1
|
Cortisol predicts migration timing and success in both Atlantic salmon and sea trout kelts. Sci Rep 2019; 9:2422. [PMID: 30787384 PMCID: PMC6382858 DOI: 10.1038/s41598-019-39153-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Accepted: 01/18/2019] [Indexed: 12/03/2022] Open
Abstract
Kelts – individuals of anadromous fish species which have successfully spawned and may return to sea to repeat the cycle – are perhaps the least studied life stage of iteroparous fish species. To date, our understanding of what makes them successful in their return migration to sea is limited. We investigated the relationship between three physiological parameters (baseline cortisol, baseline glucose and low molecular weight antioxidants) and the timing and success of Atlantic salmon (Salmo salar) and sea trout (Salmo trutta) kelt migration. To do so, we combined blood samples obtained within 3 minutes of capture and acoustic telemetry to track 66 salmon and 72 sea trout as they migrated out of rivers, into fjords and out at sea. We show that baseline cortisol may be a good predictor of migration success. Individuals with high baseline cortisol levels exited the river earlier but were less likely to successfully reach the sea. Similar relationships were not observed with glucose or antioxidants. We provide the first evidence to support the role of physiological status in migration success in Atlantic salmon and sea trout kelts. Our findings contribute to our understanding of the relationship between physiology and fitness in wild animals. Further, we suggest that migration timing is a trade-off between stress and readiness to migrate.
Collapse
|
2
|
Sample C, Fryxell JM, Bieri JA, Federico P, Earl JE, Wiederholt R, Mattsson BJ, Flockhart DTT, Nicol S, Diffendorfer JE, Thogmartin WE, Erickson RA, Norris DR. A general modeling framework for describing spatially structured population dynamics. Ecol Evol 2017; 8:493-508. [PMID: 29321888 PMCID: PMC5756893 DOI: 10.1002/ece3.3685] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Revised: 09/27/2017] [Accepted: 11/08/2017] [Indexed: 11/06/2022] Open
Abstract
Variation in movement across time and space fundamentally shapes the abundance and distribution of populations. Although a variety of approaches model structured population dynamics, they are limited to specific types of spatially structured populations and lack a unifying framework. Here, we propose a unified network-based framework sufficiently novel in its flexibility to capture a wide variety of spatiotemporal processes including metapopulations and a range of migratory patterns. It can accommodate different kinds of age structures, forms of population growth, dispersal, nomadism and migration, and alternative life-history strategies. Our objective was to link three general elements common to all spatially structured populations (space, time and movement) under a single mathematical framework. To do this, we adopt a network modeling approach. The spatial structure of a population is represented by a weighted and directed network. Each node and each edge has a set of attributes which vary through time. The dynamics of our network-based population is modeled with discrete time steps. Using both theoretical and real-world examples, we show how common elements recur across species with disparate movement strategies and how they can be combined under a unified mathematical framework. We illustrate how metapopulations, various migratory patterns, and nomadism can be represented with this modeling approach. We also apply our network-based framework to four organisms spanning a wide range of life histories, movement patterns, and carrying capacities. General computer code to implement our framework is provided, which can be applied to almost any spatially structured population. This framework contributes to our theoretical understanding of population dynamics and has practical management applications, including understanding the impact of perturbations on population size, distribution, and movement patterns. By working within a common framework, there is less chance that comparative analyses are colored by model details rather than general principles.
