1
|
Kumar M, Sirohi U, Yadav MK, Chaudhary V. In Vitro Culture Technology and Advanced Biotechnology Tools Toward Improvement in Gladiolus (Gladiolus species): Present Scenario and Future Prospects. Mol Biotechnol 2024; 66:1806-1835. [PMID: 37528332 DOI: 10.1007/s12033-023-00818-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 07/07/2023] [Indexed: 08/03/2023]
Abstract
In the world's flower trade, gladiolus (Gladiolus spp.) is ranked first among bulbous flowers and eighth among cut flowers, with more than 30,000 different cultivars being grown. Mass multiplication and commercialization are restricted by the traditional propagation methods. However, the large-scale proliferation and improvement of the gladiolus have been accomplished with the aid of plant tissue culture and other biotechnological techniques. The current review includes a thorough examination of the growth and development parameters required for successful in vitro gladiolus development as well as cormel formation. Moreover, focus is being given to various techniques and methods such as in vitro cytogenetic stability and modification of chromosome number, in vitro mutagenesis and selection of pest resistance, in vitro identification and selection to develop virus-free germplasm, cryopreservation, synthetic seed technology, identifying virus diseases by RT-PCR, somaclonal variation, and protoplast and somatic hybridization. Molecular markers and their applications for genetic diversity analysis, relationships between different genotypes, and clonal stability analysis in Gladiolus species have been conducted by several research groups worldwide and are also being discussed. The article also covers efforts to enhance the functionality of plant phenotypes through genetic transformation. Future prospects for further improvement of ornamental gladiolus are also explored. Overall, the current review provides insight into the applications of basic and advanced biotechnological tools for gladiolus improvement.
Collapse
Affiliation(s)
- Mukesh Kumar
- College of Horticulture, SVPUAT, Meerut, UP, 250110, India.
| | - Ujjwal Sirohi
- NIPGR, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Manoj Kumar Yadav
- Department of Agriculture Biotechnology, College of Agriculture, SVPUAT, Meerut, UP, 250110, India
| | - Veena Chaudhary
- Department of Chemistry, Meerut College, Meerut, 250002, India
| |
Collapse
|
2
|
Dagallier LPMJ, Condamine FL, Couvreur TLP. Sequential diversification with Miocene extinction and Pliocene speciation linked to mountain uplift explains the diversity of the African rain forest clade Monodoreae (Annonaceae). ANNALS OF BOTANY 2024; 133:677-696. [PMID: 37659091 PMCID: PMC11082524 DOI: 10.1093/aob/mcad130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 08/29/2023] [Indexed: 09/04/2023]
Abstract
BACKGROUND AND AIMS Throughout the Cenozoic, Africa underwent several climatic and geological changes impacting the evolution of tropical rain forests (TRFs). African TRFs are thought to have extended from east to west in a 'pan-African' TRF, followed by several events of fragmentation during drier climate periods. During the Miocene, climate cooling and mountain uplift led to the aridification of tropical Africa and open habitats expanded at the expense of TRFs, which probably experienced local extinctions. However, in plants, these drivers were previously inferred using limited taxonomic and molecular data. Here, we tested the impact of climate and geological changes on diversification within the diverse clade Monodoreae (Annonaceae) composed of 90 tree species restricted to African TRFs. METHODS We reconstructed a near-complete phylogenetic tree, based on 32 nuclear genes, and dated using relaxed clocks and fossil calibrations in a Bayesian framework. We inferred the biogeographical history and the diversification dynamics of the clade using multiple birth-death models. KEY RESULTS Monodoreae originated in East African TRFs ~25 million years ago (Ma) and expanded toward Central Africa during the Miocene. We inferred range contractions during the middle Miocene and document important connections between East and West African TRFs after 15-13 Ma. Our results indicated a sudden extinction event during the late Miocene, followed by an increase in speciation rates. Birth-death models suggested that African elevation change (orogeny) is positively linked to speciation in this clade. CONCLUSION East Africa is inferred as an important source of Monodoreae species, and possibly for African plant diversity in general. Our results support a 'sequential scenario of diversification' in which increased aridification triggered extinction of TRF species in Monodoreae. This was quickly followed by fragmentation of rain forests, subsequently enhancing lagged speciation resulting from vicariance and improved climate conditions. In contrast to previous ideas, the uplift of East Africa is shown to have played a positive role in Monodoreae diversification.
Collapse
Affiliation(s)
- Léo-Paul M J Dagallier
- DIADE, Université de Montpellier, IRD, CIRAD, Montpellier, France
- Institute of Systematic Botany, The New York Botanical Garden, Bronx, NY 10458, USA
| | - Fabien L Condamine
- CNRS, Institut des Sciences de l’Evolution de Montpellier (Université de Montpellier), Place Eugène Bataillon, 34095 Montpellier, France
| | | |
Collapse
|
3
|
Kobayashi S. Evolution of a non-flying mammal-dependent pollination system in Asian Mucuna (Fabaceae). PLANT BIOLOGY (STUTTGART, GERMANY) 2023; 25:833-841. [PMID: 37408380 DOI: 10.1111/plb.13557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 06/01/2023] [Indexed: 07/07/2023]
Abstract
Pollinator shifts are often related to speciation in angiosperms, and the relationship between them has been discussed in several plant taxa. Although limited information on plants pollinated by non-flying mammals in Central and South America and Africa is available, related research has not been conducted in Asia. Herein, I summarize the available knowledge of pollination in Asian Mucuna (Fabaceae), a genus mainly distributed in the tropics, and discuss the evolution of plants pollinated by non-flying mammals in Asia. Nineteen pollinator species have been recorded and pollination systems have been categorized into four types. An examination of the relationship between Mucuna species and their pollinators from the lineage perspective revealed that all species in Mucuna, subgenus Macrocarpa, which are distributed in Asia, are pollinated exclusively by non-flying mammals. Additionally, plants pollinated by non-flying mammals were found to have diverged from bat-pollinated and non-flying mammal-pollinated plants, while plants pollinated by non-flying mammals have evolved multiple times. This is a unique example of evolutionary transition. I hypothesize that the diversification of squirrel species in tropical Asia may have led to the speciation and diversification of Mucuna in Asia. Furthermore, the behavioural and ecological characteristics of bats and birds in Asia differ from the characteristics of those in other regions, implying that Asian Mucuna species do not rely on bat or bird pollinators. The adaptation of floral characteristics to pollinators is not well understood in Asia. Mammal-pollinated plants in Asia may have evolved differently from those in other regions and have unique pollination systems.
Collapse
Affiliation(s)
- S Kobayashi
- Faculty of Science, University of the Ryukyus, Nishihara, Okinawa, Japan
| |
Collapse
|
4
|
Leimberger KG, Dalsgaard B, Tobias JA, Wolf C, Betts MG. The evolution, ecology, and conservation of hummingbirds and their interactions with flowering plants. Biol Rev Camb Philos Soc 2022; 97:923-959. [PMID: 35029017 DOI: 10.1111/brv.12828] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 12/06/2021] [Accepted: 12/08/2021] [Indexed: 01/14/2023]
Abstract
The ecological co-dependency between plants and hummingbirds is a classic example of a mutualistic interaction: hummingbirds rely on floral nectar to fuel their rapid metabolisms, and more than 7000 plant species rely on hummingbirds for pollination. However, threats to hummingbirds are mounting, with 10% of 366 species considered globally threatened and 60% in decline. Despite the important ecological implications of these population declines, no recent review has examined plant-hummingbird interactions in the wider context of their evolution, ecology, and conservation. To provide this overview, we (i) assess the extent to which plants and hummingbirds have coevolved over millions of years, (ii) examine the mechanisms underlying plant-hummingbird interaction frequencies and hummingbird specialization, (iii) explore the factors driving the decline of hummingbird populations, and (iv) map out directions for future research and conservation. We find that, despite close associations between plants and hummingbirds, acquiring evidence for coevolution (versus one-sided adaptation) is difficult because data on fitness outcomes for both partners are required. Thus, linking plant-hummingbird interactions to plant reproduction is not only a major avenue for future coevolutionary work, but also for studies of interaction networks, which rarely incorporate pollinator effectiveness. Nevertheless, over the past decade, a growing body of literature on plant-hummingbird networks suggests that hummingbirds form relationships with plants primarily based on overlapping phenologies and trait-matching between bill length and flower length. On the other hand, species-level specialization appears to depend primarily on local community context, such as hummingbird abundance and nectar availability. Finally, although hummingbirds are commonly viewed as resilient opportunists that thrive in brushy habitats, we find that range size and forest dependency are key predictors of hummingbird extinction risk. A critical direction for future research is to examine how potential stressors - such as habitat loss and fragmentation, climate change, and introduction of non-native plants - may interact to affect hummingbirds and the plants they pollinate.
