1
|
Rietmann SJ, Cochet-Faivre N, Dropsy H, Jagannathan V, Chevallier L, Leeb T. EDA Missense Variant in a Cat with X-Linked Hypohidrotic Ectodermal Dysplasia. Genes (Basel) 2024; 15:854. [PMID: 39062633 PMCID: PMC11276485 DOI: 10.3390/genes15070854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 06/12/2024] [Accepted: 06/26/2024] [Indexed: 07/28/2024] Open
Abstract
Hypohidrotic ectodermal dysplasia is a developmental defect characterized by sparse or absent hair, missing or malformed teeth and defects in eccrine glands. Loss-of-function variants in the X-chromosomal EDA gene have been reported to cause hypohidrotic ectodermal dysplasia in humans, mice, dogs and cattle. We investigated a male cat exhibiting diffuse truncal alopecia with a completely absent undercoat. The cat lacked several teeth, and the remaining teeth had an abnormal conical shape. Whole-genome sequencing revealed a hemizygous missense variant in the EDA gene, XM_011291781.3:c.1042G>A or XP_011290083.1:p.(Ala348Thr). The predicted amino acid exchange is located in the C-terminal TNF signaling domain of the encoded ectodysplasin. The corresponding missense variant in the human EDA gene, p.Ala349Thr, has been reported as a recurring pathogenic variant in several human patients with X-linked hypohidrotic ectodermal dysplasia. The identified feline variant therefore represents the likely cause of the hypohidrotic ectodermal dysplasia in the investigated cat, and the genetic investigation confirmed the suspected clinical diagnosis. This is the first report of an EDA-related hypohidrotic ectodermal dysplasia in cats.
Collapse
Affiliation(s)
- Stefan J. Rietmann
- Institute of Genetics, Vetsuisse Faculty, University of Bern, 3001 Bern, Switzerland; (S.J.R.); (V.J.)
- Dermfocus, University of Bern, 3001 Bern, Switzerland
| | - Noëlle Cochet-Faivre
- Unité de Dermatologie, CHUV-Animaux de Compagnie, Ecole Nationale Vétérinaire d’Alfort, 94700 Maisons-Alfort, France; (N.C.-F.); (H.D.)
- BIPAR, Laboratoire de Santé Animale, INRAE, Ecole Nationale Vétérinaire d’Alfort, 94700 Maisons-Alfort, France
| | - Helene Dropsy
- Unité de Dermatologie, CHUV-Animaux de Compagnie, Ecole Nationale Vétérinaire d’Alfort, 94700 Maisons-Alfort, France; (N.C.-F.); (H.D.)
| | - Vidhya Jagannathan
- Institute of Genetics, Vetsuisse Faculty, University of Bern, 3001 Bern, Switzerland; (S.J.R.); (V.J.)
| | - Lucie Chevallier
- U955-IMRB, Team 10-Biology of the Neuromuscular System, INSERM, UPEC, Ecole Nationale Vétérinaire d’Alfort, 94700 Maisons-Alfort, France;
| | - Tosso Leeb
- Institute of Genetics, Vetsuisse Faculty, University of Bern, 3001 Bern, Switzerland; (S.J.R.); (V.J.)
- Dermfocus, University of Bern, 3001 Bern, Switzerland
| |
Collapse
|
2
|
Reinartz S, Weiß C, Heppelmann M, Hewicker-Trautwein M, Hellige M, Willen L, Feige K, Schneider P, Distl O. A Missense Mutation in the Collagen Triple Helix of EDA Is Associated with X-Linked Recessive Hypohidrotic Ectodermal Dysplasia in Fleckvieh Cattle. Genes (Basel) 2023; 15:8. [PMID: 38275590 PMCID: PMC10815684 DOI: 10.3390/genes15010008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 12/13/2023] [Accepted: 12/15/2023] [Indexed: 01/27/2024] Open
Abstract
Mutations within the ectodysplasin A (EDA) gene have been associated with congenital hypotrichosis and anodontia (HAD/XHED) in humans, mice, dogs and cattle. We identified a three-generation family of Fleckvieh cattle with male calves exhibiting clinical and histopathological signs consistent with an X-linked recessive HAD (XHED). Whole genome and Sanger sequencing of cDNA showed a perfect association of the missense mutation g.85716041G>A (ss2019497443, rs1114816375) within the EDA gene with all three cases following an X-linked recessive inheritance, but normal EDAR and EDARADD. This mutation causes an exchange of glycine (G) with arginine (R) at amino acid position 227 (p.227G>R) in the second collagen triple helix repeat domain of EDA. The EDA variant was associated with a significant reduction and underdevelopment of hair follicles along with a reduced outgrowth of hairs, a complete loss of seromucous nasolabial and mucous tracheal and bronchial glands and a malformation of and reduction in number of teeth. Thermostability of EDA G227R was reduced, consistent with a relatively mild hair and tooth phenotype. However, incisors and canines were more severely affected in one of the calves, which correlated with the presence of a homozygous missense mutation of RNF111 (g.51306765T>G), a putative candidate gene possibly associated with tooth number in EDA-deficient Fleckvieh calves.
Collapse
Affiliation(s)
- Sina Reinartz
- Institute for Animal Breeding and Genetics, University of Veterinary Medicine, 30559 Hannover, Germany;
| | - Christine Weiß
- Clinic for Swine, Ludwig-Maximilians-Universität München, 80539 Munich, Germany;
| | - Maike Heppelmann
- Clinic for Cattle, University of Veterinary Medicine, 30173 Hannover, Germany;
| | | | - Maren Hellige
- Clinic for Horses, University of Veterinary Medicine, 30559 Hannover, Germany; (M.H.); (K.F.)
| | - Laure Willen
- Department of Immunobiology, University of Lausanne, 1066 Epalinges, Switzerland; (L.W.); (P.S.)
| | - Karsten Feige
- Clinic for Horses, University of Veterinary Medicine, 30559 Hannover, Germany; (M.H.); (K.F.)
| | - Pascal Schneider
- Department of Immunobiology, University of Lausanne, 1066 Epalinges, Switzerland; (L.W.); (P.S.)
| | - Ottmar Distl
- Institute for Animal Breeding and Genetics, University of Veterinary Medicine, 30559 Hannover, Germany;
| |
Collapse
|
3
|
Wark AR, Aldea D, Tomizawa RR, Kokalari B, Warder B, Kamberov YG. Ectodysplasin Signaling through XEDAR Is Required for Mammary Gland Morphogenesis. J Invest Dermatol 2023; 143:1529-1537.e2. [PMID: 36804570 PMCID: PMC10363239 DOI: 10.1016/j.jid.2023.02.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 01/04/2023] [Accepted: 02/02/2023] [Indexed: 02/21/2023]
Abstract
XEDAR is a member of the TNF receptor subfamily and a mediator of the ectodysplasin (EDA) pathway. EDA signaling plays evolutionarily conserved roles in the development of the ectodermal appendage organ class, which includes hair, eccrine sweat glands, and mammary glands. Loss-of-function sequence variants of EDA, which encodes the two major ligand isoforms, EDA-A1 and EDA-A2, result in X-linked hypohidrotic ectodermal dysplasia characterized by defects in two or more types of ectodermal appendages. EDA-A1 and EDA-A2 signal through the receptors EDAR and XEDAR, respectively. Although the contributions of the EDA-A1/EDAR signaling pathway to EDA-dependent ectodermal appendage phenotypes have been extensively characterized, the significance of the EDA-A2/XEDAR branch of the pathway has remained obscure. In this study, we report the phenotypic consequences of disrupting the EDA-A2/XEDAR pathway on mammary gland differentiation and growth. Using a mouse Xedar knockout model, we show that Xedar has a specific and temporally restricted role in promoting late pubertal growth and branching of the mammary epithelium that can be influenced by genetic background. Our findings implicate Xedar in ectodermal appendage development and suggest that the EDA-A2/XEDAR signaling axis contributes to the etiology of EDA-dependent mammary phenotypes.
Collapse
Affiliation(s)
- Abigail R Wark
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, USA
| | - Daniel Aldea
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Reiko R Tomizawa
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, USA
| | - Blerina Kokalari
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Bailey Warder
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Yana G Kamberov
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA.
| |
Collapse
|
4
|
Schneider H, Schweikl C, Faschingbauer F, Hadj-Rabia S, Schneider P. A Causal Treatment for X-Linked Hypohidrotic Ectodermal Dysplasia: Long-Term Results of Short-Term Perinatal Ectodysplasin A1 Replacement. Int J Mol Sci 2023; 24:ijms24087155. [PMID: 37108325 PMCID: PMC10138843 DOI: 10.3390/ijms24087155] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 04/05/2023] [Accepted: 04/07/2023] [Indexed: 04/29/2023] Open
Abstract
X-linked hypohidrotic ectodermal dysplasia (XLHED), caused by a genetic deficiency of ectodysplasin A1 (EDA1), is a rare developmental disorder of ectodermal derivatives such as hair, sweat glands, and teeth. The absence of sweat glands and perspiration can evoke life-threatening hyperthermia. As molecular genetic findings are not always conclusive, the concentrations of circulating EDA1 may help to distinguish between total and partial EDA1 deficiencies. We previously treated nine male patients with obvious signs of XLHED with a recombinant EDA1 replacement protein, Fc-EDA, either shortly after birth (n = 3) or by prenatal administration in gestational week 26 and beyond (n = 6). Here, we present the long-term follow-up for up to six years. In patients who had received Fc-EDA after birth, neither sweat glands nor sweating ability were detected at the age of 12-60 months. In contrast, prenatal EDA1 replacement resulted in ample sweat gland development and pilocarpine-inducible sweating in all treated subjects, who also attained more permanent teeth than their untreated affected relatives. Normal perspiration has persisted for six years in the two oldest boys treated repeatedly with Fc-EDA in utero. When they had a sauna, adequate thermoregulation was evidenced. Lower sweat production after single prenatal dosing may indicate a dose-response relationship. The absence of circulating EDA1 in five prenatally treated subjects proved that these children would have been unable to perspire if they had been left untreated. The sixth infant was shown to produce an EDA1 molecule that, albeit interacting with its cognate receptor, cannot activate EDA1 signaling. In conclusion, a causal treatment of XLHED before birth is feasible.
Collapse
Affiliation(s)
- Holm Schneider
- Center for Ectodermal Dysplasias & Department of Pediatrics, University Hospital Erlangen, Loschgestr. 15, 91054 Erlangen, Germany
| | - Christine Schweikl
- Center for Ectodermal Dysplasias & Department of Pediatrics, University Hospital Erlangen, Loschgestr. 15, 91054 Erlangen, Germany
| | - Florian Faschingbauer
- Department of Obstetrics and Gynecology, University Hospital Erlangen, Universitätsstraße 21-23, 91054 Erlangen, Germany
| | - Smail Hadj-Rabia
- Department of Dermatology and Reference Center for Rare Skin Diseases (MAGEC), Institut Imagine, Université de Paris-Centre, Hôpital Necker-Enfants Malades, 149 Rue de Sèvres, 75743 Paris, France
| | - Pascal Schneider
- Department of Immunobiology, University of Lausanne, Chemin des Boveresses 155, 1066 Epalinges, Switzerland
| |
Collapse
|
5
|
Gao Y, Jiang X, Wei Z, Long H, Lai W. The EDA/EDAR/NF-κB pathway in non-syndromic tooth agenesis: A genetic perspective. Front Genet 2023; 14:1168538. [PMID: 37077539 PMCID: PMC10106650 DOI: 10.3389/fgene.2023.1168538] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 03/23/2023] [Indexed: 04/05/2023] Open
Abstract
Non-syndromic tooth agenesis (NSTA) is one of the most common dental developmental malformations affected by genetic factors predominantly. Among all 36 candidate genes reported in NSTA individuals, EDA, EDAR, and EDARADD play essential roles in ectodermal organ development. As members of the EDA/EDAR/NF-κB signaling pathway, mutations in these genes have been implicated in the pathogenesis of NSTA, as well as hypohidrotic ectodermal dysplasia (HED), a rare genetic disorder that affects multiple ectodermal structures, including teeth. This review provides an overview of the current knowledge on the genetic basis of NSTA, with a focus on the pathogenic effects of the EDA/EDAR/NF-κB signaling pathway and the role of EDA, EDAR, and EDARADD mutations in developmental tooth defects. We also discuss the phenotypic overlap and genetic differences between NSTA and HED. Ultimately, this review highlights the importance of genetic analysis in diagnosing and managing NSTA and related ectodermal disorders, and the need for ongoing research to improve our understanding of these conditions.
Collapse
Affiliation(s)
- Yanzi Gao
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xiaohui Jiang
- Human Sperm Bank, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Zhi Wei
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Hu Long
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Wenli Lai
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- *Correspondence: Wenli Lai,
| |
Collapse
|
6
|
Schneider H, Hadj-Rabia S, Faschingbauer F, Bodemer C, Grange DK, Norton ME, Cavalli R, Tadini G, Stepan H, Clarke A, Guillén-Navarro E, Maier-Wohlfart S, Bouroubi A, Porte F. Protocol for the Phase 2 EDELIFE Trial Investigating the Efficacy and Safety of Intra-Amniotic ER004 Administration to Male Subjects with X-Linked Hypohidrotic Ectodermal Dysplasia. Genes (Basel) 2023; 14:153. [PMID: 36672894 PMCID: PMC9858920 DOI: 10.3390/genes14010153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 12/09/2022] [Accepted: 12/28/2022] [Indexed: 01/09/2023] Open
Abstract
X-linked hypohidrotic ectodermal dysplasia (XLHED) is a rare genetic disorder characte-rised by abnormal development of the skin and its appendages, such as hair and sweat glands, the teeth, and mucous glands of the airways, resulting in serious, sometimes life-threatening complications like hyperthermia or recurrent respiratory infections. It is caused by pathogenic variants of the ectodysplasin A gene (EDA). Most affected males are hemizygous for EDA null mutations that lead to the absence or inactivity of the signalling protein ectodysplasin A1 (EDA1) and, thus, to the full-blown phenotype with inability to perspire and few if any teeth. There are currently no long-term treatment options for XLHED. ER004 represents a first-in-class protein replacement molecule designed for specific, high-affinity binding to the endogenous EDA1 receptor (EDAR). Its proposed mechanism of action is the replacement of missing EDA1 in yet unborn patients with XLHED. Once bound to EDAR, ER004 activates the EDA/NFκB signalling pathway, which triggers the transcription of genes involved in the normal development of multiple tissues. Following preclinical studies, named-patient use cases demonstrated significant potential of ER004 in affected males treated in utero during the late second and third trimesters of pregnancy. In order to confirm these results, we started the EDELIFE trial, a prospective, open-label, genotype-match controlled, multicentre clinical study to investigate the efficacy and safety of intra-amniotic ER004 administration as a prenatal treatment for male subjects with XLHED. This article summarises the rationale, the study protocol, ethical issues of the trial, and potential pitfalls.
Collapse
Affiliation(s)
- Holm Schneider
- Center for Ectodermal Dysplasias and Department of Pediatrics, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Smail Hadj-Rabia
- Department of Dermatology, Reference Centre for Genodermatoses and Rare Skin Diseases (MAGEC), Hopital Universitaire Necker-Enfants Malades, Assistance Publique—Hospitals of Paris, University of Paris-Cité, 75743 Paris, France
| | - Florian Faschingbauer
- Department of Obstetrics and Gynecology, University Hospital Erlangen, 91054 Erlangen, Germany
| | - Christine Bodemer
- Department of Dermatology, Reference Centre for Genodermatoses and Rare Skin Diseases (MAGEC), Hopital Universitaire Necker-Enfants Malades, Assistance Publique—Hospitals of Paris, University of Paris-Cité, 75743 Paris, France
| | - Dorothy K. Grange
- Department of Pediatrics, Division of Genetics and Genomic Medicine, Washington University, St. Louis, MO 63110, USA
| | - Mary E. Norton
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California, San Francisco, CA 94143, USA
| | - Riccardo Cavalli
- Pediatric Dermatology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Department of Clinical Sciences and Community Health, 20122 Milan, Italy
| | - Gianluca Tadini
- Pediatric Dermatology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Department of Clinical Sciences and Community Health, 20122 Milan, Italy
| | - Holger Stepan
- Department of Obstetrics, University Hospital Leipzig, 04103 Leipzig, Germany
| | - Angus Clarke
- Institute of Medical Genetics, Division of Cancer & Genetics, School of Medicine, Cardiff University, Cardiff, CF10 3AT, UK
| | - Encarna Guillén-Navarro
- Medical Genetics Section, Department of Pediatrics, Virgen de la Arrixaca University Hospital, IMIB-Arrixaca, University of Murcia, and CIBERER, Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Sigrun Maier-Wohlfart
- Center for Ectodermal Dysplasias and Department of Pediatrics, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, 91054 Erlangen, Germany
| | | | | |
Collapse
|
7
|
Ou S, Jeyalatha MV, Mao Y, Wang J, Chen C, Zhang M, Liu X, Liang M, Lin S, Wu Y, Li Y, Li W. The Role of Ectodysplasin A on the Ocular Surface Homeostasis. Int J Mol Sci 2022; 23:ijms232415700. [PMID: 36555342 PMCID: PMC9779463 DOI: 10.3390/ijms232415700] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 11/12/2022] [Accepted: 12/02/2022] [Indexed: 12/14/2022] Open
Abstract
Ectodysplasin A (EDA), a ligand of the TNF family, plays an important role in maintaining the homeostasis of the ocular surface. EDA is necessary for the development of the meibomian gland, the lacrimal gland, as well as the proliferation and barrier function of the corneal epithelium. The mutation of EDA can induce the destruction of the ocular surface resulting in keratopathy, abnormality of the meibomian gland and maturation of the lacrimal gland. Experimental animal studies showed that a prenatal ultrasound-guided intra-amniotic injection or postnatal intravenous administration of soluble recombinant EDA protein can efficiently prevent the development of ocular surface abnormalities in EDA mutant animals. Furthermore, local application of EDA could restore the damaged ocular surface to some extent. Hence, a recombinant EDA-based therapy may serve as a novel paradigm to treat ocular surface disorders, such as meibomian gland dysfunction and corneal epithelium abnormalities.