Collapse
Affiliation(s)
| | - John M Fryxell
- Department of Integrative Biology University of Guelph Guelph ON Canada
| | - Joanna A Bieri
- Department of Mathematics University of Redlands Redlands CA USA
| | - Paula Federico
- Department of Mathematics, Computer Science and Physics Capital University Columbus OH USA
| | - Julia E Earl
- School of Biological Sciences Louisiana Tech University Ruston LA USA
| | | | - Brady J Mattsson
- Institute of Silviculture University of Natural Resources and Life Sciences Vienna Austria.,Present address: Institute of Wildlife Biology & Game Management University of Natural Resources & Life Sciences (BOKU) Vienna Austria
| | | | - Sam Nicol
- CSIRO Land and Water, EcoSciences Precinct Dutton Park Qld Australia
| | - Jay E Diffendorfer
- U.S. Geological Survey, Geosciences and Environmental Change Science Center Denver CO USA
| | - Wayne E Thogmartin
- U.S. Geological Survey Upper Midwest Environmental Sciences Center La Crosse WI USA
| | - Richard A Erickson
- U.S. Geological Survey Upper Midwest Environmental Sciences Center La Crosse WI USA
| | - D Ryan Norris
- Department of Integrative Biology University of Guelph Guelph ON Canada
| |
Collapse
|
3
|
Alderman SL, Dindia LA, Kennedy CJ, Farrell AP, Gillis TE. Proteomic analysis of sockeye salmon serum as a tool for biomarker discovery and new insight into the sublethal toxicity of diluted bitumen. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2017; 22:157-166. [DOI: 10.1016/j.cbd.2017.04.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Revised: 03/24/2017] [Accepted: 04/10/2017] [Indexed: 01/16/2023]
|
4
|
Teffer AK, Hinch SG, Miller KM, Patterson DA, Farrell AP, Cooke SJ, Bass AL, Szekeres P, Juanes F. Capture severity, infectious disease processes and sex influence post-release mortality of sockeye salmon bycatch. CONSERVATION PHYSIOLOGY 2017; 5:cox017. [PMID: 28852514 PMCID: PMC5569998 DOI: 10.1093/conphys/cox017] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Revised: 02/17/2017] [Accepted: 03/07/2017] [Indexed: 05/21/2023]
Abstract
Bycatch is a common occurrence in heavily fished areas such as the Fraser River, British Columbia, where fisheries target returning adult Pacific salmon (Oncorhynchus spp.) en route to spawning grounds. The extent to which these encounters reduce fish survival through injury and physiological impairment depends on multiple factors including capture severity, river temperature and infectious agents. In an effort to characterize the mechanisms of post-release mortality and address fishery and managerial concerns regarding specific regulations, wild-caught Early Stuart sockeye salmon (Oncorhynchus nerka) were exposed to either mild (20 s) or severe (20 min) gillnet entanglement and then held at ecologically relevant temperatures throughout their period of river migration (mid-late July) and spawning (early August). Individuals were biopsy sampled immediately after entanglement and at death to measure indicators of stress and immunity, and the infection intensity of 44 potential pathogens. Biopsy alone increased mortality (males: 33%, females: 60%) when compared with non-biopsied controls (males: 7%, females: 15%), indicating high sensitivity to any handling during river migration, especially among females. Mortality did not occur until 5-10 days after entanglement, with severe entanglement resulting in the greatest mortality (males: 62%, females: 90%), followed by mild entanglement (males: 44%, females: 70%). Infection intensities of Flavobacterium psychrophilum and Ceratonova shasta measured at death were greater in fish that died sooner. Physiological indicators of host stress and immunity also differed depending on longevity, and indicated anaerobic metabolism, osmoregulatory failure and altered immune gene regulation in premature mortalities. Together, these results implicate latent effects of entanglement, especially among females, resulting in mortality days or weeks after release. Although any entanglement is potentially detrimental, reducing entanglement durations can improve post-release survival.