Collapse
Affiliation(s)
- Kara G Leimberger
- Forest Biodiversity Research Network, Department of Forest Ecosystems and Society, Oregon State University, 3100 SW Jefferson Way, Corvallis, OR, 97331, U.S.A
| | - Bo Dalsgaard
- Center for Macroecology, Evolution and Climate, GLOBE Institute, University of Copenhagen, Universitetsparken 15, Copenhagen Ø, 2100, Denmark
| | - Joseph A Tobias
- Department of Life Sciences, Imperial College London, Silwood Park, Buckhurst Road, Ascot, Berkshire, SL5 7PY, U.K
| | - Christopher Wolf
- Forest Biodiversity Research Network, Department of Forest Ecosystems and Society, Oregon State University, 3100 SW Jefferson Way, Corvallis, OR, 97331, U.S.A
| | - Matthew G Betts
- Forest Biodiversity Research Network, Department of Forest Ecosystems and Society, Oregon State University, 3100 SW Jefferson Way, Corvallis, OR, 97331, U.S.A
| |
Collapse
|
5
|
Souza IM, Hughes FM, Funch LS, Queiroz LPDE. Rethinking the pollination syndromes in Hymenaea (Leguminosae): the role of anthesis in the diversification. AN ACAD BRAS CIENC 2021; 93:e20191446. [PMID: 34705934 DOI: 10.1590/0001-3765202120191446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 08/31/2020] [Indexed: 11/21/2022] Open
Abstract
Floral traits associated with functional groups of pollinators have been largely employed to understand mechanisms of floral diversification. Hymenaea is a monophyletic legume genus widely recognized to being bat-pollinated, with nocturnal anthesis and copious nectar. The most of species has short-paniculate inflorescences, white and robust flowers, congruent with a bat-pollination syndrome. However, other Hymenaea species show a different floral pattern (e.g., long-paniculate inflorescences and smaller flowers) which we report here as being bird pollinated. We examined the floral traits and visitors of Hymenaea oblongifolia var. latifolia and identified evolutionary shifts in floral traits associated with potential pollinators of Hymenaea species. Floral traits of H. oblongifolia var. latifolia differ from those expected for bat-pollinated flowers in species of sect. Hymenaea, and we observed hummingbirds collecting nectar legitimately. Our phylogenetic analysis did not support the monophyly of the taxonomic sections and suggests that bat pollination is ancestral in Hymenaea, with bird pollination evolving later. The transition coupling with shifts in the timing of anthesis and other floral traits. Pollinator-mediated evolutionary divergence hypothesis partially explains the Hymenaea diversification in the Neotropics. It is congruent with those species shifting from traits linked traditionally to bat pollination to hummingbird pollination.
Collapse
Affiliation(s)
- Isys M Souza
- Programa de Pós-Graduação em Botânica, Universidade Estadual de Feira de Santana, Av. Transnordestina, s/n, 44036-900 Feira de Santana, BA, Brazil
| | - Frederic M Hughes
- Programa de Pós-Graduação em Botânica, Universidade Estadual de Feira de Santana, Av. Transnordestina, s/n, 44036-900 Feira de Santana, BA, Brazil.,Instituto Nacional da Mata Atlântica/INMA, Av. José Ruschi, 4, 29650-000 Santa Teresa, ES, Brazil
| | - Ligia S Funch
- Programa de Pós-Graduação em Botânica, Universidade Estadual de Feira de Santana, Av. Transnordestina, s/n, 44036-900 Feira de Santana, BA, Brazil
| | - Luciano P DE Queiroz
- Programa de Pós-Graduação em Botânica, Universidade Estadual de Feira de Santana, Av. Transnordestina, s/n, 44036-900 Feira de Santana, BA, Brazil
| |
Collapse
|
6
|
Lovo J, Alcantara S, Vasconcelos TNC, Sajo MDG, Rudall PJ, Prenner G, Aguiar AJC, Mello-Silva R. Evolutionary lability in floral ontogeny affects pollination biology in Trimezieae. AMERICAN JOURNAL OF BOTANY 2021; 108:828-843. [PMID: 34019302 DOI: 10.1002/ajb2.1655] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 01/07/2021] [Indexed: 06/12/2023]
Abstract
PREMISE There is little direct evidence linking floral development and pollination biology in plants. We characterize both aspects in plain and ornamented flowers of Trimezieae (Iridaceae) to investigate how changes in floral ontogeny may affect their interactions with pollinators through time. METHODS We examined floral ontogeny in 11 species and documented pollination biology in five species displaying a wide range of floral morphologies. We coded and reconstructed ancestral states of flower types over the tribal phylogeny to estimate the frequency of transition between different floral types. RESULTS All Trimezieae flowers are similar in early floral development, but ornamented flowers have additional ontogenetic steps compared with plain flowers, indicating heterochrony. Ornamented flowers have a hinge pollination mechanism (newly described here) and attract more pollinator guilds, while plain flowers offer less variety of resources for a shorter time. Although the ornamented condition is plesiomorphic in this clade, shifts to plain flowers have occurred frequently and abruptly during the past 5 million years, with some subsequent reversals. CONCLUSIONS Heterochrony has resulted in labile morphological changes during flower evolution in Trimezieae. Counterintuitively, species with plain flowers, which are endemic to the campo rupestre, are derived within the tribe and show a higher specialization than the ornamented species, with the former being visited by pollen-collecting bees only.
Collapse
Affiliation(s)
- Juliana Lovo
- Departamento de Sistemática e Ecologia, Universidade Federal da Paraíba, Caixa Postal 5065, Cidade Universitária, João Pessoa, PB, 58051-970, Brazil
- Departamento de Botânica, Universidade de São Paulo, Rua do Matão, 277, São Paulo, SP, 05508-090, Brazil
| | - Suzana Alcantara
- Departamento de Botânica, Universidade de São Paulo, Rua do Matão, 277, São Paulo, SP, 05508-090, Brazil
- Departamento de Botânica, Universidade Federal de Santa Catarina, Campus Trindade, Florianópolis, SC, 88040-900, Brazil
| | - Thais N C Vasconcelos
- Departamento de Botânica, Universidade de São Paulo, Rua do Matão, 277, São Paulo, SP, 05508-090, Brazil
- Department of Biological Sciences, University of Arkansas, Fayetteville, Arkansas, 72701, USA
| | | | - Paula J Rudall
- Royal Botanic Gardens, Kew, Richmond, Surrey, TW9 3DS, United Kingdom
| | - Gerhard Prenner
- Royal Botanic Gardens, Kew, Richmond, Surrey, TW9 3DS, United Kingdom
| | - Antônio J C Aguiar
- Departamento de Zoologia, Universidade de Brasília, Brasília, DF, 70910-900, Brazil
| | - Renato Mello-Silva
- Departamento de Botânica, Universidade de São Paulo, Rua do Matão, 277, São Paulo, SP, 05508-090, Brazil
| |
Collapse
|
7
|
Rose JP, Sytsma KJ. Complex interactions underlie the correlated evolution of floral traits and their association with pollinators in a clade with diverse pollination systems. Evolution 2021; 75:1431-1449. [PMID: 33818785 DOI: 10.1111/evo.14220] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 02/15/2021] [Accepted: 03/14/2021] [Indexed: 11/28/2022]
Abstract
Natural selection by pollinators is an important factor in the morphological diversity and adaptive radiation of flowering plants. Selection by similar pollinators in unrelated plants leads to convergence in floral morphology, or "floral syndromes." Previous investigations into floral syndromes have mostly studied relatively small and/or simple systems, emphasizing vertebrate pollination. Despite the importance of multiple floral traits in plant-pollinator interactions, these studies have examined few quantitative traits, so their co-variation and phenotypic integration have been underexplored. To gain better insights into pollinator-trait dynamics, we investigate the model system of the phlox family (Polemoniaceae), a clade of ∼400 species pollinated by a diversity of vectors. Using a comprehensive phylogeny and large dataset of traits and observations of pollinators, we reconstruct ancestral pollination system, accounting for the temporal history of pollinators. We conduct phylogenetically controlled analyses of trait co-variation and association with pollinators, integrating many analyses over phylogenetic uncertainty. Pollinator shifts are more heterogeneous than previously hypothesized. The evolution of floral traits is partially constrained by phylogenetic history and trait co-variation, but traits are convergent and differences are associated with different pollinators. Trait shifts are usually gradual, rather than rapid, suggesting complex genetic and ecological interactions of flowers at macroevolutionary scales.