Collapse
Affiliation(s)
- Shangkun Ou
- Eye Institute of Xiamen University and Affiliated Xiamen Eye Center, School of Medicine, Xiamen University, Xiamen 361000, China
- Fujian Provincial Key Laboratory of Corneal & Ocular Surface Diseases, Xiamen 361000, China
- Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Xiamen 361000, China
| | - Mani Vimalin Jeyalatha
- Eye Institute of Xiamen University and Affiliated Xiamen Eye Center, School of Medicine, Xiamen University, Xiamen 361000, China
| | - Yi Mao
- Eye Institute of Xiamen University and Affiliated Xiamen Eye Center, School of Medicine, Xiamen University, Xiamen 361000, China
- Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Xiamen 361000, China
| | - Junqi Wang
- Department of Ophthalmology, Graduate School of Medicine, Osaka 5650871, Japan
| | - Chao Chen
- Eye Institute of Xiamen University and Affiliated Xiamen Eye Center, School of Medicine, Xiamen University, Xiamen 361000, China
- Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Xiamen 361000, China
| | - Minjie Zhang
- Eye Institute of Xiamen University and Affiliated Xiamen Eye Center, School of Medicine, Xiamen University, Xiamen 361000, China
- Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Xiamen 361000, China
| | - Xiaodong Liu
- Eye Institute of Xiamen University and Affiliated Xiamen Eye Center, School of Medicine, Xiamen University, Xiamen 361000, China
- Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Xiamen 361000, China
| | - Minghui Liang
- Eye Institute of Xiamen University and Affiliated Xiamen Eye Center, School of Medicine, Xiamen University, Xiamen 361000, China
- Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Xiamen 361000, China
| | - Sijie Lin
- Eye Institute of Xiamen University and Affiliated Xiamen Eye Center, School of Medicine, Xiamen University, Xiamen 361000, China
- Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Xiamen 361000, China
| | - Yiming Wu
- Eye Institute of Xiamen University and Affiliated Xiamen Eye Center, School of Medicine, Xiamen University, Xiamen 361000, China
- Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Xiamen 361000, China
| | - Yixuan Li
- Eye Institute of Xiamen University and Affiliated Xiamen Eye Center, School of Medicine, Xiamen University, Xiamen 361000, China
| | - Wei Li
- Eye Institute of Xiamen University and Affiliated Xiamen Eye Center, School of Medicine, Xiamen University, Xiamen 361000, China
- Fujian Provincial Key Laboratory of Corneal & Ocular Surface Diseases, Xiamen 361000, China
- Xiang’an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361000, China
- Correspondence: ; Tel./Fax: +86-592-2183761
| |
Collapse
|
8
|
Schweikl C, Maier-Wohlfart S, Schneider H, Park J. Ectodysplasin A1 Deficiency Leads to Osteopetrosis-like Changes in Bones of the Skull Associated with Diminished Osteoclastic Activity. Int J Mol Sci 2022; 23:12189. [PMID: 36293046 PMCID: PMC9603288 DOI: 10.3390/ijms232012189] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 09/30/2022] [Accepted: 10/10/2022] [Indexed: 08/30/2023] Open
Abstract
Pathogenic variants of the gene Eda cause X-linked hypohidrotic ectodermal dysplasia (XLHED), which is characterized by structural abnormalities or lack of ectodermal appendages. Signs of dysplasia are not restricted to derivatives of the ectodermal layer, but mesodermal abnormalities, such as craniofacial dysmorphism, are also frequently observed, suggesting close reciprocal interactions between the ectoderm and mesoderm; however, a causal link has remained unsubstantiated. We investigated the functional impact of defective ectodysplasin A1 (Eda1) signaling on postnatal bone homeostasis in Eda1-deficient Tabby mice. Interestingly, Eda1 was detected in wild-type mouse calvariae throughout postnatal lifetime. In calvariae, bone-lining Osterix (Osx)+ osteoblasts stained positive for Eda1, and osteoclasts were revealed as Eda receptor (Edar)-positive. Moreover, adult Eda1-deficient calvarial bone showed osteopetrosis-like changes with significantly diminished marrow space, which was maintained during adulthood. Concomitantly with osteopetrosis-like changes, Tabby calvarial bone and Tabby bone marrow-derived osteoclasts had far less osteoclastic activity-associated co-enzymes including cathepsin K, Mmp9, Trap, and Tcirg1 (V-type proton ATPase a3 subunit) compared with wild-type calvariae in vivo or osteoclasts in vitro, indicating that Eda1 deficiency may affect the activity of osteoclasts. Finally, we confirmed that nuclear Nfatc1-positive osteoclasts were strongly diminished during mature osteoclastic differentiation under M-CSF and RANKL in the Tabby model, while Fc-EDA treatment of Tabby-derived osteoclasts significantly increased nuclear translocation of Nfatc1. Furthermore, we identified enhanced Nfatc1 and NF-κB transcriptional activity following Fc-EDA treatment in vitro using luciferase assays. Overall, the results indicate that diminished expressions of osteoclastic activity-associated co-enzymes may lead to disturbed bone homeostasis in Tabby calvariae postnatally.
Collapse
Affiliation(s)
- Christine Schweikl
- Department of Pediatrics, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, 91054 Erlangen, Germany
- Center for Ectodermal Dysplasias, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Sigrun Maier-Wohlfart
- Department of Pediatrics, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, 91054 Erlangen, Germany
- Center for Ectodermal Dysplasias, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Holm Schneider
- Department of Pediatrics, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, 91054 Erlangen, Germany
- Center for Ectodermal Dysplasias, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Jung Park
- Department of Pediatrics, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, 91054 Erlangen, Germany
- Center for Ectodermal Dysplasias, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, 91054 Erlangen, Germany
| |
Collapse
|
9
|
Willems M, Wells CF, Coubes C, Pequignot M, Kuony A, Michon F. Hypolacrimia and Alacrimia as Diagnostic Features for Genetic or Congenital Conditions. Invest Ophthalmol Vis Sci 2022; 63:3. [PMID: 35925585 PMCID: PMC9363675 DOI: 10.1167/iovs.63.9.3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
As part of the lacrimal apparatus, the lacrimal gland participates in the maintenance of a healthy eye surface by producing the aqueous part of the tear film. Alacrimia and hypolacrimia, which are relatively rare during childhood or young adulthood, have their origin in a number of mechanisms which include agenesia, aplasia, hypoplasia, or incorrect maturation of the gland. Moreover, impaired innervation of the gland and/or the cornea and alterations of protein secretion pathways can lead to a defective tear film. In most conditions leading to alacrimia or hypolacrimia, however, the altered tear film is only one of numerous defects that arise and therefore is commonly disregarded. Here, we have systematically reviewed all of those genetic conditions or congenital disorders that have alacrimia or hypolacrimia as a feature. Where it is known, we describe the mechanism of the defect in question. It has been possible to clearly establish the physiopathology of only a minority of these conditions. As hypolacrimia and alacrimia are rare features, this review could be used as a tool in clinical genetics to perform a quick diagnosis, necessary for appropriate care and counseling.
Collapse
Affiliation(s)
- Marjolaine Willems
- Institute for Neurosciences of Montpellier, University of Montpellier, INSERM, Montpellier, France.,Medical Genetic Department for Rare Diseases and Personalized Medicine, Reference Center AD SOOR, AnDDI-RARE, Montpellier University Hospital Center, Montpellier, France
| | - Constance F Wells
- Medical Genetic Department for Rare Diseases and Personalized Medicine, Reference Center AD SOOR, AnDDI-RARE, Montpellier University Hospital Center, Montpellier, France
| | - Christine Coubes
- Medical Genetic Department for Rare Diseases and Personalized Medicine, Reference Center AD SOOR, AnDDI-RARE, Montpellier University Hospital Center, Montpellier, France
| | - Marie Pequignot
- Institute for Neurosciences of Montpellier, University of Montpellier, INSERM, Montpellier, France
| | - Alison Kuony
- Institute for Neurosciences of Montpellier, University of Montpellier, INSERM, Montpellier, France.,Université Paris Cité, CNRS, Institut Jacques Monod, Paris, France
| | - Frederic Michon
- Institute for Neurosciences of Montpellier, University of Montpellier, INSERM, Montpellier, France
| |
Collapse
|
10
|
Gene Mutations of the Three Ectodysplasin Pathway Key Players ( EDA, EDAR, and EDARADD) Account for More than 60% of Egyptian Ectodermal Dysplasia: A Report of Seven Novel Mutations. Genes (Basel) 2021; 12:genes12091389. [PMID: 34573371 PMCID: PMC8468066 DOI: 10.3390/genes12091389] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 08/30/2021] [Accepted: 09/03/2021] [Indexed: 12/22/2022] Open
Abstract
Ectodermal dysplasia (ED) is a diverse group of genetic disorders caused by congenital defects of two or more ectodermal-derived body structures, namely, hair, teeth, nails, and some glands, e.g., sweat glands. Molecular pathogenesis of ED involves mutations of genes encoding key proteins of major developmental pathways, including ectodysplasin (EDA) and wingless-type (WNT) pathways. The most common ED phenotype is hypohidrotic/anhidrotic ectodermal dysplasia (HED) featuring hypotrichosis, hypohidrosis/anhidrosis, and hypodontia. Molecular diagnosis is fundamental for disease management and emerging treatments. We used targeted next generation sequencing to study EDA, EDAR, EDARADD, and WNT10A genes in 45 Egyptian ED patients with or without hypohidrosis. We present genotype and phenotype data of 28 molecularly-characterized patients demonstrating genetic heterogeneity, variable expressivity, and intrafamilial phenotypic variability. Thirteen mutations were reported, including four novel EDA mutations, two novel EDARADD, and one novel EDAR mutations. Identified mutations congregated in exons encoding key functional domains. EDA is the most common gene contributing to 85% of the identified Egyptian ED genetic spectrum, followed by EDARADD (10%) and EDAR (5%). Our cohort represents the first and largest cohort from North Africa where more than 60% of ED patients were identified emphasizing the need for exome sequencing to explore unidentified cases.
Collapse
|
11
|
Kossel CS, Wahlbuhl M, Schuepbach-Mallepell S, Park J, Kowalczyk-Quintas C, Seeling M, von der Mark K, Schneider P, Schneider H. Correction of Vertebral Bone Development in Ectodysplasin A1-Deficient Mice by Prenatal Treatment With a Replacement Protein. Front Genet 2021; 12:709736. [PMID: 34456978 PMCID: PMC8385758 DOI: 10.3389/fgene.2021.709736] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 07/19/2021] [Indexed: 11/28/2022] Open
Abstract
X-linked hypohidrotic ectodermal dysplasia with the cardinal symptoms hypodontia, hypotrichosis and hypohidrosis is caused by a genetic deficiency of ectodysplasin A1 (EDA1). Prenatal EDA1 replacement can rescue the development of skin appendages and teeth. Tabby mice, a natural animal model of EDA1 deficiency, additionally feature a striking kink of the tail, the cause of which has remained unclear. We studied the origin of this phenomenon and its response to prenatal therapy. Alterations in the distal spine could be noticed soon after birth, and kinks were present in all Tabby mice by the age of 4 months. Although their vertebral bones frequently had a disorganized epiphyseal zone possibly predisposing to fractures, cortical bone density was only reduced in vertebrae of older Tabby mice and even increased in their tibiae. Different availability of osteoclasts in the spine, which may affect bone density, was ruled out by osteoclast staining. The absence of hair follicles, a well-known niche of epidermal stem cells, and much lower bromodeoxyuridine uptake in the tail skin of 9-day-old Tabby mice rather suggest the kink being due to a skin proliferation defect that prevents the skin from growing as fast as the skeleton, so that caudal vertebrae may be squeezed and bent by a lack of skin. Early postnatal treatment with EDA1 leading to delayed hair follicle formation attenuated the kink, but did not prevent it. Tabby mice born after prenatal administration of EDA1, however, showed normal tail skin proliferation, no signs of kinking and, interestingly, a normalized vertebral bone density. Thus, our data prove the causal relationship between EDA1 deficiency and kinky tails and indicate that hair follicles are required for murine tail skin to grow fast enough. Disturbed bone development appears to be partially pre-determined in utero and can be counteracted by timely EDA1 replacement, pointing to a role of EDA1 also in osteogenesis.
Collapse
Affiliation(s)
- Clara-Sophie Kossel
- Department of Pediatrics, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany.,Center for Ectodermal Dysplasias, University Hospital Erlangen, Erlangen, Germany
| | - Mandy Wahlbuhl
- Department of Pediatrics, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany.,Center for Ectodermal Dysplasias, University Hospital Erlangen, Erlangen, Germany
| | | | - Jung Park
- Department of Pediatrics, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany.,Center for Ectodermal Dysplasias, University Hospital Erlangen, Erlangen, Germany
| | | | - Michaela Seeling
- Department of Biology, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Klaus von der Mark
- Department of Experimental Medicine I, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Pascal Schneider
- Department of Biochemistry, University of Lausanne, Epalinges, Switzerland
| | - Holm Schneider
- Department of Pediatrics, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany.,Center for Ectodermal Dysplasias, University Hospital Erlangen, Erlangen, Germany
| |
Collapse
|
12
|
Mishima S, Takahashi K, Kiso H, Murashima-Suginami A, Tokita Y, Jo JI, Uozumi R, Nambu Y, Huang B, Harada H, Komori T, Sugai M, Tabata Y, Bessho K. Local application of Usag-1 siRNA can promote tooth regeneration in Runx2-deficient mice. Sci Rep 2021; 11:13674. [PMID: 34211084 PMCID: PMC8249669 DOI: 10.1038/s41598-021-93256-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Accepted: 06/22/2021] [Indexed: 01/01/2023] Open
Abstract
Runt-related transcription factor 2 (Runx2)-deficient mice can be used to model congenital tooth agenesis in humans. Conversely, uterine sensitization-associated gene-1 (Usag-1)-deficient mice exhibit supernumerary tooth formation. Arrested tooth formation can be restored by crossing both knockout-mouse strains; however, it remains unclear whether topical inhibition of Usag-1 expression can enable the recovery of tooth formation in Runx2-deficient mice. Here, we tested whether inhibiting the topical expression of Usag-1 can reverse arrested tooth formation after Runx2 abrogation. The results showed that local application of Usag-1 Stealth small interfering RNA (siRNA) promoted tooth development following Runx2 siRNA-induced agenesis. Additionally, renal capsule transplantation of siRNA-loaded cationized, gelatin-treated mouse mandibles confirmed that cationized gelatin can serve as an effective drug-delivery system. We then performed renal capsule transplantation of wild-type and Runx2-knockout (KO) mouse mandibles, treated with Usag-1 siRNA, revealing that hindered tooth formation was rescued by Usag-1 knockdown. Furthermore, topically applied Usag-1 siRNA partially rescued arrested tooth development in Runx2-KO mice, demonstrating its potential for regenerating teeth in Runx2-deficient mice. Our findings have implications for developing topical treatments for congenital tooth agenesis.