Collapse
Affiliation(s)
- Amy K. Teffer
- Department of Biology, University of Victoria, Victoria, BC V8P 5C2, Canada
- Salmon Ecology and Conservation Laboratory, Department of Forest and Conservation Sciences, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Scott G. Hinch
- Salmon Ecology and Conservation Laboratory, Department of Forest and Conservation Sciences, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Kristi M. Miller
- Fisheries and Oceans Canada, Molecular Genetics Section, Pacific Biological Station, Nanaimo, BC V9T 6N7, Canada
| | - David A. Patterson
- Fisheries and Oceans Canada, Cooperative Resource Management Institute, School of Resource and Environmental Management, Simon Fraser University, Burnaby, BC V5A 1S6, Canada
| | - Anthony P. Farrell
- Department of Zoology, Department of Land and Food Systems, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Steven J. Cooke
- Fish Ecology and Conservation Physiology Laboratory, Department of Biology and Institute of Environmental Science, Carleton University, Ottawa, ON K1S 5B6, Canada
| | - Arthur L. Bass
- Salmon Ecology and Conservation Laboratory, Department of Forest and Conservation Sciences, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Petra Szekeres
- Fish Ecology and Conservation Physiology Laboratory, Department of Biology and Institute of Environmental Science, Carleton University, Ottawa, ON K1S 5B6, Canada
| | - Francis Juanes
- Department of Biology, University of Victoria, Victoria, BC V8P 5C2, Canada
| |
Collapse
|
5
|
Midwood JD, Larsen MH, Boel M, Aarestrup K, Cooke SJ. An experimental field evaluation of winter carryover effects in semi-anadromous brown trout (Salmo trutta). ACTA ACUST UNITED AC 2015; 323:645-54. [DOI: 10.1002/jez.1955] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Revised: 07/08/2015] [Accepted: 07/10/2015] [Indexed: 12/27/2022]
Affiliation(s)
- Jonathan D. Midwood
- Department of Biology and Institute of Environmental Science; Fish Ecology and Conservation Physiology Laboratory; Carleton University; Ontario Canada
| | - Martin H. Larsen
- National Institute of Aquatic Resources; Freshwater Fisheries; Technical University of Denmark; Silkeborg Denmark
| | - Mikkel Boel
- National Institute of Aquatic Resources; Freshwater Fisheries; Technical University of Denmark; Silkeborg Denmark
| | - Kim Aarestrup
- National Institute of Aquatic Resources; Freshwater Fisheries; Technical University of Denmark; Silkeborg Denmark
| | - Steven J. Cooke
- Department of Biology and Institute of Environmental Science; Fish Ecology and Conservation Physiology Laboratory; Carleton University; Ontario Canada
| |
Collapse
|
6
|
Havn TB, Uglem I, Solem Ø, Cooke SJ, Whoriskey FG, Thorstad EB. The effect of catch-and-release angling at high water temperatures on behaviour and survival of Atlantic salmon Salmo salar during spawning migration. JOURNAL OF FISH BIOLOGY 2015; 87:342-359. [PMID: 26179562 DOI: 10.1111/jfb.12722] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Accepted: 05/14/2015] [Indexed: 06/04/2023]
Abstract
In this study, behaviour and survival following catch-and-release (C&R) angling was investigated in wild Atlantic salmon Salmo salar (n = 75) angled on sport fishing gear in the River Otra in southern Norway at water temperatures of 16.3-21.1 °C. Salmo salar were tagged externally with radio transmitters and immediately released back into the river to simulate a realistic C&R situation. The majority of S. salar (91%) survived C&R. Most S. salar that were present in the River Otra during the spawning period 3-4 months later were located at known spawning grounds. Downstream movements (median furthest position: 0.5 km, range: 0.1-11.0 km) during the first 4 days after release were recorded for 72% of S. salar, presumably stress-induced fallback associated with C&R. Individuals that fell back spent a median of 15 days before commencing their first upstream movement after release, and 34 days before they returned to or were located above their release site. Mortality appeared to be somewhat elevated at the higher end of the temperature range (14% at 18-21 °C), although sample sizes were low. In conclusion, C&R at water temperatures up to 18 °C had small behavioural consequences and was associated with low mortality (7%). Nevertheless, low levels of mortality occur due to C&R angling and these losses should be accounted for by management authorities in rivers where C&R is practised. Refinement of best practices for C&R may help to reduce mortality, particularly at warmer temperatures.