Collapse
Affiliation(s)
- Jeffrey P Rose
- Department of Botany, University of Wisconsin-Madison, Madison, Wisconsin, 53706.,Current Address: Department of Biology, University of Nebraska at Kearney, Kearney, Nebraska, 68849
| | - Kenneth J Sytsma
- Department of Botany, University of Wisconsin-Madison, Madison, Wisconsin, 53706
| |
Collapse
|
8
|
Wessinger CA. From pollen dispersal to plant diversification: genetic consequences of pollination mode. THE NEW PHYTOLOGIST 2021; 229:3125-3132. [PMID: 33159813 DOI: 10.1111/nph.17073] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 11/02/2020] [Indexed: 06/11/2023]
Abstract
Pollinators influence patterns of plant speciation, and one intuitive hypothesis is that pollinators affect rates of plant diversification through their effects on pollen dispersal. By specifying mating events and pollen flow across the landscape, distinct types of pollinators may cause different opportunities for allopatric speciation. This pollen dispersal-dependent speciation hypothesis predicts that pollination mode has effects on the spatial context of mating events that scale up to impact population structure and rates of species formation. Here I consider recent comparative studies, including genetic analyses of plant mating events, population structure and comparative phylogenetic analyses, to examine evidence for this model. These studies suggest that highly mobile pollinators conduct greater gene flow within and among populations, compared to less mobile pollinators. These differences influence patterns of population structure across the landscape. However, the effects of pollination mode on speciation rates is less predictable. In some contexts, the predicted effects of pollen dispersal are outweighed by other factors that govern speciation rates. A multiscale approach to examine effects of pollination mode on plant mating system, population structure and rates of diversification is key to determining the role of pollen dispersal on plant speciation for model clades.
Collapse
Affiliation(s)
- Carolyn A Wessinger
- Department of Biological Sciences, University of South Carolina, Columbia, SC, 27708, USA
| |
Collapse
|
9
|
van der Niet T. Paucity of natural history data impedes phylogenetic analyses of pollinator-driven evolution. THE NEW PHYTOLOGIST 2021; 229:1201-1205. [PMID: 32786085 DOI: 10.1111/nph.16813] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Accepted: 07/03/2020] [Indexed: 06/11/2023]
Affiliation(s)
- Timotheüs van der Niet
- Centre for Functional Biodiversity, School of Life Sciences, University of KwaZulu-Natal, P. Bag X01, Pietermaritzburg, South Africa
| |
Collapse
|
10
|
Ruchisansakun S, Mertens A, Janssens SB, Smets EF, van der Niet T. Evolution of pollination syndromes and corolla symmetry in Balsaminaceae reconstructed using phylogenetic comparative analyses. ANNALS OF BOTANY 2021; 127:267-280. [PMID: 33091107 PMCID: PMC7789113 DOI: 10.1093/aob/mcaa184] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 10/15/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND AND AIMS Floral diversity as a result of plant-pollinator interactions can evolve by two distinct processes: shifts between pollination systems or divergent use of the same pollinator. Although both are pollinator driven, the mode, relative importance and interdependence of these different processes are rarely studied simultaneously. Here we apply a phylogenetic approach using the Balsaminaceae (including the species-rich genus Impatiens) to simultaneously quantify shifts in pollination syndromes (as inferred from the shape and colour of the perianth), as well as divergent use of the same pollinator (inferred from corolla symmetry). METHODS For 282 species we coded pollination syndromes based on associations between floral traits and known pollination systems, and assessed corolla symmetry. The evolution of these traits was reconstructed using parsimony- and model-based approaches, using phylogenetic trees derived from phylogenetic analyses of nuclear ribosomal and plastid DNA sequence data. KEY RESULTS A total of 71 % of studied species have a bee pollination syndrome, 22 % a bimodal syndrome (Lepidoptera and bees), 3 % a bird pollination syndrome and 5 % a syndrome of autogamy, while 19 % of species have an asymmetrical corolla. Although floral symmetry and pollination syndromes are both evolutionarily labile, the latter shifts more frequently. Shifts in floral symmetry occurred mainly in the direction towards asymmetry, but there was considerable uncertainty in the pattern of shift direction for pollination syndrome. Shifts towards asymmetrical flowers were associated with a bee pollination syndrome. CONCLUSION Floral evolution in Impatiens has occurred through both pollination syndrome shifts and divergent use of the same pollinator. Although the former appears more frequent, the latter is likely to be underestimated. Shifts in floral symmetry and pollination syndromes depend on each other but also partly on the region in which these shifts take place, suggesting that the occurrence of pollinator-driven evolution may be determined by the availability of pollinator species at large geographical scales.
Collapse
Affiliation(s)
- Saroj Ruchisansakun
- Naturalis Biodiversity Center, RA Leiden, The Netherlands
- Institute of Biology Leiden, Leiden University, Sylviusweg, BE Leiden, The Netherlands
- Department of Plant Science, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Arne Mertens
- Meise Botanic Garden, Nieuwelaan, Meise, Belgium
- Department of Biosystems, Lab of Tropical Crop Improvement, KU Leuven, Willem de Croylaan, Heverlee, Belgium
| | - Steven B Janssens
- Meise Botanic Garden, Nieuwelaan, Meise, Belgium
- Ecology, Evolution and Biodiversity Conservation, KU Leuven, Kasteelpark Arenberg, Heverlee, Belgium
| | - Erik F Smets
- Naturalis Biodiversity Center, RA Leiden, The Netherlands
- Institute of Biology Leiden, Leiden University, Sylviusweg, BE Leiden, The Netherlands
- Ecology, Evolution and Biodiversity Conservation, KU Leuven, Kasteelpark Arenberg, Heverlee, Belgium
| | - Timotheüs van der Niet
- Naturalis Biodiversity Center, RA Leiden, The Netherlands
- Centre for Functional Biodiversity, School of Life Sciences, University of KwaZulu–Natal, Scottsville, South Africa
| |
Collapse
|
11
|
Egawa S, Hirose K, Itino T. Geographic changes in pollinator species composition affect the corolla tube length of self‐heal (
Prunella vulgaris
L.): Evidence from three elevational gradients. Ecol Res 2020. [DOI: 10.1111/1440-1703.12146] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Shin Egawa
- Department of Biology Faculty of Science and Institute of Mountain Science, Shinshu University Matsumoto Japan
| | - Koyo Hirose
- Department of Biology Faculty of Science and Institute of Mountain Science, Shinshu University Matsumoto Japan
| | - Takao Itino
- Department of Biology Faculty of Science and Institute of Mountain Science, Shinshu University Matsumoto Japan
| |
Collapse
|
12
|
Kahnt B, Hattingh WN, Theodorou P, Wieseke N, Kuhlmann M, Glennon KL, Niet T, Paxton R, Cron GV. Should I stay or should I go? Pollinator shifts rather than cospeciation dominate the evolutionary history of South African
Rediviva
bees and their
Diascia
host plants. Mol Ecol 2019; 28:4118-4133. [DOI: 10.1111/mec.15154] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Accepted: 06/19/2019] [Indexed: 12/20/2022]
Affiliation(s)
- Belinda Kahnt
- General Zoology Institute of Biology Martin‐Luther‐University Halle‐Wittenberg Halle (Saale) Germany
| | - Wesley N. Hattingh
- School of Animal, Plant and Environmental Sciences University of the Witwatersrand Braamfontein South Africa
| | - Panagiotis Theodorou
- General Zoology Institute of Biology Martin‐Luther‐University Halle‐Wittenberg Halle (Saale) Germany
| | - Nicolas Wieseke
- Institute for Informatics University of Leipzig Leipzig Germany
| | - Michael Kuhlmann
- Zoological Museum Kiel University Kiel Germany
- Department of Life Sciences Natural History Museum London UK
| | - Kelsey L. Glennon
- School of Animal, Plant and Environmental Sciences University of the Witwatersrand Braamfontein South Africa
| | - Timotheüs Niet
- School of Life Sciences Centre for Functional Biodiversity University of Kwazulu‐Natal Pietermaritzburg South Africa
| | - Robert Paxton
- General Zoology Institute of Biology Martin‐Luther‐University Halle‐Wittenberg Halle (Saale) Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle‐Jena‐Leipzig Leipzig Germany
| | - Glynis V. Cron
- School of Animal, Plant and Environmental Sciences University of the Witwatersrand Braamfontein South Africa
| |
Collapse
|
13
|
Spriggs EL, Schlutius C, Eaton DA, Park B, Sweeney PW, Edwards EJ, Donoghue MJ. Differences in flowering time maintain species boundaries in a continental radiation of Viburnum. AMERICAN JOURNAL OF BOTANY 2019; 106:833-849. [PMID: 31124135 DOI: 10.1002/ajb2.1292] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Accepted: 03/19/2019] [Indexed: 05/21/2023]
Abstract
PREMISE We take an integrative approach in assessing how introgression and Pleistocene climate fluctuations have shaped the diversification of the core Lentago clade of Viburnum, a group of five interfertile species with broad areas of sympatry. We specifically tested whether flowering time plays a role in maintaining species isolation. METHODS RAD-seq data for 103 individuals were used to infer the species relationships and the genetic structure within each species. Flowering times were compared among species on the basis of historical flowering dates documented by herbarium specimens. RESULTS Within each species, we found a strong relationship between flowering date and latitude, such that southern populations flower earlier than northern ones. In areas of sympatry, the species flower in sequence rather than simultaneously, with flowering dates offset by ≥9 d for all species pairs. In two cases it appears that the offset in flowering times is an incidental consequence of adaptation to differing climates, but in the recently diverged sister species V. prunifolium and V. rufidulum, we find evidence that reinforcement led to reproductive character displacement. Long-term trends suggest that the two northern-most species are flowering earlier in response to recent climate change. CONCLUSIONS We argue that speciation in the Lentago clade has primarily occurred through ecological divergence of allopatric populations, but differences in flowering time were essential to maintain separation of incipient species when they came into secondary contact. This combination of factors may underlie diversification in many other plant clades.
