics, McGovern Medical School, Houston, TX 77030, USA
| | | | - Hart G W Lidov
- Department of Pathology, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Hannes Vogel
- Department of Pathology, Stanford University, School of Medicine, Stanford, CA 94305, USA
| | - Gerald A Grant
- Department of Neurosurgery, Lucile Packard Children's Hospital at Stanford, School of Medicine, Stanford, CA 94305, USA
| | - Brenda E Porter
- Department of Neurology and Neurological Sciences, Stanford University, School of Medicine, Stanford, CA 94305, USA
| | - Annapurna H Poduri
- Division of Epilepsy and Clinical Neurophysiology, Department of Neurology, Boston Children's Hospital, Boston, MA 02115, USA.,Epilepsy Genetics Program, Department of Neurology, Boston Children's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Peter B Crino
- Department of Neurology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Erin L Heinzen
- Division of Pharmacology and Experimental Therapeutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.,Department of Genetics, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|
14
|
Patritti Cram J, Wu J, Coover RA, Rizvi TA, Chaney KE, Ravindran R, Cancelas JA, Spinner RJ, Ratner N. P2RY14 cAMP signaling regulates Schwann cell precursor self-renewal, proliferation, and nerve tumor initiation in a mouse model of neurofibromatosis. eLife 2022; 11:73511. [PMID: 35311647 PMCID: PMC8959601 DOI: 10.7554/elife.73511] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 01/19/2022] [Indexed: 01/05/2023] Open
Abstract
Neurofibromatosis type 1 (NF1) is characterized by nerve tumors called neurofibromas, in which Schwann cells (SCs) show deregulated RAS signaling. NF1 is also implicated in regulation of cAMP. We identified the G-protein-coupled receptor (GPCR) P2ry14 in human neurofibromas, neurofibroma-derived SC precursors (SCPs), mature SCs, and mouse SCPs. Mouse Nf1-/- SCP self-renewal was reduced by genetic or pharmacological inhibition of P2ry14. In a mouse model of NF1, genetic deletion of P2ry14 rescued low cAMP signaling, increased mouse survival, delayed neurofibroma initiation, and improved SC Remak bundles. P2ry14 signals via Gi to increase intracellular cAMP, implicating P2ry14 as a key upstream regulator of cAMP. We found that elevation of cAMP by either blocking the degradation of cAMP or by using a P2ry14 inhibitor diminished NF1-/- SCP self-renewal in vitro and neurofibroma SC proliferation in in vivo. These studies identify P2ry14 as a critical regulator of SCP self-renewal, SC proliferation, and neurofibroma initiation.
Collapse
Affiliation(s)
- Jennifer Patritti Cram
- Division of Experimental Hematology and Cancer Biology, Cancer & Blood Diseases Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, United States.,Neuroscience Graduate Program, University of Cincinnati College of Medicine, Cincinnati, United States
| | - Jianqiang Wu
- Division of Experimental Hematology and Cancer Biology, Cancer & Blood Diseases Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, United States.,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, United States
| | - Robert A Coover
- Division of Experimental Hematology and Cancer Biology, Cancer & Blood Diseases Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, United States
| | - Tilat A Rizvi
- Division of Experimental Hematology and Cancer Biology, Cancer & Blood Diseases Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, United States
| | - Katherine E Chaney
- Division of Experimental Hematology and Cancer Biology, Cancer & Blood Diseases Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, United States
| | - Ramya Ravindran
- Molecular and Developmental Biology, Cincinnati Children's Hospital, Cincinnati, United States
| | - Jose A Cancelas
- Division of Experimental Hematology and Cancer Biology, Cancer & Blood Diseases Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, United States.,Hoxworth Blood Center, College of Medicine, University of Cincinnati, Cincinnati, United States
| | - Robert J Spinner
- Department of Neurosurgery, Mayo Clinic, Rochester, United States
| | - Nancy Ratner
- Division of Experimental Hematology and Cancer Biology, Cancer & Blood Diseases Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, United States.,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, United States
| |
Collapse
|
15
|
Francis SS, Ostrom QT, Cote DJ, Smith TR, Claus E, Barnholtz-Sloan JS. The Epidemiology of Central Nervous System Tumors. Hematol Oncol Clin North Am 2022; 36:23-42. [PMID: 34801162 DOI: 10.1016/j.hoc.2021.08.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
This article reviews the current epidemiology of central nervous system tumors. Population-level basic epidemiology, nationally and internationally, and current understanding of germline genetic risk are discussed, with a focus on known and well-studied risk factors related to the etiology of central nervous system tumors.
Collapse
Affiliation(s)
- Stephen S Francis
- Department of Neurological Surgery, Division of Neuro and Molecular Epidemiology, University of California San Francisco School of Medicine, 1450 3rd Street, HD442, San Francisco, CA 94158, USA.
| | - Quinn T Ostrom
- Department of Neurosurgery, Duke University School of Medicine, 571 Research Drive, MSRB-1, Rm 442, Durham, NC 27710, USA
| | - David J Cote
- Department of Neurosurgery, Keck School of Medicine, University of Southern California, 1200 N State Street, Suite 3300, Los Angeles, CA 90033, USA
| | - Timothy R Smith
- Department of Neurosurgery, Computational Neuroscience Outcomes Center, Brigham and Women's Hospital, Harvard Medical School, 60 Fenwood Avenue, Boston, MA 02115, USA
| | - Elizabeth Claus
- Department of Neurosurgery, Yale University, Yale School of Public Health, Brigham and Women's Hospital, 60 College Street, New Haven, CT 06510, USA
| | - Jill S Barnholtz-Sloan
- Center for Biomedical Informatics and Information Technology, Trans-Divisional Research Program, Division of Cancer Epidemiology and Genetics, National Cancer Institute (NCI), NCI Shady Grove, 9609 Medical Center Dr, Rockville, MD 20850, USA
| |
Collapse
|
16
|
Harder A. Do non-pathogenic variants of DNA mismatch repair genes modify neurofibroma load in neurofibromatosis type 1? Childs Nerv Syst 2022; 38:705-713. [PMID: 34997843 PMCID: PMC8940751 DOI: 10.1007/s00381-021-05436-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Accepted: 12/13/2021] [Indexed: 01/07/2023]
Abstract
Non-pathogenic mismatch repair (MMR) gene variants can be associated with decreased MMR capacity in several settings. Due to an increased mutation rate, reduced MMR capacity leads to accumulation of somatic sequence changes in tumour suppressor genes such as in the neurofibromatosis type 1 (NF1) gene. Patients with autosomal dominant NF1 typically develop neurofibromas ranging from single to thousands. Concerning the number of neurofibromas NF1 patients face a situation that is still not predictable. A few studies suggested that germline non-pathogenic MMR gene variants modify the number of neurofibromas in NF1 and by this mechanism may promote the extent of neurofibroma manifestation. This review represents first evidence that specific non-pathogenic single nucleotide variants of MMR genes act as a modifier of neurofibroma manifestation in NF1, highlighting MSH2 re4987188 as the best analysed non-pathogenic variant so far. In summary, besides MSH2 promotor methylation, specific non-pathogenic germline MSH2 variants are associated with the extent of neurofibroma manifestation. Those variants can serve as a biomarker to facilitate better mentoring of NF1 patients at risk.
Collapse
Affiliation(s)
- Anja Harder
- Institute of Pathology, Medical Faculty, Martin Luther University Halle-Wittenberg, Halle (Saale), 06120, Germany.
- Institute of Neuropathology, University Hospital Münster, Münster, Germany.
- Faculty of Health Sciences, Joint Faculty, Potsdam, Germany.
| |
Collapse
|
17
|
Kehrer-Sawatzki H, Cooper DN. Challenges in the diagnosis of neurofibromatosis type 1 (NF1) in young children facilitated by means of revised diagnostic criteria including genetic testing for pathogenic NF1 gene variants. Hum Genet 2021; 141:177-191. [PMID: 34928431 PMCID: PMC8807470 DOI: 10.1007/s00439-021-02410-z] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 12/03/2021] [Indexed: 12/21/2022]
Abstract
Neurofibromatosis type 1 (NF1) is the most frequent disorder associated with multiple café-au-lait macules (CALM) which may either be present at birth or appear during the first year of life. Other NF1-associated features such as skin-fold freckling and Lisch nodules occur later during childhood whereas dermal neurofibromas are rare in young children and usually only arise during early adulthood. The NIH clinical diagnostic criteria for NF1, established in 1988, include the most common NF1-associated features. Since many of these features are age-dependent, arriving at a definitive diagnosis of NF1 by employing these criteria may not be possible in infancy if CALM are the only clinical feature evident. Indeed, approximately 46% of patients who are diagnosed with NF1 later in life do not meet the NIH diagnostic criteria by the age of 1 year. Further, the 1988 diagnostic criteria for NF1 are not specific enough to distinguish NF1 from other related disorders such as Legius syndrome. In this review, we outline the challenges faced in diagnosing NF1 in young children, and evaluate the utility of the recently revised (2021) diagnostic criteria for NF1, which include the presence of pathogenic variants in the NF1 gene and choroidal anomalies, for achieving an early and accurate diagnosis.
Collapse
Affiliation(s)
- Hildegard Kehrer-Sawatzki
- Institute of Human Genetics, University Hospital Ulm, University of Ulm, Albert-Einstein-Allee 11, 89081, Ulm, Germany.
| | - David N Cooper
- Institute of Medical Genetics, Cardiff University, Heath Park, Cardiff, CF14 4XN, UK
| |
Collapse
|
18
|
Riva M, Martorana D, Uliana V, Caleffi E, Boschi E, Garavelli L, Ponti G, Sangiorgi L, Graziano C, Bigoni S, Rocchetti LM, Madeo S, Soli F, Grosso E, Carli D, Goldoni M, Pisani F, Percesepe A. Recurrent NF1 gene variants and their genotype/phenotype correlations in patients with Neurofibromatosis type I. Genes Chromosomes Cancer 2021; 61:10-21. [PMID: 34427956 PMCID: PMC9291954 DOI: 10.1002/gcc.22997] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 08/20/2021] [Accepted: 08/23/2021] [Indexed: 11/08/2022] Open
Abstract
Neurofibromatosis type I, a genetic condition due to pathogenic variants in the NF1 gene, is burdened by a high rate of complications, including neoplasms, which increase morbidity and mortality for the disease. We retrospectively re-evaluated the NF1 gene variants found in the period 2000-2019 and we studied for genotype/phenotype correlations of disease complications and neoplasms 34 variants, which were shared by at least two unrelated families (range 2-11) for a total 141 of probands and 21 relatives affected by Neurofibromatosis type I. Recurrent variants could be ascribed to the most common mutational mechanisms (C to T transition, microsatellite slippage, non-homologous recombination). In genotype/phenotype correlations, the variants p.Arg440*, p.Tyr489Cys, and p.Arg1947*, together with the gross gene deletions, displayed the highest rates of complications. When considering neoplasms, carriers of variants falling in the extradomain region at the 5' end of NF1 had a lower age-related cancer frequency than the rest of the gene sequence, showing a borderline significance (p = 0.045), which was not conserved after correction with covariates. We conclude that (1) hotspots in NF1 occur via different mutational mechanisms, (2) several variants are associated with high rates of complications and cancers, and (3) there is an initial evidence toward a lower cancer risk for carriers of variants in the 5' end of the NF1 gene although not significant at the multivariate analysis.