Collapse
Affiliation(s)
- T B Havn
- Norwegian Institute for Nature Research, Høgskoleringen 9, NO-7034, Trondheim, Norway
| | - I Uglem
- Norwegian Institute for Nature Research, Høgskoleringen 9, NO-7034, Trondheim, Norway
| | - Ø Solem
- Norwegian Institute for Nature Research, Høgskoleringen 9, NO-7034, Trondheim, Norway
| | - S J Cooke
- Fish Ecology and Conservation Physiology Laboratory, Department of Biology, Carleton University, 1125 Colonel By Drive, Ottawa, ON, K1S 5B6, Canada
| | - F G Whoriskey
- Ocean Tracking Network, Dalhousie University, 1355 Oxford Street, Halifax, NS, B3H 4R2, Canada
| | - E B Thorstad
- Norwegian Institute for Nature Research, Høgskoleringen 9, NO-7034, Trondheim, Norway
| |
Collapse
|
7
|
Raby GD, Donaldson MR, Hinch SG, Clark TD, Eliason EJ, Jeffries KM, Cook KV, Teffer A, Bass AL, Miller KM, Patterson DA, Farrell AP, Cooke SJ. Fishing for Effective Conservation: Context and Biotic Variation are Keys to Understanding the Survival of Pacific Salmon after Catch-and-Release. Integr Comp Biol 2015. [PMID: 26199324 DOI: 10.1093/icb/icv088] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Acute stressors are commonly experienced by wild animals but their effects on fitness rarely are studied in the natural environment. Billions of fish are captured and released annually around the globe across all fishing sectors (e.g., recreational, commercial, subsistence). Whatever the motivation, release often occurs under the assumption of post-release survival. Yet, capture by fisheries (hereafter "fisheries-capture") is likely the most severe acute stressor experienced in the animal's lifetime, which makes the problem of physiological recovery and survival of relevance to biology and conservation. Indeed, fisheries managers require accurate estimates of mortality to better account for total mortality from fishing, while fishers desire guidance on strategies for reducing mortality and maintaining the welfare of released fish, to maximize current and future opportunities for fishing. In partnership with stakeholders, our team has extensively studied the effects of catch-and-release on Pacific salmon in both marine and freshwater environments, using biotelemetry and physiological assessments in a combined laboratory-based and field-based approach. The emergent theme is that post-release rates of mortality are consistently context-specific and can be affected by a suite of interacting biotic and abiotic factors. The fishing gear used, location of a fishery, water temperature, and handling techniques employed by fishers each can dramatically affect survival of the salmon they release. Variation among individuals, co-migrating populations, and between sexes all seem to play a role in the response of fish to capture and in their subsequent survival, potentially driven by pre-capture pathogen-load, maturation states, and inter-individual variation in responsiveness to stress. Although some of these findings are fascinating from a biological perspective, they all create unresolved challenges for managers. We summarize our findings by highlighting the patterns that have emerged most consistently, and point to areas of uncertainty that require further research.
Collapse
Affiliation(s)
- Graham D Raby
- *Fish Ecology and Conservation Physiology Laboratory, Department of Biology and Institute of Environmental Science, Carleton University, Ottawa, ON K1S5B6, Canada;
| | - Michael R Donaldson
- Pacific Salmon Ecology and Conservation Laboratory, Department of Forest and Conservation Sciences, University of British Columbia, Vancouver, BC V6T1Z4, Canada
| | - Scott G Hinch
- Pacific Salmon Ecology and Conservation Laboratory, Department of Forest and Conservation Sciences, University of British Columbia, Vancouver, BC V6T1Z4, Canada
| | - Timothy D Clark
- Pacific Salmon Ecology and Conservation Laboratory, Department of Forest and Conservation Sciences, University of British Columbia, Vancouver, BC V6T1Z4, Canada; Australian Institute of Marine Science, PMB 3, Townsville MC, QLD 4810, Australia
| | - Erika J Eliason