Collapse
Affiliation(s)
- Elizabeth L Spriggs
- Department of Ecology and Evolutionary Biology, Yale University, P.O. Box 208106, New Haven, Connecticut, 06520, USA
| | - Caroline Schlutius
- Department of Ecology and Evolutionary Biology, Yale University, P.O. Box 208106, New Haven, Connecticut, 06520, USA
| | - Deren A Eaton
- Department of Ecology, Evolution, and Environmental Biology, Columbia University, New York, New York, 10027, USA
| | - Brian Park
- Department of Ecology and Evolutionary Biology, Yale University, P.O. Box 208106, New Haven, Connecticut, 06520, USA
| | - Patrick W Sweeney
- Division of Botany, Peabody Museum of Natural History, Yale University, P.O. Box 208118, New Haven, Connecticut, 06520, USA
| | - Erika J Edwards
- Department of Ecology and Evolutionary Biology, Yale University, P.O. Box 208106, New Haven, Connecticut, 06520, USA
- Division of Botany, Peabody Museum of Natural History, Yale University, P.O. Box 208118, New Haven, Connecticut, 06520, USA
| | - Michael J Donoghue
- Department of Ecology and Evolutionary Biology, Yale University, P.O. Box 208106, New Haven, Connecticut, 06520, USA
- Division of Botany, Peabody Museum of Natural History, Yale University, P.O. Box 208118, New Haven, Connecticut, 06520, USA
| |
Collapse
|
14
|
Landis JB, Bell CD, Hernandez M, Zenil-Ferguson R, McCarthy EW, Soltis DE, Soltis PS. Evolution of floral traits and impact of reproductive mode on diversification in the phlox family (Polemoniaceae). Mol Phylogenet Evol 2018; 127:878-890. [DOI: 10.1016/j.ympev.2018.06.035] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 06/20/2018] [Accepted: 06/20/2018] [Indexed: 01/19/2023]
|
15
|
Serrano-Serrano ML, Rolland J, Clark JL, Salamin N, Perret M. Hummingbird pollination and the diversification of angiosperms: an old and successful association in Gesneriaceae. Proc Biol Sci 2018; 284:rspb.2016.2816. [PMID: 28381621 DOI: 10.1098/rspb.2016.2816] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Accepted: 03/07/2017] [Indexed: 11/12/2022] Open
Abstract
The effects of specific functional groups of pollinators in the diversification of angiosperms are still to be elucidated. We investigated whether the pollination shifts or the specific association with hummingbirds affected the diversification of a highly diverse angiosperm lineage in the Neotropics. We reconstructed a phylogeny of 583 species from the Gesneriaceae family and detected diversification shifts through time, inferred the timing and amount of transitions among pollinator functional groups, and tested the association between hummingbird pollination and speciation and extinction rates. We identified a high frequency of pollinator transitions, including reversals to insect pollination. Diversification rates of the group increased through time since 25 Ma, coinciding with the evolution of hummingbird-adapted flowers and the arrival of hummingbirds in South America. We showed that plants pollinated by hummingbirds have a twofold higher speciation rate compared with plants pollinated by insects, and that transitions among functional groups of pollinators had little impact on the diversification process. We demonstrated that floral specialization on hummingbirds for pollination has triggered rapid diversification in the Gesneriaceae family since the Early Miocene, and that it represents one of the oldest identified plant-hummingbird associations. Biotic drivers of plant diversification in the Neotropics could be more related to this specific type of pollinator (hummingbirds) than to shifts among different functional groups of pollinators.
Collapse
Affiliation(s)
- Martha Liliana Serrano-Serrano
- Department of Ecology and Evolution, University of Lausanne, 1015 Lausanne, Switzerland.,Swiss Institute of Bioinformatics, Quartier Sorge, 1015 Lausanne, Switzerland
| | - Jonathan Rolland
- Department of Ecology and Evolution, University of Lausanne, 1015 Lausanne, Switzerland.,Swiss Institute of Bioinformatics, Quartier Sorge, 1015 Lausanne, Switzerland
| | - John L Clark
- Department of Biological Sciences, The University of Alabama, PO Box 870345, Tuscaloosa, AL 35487-0345, USA
| | - Nicolas Salamin
- Department of Ecology and Evolution, University of Lausanne, 1015 Lausanne, Switzerland.,Swiss Institute of Bioinformatics, Quartier Sorge, 1015 Lausanne, Switzerland
| | - Mathieu Perret
- Conservatoire et Jardin botaniques de la Ville de Genève and Laboratory of Plant Systematics and Biodiversity, University of Geneva, Chemin de l'Impératrice 1, 1292 Chambésy, Geneva, Switzerland
| |
Collapse
|
16
|
Joly S, Lambert F, Alexandre H, Clavel J, Léveillé‐Bourret É, Clark JL. Greater pollination generalization is not associated with reduced constraints on corolla shape in Antillean plants. Evolution 2018; 72:244-260. [DOI: 10.1111/evo.13410] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Accepted: 11/29/2017] [Indexed: 12/12/2022]
Affiliation(s)
- Simon Joly
- Montreal Botanical Garden 4101 Sherbrooke East Montréal QC, H1X 2B2 Canada
- Institut de recherche en biologie végétale, Département de sciences biologiquesUniversité de MontréalMontréal Canada
| | - François Lambert
- Institut de recherche en biologie végétale, Département de sciences biologiquesUniversité de MontréalMontréal Canada
| | - Hermine Alexandre
- Institut de recherche en biologie végétale, Département de sciences biologiquesUniversité de MontréalMontréal Canada
| | - Julien Clavel
- École Normale Supérieure, Paris Sciences et Lettres (PSL) Research University, Institut de Biologie de l'École Normale Supérieure (IBENS), CNRS UMR 8197, INSERM U1024, 46 rue d'Ulm F‐75005 Paris France
| | - Étienne Léveillé‐Bourret
- Institut de recherche en biologie végétale, Département de sciences biologiquesUniversité de MontréalMontréal Canada
- Current Address: Department of BiologyUniversity of OttawaOttawa Canada
| | - John L. Clark
- Department of Biological SciencesThe University of AlabamaTuscaloosa, Alabama 35487
- Science DepartmentThe Lawrenceville SchoolLawrenceville, New Jersey U.S.A
| |
Collapse
|
17
|
Bouchenak-Khelladi Y, Linder HP. Frequent and parallel habitat transitions as driver of unbounded radiations in the Cape flora. Evolution 2017; 71:2548-2561. [PMID: 28884804 DOI: 10.1111/evo.13364] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 08/25/2017] [Accepted: 08/29/2017] [Indexed: 01/20/2023]
Abstract
The enormous species richness in the Cape Floristic Region (CFR) of Southern Africa is the result of numerous radiations, but the temporal progression and possible mechanisms of these radiations are still poorly understood. Here, we explore the macroevolutionary dynamics of the Restionaceae, which include 340 species that are found in all vegetation types in the Cape flora and are ecologically dominant in fynbos. Using an almost complete (i.e., 98%) species-level time calibrated phylogeny and models of diversification dynamics, we show that species diversification is constant through the Cenozoic, with no evidence of an acceleration with the onset of the modern winter-wet climate, or a recent density-dependent slowdown. Contrary to expectation, species inhabiting the oldest (montane) and most extensive (drylands) habitats did not undergo higher diversification rates than species in the younger (lowlands) and more restricted (wetland) habitats. We show that the rate of habitat transitions is more closely related to the speciation rate than to time, and that more than a quarter of all speciation events are associated with habitat transitions. This suggests that the unbounded Restionaceae diversification resulted from numerous, parallel, habitat shifts, rather than persistence in a habitat stimulating speciation. We speculate that this could be one of the mechanisms resulting in the hyperdiverse Cape flora.
