1
|
Skeels A, Esquerré D, Lipsky D, Pellissier L, Boschman LM. Elevational Goldilocks zone underlies the exceptional diversity of a large lizard radiation (Liolaemus; Liolaemidae). Evolution 2023; 77:2672-2686. [PMID: 37756495 DOI: 10.1093/evolut/qpad170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 07/17/2023] [Accepted: 09/24/2023] [Indexed: 09/29/2023]
Abstract
Mountains are among the most biodiverse regions on the planet, and how these landforms shape diversification through the interaction of biological traits and geo-climatic dynamics is integral to understanding global biodiversity. In this study, we investigate the dual roles of climate change and mountain uplift on the evolution of a hyper-diverse radiation, Liolaemus lizards, with a spatially explicit model of diversification using a reconstruction of uplift and paleotemperature in central and southern South America. The diversification model captures a hotspot for Liolaemus around 40°S in lineages with low-dispersal ability and narrow niche breadths. Under the model, speciation rates are highest in low latitudes (<35°S) and mid elevations (~1,000 m), while extinction rates are highest at higher latitudes (>35°S) and higher elevations (>2,000 m). Temperature change through the Cenozoic explained variation in speciation and extinction rates through time and across different elevational bands. Our results point to the conditions of mid elevations being optimal for diversification (i.e., Goldilocks Zone), driven by the combination of (1) a complex topography that facilitates speciation during periods of climatic change, and (2) a relatively moderate climate that enables the persistence of ectothermic lineages and buffers species from extinction.
Collapse
Affiliation(s)
- Alexander Skeels
- Department of Environmental Systems Sciences, Institute of Terrestrial Ecosystems, ETH Zürich, Zurich, Switzerland
- Land Change Science Research Unit, Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland
- Research School of Biology, Australian National University, Canberra, Australia
| | - Damien Esquerré
- Research School of Biology, Australian National University, Canberra, Australia
- School of Earth, Atmospheric and Life Sciences, University of Wollongong, Wollongong, Australia
| | - Daria Lipsky
- Department of Environmental Systems Sciences, Institute of Terrestrial Ecosystems, ETH Zürich, Zurich, Switzerland
| | - Loïc Pellissier
- Department of Environmental Systems Sciences, Institute of Terrestrial Ecosystems, ETH Zürich, Zurich, Switzerland
- Land Change Science Research Unit, Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland
| | - Lydian M Boschman
- Department of Environmental Systems Sciences, Institute of Terrestrial Ecosystems, ETH Zürich, Zurich, Switzerland
- Land Change Science Research Unit, Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland
- Department of Earth Sciences, Utrecht University, 3584 CB Utrecht, Netherlands
| |
Collapse
|
2
|
Gómez-Díaz JA, Baena ML, González-Zamora A, Delfín-Alfonso CA. Potential present and future distributions of the genus Atta of Mexico. PLoS One 2023; 18:e0292072. [PMID: 37751423 PMCID: PMC10522027 DOI: 10.1371/journal.pone.0292072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 09/12/2023] [Indexed: 09/28/2023] Open
Abstract
Temperature and precipitation influence insect distribution locally and drive large-scale biogeographical patterns. We used current and future climate data from the CHELSA database to create ensemble species distribution models for three Atta leaf-cutting ant species (Atta cephalotes, A. mexicana, and A. texana) found in Mexico. These models were used to estimate the potential impact of climate change on the distribution of these species in the future. Our results show that bioclimatic variables influence the distribution of each Atta species occupying a unique climatic niche: A. cephalotes is affected by temperature seasonality, A. mexicana by isothermality, and A. texana by the minimum temperature of the coldest month. Atta texana and A. mexicana are expected to decline their range by 80% and 60%, respectively, due to rising temperatures, decreased rainfall, and increased drought. Due to rising temperatures and increased humidity, Atta cephalotes is expected to expand its range by 30%. Since Atta species are important pests, our coexistence with them requires knowledge of their ecological functions and potential future distribution changes. In addition, these insects serve as bioindicators of habitat quality, and they can contribute to the local economy in rural areas since they are eaten as food for the nutritional value of the queens. In this sense, presenting a future perspective of these species' distribution is important for forest and crop management. Education programs also are necessary to raise awareness of the importance of these ants and the challenges they face because of climate change. Our results offer a perspective of climate change studies to define conservation and adaptation strategies for protecting vulnerable areas such as high-elevation remnant forests.
Collapse
Affiliation(s)
- Jorge A. Gómez-Díaz
- Instituto de Investigaciones Biológicas, Universidad Veracruzana, Xalapa, Veracruz, Mexico
- Centro de Investigaciones Tropicales, Universidad Veracruzana, Xalapa, Veracruz, Mexico
| | - Martha L. Baena
- Instituto de Investigaciones Biológicas, Universidad Veracruzana, Xalapa, Veracruz, Mexico
| | - Arturo González-Zamora
- Instituto de Investigaciones Biológicas, Universidad Veracruzana, Xalapa, Veracruz, Mexico
| | - Christian A. Delfín-Alfonso
- Instituto de Investigaciones Biológicas, Universidad Veracruzana, Xalapa, Veracruz, Mexico
- Laboratorio de Zoología, Instituto de Investigaciones Biológicas, Universidad Veracruzana, Xalapa, Veracruz, Mexico
| |
Collapse
|
3
|
Luo F, Bibi F, Disayathanoowat T, Ling TC. Attributes of host-specificity better explain the diversified wood-boring longhorn beetles in tropical SW China than plant species diversity. Sci Rep 2023; 13:9997. [PMID: 37339971 DOI: 10.1038/s41598-023-34511-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Accepted: 05/03/2023] [Indexed: 06/22/2023] Open
Abstract
A long-debated question in ecology is whether the hyper-diversity of tropical plant-feeding insects is a direct consequence of high tropical plant diversity or should be attributed to increases in host plant specialization. In this study, we used Cerambycidae (the wood-boring longhorn beetles whose larval stages feed on the xylems of trees and lianas) and plants as study materials to explore which hypothesis is more favoured. Multiple analyses were used to show the differences in host specificity of Cerambycidae in tropical and subtropical forests. From these analyses, we found that the alpha diversity of beetles in tropical forests was significantly higher than that in subtropical forests but not in plants. The relationship between plants and beetles was also closer in tropical areas than in subtropical areas. Our results imply that the wood-boring longhorn beetles show higher degrees of niche conservatism and host-specificity in tropical forests than in subtropical forests. The high diversity of wood-boring longhorn beetles in tropical forests might be explained to a large extent by their more finely partitioned diet breadth.
Collapse
Affiliation(s)
- Fang Luo
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, 666303, Yunnan, China
| | - Farkhanda Bibi
- Department of Botany, Garden Campus, Abdul Wali Khan University Mardan, Mardan, 23200, Pakistan
| | - Terd Disayathanoowat
- Bee Protection Laboratory, Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Tial C Ling
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, 666303, Yunnan, China.
- Bee Protection Laboratory, Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, 50200, Thailand.
| |
Collapse
|
4
|
Rocchini D, Tordoni E, Marchetto E, Marcantonio M, Barbosa AM, Bazzichetto M, Beierkuhnlein C, Castelnuovo E, Gatti RC, Chiarucci A, Chieffallo L, Da Re D, Di Musciano M, Foody GM, Gabor L, Garzon-Lopez CX, Guisan A, Hattab T, Hortal J, Kunin WE, Jordán F, Lenoir J, Mirri S, Moudrý V, Naimi B, Nowosad J, Sabatini FM, Schweiger AH, Šímová P, Tessarolo G, Zannini P, Malavasi M. A quixotic view of spatial bias in modelling the distribution of species and their diversity. NPJ BIODIVERSITY 2023; 2:10. [PMID: 39242713 PMCID: PMC11332097 DOI: 10.1038/s44185-023-00014-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 03/23/2023] [Indexed: 09/09/2024]
Abstract
Ecological processes are often spatially and temporally structured, potentially leading to autocorrelation either in environmental variables or species distribution data. Because of that, spatially-biased in-situ samples or predictors might affect the outcomes of ecological models used to infer the geographic distribution of species and diversity. There is a vast heterogeneity of methods and approaches to assess and measure spatial bias; this paper aims at addressing the spatial component of data-driven biases in species distribution modelling, and to propose potential solutions to explicitly test and account for them. Our major goal is not to propose methods to remove spatial bias from the modelling procedure, which would be impossible without proper knowledge of all the processes generating it, but rather to propose alternatives to explore and handle it. In particular, we propose and describe three main strategies that may provide a fair account of spatial bias, namely: (i) how to represent spatial bias; (ii) how to simulate null models based on virtual species for testing biogeographical and species distribution hypotheses; and (iii) how to make use of spatial bias - in particular related to sampling effort - as a leverage instead of a hindrance in species distribution modelling. We link these strategies with good practice in accounting for spatial bias in species distribution modelling.
Collapse
Affiliation(s)
- Duccio Rocchini
- BIOME Lab, Department of Biological, Geological and Environmental Sciences, Alma Mater Studiorum University of Bologna, via Irnerio 42, 40126, Bologna, Italy.
- Czech University of Life Sciences Prague, Faculty of Environmental Sciences, Department of Spatial Sciences, Kamýcka 129, Praha - Suchdol, 16500, Czech Republic.
