1
|
Swiderski DL, Zelditch ML. Complex adaptive landscape for a "Simple" structure: The role of trade-offs in the evolutionary dynamics of mandibular shape in ground squirrels. Evolution 2022; 76:946-965. [PMID: 35398910 PMCID: PMC9320833 DOI: 10.1111/evo.14493] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 03/22/2022] [Accepted: 03/23/2022] [Indexed: 01/21/2023]
Abstract
Trade-offs are inherent features of many biomechanical systems and are often seen as evolutionary constraints. Structural decoupling may provide a way to escape those limits in some systems but not for structures that transmit large forces, such as mammalian mandibles. For such structures to evolve in multiple directions on a complex adaptive landscape, different regions must change shape while maintaining structural integrity. We evaluated the complexity of the adaptive landscape for mandibular shape in Marmotini, a lineage of ground squirrels that varies in the proportions of seeds and foliage in their diets, by comparing the fit of models based on traits that predict changes in mandibular loading. The adaptive landscape was more complex than predicted by a two-peak model with a single dietary shift. The large number of adaptive peaks reflects a high diversity of directions of shape evolution. The number of adaptive peaks also reflects a multiplicity of functional trade-offs posed by the conflicting demands of processing foods with various combinations of material properties. The ability to balance trade-offs for diets with different proportions of the same foods may account for diversification and disparity of lineages in heterogeneous environments. Rather than constraints, trade-offs may be the impetus of evolutionary change.
Collapse
Affiliation(s)
- Donald L Swiderski
- Museum of Zoology and Kresge Hearing Research InstituteUniversity of MichiganAnn ArborMichigan48109
| | | |
Collapse
|
2
|
Chaparro‐Pedraza PC, Roth G, Seehausen O. The enrichment paradox in adaptive radiations: Emergence of predators hinders diversification in resource rich environments. Ecol Lett 2022; 25:802-813. [PMID: 35032146 PMCID: PMC9303570 DOI: 10.1111/ele.13955] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 10/25/2021] [Accepted: 12/08/2021] [Indexed: 12/18/2022]
Abstract
Adaptive radiations are known for rapid niche diversification in response to ecological opportunity. While most resources usually exist prior to adaptive radiation, novel niches associated with novel resources can be created as a clade diversifies. For example, in African lake cichlid radiations some species prey upon other species of the clade (intraclade consumers). Using a trait-based eco-evolutionary model, we investigate the evolution of intraclade consumers in adaptive radiations and the effect of this novel trophic interaction on the diversification process of the radiating clade. We find that the evolutionary emergence of intraclade consumers halts the diversification processes of other ecomorphs as a result of increased top-down control of density. Because high productivity enables earlier evolution of intraclade consumers, highly productive environments come to harbour less species-rich radiations than comparable radiations in less productive environments. Our results reveal how macroevolutionary and community patterns can emerge from ecological and microevolutionary processes.
Collapse
Affiliation(s)
- P. Catalina Chaparro‐Pedraza
- Aquatic Ecology and EvolutionInstitute of Ecology and EvolutionUniversity of BernBernSwitzerland
- Department of Fish Ecology and EvolutionSwiss Federal Institute of Aquatic Science and Technology (EAWAG)KastanienbaumSwitzerland
- Department Systems Analysis, Integrated Assessment and ModellingSwiss Federal Institute of Aquatic Science and Technology (EAWAG)DübendorfSwitzerland
| | - Gregory Roth
- Friedrich Miescher Institute for Biomedical ResearchBaselSwitzerland
| | - Ole Seehausen
- Aquatic Ecology and EvolutionInstitute of Ecology and EvolutionUniversity of BernBernSwitzerland
- Department of Fish Ecology and EvolutionSwiss Federal Institute of Aquatic Science and Technology (EAWAG)KastanienbaumSwitzerland
| |
Collapse
|
3
|
Moosmann M, Cuenca-Cambronero M, De Lisle S, Greenway R, Hudson CM, Lürig MD, Matthews B. On the evolution of trophic position. Ecol Lett 2021; 24:2549-2562. [PMID: 34553481 PMCID: PMC9290349 DOI: 10.1111/ele.13888] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 06/24/2021] [Accepted: 08/26/2021] [Indexed: 01/05/2023]
Abstract
The trophic structure of food webs is primarily determined by the variation in trophic position among species and individuals. Temporal dynamics of food web structure are central to our understanding of energy and nutrient fluxes in changing environments, but little is known about how evolutionary processes shape trophic position variation in natural populations. We propose that trophic position, whose expression depends on both environmental and genetic determinants of the diet variation in individual consumers, is a quantitative trait that can evolve via natural selection. Such evolution can occur either when trophic position is correlated with other heritable morphological and behavioural traits under selection, or when trophic position is a target of selection, which is possible if the fitness effects of prey items are heterogeneously distributed along food chains. Recognising trophic position as an evolving trait, whose expression depends on the food web context, provides an important conceptual link between behavioural foraging theory and food web dynamics, and a useful starting point for the integration of ecological and evolutionary studies of trophic position.