- *Fish Ecology and Conservation Physiology Laboratory, Department of Biology and Institute of Environmental Science, Carleton University, Ottawa, ON K1S5B6, Canada; Pacific Salmon Ecology and Conservation Laboratory, Department of Forest and Conservation Sciences, University of British Columbia, Vancouver, BC V6T1Z4, Canada
| | - Kenneth M Jeffries
- Anatomy, Physiology & Cell Biology, School of Veterinary Medicine, University of California, Davis, CA 95616, USA
| | - Katrina V Cook
- Pacific Salmon Ecology and Conservation Laboratory, Department of Forest and Conservation Sciences, University of British Columbia, Vancouver, BC V6T1Z4, Canada
| | - Amy Teffer
- Pacific Salmon Ecology and Conservation Laboratory, Department of Forest and Conservation Sciences, University of British Columbia, Vancouver, BC V6T1Z4, Canada; Biology Department, University of Victoria, Victoria, BC V8P5C2, Canada
| | - Arthur L Bass
- Pacific Salmon Ecology and Conservation Laboratory, Department of Forest and Conservation Sciences, University of British Columbia, Vancouver, BC V6T1Z4, Canada
| | - Kristina M Miller
- Pacific Biological Station, Fisheries and Oceans Canada, Nanaimo, BC V9R5K6, Canada
| | - David A Patterson
- Fisheries and Oceans Canada, Science Branch, Pacific Region, Cooperative Resource Management Institute, School of Resource and Environmental Management, Simon Fraser University, Burnaby, BC V5A1S6, Canada
| | - Anthony P Farrell
- **Department of Zoology and Faculty of Land and Food Systems, University of British Columbia, Vancouver, BC V6T1Z4, Canada
| | - Steven J Cooke
- *Fish Ecology and Conservation Physiology Laboratory, Department of Biology and Institute of Environmental Science, Carleton University, Ottawa, ON K1S5B6, Canada
| |
Collapse
|
8
|
Gale MK, Hinch SG, Cooke SJ, Donaldson MR, Eliason EJ, Jeffries KM, Martins EG, Patterson DA. Observable impairments predict mortality of captured and released sockeye salmon at various temperatures. CONSERVATION PHYSIOLOGY 2014; 2:cou029. [PMID: 27293650 PMCID: PMC4806721 DOI: 10.1093/conphys/cou029] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2014] [Revised: 06/11/2014] [Accepted: 06/15/2014] [Indexed: 05/03/2023]
Abstract
Migrating adult sockeye salmon frequently encounter commercial and recreational fishing gear, from which they may be landed, escape or be intentionally released. In this experiment, migratory adult sockeye salmon were exposed to simulated capture-release in fresh water, including 3 min of exhaustive exercise and 60 s of air exposure at three ecologically relevant water temperatures (13, 16 and 19°C) to understand how thermal and capture-release stressors may interact to increase mortality risk. Water temperature and sex were the factors that best predicted 24 and 48 h survival, with females in the warmest temperature group experiencing the greatest mortality. Capture-release treatment including air exposure was associated with equilibrium loss and depressed ventilation rates at release; the probability of fish surviving for 24 h after simulated capture-release was >50% if the duration of equilibrium loss was <2 min or ventilation frequency was >1 breath s(-1). Higher haematocrit and plasma lactate as well as lower mean cell haemoglobin concentration and plasma sodium and chloride 30 min after simulated capture-release were also significant predictors of 24 h survival. Together, the results demonstrate that simple observations that are consistent with physiological disturbance can be used as predictors for post-release short-term survival for sockeye salmon. The markedly higher post-stressor mortality observed in females demonstrates that managers should consider sex-specific variation in response to different fisheries interactions, particularly in the face of climate change.
Collapse
Affiliation(s)
- Marika Kirstin Gale
- Pacific Salmon Ecology and Conservation Laboratory, Department of Forest and Conservation Sciences, University of British Columbia, 2424 Main Mall, Vancouver, British Columbia, Canada V6T 1Z4
| | - Scott G. Hinch