| | - Enrico Tordoni
- Department of Botany, Institute of Ecology and Earth Science, University of Tartu, J. Liivi 2, 50409, Tartu, Estonia
| | - Elisa Marchetto
- BIOME Lab, Department of Biological, Geological and Environmental Sciences, Alma Mater Studiorum University of Bologna, via Irnerio 42, 40126, Bologna, Italy
| | - Matteo Marcantonio
- Evolutionary Ecology and Genetics Group, Earth and Life Institute, UCLouvain, 1348, Louvain-la-Neuve, Belgium
| | - A Márcia Barbosa
- CICGE (Centro de Investigação em Ciências Geo-Espaciais), Universidade do Porto, Porto, Portugal
| | - Manuele Bazzichetto
- Czech University of Life Sciences Prague, Faculty of Environmental Sciences, Department of Spatial Sciences, Kamýcka 129, Praha - Suchdol, 16500, Czech Republic
| | - Carl Beierkuhnlein
- Biogeography, BayCEER, University of Bayreuth, Universitaetsstraße 30, 95440, Bayreuth, Germany
| | - Elisa Castelnuovo
- BIOME Lab, Department of Biological, Geological and Environmental Sciences, Alma Mater Studiorum University of Bologna, via Irnerio 42, 40126, Bologna, Italy
| | - Roberto Cazzolla Gatti
- BIOME Lab, Department of Biological, Geological and Environmental Sciences, Alma Mater Studiorum University of Bologna, via Irnerio 42, 40126, Bologna, Italy
| | - Alessandro Chiarucci
- BIOME Lab, Department of Biological, Geological and Environmental Sciences, Alma Mater Studiorum University of Bologna, via Irnerio 42, 40126, Bologna, Italy
| | - Ludovico Chieffallo
- BIOME Lab, Department of Biological, Geological and Environmental Sciences, Alma Mater Studiorum University of Bologna, via Irnerio 42, 40126, Bologna, Italy
| | - Daniele Da Re
- Georges Lemaître Center for Earth and Climate Research, Earth and Life Institute, UCLouvain, Louvain-la-Neuve, Belgium
| | - Michele Di Musciano
- BIOME Lab, Department of Biological, Geological and Environmental Sciences, Alma Mater Studiorum University of Bologna, via Irnerio 42, 40126, Bologna, Italy
- Department of Life, Health and Environmental Sciences, University of L'Aquila, Piazzale Salvatore Tommasi 1, 67100, L'Aquila, Italy
| | - Giles M Foody
- School of Geography, University of Nottingham, Nottingham, UK
| | - Lukas Gabor
- Dept of Ecology and Evolutionary Biology, Yale University, New Haven, CT, USA
- Center for Biodiversity and Global Change, Yale University, New Haven, CT, USA
| | - Carol X Garzon-Lopez
- Knowledge Infrastructures, Campus Fryslan University of Groningen, Leeuwarden, The Netherlands
| | - Antoine Guisan
- Department of Ecology and Evolution, University of Lausanne, 1015, Lausanne, Switzerland
- Institute of Earth Surface Dynamics, University of Lausanne, 1015, Lausanne, Switzerland
| | - Tarek Hattab
- MARBEC, Univ Montpellier, CNRS, Ifremer, IRD, Sète, France
| | - Joaquin Hortal
- Department of Biogeography and Global Change, Museo Nacional de Ciencias Naturales (MNCN-CSIC), Madrid, Spain
| | | | | | - Jonathan Lenoir
- UMR CNRS 7058 "Ecologie et Dynamique des Systèmes Anthropisés" (EDYSAN), Université de Picardie Jules Verne, 1 Rue des Louvels, 80000, Amiens, France
| | - Silvia Mirri
- Department of Computer Science and Engineering, Alma Mater Studiorum University of Bologna, via Irnerio 42, 40126, Bologna, Italy
| | - Vítězslav Moudrý
- Czech University of Life Sciences Prague, Faculty of Environmental Sciences, Department of Spatial Sciences, Kamýcka 129, Praha - Suchdol, 16500, Czech Republic
| | - Babak Naimi
- Rui Nabeiro Biodiversity Chair, MED Institute, University of Évora, Évora, Portugal
| | - Jakub Nowosad
- Institute of Geoecology and Geoinformation, Adam Mickiewicz University, Krygowskiego 10, 61-680, Poznan, Poland
| | - Francesco Maria Sabatini
- BIOME Lab, Department of Biological, Geological and Environmental Sciences, Alma Mater Studiorum University of Bologna, via Irnerio 42, 40126, Bologna, Italy
- Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague, Prague - Suchdol, Czech Republic
| | - Andreas H Schweiger
- Department of Plant Ecology, Institute of Landscape and Plant Ecology, University of Hohenheim, Stuttgart, Germany
| | - Petra Šímová
- Czech University of Life Sciences Prague, Faculty of Environmental Sciences, Department of Spatial Sciences, Kamýcka 129, Praha - Suchdol, 16500, Czech Republic
| | | | - Piero Zannini
- BIOME Lab, Department of Biological, Geological and Environmental Sciences, Alma Mater Studiorum University of Bologna, via Irnerio 42, 40126, Bologna, Italy
| | - Marco Malavasi
- University of Sassari, Department of Chemistry, Physics, Mathematics and Natural Sciences, Sassari, Italy
| |
Collapse
|
5
|
Pilowsky JA, Colwell RK, Rahbek C, Fordham DA. Process-explicit models reveal the structure and dynamics of biodiversity patterns. SCIENCE ADVANCES 2022; 8:eabj2271. [PMID: 35930641 PMCID: PMC9355350 DOI: 10.1126/sciadv.abj2271] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
With ever-growing data availability and computational power at our disposal, we now have the capacity to use process-explicit models more widely to reveal the ecological and evolutionary mechanisms responsible for spatiotemporal patterns of biodiversity. Most research questions focused on the distribution of diversity cannot be answered experimentally, because many important environmental drivers and biological constraints operate at large spatiotemporal scales. However, we can encode proposed mechanisms into models, observe the patterns they produce in virtual environments, and validate these patterns against real-world data or theoretical expectations. This approach can advance understanding of generalizable mechanisms responsible for the distributions of organisms, communities, and ecosystems in space and time, advancing basic and applied science. We review recent developments in process-explicit models and how they have improved knowledge of the distribution and dynamics of life on Earth, enabling biodiversity to be better understood and managed through a deeper recognition of the processes that shape genetic, species, and ecosystem diversity.
Collapse
Affiliation(s)
- Julia A. Pilowsky
- The Environment Institute, School of Biological Sciences, University of Adelaide, Adelaide, Australia
- Center for Macroecology, Evolution, and Climate, GLOBE Institute, University of Copenhagen, Copenhagen, Denmark
- Corresponding author. (J.A.P.); (D.A.F.)
| | - Robert K. Colwell
- Center for Macroecology, Evolution, and Climate, GLOBE Institute, University of Copenhagen, Copenhagen, Denmark
- University of Colorado Museum of Natural History, Boulder, CO, USA
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT, USA
- Departmento de Ecología, Universidade Federal de Goiás, Goiás, Brazil
| | - Carsten Rahbek
- Center for Macroecology, Evolution, and Climate, GLOBE Institute, University of Copenhagen, Copenhagen, Denmark
- Center for Global Mountain Biodiversity, GLOBE Institute, University of Copenhagen, Copenhagen, Denmark
- Institute of Ecology, Peking University, Beijing, China
- Danish Institute for Advanced Study, University of Southern Denmark, Odense, Denmark
| | - Damien A. Fordham
- The Environment Institute, School of Biological Sciences, University of Adelaide, Adelaide, Australia
- Center for Macroecology, Evolution, and Climate, GLOBE Institute, University of Copenhagen, Copenhagen, Denmark
- Center for Global Mountain Biodiversity, GLOBE Institute, University of Copenhagen, Copenhagen, Denmark
- Corresponding author. (J.A.P.); (D.A.F.)
| |
Collapse
|
6
|
Takashina N, Plank MJ, Jenkins CN, Economo EP. Species-range-size distributions: Integrating the effects of speciation, transformation, and extinction. Ecol Evol 2022; 12:e8341. [PMID: 35127000 PMCID: PMC8796946 DOI: 10.1002/ece3.8341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 09/23/2021] [Accepted: 10/25/2021] [Indexed: 12/02/2022] Open
Abstract
The species-range size distribution is a product of speciation, transformation of range-sizes, and extinction. Previous empirical studies showed that it has a left-skewed lognormal-like distribution. We developed a new mathematical framework to study species-range-size distributions, one in which allopatric speciation, transformation of range size, and the extinction process are explicitly integrated. The approach, which we call the gain-loss-allopatric speciation model, allows us to explore the effects of various speciation scenarios. Our model captures key dynamics thought to lead to known range-size distributions. We also fitted the model to empirical range-size distributions of birds, mammals, and beetles. Since geographic range dynamics are linked to speciation and extinction, our model provides predictions for the dynamics of species richness. When a species-range-size distribution initially evolves away from the range sizes at which the likelihood of speciation is low, it tends to cause diversification slowdown even in the absence of (bio)diversity dependence in speciation rate. Using the mathematical model developed here, we give a potential explanation for how observed range-size distributions emerge from range-size dynamics. Although the framework presented is minimalistic, it provides a starting point for examining hypotheses based on more complex mechanisms.
Collapse
Affiliation(s)
- Nao Takashina
- Biodiversity and Biocomplexity UnitOkinawa Institute of Science and Technology Graduate UniversityOnna‐sonJapan
- Department of International StudiesThe University of TokyoKashiwaJapan
| | - Michael J. Plank
- School of Mathematics and Statistics and Te Pūnaha MatatiniUniversity of CanterburyChristchurchNew Zealand
| | - Clinton N. Jenkins
- Department of Earth and EnvironmentKimberly Green Latin American and Caribbean CenterFlorida International UniversityMiamiFloridaUSA
| | - Evan P. Economo
- Biodiversity and Biocomplexity UnitOkinawa Institute of Science and Technology Graduate UniversityOnna‐sonJapan
| |
Collapse
|
7
|
Hagen O, Flück B, Fopp F, Cabral JS, Hartig F, Pontarp M, Rangel TF, Pellissier L. gen3sis: A general engine for eco-evolutionary simulations of the processes that shape Earth's biodiversity. PLoS Biol 2021; 19:e3001340. [PMID: 34252071 PMCID: PMC8384074 DOI: 10.1371/journal.pbio.3001340] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 07/22/2021] [Accepted: 06/23/2021] [Indexed: 11/21/2022] Open
Abstract
Understanding the origins of biodiversity has been an aspiration since the days of early naturalists. The immense complexity of ecological, evolutionary, and spatial processes, however, has made this goal elusive to this day. Computer models serve progress in many scientific fields, but in the fields of macroecology and macroevolution, eco-evolutionary models are comparatively less developed. We present a general, spatially explicit, eco-evolutionary engine with a modular implementation that enables the modeling of multiple macroecological and macroevolutionary processes and feedbacks across representative spatiotemporally dynamic landscapes. Modeled processes can include species' abiotic tolerances, biotic interactions, dispersal, speciation, and evolution of ecological traits. Commonly observed biodiversity patterns, such as α, β, and γ diversity, species ranges, ecological traits, and phylogenies, emerge as simulations proceed. As an illustration, we examine alternative hypotheses expected to have shaped the latitudinal diversity gradient (LDG) during the Earth's Cenozoic era. Our exploratory simulations simultaneously produce multiple realistic biodiversity patterns, such as the LDG, current species richness, and range size frequencies, as well as phylogenetic metrics. The model engine is open source and available as an R package, enabling future exploration of various landscapes and biological processes, while outputs can be linked with a variety of empirical biodiversity patterns. This work represents a key toward a numeric, interdisciplinary, and mechanistic understanding of the physical and biological processes that shape Earth's biodiversity.