Collapse
Affiliation(s)
- Marvin Moosmann
- Department of Fish Ecology and Evolution, EAWAG, Kastanienbaum, Switzerland.,Department of Aquatic Ecology and Evolution, University of Bern, Bern, Switzerland
| | - Maria Cuenca-Cambronero
- Department of Fish Ecology and Evolution, EAWAG, Kastanienbaum, Switzerland.,Department of Aquatic Ecology and Evolution, University of Bern, Bern, Switzerland
| | | | - Ryan Greenway
- Department of Fish Ecology and Evolution, EAWAG, Kastanienbaum, Switzerland
| | - Cameron M Hudson
- Department of Fish Ecology and Evolution, EAWAG, Kastanienbaum, Switzerland.,Department of Aquatic Ecology and Evolution, University of Bern, Bern, Switzerland
| | | | - Blake Matthews
- Department of Fish Ecology and Evolution, EAWAG, Kastanienbaum, Switzerland
| |
Collapse
|
4
|
Fritsch C, Billiard S, Champagnat N. Identifying conversion efficiency as a key mechanism underlying food webs adaptive evolution: a step forward, or backward? OIKOS 2021. [DOI: 10.1111/oik.07421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
5
|
Individual diet specialization drives population trophic niche responses to environmental change in a predator fish population. FOOD WEBS 2021. [DOI: 10.1016/j.fooweb.2021.e00193] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
6
|
Barbour MA, Gibert JP. Genetic and plastic rewiring of food webs under climate change. J Anim Ecol 2021; 90:1814-1830. [PMID: 34028791 PMCID: PMC8453762 DOI: 10.1111/1365-2656.13541] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 05/17/2021] [Indexed: 12/12/2022]
Abstract
Climate change is altering ecological and evolutionary processes across biological scales. These simultaneous effects of climate change pose a major challenge for predicting the future state of populations, communities and ecosystems. This challenge is further exacerbated by the current lack of integration of research focused on these different scales. We propose that integrating the fields of quantitative genetics and food web ecology will reveal new insights on how climate change may reorganize biodiversity across levels of organization. This is because quantitative genetics links the genotypes of individuals to population‐level phenotypic variation due to genetic (G), environmental (E) and gene‐by‐environment (G × E) factors. Food web ecology, on the other hand, links population‐level phenotypes to the structure and dynamics of communities and ecosystems. We synthesize data and theory across these fields and find evidence that genetic (G) and plastic (E and G × E) phenotypic variation within populations will change in magnitude under new climates in predictable ways. We then show how changes in these sources of phenotypic variation can rewire food webs by altering the number and strength of species interactions, with consequences for ecosystem resilience. We also find evidence suggesting there are predictable asymmetries in genetic and plastic trait variation across trophic levels, which set the pace for phenotypic change and food web responses to climate change. Advances in genomics now make it possible to partition G, E and G × E phenotypic variation in natural populations, allowing tests of the hypotheses we propose. By synthesizing advances in quantitative genetics and food web ecology, we provide testable predictions for how the structure and dynamics of biodiversity will respond to climate change.
Collapse
Affiliation(s)
- Matthew A Barbour
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland
| | - Jean P Gibert
- Department of Biology, Duke University, Durham, NC, USA
| |
Collapse
|
7
|
Girardot B, Gauduchon M, Ménard F, Poggiale JC. Does evolution design robust food webs? Proc Biol Sci 2020; 287:20200747. [PMID: 32605512 DOI: 10.1098/rspb.2020.0747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Theoretical works that use a dynamical approach to study the ability of ecological communities to resist perturbations are largely based on randomly generated ecosystem structures. By contrast, we ask here whether the evolutionary history of food webs matters for their robustness. Using a community evolution model, we first generate trophic networks by varying the level of energy supply (richness) of the environment in which species adapt and diversify. After placing our simulation outputs in perspective with present-day food webs empirical data, we highlight the complex, structuring role of this environmental condition during the evolutionary setting up of trophic networks. We then assess the robustness of food webs by studying their short-term ecological responses to swift changes in their customary environmental richness. We reveal that the past conditions have a crucial effect on the robustness of current food webs. Moreover, directly focusing on connectance of evolved food webs, it turns out that the most connected ones appear to be the least robust to sharp depletion in the environmental energy supply. Finally, we appraise the 'adaptation' of food webs themselves: generally poor, except in relation to a diversity of flux property.