Collapse
Affiliation(s)
- Sayaka Mishima
- Department of Oral and Maxillofacial Surgery, Graduate School of Medicine, Kyoto University, Shogoin-Kawahara-cho 54, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Katsu Takahashi
- Department of Oral and Maxillofacial Surgery, Graduate School of Medicine, Kyoto University, Shogoin-Kawahara-cho 54, Sakyo-ku, Kyoto, 606-8507, Japan.
| | - Honoka Kiso
- Department of Oral and Maxillofacial Surgery, Graduate School of Medicine, Kyoto University, Shogoin-Kawahara-cho 54, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Akiko Murashima-Suginami
- Department of Oral and Maxillofacial Surgery, Graduate School of Medicine, Kyoto University, Shogoin-Kawahara-cho 54, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Yoshihito Tokita
- Department of Perinatology, Institute for Developmental Research, Aichi Human Service Center, Kasugai, Aichi, Japan
| | - Jun-Ichiro Jo
- Department of Biomaterials, Institute for Frontier Medical Sciences, Kyoto University, Kyoto, Japan
| | - Ryuji Uozumi
- Department of Biomedical Statistics and Bioinformatics, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Yukiko Nambu
- Department of Molecular Genetics, Division of Medicine, Faculty of Medical Sciences, University of Fukui, Fukui, Japan
| | - Boyen Huang
- Department of Primary Dental Care, University of Minnesota School of Dentistry, Minneapolis, MN, USA
| | - Hidemitsu Harada
- Department of Anatomy, Division of Developmental Biology and Regenerative Medicine1-1-1, Iwate Medical University, Idaidori, Yahaba, Shiwa-gun, Iwate, 020-3694, Japan
| | - Toshihisa Komori
- Basic and Translational Research Center for Hard Tissue Disease, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, 852-8588, Japan
| | - Manabu Sugai
- Department of Molecular Genetics, Division of Medicine, Faculty of Medical Sciences, University of Fukui, Fukui, Japan
| | - Yasuhiko Tabata
- Department of Biomaterials, Institute for Frontier Medical Sciences, Kyoto University, Kyoto, Japan
| | - Kazuhisa Bessho
- Department of Oral and Maxillofacial Surgery, Graduate School of Medicine, Kyoto University, Shogoin-Kawahara-cho 54, Sakyo-ku, Kyoto, 606-8507, Japan
| |
Collapse
|
13
|
Moura E, Daltro SRT, Sás DM, Engracia Filho JR, Farias MR, Pimpão CT. Genetic analysis of a possible case of canine X-linked ectodermal dysplasia. J Small Anim Pract 2021; 62:1127-1130. [PMID: 34076266 DOI: 10.1111/jsap.13385] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 04/07/2021] [Accepted: 05/16/2021] [Indexed: 11/30/2022]
Abstract
In the present report, we describe targeted next-generation sequencing of the EDA gene of a male poodle with a clinical and histopathological diagnosis of X-linked hypohidrotic ectodermal dysplasia. The result was compared with the reference sequence and with the result of the sequencing of a normal dog's EDA gene. No point variant, small deletion or insertion were found in the exons and splice sites, but a transition and a transversion were found in the intron 6' and 3' UTR, respectively. The cause of the dysplasia of the affected dog in this study is neither a point variant nor a small deletion or insertion in the exons and splice sites of the EDA gene. Therefore, patients with phenotype of XLHED may have other types of variants in the EDA gene or variants in other genes of the EDA signalling pathway.
Collapse
Affiliation(s)
- E Moura
- Service of Medical Genetics, Course of Veterinary Medicine, School of Life Sciences, Pontifícia Universidade Católica do Paraná (PUCPR), Curitiba, Paraná, Brazil
| | - S R T Daltro
- Instituto Gonçalo Moniz, Fundação Oswaldo Cruz, Salvador, Bahia, Brazil
| | - D M Sás
- Genotyping - Diagnósticos Genéticos, Botucatu, São Paulo, Brazil
| | - J R Engracia Filho
- Graduate Program in Animal Science, School of Life Sciences, Pontifícia Universidade Católica do Paraná (PUCPR), Curitiba, Paraná, Brazil
| | - M R Farias
- Graduate Program in Animal Science, School of Life Sciences, Pontifícia Universidade Católica do Paraná (PUCPR), Curitiba, Paraná, Brazil
| | - C T Pimpão
- Graduate Program in Animal Science, School of Life Sciences, Pontifícia Universidade Católica do Paraná (PUCPR), Curitiba, Paraná, Brazil
| |
Collapse
|
14
|
X-Linked Hypohidrotic Ectodermal Dysplasia in Crossbred Beef Cattle Due to a Large Deletion in EDA. Animals (Basel) 2021; 11:ani11030657. [PMID: 33801223 PMCID: PMC7999020 DOI: 10.3390/ani11030657] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 02/25/2021] [Accepted: 02/25/2021] [Indexed: 12/29/2022] Open
Abstract
Simple Summary Ectodermal dysplasias such as hypohidrotic ectodermal dysplasia (HED), are genetic conditions affecting the development and/or homeostasis of two or more ectodermal derivatives, including hair, teeth, nails, and eccrine glands. In particular, X-linked hypohidrotic ectodermal dysplasia-1 (ECTD1) in humans is characterized by a triad of signs comprising sparse hair, abnormal teeth, and anhidrosis or hypohidrosis. It has been reported in cattle, dogs, mice and rats. Until now, eight pathogenic variants in the bovine ectodysplasin A (EDA) gene causing ECTD1-like disorders have been found. Herein, five affected Red Angus-Simmental bull calves born over a 6-year period (2013–2019) in a single herd in the Western United States are reported showing an ECTD1-like syndrome. Calves were born with severe hypotrichosis and oligodontia. At age 1-week-old two calves died of severe pneumonia. Microscopic findings of the skin revealed small-caliber hair follicles with a mean density in flank skin slightly greater in affected animals than in control animals. Nasolabial, intranasal and tracheobronchial mucosal glands were absent, whereas olfactory glands were unaffected. Whole-genome sequencing (WGS) identified a 53 kb deletion of the X chromosome including parts of the EDA gene as well as the entire AWAT2 gene. The partial deletion of the EDA gene that is known to be associated with forms of ECTD1 is the most likely cause for the reported genodermatosis. Similar rare disorders in livestock are often not diagnosed at the molecular level due to lack of resources, short lifespan of the animals, and concerns for the producers’ reputation. Abstract X-linked hypohidrotic ectodermal dysplasia-1 (ECTD1) in people results in a spectrum of abnormalities, most importantly hypotrichosis, anodontia/oligodontia, and absent or defective ectodermally derived glands. Five Red Angus-Simmental calves born over a 6-year period demonstrated severe hypotrichosis and were diagnosed as affected with ECTD1-like syndrome. Two died of severe pneumonia within a week of birth. The skin of three affected calves revealed a predominance of histologically unremarkable small-caliber hair follicles. Larger follicles (>50 µm) containing medullated hairs (including guard and tactile hairs) were largely restricted to the muzzle, chin, tail, eyelids, tragus and distal portions of the limbs and tail. The mean histological density of hair follicles in flank skin of two affected calves was slightly greater than that in two unaffected calves. One affected calf was examined postmortem at 10 days of age to better characterize systemic lesions. Nasolabial, intranasal and tracheobronchial mucosal glands were absent, whereas olfactory glands were unaffected. Mandibular incisor teeth were absent. Premolar teeth were unerupted and widely spaced. Other than oligodontia, histological changes in teeth were modest, featuring multifocal disorganization of ameloblasts, new bone formation in dental alveoli, and small aggregates of osteodentin and cementum at the margins of the enamel organ. A 52,780 base pair deletion spanning six out of eight coding exons of EDA and all of AWAT2 was identified. Partial deletion of the EDA gene is the presumed basis for the reported X-chromosomal recessive inherited genodermatosis.
Collapse
|
15
|
Development of tooth regenerative medicine strategies by controlling the number of teeth using targeted molecular therapy. Inflamm Regen 2020; 40:21. [PMID: 32922570 PMCID: PMC7461317 DOI: 10.1186/s41232-020-00130-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 07/01/2020] [Indexed: 12/13/2022] Open
Abstract
Analysis of various genetically modified mice, with supernumerary teeth, has revealed the following two intrinsic molecular mechanisms that increase the number of teeth. One plausible explanation for supernumerary tooth formation is the rescue of tooth rudiments. Topical application of candidate molecules could lead to whole tooth formation under suitable conditions. Congenital tooth agenesis is caused by the cessation of tooth development due to the deletion of the causative gene and suppression of its function. The arrest of tooth development in Runx2 knockout mice, a mouse model of congenital tooth agenesis, is rescued in double knockout mice of Runx2 and Usag-1. The Usag-1 knockout mouse is a supernumerary model mouse. Targeted molecular therapy could be used to generate teeth in patients with congenital tooth agenesis by stimulating arrested tooth germs. The third dentition begins to develop when the second successional lamina is formed from the developing permanent tooth in humans and usually regresses apoptotically. Targeted molecular therapy, therefore, seems to be a suitable approach in whole-tooth regeneration by the stimulation of the third dentition. A second mechanism of supernumerary teeth formation involves the contribution of odontogenic epithelial stem cells in adults. Cebpb has been shown to be involved in maintaining the stemness of odontogenic epithelial stem cells and suppressing epithelial-mesenchymal transition. Odontogenic epithelial stem cells are differentiated from one of the tissue stem cells, enamel epithelial stem cells, and odontogenic mesenchymal cells are formed from odontogenic epithelial cells by epithelial-mesenchymal transition. Both odontogenic epithelial cells and odontogenic mesenchymal cells required to form teeth from enamel epithelial stem cells were directly induced to form excess teeth in adults. An approach for the development of targeted therapeutics has been the local application of monoclonal neutralizing antibody/siRNA with cationic gelatin for USAG-1 or small molecule for Cebpb.
Collapse
|
16
|
Moura E, Henrique Weber S, Engracia Filho JR, Pimpão CT. A Hypohidrotic Ectodermal Dysplasia Arising From a New Mutation in a Yorkshire Terrier Dog. Top Companion Anim Med 2020; 39:100404. [PMID: 32482291 DOI: 10.1016/j.tcam.2020.100404] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2019] [Revised: 12/19/2019] [Accepted: 01/19/2020] [Indexed: 11/26/2022]
Abstract
Hypohidrotic ectodermal dysplasias (HED) constitute a group of genetic disorders that affect ectodermal derivatives such as sweat glands, sebaceous glands, hair, and teeth. The vast majority of cases of HED are caused by a recessive mutation of the EDA gene located in the X chromosome. In these cases, affected individuals are usually male and have alopecia and hypotrichosis with characteristic distribution, in addition to malformed teeth and fewer than normal. From a canine HED isolated case (proband) andc in order to verify if this emerged from a new mutation, it was possible to construct a pedigree with 5 generations and 93 individuals representing an extended and informative family. The proband's mother crossed with 2 different males and generated 33 descendants in 9 gestations: 1 affected male (proband), 15 normal males, and 17 normal females, which together can be considered as 1 sibship. Through Bayesian inference, it was possible to establish that this case originated from a new mutation, with a 99.99% probability of the mother of the proband not being a carrier.
Collapse
Affiliation(s)
- Enio Moura
- Service of Medical Genetics, Course of Veterinary Medicine, Graduate Program in Animal Science, School of Life Sciences, Pontifícia Universidade Católica do Paraná (PUCPR), Curitiba, Brazil.
| | - Saulo Henrique Weber
- Graduate Program in Animal Science, School of Life Sciences. Pontifícia Universidade Católica do Paraná (PUCPR), Curitiba, Brazil
| | - Jair Rodini Engracia Filho
- Graduate Program in Animal Science, School of Life Sciences. Pontifícia Universidade Católica do Paraná (PUCPR), Curitiba, Brazil
| | - Claudia Turra Pimpão
- Graduate Program in Animal Science, School of Life Sciences. Pontifícia Universidade Católica do Paraná (PUCPR), Curitiba, Brazil
| |
Collapse
|
17
|
Wohlfart S, Meiller R, Hammersen J, Park J, Menzel-Severing J, Melichar VO, Huttner K, Johnson R, Porte F, Schneider H. Natural history of X-linked hypohidrotic ectodermal dysplasia: a 5-year follow-up study. Orphanet J Rare Dis 2020; 15:7. [PMID: 31924237 PMCID: PMC6954509 DOI: 10.1186/s13023-019-1288-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Accepted: 12/24/2019] [Indexed: 02/07/2023] Open
Abstract
Background X-linked hypohidrotic ectodermal dysplasia (XLHED) is caused by pathogenic variants of the gene EDA disrupting the prenatal development of ectodermal derivatives. Cardinal symptoms are hypotrichosis, lack of teeth, and hypo- or anhidrosis, but the disease may also evoke other clinical problems. This study aimed at investigating the clinical course of XLHED in early childhood as the basis for an evaluation of the efficacy of potential treatments. Methods 25 children (19 boys and 6 girls between 11 and 35 months of age) with genetically confirmed XLHED were enrolled in a long-term natural history study. Clinical data were collected both retrospectively using parent questionnaires and medical records (pregnancy, birth, infancy) and prospectively until the age of 60 months. General development, dentition, sweating ability, ocular, respiratory, and skin involvement were assessed by standardized clinical examination and yearly quantitative surveys. Results All male subjects suffered from persistent anhidrosis and heat intolerance, although a few sweat ducts were detected in some patients. Sweating ability of girls with XLHED ranged from strongly reduced to almost normal. In the male subjects, 1–12 deciduous teeth erupted and 0–8 tooth germs of the permanent dentition became detectable. Tooth numbers were higher but variable in the female group. Most affected boys had no more than three if any Meibomian glands per eyelid, most girls had fewer than 10. Many male subjects developed additional, sometimes severe health issues, such as obstructive airway conditions, chronic eczema, or dry eye disease. Adverse events included various XLHED-related infections, unexplained fever, allergic reactions, and retardation of psychomotor development. Conclusions This first comprehensive study of the course of XLHED confirmed the early involvement of multiple organs, pointing to the need of early therapeutic intervention.
Collapse
Affiliation(s)
- Sigrun Wohlfart
- Center for Ectodermal Dysplasias & Department of Pediatrics, University Hospital Erlangen, Loschgestr. 15, 91054, Erlangen, Germany.
| | - Ralph Meiller
- Department of Ophthalmology, University of Erlangen-Nürnberg, Erlangen, Germany
| | - Johanna Hammersen
- Center for Ectodermal Dysplasias & Department of Pediatrics, University Hospital Erlangen, Loschgestr. 15, 91054, Erlangen, Germany
| | - Jung Park
- Center for Ectodermal Dysplasias & Department of Pediatrics, University Hospital Erlangen, Loschgestr. 15, 91054, Erlangen, Germany
| | | | - Volker O Melichar
- Center for Ectodermal Dysplasias & Department of Pediatrics, University Hospital Erlangen, Loschgestr. 15, 91054, Erlangen, Germany
| | | | | | | | - Holm Schneider
- Center for Ectodermal Dysplasias & Department of Pediatrics, University Hospital Erlangen, Loschgestr. 15, 91054, Erlangen, Germany
| |
Collapse
|
18
|
Kuony A, Ikkala K, Kalha S, Magalhães AC, Pirttiniemi A, Michon F. Ectodysplasin-A signaling is a key integrator in the lacrimal gland-cornea feedback loop. Development 2019; 146:dev.176693. [PMID: 31221639 DOI: 10.1242/dev.176693] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2019] [Accepted: 06/17/2019] [Indexed: 01/26/2023]
Abstract
A lack of ectodysplasin-A (Eda) signaling leads to dry eye symptoms, which have so far only been associated with altered Meibomian glands. Here, we used loss-of-function (Eda -/-) mutant mice to unravel the impact of Eda signaling on lacrimal gland formation, maturation and subsequent physiological function. Our study demonstrates that Eda activity is dispensable during lacrimal gland embryonic development. However, using a transcriptomic approach, we show that the Eda pathway is necessary for proper cell terminal differentiation in lacrimal gland epithelium and correlated with modified expression of secreted factors commonly found in the tear film. Finally, we discovered that lacrimal glands present a bilateral reduction of Eda signaling activity in response to unilateral corneal injury. This observation hints towards a role for the Eda pathway in controlling the switch from basal to reflex tears, to support corneal wound healing. Collectively, our data suggest a crucial implication of Eda signaling in the cornea-lacrimal gland feedback loop, both in physiological and pathophysiological conditions. Our findings demonstrate that Eda downstream targets could help alleviate dry eye symptoms.