Collapse
Affiliation(s)
- Yanis Bouchenak-Khelladi
- Department of Systematic and Evolutionary Botany, University of Zurich, CH 8008 Zurich, Switzerland
| | - H Peter Linder
- Department of Systematic and Evolutionary Botany, University of Zurich, CH 8008 Zurich, Switzerland
| |
Collapse
|
18
|
Tripp EA, Tsai YHE. Disentangling geographical, biotic, and abiotic drivers of plant diversity in neotropical Ruellia (Acanthaceae). PLoS One 2017; 12:e0176021. [PMID: 28472046 PMCID: PMC5417425 DOI: 10.1371/journal.pone.0176021] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Accepted: 04/04/2017] [Indexed: 11/19/2022] Open
Abstract
It has long been hypothesized that biotic interactions are important drivers of biodiversity evolution, yet such interactions have been relatively less studied than abiotic factors owing to the inherent complexity in and the number of types of such interactions. Amongst the most prominent of biotic interactions worldwide are those between plants and pollinators. In the Neotropics, the most biodiverse region on Earth, hummingbird and bee pollination have contributed substantially to plant fitness. Using comparative methods, we test the macroevolutionary consequences of bird and bee pollination within a species rich lineage of flowering plants: Ruellia. We additionally explore impacts of species occupancy of ever-wet rainforests vs. dry ecosystems including cerrado and seasonally dry tropical forests. We compared outcomes based on two different methods of model selection: a traditional approach that utilizes a series of transitive likelihood ratio tests as well as a weighted model averaging approach. Analyses yield evidence for increased net diversification rates among Neotropical Ruellia (compared to Paleotropical lineages) as well as among hummingbird-adapted species. In contrast, we recovered no evidence of higher diversification rates among either bee- or non-bee-adapted lineages and no evidence for higher rates among wet or dry habitat lineages. Understanding fully the factors that have contributed to biases in biodiversity across the planet will ultimately depend upon incorporating knowledge of biotic interactions as well as connecting microevolutionary processes to macroevolutionary patterns.
Collapse
Affiliation(s)
- Erin A. Tripp
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, Colorado, United States of America
- Museum of Natural History, University of Colorado, Boulder, Colorado, United States of America
| | - Yi-Hsin Erica Tsai
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, Colorado, United States of America
- Museum of Natural History, University of Colorado, Boulder, Colorado, United States of America
| |
Collapse
|
19
|
Rundel PW, Arroyo MT, Cowling RM, Keeley JE, Lamont BB, Vargas P. Mediterranean Biomes: Evolution of Their Vegetation, Floras, and Climate. ANNUAL REVIEW OF ECOLOGY EVOLUTION AND SYSTEMATICS 2016. [DOI: 10.1146/annurev-ecolsys-121415-032330] [Citation(s) in RCA: 147] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Philip W. Rundel
- Department of Ecology and Evolutionary Biology and Institute of the Environment and Sustainability, University of California, Los Angeles, California 90095;
| | - Mary T.K. Arroyo
- Institute of Ecology and Biodiversity, Department of Ecological Sciences, Facultad de Ciencias, Universidad de Chile, Casilla 653, Santiago, Chile;
| | - Richard M. Cowling
- Centre for Coastal Palaeosciences, Nelson Mandela Metropolitan University, Port Elizabeth 6031, South Africa;
| | - Jon E. Keeley
- Sequoia Field Station, Western Ecological Research Center, U.S. Geological Survey, Three Rivers, California 93271;
| | - Byron B. Lamont
- Department of Environment and Agriculture, Curtin University, Perth, Western Australia 6845, Australia;
| | - Pablo Vargas
- Department of Biodiversity and Conservation, Royal Botanical Garden of Madrid, CSIC, 28014 Madrid, Spain;
| |
Collapse
|
20
|
Nikkeshi A, Kurimoto D, Ushimaru A. Low flower-size variation in bilaterally symmetrical flowers: Support for the pollination precision hypothesis. AMERICAN JOURNAL OF BOTANY 2015; 102:2032-40. [PMID: 26656130 DOI: 10.3732/ajb.1500371] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Accepted: 11/09/2015] [Indexed: 05/28/2023]
Abstract
PREMISE OF THE STUDY The evolutionary shift from radial to bilateral symmetry in flowers is generally associated with the evolution of low flower-size variation. This phenomenon supports the hypothesis that the lower size variation in bilateral flowers can be attributed to low pollinator diversity. In this study, we propose two other hypotheses to explain low flower-size variation in bilateral symmetrical flowers. To test the three hypotheses, we examined the relative importance of pollinator diversity, composition, and bilateral symmetry itself as selective forces on low flower-size variation. METHODS We examined pollinator diversity and composition and flower-size variation for 36 species in a seminatural ecosystem with high bee richness and frequent lepidopteran visitation. KEY RESULTS Bilateral flowers were more frequently visited than radial flowers by larger bees, but functional-group diversity of the pollinators did not differ between symmetry types. Although bilateral flowers had significantly lower flower-size variation than radial flowers, flower-size variation did not vary with pollinator diversity and composition but was instead related to bilateral symmetry. CONCLUSIONS Our results suggest that the lower size variation in bilateral flowers might have evolved under selection favoring the control of pollinator behavior on flowers to enhance the accurate placement of pollen on the body of the pollinator, independent of pollinator type. Because of the limited research on this issue, future work should be conducted in various types of plant-pollinator communities worldwide to further clarify the issue.
Collapse
Affiliation(s)
- Aoi Nikkeshi
- Graduate school of Human Development and Environment, Kobe University, 3-11 Tsurukabuto, Nada, Kobe 657-8501, Japan
| | - Daiki Kurimoto
- Faculty of Human Development, Kobe University, 3-11 Tsurukabuto, Nada, Kobe 657-8501, Japan
| | - Atushi Ushimaru
- Graduate school of Human Development and Environment, Kobe University, 3-11 Tsurukabuto, Nada, Kobe 657-8501, Japan Faculty of Human Development, Kobe University, 3-11 Tsurukabuto, Nada, Kobe 657-8501, Japan
| |
Collapse
|
21
|
Newman E, Manning J, Anderson B. Local adaptation: Mechanical fit between floral ecotypes of Nerine humilis (Amaryllidaceae) and pollinator communities. Evolution 2015; 69:2262-75. [PMID: 26194119 DOI: 10.1111/evo.12736] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2014] [Revised: 07/06/2015] [Accepted: 07/10/2015] [Indexed: 01/17/2023]
Abstract
Geographic variation in floral morphology is often assumed to reflect geographic variation in pollinator communities and associated divergence in selective pressures. We studied populations of Nerine humilis (Amaryllidaceae) to assess whether geographic variation in floral form is the result of local adaptation to different pollinator communities. We first tested for associations between floral traits and visitor communities, and found that populations with similar floral morphologies were visited by similar insect communities. Mean style length in each population was also closely associated with the mean body length of the local visitor community. A reciprocal translocation experiment demonstrated that native phenotypes set more seed than translocated phenotypes. Single visitation experiments showed that native flowers received more pollen, and set more seed per visit, than introduced phenotypes in both populations. This suggests that the effectiveness of pollinator visits is determined by the degree of mechanical fit between flowers and visitors. We provide strong evidence that the observed among-population variation in floral traits is an adaptive response to geographic variation in the pollinator community.
Collapse
Affiliation(s)
- Ethan Newman
- Department of Botany and Zoology, University of Stellenbosch, Private Bag X1, Matieland, 7602, South Africa
| | - John Manning
- South African National Biodiversity Institute, Private Bag X7, Claremont, Cape Town, 7735, South Africa.,Research Centre for Plant Growth and Development, School of Life Sciences, University of KwaZulu-Natal, Pietermaritzburg, Private Bag X01, Scottsville, 3209, South Africa
| | - Bruce Anderson
- Department of Botany and Zoology, University of Stellenbosch, Private Bag X1, Matieland, 7602, South Africa.