Collapse
Affiliation(s)
- Oskar Hagen
- Landscape Ecology, Institute of Terrestrial Ecosystems, Department of
Environmental Systems Science, ETH Zürich, Zürich, Switzerland
- Land Change Science Research Unit, Swiss Federal Institute for Forest,
Snow and Landscape Research, WSL, Birmensdorf, Switzerland
| | - Benjamin Flück
- Landscape Ecology, Institute of Terrestrial Ecosystems, Department of
Environmental Systems Science, ETH Zürich, Zürich, Switzerland
- Land Change Science Research Unit, Swiss Federal Institute for Forest,
Snow and Landscape Research, WSL, Birmensdorf, Switzerland
| | - Fabian Fopp
- Landscape Ecology, Institute of Terrestrial Ecosystems, Department of
Environmental Systems Science, ETH Zürich, Zürich, Switzerland
- Land Change Science Research Unit, Swiss Federal Institute for Forest,
Snow and Landscape Research, WSL, Birmensdorf, Switzerland
| | - Juliano S. Cabral
- Ecosystem Modeling, Center for Computational and Theoretical Biology,
University of Würzburg, Würzburg, Germany
| | - Florian Hartig
- Theoretical Ecology, University of Regensburg, Regensburg,
Germany
| | | | - Thiago F. Rangel
- Department of Ecology, Institute of Biological Sciences, Federal
University of Goiás, Goiânia, Brazil
| | - Loïc Pellissier
- Landscape Ecology, Institute of Terrestrial Ecosystems, Department of
Environmental Systems Science, ETH Zürich, Zürich, Switzerland
- Land Change Science Research Unit, Swiss Federal Institute for Forest,
Snow and Landscape Research, WSL, Birmensdorf, Switzerland
| |
Collapse
|
8
|
Gallagher CA, Chudzinska M, Larsen-Gray A, Pollock CJ, Sells SN, White PJC, Berger U. From theory to practice in pattern-oriented modelling: identifying and using empirical patterns in predictive models. Biol Rev Camb Philos Soc 2021; 96:1868-1888. [PMID: 33978325 DOI: 10.1111/brv.12729] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Revised: 04/14/2021] [Accepted: 04/16/2021] [Indexed: 01/21/2023]
Abstract
To robustly predict the effects of disturbance and ecosystem changes on species, it is necessary to produce structurally realistic models with high predictive power and flexibility. To ensure that these models reflect the natural conditions necessary for reliable prediction, models must be informed and tested using relevant empirical observations. Pattern-oriented modelling (POM) offers a systematic framework for employing empirical patterns throughout the modelling process and has been coupled with complex systems modelling, such as in agent-based models (ABMs). However, while the production of ABMs has been rising rapidly, the explicit use of POM has not increased. Challenges with identifying patterns and an absence of specific guidelines on how to implement empirical observations may limit the accessibility of POM and lead to the production of models which lack a systematic consideration of reality. This review serves to provide guidance on how to identify and apply patterns following a POM approach in ABMs (POM-ABMs), specifically addressing: where in the ecological hierarchy can we find patterns; what kinds of patterns are useful; how should simulations and observations be compared; and when in the modelling cycle are patterns used? The guidance and examples provided herein are intended to encourage the application of POM and inspire efficient identification and implementation of patterns for both new and experienced modellers alike. Additionally, by generalising patterns found especially useful for POM-ABM development, these guidelines provide practical help for the identification of data gaps and guide the collection of observations useful for the development and verification of predictive models. Improving the accessibility and explicitness of POM could facilitate the production of robust and structurally realistic models in the ecological community, contributing to the advancement of predictive ecology at large.
Collapse
Affiliation(s)
- Cara A Gallagher
- Department of Plant Ecology and Conservation Biology, University of Potsdam, Am Mühlenberg 3, Potsdam, 14469, Germany.,Department of Bioscience, Aarhus University, Frederiksborgvej 399, Roskilde, 4000
| | - Magda Chudzinska
- Sea Mammal Research Unit, Scottish Oceans Institute, University of St Andrews, St Andrews, KY16 9ST, U.K
| | - Angela Larsen-Gray
- Department of Integrative Biology, University of Wisconsin-Madison, 250 N. Mills St., Madison, WI, 53706, U.S.A
| | | | - Sarah N Sells
- Montana Cooperative Wildlife Research Unit, The University of Montana, 205 Natural Sciences, Missoula, MT, 59812, U.S.A
| | - Patrick J C White
- School of Applied Sciences, Edinburgh Napier University, 9 Sighthill Ct., Edinburgh, EH11 4BN, U.K
| | - Uta Berger
- Institute of Forest Growth and Computer Science, Technische Universität Dresden, Dresden, 01062, Germany
| |
Collapse
|
9
|
Beaugrand G, Kirby R, Goberville E. The mathematical influence on global patterns of biodiversity. Ecol Evol 2020; 10:6494-6511. [PMID: 32724528 PMCID: PMC7381758 DOI: 10.1002/ece3.6385] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 02/19/2020] [Accepted: 03/19/2020] [Indexed: 01/25/2023] Open
Abstract
Although we understand how species evolve, we do not appreciate how this process has filled an empty world to create current patterns of biodiversity. Here, we conduct a numerical experiment to determine why biodiversity varies spatially on our planet. We show that spatial patterns of biodiversity are mathematically constrained and arise from the interaction between the species' ecological niches and environmental variability that propagates to the community level. Our results allow us to explain key biological observations such as (a) latitudinal biodiversity gradients (LBGs) and especially why oceanic LBGs primarily peak at midlatitudes while terrestrial LBGs generally exhibit a maximum at the equator, (b) the greater biodiversity on land even though life first evolved in the sea, (c) the greater species richness at the seabed than at the sea surface, and (d) the higher neritic (i.e., species occurring in areas with a bathymetry lower than 200 m) than oceanic (i.e., species occurring in areas with a bathymetry higher than 200 m) biodiversity. Our results suggest that a mathematical constraint originating from a fundamental ecological interaction, that is, the niche-environment interaction, fixes the number of species that can establish regionally by speciation or migration.
Collapse
Affiliation(s)
- Gregory Beaugrand
- LOGLaboratoire d'Océanologie et de GéosciencesCNRSUMR 8187WimereuxFrance
| | | | - Eric Goberville
- Unité Biologie des Organismes et Ecosystèmes Aquatiques (BOREA)Muséum National d’Histoire NaturelleSorbonne UniversitéUniversité de Caen NormandieUniversité des AntillesCNRSIRDParisFrance
| |
Collapse
|
10
|
Climatic-niche evolution follows similar rules in plants and animals. Nat Ecol Evol 2020; 4:753-763. [PMID: 32203479 DOI: 10.1038/s41559-020-1158-x] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Accepted: 02/24/2020] [Indexed: 12/24/2022]
Abstract
Climatic niches are essential in determining where species can occur and how they will respond to climate change. However, it remains unclear if climatic-niche evolution is similar in plants and animals or is intrinsically different. For example, previous authors have proposed that plants have broader environmental tolerances than animals but are more sensitive to climate change. Here, we test ten predictions about climatic-niche evolution in plants and animals, using phylogenetic and climatic data for 19 plant clades and 17 vertebrate clades (2,087 species total). Surprisingly, we find that for all ten predictions, plants and animals show similar patterns. For example, in both groups, climatic niches change at similar mean rates and species have similar mean niche breadths, and niche breadths show similar relationships with latitude across groups. Our results suggest that there are general 'rules' of climatic-niche evolution that span plants and animals, despite the fundamental differences in their biology. These results may help to explain why plants and animals have similar responses to climate change and why they often have shared species richness patterns, biogeographic regions, biomes and biodiversity hotspots.
Collapse
|
11
|
Dispersion fields reveal the compositional structure of South American vertebrate assemblages. Nat Commun 2020; 11:491. [PMID: 31980659 PMCID: PMC6981175 DOI: 10.1038/s41467-019-14267-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2019] [Accepted: 12/19/2019] [Indexed: 11/22/2022] Open
Abstract
The causes of continental patterns in species richness continue to spur heated discussion. Hypotheses based on ambient energy have dominated the debate, but are increasingly being challenged by hypotheses that model richness as the overlap of species ranges, ultimately controlled by continental range dynamics of individual species. At the heart of this controversy lies the question of whether species richness of individual grid cells is controlled by local factors, or reflects larger-scale spatial patterns in the turnover of species’ ranges. Here, we develop a new approach based on assemblage dispersion fields, formed by overlaying the geographic ranges of all species co-occurring in a grid cell. We created dispersion fields for all tetrapods of South America, and characterized the orientation and shape of dispersion fields as a vector field. The resulting maps demonstrate the existence of macro-structures in the turnover of biotic similarity at continental scale that are congruent among vertebrate classes. These structures underline the importance of continental-scale processes for species richness in individual assemblages. Ecologists continue to debate whether local species assemblages result from habitat filtering or from turnover among the regional species pool. Here the authors develop a “dispersion field” method to mapping species range overlaps, showing that regional turnover processes are key to local assembly.
Collapse
|
12
|
Abstract
In this work, Grinnellian niche theory (a body of theory about geographic distributions of species in terms of noninteracting niche variables) is used to demonstrate that species-area relationships emerge with both size of environmental space and size of geographic area. As environmental space increases, more species' fundamental niches are included, thus increasing the number of species capable of living in the corresponding region. This idea is made operational by proposing a size measure for multidimensional environmental space and approximating fundamental niches with minimum volume ellipsoids. This framework allows estimating a presence-absence matrix based on the distribution of fundamental niches in environmental space, from which many biodiversity measures can be calculated, such as beta diversity. I establish that Whittaker's equation for beta diversity is equivalent to MacArthur's formula relating species numbers and niche breadth; this latter equation provides a mechanism for the species-niche space relationship. I illustrate the theoretical results via exploration of niches of the terrestrial mammals of North America (north of Panama). Each world region has a unique structure of its environmental space, and the position of fundamental niches in niche space is different for different clades; therefore, species-area relationships depend on the clades involved and the region of focus, mostly as a function of MacArthur's niche beta diversity. Analyzing species-area relationships from the perspective of niche position in environmental space is novel, shifting emphasis from demographic processes to historical, geographic, and climatic factors; moreover, the Grinnellian approach is based on available data and is computationally feasible.