Collapse
Affiliation(s)
- Alison Kuony
- Institute of Biotechnology, Helsinki Institute of Life Science, Developmental Biology Program, University of Helsinki, 00790 Helsinki, Finland.,Institut Jacques Monod, Université Denis Diderot - Paris 7, CNRS UMR 7592, Buffon building, 15 rue Hélène Brion, 75205 Paris Cedex 13, France
| | - Kaisa Ikkala
- Institute of Biotechnology, Helsinki Institute of Life Science, Developmental Biology Program, University of Helsinki, 00790 Helsinki, Finland
| | - Solja Kalha
- Institute of Biotechnology, Helsinki Institute of Life Science, Developmental Biology Program, University of Helsinki, 00790 Helsinki, Finland
| | - Ana Cathia Magalhães
- Institute of Biotechnology, Helsinki Institute of Life Science, Developmental Biology Program, University of Helsinki, 00790 Helsinki, Finland.,Institute for Neurosciences of Montpellier, INSERM UMR1051, University of Montpellier, 34295 Montpellier, France
| | - Anniina Pirttiniemi
- Institute of Biotechnology, Helsinki Institute of Life Science, Developmental Biology Program, University of Helsinki, 00790 Helsinki, Finland
| | - Frederic Michon
- Institute of Biotechnology, Helsinki Institute of Life Science, Developmental Biology Program, University of Helsinki, 00790 Helsinki, Finland .,Institute for Neurosciences of Montpellier, INSERM UMR1051, University of Montpellier, 34295 Montpellier, France
| |
Collapse
|
19
|
Kiso H, Takahashi K, Mishima S, Murashima-Suginami A, Kakeno A, Yamazaki T, Asai K, Tokita Y, Uozumi R, Sugai M, Harada H, Huang B, MacDougall M, Bessho K. Third Dentition Is the Main Cause of Premolar Supernumerary Tooth Formation. J Dent Res 2019; 98:968-974. [PMID: 31238019 DOI: 10.1177/0022034519858282] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
While the prevalence of supernumerary teeth (ST) is high in permanent dentition, the etiology of ST in humans remains unclear. However, multiple murine models of ST have elaborated on dated mechanisms traditionally ascribed to ST etiology: one involves the rescue of rudimental teeth, and the second considers the contribution of odontogenic epithelial stem cells. It remains unclear whether these mechanisms of ST formation in mice are applicable to humans. The third dentition is usually regressed apoptotic-that is, the teeth do not completely form in humans. Recently, it was suggested that ST result from the rescue of regression of the third dentition in humans. The present investigation evaluates the proportion of collected general ST cases that evinced a third dentition based on the clinical definition of ST derived from the third dentition. We also investigated the contribution of SOX2-positive odontogenic epithelial stem cells to ST formation in humans. We collected 215 general ST cases from 15,008 patients. We confirmed that the general characteristics of the collected ST cases were similar to the results from previous reports. Of the 215 cases, we narrowed our analysis to the 78 patients who had received a computed tomography scan. The frequency of ST considered to have been derived from the third dentition was 26 out of 78 cases. Evidence of a third dentition was especially apparent in the premolar region, was more common in men, and was more likely among patients with ≥3 ST. SOX2-positive odontogenic epithelial stem cells within the surrounding epithelial cells of developing ST were observed in non-third dentition cases and not in third dentition cases. In conclusion, the third dentition is the main cause of ST in humans. The odontogenic epithelial stem cells may contribute to ST formation in cases not caused by a third dentition.
Collapse
Affiliation(s)
- H Kiso
- 1 Department of Oral and Maxillofacial Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - K Takahashi
- 1 Department of Oral and Maxillofacial Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - S Mishima
- 1 Department of Oral and Maxillofacial Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - A Murashima-Suginami
- 1 Department of Oral and Maxillofacial Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - A Kakeno
- 1 Department of Oral and Maxillofacial Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - T Yamazaki
- 1 Department of Oral and Maxillofacial Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - K Asai
- 1 Department of Oral and Maxillofacial Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Y Tokita
- 2 Department of Perinatology, Institute for Developmental Research, Aichi Human Service Center, Kasugai, Japan
| | - R Uozumi
- 3 Department of Biomedical Statistics and Bioinformatics, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - M Sugai
- 4 Department of Molecular Genetics, Division of Medicine, Faculty of Medical Sciences, University of Fukui, Fukui, Japan
| | - H Harada
- 5 The Advanced Oral Health Science Research Center, Iwate Medical University, Iwate, Japan
| | - B Huang
- 6 School of Dentistry and Health Sciences, Charles Sturt University, Orange, Australia
| | - M MacDougall
- 7 Faculty of Dentistry, University of British Columbia, Vancouver, Canada
| | - K Bessho
- 1 Department of Oral and Maxillofacial Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| |
Collapse
|
20
|
Thesleff I. From understanding tooth development to bioengineering of teeth. Eur J Oral Sci 2019; 126 Suppl 1:67-71. [PMID: 30178557 DOI: 10.1111/eos.12421] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/21/2018] [Indexed: 12/30/2022]
Abstract
Remarkable breakthroughs in the fields of developmental biology and stem cell biology during the last 15 yr have led to a new level of understanding regarding how teeth develop and how stem cells can be programmed. As a result, the possibilities of growing new teeth and of tooth bioengineering have been explored. Currently, a great deal is known about how signaling molecules and genes regulate tooth development, and modern research using transgenic mouse models has demonstrated that it is possible to induce the formation of new teeth by tinkering with the signaling networks that govern early tooth development. A breakthrough in stem cell biology in 2006 opened up the possibility that a patient's own cells can be programmed to develop into pluripotent stem cells and used for building new tissues and organs. At present, active research in numerous laboratories around the world addresses the question of how to program the stem and progenitor cells to develop into tooth-specific cell types. Taken together, the remarkable progress in developmental and stem cell biology is now feeding hopes of growing new teeth in the dental clinic in the not-too-distant future.
Collapse
Affiliation(s)
- Irma Thesleff
- Developmental Biology Research Program, Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| |
Collapse
|
21
|
Park JS, Ko JM, Chae JH. Novel and Private EDA Mutations and Clinical Phenotypes of Korean Patients with X-Linked Hypohidrotic Ectodermal Dysplasia. Cytogenet Genome Res 2019; 158:1-9. [PMID: 31129666 DOI: 10.1159/000500214] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/16/2018] [Indexed: 11/19/2022] Open
Abstract
X-linked hypohidrotic ectodermal dysplasia (XLHED; OMIM 305100) is the most common form of ectodermal dysplasia, presenting with the triad of hypotrichosis, hypodontia, and hypohidrosis. This disorder is caused by mutations in EDA, which encodes ectodysplasin A, a member of the tumor necrosis factor superfamily. In this study, we describe clinical and genetic characteristics of 10 Korean XLHED patients (9 males, 1 female) from 9 families. Nine out of the 10 patients manifested the cardinal triad of symptoms. Six patients had a positive family history, while 2 patients were brothers. The most common initial presentation was hypotrichosis or hypodontia, while 1 patient presented with recurrent high fever in early infancy. Sanger sequencing of the EDA gene was performed and revealed 9 different mutations. Three had been reported previously, and 6 were novel mutations. One female patient, carrying a previously reported missense mutation, might be affected by skewed X-inactivation. This is the first observational study investigating genetically confirmed XLHED patients in Korea. To provide appropriate supportive care and genetic counseling, clinicians should consider the possibility of XLHED in the differential diagnosis of recurrent fever in infants, as well as recognize the typical triad of symptoms.
Collapse
|
22
|
Margolis CA, Schneider P, Huttner K, Kirby N, Houser TP, Wildman L, Grove GL, Schneider H, Casal ML. Prenatal Treatment of X-Linked Hypohidrotic Ectodermal Dysplasia using Recombinant Ectodysplasin in a Canine Model. J Pharmacol Exp Ther 2019; 370:806-813. [PMID: 31000577 DOI: 10.1124/jpet.118.256040] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 04/08/2019] [Indexed: 11/22/2022] Open
Abstract
X-linked hypohidrotic ectodermal dysplasia (XLHED) is caused by defects in the EDA gene that inactivate the function of ectodysplasin A1 (EDA1). This leads to abnormal development of eccrine glands, hair follicles, and teeth, and to frequent respiratory infections. Previous studies in the naturally occurring dog model demonstrated partial prevention of the XLHED phenotype by postnatal administration of recombinant EDA1. The results suggested that a single or two temporally spaced injections of EDI200 prenatally might improve the clinical outcome in the dog model. Fetuses received ultrasound-guided EDI200 intra-amniotically at gestational days 32 and 45, or 45 or 55 alone (of a 65-day pregnancy). Growth rates, lacrimation, hair growth, meibomian glands, sweating, dentition, and mucociliary clearance were compared in treated and untreated XLHED-affected dogs, and in heterozygous and wild-type control dogs. Improved phenotypic outcomes were noted in the earlier and more frequently treated animals. All animals treated prenatally showed positive responses compared with untreated dogs with XLHED, most notably in the transfer of moisture through paw pads, suggesting improved onset of sweating ability and restored meibomian gland development. These results exemplify the feasibility of ultrasound-guided intra-amniotic injections for the treatment of developmental disorders, with improved formation of specific EDA1-dependent structures in dogs with XLHED.
Collapse
Affiliation(s)
- Carol A Margolis
- University of Pennsylvania School of Veterinary Medicine, Philadelphia, Pennsylvania (C.A.M., M.L.C.); Department of Biochemistry, University of Lausanne, Lausanne, Switzerland (P.S.); Edimer Pharmaceuticals, Cambridge, Massachusetts (K.H., N.K.); cyberDERM, Inc., Broomall, Pennsylvania (T.P.H., L.W., G.L.G.); and Universitätsklinikum Erlangen, Kinder- und Jugendklinik, Erlangen, Germany (H.S.)
| | - Pascal Schneider
- University of Pennsylvania School of Veterinary Medicine, Philadelphia, Pennsylvania (C.A.M., M.L.C.); Department of Biochemistry, University of Lausanne, Lausanne, Switzerland (P.S.); Edimer Pharmaceuticals, Cambridge, Massachusetts (K.H., N.K.); cyberDERM, Inc., Broomall, Pennsylvania (T.P.H., L.W., G.L.G.); and Universitätsklinikum Erlangen, Kinder- und Jugendklinik, Erlangen, Germany (H.S.)
| | - Kenneth Huttner
- University of Pennsylvania School of Veterinary Medicine, Philadelphia, Pennsylvania (C.A.M., M.L.C.); Department of Biochemistry, University of Lausanne, Lausanne, Switzerland (P.S.); Edimer Pharmaceuticals, Cambridge, Massachusetts (K.H., N.K.); cyberDERM, Inc., Broomall, Pennsylvania (T.P.H., L.W., G.L.G.); and Universitätsklinikum Erlangen, Kinder- und Jugendklinik, Erlangen, Germany (H.S.)
| | - Neil Kirby
- University of Pennsylvania School of Veterinary Medicine, Philadelphia, Pennsylvania (C.A.M., M.L.C.); Department of Biochemistry, University of Lausanne, Lausanne, Switzerland (P.S.); Edimer Pharmaceuticals, Cambridge, Massachusetts (K.H., N.K.); cyberDERM, Inc., Broomall, Pennsylvania (T.P.H., L.W., G.L.G.); and Universitätsklinikum Erlangen, Kinder- und Jugendklinik, Erlangen, Germany (H.S.)
| | - Timothy P Houser
- University of Pennsylvania School of Veterinary Medicine, Philadelphia, Pennsylvania (C.A.M., M.L.C.); Department of Biochemistry, University of Lausanne, Lausanne, Switzerland (P.S.); Edimer Pharmaceuticals, Cambridge, Massachusetts (K.H., N.K.); cyberDERM, Inc., Broomall, Pennsylvania (T.P.H., L.W., G.L.G.); and Universitätsklinikum Erlangen, Kinder- und Jugendklinik, Erlangen, Germany (H.S.)
| | - Lee Wildman
- University of Pennsylvania School of Veterinary Medicine, Philadelphia, Pennsylvania (C.A.M., M.L.C.); Department of Biochemistry, University of Lausanne, Lausanne, Switzerland (P.S.); Edimer Pharmaceuticals, Cambridge, Massachusetts (K.H., N.K.); cyberDERM, Inc., Broomall, Pennsylvania (T.P.H., L.W., G.L.G.); and Universitätsklinikum Erlangen, Kinder- und Jugendklinik, Erlangen, Germany (H.S.)
| | - Gary L Grove
- University of Pennsylvania School of Veterinary Medicine, Philadelphia, Pennsylvania (C.A.M., M.L.C.); Department of Biochemistry, University of Lausanne, Lausanne, Switzerland (P.S.); Edimer Pharmaceuticals, Cambridge, Massachusetts (K.H., N.K.); cyberDERM, Inc., Broomall, Pennsylvania (T.P.H., L.W., G.L.G.); and Universitätsklinikum Erlangen, Kinder- und Jugendklinik, Erlangen, Germany (H.S.)
| | - Holm Schneider
- University of Pennsylvania School of Veterinary Medicine, Philadelphia, Pennsylvania (C.A.M., M.L.C.); Department of Biochemistry, University of Lausanne, Lausanne, Switzerland (P.S.); Edimer Pharmaceuticals, Cambridge, Massachusetts (K.H., N.K.); cyberDERM, Inc., Broomall, Pennsylvania (T.P.H., L.W., G.L.G.); and Universitätsklinikum Erlangen, Kinder- und Jugendklinik, Erlangen, Germany (H.S.)
| | - Margret L Casal
- University of Pennsylvania School of Veterinary Medicine, Philadelphia, Pennsylvania (C.A.M., M.L.C.); Department of Biochemistry, University of Lausanne, Lausanne, Switzerland (P.S.); Edimer Pharmaceuticals, Cambridge, Massachusetts (K.H., N.K.); cyberDERM, Inc., Broomall, Pennsylvania (T.P.H., L.W., G.L.G.); and Universitätsklinikum Erlangen, Kinder- und Jugendklinik, Erlangen, Germany (H.S.)
| |
Collapse
|
23
|
Moura E, Rotenberg IS, Pimpão CT. X-Linked Hypohidrotic Ectodermal Dysplasia-General Features and Dental Abnormalities in Affected Dogs Compared With Human Dental Abnormalities. Top Companion Anim Med 2019; 35:11-17. [PMID: 31122682 DOI: 10.1053/j.tcam.2019.03.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 03/06/2019] [Accepted: 03/06/2019] [Indexed: 11/11/2022]
Abstract
X-linked hypohidrotic ectodermal dysplasia (XLHED) is a genetic disorder characterized by abnormalities in ectodermal derivatives such as sweat glands, hair, and teeth. In animals, the highest number of cases has been reported in dogs, which show characteristic congenital alopecia and develop abnormalities in the shape and number of teeth. Although the clinical phenotype of the affected individuals is typical, this disorder remains almost unknown in veterinary clinical practice. With the aim of making it better known, we gathered in this review the main clinical and genetic aspects of XLHED, placing emphasis on dental abnormalities.
Collapse
Affiliation(s)
- Enio Moura
- Service of Medical Genetics, Course of Veterinary Medicine, School of Life Sciences, Pontifícia Universidade Católica do Paraná (PUCPR), Curitiba, PR, Brazil.
| | - Isabel S Rotenberg
- Course of Veterinary Medicine, Pontifícia Universidade Católica do Paraná (PUCPR), Curitiba, PR, Brazil
| | - Cláudia T Pimpão
- Department of Animal Science, School of Life Sciences, Pontifícia Universidade Católica do Paraná (PUCPR), Curitiba, PR, Brazil
| |
Collapse
|
24
|
A de Novo EDA-Variant in a Litter of Shorthaired Standard Dachshunds with X-Linked Hypohidrotic Ectodermal Dysplasia. G3-GENES GENOMES GENETICS 2019; 9:95-104. [PMID: 30397018 PMCID: PMC6325906 DOI: 10.1534/g3.118.200814] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
In this study, we present a detailed phenotype description and genetic elucidation of the first case of X-linked hypohidrotic ectodermal dysplasia in the shorthaired standard Dachshund. This condition is characterized by partial congenital hypotrichosis, missing and malformed teeth and a lack of eccrine sweat glands. Clinical signs including dental radiographs and histopathological findings were consistent with ectodermal dysplasia. Pedigree analysis supported an X-recessive mode of inheritance. Whole-genome sequencing of one affected puppy and his dam identified a 1-basepair deletion within the ectodysplasin-A (EDA) gene (CM000039.3:g.54509504delT, c.458delT). Sanger sequencing of further family members confirmed the EDA:c.458delT-variant. Validation in all available family members, 37 unrelated shorthaired standard Dachshunds, 128 further Dachshunds from all other coat and size varieties and samples from 34 dog breeds revealed the EDA:c.458delT-variant to be private for this family. Two heterozygous females showed very mild congenital hypotrichosis but normal dentition. Since the dam is demonstrably the only heterozygous animal in the ancestry of the affected animals, we assume that the EDA:c.458delT-variant arose in the germline of the granddam or in an early embryonic stage of the dam. In conclusion, we detected a very recent de-novo EDA mutation causing X-linked hypohidrotic ectodermal dysplasia in the shorthaired standard Dachshund.