| |
Collapse
|
22
|
Sinn BT, Kelly LM, Freudenstein JV. Putative floral brood-site mimicry, loss of autonomous selfing, and reduced vegetative growth are significantly correlated with increased diversification in Asarum (Aristolochiaceae). Mol Phylogenet Evol 2015; 89:194-204. [DOI: 10.1016/j.ympev.2015.04.019] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Revised: 04/20/2015] [Accepted: 04/21/2015] [Indexed: 11/26/2022]
|
23
|
Blanco-Pastor JL, Ornosa C, Romero D, Liberal IM, Gómez JM, Vargas P. Bees explain floral variation in a recent radiation of Linaria. J Evol Biol 2015; 28:851-63. [DOI: 10.1111/jeb.12609] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Revised: 02/15/2015] [Accepted: 02/20/2015] [Indexed: 01/06/2023]
Affiliation(s)
- J. L. Blanco-Pastor
- Real Jardín Botánico de Madrid (RJB-CSIC); Madrid Spain
- Department of Biological and Environmental Sciences; University of Gothenburg; Göteborg Sweden
| | - C. Ornosa
- Departmento de Zoología y Antropología Física; Universidad Complutense de Madrid; Madrid Spain
| | - D. Romero
- Departmento de Zoología y Antropología Física; Universidad Complutense de Madrid; Madrid Spain
| | - I. M. Liberal
- Real Jardín Botánico de Madrid (RJB-CSIC); Madrid Spain
| | - J. M. Gómez
- Departmento de Ecología Funcional y Evolutiva; Estación Experimental de Zonas Áridas (EEZA-CSIC); Almería Spain
- Departamento de Ecología; Universidad de Granada; Granada Spain
| | - P. Vargas
- Real Jardín Botánico de Madrid (RJB-CSIC); Madrid Spain
| |
Collapse
|
24
|
Schulte LJ, Clark JL, Novak SJ, Jeffries SK, Smith JF. Speciation within Columnea section Angustiflora (Gesneriaceae): islands, pollinators and climate. Mol Phylogenet Evol 2015; 84:125-44. [PMID: 25582068 DOI: 10.1016/j.ympev.2014.12.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2014] [Revised: 12/12/2014] [Accepted: 12/16/2014] [Indexed: 12/01/2022]
Abstract
Despite many advances in evolutionary biology, understanding the proximate mechanisms that lead to speciation for many taxonomic groups remains elusive. Phylogenetic analyses provide a means to generate well-supported estimates of species relationships. Understanding how genetic isolation (restricted gene flow) occurred in the past requires not only a well-supported molecular phylogenetic analysis, but also an understanding of when character states that define species may have changed. In this study, phylogenetic trees resolve species level relationships for fourteen of the fifteen species within Columnea section Angustiflorae (Gesneriaceae). The distributions of sister species pairs are compared and ancestral character states are reconstructed using Bayesian stochastic mapping. Climate variables were also assessed and shifts in ancestral climate conditions were mapped using SEEVA. The relationships between morphological character states and climate variables were assessed with correlation analyses. These results indicate that species in section Angustiflorae have likely diverged as a result of allopatric, parapatric, and sympatric speciation, with both biotic and abiotic forces driving morphological and phenological divergence.
Collapse
Affiliation(s)
- Lacie J Schulte
- Department of Biological Sciences, Boise State University, 1910 University Drive, Boise, ID 83725-1515, USA
| | - John L Clark
- University of Alabama, Department of Biological Sciences, Box 870345, Tuscaloosa, AL 35487, USA
| | - Stephen J Novak
- Department of Biological Sciences, Boise State University, 1910 University Drive, Boise, ID 83725-1515, USA
| | - Shandra K Jeffries
- Department of Biological Sciences, Boise State University, 1910 University Drive, Boise, ID 83725-1515, USA
| | - James F Smith
- Department of Biological Sciences, Boise State University, 1910 University Drive, Boise, ID 83725-1515, USA.
| |
Collapse
|
25
|
Haller BC, de Vos JM, Keller B, Hendry AP, Conti E. A tale of two morphs: modeling pollen transfer, magic traits, and reproductive isolation in parapatry. PLoS One 2014; 9:e106512. [PMID: 25211280 PMCID: PMC4161326 DOI: 10.1371/journal.pone.0106512] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2014] [Accepted: 07/14/2014] [Indexed: 12/25/2022] Open
Abstract
The evolution of the flower is commonly thought to have spurred angiosperm diversification. Similarly, particular floral traits might have promoted diversification within specific angiosperm clades. We hypothesize that traits promoting the precise positional transfer of pollen between flowers might promote diversification. In particular, precise pollen transfer might produce partial reproductive isolation that facilitates adaptive divergence between parapatric populations differing in their reproductive-organ positions. We investigate this hypothesis with an individual-based model of pollen transfer dynamics associated with heterostyly, a floral syndrome that depends on precise pollen transfer. Our model shows that precise pollen transfer can cause sexual selection leading to divergence in reproductive-organ positions between populations served by different pollinators, pleiotropically causing an increase in reproductive isolation through a "magic trait" mechanism. Furthermore, this increased reproductive isolation facilitates adaptive divergence between the populations in an unlinked, ecologically selected trait. In a different pollination scenario, however, precise pollen transfer causes a decrease in adaptive divergence by promoting asymmetric gene flow. Our results highlight the idea that magic traits are not "magic" in isolation; in particular, the effect size of magic traits in speciation depends on the external environment, and also on other traits that modify the strength of the magic trait's influence on non-random mating. Overall, we show that the evolutionary consequences of pollen transfer dynamics can depend strongly on the available pollinator fauna and on the morphological fit between flowers and pollinators. Furthermore, our results illustrate the potential importance of even weak reproductive isolating barriers in facilitating adaptive divergence.
Collapse
Affiliation(s)
- Benjamin C. Haller
- Redpath Museum and Deptartment of Biology, McGill University, Montréal, Québec, Canada
- * E-mail:
| | - Jurriaan M. de Vos
- Deptartment of Ecology and Evol. Biol., Brown University, Providence, Rhode Island, United States of America
- Institute of Systematic Botany, University of Zürich, Zürich, Switzerland
| | - Barbara Keller
- Institute of Systematic Botany, University of Zürich, Zürich, Switzerland
| | - Andrew P. Hendry
- Redpath Museum and Deptartment of Biology, McGill University, Montréal, Québec, Canada
| | - Elena Conti
- Institute of Systematic Botany, University of Zürich, Zürich, Switzerland
| |
Collapse
|
26
|
Valente LM, Britton AW, Powell MP, Papadopulos AST, Burgoyne PM, Savolainen V. Correlates of hyperdiversity in southern African ice plants (Aizoaceae). BOTANICAL JOURNAL OF THE LINNEAN SOCIETY. LINNEAN SOCIETY OF LONDON 2014; 174:110-129. [PMID: 25821244 PMCID: PMC4373134 DOI: 10.1111/boj.12117] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2012] [Revised: 05/27/2013] [Accepted: 08/24/2013] [Indexed: 05/29/2023]
Abstract
The exceptionally high plant diversity of the Greater Cape Floristic Region (GCFR) comprises a combination of ancient lineages and young radiations. A previous phylogenetic study of Aizoaceae subfamily Ruschioideae dated the radiation of this clade of > 1500 species in the GCFR to 3.8-8.7 Mya, establishing it as a flagship example of a diversification event triggered by the onset of a summer-arid climate in the region. However, a more recent analysis found an older age for the Ruschioideae lineage (17 Mya), suggesting that the group may in fact have originated much before the aridification of the region 10-15 Mya. Here, we reassess the tempo of radiation of ice plants by using the most complete generic-level phylogenetic tree for Aizoaceae to date, a revised calibration age and a new dating method. Our estimates of the age of the clade are even younger than initially thought (stem age 1.13-6.49 Mya), supporting the hypothesis that the radiation post-dates the establishment of an arid environment in the GCFR and firmly placing the radiation among the fastest in angiosperms (diversification rate of 4.4 species per million years). We also statistically examine environmental and morphological correlates of richness in ice plants and find that diversity is strongly linked with precipitation, temperature, topographic complexity and the evolution of highly succulent leaves and wide-band tracheids.