Collapse
Affiliation(s)
- Matteo Riva
- Medical Genetics, Department of Medicine and Surgery, University of Parma, Parma, Italy
| | | | | | | | - Elena Boschi
- Plastic Surgery, University Hospital of Parma, Parma, Italy
| | - Livia Garavelli
- Medical Genetics Unit, Azienda USL-IRCCS, Reggio Emilia, Italy
| | - Giovanni Ponti
- Division of Clinical Pathology, University of Modena and Reggio Emilia, Modena, Italy
| | - Luca Sangiorgi
- Medical Genetics and Skeletal Rare Diseases, Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Claudio Graziano
- Medical Genetics, S. Orsola-Malpighi University Hospital, Bologna, Italy
| | - Stefania Bigoni
- Medical Genetics, Ferrara University Hospital, Ferrara, Italy
| | | | - Simona Madeo
- Pediatrics, University Hospital of Modena, Italy
| | - Fiorenza Soli
- Medical Genetics, Santa Chiara Hospital, Trento, Italy
| | - Enrico Grosso
- Medical Genetics, Città della Salute e della Scienza University Hospital, Torino, Italy
| | - Diana Carli
- Department of Public Health and Pediatric Sciences, University of Torino, Torino, Italy
| | - Matteo Goldoni
- Statistics, Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Francesco Pisani
- Children's Neuropsycological Services, Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Antonio Percesepe
- Medical Genetics, Department of Medicine and Surgery, University of Parma, Parma, Italy.,University Hospital of Parma, Parma, Italy
| |
Collapse
|
19
|
Ece Solmaz A, Isik E, Atik T, Ozkinay F, Onay H. Mutation spectrum of the NF1 gene and genotype-phenotype correlations in Turkish patients: Seventeen novel pathogenic variants. Clin Neurol Neurosurg 2021; 208:106884. [PMID: 34418705 DOI: 10.1016/j.clineuro.2021.106884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 08/05/2021] [Accepted: 08/07/2021] [Indexed: 11/15/2022]
Abstract
OBJECTIVE Neurofibromatosis type 1 is one of the most common autosomal dominant diseases caused by heterozygous mutation in the NF1 gene. Wide spectrum of NF1-related clinical manifestations and mutation distribution makes genetic counselling difficult. METHODS The study enrolled 58 unrelated Turkish patients with clinically suspected NF1 referred to the Department of Medical Genetics. Individuals were eligible if they 1) met at least two of the main National Institutes of Health criteria or 2) had multiple café-au-lait macules as a child. RESULTS Fourty-one different disease-causing variants were identified in 42 (72.4%) individuals, including 17 novel variants. Twenty-four (58.2%) of the NF1 patients had de novo variants. Café-au-lait macules were observed in all patients (100%). Intracranial hamartoma was the second most common phenotype, found in 52.3% (22/42) of the patients. Other common manifestations were neurofibromas (35.7%), axillary or inguinal freckling (28.5%), and Lisch nodules (28.5%). Additionally, one patient had intra-abdominal malignant peripheral nerve sheath tumours and another patient underwent surgery for serous papillary ovarian cancer. CONCLUSION In conclusion, this study is one of the largest studies from Turkey to investigate the NF1 mutation spectrum and genotype-phenotype correlations.
Collapse
Affiliation(s)
- Asli Ece Solmaz
- Ege University Faculty of Medicine, Department of Medical Genetics, Izmir, Turkey.
| | - Esra Isik
- University Faculty of Medicine, Department of Pediatrics, Division of Pediatric Genetics, Izmir, Turkey
| | - Tahir Atik
- University Faculty of Medicine, Department of Pediatrics, Division of Pediatric Genetics, Izmir, Turkey
| | - Ferda Ozkinay
- University Faculty of Medicine, Department of Pediatrics, Division of Pediatric Genetics, Izmir, Turkey
| | - Huseyin Onay
- Ege University Faculty of Medicine, Department of Medical Genetics, Izmir, Turkey
| |
Collapse
|
20
|
Pacot L, Vidaud D, Sabbagh A, Laurendeau I, Briand-Suleau A, Coustier A, Maillard T, Barbance C, Morice-Picard F, Sigaudy S, Glazunova OO, Damaj L, Layet V, Quelin C, Gilbert-Dussardier B, Audic F, Dollfus H, Guerrot AM, Lespinasse J, Julia S, Vantyghem MC, Drouard M, Lackmy M, Leheup B, Alembik Y, Lemaire A, Nitschké P, Petit F, Dieux Coeslier A, Mutez E, Taieb A, Fradin M, Capri Y, Nasser H, Ruaud L, Dauriat B, Bourthoumieu S, Geneviève D, Audebert-Bellanger S, Nizon M, Stoeva R, Hickman G, Nicolas G, Mazereeuw-Hautier J, Jannic A, Ferkal S, Parfait B, Vidaud M, Wolkenstein P, Pasmant E. Severe Phenotype in Patients with Large Deletions of NF1. Cancers (Basel) 2021; 13:2963. [PMID: 34199217 PMCID: PMC8231977 DOI: 10.3390/cancers13122963] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 06/11/2021] [Indexed: 12/18/2022] Open
Abstract
Complete deletion of the NF1 gene is identified in 5-10% of patients with neurofibromatosis type 1 (NF1). Several studies have previously described particularly severe forms of the disease in NF1 patients with deletion of the NF1 locus, but comprehensive descriptions of large cohorts are still missing to fully characterize this contiguous gene syndrome. NF1-deleted patients were enrolled and phenotypically characterized with a standardized questionnaire between 2005 and 2020 from a large French NF1 cohort. Statistical analyses for main NF1-associated symptoms were performed versus an NF1 reference population. A deletion of the NF1 gene was detected in 4% (139/3479) of molecularly confirmed NF1 index cases. The median age of the group at clinical investigations was 21 years old. A comprehensive clinical assessment showed that 93% (116/126) of NF1-deleted patients fulfilled the NIH criteria for NF1. More than half had café-au-lait spots, skinfold freckling, Lisch nodules, neurofibromas, neurological abnormalities, and cognitive impairment or learning disabilities. Comparison with previously described "classic" NF1 cohorts showed a significantly higher proportion of symptomatic spinal neurofibromas, dysmorphism, learning disabilities, malignancies, and skeletal and cardiovascular abnormalities in the NF1-deleted group. We described the largest NF1-deleted cohort to date and clarified the more severe phenotype observed in these patients.
Collapse
Affiliation(s)
- Laurence Pacot
- Service de Génétique et Biologie Moléculaires, Hôpital Cochin, DMU BioPhyGen, Assistance Publique-Hôpitaux de Paris, AP-HP, Centre-Université de Paris, F-75014 Paris, France; (L.P.); (D.V.); (A.B.-S.); (A.C.); (T.M.); (C.B.); (B.P.); (M.V.)
- Inserm U1016—CNRS UMR8104, Institut Cochin, Université de Paris, CARPEM, F-75014 Paris, France;
| | - Dominique Vidaud
- Service de Génétique et Biologie Moléculaires, Hôpital Cochin, DMU BioPhyGen, Assistance Publique-Hôpitaux de Paris, AP-HP, Centre-Université de Paris, F-75014 Paris, France; (L.P.); (D.V.); (A.B.-S.); (A.C.); (T.M.); (C.B.); (B.P.); (M.V.)
- Inserm U1016—CNRS UMR8104, Institut Cochin, Université de Paris, CARPEM, F-75014 Paris, France;
| | - Audrey Sabbagh
- UMR 261, Laboratoire MERIT, IRD, Faculté de Pharmacie de Paris, Université de Paris, F-75006 Paris, France;
| | - Ingrid Laurendeau
- Inserm U1016—CNRS UMR8104, Institut Cochin, Université de Paris, CARPEM, F-75014 Paris, France;
| | - Audrey Briand-Suleau
- Service de Génétique et Biologie Moléculaires, Hôpital Cochin, DMU BioPhyGen, Assistance Publique-Hôpitaux de Paris, AP-HP, Centre-Université de Paris, F-75014 Paris, France; (L.P.); (D.V.); (A.B.-S.); (A.C.); (T.M.); (C.B.); (B.P.); (M.V.)
- Inserm U1016—CNRS UMR8104, Institut Cochin, Université de Paris, CARPEM, F-75014 Paris, France;
| | - Audrey Coustier
- Service de Génétique et Biologie Moléculaires, Hôpital Cochin, DMU BioPhyGen, Assistance Publique-Hôpitaux de Paris, AP-HP, Centre-Université de Paris, F-75014 Paris, France; (L.P.); (D.V.); (A.B.-S.); (A.C.); (T.M.); (C.B.); (B.P.); (M.V.)
| | - Théodora Maillard
- Service de Génétique et Biologie Moléculaires, Hôpital Cochin, DMU BioPhyGen, Assistance Publique-Hôpitaux de Paris, AP-HP, Centre-Université de Paris, F-75014 Paris, France; (L.P.); (D.V.); (A.B.-S.); (A.C.); (T.M.); (C.B.); (B.P.); (M.V.)
| | - Cécile Barbance
- Service de Génétique et Biologie Moléculaires, Hôpital Cochin, DMU BioPhyGen, Assistance Publique-Hôpitaux de Paris, AP-HP, Centre-Université de Paris, F-75014 Paris, France; (L.P.); (D.V.); (A.B.-S.); (A.C.); (T.M.); (C.B.); (B.P.); (M.V.)
| | - Fanny Morice-Picard
- Inserm U1211, Service de Génétique Médicale, CHU de Bordeaux, F-33000 Bordeaux, France;
| | - Sabine Sigaudy
- Department of Medical Genetics, Children’s Hospital La Timone, Assistance Publique des Hôpitaux de Marseille, F-13000 Marseille, France;
| | - Olga O. Glazunova
- Centre de Référence des Anomalies du Développement et Syndromes Malformatifs (UF 2970), CHU Timone, Assistance Publique des Hôpitaux de Marseille, F-13000 Marseille, France;
| | - Lena Damaj
- Department of Pediatrics, Competence Center of Inherited Metabolic Disorders, Rennes Hospital, F-35000 Rennes, France;
| | - Valérie Layet
- Consultations de Génétique, Groupe Hospitalier du Havre, F-76600 Le Havre, France;
| | - Chloé Quelin
- Service de Génétique Clinique, CLAD Ouest, CHU Rennes, Hôpital Sud, F-35000 Rennes, France; (C.Q.); (M.F.)
| | | | - Frédérique Audic
- Service de Neurologie Pédiatrique, CHU Timone Enfants, F-13000 Marseille, France;
| | - Hélène Dollfus
- Centre de Référence Pour les Affections Rares en Génétique Ophtalmologique, CARGO, Filière SENSGENE, Hôpitaux Universitaires de Strasbourg, F-67000 Strasbourg, France;
- Medical Genetics Laboratory, INSERM U1112, Institute of Medical Genetics of Alsace, Strasbourg Medical School, University of Strasbourg, F-67000 Strasbourg, France
| | | | - James Lespinasse
- Service de Génétique Clinique, CH de Chambéry, F-73000 Chambéry, France;
| | - Sophie Julia
- Service de Génétique Médicale, CHU de Toulouse, Hôpital Purpan, F-31000 Toulouse, France;
| | - Marie-Christine Vantyghem
- Endocrinology, Diabetology, Metabolism and Nutrition Department, Inserm 1190, Lille University Hospital EGID, F-59000 Lille, France;
| | - Magali Drouard
- Dermatology Department, CHU Lille, University of Lille, F-59000 Lille, France;
| | - Marilyn Lackmy
- Unité de Génétique Clinique, Centre de Compétences Maladies Rares Anomalies du Développement, CHRU de Pointe à Pitre, F-97110 Guadeloupe, France;
| | - Bruno Leheup
- Service de Génétique Médicale, Hôpitaux de Brabois, CHRU de Nancy, F-54500 Vandoeuvre-lès-Nancy, France;
| | - Yves Alembik
- Department of Medical Genetics, Strasbourg-Hautepierre Hospital, F-67000 Strasbourg, France; (Y.A.); (A.L.)
| | - Alexia Lemaire
- Department of Medical Genetics, Strasbourg-Hautepierre Hospital, F-67000 Strasbourg, France; (Y.A.); (A.L.)
| | - Patrick Nitschké
- Bioinformatics Platform, Imagine Institute, INSERM UMR 1163, Université de Paris, F-75015 Paris, France;
| | - Florence Petit
- CHU Lille, Clinique de Génétique, Centre de Référence Anomalies du Développement, F-59000 Lille, France; (F.P.); (A.D.C.)
| | - Anne Dieux Coeslier
- CHU Lille, Clinique de Génétique, Centre de Référence Anomalies du Développement, F-59000 Lille, France; (F.P.); (A.D.C.)
| | - Eugénie Mutez
- Lille University, Inserm, CHU Lille, U1172 - LilNCog - Lille Neuroscience & Cognition, F-59000 Lille, France;
| | - Alain Taieb
- Department of Dermatology and Pediatric Dermatology, Bordeaux University Hospital, F-33000 Bordeaux, France;
| | - Mélanie Fradin
- Service de Génétique Clinique, CLAD Ouest, CHU Rennes, Hôpital Sud, F-35000 Rennes, France; (C.Q.); (M.F.)
| | - Yline Capri
- Département de Génétique, APHP Nord, Hôpital Robert Debré, F-75019 Paris, France; (Y.C.); (H.N.); (L.R.)
| | - Hala Nasser
- Département de Génétique, APHP Nord, Hôpital Robert Debré, F-75019 Paris, France; (Y.C.); (H.N.); (L.R.)
| | - Lyse Ruaud
- Département de Génétique, APHP Nord, Hôpital Robert Debré, F-75019 Paris, France; (Y.C.); (H.N.); (L.R.)