Collapse
|
25
|
Dostert C, Grusdat M, Letellier E, Brenner D. The TNF Family of Ligands and Receptors: Communication Modules in the Immune System and Beyond. Physiol Rev 2019; 99:115-160. [DOI: 10.1152/physrev.00045.2017] [Citation(s) in RCA: 175] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The tumor necrosis factor (TNF) and TNF receptor (TNFR) superfamilies (TNFSF/TNFRSF) include 19 ligands and 29 receptors that play important roles in the modulation of cellular functions. The communication pathways mediated by TNFSF/TNFRSF are essential for numerous developmental, homeostatic, and stimulus-responsive processes in vivo. TNFSF/TNFRSF members regulate cellular differentiation, survival, and programmed death, but their most critical functions pertain to the immune system. Both innate and adaptive immune cells are controlled by TNFSF/TNFRSF members in a manner that is crucial for the coordination of various mechanisms driving either co-stimulation or co-inhibition of the immune response. Dysregulation of these same signaling pathways has been implicated in inflammatory and autoimmune diseases, highlighting the importance of their tight regulation. Investigation of the control of TNFSF/TNFRSF activities has led to the development of therapeutics with the potential to reduce chronic inflammation or promote anti-tumor immunity. The study of TNFSF/TNFRSF proteins has exploded over the last 30 yr, but there remains a need to better understand the fundamental mechanisms underlying the molecular pathways they mediate to design more effective anti-inflammatory and anti-cancer therapies.
Collapse
Affiliation(s)
- Catherine Dostert
- Department of Infection and Immunity, Experimental and Molecular Immunology, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg; Odense Research Center for Anaphylaxis, Department of Dermatology and Allergy Center, Odense University Hospital, University of Southern Denmark, Odense, Denmark; and Life Sciences Research Unit, Molecular Disease Mechanisms Group, University of Luxembourg, Belvaux, Luxembourg
| | - Melanie Grusdat
- Department of Infection and Immunity, Experimental and Molecular Immunology, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg; Odense Research Center for Anaphylaxis, Department of Dermatology and Allergy Center, Odense University Hospital, University of Southern Denmark, Odense, Denmark; and Life Sciences Research Unit, Molecular Disease Mechanisms Group, University of Luxembourg, Belvaux, Luxembourg
| | - Elisabeth Letellier
- Department of Infection and Immunity, Experimental and Molecular Immunology, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg; Odense Research Center for Anaphylaxis, Department of Dermatology and Allergy Center, Odense University Hospital, University of Southern Denmark, Odense, Denmark; and Life Sciences Research Unit, Molecular Disease Mechanisms Group, University of Luxembourg, Belvaux, Luxembourg
| | - Dirk Brenner
- Department of Infection and Immunity, Experimental and Molecular Immunology, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg; Odense Research Center for Anaphylaxis, Department of Dermatology and Allergy Center, Odense University Hospital, University of Southern Denmark, Odense, Denmark; and Life Sciences Research Unit, Molecular Disease Mechanisms Group, University of Luxembourg, Belvaux, Luxembourg
| |
Collapse
|
26
|
Hammersen J, Wohlfart S, Goecke TW, Köninger A, Stepan H, Gallinat R, Morris S, Bücher K, Clarke A, Wünsche S, Beckmann MW, Schneider H, Faschingbauer F. Reliability of prenatal detection of X-linked hypohidrotic ectodermal dysplasia by tooth germ sonography. Prenat Diagn 2018; 39:796-805. [PMID: 30394555 DOI: 10.1002/pd.5384] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2018] [Revised: 10/11/2018] [Accepted: 10/19/2018] [Indexed: 11/11/2022]
Abstract
OBJECTIVE In X-linked hypohidrotic ectodermal dysplasia (XLHED), dysfunction of ectodysplasin A1 (EDA1) due to EDA mutations results in malformation of hair, teeth, and sweat glands. Hypohidrosis, which can cause life-threatening hyperthermia, is amenable to intrauterine therapy with recombinant EDA1. This study aimed at evaluating tooth germ sonography as a noninvasive means to identify affected fetuses in pregnant carrier women. METHODS Sonography, performed at 10 study sites between gestational weeks 18 and 28, led to the diagnosis of XLHED if fewer than six tooth germs were detected in mandible or maxilla. The assessment was verified postnatally by EDA sequencing and/or clinical findings. Estimated fetal weights and postnatal weight gain of boys with XLHED were assessed using appropriate growth charts. RESULTS In 19 of 38 sonographic examinations (23 male and 13 female fetuses), XLHED was detected prenatally. The prenatal diagnosis proved to be correct in 37 cases; one affected male fetus was missed. Specificity and positive predictive value were both 100%. Tooth counts obtained by clinical examination corresponded well with findings on panoramic radiographs. We observed no weight deficits of subjects with XLHED in utero but occasionally during infancy. CONCLUSION Tooth germ sonography is highly specific and reliable in detecting XLHED prenatally.
Collapse
Affiliation(s)
- Johanna Hammersen
- Center for Ectodermal Dysplasias, University Hospital Erlangen, Erlangen, Germany
| | - Sigrun Wohlfart
- Center for Ectodermal Dysplasias, University Hospital Erlangen, Erlangen, Germany
| | - Tamme W Goecke
- Department of Gynecology and Obstetrics, RWTH Aachen, Aachen, Germany
| | - Angela Köninger
- Department of Gynecology and Obstetrics, University of Duisburg-Essen, Essen, Germany
| | - Holger Stepan
- Department of Obstetrics, University Hospital Leipzig, Leipzig, Germany
| | - Ralph Gallinat
- Frauenärztliche Gemeinschaftspraxis Günzburg-Ichenhausen, Günzburg, Germany
| | - Susan Morris
- Cardiff and Vale University Health Board, University Hospital of Wales, Cardiff, UK
| | - Katharina Bücher
- Department of Conservative Dentistry and Periodontology, University Hospital, Ludwig-Maximilians University, Munich, Germany
| | - Angus Clarke
- Cardiff and Vale University Health Board, University Hospital of Wales, Cardiff, UK.,Institute of Medical Genetics, School of Medicine, Cardiff University, Cardiff, UK
| | - Stephanie Wünsche
- Center for Ectodermal Dysplasias, University Hospital Erlangen, Erlangen, Germany
| | - Matthias W Beckmann
- Center for Ectodermal Dysplasias, University Hospital Erlangen, Erlangen, Germany
| | - Holm Schneider
- Center for Ectodermal Dysplasias, University Hospital Erlangen, Erlangen, Germany
| | | |
Collapse
|
27
|
Hadji Rasouliha S, Bauer A, Dettwiler M, Welle MM, Leeb T. A frameshift variant in the EDA gene in Dachshunds with X-linked hypohidrotic ectodermal dysplasia. Anim Genet 2018; 49:651-654. [PMID: 30276836 DOI: 10.1111/age.12729] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/28/2018] [Indexed: 12/19/2022]
Abstract
X-linked hypohidrotic ectodermal dysplasia (XLHED) is a genetic disease characterized by hypoplasia or absence of hair, teeth and sweat glands. The EDA gene, located on the X chromosome, encodes the type II transmembrane protein ectodysplasin A. Variants in the EDA gene can lead to XLHED in humans, mice, cattle and dogs. In the present study, we investigated a litter of Dachshund puppies, of which four male puppies showed clinical signs of XLHED. We performed a candidate gene analysis in one affected puppy and several non-affected relatives. This analysis revealed a single base-pair deletion in the coding sequence of the EDA gene in the affected puppy (NM_001014770.2:c.842delT). The deletion is predicted to cause a frameshift, NP_001014770.1:p.(Leu281HisfsTer22), leading to a premature stop codon which truncates more than one quarter of the EDA protein. Sanger sequencing results confirmed that this variant was inherited from the dam. Based on knowledge about the functional impact of EDA variants in dogs and other species, c.842delT is a convincing candidate causative variant for the observed XLHED in the male puppies.
Collapse
Affiliation(s)
- S Hadji Rasouliha
- Institute of Genetics, Vetsuisse Faculty, University of Bern, 3001, Bern, Switzerland.,DermFocus, University of Bern, 3001, Bern, Switzerland
| | - A Bauer
- Institute of Genetics, Vetsuisse Faculty, University of Bern, 3001, Bern, Switzerland.,DermFocus, University of Bern, 3001, Bern, Switzerland
| | - M Dettwiler
- DermFocus, University of Bern, 3001, Bern, Switzerland.,Institute of Animal Pathology, Vetsuisse Faculty, University of Bern, 3001, Bern, Switzerland
| | - M M Welle
- DermFocus, University of Bern, 3001, Bern, Switzerland.,Institute of Animal Pathology, Vetsuisse Faculty, University of Bern, 3001, Bern, Switzerland
| | - T Leeb
- Institute of Genetics, Vetsuisse Faculty, University of Bern, 3001, Bern, Switzerland.,DermFocus, University of Bern, 3001, Bern, Switzerland
| |
Collapse
|
28
|
Ma X, Lv X, Liu HY, Wu X, Wang L, Li H, Chou HY. Genetic diagnosis for X-linked hypohidrotic ectodermal dysplasia family with a novel Ectodysplasin A gene mutation. J Clin Lab Anal 2018; 32:e22593. [PMID: 30006944 DOI: 10.1002/jcla.22593] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2018] [Accepted: 05/29/2018] [Indexed: 12/28/2022] Open
Abstract
AIM To make a gene diagnosis for a family with Ectodysplasin A (EDA) gene mutation as well as prenatal diagnosis, and report a novel EDA gene mutation. METHODS All coding sequences and flanking sequences of EDA gene were analyzed by Sanger sequencing in the proband, and then, according to EDA gene mutation in the proband, the EDA gene sequencing was performed on the family members. Based on the results above, the pathogenic mutation in EDA gene was finally identified, which was used for making prenatal diagnosis. RESULTS Sanger sequencing revealed c.302_303delCC [p.Pro101HisfsX11] mutation in EDA gene of the proband. This mutation induced EDA gene frame shift mutation which led to early termination of EDA gene translation because there was a termination codon TAA at the 11th codon behind the mutational site. Heterozygous deletion mutation (CC/--) at this locus was observed in the proband's mother and proband's grandmother, but the proband's aunt had no mutation at this locus. The analyses of amniotic fluid samples indicated negative sex-determining region on Y (SRY), and c.302_303delCC heterozygous deletion mutation. CONCLUSION We identified a pathogenetic mutation in EDA gene for the X-linked hypohidrotic ectodermal dysplasia family, made a prenatal diagnosis for the female carrier, and reported a novel EDA gene mutation.
Collapse
Affiliation(s)
- Xin Ma
- Department of Stomatology, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Zhengzhou, China
| | - Xue Lv
- Department of Health Management, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Zhengzhou, China
| | - Hong-Yan Liu
- Institute of Medical Genetics, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Zhengzhou, China
| | - Xing Wu
- Department of Pediatric, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Zhengzhou, China
| | - Li Wang
- Department of Gynaecology and Obstetrics, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Zhengzhou, China
| | - Hao Li
- Department of Plastic Surgery, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Zhengzhou, China
| | - Hai-Yan Chou
- Department of Plastic Surgery, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Zhengzhou, China
| |
Collapse
|
29
|
Reyes-Reali J, Mendoza-Ramos MI, Garrido-Guerrero E, Méndez-Catalá CF, Méndez-Cruz AR, Pozo-Molina G. Hypohidrotic ectodermal dysplasia: clinical and molecular review. Int J Dermatol 2018; 57:965-972. [PMID: 29855039 DOI: 10.1111/ijd.14048] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Revised: 03/06/2018] [Accepted: 04/23/2018] [Indexed: 12/30/2022]
Abstract
Hypohidrotic Ectodermal Dysplasia (HED) is a genetic human disorder which affects structures of ectodermal origin. Although there are autosomal recessive and dominant forms, X-linked (XL) is the most frequent form of the disease. This XL-HED phenotype is associated with mutations in the gene encoding the transmembrane protein ectodysplasin-1 (EDA1), a member of the TNFα-related signaling pathway. The proteins from this pathway are involved in signal transduction from ectoderm to mesenchyme leading to the development of ectoderm-derived structures in the fetus such as hair, teeth, skin, nails, and eccrine sweat glands. The aim of this review was to update the main clinical characteristics of HED regarding to recent molecular advances in the comprehension of all the possible genes involved in this group of disorders since it is known that Eda-A1-Edar signaling has multiple roles in ectodermal organ development, regulating their initiation, morphogenesis, and differentiation steps. The knowledge of the biological mechanisms that generate HED is needed for both a better detection of possible cases and for the design of efficient prevention and treatment approaches.
Collapse
Affiliation(s)
- Julia Reyes-Reali
- Laboratorio de Inmunología, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla, Mexico
| | - María Isabel Mendoza-Ramos
- Laboratorio de Inmunología, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla, Mexico
| | - Efraín Garrido-Guerrero
- Laboratorio de Investigación en Biología Molecular y Celular del Cáncer, Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de México, Mexico
| | - Claudia F Méndez-Catalá
- Laboratorio Nacional de Enfermedades Crónico-Degenerativas/Unidad de Biomedicina (UBIMED), Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla, Mexico
| | - Adolfo R Méndez-Cruz
- Laboratorio de Inmunología, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla, Mexico
| | - Glustein Pozo-Molina
- Carrera de Médico Cirujano, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla, Mexico
| |
Collapse
|
30
|
Schneider H, Faschingbauer F, Schuepbach-Mallepell S, Körber I, Wohlfart S, Dick A, Wahlbuhl M, Kowalczyk-Quintas C, Vigolo M, Kirby N, Tannert C, Rompel O, Rascher W, Beckmann MW, Schneider P. Prenatal Correction of X-Linked Hypohidrotic Ectodermal Dysplasia. N Engl J Med 2018; 378:1604-1610. [PMID: 29694819 DOI: 10.1056/nejmoa1714322] [Citation(s) in RCA: 109] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Genetic deficiency of ectodysplasin A (EDA) causes X-linked hypohidrotic ectodermal dysplasia (XLHED), in which the development of sweat glands is irreversibly impaired, an condition that can lead to life-threatening hyperthermia. We observed normal development of mouse fetuses with Eda mutations after they had been exposed in utero to a recombinant protein that includes the receptor-binding domain of EDA. We administered this protein intraamniotically to two affected human twins at gestational weeks 26 and 31 and to a single affected human fetus at gestational week 26; the infants, born in week 33 (twins) and week 39 (singleton), were able to sweat normally, and XLHED-related illness had not developed by 14 to 22 months of age. (Funded by Edimer Pharmaceuticals and others.).