Collapse
Affiliation(s)
- Luis M Valente
- Imperial College LondonSilwood Park Campus, Buckhurst Road, Ascot, Berkshire, SL5 7PY, UK
| | - Adam W Britton
- Imperial College LondonSilwood Park Campus, Buckhurst Road, Ascot, Berkshire, SL5 7PY, UK
| | - Martyn P Powell
- Imperial College LondonSilwood Park Campus, Buckhurst Road, Ascot, Berkshire, SL5 7PY, UK
| | | | - Priscilla M Burgoyne
- South African National Biodiversity InstitutePrivate Bag X101, Pretoria, 0001, South Africa
| | - Vincent Savolainen
- Imperial College LondonSilwood Park Campus, Buckhurst Road, Ascot, Berkshire, SL5 7PY, UK
- Jodrell Laboratory, Royal Botanic GardensKew, Richmond, Surrey, TW9 3DS, UK
| |
Collapse
|
27
|
Forest F, Goldblatt P, Manning JC, Baker D, Colville JF, Devey DS, Jose S, Kaye M, Buerki S. Pollinator shifts as triggers of speciation in painted petal irises (Lapeirousia: Iridaceae). ANNALS OF BOTANY 2014; 113:357-71. [PMID: 24323246 PMCID: PMC3890393 DOI: 10.1093/aob/mct248] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
BACKGROUND AND AIMS Adaptation to different pollinators has been hypothesized as one of the main factors promoting the formation of new species in the Cape region of South Africa. Other researchers favour alternative causes such as shifts in edaphic preferences. Using a phylogenetic framework and taking into consideration the biogeographical scenario explaining the distribution of the group as well as the distribution of pollinators, this study compares pollination strategies with substrate adaptations to develop hypotheses of the primary factors leading to speciation in Lapeirousia (Iridaceae), a genus of corm-bearing geophytes well represented in the Cape and presenting an important diversity of pollination syndromes and edaphic preferences. METHODS Phylogenetic relationships are reconstructed within Lapeirousia using nuclear and plastid DNA sequence data. State-of-the-art methods in biogeography, divergence time estimation, character optimization and diversification rate assessments are used to examine the evolution of pollination syndromes and substrate shifts in the history of the group. Based on the phylogenetic results, ecological factors are compared for nine sister species pairs in Lapeirousia. KEY RESULTS Seventeen pollinator shifts and ten changes in substrate types were inferred during the evolution of the genus Lapeirousia. Of the nine species pairs examined, all show divergence in pollination syndromes, while only four pairs present different substrate types. CONCLUSIONS The available evidence points to a predominant influence of pollinator shifts over substrate types on the speciation process within Lapeirousia, contrary to previous studies that favoured a more important role for edaphic factors in these processes. This work also highlights the importance of biogeographical patterns in the study of pollination syndromes.
Collapse
Affiliation(s)
- Félix Forest
- Jodrell Laboratory, Royal Botanic Gardens, Kew, Richmond, Surrey TW9 3DS, UK
- For correspondence. E-mail
| | - Peter Goldblatt
- B.A. Krukoff Curator of African Botany, Missouri Botanical Garden, PO Box 299, St Louis, MO 63166, USA
- Research Centre for Plant Growth and Development, School of Life Sciences, University of KwaZulu-Natal, Pietermaritzburg, Private Bag X01, Scottsville 3209, South Africa
| | - John C. Manning
- Research Centre for Plant Growth and Development, School of Life Sciences, University of KwaZulu-Natal, Pietermaritzburg, Private Bag X01, Scottsville 3209, South Africa
- South African National Biodiversity Institute, Kirstenbosch Research Centre, Private Bag X7, Claremont 7735, Cape Town, South Africa
| | - David Baker
- Jodrell Laboratory, Royal Botanic Gardens, Kew, Richmond, Surrey TW9 3DS, UK
| | - Jonathan F. Colville
- South African National Biodiversity Institute, Kirstenbosch Research Centre, Private Bag X7, Claremont 7735, Cape Town, South Africa
| | - Dion S. Devey
- Jodrell Laboratory, Royal Botanic Gardens, Kew, Richmond, Surrey TW9 3DS, UK
| | - Sarah Jose
- Jodrell Laboratory, Royal Botanic Gardens, Kew, Richmond, Surrey TW9 3DS, UK
| | - Maria Kaye
- Jodrell Laboratory, Royal Botanic Gardens, Kew, Richmond, Surrey TW9 3DS, UK
| | - Sven Buerki
- Jodrell Laboratory, Royal Botanic Gardens, Kew, Richmond, Surrey TW9 3DS, UK
| |
Collapse
|
28
|
Newman E, Manning J, Anderson B. Matching floral and pollinator traits through guild convergence and pollinator ecotype formation. ANNALS OF BOTANY 2014; 113:373-84. [PMID: 24052557 PMCID: PMC3890386 DOI: 10.1093/aob/mct203] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2013] [Accepted: 07/18/2013] [Indexed: 05/08/2023]
Abstract
BACKGROUND AND AIMS Pollinator landscapes, as determined by pollinator morphology/behaviour, can vary inter- or intraspecifically, imposing divergent selective pressures and leading to geographically divergent floral ecotypes. Assemblages of plants pollinated by the same pollinator (pollinator guilds) should exhibit convergence of floral traits because they are exposed to similar selective pressures. Both convergence and the formation of pollination ecotypes should lead to matching of traits among plants and their pollinators. METHODS We examined 17 floral guild members pollinated in all or part of their range by Prosoeca longipennis, a long-proboscid fly with geographic variation in tongue length. Attractive floral traits such as colour, and nectar properties were recorded in populations across the range of each species. The length of floral reproductive parts, a mechanical fit trait, was recorded in each population to assess possible correlation with the mouthparts of the local pollinator. A multiple regression analysis was used to determine whether pollinators or abiotic factors provided the best explanation for variation in floral traits, and pollinator shifts were recorded in extralimital guild member populations. KEY RESULTS Nine of the 17 species were visited by alternative pollinator species in other parts of their ranges, and these displayed differences in mechanical fit and attractive traits, suggesting putative pollination ecotypes. Plants pollinated by P. longipennis were similar in colour throughout the pollinator range. Tube length of floral guild members co-varied with the proboscis length of P. longipennis. CONCLUSIONS Pollinator shifts have resulted in geographically divergent pollinator ecotypes across the ranges of several guild members. However, within sites, unrelated plants pollinated by P. longipennis are similar in the length of their floral parts, most probably as a result of convergent evolution in response to pollinator morphology. Both of these lines of evidence suggest that pollinators play an important role in selecting for certain floral traits.
Collapse
Affiliation(s)
- Ethan Newman
- Department of Botany and Zoology, University of Stellenbosch, Private Bag X1, Matieland, 7602, South Africa
| | - John Manning
- South African National Biodiversity Institute, Private Bag X7, Claremont, Cape Town 7735, South Africa
| | - Bruce Anderson
- Department of Botany and Zoology, University of Stellenbosch, Private Bag X1, Matieland, 7602, South Africa
| |
Collapse
|
29
|
Van der Niet T, Pirie MD, Shuttleworth A, Johnson SD, Midgley JJ. Do pollinator distributions underlie the evolution of pollination ecotypes in the Cape shrub Erica plukenetii? ANNALS OF BOTANY 2014; 113:301-15. [PMID: 24071499 PMCID: PMC3890384 DOI: 10.1093/aob/mct193] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
BACKGROUND AND AIMS According to the Grant-Stebbins model of pollinator-driven divergence, plants that disperse beyond the range of their specialized pollinator may adapt to a new pollination system. Although this model provides a compelling explanation for pollination ecotype formation, few studies have directly tested its validity in nature. Here we investigate the distribution and pollination biology of several subspecies of the shrub Erica plukenetii from the Cape Floristic Region in South Africa. We analyse these data in a phylogenetic context and combine these results with information on pollinator ranges to test whether the evolution of pollination ecotypes is consistent with the Grant-Stebbins model. METHODS AND KEY RESULTS Pollinator observations showed that the most common form of E. plukenetii with intermediate corolla length is pollinated by short-billed Orange-breasted sunbirds. Populations at the northern fringe of the distribution are characterized by long corollas, and are mainly pollinated by long-billed Malachite sunbirds. A population with short corollas in the centre of the range was mainly pollinated by insects, particularly short-tongued noctuid moths. Bird exclusion in this population did not have an effect on fruit set, while insect exclusion reduced fruit set. An analysis of floral scent across the range, using coupled gas chromatography-mass spectrometry, showed that the scent bouquets of flowers from moth-pollinated populations are characterized by a larger number of scent compounds and higher emission rates than those in bird-pollinated populations. This was also reflected in clear separation of moth- and bird-pollinated populations in a two-dimensional phenotype space based on non-metric multidimensional scaling analysis of scent data. Phylogenetic analyses of chloroplast and nuclear DNA sequences strongly supported monophyly of E. plukenetii, but not of all the subspecies. Reconstruction of ancestral character states suggests two shifts from traits associated with short-billed Orange-breasted sunbird pollination: one towards traits associated with moth pollination, and one towards traits associated with pollination by long-billed Malachite sunbirds. The latter shift coincided with the colonization of Namaqualand in which Orange-breasted sunbirds are absent. CONCLUSIONS Erica plukenetii is characterized by three pollination ecotypes, but only the evolutionary transition from short- to long-billed sunbird pollination can be clearly explained by the Grant-Stebbins model. Corolla length is a key character for both ecotype transitions, while floral scent emission was important for the transition from bird to moth pollination.