- Pacific Salmon Ecology and Conservation Laboratory, Department of Forest and Conservation Sciences, University of British Columbia, 2424 Main Mall, Vancouver, British Columbia, Canada V6T 1Z4
| | - Steven J. Cooke
- Fish Ecology and Conservation Physiology Laboratory, Ottawa-Carleton Institute of Biology and Institute of Environmental Sciences, Carleton University, Ottawa, Ontario, Canada K1S 5B6
| | - Michael R. Donaldson
- Pacific Salmon Ecology and Conservation Laboratory, Department of Forest and Conservation Sciences, University of British Columbia, 2424 Main Mall, Vancouver, British Columbia, Canada V6T 1Z4
- Department of Natural Resources and Environmental Sciences, University of Illinois at Urbana-Champaign, 1102 S. Goodwin Ave., Urbana, IL 61801, USA
| | - Erika J. Eliason
- Pacific Salmon Ecology and Conservation Laboratory, Department of Forest and Conservation Sciences, University of British Columbia, 2424 Main Mall, Vancouver, British Columbia, Canada V6T 1Z4
- Fish Ecology and Conservation Physiology Laboratory, Ottawa-Carleton Institute of Biology and Institute of Environmental Sciences, Carleton University, Ottawa, Ontario, Canada K1S 5B6
| | - Ken M. Jeffries
- Pacific Salmon Ecology and Conservation Laboratory, Department of Forest and Conservation Sciences, University of British Columbia, 2424 Main Mall, Vancouver, British Columbia, Canada V6T 1Z4
- Anatomy, Physiology & Cell Biology, School of Veterinary Medicine, University of California, Davis, One Shields Avenue, Davis, CA 95616, USA
| | - Eduardo G. Martins
- Pacific Salmon Ecology and Conservation Laboratory, Department of Forest and Conservation Sciences, University of British Columbia, 2424 Main Mall, Vancouver, British Columbia, Canada V6T 1Z4
- Fish Ecology and Conservation Physiology Laboratory, Ottawa-Carleton Institute of Biology and Institute of Environmental Sciences, Carleton University, Ottawa, Ontario, Canada K1S 5B6
| | - David A. Patterson
- Cooperative Resource Management Institute, Fisheries and Oceans Canada, School of Resources and Environmental Management, Simon Fraser University, TASC 1 - Room #8405, 8888 University Drive, Burnaby, British Columbia, Canada V5A 1S6
| |
Collapse
|
9
|
Miller KM, Teffer A, Tucker S, Li S, Schulze AD, Trudel M, Juanes F, Tabata A, Kaukinen KH, Ginther NG, Ming TJ, Cooke SJ, Hipfner JM, Patterson DA, Hinch SG. Infectious disease, shifting climates, and opportunistic predators: cumulative factors potentially impacting wild salmon declines. Evol Appl 2014; 7:812-55. [PMID: 25469162 PMCID: PMC4227861 DOI: 10.1111/eva.12164] [Citation(s) in RCA: 151] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2013] [Accepted: 03/06/2014] [Indexed: 12/23/2022] Open
Abstract
Emerging diseases are impacting animals under high-density culture, yet few studies assess their importance to wild populations. Microparasites selected for enhanced virulence in culture settings should be less successful maintaining infectivity in wild populations, as once the host dies, there are limited opportunities to infect new individuals. Instead, moderately virulent microparasites persisting for long periods across multiple environments are of greatest concern. Evolved resistance to endemic microparasites may reduce susceptibilities, but as barriers to microparasite distributions are weakened, and environments become more stressful, unexposed populations may be impacted and pathogenicity enhanced. We provide an overview of the evolutionary and ecological impacts of infectious diseases in wild salmon and suggest ways in which modern technologies can elucidate the microparasites of greatest potential import. We present four case studies that resolve microparasite impacts on adult salmon migration success, impact of river warming on microparasite replication, and infection status on susceptibility to predation. Future health of wild salmon must be considered in a holistic context that includes the cumulative or synergistic impacts of multiple stressors. These approaches will identify populations at greatest risk, critically needed to manage and potentially ameliorate the shifts in current or future trajectories of wild populations.