Collapse
Affiliation(s)
- Holm Schneider
- From the Departments of Pediatrics (H.S., I.K., S.W., A.D., M.W., W.R.), Obstetrics and Gynecology (F.F., M.W.B.), and Radiology (O.R.), University of Erlangen-Nürnberg, Erlangen, and Radiology Nienburg, Nienburg/Weser (C.T.) - both in Germany; the Department of Biochemistry, University of Lausanne, Epalinges, Switzerland (S.S.-M., C.K.-Q., M.V., P.S.); and Edimer Pharmaceuticals, Andover, MA (N.K.)
| | - Florian Faschingbauer
- From the Departments of Pediatrics (H.S., I.K., S.W., A.D., M.W., W.R.), Obstetrics and Gynecology (F.F., M.W.B.), and Radiology (O.R.), University of Erlangen-Nürnberg, Erlangen, and Radiology Nienburg, Nienburg/Weser (C.T.) - both in Germany; the Department of Biochemistry, University of Lausanne, Epalinges, Switzerland (S.S.-M., C.K.-Q., M.V., P.S.); and Edimer Pharmaceuticals, Andover, MA (N.K.)
| | - Sonia Schuepbach-Mallepell
- From the Departments of Pediatrics (H.S., I.K., S.W., A.D., M.W., W.R.), Obstetrics and Gynecology (F.F., M.W.B.), and Radiology (O.R.), University of Erlangen-Nürnberg, Erlangen, and Radiology Nienburg, Nienburg/Weser (C.T.) - both in Germany; the Department of Biochemistry, University of Lausanne, Epalinges, Switzerland (S.S.-M., C.K.-Q., M.V., P.S.); and Edimer Pharmaceuticals, Andover, MA (N.K.)
| | - Iris Körber
- From the Departments of Pediatrics (H.S., I.K., S.W., A.D., M.W., W.R.), Obstetrics and Gynecology (F.F., M.W.B.), and Radiology (O.R.), University of Erlangen-Nürnberg, Erlangen, and Radiology Nienburg, Nienburg/Weser (C.T.) - both in Germany; the Department of Biochemistry, University of Lausanne, Epalinges, Switzerland (S.S.-M., C.K.-Q., M.V., P.S.); and Edimer Pharmaceuticals, Andover, MA (N.K.)
| | - Sigrun Wohlfart
- From the Departments of Pediatrics (H.S., I.K., S.W., A.D., M.W., W.R.), Obstetrics and Gynecology (F.F., M.W.B.), and Radiology (O.R.), University of Erlangen-Nürnberg, Erlangen, and Radiology Nienburg, Nienburg/Weser (C.T.) - both in Germany; the Department of Biochemistry, University of Lausanne, Epalinges, Switzerland (S.S.-M., C.K.-Q., M.V., P.S.); and Edimer Pharmaceuticals, Andover, MA (N.K.)
| | - Angela Dick
- From the Departments of Pediatrics (H.S., I.K., S.W., A.D., M.W., W.R.), Obstetrics and Gynecology (F.F., M.W.B.), and Radiology (O.R.), University of Erlangen-Nürnberg, Erlangen, and Radiology Nienburg, Nienburg/Weser (C.T.) - both in Germany; the Department of Biochemistry, University of Lausanne, Epalinges, Switzerland (S.S.-M., C.K.-Q., M.V., P.S.); and Edimer Pharmaceuticals, Andover, MA (N.K.)
| | - Mandy Wahlbuhl
- From the Departments of Pediatrics (H.S., I.K., S.W., A.D., M.W., W.R.), Obstetrics and Gynecology (F.F., M.W.B.), and Radiology (O.R.), University of Erlangen-Nürnberg, Erlangen, and Radiology Nienburg, Nienburg/Weser (C.T.) - both in Germany; the Department of Biochemistry, University of Lausanne, Epalinges, Switzerland (S.S.-M., C.K.-Q., M.V., P.S.); and Edimer Pharmaceuticals, Andover, MA (N.K.)
| | - Christine Kowalczyk-Quintas
- From the Departments of Pediatrics (H.S., I.K., S.W., A.D., M.W., W.R.), Obstetrics and Gynecology (F.F., M.W.B.), and Radiology (O.R.), University of Erlangen-Nürnberg, Erlangen, and Radiology Nienburg, Nienburg/Weser (C.T.) - both in Germany; the Department of Biochemistry, University of Lausanne, Epalinges, Switzerland (S.S.-M., C.K.-Q., M.V., P.S.); and Edimer Pharmaceuticals, Andover, MA (N.K.)
| | - Michele Vigolo
- From the Departments of Pediatrics (H.S., I.K., S.W., A.D., M.W., W.R.), Obstetrics and Gynecology (F.F., M.W.B.), and Radiology (O.R.), University of Erlangen-Nürnberg, Erlangen, and Radiology Nienburg, Nienburg/Weser (C.T.) - both in Germany; the Department of Biochemistry, University of Lausanne, Epalinges, Switzerland (S.S.-M., C.K.-Q., M.V., P.S.); and Edimer Pharmaceuticals, Andover, MA (N.K.)
| | - Neil Kirby
- From the Departments of Pediatrics (H.S., I.K., S.W., A.D., M.W., W.R.), Obstetrics and Gynecology (F.F., M.W.B.), and Radiology (O.R.), University of Erlangen-Nürnberg, Erlangen, and Radiology Nienburg, Nienburg/Weser (C.T.) - both in Germany; the Department of Biochemistry, University of Lausanne, Epalinges, Switzerland (S.S.-M., C.K.-Q., M.V., P.S.); and Edimer Pharmaceuticals, Andover, MA (N.K.)
| | - Corinna Tannert
- From the Departments of Pediatrics (H.S., I.K., S.W., A.D., M.W., W.R.), Obstetrics and Gynecology (F.F., M.W.B.), and Radiology (O.R.), University of Erlangen-Nürnberg, Erlangen, and Radiology Nienburg, Nienburg/Weser (C.T.) - both in Germany; the Department of Biochemistry, University of Lausanne, Epalinges, Switzerland (S.S.-M., C.K.-Q., M.V., P.S.); and Edimer Pharmaceuticals, Andover, MA (N.K.)
| | - Oliver Rompel
- From the Departments of Pediatrics (H.S., I.K., S.W., A.D., M.W., W.R.), Obstetrics and Gynecology (F.F., M.W.B.), and Radiology (O.R.), University of Erlangen-Nürnberg, Erlangen, and Radiology Nienburg, Nienburg/Weser (C.T.) - both in Germany; the Department of Biochemistry, University of Lausanne, Epalinges, Switzerland (S.S.-M., C.K.-Q., M.V., P.S.); and Edimer Pharmaceuticals, Andover, MA (N.K.)
| | - Wolfgang Rascher
- From the Departments of Pediatrics (H.S., I.K., S.W., A.D., M.W., W.R.), Obstetrics and Gynecology (F.F., M.W.B.), and Radiology (O.R.), University of Erlangen-Nürnberg, Erlangen, and Radiology Nienburg, Nienburg/Weser (C.T.) - both in Germany; the Department of Biochemistry, University of Lausanne, Epalinges, Switzerland (S.S.-M., C.K.-Q., M.V., P.S.); and Edimer Pharmaceuticals, Andover, MA (N.K.)
| | - Matthias W Beckmann
- From the Departments of Pediatrics (H.S., I.K., S.W., A.D., M.W., W.R.), Obstetrics and Gynecology (F.F., M.W.B.), and Radiology (O.R.), University of Erlangen-Nürnberg, Erlangen, and Radiology Nienburg, Nienburg/Weser (C.T.) - both in Germany; the Department of Biochemistry, University of Lausanne, Epalinges, Switzerland (S.S.-M., C.K.-Q., M.V., P.S.); and Edimer Pharmaceuticals, Andover, MA (N.K.)
| | - Pascal Schneider
- From the Departments of Pediatrics (H.S., I.K., S.W., A.D., M.W., W.R.), Obstetrics and Gynecology (F.F., M.W.B.), and Radiology (O.R.), University of Erlangen-Nürnberg, Erlangen, and Radiology Nienburg, Nienburg/Weser (C.T.) - both in Germany; the Department of Biochemistry, University of Lausanne, Epalinges, Switzerland (S.S.-M., C.K.-Q., M.V., P.S.); and Edimer Pharmaceuticals, Andover, MA (N.K.)
| |
Collapse
|
31
|
Li S, Zhou J, Zhang L, Li J, Yu J, Ning K, Qu Y, He H, Chen Y, Reinach PS, Liu C, Liu Z, Li W. Ectodysplasin A regulates epithelial barrier function through sonic hedgehog signalling pathway. J Cell Mol Med 2018; 22:230-240. [PMID: 28782908 PMCID: PMC5742694 DOI: 10.1111/jcmm.13311] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Accepted: 06/16/2017] [Indexed: 11/30/2022] Open
Abstract
Ectodysplasin A (Eda), a member of the tumour necrosis factor superfamily, plays an important role in ectodermal organ development. An EDA mutation underlies the most common of ectodermal dysplasias, that is X-linked hypohidrotic ectodermal dysplasia (XLHED) in humans. Even though it lacks a developmental function, the role of Eda during the postnatal stage remains elusive. In this study, we found tight junctional proteins ZO-1 and claudin-1 expression is largely reduced in epidermal, corneal and lung epithelia in Eda mutant Tabby mice at different postnatal ages. These declines are associated with tail ulceration, corneal pannus formation and lung infection. Furthermore, topical application of recombinant Eda protein markedly mitigated corneal barrier dysfunction. Using cultures of a human corneal epithelial cell line and Tabby mouse skin tissue explants, Eda up-regulated expression of ZO-1 and claudin-1 through activation of the sonic hedgehog signalling pathway. We conclude that EDA gene expression contributes to the maintenance of epithelial barrier function. Such insight may help efforts to identify novel strategies for improving management of XLHED disease manifestations in a clinical setting.
Collapse
Affiliation(s)
- Sanming Li
- Eye Institute of Xiamen UniversityXiamenFujianChina
- Medical College of Xiamen UniversityXiamenFujianChina
- Fujian Provincial Key Laboratory of Ophthalmology and Visual ScienceXiamenFujianChina
| | - Jing Zhou
- Eye Institute of Xiamen UniversityXiamenFujianChina
- Medical College of Xiamen UniversityXiamenFujianChina
- Fujian Provincial Key Laboratory of Ophthalmology and Visual ScienceXiamenFujianChina
| | - Liying Zhang
- Eye Institute of Xiamen UniversityXiamenFujianChina
- Medical College of Xiamen UniversityXiamenFujianChina
- Fujian Provincial Key Laboratory of Ophthalmology and Visual ScienceXiamenFujianChina
| | - Juan Li
- Eye Institute of Xiamen UniversityXiamenFujianChina
- Medical College of Xiamen UniversityXiamenFujianChina
- Fujian Provincial Key Laboratory of Ophthalmology and Visual ScienceXiamenFujianChina
| | - Jingwen Yu
- Eye Institute of Xiamen UniversityXiamenFujianChina
- Medical College of Xiamen UniversityXiamenFujianChina
- Fujian Provincial Key Laboratory of Ophthalmology and Visual ScienceXiamenFujianChina
| | - Ke Ning
- Eye Institute of Xiamen UniversityXiamenFujianChina
- Medical College of Xiamen UniversityXiamenFujianChina
- Fujian Provincial Key Laboratory of Ophthalmology and Visual ScienceXiamenFujianChina
| | - Yangluowa Qu
- Eye Institute of Xiamen UniversityXiamenFujianChina
- Medical College of Xiamen UniversityXiamenFujianChina
- Fujian Provincial Key Laboratory of Ophthalmology and Visual ScienceXiamenFujianChina
| | - Hui He
- Eye Institute of Xiamen UniversityXiamenFujianChina
- Medical College of Xiamen UniversityXiamenFujianChina
- Fujian Provincial Key Laboratory of Ophthalmology and Visual ScienceXiamenFujianChina
| | - Yongxiong Chen
- Eye Institute of Xiamen UniversityXiamenFujianChina
- Medical College of Xiamen UniversityXiamenFujianChina
- Fujian Provincial Key Laboratory of Ophthalmology and Visual ScienceXiamenFujianChina
| | | | - Chia‐Yang Liu
- School of Optometry BloomingtonIndiana University BloomingtonBloomingtonINUSA
| | - Zuguo Liu
- Eye Institute of Xiamen UniversityXiamenFujianChina
- Medical College of Xiamen UniversityXiamenFujianChina
- Fujian Provincial Key Laboratory of Ophthalmology and Visual ScienceXiamenFujianChina
- Xiamen University affiliated Xiamen Eye CenterXiamenFujianChina
| | - Wei Li
- Eye Institute of Xiamen UniversityXiamenFujianChina
- Medical College of Xiamen UniversityXiamenFujianChina
- Fujian Provincial Key Laboratory of Ophthalmology and Visual ScienceXiamenFujianChina
- Xiamen University affiliated Xiamen Eye CenterXiamenFujianChina
| |
Collapse
|
32
|
Higashino T, Lee JYW, McGrath JA. Advances in the genetic understanding of hypohidrotic ectodermal dysplasia. Expert Opin Orphan Drugs 2017. [DOI: 10.1080/21678707.2017.1405806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Toshihide Higashino
- St John’s Institute of Dermatology, King’s College London, Guy’s Hospital, London, UK
- Department of Integrative Physiology and Bio-Nano Medicine, National Defense Medical College, Tokorozawa, Japan
| | - John Y. W. Lee
- St John’s Institute of Dermatology, King’s College London, Guy’s Hospital, London, UK
| | - John A. McGrath
- St John’s Institute of Dermatology, King’s College London, Guy’s Hospital, London, UK
| |
Collapse
|
33
|
Gurda BL, Bradbury AM, Vite CH. Canine and Feline Models of Human Genetic Diseases and Their Contributions to Advancing Clinical Therapies
. THE YALE JOURNAL OF BIOLOGY AND MEDICINE 2017; 90:417-431. [PMID: 28955181 PMCID: PMC5612185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
For many lethal or debilitating genetic disorders in patients there are no satisfactory therapies. Several barriers exist that hinder the developments of effective therapies including the limited availability of clinically relevant animal models that faithfully recapitulate human genetic disease. In 1974, the Referral Center for Animal Models of Human Genetic Disease (RCAM) was established by Dr. Donald F. Patterson and continued by Dr. Mark E. Haskins at the University of Pennsylvania with the mission to discover, understand, treat, and maintain breeding colonies of naturally occurring hereditary disorders in dogs and cats that are orthologous to those found in human patients. Although non-human primates, sheep, and pig models are also available within the medical community, naturally occurring diseases are rarely identified in non-human primates, and the vast behavioral, clinicopathological, physiological, and anatomical knowledge available regarding dogs and cats far surpasses what is available in ovine and porcine species. The canine and feline models that are maintained at RCAM are presented here with a focus on preclinical therapy data. Clinical studies that have been generated from preclinical work in these models are also presented.
Collapse
Affiliation(s)
| | | | - Charles H. Vite
- To whom all correspondence should be addressed: Dr. Charles H. Vite, 209 Rosenthal Building, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, 19104, Tel: 215-898-9473, .
| |
Collapse
|
34
|
The Molecular Revolution in Cutaneous Biology: Emerging Landscape in Genomic Dermatology: New Mechanistic Ideas, Gene Editing, and Therapeutic Breakthroughs. J Invest Dermatol 2017; 137:e123-e129. [PMID: 28411843 DOI: 10.1016/j.jid.2016.08.038] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Revised: 07/25/2016] [Accepted: 08/04/2016] [Indexed: 01/20/2023]
Abstract
Stunning technological advances in genomics have led to spectacular breakthroughs in the understanding of the underlying defects, biological pathways and therapeutic targets of skin diseases leading to new therapeutic interventions. Next-generation sequencing has revolutionized the identification of disease-causing genes and has a profound impact in deciphering gene and protein signatures in rare and frequent skin diseases. Gene addition strategies have shown efficacy in junctional EB and in recessive dystrophic EB (RDEB). TALENs and Cripsr/Cas9 have emerged as highly efficient new tools to edit genomic sequences to creat new models and to correct or disrupt mutated genes to treat human diseases. Therapeutic approaches have not been limited to DNA modification and strategies at the mRNA, protein and cellular levels have also emerged, some of which have already proven clinical efficacy in RDEB. Improved understanding of the pathogenesis of skin disorders has led to the development of specific drugs or repurposing of existing medicines as in basal cell nevus syndrome, alopecia areata, melanoma and EB simplex. These discoveries pave the way for improved targeted personalized medicine for rare and frequent diseases. It is likely that a growing number of orphan skin diseases will benefit from combinatory new therapies in a near future.
Collapse
|
35
|
Abstract
PURPOSE OF REVIEW The ebb and flow of genetic influence relative to the understanding of craniofacial and dental disorders has evolved into a tacit acceptance of the current genetic paradigm. This review explores the science behind craniofacial and dental disorders through the lens of recent past and current findings and using tooth agenesis as a model of advances in craniofacial genetics. RECENT FINDINGS Contemporary studies of craniofacial biology takes advantage of the technological resources stemming from the genomic and post-genomic eras. Emerging data highlights the role of key genes and the epigenetic landscape controlling these genes, in causing dentofacial abnormalities. We also report here a novel Glu78FS MSX1 mutation in one family segregating an autosomal dominant form of severe tooth agenesis as an illustration of an evolving theme, i.e., different mutations in the same gene can result in a spectrum of dentofacial phenotypic severity. The future of clinical therapeutics will benefit from advances in genetics and molecular biology that refine the genotype-phenotype correlation. Indeed, the past century suggests a continued convergence of genetic science in the practice of clinical dentistry.