Collapse
|
13
|
|
14
|
Spatio-temporal climate change contributes to latitudinal diversity gradients. Nat Ecol Evol 2019; 3:1419-1429. [DOI: 10.1038/s41559-019-0962-7] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 07/12/2019] [Indexed: 01/03/2023]
|
15
|
Norberg A, Abrego N, Blanchet FG, Adler FR, Anderson BJ, Anttila J, Araújo MB, Dallas T, Dunson D, Elith J, Foster SD, Fox R, Franklin J, Godsoe W, Guisan A, O'Hara B, Hill NA, Holt RD, Hui FKC, Husby M, Kålås JA, Lehikoinen A, Luoto M, Mod HK, Newell G, Renner I, Roslin T, Soininen J, Thuiller W, Vanhatalo J, Warton D, White M, Zimmermann NE, Gravel D, Ovaskainen O. A comprehensive evaluation of predictive performance of 33 species distribution models at species and community levels. ECOL MONOGR 2019. [DOI: 10.1002/ecm.1370] [Citation(s) in RCA: 169] [Impact Index Per Article: 28.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Anna Norberg
- Organismal and Evolutionary Biology Research Programme University of Helsinki P.O. Box 65 Helsinki FI‐00014 Finland
| | - Nerea Abrego
- Department of Biology Centre for Biodiversity Dynamics Norwegian University of Science and Technology Trondheim N‐7491 Norway
- Department of Agricultural Sciences University of Helsinki P.O. Box 27 Helsinki FI‐00014 Finland
| | - F. Guillaume Blanchet
- Département de Biologie Université de Sherbrooke 2500 boulevard de l'Université Sherbrooke Quebec J1K 2R1 Canada
| | - Frederick R. Adler
- Department of Mathematics University of Utah 155 South 1400 East Salt Lake City Utah 84112 USA
- School of Biological Sciences University of Utah 257 South 1400 East Salt Lake City Utah 84112 USA
| | | | - Jani Anttila
- Organismal and Evolutionary Biology Research Programme University of Helsinki P.O. Box 65 Helsinki FI‐00014 Finland
| | - Miguel B. Araújo
- Departmento de Biogeografía y Cambio Global Museo Nacional de Ciencias Naturales Consejo Superior de Investigaciones Científicas (CSIC) Calle José Gutiérrez Abascal 2 Madrid 28006 Spain
- Rui Nabeiro Biodiversity Chair Universidade de Évora Largo dos Colegiais Evora 7000 Portugal
- Center for Macroecology, Evolution and Climate Natural History Museum of Denmark University of Copenhagen Copenhagen 2100 Denmark
| | - Tad Dallas
- Organismal and Evolutionary Biology Research Programme University of Helsinki P.O. Box 65 Helsinki FI‐00014 Finland
| | - David Dunson
- Department of Statistical Science Duke University P.O. Box 90251 Durham North Carolina 27708 USA
| | - Jane Elith
- School of BioSciences University of Melbourne Parkville Victoria 3010 Australia
| | - Scott D. Foster
- Commonwealth Scientific and Industrial Research Organisation (CSIRO) Hobart Tasmania Australia
| | - Richard Fox
- Butterfly Conservation Manor Yard, East Lulworth Wareham BH20 5QP United Kingdom
| | - Janet Franklin
- Department of Botany and Plant Sciences University of California Riverside California 92521 USA
| | - William Godsoe
- Bio‐Protection Research Centre Lincoln University P.O. Box 85084 Lincoln 7647 New Zealand
| | - Antoine Guisan
- Department of Ecology and Evolution (DEE) University of Lausanne, Biophore Lausanne CH‐1015 Switzerland
- Institute of Earth Surface Dynamics (IDYST) University of Lausanne, Geopolis Lausanne CH‐1015 Switzerland
| | - Bob O'Hara
- Department of Mathematical Sciences Norwegian University of Science and Technology Trondheim N‐7491 Norway
| | - Nicole A. Hill
- Institute for Marine and Antarctic Studies University of Tasmania Private Bag 49 Hobart Tasmania 7001 Australia
| | - Robert D. Holt
- Department of Biology The University of Florida Gainesville Florida 32611 USA
| | - Francis K. C. Hui
- Mathematical Sciences Institute The Australian National University Acton Australian Capital Territory 2601 Australia
| | - Magne Husby
- Nord University Røstad Levanger 7600 Norway
- BirdLife Norway Sandgata 30B Trondheim 7012 Norway
| | - John Atle Kålås
- Norwegian Institute for Nature Research P.O. Box 5685, Torgarden Trondheim NO‐7485 Norway
| | - Aleksi Lehikoinen
- The Helsinki Lab of Ornithology Finnish Museum of Natural History University of Helsinki P.O. Box 17 Helsinki FI‐00014 Finland
| | - Miska Luoto
- Department of Geosciences and Geography University of Helsinki P.O. Box 64 Helsinki 00014 Finland
| | - Heidi K. Mod
- Institute of Earth Surface Dynamics (IDYST) University of Lausanne, Geopolis Lausanne CH‐1015 Switzerland
| | - Graeme Newell
- Biodiversity Division Department of Environment, Land, Water & Planning Arthur Rylah Institute for Environmental Research 123 Brown Street Heidelberg Victoria 3084 Australia
| | - Ian Renner
- School of Mathematical and Physical Sciences The University of Newcastle University Drive Callaghan New South Wales 2308 Australia
| | - Tomas Roslin
- Department of Agricultural Sciences University of Helsinki P.O. Box 27 Helsinki FI‐00014 Finland
- Department of Ecology Swedish University of Agricultural Sciences Box 7044 Uppsala 750 07 Sweden
| | - Janne Soininen
- Department of Geosciences and Geography University of Helsinki P.O. Box 64 Helsinki 00014 Finland
| | - Wilfried Thuiller
- CNRS LECA Laboratoire d’Écologie Alpine University Grenoble Alpes Grenoble F‐38000 France
| | - Jarno Vanhatalo
- Organismal and Evolutionary Biology Research Programme University of Helsinki P.O. Box 65 Helsinki FI‐00014 Finland
| | - David Warton
- School of Mathematics and Statistics Evolution & Ecology Research Centre University of New South Wales Sydney New South Wales 2052 Australia
| | - Matt White
- Biodiversity Division Department of Environment, Land, Water & Planning Arthur Rylah Institute for Environmental Research 123 Brown Street Heidelberg Victoria 3084 Australia
| | - Niklaus E. Zimmermann
- Dynamic Macroecology Swiss Federal Research Institute WSL Zuercherstrasse 111 Birmensdorf CH‐8903 Switzerland
| | - Dominique Gravel
- Département de Biologie Université de Sherbrooke 2500 boulevard de l'Université Sherbrooke Quebec J1K 2R1 Canada
| | - Otso Ovaskainen
- Organismal and Evolutionary Biology Research Programme University of Helsinki P.O. Box 65 Helsinki FI‐00014 Finland
- Department of Biology Centre for Biodiversity Dynamics Norwegian University of Science and Technology Trondheim N‐7491 Norway
| |
Collapse
|
16
|
Stevens RD, Rowe RJ, Badgley C. Gradients of mammalian biodiversity through space and time. J Mammal 2019. [DOI: 10.1093/jmammal/gyz024] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Affiliation(s)
- Richard D Stevens
- Department of Natural Resources Management and Museum of Texas Tech University, Lubbock, TX, USA
| | - Rebecca J Rowe
- Department of Natural Resources and the Environment, University of New Hampshire, Durham, NH, USA
| | - Catherine Badgley
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
17
|
Skeels A, Cardillo M. Reconstructing the Geography of Speciation from Contemporary Biodiversity Data. Am Nat 2019; 193:240-255. [DOI: 10.1086/701125] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
18
|
Saupe EE, Barve N, Owens HL, Cooper JC, Hosner PA, Peterson AT. Reconstructing Ecological Niche Evolution When Niches Are Incompletely Characterized. Syst Biol 2018; 67:428-438. [PMID: 29088474 DOI: 10.1093/sysbio/syx084] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Accepted: 10/24/2017] [Indexed: 12/28/2022] Open
Abstract
Evolutionary dynamics of abiotic ecological niches across phylogenetic history can shed light on large-scale biogeographic patterns, macroevolutionary rate shifts, and the relative ability of lineages to respond to global change. An unresolved question is how best to represent and reconstruct evolution of these complex traits at coarse spatial scales through time. Studies have approached this question by integrating phylogenetic comparative methods with niche estimates inferred from correlative and other models. However, methods for estimating niches often produce incomplete characterizations, as they are inferred from present-day distributions that may be limited in full expression of the fundamental ecological niche by biotic interactions, dispersal limitations, and the existing set of environmental conditions. Here, we test whether incomplete niche characterizations inherent in most estimates of species' niches bias phylogenetic reconstructions of niche evolution, using simulations of virtual species with known niches. Results establish that incompletely characterized niches inflate estimates of evolutionary change and lead to error in ancestral state reconstructions. Our analyses also provide a potential mechanism to explain the frequent observation that maximum thermal tolerances are more conserved than minimum thermal tolerances: populations and species experience more spatial variation in minimum temperature than in maximum temperature across their distributions and, consequently, may experience stronger diversifying selection for cold tolerance.
Collapse
Affiliation(s)
- Erin E Saupe
- Department of Earth Sciences, University of Oxford, South Parks Road, Oxford OX1 3AN, UK
| | - Narayani Barve
- Florida Museum of Natural History, University of Florida, Dickinson Hall, 1659 Museum Road Gainesville, FL 32611, USA
| | - Hannah L Owens
- Florida Museum of Natural History, University of Florida, Dickinson Hall, 1659 Museum Road Gainesville, FL 32611, USA
| | - Jacob C Cooper
- Committee on Evolutionary Biology, University of Chicago, 1025 East 57th Street, IL 60637, USA
| | - Peter A Hosner
- Department of Biology, University of Florida, 220 Bartram Hall, Gainesville, FL 32611, USA
| | - A Townsend Peterson
- Biodiversity Institute, University of Kansas, Dyche Hall, 1345 Jayhawk Blvd., Lawrence, KS 66045, USA
| |
Collapse
|
19
|
Rangel TF, Edwards NR, Holden PB, Diniz-Filho JAF, Gosling WD, Coelho MTP, Cassemiro FAS, Rahbek C, Colwell RK. Modeling the ecology and evolution of biodiversity: Biogeographical cradles, museums, and graves. Science 2018; 361:361/6399/eaar5452. [DOI: 10.1126/science.aar5452] [Citation(s) in RCA: 185] [Impact Index Per Article: 26.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Accepted: 06/05/2018] [Indexed: 12/24/2022]
Abstract
Individual processes shaping geographical patterns of biodiversity are increasingly understood, but their complex interactions on broad spatial and temporal scales remain beyond the reach of analytical models and traditional experiments. To meet this challenge, we built a spatially explicit, mechanistic simulation model implementing adaptation, range shifts, fragmentation, speciation, dispersal, competition, and extinction, driven by modeled climates of the past 800,000 years in South America. Experimental topographic smoothing confirmed the impact of climate heterogeneity on diversification. The simulations identified regions and episodes of speciation (cradles), persistence (museums), and extinction (graves). Although the simulations had no target pattern and were not parameterized with empirical data, emerging richness maps closely resembled contemporary maps for major taxa, confirming powerful roles for evolution and diversification driven by topography and climate.