Collapse
Affiliation(s)
- Kristina M Miller
- Pacific Biological Station, Fisheries and Oceans CanadaNanaimo, BC, Canada
- Forest and Conservation Sciences, University of British ColumbiaVancouver, BC, Canada
| | - Amy Teffer
- Biology Department, University of VictoriaVictoria, BC, Canada
| | - Strahan Tucker
- Pacific Biological Station, Fisheries and Oceans CanadaNanaimo, BC, Canada
| | - Shaorong Li
- Pacific Biological Station, Fisheries and Oceans CanadaNanaimo, BC, Canada
| | - Angela D Schulze
- Pacific Biological Station, Fisheries and Oceans CanadaNanaimo, BC, Canada
| | - Marc Trudel
- Pacific Biological Station, Fisheries and Oceans CanadaNanaimo, BC, Canada
- Biology Department, University of VictoriaVictoria, BC, Canada
| | - Francis Juanes
- Biology Department, University of VictoriaVictoria, BC, Canada
| | - Amy Tabata
- Pacific Biological Station, Fisheries and Oceans CanadaNanaimo, BC, Canada
| | - Karia H Kaukinen
- Pacific Biological Station, Fisheries and Oceans CanadaNanaimo, BC, Canada
| | - Norma G Ginther
- Pacific Biological Station, Fisheries and Oceans CanadaNanaimo, BC, Canada
| | - Tobi J Ming
- Pacific Biological Station, Fisheries and Oceans CanadaNanaimo, BC, Canada
| | - Steven J Cooke
- Fish Ecology and Conservation Physiology Laboratory, Department of Biology, Carleton UniverisyOttawa, ON, Canada
| | - J Mark Hipfner
- Environment Canada, Wildlife Research DivisionDelta, BC, Canada
| | - David A Patterson
- Fisheries and Oceans Canada, School of Resource and Environmental Management, Simon Fraser University, Science BranchBurnaby, BC, Canada
| | - Scott G Hinch
- Forest and Conservation Sciences, University of British ColumbiaVancouver, BC, Canada
| |
Collapse
|
10
|
Nguyen VM, Martins EG, Robichaud D, Raby GD, Donaldson MR, Lotto AG, Willmore WG, Patterson DA, Farrell AP, Hinch SG, Cooke SJ. Disentangling the Roles of Air Exposure, Gill Net Injury, and Facilitated Recovery on the Postcapture and Release Mortality and Behavior of Adult Migratory Sockeye Salmon (Oncorhynchus nerka) in Freshwater. Physiol Biochem Zool 2014; 87:125-35. [DOI: 10.1086/669530] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
11
|
Sopinka NM, Hinch SG, Lotto AG, Whitney CK, Patterson DA. Does among-population variation in burst swimming performance of sockeye salmon Oncorhynchus nerka fry reflect early life migrations? JOURNAL OF FISH BIOLOGY 2013; 83:1416-1424. [PMID: 24117961 DOI: 10.1111/jfb.12225] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2013] [Accepted: 08/02/2013] [Indexed: 06/02/2023]
Abstract
Using a fixed-speed test, burst swimming performance was found to vary among nine populations of emergent sockeye salmon Oncorhynchus nerka fry reared in a common-garden environment. No consistent relationship was, however, detected between difficulty of fry migration (upstream v. downstream) to rearing areas and total burst swimming duration or bursting rate.
Collapse
Affiliation(s)
- N M Sopinka
- Pacific Salmon Ecology and Conservation Laboratory, Department of Forest and Conservation Sciences, University of British Columbia, Vancouver, BC, V6T 1Z4 Canada
| | | | | | | | | |
Collapse
|
12
|
Cooke SJ, Hinch SG, Donaldson MR, Clark TD, Eliason EJ, Crossin GT, Raby GD, Jeffries KM, Lapointe M, Miller K, Patterson DA, Farrell AP. Conservation physiology in practice: how physiological knowledge has improved our ability to sustainably manage Pacific salmon during up-river migration. Philos Trans R Soc Lond B Biol Sci 2012; 367:1757-69. [PMID: 22566681 DOI: 10.1098/rstb.2012.0022] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Despite growing interest in conservation physiology, practical examples of how physiology has helped to understand or to solve conservation problems remain scarce. Over the past decade, an interdisciplinary research team has used a conservation physiology approach to address topical conservation concerns for Pacific salmon. Here, we review how novel applications of tools such as physiological telemetry, functional genomics and laboratory experiments on cardiorespiratory physiology have shed light on the effect of fisheries capture and release, disease and individual condition, and stock-specific consequences of warming river temperatures, respectively, and discuss how these findings have or have not benefited Pacific salmon management. Overall, physiological tools have provided remarkable insights into the effects of fisheries capture and have helped to enhance techniques for facilitating recovery from fisheries capture. Stock-specific cardiorespiratory thresholds for thermal tolerances have been identified for sockeye salmon and can be used by managers to better predict migration success, representing a rare example that links a physiological scope to fitness in the wild population. Functional genomics approaches have identified physiological signatures predictive of individual migration mortality. Although fisheries managers are primarily concerned with population-level processes, understanding the causes of en route mortality provides a mechanistic explanation and can be used to refine management models. We discuss the challenges that we have overcome, as well as those that we continue to face, in making conservation physiology relevant to managers of Pacific salmon.