Collapse
Affiliation(s)
- Sylvia A Frazier-Bowers
- Department of Orthodontics, School of Dentistry, University of North Carolina at Chapel Hill, CB #7450, Chapel Hill, NC, 27599-7450, USA.
| | - Siddharth R Vora
- Department of Oral Health Sciences, Faculty of Dentistry, University of British Columbia, JBM-184 - 2199 Wesbrook Mall, Vancouver, BC, V6T 1Z3, Canada
| |
Collapse
|
36
|
Podzus J, Kowalczyk-Quintas C, Schuepbach-Mallepell S, Willen L, Staehlin G, Vigolo M, Tardivel A, Headon D, Kirby N, Mikkola ML, Schneider H, Schneider P. Ectodysplasin A in Biological Fluids and Diagnosis of Ectodermal Dysplasia. J Dent Res 2016; 96:217-224. [PMID: 28106506 DOI: 10.1177/0022034516673562] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The tumor necrosis factor (TNF) family ligand ectodysplasin A (EDA) is produced as 2 full-length splice variants, EDA1 and EDA2, that bind to EDA receptor (EDAR) and X-linked EDA receptor (XEDAR/EDA2R), respectively. Inactivating mutations in Eda or Edar cause hypohidrotic ectodermal dysplasia (HED), a condition characterized by malformations of the teeth, hair and glands, with milder deficiencies affecting only the teeth. EDA acts early during the development of ectodermal appendages-as early as the embryonic placode stage-and plays a role in adult appendage function. In this study, the authors measured EDA in serum, saliva and dried blood spots. The authors detected 3- to 4-fold higher levels of circulating EDA in cord blood than in adult sera. A receptor binding-competent form of EDA1 was the main form of EDA but a minor fraction of EDA2 was also found in fetal bovine serum. Sera of EDA-deficient patients contained either background EDA levels or low levels of EDA that could not bind to recombinant EDAR. The serum of a patient with a V262F missense mutation in Eda, which caused a milder form of X-linked HED (XLHED), contained low levels of EDA capable of binding to EDAR. In 2 mildly affected carriers, intermediate levels of EDA were detected, whereas a severely affected carrier had no active EDA in the serum. Small amounts of EDA were also detectable in normal adult saliva. Finally, EDA could be measured in spots of wild-type adult or cord blood dried onto filter paper at levels significantly higher than that measured in EDA-deficient blood. Measurement of EDA levels combined with receptor-binding assays might be of relevance to aid in the diagnosis of total or partial EDA deficiencies.
Collapse
Affiliation(s)
- J Podzus
- 1 Department of Pediatrics, University Hospital Erlangen, Germany
| | - C Kowalczyk-Quintas
- 2 Department of Biochemistry, University of Lausanne, Epalinges, Switzerland
| | | | - L Willen
- 2 Department of Biochemistry, University of Lausanne, Epalinges, Switzerland
| | - G Staehlin
- 2 Department of Biochemistry, University of Lausanne, Epalinges, Switzerland
| | - M Vigolo
- 2 Department of Biochemistry, University of Lausanne, Epalinges, Switzerland
| | - A Tardivel
- 2 Department of Biochemistry, University of Lausanne, Epalinges, Switzerland
| | - D Headon
- 3 Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, UK
| | - N Kirby
- 4 Edimer Pharmaceuticals, Cambridge, MA
| | - M L Mikkola
- 5 Developmental Biology Program, Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - H Schneider
- 1 Department of Pediatrics, University Hospital Erlangen, Germany
| | - P Schneider
- 2 Department of Biochemistry, University of Lausanne, Epalinges, Switzerland
| |
Collapse
|
37
|
Hytönen MK, Lohi H. Canine models of human rare disorders. Rare Dis 2016; 4:e1241362. [PMID: 27803843 PMCID: PMC5070630 DOI: 10.1080/21675511.2016.1241362] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Revised: 08/10/2016] [Accepted: 09/21/2016] [Indexed: 12/21/2022] Open
Abstract
Millions of children worldwide are born with rare and debilitating developmental disorders each year. Although an increasing number of these conditions are being recognized at the molecular level, the characterization of the underlying pathophysiology remains a grand challenge. This is often due to the lack of appropriate patient material or relevant animal models. Dogs are coming to the rescue as physiologically relevant large animal models. Hundreds of spontaneous genetic conditions have been described in dogs, most with close counterparts to human rare disorders. Our recent examples include the canine models of human Caffey (SLC37A2), van den Ende-Gupta (SCARF2) and Raine (FAM20C) syndromes. These studies demonstrate the pathophysiological similarity of human and canine syndromes, and suggest that joint efforts to characterize both human and canine rare diseases could provide additional benefits to the advancement of the field of rare diseases. Besides revealing new candidate genes, canine models allow access to experimental resources such as cells, tissues and even live animals for research and intervention purposes.
Collapse
Affiliation(s)
- Marjo K Hytönen
- Department of Veterinary Biosciences, University of Helsinki, Helsinki, Finland; Research Programs Unit, Molecular Neurology, University of Helsinki, Helsinki, Finland; The Folkhälsan Institute of Genetics, Helsinki, Finland
| | - Hannes Lohi
- Department of Veterinary Biosciences, University of Helsinki, Helsinki, Finland; Research Programs Unit, Molecular Neurology, University of Helsinki, Helsinki, Finland; The Folkhälsan Institute of Genetics, Helsinki, Finland
| |
Collapse
|
38
|
A Splice Defect in the EDA Gene in Dogs with an X-Linked Hypohidrotic Ectodermal Dysplasia (XLHED) Phenotype. G3-GENES GENOMES GENETICS 2016; 6:2949-54. [PMID: 27449516 PMCID: PMC5015951 DOI: 10.1534/g3.116.033225] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
X-linked hypohidrotic ectodermal dysplasia (XLHED) caused by variants in the EDA gene represents the most common ectodermal dysplasia in humans. We investigated three male mixed-breed dogs with an ectodermal dysplasia phenotype characterized by marked hypotrichosis and multifocal complete alopecia, almost complete absence of sweat and sebaceous glands, and altered dentition with missing and abnormally shaped teeth. Analysis of SNP chip genotypes and whole genome sequence data from the three affected dogs revealed that the affected dogs shared the same haplotype on a large segment of the X-chromosome, including the EDA gene. Unexpectedly, the whole genome sequence data did not reveal any nonsynonymous EDA variant in the affected dogs. We therefore performed an RNA-seq experiment on skin biopsies to search for changes in the transcriptome. This analysis revealed that the EDA transcript in the affected dogs lacked 103 nucleotides encoded by exon 2. We speculate that this exon skipping is caused by a genetic variant located in one of the large introns flanking this exon, which was missed by whole genome sequencing with the illumina short read technology. The altered EDA transcript splicing most likely causes the observed ectodermal dysplasia in the affected dogs. These dogs thus offer an excellent opportunity to gain insights into the complex splicing processes required for expression of the EDA gene, and other genes with large introns.
Collapse
|
39
|
Togo Y, Takahashi K, Saito K, Kiso H, Tsukamoto H, Huang B, Yanagita M, Sugai M, Harada H, Komori T, Shimizu A, MacDougall M, Bessho K. Antagonistic Functions of USAG-1 and RUNX2 during Tooth Development. PLoS One 2016; 11:e0161067. [PMID: 27518316 PMCID: PMC4982599 DOI: 10.1371/journal.pone.0161067] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Accepted: 07/30/2016] [Indexed: 12/02/2022] Open
Abstract
Supernumerary teeth and tooth agenesis are common morphological anomalies in humans. We previously obtained evidence that supernumerary maxillary incisors form as a result of the successive development of the rudimentary maxillary incisor tooth germ in Usag-1 null mice. The development of tooth germs is arrested in Runx2 null mice, and such mice also exhibit lingual epithelial buds associated with the upper molars and incisors. The aim of this study is to investigate the potential crosstalk between Usag-1 and Runx2 during tooth development. In the present study, three interesting phenomena were observed in double null Usag-1-/-/Runx2-/- mice: the prevalence of supernumerary teeth was lower than in Usag-1 null mice; tooth development progressed further compared than in Runx2 null mice; and the frequency of molar lingual buds was lower than in Runx2 null mice. Therefore, we suggest that RUNX2 and USAG-1 act in an antagonistic manner. The lingual bud was completely filled with odontogenic epithelial Sox2-positive cells in the Usag-1+/+/Runx2-/- mice, whereas almost no odontogenic epithelial Sox2-positive cells contributed to supernumerary tooth formation in the rudimentary maxillary incisors of the Usag-1-/-/Runx2+/+ mice. Our findings suggest that RUNX2 directly or indirectly prevents the differentiation and/or proliferation of odontogenic epithelial Sox2-positive cells. We hypothesize that RUNX2 inhibits the bone morphogenetic protein (BMP) and/or Wnt signaling pathways regulated by USAG-1, whereas RUNX2 expression is induced by BMP signaling independently of USAG-1.
Collapse
Affiliation(s)
- Yumiko Togo
- Department of Oral and Maxillofacial Surgery, Graduate School of Medicine, Kyoto University, 54 Shogoin-Kawahara-cho, Sakyo-ku, 606–8507, Kyoto, Japan
| | - Katsu Takahashi
- Department of Oral and Maxillofacial Surgery, Graduate School of Medicine, Kyoto University, 54 Shogoin-Kawahara-cho, Sakyo-ku, 606–8507, Kyoto, Japan
- * E-mail:
| | - Kazuyuki Saito
- Department of Oral and Maxillofacial Surgery, Graduate School of Medicine, Kyoto University, 54 Shogoin-Kawahara-cho, Sakyo-ku, 606–8507, Kyoto, Japan
| | - Honoka Kiso
- Department of Oral and Maxillofacial Surgery, Graduate School of Medicine, Kyoto University, 54 Shogoin-Kawahara-cho, Sakyo-ku, 606–8507, Kyoto, Japan
| | - Hiroko Tsukamoto
- Department of Oral and Maxillofacial Surgery, Graduate School of Medicine, Kyoto University, 54 Shogoin-Kawahara-cho, Sakyo-ku, 606–8507, Kyoto, Japan
| | - Boyen Huang
- School of Dentistry and Health Sciences, Faculty of Science, Charles Sturt University, Orange, NSW, 2800, Australia
| | - Motoko Yanagita
- Department of Nephrology, Graduate School of Medicine, Kyoto University, 54 Shogoin-Kawahara-cho, Sakyo-ku, 606–8507, Kyoto, Japan
| | - Manabu Sugai
- Department of Molecular Genetics, Division of Medicine, Faculty of Medical Sciences, University of Fukui, Matsuokashimoaizuki, Eiheiji-cho, Yoshida-gun, Fukui, 910–1193, Japan
| | - Hidemitsu Harada
- Division of Developmental Biology and Regenerative Medicine, Department of Anatomy, Iwate Medical University, 2-1-1, Nishitokuta, Yahaba, Iwate, 028–3694, Japan
| | - Toshihisa Komori
- Department of Cell Biology, Unit of Basic Medical Sciences, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki, 852–8588, Japan
| | - Akira Shimizu
- Department of Experimental Therapeutics, Institute for Advancement of Clinical and Translational Science, Kyoto University Hospital, 54 Shogoin-Kawahara-cho, Sakyo-ku, 606–8507, Kyoto, Japan
| | - Mary MacDougall
- Institute of Oral Health Research, Department of Oral and Maxillofacial Surgery, School of Dentistry, University of Alabama, Birmingham, Alabama, United States of America
| | - Kazuhisa Bessho
- Department of Oral and Maxillofacial Surgery, Graduate School of Medicine, Kyoto University, 54 Shogoin-Kawahara-cho, Sakyo-ku, 606–8507, Kyoto, Japan
| |
Collapse
|
40
|
Popa EM, Anthwal N, Tucker AS. Complex patterns of tooth replacement revealed in the fruit bat (Eidolon helvum). J Anat 2016; 229:847-856. [PMID: 27444818 DOI: 10.1111/joa.12522] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/21/2016] [Indexed: 12/17/2022] Open
Abstract
How teeth are replaced during normal growth and development has long been an important question for comparative and developmental anatomy. Non-standard model animals have become increasingly popular in this field due to the fact that the canonical model laboratory mammal, the mouse, develops only one generation of teeth (monophyodonty), whereas the majority of mammals possess two generations of teeth (diphyodonty). Here we used the straw-coloured fruit bat (Eidolon helvum), an Old World megabat, which has two generations of teeth, in order to observe the development and replacement of tooth germs from initiation up to mineralization stages. Our morphological study uses 3D reconstruction of histological sections to uncover differing arrangements of the first and second-generation tooth germs during the process of tooth replacement. We show that both tooth germ generations develop as part of the dental lamina, with the first generation detaching from the lamina, leaving the free edge to give rise to a second generation. This separation was particularly marked at the third premolar locus, where the primary and replacement teeth become positioned side by side, unconnected by a lamina. The position of the replacement tooth, with respect to the primary tooth, varied within the mouth, with replacements forming posterior to or directly lingual to the primary tooth. Development of replacement teeth was arrested at some tooth positions and this appeared to be linked to the timing of tooth initiation and the subsequent rate of development. This study adds an additional species to the growing body of non-model species used in the study of tooth replacement, and offers a new insight into the development of the diphyodont condition.
Collapse
Affiliation(s)
- Elena M Popa
- Department of Craniofacial Development and Stem Cell Biology, King's College London, Guy's Hospital, London, UK
| | - Neal Anthwal
- Department of Craniofacial Development and Stem Cell Biology, King's College London, Guy's Hospital, London, UK
| | - Abigail S Tucker
- Department of Craniofacial Development and Stem Cell Biology, King's College London, Guy's Hospital, London, UK
| |
Collapse
|
41
|
Azar A, Piccinelli C, Brown H, Headon D, Cheeseman M. Ectodysplasin signalling deficiency in mouse models of hypohidrotic ectodermal dysplasia leads to middle ear and nasal pathology. Hum Mol Genet 2016; 25:3564-3577. [PMID: 27378689 PMCID: PMC5179950 DOI: 10.1093/hmg/ddw202] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Revised: 06/21/2016] [Accepted: 06/21/2016] [Indexed: 12/14/2022] Open
Abstract
Hypohidrotic ectodermal dysplasia (HED) results from mutation of the EDA, EDAR or EDARADD genes and is characterized by reduced or absent eccrine sweat glands, hair follicles and teeth, and defective formation of salivary, mammary and craniofacial glands. Mouse models with HED also carry Eda, Edar or Edaradd mutations and have defects that map to the same structures. Patients with HED have ear, nose and throat disease, but this has not been investigated in mice bearing comparable genetic mutations. We report that otitis media, rhinitis and nasopharyngitis occur at high frequency in Eda and Edar mutant mice and explore the pathogenic mechanisms related to glandular function, microbial and immune parameters in these lines. Nasopharynx auditory tube glands fail to develop in HED mutant mice and the functional implications include loss of lysozyme secretion, reduced mucociliary clearance and overgrowth of nasal commensal bacteria accompanied by neutrophil exudation. Heavy nasopharynx foreign body load and loss of gland protection alters the auditory tube gating function and the auditory tubes can become pathologically dilated. Accumulation of large foreign body particles in the bulla stimulates granuloma formation. Analysis of immune cell populations and myeloid cell function shows no evidence of overt immune deficiency in HED mutant mice. Our findings using HED mutant mice as a model for the human condition support the idea that ear and nose pathology in HED patients arises as a result of nasal and nasopharyngeal gland deficits, reduced mucociliary clearance and impaired auditory tube gating function underlies the pathological sequelae in the bulla.
Collapse
Affiliation(s)
| | - Chiara Piccinelli
- Veterinary Pathology, The Royal (Dick) School of Veterinary Studies, University of Edinburgh, EH25 9RG, Scotland, UK
| | - Helen Brown
- Genetics and Genomics Division, Roslin Institute and The Royal (Dick) School of Veterinary Studies
| | | | | |
Collapse
|
42
|
Hytönen MK, Arumilli M, Lappalainen AK, Owczarek-Lipska M, Jagannathan V, Hundi S, Salmela E, Venta P, Sarkiala E, Jokinen T, Gorgas D, Kere J, Nieminen P, Drögemüller C, Lohi H. Molecular Characterization of Three Canine Models of Human Rare Bone Diseases: Caffey, van den Ende-Gupta, and Raine Syndromes. PLoS Genet 2016; 12:e1006037. [PMID: 27187611 PMCID: PMC4871343 DOI: 10.1371/journal.pgen.1006037] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Accepted: 04/18/2016] [Indexed: 12/03/2022] Open
Abstract
One to two percent of all children are born with a developmental disorder requiring pediatric hospital admissions. For many such syndromes, the molecular pathogenesis remains poorly characterized. Parallel developmental disorders in other species could provide complementary models for human rare diseases by uncovering new candidate genes, improving the understanding of the molecular mechanisms and opening possibilities for therapeutic trials. We performed various experiments, e.g. combined genome-wide association and next generation sequencing, to investigate the clinico-pathological features and genetic causes of three developmental syndromes in dogs, including craniomandibular osteopathy (CMO), a previously undescribed skeletal syndrome, and dental hypomineralization, for which we identified pathogenic variants in the canine SLC37A2 (truncating splicing enhancer variant), SCARF2 (truncating 2-bp deletion) and FAM20C (missense variant) genes, respectively. CMO is a clinical equivalent to an infantile cortical hyperostosis (Caffey disease), for which SLC37A2 is a new candidate gene. SLC37A2 is a poorly characterized member of a glucose-phosphate transporter family without previous disease associations. It is expressed in many tissues, including cells of the macrophage lineage, e.g. osteoclasts, and suggests a disease mechanism, in which an impaired glucose homeostasis in osteoclasts compromises their function in the developing bone, leading to hyperostosis. Mutations in SCARF2 and FAM20C have been associated with the human van den Ende-Gupta and Raine syndromes that include numerous features similar to the affected dogs. Given the growing interest in the molecular characterization and treatment of human rare diseases, our study presents three novel physiologically relevant models for further research and therapy approaches, while providing the molecular identity for the canine conditions. Rare developmental disorders make a major contribution to pediatric hospital admissions and mortality. There is a growing interest in the development of therapeutics for these conditions, but that requires understanding of the genetic cause and pathology. Research can be facilitated by physiologically relevant models, such as dogs with corresponding disorders. We have characterized the clinical features and genetic causes of three developmental syndromes in dogs, including craniomandibular osteopathy (CMO), a previously undescribed skeletal syndrome, and dental hypomineralization, for which we identified mutations in the canine SLC37A2, SCARF2 and FAM20C genes, respectively. CMO is a clinical equivalent to an infantile cortical hyperostosis (Caffey disease) for which SLC37A2 is a new candidate gene. SLC37A2 is a glucose-phosphate transporter in osteoclasts, and its defect suggests an impaired glucose homeostasis in developing bone, leading to hyperostosis. Mutations in the SCARF2 and FAM20C genes have been associated with the human van den Ende-Gupta and Raine syndromes. Our study provides molecular identity for the canine conditions and presents three novel physiologically relevant models of human rare diseases.