Collapse
Affiliation(s)
- Thiago F. Rangel
- Departmento de Ecologia, Universidade Federal de Goiás, CP 131, 74.001-970 Goiânia, Goiás, Brazil
| | - Neil R. Edwards
- School of Environment, Earth, and Ecosystems, The Open University, Milton Keynes, UK
| | - Philip B. Holden
- School of Environment, Earth, and Ecosystems, The Open University, Milton Keynes, UK
| | | | - William D. Gosling
- School of Environment, Earth, and Ecosystems, The Open University, Milton Keynes, UK
- Department of Ecosystem and Landscape Dynamics, Institute of Biodiversity and Ecosystem Dynamics, University of Amsterdam, Science Park 904, Amsterdam, Netherlands
| | - Marco Túlio P. Coelho
- Departmento de Ecologia, Universidade Federal de Goiás, CP 131, 74.001-970 Goiânia, Goiás, Brazil
| | - Fernanda A. S. Cassemiro
- Departmento de Ecologia, Universidade Federal de Goiás, CP 131, 74.001-970 Goiânia, Goiás, Brazil
- Núcleo de Pesquisa em Ictiologia, Limnologia e Aquicultura. Universidade Estadual de Maringá, Maringá, PR, Brazil
| | - Carsten Rahbek
- Center for Macroecology, Evolution and Climate, Natural History Museum of Denmark, University of Copenhagen, Universitetsparken 15, 2100 Copenhagen O, Denmark
- Department of Life Sciences, Imperial College London, Ascot SL5 7PY, UK
| | - Robert K. Colwell
- Departmento de Ecologia, Universidade Federal de Goiás, CP 131, 74.001-970 Goiânia, Goiás, Brazil
- Center for Macroecology, Evolution and Climate, Natural History Museum of Denmark, University of Copenhagen, Universitetsparken 15, 2100 Copenhagen O, Denmark
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT 06269, USA
- University of Colorado Museum of Natural History, Boulder, CO 80309, USA
| |
Collapse
|
20
|
Chalmandrier L, Albouy C, Descombes P, Sandel B, Faurby S, Svenning JC, Zimmermann NE, Pellissier L. Comparing spatial diversification and meta-population models in the Indo-Australian Archipelago. ROYAL SOCIETY OPEN SCIENCE 2018; 5:171366. [PMID: 29657753 PMCID: PMC5882677 DOI: 10.1098/rsos.171366] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Accepted: 01/31/2018] [Indexed: 06/08/2023]
Abstract
Reconstructing the processes that have shaped the emergence of biodiversity gradients is critical to understand the dynamics of diversification of life on Earth. Islands have traditionally been used as model systems to unravel the processes shaping biological diversity. MacArthur and Wilson's island biogeographic model predicts diversity to be based on dynamic interactions between colonization and extinction rates, while treating islands themselves as geologically static entities. The current spatial configuration of islands should influence meta-population dynamics, but long-term geological changes within archipelagos are also expected to have shaped island biodiversity, in part by driving diversification. Here, we compare two mechanistic models providing inferences on species richness at a biogeographic scale: a mechanistic spatial-temporal model of species diversification and a spatial meta-population model. While the meta-population model operates over a static landscape, the diversification model is driven by changes in the size and spatial configuration of islands through time. We compare the inferences of both models to floristic diversity patterns among land patches of the Indo-Australian Archipelago. Simulation results from the diversification model better matched observed diversity than a meta-population model constrained only by the contemporary landscape. The diversification model suggests that the dynamic re-positioning of islands promoting land disconnection and reconnection induced an accumulation of particularly high species diversity on Borneo, which is central within the island network. By contrast, the meta-population model predicts a higher diversity on the mainlands, which is less compatible with empirical data. Our analyses highlight that, by comparing models with contrasting assumptions, we can pinpoint the processes that are most compatible with extant biodiversity patterns.
Collapse
Affiliation(s)
- Loïc Chalmandrier
- Landscape Ecology, Institute of Terrestrial Ecosystems, ETH Zürich, Zurich, Switzerland
- Swiss Federal Research Institute WSL, 8903 Birmensdorf, Switzerland
| | - Camille Albouy
- Landscape Ecology, Institute of Terrestrial Ecosystems, ETH Zürich, Zurich, Switzerland
- Swiss Federal Research Institute WSL, 8903 Birmensdorf, Switzerland
| | - Patrice Descombes
- Landscape Ecology, Institute of Terrestrial Ecosystems, ETH Zürich, Zurich, Switzerland
- Swiss Federal Research Institute WSL, 8903 Birmensdorf, Switzerland
| | - Brody Sandel
- Department of Biology, Santa Clara University, 500 El Camino Real, Santa Clara, CA 95053, USA
| | - Soren Faurby
- Department of Biogeography and Global Change, Museo Nacional de Ciencias Naturales, CSIC, Madrid, Spain
- Department of Biological and Environmental Sciences, University of Gothenburg, Box 461, SE 405 30 Gothenburg, Sweden
| | - Jens-Christian Svenning
- Section for Ecoinformatics and Biodiversity, Department of Bioscience, Aarhus University, 8000 Aarhus C, Denmark
- Center for Biodiversity Dynamics in a Changing World (BIOCHANGE), Aarhus University, Ny Munkegade 114, Aarhus, Denmark
| | | | - Loïc Pellissier
- Landscape Ecology, Institute of Terrestrial Ecosystems, ETH Zürich, Zurich, Switzerland
- Swiss Federal Research Institute WSL, 8903 Birmensdorf, Switzerland
| |
Collapse
|
21
|
Velasco JA, Villalobos F, Diniz-Filho JAF, Algar AC, Flores-Villela O, KÖhler G, Poe S, Martinez-Meyer E. Climatic and evolutionary factors shaping geographical gradients of species richness in Anolis lizards. Biol J Linn Soc Lond 2018. [DOI: 10.1093/biolinnean/blx160] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Julian A Velasco
- Museo de Zoología, Facultad de Ciencias, Universidad Nacional Autónoma de México, Distrito Federal, Mexico
| | - Fabricio Villalobos
- Red de Biología Evolutiva, Instituto de Ecología, A.C., Xalapa, Veracruz, Mexico
- Departamento de Ecologia, ICB, Universidade Federal de Goiás, Brasil
| | | | - Adam C Algar
- School of Geography, University of Nottingham, Sir Clive Granger Building, Nottingham, UK
| | - Oscar Flores-Villela
- Museo de Zoología, Facultad de Ciencias, Universidad Nacional Autónoma de México, Distrito Federal, Mexico
| | - Gunther KÖhler
- Senckenberg Forschungsinstitut und Naturmuseum, Frankfurt am Main, Germany
| | - Steven Poe
- Department of Biology, University of New Mexico, Albuquerque, NM, USA
| | - Enrique Martinez-Meyer
- Instituto de Biología, Universidad Nacional Autónoma de México, DF and Centro del Cambio Global y la Sustentabilidad, AC, Villahermosa, Mexico
| |
Collapse
|
22
|
Barnes R, Clark AT. Sixty-Five Million Years of Change in Temperature and Topography Explain Evolutionary History in Eastern North American Plethodontid Salamanders. Am Nat 2017; 190:E1-E12. [DOI: 10.1086/691796] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
23
|
Mateo RG, Mokany K, Guisan A. Biodiversity Models: What If Unsaturation Is the Rule? Trends Ecol Evol 2017; 32:556-566. [PMID: 28610851 PMCID: PMC5516772 DOI: 10.1016/j.tree.2017.05.003] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Revised: 05/10/2017] [Accepted: 05/12/2017] [Indexed: 11/26/2022]
Abstract
Improving biodiversity predictions is essential if we are to meet the challenges posed by global change. As knowledge is key to feed models, we need to evaluate how debated theory can affect models. An important ongoing debate is whether environmental constraints limit the number of species that can coexist in a community (saturation), with recent findings suggesting that species richness in many communities might be unsaturated. Here, we propose that biodiversity models could address this issue by accounting for a duality: considering communities as unsaturated but where species composition is constrained by different scale-dependent biodiversity drivers. We identify a variety of promising advances for incorporating this duality into commonly applied biodiversity modelling approaches and improving their spatial predictions. The majority of biodiversity modelling approaches do not explicitly address the question of saturation. Theoretical and methodological implications of saturation or unsaturation in biodiversity modelling. Addressing saturation or unsaturation is vital to produce more reliable conservation strategies. Integrative community modelling frameworks may be the way forward.
Collapse
Affiliation(s)
- Rubén G Mateo
- Department of Ecology and Evolution, University of Lausanne, Biophore, CH-1015, Lausanne, Switzerland; ETSI de Montes, Forestal y del Medio Natural, Universidad Politécnica de Madrid, Ciudad Universitaria s/n, 28040, Madrid, Spain.
| | | | - Antoine Guisan
- Department of Ecology and Evolution, University of Lausanne, Biophore, CH-1015, Lausanne, Switzerland; Institute of Earth Science Dynamics, University of Lausanne, Geopolis, CH-1015 Lausanne, Switzerland
| |
Collapse
|
24
|
Chozas S, Chefaoui RM, Correia O, Bonal R, Hortal J. Environmental niche divergence among three dune shrub sister species with parapatric distributions. ANNALS OF BOTANY 2017; 119:1157-1167. [PMID: 28334085 PMCID: PMC5604598 DOI: 10.1093/aob/mcx004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Accepted: 01/10/2017] [Indexed: 06/06/2023]
Abstract
BACKGROUND AND AIMS The geographical distributions of species are constrained by their ecological requirements. The aim of this work was to analyse the effects of environmental conditions, historical events and biogeographical constraints on the diversification of the three species of the western Mediterranean shrub genus Stauracanthus , which have a parapatric distribution in the Iberian Peninsula. METHODS Ecological niche factor analysis and generalized linear models were used to measure the response of all Stauracanthus species to the environmental gradients and map their potential distributions in the Iberian Peninsula. The bioclimatic niche overlap between the three species was determined by using Schoener's index. The genetic differentiation of the Iberian and northern African populations of Stauracanthus species was characterized with GenalEx. The effects on genetic distances of the most important environmental drivers were assessed through Mantel tests and non-metric multidimensional scaling. KEY RESULTS The three Stauracanthus species show remarkably similar responses to climatic conditions. This supports the idea that all members of this recently diversified clade retain common adaptations to climate and consequently high levels of climatic niche overlap. This contrasts with the diverse edaphic requirements of Stauracanthus species. The populations of the S. genistoides-spectabilis clade grow on Miocene and Pliocene fine-textured sedimentary soils, whereas S. boivinii , the more genetically distant species, occurs on older and more coarse-textured sedimentary substrates. These patterns of diversification are largely consistent with a stochastic process of geographical range expansion and fragmentation coupled with niche evolution in the context of spatially complex environmental fluctuations. CONCLUSIONS : The combined analysis of the distribution, realized environmental niche and phylogeographical relationships of parapatric species proposed in this work allows integration of the biogeographical, ecological and evolutionary processes driving the evolution of species adaptations and how they determine their current geographical ranges.