- UMR 1141, NEURODIDEROT, INSERM, Université de Paris, F-75019 Paris, France
| | - Benjamin Dauriat
- Department of Cytogenetics and Clinical Genetics, Limoges University Hospital, F-87000 Limoges, France;
| | - Sylvie Bourthoumieu
- Service de Cytogénétique et Génétique Médicale, CHU Limoges, F-87000 Limoges, France;
| | - David Geneviève
- Department of Genetics, Arnaud de Villeneuve University Hospital, F-34000 Montpellier, France;
| | - Séverine Audebert-Bellanger
- Département de Génétique Médicale et Biologie de la Reproduction, CHU Brest, Hôpital Morvan, F-29200 Brest, France;
| | - Mathilde Nizon
- Genetic Medical Department, CHU Nantes, F-44000 Nantes, France;
| | - Radka Stoeva
- Service de Cytogénétique, Centre Hospitalier Universitaire du Mans, F-72000 Le Mans, France;
| | - Geoffroy Hickman
- Department of Dermatology, Reference Center for Rare Skin Diseases MAGEC, Saint Louis Hospital AP-HP, F-75010 Paris, France;
| | - Gaël Nicolas
- Department of Genetics, FHU G4 Génomique, Normandie University, UNIROUEN, CHU Rouen, Inserm U1245, F-76000 Rouen, France;
| | - Juliette Mazereeuw-Hautier
- Département de Dermatologie, Centre de Référence des Maladies Rares de la Peau, CHU de Toulouse, F-31000 Toulouse, France;
| | - Arnaud Jannic
- Département de Dermatologie, AP-HP and UPEC, Hôpital Henri-Mondor, F-94000 Créteil, France; (A.J.); (S.F.); (P.W.)
| | - Salah Ferkal
- Département de Dermatologie, AP-HP and UPEC, Hôpital Henri-Mondor, F-94000 Créteil, France; (A.J.); (S.F.); (P.W.)
- INSERM, Centre d’Investigation Clinique 1430, F-94000 Créteil, France
| | - Béatrice Parfait
- Service de Génétique et Biologie Moléculaires, Hôpital Cochin, DMU BioPhyGen, Assistance Publique-Hôpitaux de Paris, AP-HP, Centre-Université de Paris, F-75014 Paris, France; (L.P.); (D.V.); (A.B.-S.); (A.C.); (T.M.); (C.B.); (B.P.); (M.V.)
- Inserm U1016—CNRS UMR8104, Institut Cochin, Université de Paris, CARPEM, F-75014 Paris, France;
| | - Michel Vidaud
- Service de Génétique et Biologie Moléculaires, Hôpital Cochin, DMU BioPhyGen, Assistance Publique-Hôpitaux de Paris, AP-HP, Centre-Université de Paris, F-75014 Paris, France; (L.P.); (D.V.); (A.B.-S.); (A.C.); (T.M.); (C.B.); (B.P.); (M.V.)
- Inserm U1016—CNRS UMR8104, Institut Cochin, Université de Paris, CARPEM, F-75014 Paris, France;
| | | | - Pierre Wolkenstein
- Département de Dermatologie, AP-HP and UPEC, Hôpital Henri-Mondor, F-94000 Créteil, France; (A.J.); (S.F.); (P.W.)
| | - Eric Pasmant
- Service de Génétique et Biologie Moléculaires, Hôpital Cochin, DMU BioPhyGen, Assistance Publique-Hôpitaux de Paris, AP-HP, Centre-Université de Paris, F-75014 Paris, France; (L.P.); (D.V.); (A.B.-S.); (A.C.); (T.M.); (C.B.); (B.P.); (M.V.)
- Inserm U1016—CNRS UMR8104, Institut Cochin, Université de Paris, CARPEM, F-75014 Paris, France;
| |
Collapse
|
21
|
Implications of mosaicism in variant interpretation: A case of a de novo homozygous NF1 variant. Eur J Med Genet 2021; 64:104236. [PMID: 33965620 DOI: 10.1016/j.ejmg.2021.104236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Revised: 02/21/2021] [Accepted: 04/28/2021] [Indexed: 11/23/2022]
Abstract
Neurofibromatosis type 1 is a common multisystem autosomal dominant syndrome caused by pathogenic heterozygous variants in the neurofibromin gene (NF1). It is associated with a substantially increased cancer risk. Mosaicism for NF1 has been clinically well-established for "second hit" variants in skin lesions and tumor tissues. Here, we report on a 3-month-old boy with multiple café au lait macules (CAMs) and juvenile myelomonocytic leukemia (JMML) who was found to carry a previously established pathogenic NF1 variant (c.586+5G>A), as revealed by whole-exome sequencing. Surprisingly, however, this variant was detected in the homozygous state in the patient and was absent in the parents and siblings. Deep sequencing of this variant using blood, buccal swabs and skin samples was performed. As expected for an NF1 gene mutation promoting JMML, the variant was detected in 90.6% of the blood DNA reads, in sharp contrast to the mere 5% and 0.74% of reads in the saliva- and skin fibroblast-derived DNA, respectively. Our analysis, therefore, confirmed postzygotic origin of the variant followed by a mitotic event resulting in its homozygosity, although we could not differentiate between the possibilities of a gene conversion and mitotic crossover. Apparently de novo homozygous variants should trigger a careful investigation into mosaicism to achieve accurate interpretation.
Collapse
|
22
|
Riccardi C, Perrone L, Napolitano F, Sampaolo S, Melone MAB. Understanding the Biological Activities of Vitamin D in Type 1 Neurofibromatosis: New Insights into Disease Pathogenesis and Therapeutic Design. Cancers (Basel) 2020; 12:E2965. [PMID: 33066259 PMCID: PMC7602022 DOI: 10.3390/cancers12102965] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 09/18/2020] [Accepted: 10/08/2020] [Indexed: 02/07/2023] Open
Abstract
Vitamin D is a fat-soluble steroid hormone playing a pivotal role in calcium and phosphate homeostasis as well as in bone health. Vitamin D levels are not exclusively dependent on food intake. Indeed, the endogenous production-occurring in the skin and dependent on sun exposure-contributes to the majority amount of vitamin D present in the body. Since vitamin D receptors (VDRs) are ubiquitous and drive the expression of hundreds of genes, the interest in vitamin D has tremendously grown and its role in different diseases has been extensively studied. Several investigations indicated that vitamin D action extends far beyond bone health and calcium metabolism, showing broad effects on a variety of critical illnesses, including cancer, infections, cardiovascular and autoimmune diseases. Epidemiological studies indicated that low circulating vitamin D levels inversely correlate with cutaneous manifestations and bone abnormalities, clinical hallmarks of neurofibromatosis type 1 (NF1). NF1 is an autosomal dominant tumour predisposition syndrome causing significant pain and morbidity, for which limited treatment options are available. In this context, vitamin D or its analogues have been used to treat both skin and bone lesions in NF1 patients, alone or combined with other therapeutic agents. Here we provide an overview of vitamin D, its characteristic nutritional properties relevant for health benefits and its role in NF1 disorder. We focus on preclinical and clinical studies that demonstrated the clinical correlation between vitamin D status and NF1 disease, thus providing important insights into disease pathogenesis and new opportunities for targeted therapy.
Collapse
Affiliation(s)
- Claudia Riccardi
- Department of Chemical Sciences, University of Naples Federico II, via Cintia 21, I-80126 Naples, Italy;
- Department of Advanced Medical and Surgical Sciences, 2nd Division of Neurology, Center for Rare Diseases and InterUniversity Center for Research in Neurosciences, University of Campania Luigi Vanvitelli, via Sergio Pansini 5, I-80131 Naples, Italy; (L.P.); (F.N.); (S.S.)
| | - Lorena Perrone
- Department of Advanced Medical and Surgical Sciences, 2nd Division of Neurology, Center for Rare Diseases and InterUniversity Center for Research in Neurosciences, University of Campania Luigi Vanvitelli, via Sergio Pansini 5, I-80131 Naples, Italy; (L.P.); (F.N.); (S.S.)
| | - Filomena Napolitano
- Department of Advanced Medical and Surgical Sciences, 2nd Division of Neurology, Center for Rare Diseases and InterUniversity Center for Research in Neurosciences, University of Campania Luigi Vanvitelli, via Sergio Pansini 5, I-80131 Naples, Italy; (L.P.); (F.N.); (S.S.)
| | - Simone Sampaolo
- Department of Advanced Medical and Surgical Sciences, 2nd Division of Neurology, Center for Rare Diseases and InterUniversity Center for Research in Neurosciences, University of Campania Luigi Vanvitelli, via Sergio Pansini 5, I-80131 Naples, Italy; (L.P.); (F.N.); (S.S.)
| | - Mariarosa Anna Beatrice Melone
- Department of Advanced Medical and Surgical Sciences, 2nd Division of Neurology, Center for Rare Diseases and InterUniversity Center for Research in Neurosciences, University of Campania Luigi Vanvitelli, via Sergio Pansini 5, I-80131 Naples, Italy; (L.P.); (F.N.); (S.S.)
- Sbarro Institute for Cancer Research and Molecular Medicine, Department of Biology, Temple University, BioLife Building (015-00), 1900 North 12th Street, Philadelphia, PA 19122-6078, USA
| |
Collapse
|
23
|
Arthur-Farraj P, Moyon S. DNA methylation in Schwann cells and in oligodendrocytes. Glia 2020; 68:1568-1583. [PMID: 31958184 DOI: 10.1002/glia.23784] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 12/17/2019] [Accepted: 01/10/2020] [Indexed: 12/12/2022]
Abstract
DNA methylation is one of many epigenetic marks, which directly modifies base residues, usually cytosines, in a multiple-step cycle. It has been linked to the regulation of gene expression and alternative splicing in several cell types, including during cell lineage specification and differentiation processes. DNA methylation changes have also been observed during aging, and aberrant methylation patterns have been reported in several neurological diseases. We here review the role of DNA methylation in Schwann cells and oligodendrocytes, the myelin-forming glia of the peripheral and central nervous systems, respectively. We first address how methylation and demethylation are regulating myelinating cells' differentiation during development and repair. We then mention how DNA methylation dysregulation in diseases and cancers could explain their pathogenesis by directly influencing myelinating cells' proliferation and differentiation capacities.
Collapse
Affiliation(s)
- Peter Arthur-Farraj
- John Van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Sarah Moyon
- Neuroscience Initiative Advanced Science Research Center, CUNY, New York, New York
| |
Collapse
|
24
|
Abstract
Neurofibromatosis type I (NF1) is a debilitating inherited tumor syndrome affecting around 1 in 3000 people. Patients present with a variety of tumors caused by biallelic loss of the tumor suppressor neurofibromin (NF1), a negative regulator of Ras signaling. While the mechanism of tumor formation is similar in the majority of NF1 cases, the clinical spectrum of tumors can vary depending on spatiotemporal loss of heterozygosity of NF1 in cells derived from the neural crest during development. The hallmark lesions that give NF1 its namesake are neurofibromas, which are benign Schwann cell tumors composed of nervous and fibrous tissue. Neurofibromas can be found in the skin (cutaneous neurofibroma) or deeper in body near nerve plexuses (plexiform neurofibroma). While neurofibromas have been known to be Schwann cell tumors for many years, the exact timing and initiating cell has remained elusive. This has led to difficulties in developing animal models and successful therapies for NF1. A culmination of recent genetic studies has finally begun to shed light on the detailed cellular origins of neurofibromatosis. In this review, we will examine the hunt for neurofibroma tumor cells of origin through a historical lens, detailing the genetic systems used to delineate the source of plexiform and cutaneous neurofibromas. Through these novel findings, we can better understand the cellular, temporal, and developmental context during tumor initiation. By leveraging this data, we hope to uncover new therapeutic targets and mechanisms to treat NF1 patients.