Collapse
Affiliation(s)
- Marjo K. Hytönen
- Department of Veterinary Biosciences, University of Helsinki, Helsinki, Finland
- Research Programs Unit, Molecular Neurology, University of Helsinki, Helsinki, Finland
- The Folkhälsan Institute of Genetics, Helsinki, Finland
| | - Meharji Arumilli
- Department of Veterinary Biosciences, University of Helsinki, Helsinki, Finland
- Research Programs Unit, Molecular Neurology, University of Helsinki, Helsinki, Finland
- The Folkhälsan Institute of Genetics, Helsinki, Finland
| | - Anu K. Lappalainen
- Department of Equine and Small Animal Medicine, University of Helsinki, Helsinki, Finland
| | | | - Vidhya Jagannathan
- Institute of Genetics, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Sruthi Hundi
- Department of Veterinary Biosciences, University of Helsinki, Helsinki, Finland
- Research Programs Unit, Molecular Neurology, University of Helsinki, Helsinki, Finland
- The Folkhälsan Institute of Genetics, Helsinki, Finland
| | - Elina Salmela
- Department of Veterinary Biosciences, University of Helsinki, Helsinki, Finland
- Research Programs Unit, Molecular Neurology, University of Helsinki, Helsinki, Finland
- The Folkhälsan Institute of Genetics, Helsinki, Finland
| | - Patrick Venta
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, United States of America
| | - Eva Sarkiala
- Department of Equine and Small Animal Medicine, University of Helsinki, Helsinki, Finland
| | - Tarja Jokinen
- Department of Veterinary Biosciences, University of Helsinki, Helsinki, Finland
- Department of Equine and Small Animal Medicine, University of Helsinki, Helsinki, Finland
| | - Daniela Gorgas
- Division of Clinical Radiology, Department of Clinical Veterinary Medicine, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Juha Kere
- Research Programs Unit, Molecular Neurology, University of Helsinki, Helsinki, Finland
- The Folkhälsan Institute of Genetics, Helsinki, Finland
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
| | - Pekka Nieminen
- Department of Oral and Maxillofacial Diseases, University of Helsinki, Helsinki, Finland
| | - Cord Drögemüller
- Institute of Genetics, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Hannes Lohi
- Department of Veterinary Biosciences, University of Helsinki, Helsinki, Finland
- Research Programs Unit, Molecular Neurology, University of Helsinki, Helsinki, Finland
- The Folkhälsan Institute of Genetics, Helsinki, Finland
- * E-mail:
| |
Collapse
|
43
|
Shen W, Wang Y, Liu Y, Liu H, Zhao H, Zhang G, Snead ML, Han D, Feng H. Functional Study of Ectodysplasin-A Mutations Causing Non-Syndromic Tooth Agenesis. PLoS One 2016; 11:e0154884. [PMID: 27144394 PMCID: PMC4856323 DOI: 10.1371/journal.pone.0154884] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Accepted: 04/20/2016] [Indexed: 12/29/2022] Open
Abstract
Recent studies have demonstrated that ectodysplasin-A (EDA) mutations are associated with non-syndromic tooth agenesis. Indeed, we were the first to report three novel EDA mutations (A259E, R289C and R334H) in sporadic non-syndromic tooth agenesis. We studied the mechanism linking EDA mutations and non-syndromic tooth agenesis in human embryonic kidney 293T cells and mouse ameloblast-derived LS8 cells transfected with mutant isoforms of EDA. The receptor binding capability of the mutant EDA1 protein was impaired in comparison to wild-type EDA1. Although the non-syndromic tooth agenesis-causing EDA1 mutants possessed residual binding capability, the transcriptional activation of the receptor's downstream target, nuclear factor κB (NF-κB), was compromised. We also analyzed the changes of selected genes in other signaling pathways, such as WNT and BMP, after EDA mutation. We found that non-syndromic tooth agenesis-causing EDA1 mutant proteins upregulate BMP4 (bone morphogenetic protein 4) mRNA expression and downregulate WNT10A and WNT10B (wingless-type MMTV integration site family member 10A and 10B) mRNA expression. Our results indicated that non-syndromic tooth agenesis causing EDA mutations (A259E, R289C and R334H) were loss-of-function, and suggested that EDA may regulate the expression of WNT10A, WNT10B and BMP4 via NF-κB during tooth development. The results from our study may help to understand the molecular mechanism linking specific EDA mutations with non-syndromic tooth agenesis.
Collapse
Affiliation(s)
- Wenjing Shen
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, Beijing, 100081, China
- Department of Forensic Medicine, Hebei Medical University, Hebei, 050017, China
- Department of Prosthodontics, School and Hospital of Stomatology of Hebei Medical University, Hebei, 050017, China
| | - Yue Wang
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, Beijing, 100081, China
| | - Yang Liu
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, Beijing, 100081, China
| | - Haochen Liu
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, Beijing, 100081, China
| | - Hongshan Zhao
- Department of Medical Genetics, School of Basic Medical Sciences, Peking University, Beijing, 100191, China
- Human Disease Genomics Center, Peking University, Beijing, 100191, China
| | - Guozhong Zhang
- Department of Forensic Medicine, Hebei Medical University, Hebei, 050017, China
| | - Malcolm L. Snead
- Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, California, 90033, United States of America
| | - Dong Han
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, Beijing, 100081, China
- * E-mail:
| | - Hailan Feng
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, Beijing, 100081, China
| |
Collapse
|
44
|
Goodwin AF, Kim R, Bush JO, Klein OD. From Bench to Bedside and Back: Improving Diagnosis and Treatment of Craniofacial Malformations Utilizing Animal Models. Curr Top Dev Biol 2015; 115:459-92. [PMID: 26589935 DOI: 10.1016/bs.ctdb.2015.07.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Craniofacial anomalies are among the most common birth defects and are associated with increased mortality and, in many cases, the need for lifelong treatment. Over the past few decades, dramatic advances in the surgical and medical care of these patients have led to marked improvements in patient outcomes. However, none of the treatments currently in clinical use address the underlying molecular causes of these disorders. Fortunately, the field of craniofacial developmental biology provides a strong foundation for improved diagnosis and for therapies that target the genetic causes of birth defects. In this chapter, we discuss recent advances in our understanding of the embryology of craniofacial conditions, and we focus on the use of animal models to guide rational therapies anchored in genetics and biochemistry.
Collapse
Affiliation(s)
- Alice F Goodwin
- Program in Craniofacial Biology, University of California San Francisco, San Francisco, California, USA; Department of Orofacial Sciences, University of California San Francisco, San Francisco, California, USA
| | - Rebecca Kim
- Program in Craniofacial Biology, University of California San Francisco, San Francisco, California, USA; Department of Orofacial Sciences, University of California San Francisco, San Francisco, California, USA
| | - Jeffrey O Bush
- Program in Craniofacial Biology, University of California San Francisco, San Francisco, California, USA; Department of Cell and Tissue Biology, University of California San Francisco, San Francisco, California, USA; Institute for Human Genetics, University of California San Francisco, San Francisco, California, USA.
| | - Ophir D Klein
- Program in Craniofacial Biology, University of California San Francisco, San Francisco, California, USA; Department of Orofacial Sciences, University of California San Francisco, San Francisco, California, USA; Department of Pediatrics, University of California San Francisco, San Francisco, California, USA; Institute for Human Genetics, University of California San Francisco, San Francisco, California, USA.
| |
Collapse
|
45
|
Molecular basis of hypohidrotic ectodermal dysplasia: an update. J Appl Genet 2015; 57:51-61. [PMID: 26294279 PMCID: PMC4731439 DOI: 10.1007/s13353-015-0307-4] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Revised: 07/15/2015] [Accepted: 07/19/2015] [Indexed: 01/16/2023]
Abstract
Recent advances in understanding the molecular events underlying hypohidrotic ectodermal dysplasia (HED) caused by mutations of the genes encoding proteins of the tumor necrosis factor α (TNFα)-related signaling pathway have been presented. These proteins are involved in signal transduction from ectoderm to mesenchyme during development of the fetus and are indispensable for the differentiation of ectoderm-derived structures such as eccrine sweat glands, teeth, hair, skin, and/or nails. Novel data were reviewed and discussed on the structure and functions of the components of TNFα-related signaling pathway, the consequences of mutations of the genes encoding these proteins, and the prospect for further investigations, which might elucidate the origin of HED.
Collapse
|
46
|
Reinholz M, Gauglitz G, Giehl K, Braun-Falco M, Schwaiger H, Schauber J, Ruzicka T, Berneburg M, von Braunmühl T. Non-invasive diagnosis of sweat gland dysplasia using optical coherence tomography and reflectance confocal microscopy in a family with anhidrotic ectodermal dysplasia (Christ-Siemens-Touraine syndrome). J Eur Acad Dermatol Venereol 2015; 30:677-82. [DOI: 10.1111/jdv.13085] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Accepted: 01/23/2015] [Indexed: 02/01/2023]
Affiliation(s)
- M. Reinholz
- Department of Dermatology and Allergology; Ludwig-Maximilian University; Munich Germany
| | - G.G. Gauglitz
- Department of Dermatology and Allergology; Ludwig-Maximilian University; Munich Germany
| | - K. Giehl
- Department of Dermatology and Allergology; Ludwig-Maximilian University; Munich Germany
| | - M. Braun-Falco
- Department of Dermatology and Allergology; Ludwig-Maximilian University; Munich Germany
| | - H. Schwaiger
- Department of Dermatology and Allergology; Ludwig-Maximilian University; Munich Germany
| | - J. Schauber
- Department of Dermatology and Allergology; Ludwig-Maximilian University; Munich Germany
| | - T. Ruzicka
- Department of Dermatology and Allergology; Ludwig-Maximilian University; Munich Germany
| | - M. Berneburg
- Department of Dermatology; University of Regensburg; Regensburg Germany
| | - T. von Braunmühl
- Department of Dermatology and Allergology; Ludwig-Maximilian University; Munich Germany
| |
Collapse
|
47
|
Pharmacological stimulation of Edar signaling in the adult enhances sebaceous gland size and function. J Invest Dermatol 2014; 135:359-368. [PMID: 25207818 PMCID: PMC4269545 DOI: 10.1038/jid.2014.382] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2014] [Revised: 08/17/2014] [Accepted: 08/20/2014] [Indexed: 01/16/2023]
Abstract
Impaired Ectodysplasin A (EDA) – EDA receptor (EDAR) signaling affects ectodermally derived structures including teeth, hair follicles and cutaneous glands. X-linked hypohidrotic ectodermal dysplasia (XLHED), resulting from EDA deficiency, can be rescued with lifelong benefits in animal models by stimulation of ectodermal appendage development with EDAR agonists. Treatments initiated later in the developmental period restore progressively fewer of the affected structures. It is unknown whether EDAR stimulation in adults with XLHED might have beneficial effects. In adult Eda mutant mice treated for several weeks with agonist anti-EDAR antibodies, we find that sebaceous glands size and function can be restored to wild type levels. This effect is maintained upon chronic treatment but reverses slowly upon cessation of treatment. Sebaceous glands in all skin regions respond to treatment, though to varying degrees, and this is accompanied in both Eda mutant and wild type mice by sebum secretion to levels higher than those observed in untreated controls. Edar is expressed at the periphery of the glands, suggesting a direct homeostatic effect of Edar stimulation on the sebaceous gland. Sebaceous gland size and sebum production may serve as biomarkers for EDAR stimulation, and EDAR agonists may improve skin dryness and eczema frequently observed in XLHED.
Collapse
|
48
|
Lefebvre S, Mikkola ML. Ectodysplasin research—Where to next? Semin Immunol 2014; 26:220-8. [DOI: 10.1016/j.smim.2014.05.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Accepted: 05/08/2014] [Indexed: 01/29/2023]
|
49
|
Fete T. Respiratory problems in patients with ectodermal dysplasia syndromes. Am J Med Genet A 2014; 164A:2478-81. [PMID: 24842607 DOI: 10.1002/ajmg.a.36600] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2014] [Accepted: 04/14/2014] [Indexed: 11/06/2022]
Abstract
The ectodermal dysplasias (EDs) are a heterogeneous group of disorders characterized by a deficiency of ectoderm- and mesoderm-derived tissues and appendages, particularly hair, skin, teeth, and nails. Many of these disorders are associated with a greater risk of respiratory disease than found in the general population. There are no published papers that comprehensively describe these findings and the possible etiologies. Patients have been reported with dramatic decrease in mucous glands in the respiratory tract. Anatomic defects, including cleft palate, that predispose to respiratory infection, are associated with several of the ED syndromes. Atopy and immune deficiencies have been shown to have a higher prevalence in ED syndromes. Clinicians who care for patients affected by ED syndromes should be aware of the potential respiratory complications, and consider evaluation for structural anomalies, atopy and immunodeficiency in individuals with recurrent or chronic respiratory symptoms.
Collapse
Affiliation(s)
- Timothy Fete
- Department of Child Health, University of Missouri School of Medicine, Columbia, Missouri
| |
Collapse
|
50
|
Burger K, Schneider AT, Wohlfart S, Kiesewetter F, Huttner K, Johnson R, Schneider H. Genotype-phenotype correlation in boys with X-linked hypohidrotic ectodermal dysplasia. Am J Med Genet A 2014; 164A:2424-32. [PMID: 24715423 DOI: 10.1002/ajmg.a.36541] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2013] [Accepted: 02/16/2014] [Indexed: 11/06/2022]
Abstract
X-linked hypohidrotic ectodermal dysplasia (XLHED), the most frequent form of ectodermal dysplasia, is a genetic disorder of ectoderm development characterized by malformation of multiple ectodermal structures such as skin, hair, sweat and sebaceous glands, and teeth. The disease is caused by a broad spectrum of mutations in the gene EDA. Although XLHED symptoms show inter-familial and intra-familial variability, genotype-phenotype correlation has been demonstrated with respect to sweat gland function. In this study, we investigated to which extent the EDA genotype correlates with the severity of XLHED-related skin and hair signs. Nineteen male children with XLHED (age range 3-14 years) and seven controls (aged 6-14 years) were examined by confocal microscopy of the skin, quantification of pilocarpine-induced sweating, semi-quantitative evaluation of full facial photographs with respect to XLHED-related skin issues, and phototrichogram analysis. All eight boys with known hypomorphic EDA mutations were able to produce at least some sweat and showed less severe cutaneous signs of XLHED than the anhidrotic XLHED patients (e.g., perioral and periorbital eczema or hyperpigmentation, regional hyperkeratosis, characteristic wrinkles under the eyes). As expected, individuals with XLHED had significantly less and thinner hair than healthy controls. However, there were also significant differences in hair number, diameter, and other hair characteristics between the group with hypomorphic EDA mutations and the anhidrotic patients. In summary, this study indicated a remarkable genotype-phenotype correlation of skin and hair findings in prepubescent males with XLHED.
Collapse
Affiliation(s)
- Kristin Burger
- Department of Pediatrics, German Competence Center for Children with Ectodermal Dysplasias, University Hospital Erlangen, University of Erlangen-Nürnberg, Germany
| | | | | | | | | | | | | |
Collapse
|