Collapse
Affiliation(s)
- Timotheüs Van der Niet
- Naturalis Biodiversity Center, PO Box 9514, 2300 RA, Leiden, The Netherlands
- Leiden University, PO Box 9514, 2300 RA, Leiden, The Netherlands
- Department of Biological Sciences, University of Cape Town, Private Bag, Rondebosch 7701, South Africa
- For correspondence. E-mail
| | - Michael D. Pirie
- Department of Biochemistry, University of Stellenbosch, Private Bag X1, Matieland 7602, South Africa
- Institut für Spezielle Botanik und Botanischer Garten, Johannes Gutenberg-Universität, Anselm-Franz-von-Bentzelweg 9a, D-55099 Mainz, Germany
| | - Adam Shuttleworth
- School of Life Sciences, University of KwaZulu Natal, P/Bag X01, Scottsville 3209, Pietermaritzburg, South Africa
| | - Steven D. Johnson
- School of Life Sciences, University of KwaZulu Natal, P/Bag X01, Scottsville 3209, Pietermaritzburg, South Africa
| | - Jeremy J. Midgley
- Department of Biological Sciences, University of Cape Town, Private Bag, Rondebosch 7701, South Africa
| |
Collapse
|
30
|
Van der Niet T, Peakall R, Johnson SD. Pollinator-driven ecological speciation in plants: new evidence and future perspectives. ANNALS OF BOTANY 2014; 113:199-211. [PMID: 24418954 PMCID: PMC3890394 DOI: 10.1093/aob/mct290] [Citation(s) in RCA: 170] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2013] [Accepted: 11/17/2013] [Indexed: 05/07/2023]
Abstract
BACKGROUND The hypothesis that pollinators have been important drivers of angiosperm diversity dates back to Darwin, and remains an important research topic today. Mounting evidence indicates that pollinators have the potential to drive diversification at several different stages of the evolutionary process. Microevolutionary studies have provided evidence for pollinator-mediated floral adaptation, while macroevolutionary evidence supports a general pattern of pollinator-driven diversification of angiosperms. However, the overarching issue of whether, and how, shifts in pollination system drive plant speciation represents a critical gap in knowledge. Bridging this gap is crucial to fully understand whether pollinator-driven microevolution accounts for the observed macroevolutionary patterns. Testable predictions about pollinator-driven speciation can be derived from the theory of ecological speciation, according to which adaptation (microevolution) and speciation (macroevolution) are directly linked. This theory is a particularly suitable framework for evaluating evidence for the processes underlying shifts in pollination systems and their potential consequences for the evolution of reproductive isolation and speciation. SCOPE This Viewpoint paper focuses on evidence for the four components of ecological speciation in the context of plant-pollinator interactions, namely (1) the role of pollinators as selective agents, (2) floral trait divergence, including the evolution of 'pollination ecotypes', (3) the geographical context of selection on floral traits, and (4) the role of pollinators in the evolution of reproductive isolation. This Viewpoint also serves as the introduction to a Special Issue on Pollinator-Driven Speciation in Plants. The 13 papers in this Special Issue range from microevolutionary studies of ecotypes to macroevolutionary studies of historical ecological shifts, and span a wide range of geographical areas and plant families. These studies further illustrate innovative experimental approaches, and they employ modern tools in genetics and floral trait quantification. Future advances to the field require better quantification of selection through male fitness and pollinator isolation, for instance by exploiting next-generation sequencing technologies. By combining these new tools with strategically chosen study systems, and smart experimental design, we predict that examples of pollinator-driven speciation will be among the most widespread and compelling of all cases of ecological speciation.
Collapse
Affiliation(s)
- Timotheüs Van der Niet
- Naturalis Biodiversity Center, P.O. Box 9514, 2300 RA, Leiden, The Netherlands
- Leiden University, Section Botany, P.O. Box 9514, 2300 RA, Leiden, The Netherlands
- School of Life Sciences, University of KwaZulu Natal, P/Bag X01, Scottsville 3209, Pietermaritzburg, South Africa
| | - Rod Peakall
- Evolution, Ecology and Genetics, Research School of Biology, The Australian National University, Canberra, ACT 0200, Australia
| | - Steven D. Johnson
- School of Life Sciences, University of KwaZulu Natal, P/Bag X01, Scottsville 3209, Pietermaritzburg, South Africa
| |
Collapse
|
31
|
Fernández-Mazuecos M, Blanco-Pastor JL, Gómez JM, Vargas P. Corolla morphology influences diversification rates in bifid toadflaxes (Linaria sect. Versicolores). ANNALS OF BOTANY 2013; 112:1705-22. [PMID: 24142920 PMCID: PMC3838546 DOI: 10.1093/aob/mct214] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
BACKGROUND AND AIMS The role of flower specialization in plant speciation and evolution remains controversial. In this study the evolution of flower traits restricting access to pollinators was analysed in the bifid toadflaxes (Linaria sect. Versicolores), a monophyletic group of ~30 species and subspecies with highly specialized corollas. METHODS A time-calibrated phylogeny based on both nuclear and plastid DNA sequences was obtained using a coalescent-based method, and flower morphology was characterized by means of morphometric analyses. Directional trends in flower shape evolution and trait-dependent diversification rates were jointly analysed using recently developed methods, and morphological shifts were reconstructed along the phylogeny. Pollinator surveys were conducted for a representative sample of species. KEY RESULTS A restrictive character state (narrow corolla tube) was reconstructed in the most recent common ancestor of Linaria sect. Versicolores. After its early loss in the most species-rich clade, this character state has been convergently reacquired in multiple lineages of this clade in recent times, yet it seems to have exerted a negative influence on diversification rates. Comparative analyses and pollinator surveys suggest that the narrow- and broad-tubed flowers are evolutionary optima representing divergent strategies of pollen placement on nectar-feeding insects. CONCLUSIONS The results confirm that different forms of floral specialization can lead to dissimilar evolutionary success in terms of diversification. It is additionally suggested that opposing individual-level and species-level selection pressures may have driven the evolution of pollinator-restrictive traits in bifid toadflaxes.
Collapse
Affiliation(s)
- Mario Fernández-Mazuecos
- Departamento de Biodiversidad y Conservación, Real Jardín Botánico (RJB-CSIC), Plaza de Murillo 2, 28014 Madrid, Spain
- For correspondence. E-mail
| | - José Luis Blanco-Pastor
- Departamento de Biodiversidad y Conservación, Real Jardín Botánico (RJB-CSIC), Plaza de Murillo 2, 28014 Madrid, Spain
| | - José M. Gómez
- Departamento de Ecología Funcional y Evolutiva, Estación Experimental de Zonas Áridas (EEZA-CSIC), Ctra. Sacramento s/n, La Cañada de San Urbano, 04120 Almería, Spain
- Departamento de Ecología, Universidad de Granada, Avenida de Fuente Nueva s/n, 18071 Granada, Spain
| | - Pablo Vargas
- Departamento de Biodiversidad y Conservación, Real Jardín Botánico (RJB-CSIC), Plaza de Murillo 2, 28014 Madrid, Spain
| |
Collapse
|
32
|
Navarro-Pérez ML, López J, Fernández-Mazuecos M, Rodríguez-Riaño T, Vargas P, Ortega-Olivencia A. The role of birds and insects in pollination shifts of Scrophularia (Scrophulariaceae). Mol Phylogenet Evol 2013; 69:239-54. [PMID: 23756207 DOI: 10.1016/j.ympev.2013.05.027] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2013] [Revised: 05/17/2013] [Accepted: 05/31/2013] [Indexed: 10/26/2022]
Abstract
The mixed vertebrate-insect pollination system is rare in Holarctic plants. Phylogenetic relationships of 116 Scrophularia taxa were investigated based on two plastid (ndhF and trnL-trnF) and one nuclear (ITS) DNA regions. A wider time-calibrated analysis of ndhF sequences of the Lamiales revealed that Scrophularia diverged as early as in the Miocene (<22 Ma). Results of maximum-likelihood optimizations supported wasp pollination as the ancestral pollination system from which other systems derived (hoverfly, mixed vertebrate-insect and bird systems). Four origins for a mixed vertebrate-insect (MVI) pollination system were inferred, in which two western Mediterranean species (S. sambucifolia and S. grandiflora) and two island species (the Tirrenian S. trifoliata and the Canarian S. calliantha) were involved. S. calliantha is the only species in which a more complex MVI system, including pollination by the lizard Gallotia stehlini, has evolved. In addition, bird (hummingbird) floral traits found in the New Mexican S. macrantha appear to have been independently acquired. In contrast, we failed to find evidence for an ancient role of hummingbirds in the evolution of European Scrophularia. Indeed, paleontological data revealed that extinction of European hummingbirds (30-32 Ma) occurred earlier than the divergence of European MVI lineages of Scrophularia. In conclusion, our results showed that a role of birds in pollination of Scrophularia may not have been effective in the Miocene-Pliocene, but bird pollination that shows its origin in the Pliocene-Pleistocene is still operating independently in different islands and continents.
Collapse
Affiliation(s)
- María L Navarro-Pérez
- Área de Botánica, Facultad de Ciencias, Universidad de Extremadura, Avda. de Elvas s.n., 06006 Badajoz, Spain.
| | | | | | | | | | | |
Collapse
|