Collapse
Affiliation(s)
- Stephen Li
- Department of Dermatology, University of Texas Southwestern Medical Center, Dallas.,Medical Scientist Training Program, University of Texas Southwestern Medical Center, Dallas.,Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas
| | - Zhiguo Chen
- Department of Dermatology, University of Texas Southwestern Medical Center, Dallas
| | - Lu Q Le
- Department of Dermatology, University of Texas Southwestern Medical Center, Dallas.,Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas.,Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas.,Neurofibromatosis Clinic, University of Texas Southwestern Medical Center, Dallas
| |
Collapse
|
25
|
From Genes to -Omics: The Evolving Molecular Landscape of Malignant Peripheral Nerve Sheath Tumor. Genes (Basel) 2020; 11:genes11060691. [PMID: 32599735 PMCID: PMC7349243 DOI: 10.3390/genes11060691] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 06/09/2020] [Accepted: 06/17/2020] [Indexed: 02/07/2023] Open
Abstract
Malignant peripheral nerve sheath tumors (MPNST) are rare, aggressive soft tissue sarcomas that occur with significantly increased incidence in people with the neuro-genetic syndrome neurofibromatosis type I (NF1). These complex karyotype sarcomas are often difficult to resect completely due to the involvement of neurovascular bundles, and are relatively chemotherapy- and radiation-insensitive. The lifetime risk of developing MPNST in the NF1 population has led to great efforts to characterize the genetic changes that drive the development of these tumors and identify mutations that may be used for diagnostic or therapeutic purposes. Advancements in genetic sequencing and genomic technologies have greatly enhanced researchers’ abilities to broadly and deeply investigate aberrations in human MPNST genomes. Here, we review genetic sequencing efforts in human MPNST samples over the past three decades. Particularly for NF1-associated MPNST, these overall sequencing efforts have converged on a set of four common genetic changes that occur in most MPNST, including mutations in neurofibromin 1 (NF1), CDKN2A, TP53, and members of the polycomb repressor complex 2 (PRC2). However, broader genomic studies have also identified recurrent but less prevalent genetic variants in human MPNST that also contribute to the molecular landscape of MPNST and may inform further research. Future studies to further define the molecular landscape of human MPNST should focus on collaborative efforts across multiple institutions in order to maximize information gathered from large numbers of well-annotated MPNST patient samples, both in the NF1 and the sporadic MPNST populations.
Collapse
|
26
|
Curtis-Lopez CM, Soh C, Ealing J, Gareth Evans D, Burkitt Wright EMM, Vassallo G, Karabatsou K, Joshi George K. Clinical and neuroradiological characterisation of spinal lesions in adults with Neurofibromatosis type 1. J Clin Neurosci 2020; 77:98-105. [PMID: 32417129 DOI: 10.1016/j.jocn.2020.05.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 05/04/2020] [Indexed: 11/25/2022]
Abstract
Neurofibromatosis type 1 (NF1) manifests itself in many ways in the spine. This study aims to report the types of spinal lesions, clinical and demographic data in a large cohort from a complex NF1 centre. The characteristics of those with spinal neurofibromatosis, where neurofibromas are present on every spinal nerve root, were sought for comparison with the wider group of NF1 patients. This is a retrospective review of MDT minutes of 303 patients from a UK NF1 centre and the largest reported series of NF1 patients based on radiological data. Prevalence of each symptom and lesion was calculated and statistically significant associations were established. The most reported findings were cutaneous lesions (44.9%) and neurological deficit (27.4%). 28.4% had dural ectasia, 52.5% had some form of spinal deformity. 57.8% had spinal nerve root tumours, the most common of which were at C2. The most progressive lesions were spinal nerve root tumours (29.1%). The only statistically significant association found was between dural ectasia and spinal deformity (P < 0.003), where dural ectasia is associated with a 32.6% increase in spinal deformity incidence. This is the largest descriptive study of spinal lesions in NF1. Spinal tumours and spinal deformity are prevalent in NF1. The predilection of spinal tumours for flexible spinal regions suggests that repetitive movement might be an important factor in pathogenesis. Physicians and patients should be alert to the observation that although many spinal neurofibromatosis patients display no neurological deficit, they often have significant lesions which require monitoring and sometimes surgery.
Collapse
Affiliation(s)
| | - Calvin Soh
- Manchester Centre for Genomic Medicine, Manchester University Hospitals NHS Foundation Trust, Manchester Academic Health Sciences Centre, United Kingdom
| | - John Ealing
- Neurosurgery, Salford Royal Foundation Trust, Manchester, United Kingdom; Manchester Centre for Genomic Medicine, Manchester University Hospitals NHS Foundation Trust, Manchester Academic Health Sciences Centre, United Kingdom
| | - D Gareth Evans
- Manchester Centre for Genomic Medicine, Manchester University Hospitals NHS Foundation Trust, Manchester Academic Health Sciences Centre, United Kingdom; Division of Evolution and Genomic Sciences, University of Manchester, Manchester Academic Health Sciences Centre, United Kingdom
| | - Emma M M Burkitt Wright
- Manchester Centre for Genomic Medicine, Manchester University Hospitals NHS Foundation Trust, Manchester Academic Health Sciences Centre, United Kingdom; Division of Evolution and Genomic Sciences, University of Manchester, Manchester Academic Health Sciences Centre, United Kingdom
| | - Grace Vassallo
- Manchester Centre for Genomic Medicine, Manchester University Hospitals NHS Foundation Trust, Manchester Academic Health Sciences Centre, United Kingdom; Division of Evolution and Genomic Sciences, University of Manchester, Manchester Academic Health Sciences Centre, United Kingdom
| | | | - K Joshi George
- Neurosurgery, Salford Royal Foundation Trust, Manchester, United Kingdom.
| |
Collapse
|
27
|
Roy V, Magne B, Vaillancourt-Audet M, Blais M, Chabaud S, Grammond E, Piquet L, Fradette J, Laverdière I, Moulin VJ, Landreville S, Germain L, Auger FA, Gros-Louis F, Bolduc S. Human Organ-Specific 3D Cancer Models Produced by the Stromal Self-Assembly Method of Tissue Engineering for the Study of Solid Tumors. BIOMED RESEARCH INTERNATIONAL 2020; 2020:6051210. [PMID: 32352002 PMCID: PMC7178531 DOI: 10.1155/2020/6051210] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Revised: 02/07/2020] [Accepted: 02/28/2020] [Indexed: 12/24/2022]
Abstract
Cancer research has considerably progressed with the improvement of in vitro study models, helping to understand the key role of the tumor microenvironment in cancer development and progression. Over the last few years, complex 3D human cell culture systems have gained much popularity over in vivo models, as they accurately mimic the tumor microenvironment and allow high-throughput drug screening. Of particular interest, in vitrohuman 3D tissue constructs, produced by the self-assembly method of tissue engineering, have been successfully used to model the tumor microenvironment and now represent a very promising approach to further develop diverse cancer models. In this review, we describe the importance of the tumor microenvironment and present the existing in vitro cancer models generated through the self-assembly method of tissue engineering. Lastly, we highlight the relevance of this approach to mimic various and complex tumors, including basal cell carcinoma, cutaneous neurofibroma, skin melanoma, bladder cancer, and uveal melanoma.
Collapse
Affiliation(s)
- Vincent Roy
- Centre de Recherche du CHU de Québec-Université Laval, Axe Médecine Régénératrice, Québec, QC, Canada
- Centre de Recherche en Organogénèse Expérimentale de l'Université Laval/LOEX, Québec, QC, Canada
| | - Brice Magne
- Centre de Recherche du CHU de Québec-Université Laval, Axe Médecine Régénératrice, Québec, QC, Canada
- Centre de Recherche en Organogénèse Expérimentale de l'Université Laval/LOEX, Québec, QC, Canada
| | - Maude Vaillancourt-Audet
- Centre de Recherche du CHU de Québec-Université Laval, Axe Médecine Régénératrice, Québec, QC, Canada
- Centre de Recherche en Organogénèse Expérimentale de l'Université Laval/LOEX, Québec, QC, Canada
| | - Mathieu Blais
- Centre de Recherche du CHU de Québec-Université Laval, Axe Médecine Régénératrice, Québec, QC, Canada
- Centre de Recherche en Organogénèse Expérimentale de l'Université Laval/LOEX, Québec, QC, Canada
| | - Stéphane Chabaud
- Centre de Recherche du CHU de Québec-Université Laval, Axe Médecine Régénératrice, Québec, QC, Canada
- Centre de Recherche en Organogénèse Expérimentale de l'Université Laval/LOEX, Québec, QC, Canada
| | - Emil Grammond
- Centre de Recherche du CHU de Québec-Université Laval, Axe Médecine Régénératrice, Québec, QC, Canada
- Centre de Recherche en Organogénèse Expérimentale de l'Université Laval/LOEX, Québec, QC, Canada
| | - Léo Piquet
- Centre de Recherche du CHU de Québec-Université Laval, Axe Médecine Régénératrice, Québec, QC, Canada
- Centre de Recherche en Organogénèse Expérimentale de l'Université Laval/LOEX, Québec, QC, Canada
- Centre de Recherche sur le Cancer de l'Université Laval, Québec, QC, Canada
| | - Julie Fradette
- Centre de Recherche du CHU de Québec-Université Laval, Axe Médecine Régénératrice, Québec, QC, Canada
- Centre de Recherche en Organogénèse Expérimentale de l'Université Laval/LOEX, Québec, QC, Canada
- Department of Surgery, Faculty of Medicine, Université Laval, Québec, QC, Canada
| | - Isabelle Laverdière
- Centre de Recherche sur le Cancer de l'Université Laval, Québec, QC, Canada
- Faculty of Pharmacy, Université Laval and CHU de Québec-Université Laval Research Center, Oncology Division, Québec, QC, Canada
| | - Véronique J. Moulin
- Centre de Recherche du CHU de Québec-Université Laval, Axe Médecine Régénératrice, Québec, QC, Canada
- Centre de Recherche en Organogénèse Expérimentale de l'Université Laval/LOEX, Québec, QC, Canada
- Department of Surgery, Faculty of Medicine, Université Laval, Québec, QC, Canada
| | - Solange Landreville
- Centre de Recherche du CHU de Québec-Université Laval, Axe Médecine Régénératrice, Québec, QC, Canada
- Centre de Recherche en Organogénèse Expérimentale de l'Université Laval/LOEX, Québec, QC, Canada
- Centre de Recherche sur le Cancer de l'Université Laval, Québec, QC, Canada
- Department of Ophthalmology, Faculty of Medicine, Université Laval, Québec, QC, Canada
| | - Lucie Germain
- Centre de Recherche du CHU de Québec-Université Laval, Axe Médecine Régénératrice, Québec, QC, Canada
- Centre de Recherche en Organogénèse Expérimentale de l'Université Laval/LOEX, Québec, QC, Canada
- Department of Surgery, Faculty of Medicine, Université Laval, Québec, QC, Canada
| | - François A. Auger
- Centre de Recherche du CHU de Québec-Université Laval, Axe Médecine Régénératrice, Québec, QC, Canada
- Centre de Recherche en Organogénèse Expérimentale de l'Université Laval/LOEX, Québec, QC, Canada
- Department of Surgery, Faculty of Medicine, Université Laval, Québec, QC, Canada
| | - François Gros-Louis
- Centre de Recherche du CHU de Québec-Université Laval, Axe Médecine Régénératrice, Québec, QC, Canada
- Centre de Recherche en Organogénèse Expérimentale de l'Université Laval/LOEX, Québec, QC, Canada
- Department of Surgery, Faculty of Medicine, Université Laval, Québec, QC, Canada
| | - Stéphane Bolduc
- Centre de Recherche du CHU de Québec-Université Laval, Axe Médecine Régénératrice, Québec, QC, Canada
- Centre de Recherche en Organogénèse Expérimentale de l'Université Laval/LOEX, Québec, QC, Canada
- Department of Surgery, Faculty of Medicine, Université Laval, Québec, QC, Canada
| |
Collapse
|
28
|
Na Y, Huang G, Wu J. The Role of RUNX1 in NF1-Related Tumors and Blood Disorders. Mol Cells 2020; 43:153-159. [PMID: 31940719 PMCID: PMC7057834 DOI: 10.14348/molcells.2019.0295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 12/12/2019] [Indexed: 11/27/2022] Open
Abstract
Neurofibromatosis type 1 (NF1) is an autosomal dominant disorder. NF1 patients are predisposed to formation of several type solid tumors as well as to juvenile myelomonocytic leukemia. Loss of NF1 results in dysregulation of MAPK, PI3K and other signaling cascades, to promote cell proliferation and to inhibit cell apoptosis. The RUNX1 gene is associated with stem cell function in many tissues, and plays a key role in the fate of stem cells. Aberrant RUNX1 expression leads to context-dependent tumor development, in which RUNX1 may serve as a tumor suppressor or an oncogene in specific tissue contexts. The co-occurrence of mutation of NF1 and RUNX1 is detected rarely in several cancers and signaling downstream of RAS-MAPK can alter RUNX1 function. Whether aberrant RUNX1 expression contributes to NF1-related tumorigenesis is not fully understood. This review focuses on the role of RUNX1 in NF1-related tumors and blood disorders, and in sporadic cancers.