Collapse
Affiliation(s)
- Sergio Chozas
- cE3c, Centro de Ecologia, Evolução e Alterações Ambientais, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, Edifício C2, Piso 5, 1749-016 Lisboa, Portugal
- Departamento de Biogeografía y Cambio Global, Museo Nacional de Ciencias Naturales (MNCN-CSIC), C/José Gutiérrez Abascal 2, 28006 Madrid, Spain
| | - Rosa M. Chefaoui
- CCMAR, Centro de Ciências do Mar, CIMAR Laboratório Associado, Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
| | - Otília Correia
- cE3c, Centro de Ecologia, Evolução e Alterações Ambientais, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, Edifício C2, Piso 5, 1749-016 Lisboa, Portugal
| | - Raúl Bonal
- Forest Research Group, INDEHESA, Universidad de Extremadura, Avda Virgen del Puerto 2, 10600 Plasencia, Spain
- DITEG Research Group, University of Castilla-La Mancha, Toledo, Spain
| | - Joaquín Hortal
- cE3c, Centro de Ecologia, Evolução e Alterações Ambientais, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, Edifício C2, Piso 5, 1749-016 Lisboa, Portugal
- Departamento de Biogeografía y Cambio Global, Museo Nacional de Ciencias Naturales (MNCN-CSIC), C/José Gutiérrez Abascal 2, 28006 Madrid, Spain
| |
Collapse
|
25
|
Fenton IS, Pearson PN, Dunkley Jones T, Farnsworth A, Lunt DJ, Markwick P, Purvis A. The impact of Cenozoic cooling on assemblage diversity in planktonic foraminifera. Philos Trans R Soc Lond B Biol Sci 2016; 371:20150224. [PMID: 26977064 PMCID: PMC4810817 DOI: 10.1098/rstb.2015.0224] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The Cenozoic planktonic foraminifera (PF) (calcareous zooplankton) have arguably the most detailed fossil record of any group. The quality of this record allows models of environmental controls on macroecology, developed for Recent assemblages, to be tested on intervals with profoundly different climatic conditions. These analyses shed light on the role of long-term global cooling in establishing the modern latitudinal diversity gradient (LDG)--one of the most powerful generalizations in biogeography and macroecology. Here, we test the transferability of environment-diversity models developed for modern PF assemblages to the Eocene epoch (approx. 56-34 Ma), a time of pronounced global warmth. Environmental variables from global climate models are combined with Recent environment-diversity models to predict Eocene richness gradients, which are then compared with observed patterns. The results indicate the modern LDG--lower richness towards the poles--developed through the Eocene. Three possible causes are suggested for the mismatch between statistical model predictions and data in the Early Eocene: the environmental estimates are inaccurate, the statistical model misses a relevant variable, or the intercorrelations among facets of diversity--e.g. richness, evenness, functional diversity--have changed over geological time. By the Late Eocene, environment-diversity relationships were much more similar to those found today.
Collapse
Affiliation(s)
- Isabel S Fenton
- Department of Life Sciences, Natural History Museum, Cromwell Road, London SW7 5BD, UK Department of Life Sciences, Imperial College London, Silwood Park Campus, Ascot SL5 7PY, UK
| | - Paul N Pearson
- School of Earth and Ocean Sciences, Cardiff University, Cardiff CF10 3AT, UK
| | - Tom Dunkley Jones
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Alexander Farnsworth
- School of Geographical Sciences and Cabot Institute, University of Bristol, Bristol BS8 1SS, UK
| | - Daniel J Lunt
- School of Geographical Sciences and Cabot Institute, University of Bristol, Bristol BS8 1SS, UK
| | - Paul Markwick
- Getech Group plc. Elmete Hall, Elmete Lane, Leeds LS8 2LJ, UK
| | - Andy Purvis
- Department of Life Sciences, Natural History Museum, Cromwell Road, London SW7 5BD, UK Department of Life Sciences, Imperial College London, Silwood Park Campus, Ascot SL5 7PY, UK
| |
Collapse
|
26
|
2016 Julie S Denslow & Peter Ashton Prizes for the Outstanding Articles Published inBiotropica. Biotropica 2016. [DOI: 10.1111/btp.12414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
27
|
Gross K, Snyder-Beattie A. A General, Synthetic Model for Predicting Biodiversity Gradients from Environmental Geometry. Am Nat 2016; 188:E85-97. [DOI: 10.1086/688171] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
28
|
Qiao H, Saupe EE, Soberón J, Peterson AT, Myers CE. Impacts of Niche Breadth and Dispersal Ability on Macroevolutionary Patterns. Am Nat 2016; 188:149-62. [DOI: 10.1086/687201] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
29
|
Polly PD, Lawing AM, Eronen JT, Schnitzler J. Processes of ecometric patterning: modelling functional traits, environments, and clade dynamics in deep time. Biol J Linn Soc Lond 2015. [DOI: 10.1111/bij.12716] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- P. David Polly
- Departments of Geological Sciences, Biology and Anthropology; Indiana University; 1001 E. 10th Street Bloomington IN 47405 USA
| | - A. Michelle Lawing
- Department of Ecosystem Science and Management; Spatial Sciences Laboratory; Texas A&M University; 1500 Research Parkway Suite 223 B 2120 TAMU College Station TX 77843-2120 USA
| | - Jussi T. Eronen
- Senckenberg Biodiversity and Climate Research Centre (BiK-F); Senckenberganlage 25 D-60325 Frankfurt am Main Germany
| | - Jan Schnitzler
- Senckenberg Biodiversity and Climate Research Centre (BiK-F); Senckenberganlage 25 D-60325 Frankfurt am Main Germany
| |
Collapse
|
30
|
Mokany K, Ferrier S, Connolly SR, Dunstan PK, Fulton EA, Harfoot MB, Harwood TD, Richardson AJ, Roxburgh SH, Scharlemann JPW, Tittensor DP, Westcott DA, Wintle BA. Integrating modelling of biodiversity composition and ecosystem function. OIKOS 2015. [DOI: 10.1111/oik.02792] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
| | | | - Sean R. Connolly
- School of Marine and Tropical Biology, James Cook University; Townsville QLD Australia
| | | | | | - Michael B. Harfoot
- United Nations Environment Programme World Conservation Monitoring Centre; Cambridge UK
- Computational Ecology and Environmental Science, Microsoft Research; Cambridge UK
| | | | - Anthony J. Richardson
- CSIRO; Brisbane QLD Australia
- Centre for Applications in Natural Resource Mathematics, School of Mathematics and Physics, The Univ. of Queensland; St Lucia QLD Australia
| | | | - Jörn P. W. Scharlemann
- United Nations Environment Programme World Conservation Monitoring Centre; Cambridge UK
- School of Life Sciences, Univ. of Sussex; Brighton UK
| | - Derek P. Tittensor
- United Nations Environment Programme World Conservation Monitoring Centre; Cambridge UK
- Computational Ecology and Environmental Science, Microsoft Research; Cambridge UK
- Dept of Biology; Dalhousie University; Halifax NS Canada
| | | | | |
Collapse
|
31
|
Bonetti MF, Wiens JJ. Evolution of climatic niche specialization: a phylogenetic analysis in amphibians. Proc Biol Sci 2015; 281:rspb.2013.3229. [PMID: 25274369 DOI: 10.1098/rspb.2013.3229] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
The evolution of climatic niche specialization has important implications for many topics in ecology, evolution and conservation. The climatic niche reflects the set of temperature and precipitation conditions where a species can occur. Thus, specialization to a limited set of climatic conditions can be important for understanding patterns of biogeography, species richness, community structure, allopatric speciation, spread of invasive species and responses to climate change. Nevertheless, the factors that determine climatic niche width (level of specialization) remain poorly explored. Here, we test whether species that occur in more extreme climates are more highly specialized for those conditions, and whether there are trade-offs between niche widths on different climatic niche axes (e.g. do species that tolerate a broad range of temperatures tolerate only a limited range of precipitation regimes?). We test these hypotheses in amphibians, using phylogenetic comparative methods and global-scale datasets, including 2712 species with both climatic and phylogenetic data. Our results do not support either hypothesis. Rather than finding narrower niches in more extreme environments, niches tend to be narrower on one end of a climatic gradient but wider on the other. We also find that temperature and precipitation niche breadths are positively related, rather than showing trade-offs. Finally, our results suggest that most amphibian species occur in relatively warm and dry environments and have relatively narrow climatic niche widths on both of these axes. Thus, they may be especially imperilled by anthropogenic climate change.
Collapse
Affiliation(s)
- Maria Fernanda Bonetti
- Programa de Pós Graduação em Ecologia e Conservação, Setor de Ciências Biológicas, Universidade Federal do Paraná, Caixa Postal 19031, Curitiba, Paraná 81.531-990, Brazil
| | - John J Wiens
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ 85721, USA
| |
Collapse
|
32
|
D'Amen M, Rahbek C, Zimmermann NE, Guisan A. Spatial predictions at the community level: from current approaches to future frameworks. Biol Rev Camb Philos Soc 2015; 92:169-187. [PMID: 26426308 DOI: 10.1111/brv.12222] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2015] [Revised: 09/02/2015] [Accepted: 09/09/2015] [Indexed: 12/22/2022]
Abstract
A fundamental goal of ecological research is to understand and model how processes generate patterns so that if conditions change, changes in the patterns can be predicted. Different approaches have been proposed for modelling species assemblage, but their use to predict spatial patterns of species richness and other community attributes over a range of spatial and temporal scales remains challenging. Different methods emphasize different processes of structuring communities and different goals. In this review, we focus on models that were developed for generating spatially explicit predictions of communities, with a particular focus on species richness, composition, relative abundance and related attributes. We first briefly describe the concepts and theories that span the different drivers of species assembly. A combination of abiotic processes and biotic mechanisms are thought to influence the community assembly process. In this review, we describe four categories of drivers: (i) historical and evolutionary, (ii) environmental, (iii) biotic, and (iv) stochastic. We discuss the different modelling approaches proposed or applied at the community level and examine them from different standpoints, i.e. the theoretical bases, the drivers included, the source data, and the expected outputs, with special emphasis on conservation needs under climate change. We also highlight the most promising novelties, possible shortcomings, and potential extensions of existing methods. Finally, we present new approaches to model and predict species assemblages by reviewing promising 'integrative frameworks' and views that seek to incorporate all drivers of community assembly into a unique modelling workflow. We discuss the strengths and weaknesses of these new solutions and how they may hasten progress in community-level modelling.