Collapse
Affiliation(s)
- B Girardot
- Aix Marseille University, Univ Toulon, CNRS, IRD, Mediterranean Institute of Oceanography, MIO, UM110 Marseille, France
| | - M Gauduchon
- Aix Marseille University, Univ Toulon, CNRS, IRD, Mediterranean Institute of Oceanography, MIO, UM110 Marseille, France
| | - F Ménard
- Aix Marseille University, Univ Toulon, CNRS, IRD, Mediterranean Institute of Oceanography, MIO, UM110 Marseille, France
| | - J C Poggiale
- Aix Marseille University, Univ Toulon, CNRS, IRD, Mediterranean Institute of Oceanography, MIO, UM110 Marseille, France
| |
Collapse
|
8
|
Maureaud A, Andersen KH, Zhang L, Lindegren M. Trait-based food web model reveals the underlying mechanisms of biodiversity-ecosystem functioning relationships. J Anim Ecol 2020; 89:1497-1510. [PMID: 32162299 DOI: 10.1111/1365-2656.13207] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 01/31/2020] [Indexed: 11/27/2022]
Abstract
The concept of biodiversity-ecosystem functioning (BEF) has been studied over the last three decades using experiments, theoretical models and more recently observational data. While theoretical models revealed that species richness is the best metric summarizing ecosystem functioning, it is clear that ecosystem function is explained by other variables besides species richness. Additionally, theoretical models rarely focus on more than one ecosystem function, limiting ecosystem functioning to biomass or production. There is a lack of theoretical background to verify how other components of biodiversity and species interactions support ecosystem functioning. Here, using simulations from a food web model based on a community assembly process and a trait-based approach, we test how species biodiversity, food web structure and predator-prey interactions determine several ecosystem functions (biomass, metabolism, production and productivity). Our results demonstrate that the relationship between species richness and ecosystem functioning depends on the type of ecosystem function considered and the importance of diversity and food web structure differs across functions. Particularly, we show that dominance plays a major role in determining the level of biomass, and it is at least as important as the number of species. We find that dominance occurs in the food web when species do not experience strong predation. By manipulating the structure of the food web, we show that species using a wider trait space (generalist communities) result in more connected food webs and generally reach the same level of functioning with less species. The model shows the importance of generalist versus specialist communities on BEF relationships, and as such, empirical studies should focus on quantifying the importance of diet/habitat use on ecosystem functioning. Our study provides a better understanding of BEF underlying mechanisms and generates research hypotheses that can be considered and tested in observational studies. We recommend that studies investigating links between biodiversity and ecosystem functions should include metrics of dominance, species composition, trophic structure and possibly environmental trait space. We also advise that more effort should be made into calculating several ecosystem functions and properties with data from natural multitrophic systems.
Collapse
Affiliation(s)
- Aurore Maureaud
- Centre for Ocean Life, Technical University of Denmark, Lyngby, Denmark
| | - Ken H Andersen
- Centre for Ocean Life, Technical University of Denmark, Lyngby, Denmark
| | - Lai Zhang
- School of Mathematical Science, Yangzhou University, Yangzhou, China
| | - Martin Lindegren
- Centre for Ocean Life, Technical University of Denmark, Lyngby, Denmark
| |
Collapse
|
9
|
Romanuk TN, Binzer A, Loeuille N, Carscallen WMA, Martinez ND. Simulated evolution assembles more realistic food webs with more functionally similar species than invasion. Sci Rep 2019; 9:18242. [PMID: 31796765 PMCID: PMC6890687 DOI: 10.1038/s41598-019-54443-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 11/08/2019] [Indexed: 01/13/2023] Open
Abstract
While natural communities are assembled by both ecological and evolutionary processes, ecological assembly processes have been studied much more and are rarely compared with evolutionary assembly processes. We address these disparities here by comparing community food webs assembled by simulating introductions of species from regional pools of species and from speciation events. Compared to introductions of trophically dissimilar species assumed to be more typical of invasions, introducing species trophically similar to native species assumed to be more typical of sympatric or parapatric speciation events caused fewer extinctions and assembled more empirically realistic networks by introducing more persistent species with higher trophic generality, vulnerability, and enduring similarity to native species. Such events also increased niche overlap and the persistence of both native and introduced species. Contrary to much competition theory, these findings suggest that evolutionary and other processes that more tightly pack ecological niches contribute more to ecosystem structure and function than previously thought.
Collapse
Affiliation(s)
- Tamara N Romanuk
- Department of Biology, Dalhousie University, Halifax, Canada
- Pacific Informatics and Computational Ecology Lab, Berkeley, CA, USA
| | - Amrei Binzer
- Department of Physics, Chemistry and Biology, Linköping University, Linköping, Sweden
- Institute of Ecology and Environmental Sciences, Université Pierre et Marie Curie, Paris, France
| | - Nicolas Loeuille
- School of Informatics, Computing, and Engineering, Indiana University, Bloomington, IA, United States
| | | | - Neo D Martinez
- Pacific Informatics and Computational Ecology Lab, Berkeley, CA, USA.
- School of Informatics, Computing, and Engineering, Indiana University, Bloomington, IA, United States.