Collapse
Affiliation(s)
- Youjin Na
- Division of Experimental Hematology and Cancer Biology, Cancer & Blood Diseases Institute, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Gang Huang
- Division of Experimental Hematology and Cancer Biology, Cancer & Blood Diseases Institute, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
- Division of Pathology, Cancer & Blood Diseases Institute, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 459, USA
- Department of Pathology and Laboratory Medicine, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Jianqiang Wu
- Division of Experimental Hematology and Cancer Biology, Cancer & Blood Diseases Institute, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 5267, USA
| |
Collapse
|
29
|
Jia J, Zhang H, Zhang H, Liu W, Shu M. Infiltrating Macrophages Induced Stem-cell-like Features Through PI3K/AKT/GSK3β Signaling to Promote Neurofibroma Growth. Arch Med Res 2020; 51:124-134. [PMID: 32111496 DOI: 10.1016/j.arcmed.2019.12.018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2019] [Revised: 12/12/2019] [Accepted: 12/31/2019] [Indexed: 12/29/2022]
Abstract
BACKGROUND Inflammation plays an important role in promoting neurofibroma progression, and macrophages are key inflammatory cells in neurofibroma. AIM OF THIS STUDY We attempted to clarify the detailed mechanism of infiltrating macrophages promoting neurofibroma progression. METHODS We performed IHC and Western blot assays to detect the expression levels of OCT3/4, Nanog and SOX2 in tissues and cells. A colony/sphere formation assay was used to analyze cell stemness. MTT, colony formation assay and xenograft tumor model were used to detect cell growth. The transwell system was used to examine macrophage infiltration. RESULTS We demonstrated increased macrophage infiltration in neurofibroma tissues accompanied by increased stem cell-like markers. Moreover, Nf1-mutated SW10 cells possessed a stronger capacity to recruit macrophages, which in turn facilitated neurofibroma growth. Mechanistically, the infiltrating macrophages induced neurofibroma cell stem cell transition by modulating PI3K/AKT/GSK3β signaling, which then enhanced neurofibroma cell viability in vivo and in vitro. CONCLUSION Our results revealed a new mechanism of infiltrating macrophages contributing to neurofibroma progression, and targeting this newly identified signaling may help to treat neurofibroma.
Collapse
Affiliation(s)
- Jing Jia
- Department of Plastic, Cosmetic and Maxillofacial Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China; The school of electronic and information engineering, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Haibao Zhang
- Key laboratory for Tumor Precision Medicine of Shaanxi Province, Xi'an, Shaanxi, China
| | - Hongke Zhang
- Department of Plastic, Cosmetic and Maxillofacial Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Wenbo Liu
- Department of Plastic, Cosmetic and Maxillofacial Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Maoguo Shu
- Department of Plastic, Cosmetic and Maxillofacial Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China.
| |
Collapse
|
30
|
Towards a neurobiological understanding of pain in neurofibromatosis type 1: mechanisms and implications for treatment. Pain 2020; 160:1007-1018. [PMID: 31009417 DOI: 10.1097/j.pain.0000000000001486] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Neurofibromatosis type 1 (NF1) is the most common of a group of rare diseases known by the term, "Neurofibromatosis," affecting 1 in 3000 to 4000 people. NF1 patients present with, among other disease complications, café au lait patches, skin fold freckling, Lisch nodules, orthopedic complications, cutaneous neurofibromas, malignant peripheral nerve sheath tumors, cognitive impairment, and chronic pain. Although NF1 patients inevitably express pain as a debilitating symptom of the disease, not much is known about its manifestation in the NF1 disease, with most current information coming from sporadic case reports. Although these reports indicate the existence of pain, the molecular signaling underlying this symptom remains underexplored, and thus, we include a synopsis of the literature surrounding NF1 pain studies in 3 animal models: mouse, rat, and miniswine. We also highlight unexplored areas of NF1 pain research. As therapy for NF1 pain remains in various clinical and preclinical stages, we present current treatments available for patients and highlight the importance of future therapeutic development. Equally important, NF1 pain is accompanied by psychological complications in comorbidities with sleep, gastrointestinal complications, and overall quality of life, lending to the importance of investigation into this understudied phenomenon of NF1. In this review, we dissect the presence of pain in NF1 in terms of psychological implication, anatomical presence, and discuss mechanisms underlying the onset and potentiation of NF1 pain to evaluate current therapies and propose implications for treatment of this severely understudied, but prevalent symptom of this rare disease.
Collapse
|
31
|
Abstract
As a cancer predisposition syndrome, individuals with neurofibromatosis type 1 (NF1) are at increased risk for the development of both benign and malignant tumors. One of the most common locations for these cancers is the central nervous system, where low-grade gliomas predominate in children. During early childhood, gliomas affecting the optic pathway are most frequently encountered, whereas gliomas of the brainstem and other locations are observed in slightly older children. In contrast, the majority of gliomas arising in adults with NF1 are malignant cancers, typically glioblastoma, involving the cerebral hemispheres. Our understanding of the pathogenesis of NF1-associated gliomas has been significantly advanced through the use of genetically engineered mice, yielding new targets for therapeutic drug design and evaluation. In addition, Nf1 murine glioma models have served as instructive platforms for defining the cell of origin of these tumors, elucidating the critical role of the tumor microenvironment in determining tumor growth and vision loss, and determining how cancer risk factors (sex, germline NF1 mutation) impact on glioma formation and progression. Moreover, these preclinical models have permitted early phase analysis of promising drugs that reduce tumor growth and attenuate vision loss, as an initial step prior to translation to human clinical trials.
Collapse
Affiliation(s)
| | - David H Gutmann
- Department of Neurology, Washington University School of Medicine, St. Louis, MO
| |
Collapse
|
32
|
Nicolas G, Veltman JA. The role of de novo mutations in adult-onset neurodegenerative disorders. Acta Neuropathol 2019; 137:183-207. [PMID: 30478624 PMCID: PMC6513904 DOI: 10.1007/s00401-018-1939-3] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Revised: 11/14/2018] [Accepted: 11/14/2018] [Indexed: 12/13/2022]
Abstract
The genetic underpinnings of the most common adult-onset neurodegenerative disorders (AOND) are complex in majority of the cases. In some families, however, the disease can be inherited in a Mendelian fashion as an autosomal-dominant trait. Next to that, patients carrying mutations in the same disease genes have been reported despite a negative family history. Although challenging to demonstrate due to the late onset of the disease in most cases, the occurrence of de novo mutations can explain this sporadic presentation, as demonstrated for severe neurodevelopmental disorders. Exome or genome sequencing of patient-parent trios allows a hypothesis-free study of the role of de novo mutations in AOND and the discovery of novel disease genes. Another hypothesis that may explain a proportion of sporadic AOND cases is the occurrence of a de novo mutation after the fertilization of the oocyte (post-zygotic mutation) or even as a late-somatic mutation, restricted to the brain. Such somatic mutation hypothesis, that can be tested with the use of novel sequencing technologies, is fully compatible with the seeding and spreading mechanisms of the pathological proteins identified in most of these disorders. We review here the current knowledge and future perspectives on de novo mutations in known and novel candidate genes identified in the most common AONDs such as Alzheimer's disease, Parkinson's disease, the frontotemporal lobar degeneration spectrum and Prion disorders. Also, we review the first lessons learned from recent genomic studies of control and diseased brains and the challenges which remain to be addressed.
Collapse
Affiliation(s)
- Gaël Nicolas
- Normandie Univ, UNIROUEN, Inserm U1245 and Rouen University Hospital, Department of Genetics and CNR-MAJ, Normandy Center for Genomic and Personalized Medicine, 22, Boulevard Gambetta, 76000, 76031, Rouen Cedex, France.
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands.
| | - Joris A Veltman
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
- Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, UK
| |
Collapse
|
33
|
Phenotypic expression of a spectrum of Neurofibromatosis Type 1 (NF1) mutations identified through NGS and MLPA. J Neurol Sci 2018; 395:95-105. [PMID: 30308447 DOI: 10.1016/j.jns.2018.10.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 09/06/2018] [Accepted: 10/02/2018] [Indexed: 12/17/2022]
Abstract
Neurofibromatosis Type 1 (NF1) is caused by mutations of the NF1 gene. The aim of this study was to identify the genetic causes underlying the disease, attempt possible phenotype/genotype correlations and add to the NF1 mutation spectrum. A screening protocol based on genomic DNA was established in 168 patients, encompassing sequencing of all coding exons and adjoining introns using a custom targeted next generation sequencing protocol and subsequent confirmation of findings with Sanger sequencing. MLPA was used to detect deletions/duplications and positive findings were confirmed by RNA analysis. All novel findings were evaluated according to ACMG Standards and guidelines for the interpretation of sequence variants with the aid of in-silico bioinformatic tools and family segregation analysis. A germline variant was identified in 145 patients (86%). In total 49 known and 70 novel variants in coding and non-coding regions were identified. Seven patients carried whole or partial gene deletions. NF1 patients, present with high phenotypic variability even in cases where the same germline disease causing variant has been identified. Our findings will contribute to a better knowledge of the genetic causes and the phenotypic expression related to the disease.
Collapse
|
34
|
Anastasaki C, Dahiya S, Gutmann DH. KIR2DL5 mutation and loss underlies sporadic dermal neurofibroma pathogenesis and growth. Oncotarget 2018; 8:47574-47585. [PMID: 28548933 PMCID: PMC5564588 DOI: 10.18632/oncotarget.17736] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Accepted: 04/24/2017] [Indexed: 12/26/2022] Open
Abstract
Dermal neurofibromas (DNFs) are benign peripheral nerve sheath tumors thought to originate from Schwann cell progenitors. These tumors represent one of the hallmarks of the neurofibromatosis type 1 (NF1) tumor predisposition syndrome, where they can number in the thousands. While NF1-DNFs arise due to mutations in the NF1 gene, the vast majority of DNFs occur sporadically (sp-DNFs), where the genetic etiology is currently unknown. Herein, we employed whole-exome sequencing of sp-DNFs to identify a recurrent mutation in the KIR2DL5 gene, which codes for a protein suppressor of natural killer (NK) cell activity. While the function of KIR2DL5 outside of the immune system is unknown, we identified a KIR2DL5N173D mutation in three of nine sp-DNFs, resulting in loss of KIR2DL5 protein expression. In contrast, two of these subjects had unrelated tumors, which retained KIR2DL5 protein expression. Moreover, loss of KIR2DL5 expression was demonstrated in 15 of 45 independently-identified sp-DNFs. Consistent with its potential role as a negative growth regulator important for neurofibroma maintenance, ectopic KIR2DL5N173D expression in normal human Schwann cells resulted in reduced KIR2DL5 expression and increased cell proliferation. Similarly, KIR2DL5 short hairpin RNA knockdown (KD) decreased KIR2DL5 protein levels and increased cell proliferation, as well as correlated with PDGFRβ and downstream RAS/AKT/mTOR hyperactivation. Importantly, inhibition of PDGFRβ or AKT/mTOR activity in KIR2DL5-KD human Schwann cells reduced proliferation to control levels. Collectively, these findings establish KIR2DL5 as a new Schwann cell growth regulator relevant to sp-DNF pathogenesis, which links sporadic and NF1-associated DNFs through RAS pathway hyperactivation.
Collapse
Affiliation(s)
- Corina Anastasaki
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Sonika Dahiya
- Department of Pathology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - David H Gutmann
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, USA
| |
Collapse
|
35
|
Allaway RJ, Wood MD, Downey SL, Bouley SJ, Traphagen NA, Wells JD, Batra J, Melancon SN, Ringelberg C, Seibel W, Ratner N, Sanchez Y. Exploiting mitochondrial and metabolic homeostasis as a vulnerability in NF1 deficient cells. Oncotarget 2018; 9:15860-15875. [PMID: 29662612 PMCID: PMC5882303 DOI: 10.18632/oncotarget.19335] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Accepted: 07/09/2017] [Indexed: 11/26/2022] Open
Abstract
Neurofibromatosis type 1 is a disease caused by mutation of neurofibromin 1 (NF1), loss of which results in hyperactive Ras signaling and a concomitant increase in cell proliferation and survival. Patients with neurofibromatosis type 1 frequently develop tumors such as plexiform neurofibromas and malignant peripheral nerve sheath tumors. Mutation of NF1 or loss of the NF1 protein is also observed in glioblastoma, lung adenocarcinoma, and ovarian cancer among other sporadic cancers. A therapy that selectively targets NF1 deficient tumors would substantially advance our ability to treat these malignancies. To address the need for these therapeutics, we developed and conducted a synthetic lethality screen to discover molecules that target yeast lacking the homolog of NF1, IRA2. One of the lead candidates that was observed to be synthetic lethal with ira2Δ yeast is Y100. Here, we describe the mechanisms by which Y100 targets ira2Δ yeast and NF1-deficient tumor cells. Y100 treatment disrupted proteostasis, metabolic homeostasis, and induced the formation of mitochondrial superoxide in NF1-deficient cancer cells. Previous studies also indicate that NF1/Ras-dysregulated tumors may be sensitive to modulators of oxidative and ER stress. We hypothesize that the use of Y100 and molecules with related mechanisms of action represent a feasible therapeutic strategy for targeting NF1 deficient cells.