Collapse
Affiliation(s)
- Manuela D'Amen
- Department of Ecology and Evolution (DEE), University of Lausanne, Biophore, CH-1015, Lausanne, Switzerland
| | - Carsten Rahbek
- CMEC, Natural History Museum of Denmark, University of Copenhagen, Universitetsparken 15, DK-2100, Copenhagen, Denmark
| | - Niklaus E Zimmermann
- Dynamic Macroecology Group, WSL, Zuercherstrasse 111, CH-8903, Birmensdorf, Switzerland
| | - Antoine Guisan
- Department of Ecology and Evolution (DEE), University of Lausanne, Biophore, CH-1015, Lausanne, Switzerland.,Institute of Earth Surface Dynamics (IDYST), University of Lausanne, Geopolis, CH-1015, Lausanne, Switzerland
| |
Collapse
|
33
|
Stegen JC, Lin X, Fredrickson JK, Konopka AE. Estimating and mapping ecological processes influencing microbial community assembly. Front Microbiol 2015; 6:370. [PMID: 25983725 PMCID: PMC4416444 DOI: 10.3389/fmicb.2015.00370] [Citation(s) in RCA: 432] [Impact Index Per Article: 43.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Accepted: 04/11/2015] [Indexed: 12/01/2022] Open
Abstract
Ecological community assembly is governed by a combination of (i) selection resulting from among-taxa differences in performance; (ii) dispersal resulting from organismal movement; and (iii) ecological drift resulting from stochastic changes in population sizes. The relative importance and nature of these processes can vary across environments. Selection can be homogeneous or variable, and while dispersal is a rate, we conceptualize extreme dispersal rates as two categories; dispersal limitation results from limited exchange of organisms among communities, and homogenizing dispersal results from high levels of organism exchange. To estimate the influence and spatial variation of each process we extend a recently developed statistical framework, use a simulation model to evaluate the accuracy of the extended framework, and use the framework to examine subsurface microbial communities over two geologic formations. For each subsurface community we estimate the degree to which it is influenced by homogeneous selection, variable selection, dispersal limitation, and homogenizing dispersal. Our analyses revealed that the relative influences of these ecological processes vary substantially across communities even within a geologic formation. We further identify environmental and spatial features associated with each ecological process, which allowed mapping of spatial variation in ecological-process-influences. The resulting maps provide a new lens through which ecological systems can be understood; in the subsurface system investigated here they revealed that the influence of variable selection was associated with the rate at which redox conditions change with subsurface depth.
Collapse
Affiliation(s)
- James C Stegen
- Fundamental and Computational Sciences Directorate, Biological Sciences Division, Pacific Northwest National Laboratory Richland, WA, USA
| | - Xueju Lin
- Fundamental and Computational Sciences Directorate, Biological Sciences Division, Pacific Northwest National Laboratory Richland, WA, USA
| | - Jim K Fredrickson
- Fundamental and Computational Sciences Directorate, Biological Sciences Division, Pacific Northwest National Laboratory Richland, WA, USA
| | - Allan E Konopka
- Fundamental and Computational Sciences Directorate, Biological Sciences Division, Pacific Northwest National Laboratory Richland, WA, USA
| |
Collapse
|
34
|
Nakazawa Y, Peterson AT. Effects of Climate History and Environmental Grain on Species’ Distributions in Africa and South America. Biotropica 2015. [DOI: 10.1111/btp.12212] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- Yoshinori Nakazawa
- Biodiversity Institute; University of Kansas; Lawrence KS 66045 U.S.A
- Department of Geography; University of Kansas; Lawrence KS 66045 U.S.A
| | | |
Collapse
|
35
|
Cardillo M. Geographic range shifts do not erase the historic signal of speciation in mammals. Am Nat 2015; 185:343-53. [PMID: 25674689 DOI: 10.1086/679663] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Many evolutionary analyses assume that the positions of species geographic ranges are sufficiently phylogenetically conserved that current ranges reflect ancestral ranges and retain the historic signal of speciation. The validity of this assumption has been challenged, because there is evidence that ranges can shift rapidly and extensively. Here I test the assumption of range conservatism using simulations and empirical tests of phylogenetic signal in geographic positions of ranges within mammal orders, families, and genera. In most taxa, range positions show strong phylogenetic signal, quantified using Pagel's λ, Mantel tests, and a novel method to measure phylogenetic signal near the tips of a phylogeny. Taxa with highly labile range positions are exceptions to the general pattern and include very young groups such as Sciurus that may still be in the early, rapid-expansion phase of adaptive radiation. In two orders containing many species with large distributions (Artiodactyla and Carnivora), temporal patterns of range evolution are consistent with large instantaneous shifts in range position associated with allopatric speciation. In most other taxa, range evolution is better described by models that allow ranges to evolve along branches of the phylogeny. The results point to a common pattern of phylogenetically conserved ranges where the current position of species ranges reflects their position at the time of speciation, modified by gradual drift of range boundaries through time.
Collapse
Affiliation(s)
- Marcel Cardillo
- Macroevolution and Macroecology Group, Research School of Biology, Australian National University, Building 116, Daley Road, Canberra 0200, Australia
| |
Collapse
|
36
|
Pyron RA, Costa GC, Patten MA, Burbrink FT. Phylogenetic niche conservatism and the evolutionary basis of ecological speciation. Biol Rev Camb Philos Soc 2014; 90:1248-62. [DOI: 10.1111/brv.12154] [Citation(s) in RCA: 172] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Revised: 09/16/2014] [Accepted: 10/15/2014] [Indexed: 01/31/2023]
Affiliation(s)
- R. Alexander Pyron
- Department of Biological Sciences; The George Washington University; 2023 G Street NW Washington DC 20052 U.S.A
| | - Gabriel C. Costa
- Departamento de Ecologia; Centro de Biociências, Universidade Federal do Rio Grande do Norte; Campus Universitário Lagoa Nova Natal, 59072-970 Rio Grande do Norte Brazil
| | - Michael A. Patten
- Oklahoma Biological Survey; University of Oklahoma; 111 E. Chesapeake Street Norman OK 73019 U.S.A
- Department of Biology; University of Oklahoma; 730 Van Vleet Oval Norman OK 73019 U.S.A
| | - Frank T. Burbrink
- Department of Biology; The Graduate School and University Center, The City University of New York; 365 5th Avenue New York NY 10016 U.S.A
- Department of Biology; The College of Staten Island, The City University of New York; 2800 Victory Boulevard Staten Island NY 10314 U.S.A
| |
Collapse
|
37
|
Vellend M, Srivastava DS, Anderson KM, Brown CD, Jankowski JE, Kleynhans EJ, Kraft NJB, Letaw AD, Macdonald AAM, Maclean JE, Myers-Smith IH, Norris AR, Xue X. Assessing the relative importance of neutral stochasticity in ecological communities. OIKOS 2014. [DOI: 10.1111/oik.01493] [Citation(s) in RCA: 233] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- Mark Vellend
- Dépt de Biologie; Univ. de Sherbrooke; Sherbrooke, QC J1K 2R1 Canada
| | - Diane S. Srivastava
- Dept of Zoology and Biodiversity Research Centre; Univ. of British Columbia; Vancouver, BC V6T 1Z4 Canada
| | - Kathryn M. Anderson
- Dept of Zoology and Biodiversity Research Centre; Univ. of British Columbia; Vancouver, BC V6T 1Z4 Canada
| | - Carissa D. Brown
- Dépt de Biologie; Univ. de Sherbrooke; Sherbrooke, QC J1K 2R1 Canada
| | - Jill E. Jankowski
- Dept of Zoology and Biodiversity Research Centre; Univ. of British Columbia; Vancouver, BC V6T 1Z4 Canada
| | - Elizabeth J. Kleynhans
- Dept of Zoology and Biodiversity Research Centre; Univ. of British Columbia; Vancouver, BC V6T 1Z4 Canada
| | - Nathan J. B. Kraft
- Dept of Zoology and Biodiversity Research Centre; Univ. of British Columbia; Vancouver, BC V6T 1Z4 Canada
| | - Alathea D. Letaw
- Dept of Zoology and Biodiversity Research Centre; Univ. of British Columbia; Vancouver, BC V6T 1Z4 Canada
| | - A. Andrew M. Macdonald
- Dept of Zoology and Biodiversity Research Centre; Univ. of British Columbia; Vancouver, BC V6T 1Z4 Canada
| | - Janet E. Maclean
- Dept of Zoology and Biodiversity Research Centre; Univ. of British Columbia; Vancouver, BC V6T 1Z4 Canada
| | | | - Andrea R. Norris
- Dept of Forest Sciences; Univ. of British Columbia; Vancouver, BC V6T 1Z4 Canada
| | - Xinxin Xue
- Dept of Botany and Biodiversity Research Centre; Univ. of British Columbia; Vancouver, BC V6T 1Z4 Canada
| |
Collapse
|
38
|
Gavin MC, Stepp JR. Rapoport's rule revisited: geographical distributions of human languages. PLoS One 2014; 9:e107623. [PMID: 25216049 PMCID: PMC4162617 DOI: 10.1371/journal.pone.0107623] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2011] [Accepted: 08/21/2014] [Indexed: 11/18/2022] Open
Abstract
One of the most well studied ecological patterns is Rapoport's rule, which posits that the geographical extent of species ranges increases at higher latitudes. However, studies to date have been limited in their geographic scope and results have been equivocal. In turn, much debate exists over potential links between Rapoport's rule and latitudinal patterns in species richness. Humans collectively speak nearly 7000 different languages, which are spread unevenly across the globe, with loci in the tropics. Causes of this skewed distribution have received only limited study. We analyze the extent of Rapoport's rule in human languages at a global scale and within each region of the globe separately. We test the relationship between Rapoport's rule and the richness of languages spoken in different regions. We also explore the frequency distribution of language-range sizes. The language-range area distribution is strongly right-skewed, with 87% of languages having range areas less than 10,000 km(2), and only nine languages with range areas over 1,000,000 km(2). At a global scale, language-range extents and areas are positively correlated with latitude. At a global scale and in five of the six regions examined, language-range extent and language-range area are strongly correlated with language richness. Our results point to group boundary formation as a critical mediator of the relationship between Rapoport's rule and diversity patterns. Where strong group boundaries limit range overlap, as is the case with human languages, and range sizes increase with latitude, latitudinal richness gradients may result.