| |
Collapse
|
10
|
Gajdzik L, Aguilar-Medrano R, Frédérich B. Diversification and functional evolution of reef fish feeding guilds. Ecol Lett 2019; 22:572-582. [DOI: 10.1111/ele.13219] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 09/30/2018] [Accepted: 12/09/2018] [Indexed: 02/05/2023]
Affiliation(s)
- Laura Gajdzik
- Laboratoire de Morphologie Fonctionnelle et Evolutive; FOCUS; Université de Liège; 4000 Liège Belgique
| | - Rosalia Aguilar-Medrano
- Laboratorio de Taxonomía y Ecología de Peces; Departamento de Recursos del Mar; CINVESTAV, Mérida; Yucatán México 97310
| | - Bruno Frédérich
- Laboratoire de Morphologie Fonctionnelle et Evolutive; FOCUS; Université de Liège; 4000 Liège Belgique
| |
Collapse
|
11
|
Landi P, Minoarivelo HO, Brännström Å, Hui C, Dieckmann U. Complexity and stability of ecological networks: a review of the theory. POPUL ECOL 2018. [DOI: 10.1007/s10144-018-0628-3] [Citation(s) in RCA: 182] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Pietro Landi
- Department of Mathematical SciencesStellenbosch UniversityStellenboschSouth Africa
- Evolution and Ecology ProgramInternational Institute for Applied Systems AnalysisLaxenburgAustria
| | - Henintsoa O. Minoarivelo
- Department of Mathematical SciencesStellenbosch UniversityStellenboschSouth Africa
- Centre of Excellence in Mathematical and Statistical SciencesWits UniversityJohannesburgSouth Africa
| | - Åke Brännström
- Evolution and Ecology ProgramInternational Institute for Applied Systems AnalysisLaxenburgAustria
- Department of Mathematics and Mathematical StatisticsUmeå UniversityUmeåSweden
| | - Cang Hui
- Department of Mathematical SciencesStellenbosch UniversityStellenboschSouth Africa
- Mathematical and Physical BiosciencesAfrican Institute for Mathematical SciencesMuizenbergSouth Africa
| | - Ulf Dieckmann
- Evolution and Ecology ProgramInternational Institute for Applied Systems AnalysisLaxenburgAustria
| |
Collapse
|
12
|
Kagawa K, Takimoto G. Hybridization can promote adaptive radiation by means of transgressive segregation. Ecol Lett 2017; 21:264-274. [PMID: 29243294 DOI: 10.1111/ele.12891] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Revised: 08/07/2017] [Accepted: 11/08/2017] [Indexed: 01/17/2023]
Abstract
Understanding the mechanisms of rapid adaptive radiation has been a central problem of evolutionary ecology. Recently, there is a growing recognition that hybridization between different evolutionary lineages can facilitate adaptive radiation by creating novel phenotypes. Yet, theoretical plausibility of this hypothesis remains unclear because, for example, hybridization can negate pre-existing species richness. Here, we theoretically investigate whether and under what conditions hybridization promotes ecological speciation and adaptive radiation using an individual-based model to simulate genome evolution following hybridization between two allopatrically evolved lineages. The model demonstrated that transgressive segregation through hybridization can facilitate adaptive radiation, most powerfully when novel vacant ecological niches are highly dissimilar, phenotypic effect size of mutations is small and there is moderate genetic differentiation between parental lineages. These results provide a theoretical basis for the effect of hybridization facilitating adaptive radiation.
Collapse
Affiliation(s)
- Kotaro Kagawa
- The Institute of Statistical Mathematics, 10-3 Midori-cho, Tachikawa, Tokyo, 190-8562, Japan.,Department of Fish Ecology and Evolution, Center for Ecology, Evolution & Biogeochemistry, Swiss Federal Institute of Aquatic Science and Technology, 6047, Kastanienbaum, Switzerland
| | - Gaku Takimoto
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| |
Collapse
|
13
|
|
14
|
Allhoff KT, Drossel B. Biodiversity and ecosystem functioning in evolving food webs. Philos Trans R Soc Lond B Biol Sci 2016; 371:20150281. [PMID: 27114582 PMCID: PMC4843701 DOI: 10.1098/rstb.2015.0281] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/08/2016] [Indexed: 11/12/2022] Open
Abstract
We use computer simulations in order to study the interplay between biodiversity and ecosystem functioning (BEF) during both the formation and the ongoing evolution of large food webs. A species in our model is characterized by its own body mass, its preferred prey body mass and the width of its potential prey body mass spectrum. On an ecological time scale, population dynamics determines which species are viable and which ones go extinct. On an evolutionary time scale, new species emerge as modifications of existing ones. The network structure thus emerges and evolves in a self-organized manner. We analyse the relation between functional diversity and five community level measures of ecosystem functioning. These are the metabolic loss of the predator community, the total biomasses of the basal and the predator community, and the consumption rates on the basal community and within the predator community. Clear BEF relations are observed during the initial build-up of the networks, or when parameters are varied, causing bottom-up or top-down effects. However, ecosystem functioning measures fluctuate only very little during long-term evolution under constant environmental conditions, despite changes in functional diversity. This result supports the hypothesis that trophic cascades are weaker in more complex food webs.
Collapse
Affiliation(s)
- K T Allhoff
- Institute for Condensed Matter Physics, Technische Universität Darmstadt, Darmstadt, Germany Institute of Ecology and Environmental Sciences, Université Pierre et Marie Curie, Paris, France
| | - B Drossel
- Institute for Condensed Matter Physics, Technische Universität Darmstadt, Darmstadt, Germany
| |
Collapse
|
15
|
A new dimension: Evolutionary food web dynamics in two dimensional trait space. J Theor Biol 2016; 405:66-81. [PMID: 27060671 DOI: 10.1016/j.jtbi.2016.03.042] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Revised: 03/23/2016] [Accepted: 03/28/2016] [Indexed: 11/22/2022]
Abstract
Species within a habitat are not uniformly distributed. However this aspect of community structure, which is fundamental to many conservation activities, is neglected in the majority of models of food web assembly. To address this issue, we introduce a model which incorporates a second dimension, which can be interpreted as space, into the trait space used in evolutionary food web models. Our results show that the additional trait axis allows the emergence of communities with a much greater range of network structures, similar to the diversity observed in real ecological communities. Moreover, the network properties of the food webs obtained are in good agreement with those of empirical food webs. Community emergence follows a consistent pattern with spread along the second trait axis occurring before the assembly of higher trophic levels. Communities can reach either a static final structure, or constantly evolve. We observe that the relative importance of competition and predation is a key determinant of the network structure and the evolutionary dynamics. The latter are driven by the interaction-competition and predation-between small groups of species. The model remains sufficiently simple that we are able to identify the factors, and mechanisms, which determine the final community state.