Collapse
Affiliation(s)
- Robert J. Allaway
- Department of Molecular and Systems Biology, Geisel School of Medicine, Dartmouth College, Hanover, NH 03755, USA
| | - Matthew D. Wood
- Department of Pharmacology and Toxicology, Geisel School of Medicine, Dartmouth College, Hanover, NH 03755, USA
- Current address: Department of Pathology, University of California San Francisco, San Francisco, CA 94143, USA
| | - Sondra L. Downey
- Department of Pharmacology and Toxicology, Geisel School of Medicine, Dartmouth College, Hanover, NH 03755, USA
| | - Stephanie J. Bouley
- Department of Molecular and Systems Biology, Geisel School of Medicine, Dartmouth College, Hanover, NH 03755, USA
| | - Nicole A. Traphagen
- Department of Molecular and Systems Biology, Geisel School of Medicine, Dartmouth College, Hanover, NH 03755, USA
| | - Jason D. Wells
- Department of Epidemiology, Geisel School of Medicine, Dartmouth College, Hanover, NH 03755, USA
| | - Jaya Batra
- Department of Pharmacology and Toxicology, Geisel School of Medicine, Dartmouth College, Hanover, NH 03755, USA
- Current address: Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Sir Norman Melancon
- Department of Pharmacology and Toxicology, Geisel School of Medicine, Dartmouth College, Hanover, NH 03755, USA
- Current address: Vanderbilt School of Medicine, Nashville, TN 37232, USA
| | - Carol Ringelberg
- Department of Molecular and Systems Biology, Geisel School of Medicine, Dartmouth College, Hanover, NH 03755, USA
- Bioinformatics Shared Resource, Norris Cotton Cancer Center, Dartmouth-Hitchcock Medical Center, Lebanon, NH 03756, USA
| | - William Seibel
- Division of Oncology, Cincinnati Children’s Hospital Medical Center, Cancer and Blood Diseases Institute, Cincinnati, OH 45229, USA
| | - Nancy Ratner
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children’s Hospital Medical Center, Cancer and Blood Diseases Institute, Cincinnati, OH 45229, USA
| | - Yolanda Sanchez
- Department of Molecular and Systems Biology, Geisel School of Medicine, Dartmouth College, Hanover, NH 03755, USA
- Norris Cotton Cancer Center, Dartmouth-Hitchcock Medical Center, Lebanon, NH 03756, USA
| |
Collapse
|
36
|
Involvement of Aryl hydrocarbon receptor in myelination and in human nerve sheath tumorigenesis. Proc Natl Acad Sci U S A 2018; 115:E1319-E1328. [PMID: 29351992 DOI: 10.1073/pnas.1715999115] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Aryl hydrocarbon receptor (AHR) is a ligand-activated transcription factor involved in xenobiotic metabolism. Plexiform neurofibromas (PNFs) can transform into malignant peripheral nerve sheath tumors (MPNSTs) that are resistant to existing therapies. These tumors are primarily composed of Schwann cells. In addition to neurofibromatosis type 1 (NF1) gene inactivation, further genetic lesions are required for malignant transformation. We have quantified the mRNA expression levels of AHR and its associated genes in 38 human samples. We report that AHR and the biosynthetic enzymes of its endogenous ligand are overexpressed in human biopsies of PNFs and MPNSTs. We also detect a strong nuclear AHR staining in MPNSTs. The inhibition of AHR by siRNA or antagonists, CH-223191 and trimethoxyflavone, induces apoptosis in human MPNST cells. Since AHR dysregulation is observed in these tumors, we investigate AHR involvement in Schwann cell physiology. Hence, we studied the role of AHR in myelin structure and myelin gene regulation in Ahr-/- mice during myelin development. AHR ablation leads to locomotion defects and provokes thinner myelin sheaths around the axons. We observe a dysregulation of myelin gene expression and myelin developmental markers in Ahr-/- mice. Interestingly, AHR does not directly bind to myelin gene promoters. The inhibition of AHR in vitro and in vivo increased β-catenin levels and stimulated the binding of β-catenin on myelin gene promoters. Taken together, our findings reveal an endogenous role of AHR in peripheral myelination and in peripheral nerve sheath tumors. Finally, we suggest a potential therapeutic approach by targeting AHR in nerve tumors.
Collapse
|
37
|
Summers MA, Rupasinghe T, Vasiljevski ER, Evesson FJ, Mikulec K, Peacock L, Quinlan KGR, Cooper ST, Roessner U, Stevenson DA, Little DG, Schindeler A. Dietary intervention rescues myopathy associated with neurofibromatosis type 1. Hum Mol Genet 2017; 27:577-588. [DOI: 10.1093/hmg/ddx423] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Accepted: 11/29/2017] [Indexed: 02/07/2023] Open
Affiliation(s)
- Matthew A Summers
- Orthopaedic Research & Biotechnology, The Children’s Hospital at Westmead, Westmead, NSW, Australia
- Discipline of Paediatrics & Child Heath, Faculty of Medicine, University of Sydney, Camperdown, NSW, Australia
| | | | - Emily R Vasiljevski
- Orthopaedic Research & Biotechnology, The Children’s Hospital at Westmead, Westmead, NSW, Australia
- Discipline of Paediatrics & Child Heath, Faculty of Medicine, University of Sydney, Camperdown, NSW, Australia
| | - Frances J Evesson
- Institute for Neuroscience and Muscle Research, The Children’s Hospital Westmead, Sydney, NSW, Australia
| | - Kathy Mikulec
- Orthopaedic Research & Biotechnology, The Children’s Hospital at Westmead, Westmead, NSW, Australia
| | - Lauren Peacock
- Orthopaedic Research & Biotechnology, The Children’s Hospital at Westmead, Westmead, NSW, Australia
| | - Kate G R Quinlan
- Discipline of Paediatrics & Child Heath, Faculty of Medicine, University of Sydney, Camperdown, NSW, Australia
- Institute for Neuroscience and Muscle Research, The Children’s Hospital Westmead, Sydney, NSW, Australia
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, NSW, Australia
| | - Sandra T Cooper
- Discipline of Paediatrics & Child Heath, Faculty of Medicine, University of Sydney, Camperdown, NSW, Australia
- Institute for Neuroscience and Muscle Research, The Children’s Hospital Westmead, Sydney, NSW, Australia
| | - Ute Roessner
- Metabolomics Australia, University of Melbourne, VIC, Australia
| | - David A Stevenson
- Division of Medical Genetics, Stanford University, Stanford, CA, USA
| | - David G Little
- Orthopaedic Research & Biotechnology, The Children’s Hospital at Westmead, Westmead, NSW, Australia
- Discipline of Paediatrics & Child Heath, Faculty of Medicine, University of Sydney, Camperdown, NSW, Australia
| | - Aaron Schindeler
- Orthopaedic Research & Biotechnology, The Children’s Hospital at Westmead, Westmead, NSW, Australia
- Discipline of Paediatrics & Child Heath, Faculty of Medicine, University of Sydney, Camperdown, NSW, Australia
| |
Collapse
|
38
|
Bonatti F, Adorni A, Matichecchia A, Mozzoni P, Uliana V, Pisani F, Garavelli L, Graziano C, Gnoli M, Carli D, Bigoni S, Boschi E, Martorana D, Percesepe A. Patterns of Novel Alleles and Genotype/Phenotype Correlations Resulting from the Analysis of 108 Previously Undetected Mutations in Patients Affected by Neurofibromatosis Type I. Int J Mol Sci 2017; 18:ijms18102071. [PMID: 28961165 PMCID: PMC5666753 DOI: 10.3390/ijms18102071] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Revised: 08/29/2017] [Accepted: 09/26/2017] [Indexed: 11/16/2022] Open
Abstract
Neurofibromatosis type I, a genetic disorder due to mutations in the NF1 gene, is characterized by a high mutation rate (about 50% of the cases are de novo) but, with the exception of whole gene deletions associated with a more severe phenotype, no specific hotspots and few solid genotype/phenotype correlations. After retrospectively re-evaluating all NF1 gene variants found in the diagnostic activity, we studied 108 patients affected by neurofibromatosis type I who harbored mutations that had not been previously reported in the international databases, with the aim of analyzing their type and distribution along the gene and of correlating them with the phenotypic features of the affected patients. Out of the 108 previously unreported variants, 14 were inherited by one of the affected parents and 94 were de novo. Twenty-nine (26.9%) mutations were of uncertain significance, whereas 79 (73.2%) were predicted as pathogenic or probably pathogenic. No differential distribution in the exons or in the protein domains was observed and no statistically significant genotype/phenotype correlation was found, confirming previous evidences.
Collapse
Affiliation(s)
| | - Alessia Adorni
- Medical Genetics, University Hospital of Parma, 43126 Parma, Italy.
| | | | - Paola Mozzoni
- Medical Genetics, University Hospital of Parma, 43126 Parma, Italy.
| | - Vera Uliana
- Medical Genetics, University Hospital of Parma, 43126 Parma, Italy.
| | - Francesco Pisani
- Children's Neuropsycological Services, University Hospital of Parma, 43126 Parma, Italy.
| | - Livia Garavelli
- Clinical Genetics, IRCCS S. Maria Nuova Hospital, Reggio 42123 Emilia, Italy.
| | - Claudio Graziano
- Medical Genetics, S. Orsola-Malpighi University Hospital, 40138 Bologna, Italy.
| | - Maria Gnoli
- Medical Genetics and Skeletal Rare Diseases, Istituto Ortopedico Rizzoli, 40126 Bologna, Italy.
| | - Diana Carli
- Medical Genetics, Città della Salute e della Scienza University Hospital, 10126 Torino, Italy.
| | - Stefania Bigoni
- UOL Medical Genetics, University of Ferrara, 44121 Ferrara, Italy.
| | - Elena Boschi
- Plastic Surgery, University Hospital of Parma, 43126 Parma, Italy.
| | - Davide Martorana
- Medical Genetics, University Hospital of Parma, 43126 Parma, Italy.
| | | |
Collapse
|
39
|
Kim A, Pratilas CA. The promise of signal transduction in genetically driven sarcomas of the nerve. Exp Neurol 2017; 299:317-325. [PMID: 28859862 DOI: 10.1016/j.expneurol.2017.08.014] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Revised: 08/24/2017] [Accepted: 08/25/2017] [Indexed: 12/28/2022]
Abstract
Neurofibromatosis type 1 (NF1) is an autosomal dominant tumor predisposition syndrome. Malignant peripheral nerve sheath tumors (MPNST) are aggressive soft tissue sarcomas arising from peripheral nerve sheaths, and the most commonly lethal feature associated with NF1. The hallmark of NF1 and NF1-related MPNST is the loss of neurofibromin expression. Loss of neurofibromin is considered a tumor-promoting event, and leads to constitutive activation of RAS and its downstream effectors. However, RAS activation alone is not sufficient for MPNST formation, and additional tumor suppressors and signaling pathways have been implicated in tumorigenesis of MPNST. Taking advantage of the rapid development of novel therapeutics targeting key molecular pathways across all cancer types, the best-in-class modulators of these pathways can be assessed in pre-clinical models and translated into clinical trials for patients with MPNST. Here, we describe the genetic changes and molecular pathways that drive MPNST formation and highlight the promise of signal transduction to identify therapies that may treat these tumors more effectively.
Collapse
Affiliation(s)
- AeRang Kim
- Children's National Medical Center, Washington, D.C., United States
| | - Christine A Pratilas
- Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD, United States.
| |
Collapse
|
40
|
Haworth KB, Arnold MA, Pierson CR, Choi K, Yeager ND, Ratner N, Roberts RD, Finlay JL, Cripe TP. Immune profiling of NF1-associated tumors reveals histologic subtype distinctions and heterogeneity: implications for immunotherapy. Oncotarget 2017; 8:82037-82048. [PMID: 29137242 PMCID: PMC5669868 DOI: 10.18632/oncotarget.18301] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Accepted: 04/16/2017] [Indexed: 01/01/2023] Open
Abstract
Successful treatment of neurofibromatosis type 1 (NF1)-associated tumors poses a significant clinical challenge. While the primary underlying genetic defect driving RAS signaling is well described, recent evidence suggests immune dysfunction contributes to tumor pathogenesis and malignant transformation. As immunologic characterizations, prognostic and predictive of immunotherapeutic clinical response in other cancers, are not fully described for benign and malignant NF1-related tumors, we sought to define their immunologic profiles. We determined the expression of human leukocyte antigen (HLA)-A/-B/-C, β-2-microglobulin (B2M), and T cell inhibitory ligands PD-L1 and CTLA-4 by microarray gene analysis and flow cytometry. We examined HLA-A/-B/-C, B2M, and PD-L1 expression on thirty-six NF1-associated tumor samples by immunohistochemistry, and correlated these with tumoral CD4+, CD8+, FOXP3+, CD56+, and CD45RO+ lymphocytic infiltrates. We evaluated several tumors from a single patient, observing trends of increasing immunogenicity over time, even with disease progression. We observed similarly immunogenic profiles for malignant peripheral nerve sheath tumors (MPNST) and nodular and plexiform neurofibromas, contrasting with diffuse neurofibromas. These studies suggest that while immunotherapies may offer some benefit for MPNST and nodular and plexiform neurofibromas, tumor heterogeneity might pose a significant clinical challenge to this novel therapeutic approach.