Collapse
Affiliation(s)
- Steven J Cooke
- Fish Ecology and Conservation Physiology Laboratory, Ottawa-Carleton Institute of Biology and Institute of Environmental Science, Carleton University, Ottawa, Ontario, Canada.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Johnson JE, Patterson DA, Martins EG, Cooke SJ, Hinch SG. Quantitative methods for analysing cumulative effects on fish migration success: a review. JOURNAL OF FISH BIOLOGY 2012; 81:600-631. [PMID: 22803726 DOI: 10.1111/j.1095-8649.2012.03369.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
It is often recognized, but seldom addressed, that a quantitative assessment of the cumulative effects, both additive and non-additive, of multiple stressors on fish survival would provide a more realistic representation of the factors that influence fish migration. This review presents a compilation of analytical methods applied to a well-studied fish migration, a more general review of quantitative multivariable methods, and a synthesis on how to apply new analytical techniques in fish migration studies. A compilation of adult migration papers from Fraser River sockeye salmon Oncorhynchus nerka revealed a limited number of multivariable methods being applied and the sub-optimal reliance on univariable methods for multivariable problems. The literature review of fisheries science, general biology and medicine identified a large number of alternative methods for dealing with cumulative effects, with a limited number of techniques being used in fish migration studies. An evaluation of the different methods revealed that certain classes of multivariable analyses will probably prove useful in future assessments of cumulative effects on fish migration. This overview and evaluation of quantitative methods gathered from the disparate fields should serve as a primer for anyone seeking to quantify cumulative effects on fish migration survival.
Collapse
Affiliation(s)
- J E Johnson
- Fisheries and Oceans Canada, Cooperative Resource Management Institute, School of Resource and Environmental Management, Simon Fraser University, Burnaby, BC, Canada.
| | | | | | | | | |
Collapse
|
14
|
Donaldson MR, Clark TD, Hinch SG, Cooke SJ, Patterson DA, Gale MK, Frappell PB, Farrell AP. Physiological responses of free-swimming adult coho salmon to simulated predator and fisheries encounters. Physiol Biochem Zool 2010; 83:973-83. [PMID: 20961224 DOI: 10.1086/656336] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The responses of free-swimming adult coho salmon (Oncorhynchus kisutch) to simulated predator and fisheries encounters were assessed by monitoring heart rate (f(H)) with implanted data loggers and periodically taking caudal blood samples. A 10- or 30-min corralling treatment was conducted to simulate conspecifics being cornered by a predator or corralled by fisheries gear without physical contact. Corralling rapidly doubled f(H) from ∼31 beats min(-1) to a maximum of ∼60 beats min(-1), regardless of the duration of the corralling. However, recovery of f(H) to precorralling levels was significantly faster after the 10-min corralling (7.6 h) than after the 30-min corralling (11.5 h). An exhaustive-exercise treatment (chasing for 3 min, with physical contact) to simulate a predator chasing a fish to exhaustion or a fish becoming exhausted after encountering fisheries gear resulted in increased f(H) (to 60 beats min(-1)), plasma lactate, glucose, sodium, osmolality, and cortisol (males only) and a significant decrease in mean corpuscular hemoglobin concentration. Recovery of f(H) and most blood variables was complete about 16 h after exhaustive exercise and handling. The results illustrate a clear relationship between the intensity of exercise and the duration required for recovery of f(H). Changes in f(H) were significantly correlated with those in plasma lactate, chloride, and sodium at 1 h after the exercise treatment protocols. Thus, measurements of f(H) may provide an accurate indication of the general physiological response of salmonids to exhaustive exercise in the natural environment.
Collapse
Affiliation(s)
- M R Donaldson
- Pacific Salmon Ecology and Conservation Laboratory, Centre for Applied Conservation Research, and Department of Forest Sciences, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada.
| | | | | | | | | | | | | | | |
Collapse
|