Collapse
|
16
|
Evolutionary food web model based on body masses gives realistic networks with permanent species turnover. Sci Rep 2015; 5:10955. [PMID: 26042870 PMCID: PMC4455292 DOI: 10.1038/srep10955] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Accepted: 05/12/2015] [Indexed: 11/09/2022] Open
Abstract
The networks of predator-prey interactions in ecological systems are remarkably complex, but nevertheless surprisingly stable in terms of long term persistence of the system as a whole. In order to understand the mechanism driving the complexity and stability of such food webs, we developed an eco-evolutionary model in which new species emerge as modifications of existing ones and dynamic ecological interactions determine which species are viable. The food-web structure thereby emerges from the dynamical interplay between speciation and trophic interactions. The proposed model is less abstract than earlier evolutionary food web models in the sense that all three evolving traits have a clear biological meaning, namely the average body mass of the individuals, the preferred prey body mass, and the width of their potential prey body mass spectrum. We observed networks with a wide range of sizes and structures and high similarity to natural food webs. The model networks exhibit a continuous species turnover, but massive extinction waves that affect more than 50% of the network are not observed.
Collapse
|
17
|
Abstract
Fat is a vital macronutrient, and its intake is closely monitored by an array of molecular sensors distributed throughout the alimentary canal. In the mouth, dietary fat constituents such as mono- and diunsaturated fatty acids give rise to taste signals that stimulate food intake, in part by enhancing the production of lipid-derived endocannabinoid messengers in the gut. As fat-containing chyme enters the small intestine, it causes the formation of anorexic lipid mediators, such as oleoylethanolamide, which promote satiety. These anatomically and functionally distinct responses may contribute to the homeostatic control and, possibly, the pathological dysregulation of food intake.
Collapse
Affiliation(s)
| | - Daniele Piomelli
- Departments of Anatomy and Neurobiology
- Department of Pharmacology, and
- Department of Biological Chemistry, School of Medicine, University of California, Irvine, Irvine, California, USA
- Drug Discovery and Development, Istituto Italiano di Tecnologia, Genoa, Italy
| |
Collapse
|
18
|
Allhoff KT, Weiel EM, Rogge T, Drossel B. On the interplay of speciation and dispersal: An evolutionary food web model in space. J Theor Biol 2015; 366:46-56. [DOI: 10.1016/j.jtbi.2014.11.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2014] [Revised: 09/10/2014] [Accepted: 11/08/2014] [Indexed: 10/24/2022]
|
19
|
Kostikova A, Litsios G, Salamin N, Pearman PB. Linking Life-History Traits, Ecology, and Niche Breadth Evolution in North American Eriogonoids (Polygonaceae). Am Nat 2013; 182:760-74. [DOI: 10.1086/673527] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Anna Kostikova
- Department of Ecology and Evolution, University of Lausanne, 1015 Lausanne, Switzerland
| | | | | | | |
Collapse
|
20
|
Takahashi D, Brännström Å, Mazzucco R, Yamauchi A, Dieckmann U. Abrupt community transitions and cyclic evolutionary dynamics in complex food webs. J Theor Biol 2013; 337:181-9. [PMID: 23948552 PMCID: PMC3808158 DOI: 10.1016/j.jtbi.2013.08.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2012] [Revised: 08/01/2013] [Accepted: 08/05/2013] [Indexed: 11/28/2022]
Abstract
Understanding the emergence and maintenance of biodiversity ranks among the most fundamental challenges in evolutionary ecology. While processes of community assembly have frequently been analyzed from an ecological perspective, their evolutionary dimensions have so far received less attention. To elucidate the eco-evolutionary processes underlying the long-term build-up and potential collapse of community diversity, here we develop and examine an individual-based model describing coevolutionary dynamics driven by trophic interactions and interference competition, of a pair of quantitative traits determining predator and prey niches. Our results demonstrate the (1) emergence of communities with multiple trophic levels, shown here for the first time for stochastic models with linear functional responses, and (2) intermittent and cyclic evolutionary transitions between two alternative community states. In particular, our results indicate that the interplay of ecological and evolutionary dynamics often results in extinction cascades that remove the entire trophic level of consumers from a community. Finally, we show the (3) robustness of our results under variations of model assumptions, underscoring that processes of consumer collapse and subsequent rebound could be important elements of understanding biodiversity dynamics in natural communities.