Collapse
Affiliation(s)
- Kellie B Haworth
- Division of Hematology, Oncology, Blood and Marrow Transplant, Department of Pediatrics, Nationwide Children's Hospital, Columbus, Ohio, USA.,Center for Childhood Cancer and Blood Diseases, The Research Institute, Nationwide Children's Hospital, Columbus, Ohio, USA
| | - Michael A Arnold
- Division of Anatomic Pathology, Department of Pathology and Laboratory Medicine, Nationwide Children's Hospital, Columbus, Ohio, USA.,Department of Pathology, The Ohio State University College of Medicine, Columbus, Ohio, USA
| | - Christopher R Pierson
- Division of Anatomic Pathology, Department of Pathology and Laboratory Medicine, Nationwide Children's Hospital, Columbus, Ohio, USA.,Department of Pathology, The Ohio State University College of Medicine, Columbus, Ohio, USA.,Division of Anatomy, Department of Biomedical Education and Anatomy, The Ohio State University College of Medicine, Columbus, Ohio, USA
| | - Kwangmin Choi
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Nicholas D Yeager
- Division of Hematology, Oncology, Blood and Marrow Transplant, Department of Pediatrics, Nationwide Children's Hospital, Columbus, Ohio, USA
| | - Nancy Ratner
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Ryan D Roberts
- Division of Hematology, Oncology, Blood and Marrow Transplant, Department of Pediatrics, Nationwide Children's Hospital, Columbus, Ohio, USA.,Center for Childhood Cancer and Blood Diseases, The Research Institute, Nationwide Children's Hospital, Columbus, Ohio, USA
| | - Jonathan L Finlay
- Division of Hematology, Oncology, Blood and Marrow Transplant, Department of Pediatrics, Nationwide Children's Hospital, Columbus, Ohio, USA
| | - Timothy P Cripe
- Division of Hematology, Oncology, Blood and Marrow Transplant, Department of Pediatrics, Nationwide Children's Hospital, Columbus, Ohio, USA.,Center for Childhood Cancer and Blood Diseases, The Research Institute, Nationwide Children's Hospital, Columbus, Ohio, USA
| |
Collapse
|
41
|
A high-throughput molecular data resource for cutaneous neurofibromas. Sci Data 2017; 4:170045. [PMID: 28398289 PMCID: PMC5387919 DOI: 10.1038/sdata.2017.45] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Accepted: 02/16/2017] [Indexed: 11/08/2022] Open
Abstract
Neurofibromatosis type 1 (NF1) is a genetic disorder with a range of clinical manifestations such as widespread growth of benign tumours called neurofibromas, pain, learning disorders, bone deformities, vascular abnormalities and even malignant tumours. With the establishment of the Children's Tumour Foundation biobank, neurofibroma samples can now be collected directly from patients to be analysed by the larger scientific community. This work describes a pilot study to characterize one class of neurofibroma, cutaneous neurofibromas, by molecularly profiling of ~40 cutaneous neurofibromas collected from 11 individual patients. Data collected from each tumour includes (1) SNP Arrays, (2) Whole genome sequencing (WGS) and (3) RNA-Sequencing. These data are now freely available for further analysis at http://www.synapse.org/cutaneousNF.
Collapse
|
42
|
Choi K, Komurov K, Fletcher JS, Jousma E, Cancelas JA, Wu J, Ratner N. An inflammatory gene signature distinguishes neurofibroma Schwann cells and macrophages from cells in the normal peripheral nervous system. Sci Rep 2017; 7:43315. [PMID: 28256556 PMCID: PMC5335359 DOI: 10.1038/srep43315] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Accepted: 01/25/2017] [Indexed: 12/31/2022] Open
Abstract
Neurofibromas are benign peripheral nerve tumors driven by NF1 loss in Schwann cells (SCs). Macrophages are abundant in neurofibromas, and macrophage targeted interventions may have therapeutic potential in these tumors. We generated gene expression data from fluorescence-activated cell sorted (FACS) SCs and macrophages from wild-type and mutant nerve and neurofibroma to identify candidate pathways involved in SC-macrophage cross-talk. While in 1-month-old Nf1 mutant nerve neither SCs nor macrophages significantly differed from their normal counterparts, both macrophages and SCs showed significantly altered cytokine gene expression in neurofibromas. Computationally reconstructed SC-macrophage molecular networks were enriched for inflammation-associated pathways. We verified that neurofibroma SC conditioned medium contains macrophage chemo-attractants including colony stimulation factor 1 (CSF1). Network analysis confirmed previously implicated pathways and predict novel paracrine and autocrine loops involving cytokines, chemokines, and growth factors. Network analysis also predicted a central role for decreased type-I interferon signaling. We validated type-I interferon expression in neurofibroma by protein profiling, and show that treatment of neurofibroma-bearing mice with polyethylene glycolyated (PEGylated) type-I interferon-α2b reduces the expression of many cytokines overexpressed in neurofibroma. These studies reveal numerous potential targetable interactions between Nf1 mutant SCs and macrophages for further analyses.
Collapse
Affiliation(s)
- Kwangmin Choi
- Division of Experimental Hematology and Cancer Biology, Cancer and Blood Diseases Institute, Cincinnati Children’s Hospital Medical Center, Department of Pediatrics, University of Cincinnati, Cincinnati, OH 45229, USA
| | - Kakajan Komurov
- Division of Experimental Hematology and Cancer Biology, Cancer and Blood Diseases Institute, Cincinnati Children’s Hospital Medical Center, Department of Pediatrics, University of Cincinnati, Cincinnati, OH 45229, USA
| | - Jonathan S. Fletcher
- Division of Experimental Hematology and Cancer Biology, Cancer and Blood Diseases Institute, Cincinnati Children’s Hospital Medical Center, Department of Pediatrics, University of Cincinnati, Cincinnati, OH 45229, USA
| | - Edwin Jousma
- Division of Experimental Hematology and Cancer Biology, Cancer and Blood Diseases Institute, Cincinnati Children’s Hospital Medical Center, Department of Pediatrics, University of Cincinnati, Cincinnati, OH 45229, USA
| | - Jose A. Cancelas
- Division of Experimental Hematology and Cancer Biology, Cancer and Blood Diseases Institute, Cincinnati Children’s Hospital Medical Center, Department of Pediatrics, University of Cincinnati, Cincinnati, OH 45229, USA
- Hoxworth Blood Center, College of Medicine, University of Cincinnati, Cincinnati, OH 45229, USA
| | - Jianqiang Wu
- Division of Experimental Hematology and Cancer Biology, Cancer and Blood Diseases Institute, Cincinnati Children’s Hospital Medical Center, Department of Pediatrics, University of Cincinnati, Cincinnati, OH 45229, USA
| | - Nancy Ratner
- Division of Experimental Hematology and Cancer Biology, Cancer and Blood Diseases Institute, Cincinnati Children’s Hospital Medical Center, Department of Pediatrics, University of Cincinnati, Cincinnati, OH 45229, USA
| |
Collapse
|
43
|
Karmakar S, Reilly KM. The role of the immune system in neurofibromatosis type 1-associated nervous system tumors. CNS Oncol 2016; 6:45-60. [PMID: 28001089 DOI: 10.2217/cns-2016-0024] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
With the recent development of new anticancer therapies targeting the immune system, it is important to understand which immune cell types and cytokines play critical roles in suppressing or promoting tumorigenesis. The role of mast cells in promoting neurofibroma growth in neurofibromatosis type 1 (NF1) patients was hypothesized decades ago. More recent experiments in mouse models have demonstrated the causal role of mast cells in neurofibroma development and of microglia in optic pathway glioma development. We review here what is known about the role of NF1 mutation in immune cell function and the role of immune cells in promoting tumorigenesis in NF1. We also review the therapies targeting immune cell pathways and their promise in NF1 tumors.
Collapse
Affiliation(s)
- Souvik Karmakar
- Rare Tumors Initiative, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 37 Convent Dr, Bethesda, MD 20814, USA
| | - Karlyne M Reilly
- Rare Tumors Initiative, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 37 Convent Dr, Bethesda, MD 20814, USA
| |
Collapse
|
44
|
Ganapathy S, Fagman JB, Shen L, Yu T, Zhou X, Dai W, Makriyannis A, Chen C. Ral A, via activating the mitotic checkpoint, sensitizes cells lacking a functional Nf1 to apoptosis in the absence of protein kinase C. Oncotarget 2016; 7:84326-84337. [PMID: 27741517 PMCID: PMC5356664 DOI: 10.18632/oncotarget.12607] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Accepted: 10/04/2016] [Indexed: 01/08/2023] Open
Abstract
Nf1 mutations or deletions are suggested to underlie the tumor predisposition of NF1 (neurofibromatosis type 1) and few treatments are available for treating NF1 patients with advanced malignant tumors. Aberrant activation of Ras in Nf1-deficient conditions is responsible for the promotion of tumorigenesis in NF1. PKC is proven to be an important factor in supporting the viability of Nf1-defected cells, but the molecular mechanisms are not fully understood. In this study, we demonstrate that the inhibition of protein kinase C (PKC) by 1-O-Hexadecyl-2-O-methyl-rac-glycerol (HMG, a PKC inhibitor) preferentially sensitizes Nf1-defected cells to apoptosis, via triggering a persistent mitotic arrest. In this process, Ral A is activated. Subsequently, Chk1 is phosphorylated and translocated to the nucleus. Silencing Ral A significantly blocks Chk1 nuclear translocation and releases HMG-treated Nf1-deficient cells from mitotic arrest, resulting in the reduction of the magnitude of apoptosis. Thus, our study reveals that PKC is able to maintain the homeostasis or viability of Nf1-defected cells and may serve as a potential target for developing new therapeutic strategies.
Collapse
Affiliation(s)
| | - Johan B Fagman
- The Institute of Clinic Sciences, Sahlgrenska Academy, Gothenburg, SE
| | - Ling Shen
- Center for Drug Discovery, Northeastern University, Boston, MA, USA
| | - Tianqi Yu
- Center for Drug Discovery, Northeastern University, Boston, MA, USA
| | - Xiaodong Zhou
- Center for Drug Discovery, Northeastern University, Boston, MA, USA
- The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Wei Dai
- Department of Environmental Medicine, New York University, Tuxedo, NY, USA
| | | | - Changyan Chen
- Center for Drug Discovery, Northeastern University, Boston, MA, USA
| |
Collapse
|
45
|
Wu J, Keng VW, Patmore DM, Kendall JJ, Patel AV, Jousma E, Jessen WJ, Choi K, Tschida BR, Silverstein KAT, Fan D, Schwartz EB, Fuchs JR, Zou Y, Kim MO, Dombi E, Levy DE, Huang G, Cancelas JA, Stemmer-Rachamimov AO, Spinner RJ, Largaespada DA, Ratner N. Insertional Mutagenesis Identifies a STAT3/Arid1b/β-catenin Pathway Driving Neurofibroma Initiation. Cell Rep 2016; 14:1979-90. [PMID: 26904939 DOI: 10.1016/j.celrep.2016.01.074] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Revised: 01/12/2016] [Accepted: 01/23/2016] [Indexed: 12/22/2022] Open
Abstract
To identify genes and signaling pathways that initiate Neurofibromatosis type 1 (NF1) neurofibromas, we used unbiased insertional mutagenesis screening, mouse models, and molecular analyses. We mapped an Nf1-Stat3-Arid1b/β-catenin pathway that becomes active in the context of Nf1 loss. Genetic deletion of Stat3 in Schwann cell progenitors (SCPs) and Schwann cells (SCs) prevents neurofibroma formation, decreasing SCP self-renewal and β-catenin activity. β-catenin expression rescues effects of Stat3 loss in SCPs. Importantly, P-STAT3 and β-catenin expression correlate in human neurofibromas. Mechanistically, P-Stat3 represses Gsk3β and the SWI/SNF gene Arid1b to increase β-catenin. Knockdown of Arid1b or Gsk3β in Stat3(fl/fl);Nf1(fl/fl);DhhCre SCPs rescues neurofibroma formation after in vivo transplantation. Stat3 represses Arid1b through histone modification in a Brg1-dependent manner, indicating that epigenetic modification plays a role in early tumorigenesis. Our data map a neural tumorigenesis pathway and support testing JAK/STAT and Wnt/β-catenin pathway inhibitors in neurofibroma therapeutic trials.