Collapse
Affiliation(s)
- Michael C. Gavin
- Department of Human Dimensions of Natural Resources, Colorado State University, Fort Collins, CO, United States of America
| | - John Richard Stepp
- Department of Anthropology, University of Florida, Turlington Hall, Gainesville, FL, United States of America
| |
Collapse
|
39
|
Diniz-Filho JAF, Soares TN, Telles MPDC. Pattern-oriented modelling of population genetic structure. Biol J Linn Soc Lond 2014. [DOI: 10.1111/bij.12373] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
| | - Thannya Nascimento Soares
- Departamento de Genética; Instituto de Ciências Biológicas; Universidade Federal de Goiás; CP 131 Campus II 74001-970 Goiânia GO Brazil
| | - Mariana Pires De Campos Telles
- Departamento de Genética; Instituto de Ciências Biológicas; Universidade Federal de Goiás; CP 131 Campus II 74001-970 Goiânia GO Brazil
| |
Collapse
|
40
|
Villalobos F, Lira-Noriega A, Soberón J, Arita HT. Co-diversity and co-distribution in phyllostomid bats: Evaluating the relative roles of climate and niche conservatism. Basic Appl Ecol 2014. [DOI: 10.1016/j.baae.2013.11.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
41
|
Gavin MC, Botero CA, Bowern C, Colwell RK, Dunn M, Dunn RR, Gray RD, Kirby KR, McCarter J, Powell A, Rangel TF, Stepp JR, Trautwein M, Verdolin JL, Yanega G. Toward a Mechanistic Understanding of Linguistic Diversity. Bioscience 2013. [DOI: 10.1525/bio.2013.63.7.6] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
42
|
Stevens RD, Tello JS, Gavilanez MM. Stronger tests of mechanisms underlying geographic gradients of biodiversity: insights from the dimensionality of biodiversity. PLoS One 2013; 8:e56853. [PMID: 23451099 PMCID: PMC3581556 DOI: 10.1371/journal.pone.0056853] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2012] [Accepted: 01/17/2013] [Indexed: 11/29/2022] Open
Abstract
Inference involving diversity gradients typically is gathered by mechanistic tests involving single dimensions of biodiversity such as species richness. Nonetheless, because traits such as geographic range size, trophic status or phenotypic characteristics are tied to a particular species, mechanistic effects driving broad diversity patterns should manifest across numerous dimensions of biodiversity. We develop an approach of stronger inference based on numerous dimensions of biodiversity and apply it to evaluate one such putative mechanism: the mid-domain effect (MDE). Species composition of 10,000-km(2) grid cells was determined by overlaying geographic range maps of 133 noctilionoid bat taxa. We determined empirical diversity gradients in the Neotropics by calculating species richness and three indices each of phylogenetic, functional and phenetic diversity for each grid cell. We also created 1,000 simulated gradients of each examined metric of biodiversity based on a MDE model to estimate patterns expected if species distributions were randomly placed within the Neotropics. For each simulation run, we regressed the observed gradient onto the MDE-expected gradient. If a MDE drives empirical gradients, then coefficients of determination from such an analysis should be high, the intercept no different from zero and the slope no different than unity. Species richness gradients predicted by the MDE fit empirical patterns. The MDE produced strong spatially structured gradients of taxonomic, phylogenetic, functional and phenetic diversity. Nonetheless, expected values generated from the MDE for most dimensions of biodiversity exhibited poor fit to most empirical patterns. The MDE cannot account for most empirical patterns of biodiversity. Fuller understanding of latitudinal gradients will come from simultaneous examination of relative effects of random, environmental and historical mechanisms to better understand distribution and abundance of the current biota.
Collapse
Affiliation(s)
- Richard D Stevens
- Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana, United States of America.
| | | | | |
Collapse
|
43
|
Wiens JJ, Kozak KH, Silva N. Diversity and niche evolution along aridity gradients in north american lizards (phrynosomatidae). Evolution 2013; 67:1715-28. [PMID: 23730764 DOI: 10.1111/evo.12053] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2012] [Accepted: 12/23/2012] [Indexed: 11/26/2022]
Abstract
Deserts occupy approximately 12% of the Earth's land surface, and are thought to have species poor but highly specialized biotas. However, few studies have examined the evolutionary origins of desert biotas and of diversity patterns along aridity gradients. Further, it is unclear if species occurring in more extreme conditions on a given niche axis (i.e., precipitation) are more specialized for those conditions (i.e., have narrower niche breadths). We address these questions here using a time-calibrated phylogeny and climatic data for 117 species of phrynosomatid lizards. Phrynosomatids are the most species-rich family of lizards in North America, and are found from deserts to rainforests. Surprisingly, we find that phrynosomatids have higher richness in more arid environments. This pattern occurs seemingly because they have been present in more arid habitats longer (~55 million years), and lineages in mesic environments are recently derived from more arid-dwelling ancestors. We find little support for the hypothesis that species in more extreme environments are more specialized. Instead, many desert-dwelling species are broadly distributed, and species in the most mesic environments have the broadest niche breadths. In summary, phrynosomatids offer a counterexample to the idea that arid regions are inhabited by a small number of recent and highly specialized lineages.
Collapse
Affiliation(s)
- John J Wiens
- Department of Ecology and Evolutionary Biology, University of Arizona, AZ 85721, USA.
| | | | | |
Collapse
|
44
|
Villalobos F, Rangel TF, Diniz-Filho JAF. Phylogenetic fields of species: cross-species patterns of phylogenetic structure and geographical coexistence. Proc Biol Sci 2013; 280:20122570. [PMID: 23390100 DOI: 10.1098/rspb.2012.2570] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Differential coexistence among species underlies geographical patterns of biodiversity. Understanding such patterns has relied either on ecological or historical approaches applied separately. Recently, macroecology and community phylogenetics have tried to integrate both ecological and historical approaches. However, macroecology is mostly non-phylogenetic, whereas community phylogenetics is largely focused on local scales. Here, we propose a conceptual framework to link macroecology and community phylogenetics by exploring the evolutionary context of large-scale species coexistence, introducing the phylogenetic field concept. This is defined as the phylogenetic structure of species co-occurrence within a focal species' geographical range. We developed concepts and methods for analysing phylogenetic fields and applied them to study coexistence patterns of the bat family Phyllostomidae. Our analyses showed that phyllostomid bats coexist mostly with closely related species, revealing a north-south gradient from overdispersed to clustered phylogenetic fields. Patterns at different phylogenetic levels (i.e. all species versus close relatives only) presented the same gradient. Results support the tropical niche conservatism hypothesis, potentially mediated by higher speciation rates in the region of origin coupled with shared environmental preferences among species. The phylogenetic field approach enables species-based community phylogenetics, instead of those that are site-based, allowing the description of historical processes at more appropriate macroecological and biogeographic scales.
Collapse
Affiliation(s)
- Fabricio Villalobos
- Depto. Ecologia, ICB, Universidade Federal de Goiás, Campus II/UFG, CxP 131, 74001-970 Goiânia, Goiás, Brasil.
| | | | | |
Collapse
|
45
|
Nakazawa Y. Niche breadth, environmental landscape, and physical barriers: their importance as determinants of species distributions. Biol J Linn Soc Lond 2013. [DOI: 10.1111/j.1095-8312.2012.02018.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
46
|
Dray S, Pélissier R, Couteron P, Fortin MJ, Legendre P, Peres-Neto PR, Bellier E, Bivand R, Blanchet FG, De Cáceres M, Dufour AB, Heegaard E, Jombart T, Munoz F, Oksanen J, Thioulouse J, Wagner HH. Community ecology in the age of multivariate multiscale spatial analysis. ECOL MONOGR 2012. [DOI: 10.1890/11-1183.1] [Citation(s) in RCA: 407] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
47
|
Diniz-Filho JAF, Rangel TF, dos Santos MR. Extreme deconstruction supports niche conservatism driving New World bird diversity. ACTA OECOLOGICA 2012. [DOI: 10.1016/j.actao.2012.05.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
48
|
Fisher-Reid MC, Kozak KH, Wiens JJ. How is the rate of climatic-niche evolution related to climatic-niche breadth? Evolution 2012. [PMID: 23206141 DOI: 10.1111/j.1558-5646.2012.01729.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The rate of climatic-niche evolution is important to many research areas in ecology, evolution, and conservation biology, including responses of species to global climate change, spread of invasive species, speciation, biogeography, and patterns of species richness. Previous studies have implied that clades with higher rates of climatic-niche evolution among species should have species with narrower niche breadths, but there is also evidence suggesting the opposite pattern. However, the relationships between rate and breadth have not been explicitly analyzed. Here, we examine the relationships between the rate of climatic-niche evolution and climatic-niche breadth using phylogenetic and climatic data for 250 species in the salamander family Plethodontidae, a group showing considerable variation in both rates of climatic-niche evolution and climatic-niche breadths. Contrary to some expectations, we find no general relationship between climatic-niche breadth and the rate of climatic-niche evolution. Climatic-niche breadths for some ecologically important climatic variables considered separately (temperature seasonality and annual precipitation) do show significant relationships with the rate of climatic-niche evolution, but rates are faster in clades in which species have broader (not narrower) niche breadths. In summary, our results show that narrower niche breadths are not necessarily associated with faster rates of niche evolution.
Collapse
Affiliation(s)
- M Caitlin Fisher-Reid
- Department of Ecology and Evolution, Stony Brook University, Stony Brook, New York 11794-5245, USA.
| | | | | |
Collapse
|
49
|
Aragón P, Sánchez-Fernández D. Can we disentangle predator-prey interactions from species distributions at a macro-scale? A case study with a raptor species. OIKOS 2012. [DOI: 10.1111/j.1600-0706.2012.20348.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
50
|
Borregaard MK, Gotelli NJ, Rahbek C. Are range-size distributions consistent with species-level heritability? Evolution 2012; 66:2216-26. [PMID: 22759297 DOI: 10.1111/j.1558-5646.2012.01581.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The concept of species-level heritability is widely contested. Because it is most likely to apply to emergent, species-level traits, one of the central discussions has focused on the potential heritability of geographic range size. However, a central argument against range-size heritability has been that it is not compatible with the observed shape of present-day species range-size distributions (SRDs), a claim that has never been tested. To assess this claim, we used forward simulation of range-size evolution in clades with varying degrees of range-size heritability, and compared the output of three different models to the range-size distribution of the South American avifauna. Although there were differences among the models, a moderate-to-high degree of range-size heritability consistently leads to SRDs that were similar to empirical data. These results suggest that range-size heritability can generate realistic SRDs, and may play an important role in shaping observed patterns of range sizes.
Collapse
Affiliation(s)
- Michael K Borregaard
- Center of Macroecology, Evolution and Climate, University of Copenhagen, Universitetsparken 15, 2100 Copenhagen Ø, Denmark.
| | | | | |
Collapse
|