Collapse
Affiliation(s)
- Daisuke Takahashi
- Center for Ecological Research, Kyoto University, Hirano 2-509-3, Otsu 520-2113, Japan.
| | | | | | | | | |
Collapse
|
21
|
Ricciardi A, Hoopes MF, Marchetti MP, Lockwood JL. Progress toward understanding the ecological impacts of nonnative species. ECOL MONOGR 2013. [DOI: 10.1890/13-0183.1] [Citation(s) in RCA: 451] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
22
|
Allhoff KT, Drossel B. When do evolutionary food web models generate complex networks? J Theor Biol 2013; 334:122-9. [PMID: 23778160 DOI: 10.1016/j.jtbi.2013.06.008] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2012] [Revised: 02/13/2013] [Accepted: 06/07/2013] [Indexed: 10/26/2022]
Abstract
Evolutionary foodweb models are used to build food webs by the repeated addition of new species. Population dynamics leads to the extinction or establishment of a newly added species, and possibly to the extinction of other species. The food web structure that emerges after some time is a highly nontrivial result of the evolutionary and dynamical rules. We investigate the evolutionary food web model introduced by Loeuille and Loreau (2005), which characterizes species by their body mass as the only evolving trait. Our goal is to find the reasons behind the model's remarkable robustness and its capability to generate various and stable networks. In contrast to other evolutionary food web models, this model requires neither adaptive foraging nor allometric scaling of metabolic rates with body mass in order to produce complex networks that do not eventually collapse to trivial structures. Our study shows that this is essentially due to the fact that the difference in niche value between predator and prey as well as the feeding range are constrained so that they remain within narrow limits under evolution. Furthermore, competition between similar species is sufficiently strong, so that a trophic level can accommodate several species. We discuss the implications of these findings and argue that the conditions that stabilize other evolutionary food web models have similar effects because they also prevent the occurrence of extreme specialists or extreme generalists that have in general a higher fitness than species with a moderate niche width.
Collapse
Affiliation(s)
- Korinna T Allhoff
- Institute of Condensed Matter Physics, Darmstadt University of Technology, Hochschulstraße 6, 64283 Darmstadt, Germany.
| | | |
Collapse
|
23
|
Stegen JC, Enquist BJ, Ferrière R. Eco-evolutionary community dynamics: covariation between diversity and invasibility across temperature gradients. Am Nat 2012; 180:E110-26. [PMID: 22976016 DOI: 10.1086/667577] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Understanding biodiversity gradients is a long-standing challenge, and progress requires theory unifying ecology and evolution. Here, we unify concepts related to the speed of evolution, the influence of species richness on diversification, and niche-based coexistence. We focus on the dynamics, through evolutionary time, of community invasibility and species richness across a broad thermal gradient. In our framework, the evolution of body size influences the ecological structure and dynamics of a trophic network, and organismal metabolism ties temperature to eco-evolutionary processes. The framework distinguishes ecological invasibility (governed by ecological interactions) from evolutionary invasibility (governed by local ecology and constraints imposed by small phenotypic effects of mutation). The model yields four primary predictions: (1) ecological invasibility declines through time and with increasing temperature; (2) average evolutionary invasibility across communities increases and then decreases through time as the richness-temperature gradient flattens; (3) in the early stages of diversification, richness and evolutionary invasibility both increase with increasing temperature; and (4) at equilibrium, richness does not vary with temperature, yet evolutionary invasibility decreases with increasing temperature. These predictions emerge from the "evolutionary-speed" hypothesis, which attempts to account for latitudinal species richness gradients by invoking faster biological rates in warmer, tropical regions. The model contrasts with predictions from other richness-gradient hypotheses, such as "niche conservatism" and "species energy." Empirically testing our model's predictions should help distinguish among these hypotheses.
Collapse
Affiliation(s)
- James C Stegen
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352, USA.
| | | | | |
Collapse
|
24
|
Ingram T, Harmon LJ, Shurin JB. When should we expect early bursts of trait evolution in comparative data? Predictions from an evolutionary food web model. J Evol Biol 2012; 25:1902-10. [DOI: 10.1111/j.1420-9101.2012.02566.x] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
25
|
Kratina P, LeCraw RM, Ingram T, Anholt BR. Stability and persistence of food webs with omnivory: Is there a general pattern? Ecosphere 2012. [DOI: 10.1890/es12-00121.1] [Citation(s) in RCA: 77] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
26
|
Roderick GK, Croucher PJP, Vandergast AG, Gillespie RG. Species Differentiation on a Dynamic Landscape: Shifts in Metapopulation Genetic Structure Using the Chronology of the Hawaiian Archipelago. Evol Biol 2012; 39:192-206. [PMID: 22707805 PMCID: PMC3364410 DOI: 10.1007/s11692-012-9184-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2011] [Accepted: 04/06/2012] [Indexed: 11/20/2022]
Abstract
Species formation during adaptive radiation often occurs in the context of a changing environment. The establishment and arrangement of populations, in space and time, sets up ecological and genetic processes that dictate the rate and pattern of differentiation. Here, we focus on how a dynamic habitat can affect genetic structure, and ultimately, differentiation among populations. We make use of the chronology and geographical history provided by the Hawaiian archipelago to examine the initial stages of population establishment and genetic divergence. We use data from a set of 6 spider lineages that differ in habitat affinities, some preferring low elevation habitats with a longer history of connection, others being more specialized for high elevation and/or wet forest, some with more general habitat affinities. We show that habitat preferences associated with lineages are important in ecological and genetic structuring. Lineages that have more restricted habitat preferences are subject to repeated episodes of isolation and fragmentation as a result of lava flows and vegetation succession. The initial dynamic set up by the landscape translates over time into discrete lineages. Further work is needed to understand how genetic changes interact with a changing set of ecological interactions amongst a shifting mosaic of landscapes to achieve species formation.