Collapse
Affiliation(s)
- Jianqiang Wu
- Division of Experimental Hematology and Cancer Biology, Cancer and Blood Diseases Institute, Cincinnati Children's Hospital University of Cincinnati, Cincinnati, OH 45229, USA
| | - Vincent W Keng
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA; Department of Pediatrics, Cell Biology and Development, University of Minnesota, Minneapolis, MN 55455, USA; Center for Genome Engineering, University of Minnesota, Minneapolis, MN 55455, USA
| | - Deanna M Patmore
- Division of Experimental Hematology and Cancer Biology, Cancer and Blood Diseases Institute, Cincinnati Children's Hospital University of Cincinnati, Cincinnati, OH 45229, USA
| | - Jed J Kendall
- Division of Experimental Hematology and Cancer Biology, Cancer and Blood Diseases Institute, Cincinnati Children's Hospital University of Cincinnati, Cincinnati, OH 45229, USA
| | - Ami V Patel
- Division of Experimental Hematology and Cancer Biology, Cancer and Blood Diseases Institute, Cincinnati Children's Hospital University of Cincinnati, Cincinnati, OH 45229, USA
| | - Edwin Jousma
- Division of Experimental Hematology and Cancer Biology, Cancer and Blood Diseases Institute, Cincinnati Children's Hospital University of Cincinnati, Cincinnati, OH 45229, USA
| | - Walter J Jessen
- Division of Experimental Hematology and Cancer Biology, Cancer and Blood Diseases Institute, Cincinnati Children's Hospital University of Cincinnati, Cincinnati, OH 45229, USA
| | - Kwangmin Choi
- Division of Experimental Hematology and Cancer Biology, Cancer and Blood Diseases Institute, Cincinnati Children's Hospital University of Cincinnati, Cincinnati, OH 45229, USA
| | - Barbara R Tschida
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA; Center for Genome Engineering, University of Minnesota, Minneapolis, MN 55455, USA
| | | | - Danhua Fan
- Biostatistics and Informatics, University of Minnesota, Minneapolis, MN 55455, USA
| | - Eric B Schwartz
- Ohio State University, College of Pharmacy, Columbus, OH 43210, USA
| | - James R Fuchs
- Ohio State University, College of Pharmacy, Columbus, OH 43210, USA
| | - Yuanshu Zou
- Division of Biostatistics and Epidemiology, Cincinnati Children's Hospital Research Foundation, Cincinnati Children's Hospital University of Cincinnati, Cincinnati, OH 45229, USA
| | - Mi-Ok Kim
- Division of Biostatistics and Epidemiology, Cincinnati Children's Hospital Research Foundation, Cincinnati Children's Hospital University of Cincinnati, Cincinnati, OH 45229, USA
| | - Eva Dombi
- Pediatric Oncology Branch, National Cancer Institute, Bethesda, MD 20892, USA
| | - David E Levy
- Department of Pathology and New York University Cancer Institute, New York University School of Medicine, 550 First Avenue, New York, NY 10016, USA
| | - Gang Huang
- Division of Experimental Hematology and Cancer Biology, Cancer and Blood Diseases Institute, Cincinnati Children's Hospital University of Cincinnati, Cincinnati, OH 45229, USA
| | - Jose A Cancelas
- Division of Experimental Hematology and Cancer Biology, Cancer and Blood Diseases Institute, Cincinnati Children's Hospital University of Cincinnati, Cincinnati, OH 45229, USA; Hoxworth Blood Center, College of Medicine, University of Cincinnati, Cincinnati, OH 45267, USA
| | - Anat O Stemmer-Rachamimov
- Department of Pathology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02114, USA
| | - Robert J Spinner
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN 55905, USA
| | - David A Largaespada
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA; Department of Pediatrics, Cell Biology and Development, University of Minnesota, Minneapolis, MN 55455, USA; Center for Genome Engineering, University of Minnesota, Minneapolis, MN 55455, USA
| | - Nancy Ratner
- Division of Experimental Hematology and Cancer Biology, Cancer and Blood Diseases Institute, Cincinnati Children's Hospital University of Cincinnati, Cincinnati, OH 45229, USA.
| |
Collapse
|
46
|
Ghali MGZ, Srinivasan VM, Jea A, Slopis JM, McCutcheon IE. Neurofibromas of the Phrenic Nerve: A Case Report and Review of the Literature. World Neurosurg 2016; 88:237-242. [PMID: 26746336 DOI: 10.1016/j.wneu.2015.12.076] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2015] [Revised: 12/18/2015] [Accepted: 12/18/2015] [Indexed: 11/25/2022]
Abstract
BACKGROUND Phrenic neurofibromas are a rare pathologic entity, with 9 cases described in the English literature. They may occur in conjunction with or independently of neurofibromatosis type 1. Phrenic neurofibromas pose distinct therapeutic challenges compared with the more common phrenic schwannoma. We describe here a 12-year-old boy with neurofibroma of the left phrenic nerve presenting as dextroposition of the heart after paralysis of the left hemidiaphragm allowed herniation of abdominal contents into the left hemithorax and displaced the heart. METHOD Surgical resection of the tumor followed by diaphragmatic plication was performed to assess its degree of malignancy, reduce abdominal herniation, and improve lung capacity. RESULTS The operation markedly improved his hemidiaphragmatic elevation. CONCLUSIONS The spectrum of management options ranges from conservative surveillance to open thoracic surgery. Functional preservation of the phrenic nerve is technically challenging, and although phrenic neurofibromas often present with absent function that cannot be recovered, surgical intervention can be fruitful in restoring lung capacity through diaphragmatic reconstruction.
Collapse
Affiliation(s)
- Michael G Z Ghali
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, Pennsylvania, USA
| | | | - Andrew Jea
- Department of Neurosurgery, Baylor College of Medicine, Houston, Texas, USA
| | - John M Slopis
- Department of Neuro-Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, Texas, USA
| | - Ian E McCutcheon
- Department of Neuro-Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, Texas, USA; Department of Neurosurgery, The University of Texas M. D. Anderson Cancer Center, Houston, Texas, USA.
| |
Collapse
|
47
|
Shofty B, Constantini S, Ben-Shachar S. Advances in Molecular Diagnosis of Neurofibromatosis Type 1. Semin Pediatr Neurol 2015; 22:234-9. [PMID: 26706011 DOI: 10.1016/j.spen.2015.10.007] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Neurofibromatosis 1 (NF1) is a common neurocutaneous and tumor predisposing genetic disorder with an autosomal dominant mode of inheritance. NF1 is solely caused by mutations in the NF1 gene, and disease-causing mutations can be found in more than 95% of individuals with a clinical diagnosis. Although NF1 has a distinctive clinical phenotype, it has a highly variable expression, even among individuals from the same family. Identifying the specific mutation does not usually assist in determining disease course and severity, and relatively few genotype-phenotype correlations have thus far been found. This review discusses the basic clinical aspects of NF1 and the current explanations for the high phenotypic variability, and provides the recently detected genotype-phenotype correlations.
Collapse
Affiliation(s)
- Ben Shofty
- (⁎)Division of Neurosurgery, Tel-Aviv Medical Center, Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel; Gilbert Israeli Neurofibromatosis Center, Tel-Aviv Medical Center, Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Shlomi Constantini
- (⁎)Division of Neurosurgery, Tel-Aviv Medical Center, Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel; Department of Pediatric Neurosurgery, Tel-Aviv Medical Center, Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel; Gilbert Israeli Neurofibromatosis Center, Tel-Aviv Medical Center, Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Shay Ben-Shachar
- Gilbert Israeli Neurofibromatosis Center, Tel-Aviv Medical Center, Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel; Genetic Institute, Tel-Aviv Medical Center, Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel.
| |
Collapse
|
48
|
Coffin CM, Davis JL, Borinstein SC. Syndrome-associated soft tissue tumours. Histopathology 2013; 64:68-87. [DOI: 10.1111/his.12280] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Cheryl M Coffin
- Department of Pathology, Microbiology, and Immunology; Vanderbilt University School of Medicine; Nashville TN USA
| | - Jessica L Davis
- Department of Anatomic Pathology; Laboratory Medicine; University of California at San Francisco; San Francisco CA USA
| | - Scott C Borinstein
- Division of Pediatric Hematology/Oncology; Department of Pediatrics; Vanderbilt University School of Medicine; Nashville TN USA
| |
Collapse
|
49
|
Abstract
Sarcomas are cancers arising from the mesenchymal layer that affect children, adolescents, young adults, and adults. Although most sarcomas are localized, many display a remarkable predilection for metastasis to the lungs, liver, bones, subcutaneous tissue, and lymph nodes. Additionally, many sarcoma patients presenting initially with localized disease may relapse at metastatic sites. While localized sarcomas can often be cured through surgery and often radiation, controversies exist over optimal management of patients with metastatic sarcoma. Combinations of chemotherapy are the most effective in many settings, and many promising new agents are under active investigation or are being explored in preclinical models. Metastatic sarcomas are excellent candidates for novel approaches with additional agents as they have demonstrated chemosensitivity and affect a portion of the population that is motivated toward curative therapy. In this paper, we provide an overview on the common sarcomas of childhood (rhabdomyosarcoma), adolescence, and young adults (osteosarcoma, Ewing sarcoma, synovial sarcoma, and malignant peripheral nerve sheath tumor) and older adults (leiomyosarcoma, liposarcoma, and undifferentiated high grade sarcoma) in terms of the epidemiology, current therapy, promising therapeutic directions and outcome with a focus on metastatic disease. Potential advances in terms of promising therapy and biologic insights may lead to more effective and safer therapies; however, more clinical trials and research are needed for patients with metastatic sarcoma.
Collapse
Affiliation(s)
- Ernest K Amankwah
- Department of Cancer Epidemiology, H Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Anthony P Conley
- Sarcoma Department, H Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Damon R Reed
- Sarcoma Department, H Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| |
Collapse
|
50
|
Terribas E, Garcia-Linares C, Lázaro C, Serra E. Probe-based quantitative PCR assay for detecting constitutional and somatic deletions in the NF1 gene: application to genetic testing and tumor analysis. Clin Chem 2013; 59:928-37. [PMID: 23386700 DOI: 10.1373/clinchem.2012.194217] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
BACKGROUND About 5% of patients with neurofibromatosis type 1 (NF1) bear constitutional microdeletions that encompass NF1 (neurofibromin 1) and neighboring genes. These patients are characterized by the development of a high number of dermal neurofibromas (dNFs), mental retardation, and an increased risk of developing a malignant peripheral nerve sheath tumor (MPNST). Additionally, 10% of somatic second hits identified in dNFs are caused by deletions involving the NF1 gene. To detect constitutional and somatic deletions, we developed a probe-based quantitative PCR (qPCR) assay for interrogating the copy number status of 11 loci distributed along a 2.8-Mb region around the NF1 gene. METHODS We developed the qPCR assay with Universal ProbeLibrary technology (Roche) and designed a Microsoft Excel spreadsheet to analyze qPCR data for copy number calculations. The assay fulfilled the essential aspects of the MIQE (minimum information for publication of quantitative real-time PCR experiments) guidelines and used the qBase relative quantification framework for calculations. RESULTS The assay was validated with a set of DNA samples with known constitutional or somatic NF1 deletions. The assay showed high diagnostic sensitivity and specificity and distinguished between Type-1, Type-2, and atypical constitutional microdeletions in 14 different samples. It also identified 16 different somatic deletions in dNFs. These results were confirmed by multiplex ligation-dependent probe amplification. CONCLUSIONS The qPCR assay provides a methodology for detecting constitutional NF1 microdeletions that could be incorporated as an additional technique in a genetic-testing setting. It also permits the identification of somatic NF1 deletions in tissues with a high percentage of cells bearing 2 copies of the NF1 gene.
Collapse
Affiliation(s)
- Ernest Terribas
- Institute of Predictive and Personalized Medicine of Cancer (IMPPC), Badalona, Barcelona, Spain
| | | | | | | |
Collapse
|