Collapse
Affiliation(s)
- George K. Roderick
- Department of Environmental Science, Policy, and Management, University of California, 130 Mulford Hall, Berkeley, CA 94720-3114 USA
| | - Peter J. P. Croucher
- Department of Environmental Science, Policy, and Management, University of California, 130 Mulford Hall, Berkeley, CA 94720-3114 USA
| | - Amy G. Vandergast
- U.S. Geological Survey, Western Ecological Research Center, San Diego Field Station, 4165 Spruance Road, Suite 200, San Diego, CA 92101 USA
| | - Rosemary G. Gillespie
- Department of Environmental Science, Policy, and Management, University of California, 130 Mulford Hall, Berkeley, CA 94720-3114 USA
| |
Collapse
|
27
|
Tempo of trophic evolution and its impact on mammalian diversification. Proc Natl Acad Sci U S A 2012; 109:7008-12. [PMID: 22509033 DOI: 10.1073/pnas.1117133109] [Citation(s) in RCA: 137] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Mammals are characterized by the complex adaptations of their dentition, which are an indication that diet has played a critical role in their evolutionary history. Although much attention has focused on diet and the adaptations of specific taxa, the role of diet in large-scale diversification patterns remains unresolved. Contradictory hypotheses have been proposed, making prediction of the expected relationship difficult. We show that net diversification rate (the cumulative effect of speciation and extinction), differs significantly among living mammals, depending upon trophic strategy. Herbivores diversify fastest, carnivores are intermediate, and omnivores are slowest. The tempo of transitions between the trophic strategies is also highly biased: the fastest rates occur into omnivory from herbivory and carnivory and the lowest transition rates are between herbivory and carnivory. Extant herbivore and carnivore diversity arose primarily through diversification within lineages, whereas omnivore diversity evolved by transitions into the strategy. The ability to specialize and subdivide the trophic niche allowed herbivores and carnivores to evolve greater diversity than omnivores.
Collapse
|
28
|
Schreiber SJ, Bürger R, Bolnick DI. The community effects of phenotypic and genetic variation within a predator population. Ecology 2011; 92:1582-93. [PMID: 21905425 DOI: 10.1890/10-2071.1] [Citation(s) in RCA: 111] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Natural populations are heterogeneous mixtures of individuals differing in physiology, morphology, and behavior. Despite the ubiquity of phenotypic variation within natural populations, its effects on the dynamics of ecological communities are not well understood. Here, we use a quantitative genetics framework to examine how phenotypic variation in a predator affects the outcome of apparent competition between its two prey species. Classical apparent competition theory predicts that prey have reciprocally negative effects on each other. The addition of phenotypic trait variation in predation can marginalize these negative effects, mediate coexistence, or generate positive indirect effects between the prey species. Long-term coexistence or facilitation, however, can be preceded by long transients of extinction risk whenever the heritability of phenotypic variation is low. Greater heritability can circumvent these ecological transients but also can generate oscillatory and chaotic dynamics. These dramatic changes in ecological outcomes, in the sign of indirect effects, and in stability suggest that studies which ignore intraspecific trait variation may reach fundamentally incorrect conclusions regarding ecological dynamics.
Collapse
Affiliation(s)
- Sebastian J Schreiber
- Department of Evolution and Ecology, Center for Population Biology, University of California, Davis, California 95616, USA.
| | | | | |
Collapse
|
29
|
Stegen JC, Ferriere R, Enquist BJ. Evolving ecological networks and the emergence of biodiversity patterns across temperature gradients. Proc Biol Sci 2011; 279:1051-60. [PMID: 21937497 DOI: 10.1098/rspb.2011.1733] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
In ectothermic organisms, it is hypothesized that metabolic rates mediate influences of temperature on the ecological and evolutionary processes governing biodiversity. However, it is unclear how and to what extent the influence of temperature on metabolism scales up to shape large-scale diversity patterns. In order to clarify the roles of temperature and metabolism, new theory is needed. Here, we establish such theory and model eco-evolutionary dynamics of trophic networks along a broad temperature gradient. In the model temperature can influence, via metabolism, resource supply, consumers' vital rates and mutation rate. Mutation causes heritable variation in consumer body size, which diversifies and governs consumer function in the ecological network. The model predicts diversity to increase with temperature if resource supply is temperature-dependent, whereas temperature-dependent consumer vital rates cause diversity to decrease with increasing temperature. When combining both thermal dependencies, a unimodal temperature-diversity pattern evolves, which is reinforced by temperature-dependent mutation rate. Studying coexistence criteria for two consumers showed that these outcomes are owing to temperature effects on mutual invasibility and facilitation. Our theory shows how and why metabolism can influence diversity, generates predictions useful for understanding biodiversity gradients and represents an extendable framework that could include factors such as colonization history and niche conservatism.
Collapse
Affiliation(s)
- James C Stegen
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ 85721, USA.
| | | | | |
Collapse
|
30
|
Moya-Laraño J. Genetic variation, predator-prey interactions and food web structure. Philos Trans R Soc Lond B Biol Sci 2011; 366:1425-37. [PMID: 21444316 DOI: 10.1098/rstb.2010.0241] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Food webs are networks of species that feed on each other. The role that within-population phenotypic and genetic variation plays in food web structure is largely unknown. Here, I show via simulation how variation in two key traits, growth rates and phenology, by influencing the variability of body sizes present through time, can potentially affect several structural parameters in the direction of enhancing food web persistence: increased connectance, decreased interaction strengths, increased variation among interaction strengths and increased degree of omnivory. I discuss other relevant traits whose variation could affect the structure of food webs, such as morphological and additional life-history traits, as well as animal personalities. Furthermore, trait variation could also contribute to the stability of food web modules through metacommunity dynamics. I propose future research to help establish a link between within-population variation and food web structure. If appropriately established, such a link could have important consequences for biological conservation, as it would imply that preserving (functional) genetic variation within populations could ensure the preservation of entire communities.
Collapse
Affiliation(s)
- Jordi Moya-Laraño
- Cantabrian Institute of Biodiversity (ICAB), Universidad de Oviedo-Principado de Asturias, 33006 Oviedo, Asturias, Spain.
| |
Collapse
|
31
|
Bolnick DI, Amarasekare P, Araújo MS, Bürger R, Levine JM, Novak M, Rudolf VHW, Schreiber SJ, Urban MC, Vasseur DA. Why intraspecific trait variation matters in community ecology. Trends Ecol Evol 2011; 26:183-92. [PMID: 21367482 PMCID: PMC3088364 DOI: 10.1016/j.tree.2011.01.009] [Citation(s) in RCA: 1222] [Impact Index Per Article: 94.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2010] [Revised: 01/25/2011] [Accepted: 01/25/2011] [Indexed: 11/17/2022]
Abstract
Natural populations consist of phenotypically diverse individuals that exhibit variation in their demographic parameters and intra- and inter-specific interactions. Recent experimental work indicates that such variation can have significant ecological effects. However, ecological models typically disregard this variation and focus instead on trait means and total population density. Under what situations is this simplification appropriate? Why might intraspecific variation alter ecological dynamics? In this review we synthesize recent theory and identify six general mechanisms by which trait variation changes the outcome of ecological interactions. These mechanisms include several direct effects of trait variation per se and indirect effects arising from the role of genetic variation in trait evolution.
Collapse
Affiliation(s)
- Daniel I Bolnick
- Howard Hughes Medical Institute, Section of Integrative Biology, University of Texas at Austin, TX 78712, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Campbell C, Yang S, Albert R, Shea K. A network model for plant-pollinator community assembly. Proc Natl Acad Sci U S A 2011; 108:197-202. [PMID: 21173234 PMCID: PMC3017189 DOI: 10.1073/pnas.1008204108] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Community assembly models, usually constructed for food webs, are an important component of our understanding of how ecological communities are formed. However, models for mutualistic community assembly are still needed, especially because these communities are experiencing significant anthropogenic disturbances that affect their biodiversity. Here, we present a unique network model that simulates the colonization and extinction process of mutualistic community assembly. We generate regional source pools of species interaction networks on the basis of statistical properties reported in the literature. We develop a dynamic synchronous Boolean framework to simulate, with few free parameters, the dynamics of new mutualistic community formation from the regional source pool. This approach allows us to deterministically map out every possible trajectory of community formation. This level of detail is rarely observed in other analytic approaches and allows for thorough analysis of the dynamical properties of community formation. As for food web assembly, we find that the number of stable communities is quite low, and the composition of the source pool influences the abundance and nature of community outcomes. However, in contrast to food web assembly, stable mutualistic communities form rapidly. Small communities with minor fluctuations in species presence/absence (self-similar limit cycles) are the most common community outcome. The unique application of this Boolean network approach to the study of mutualistic community assembly offers a great opportunity to improve our understanding of these critical communities.
Collapse
Affiliation(s)
- Colin Campbell
- Department of Physics, Pennsylvania State University, University Park, PA 16802, USA.
| | | | | | | |
Collapse
|
33
|
Wiens JJ, Ackerly DD, Allen AP, Anacker BL, Buckley LB, Cornell HV, Damschen EI, Jonathan Davies T, Grytnes JA, Harrison SP, Hawkins BA, Holt RD, McCain CM, Stephens PR. Niche conservatism as an emerging principle in ecology and conservation biology. Ecol Lett 2010; 13:1310-24. [PMID: 20649638 DOI: 10.1111/j.1461-0248.2010.01515.x] [Citation(s) in RCA: 785] [Impact Index Per Article: 56.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- John J Wiens
- Department of Ecology & Evolution, Stony Brook University, Stony Brook, NY 11794, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Losos J. Adaptive Radiation, Ecological Opportunity, and Evolutionary Determinism. Am Nat 2010; 175:623-39. [DOI: 10.1086/652433] [Citation(s) in RCA: 457] [Impact Index Per Article: 32.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|