1
|
Kilani AM, Alabi ED, Adeleke OE. Coexistence of the blaZ gene and selected virulence determinants in multidrug-resistant Staphylococcus aureus: insights from three Nigerian tertiary hospitals. BMC Infect Dis 2024; 24:1269. [PMID: 39528974 PMCID: PMC11552187 DOI: 10.1186/s12879-024-10171-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 10/31/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND AND PURPOSE Infections caused by β-lactamase-producing strains of Staphylococcus aureus have become increasingly difficult to treat due to the expression of multiple virulence factors. This has heightened concerns about managing S. aureus-related infections. This study was conducted to characterize the blaZ gene and selected virulence determinants in β-lactam resistant S. aureus from human sources in three Nigerian tertiary hospitals. MATERIALS AND METHODS Three hundred and sixty samples were collected for the study. S. aureus was isolated and characterized following standard microbiological protocols and nuc gene amplification. Antibiotic susceptibility and minimum inhibitory concentration tests were performed using the disk diffusion method and E-tests, respectively. Biofilm formation and β-lactamase production were assessed using Congo red agar and nitrocefin kits, while the blaZ gene was examined using conventional PCR. Capsular polysaccharide genotyping, accessory gene regulator (agr) detection, Panton-valentine leucocidin (PVL), and PVL proteins were performed using PCR and Western blotting. RESULTS S. aureus was recovered from 145 samples, 50 (34.5%) of these isolates exhibited multidrug resistance, with MICs ranging from 0.125 to 1.00 µg/mL, and showed significant resistance to aminoglycosides, fluoroquinolones, and β-lactams. Of these, 31 strains produced β-lactamases, 30 of which carried the blaZ gene in combination with cap8 (80%) or cap5 (20%). Biofilm formation and PVL gene were observed in 85% of the 20 randomly selected blaZ-positive multidrug-resistant (MDR) strains. The agr2 allele was predominant, found in 70% of the selected MDR strains. No significant difference in the occurrence of the blaZ gene was found among the three clinical sources (p ≤ α0.05). CONCLUSION The co-occurrence of the blaZ gene with PVL, capsular polysaccharide genes, and agr alleles is associated with biofilm formation, indicating a high risk of β-lactam-resistant S. aureus infections. Our findings highlight the need for continuous molecular surveillance to enhance infection management, treatment options, and patient outcomes in the study locality. A limitation of this study is the random selection of MDR isolates, which may affect the comprehensiveness of the analyses.
Collapse
Affiliation(s)
- Adetunji Misbau Kilani
- Department of Microbiology, Federal University Dutsin-Ma, Dutsin-Ma, Katsina State, Nigeria
| | - Emmanuel Dayo Alabi
- Department of Microbiology, Federal University Dutsin-Ma, Dutsin-Ma, Katsina State, Nigeria.
| | | |
Collapse
|
2
|
Yadav M, Chaudhary PP, Ratley G, D’Souza B, Kaur M, Ganesan S, Kabat J, Myles IA. TRPA1 Influences Staphylococcus aureus Skin Infection in Mice and Associates with HIF-1a and MAPK Pathway Modulation. Int J Mol Sci 2024; 25:9933. [PMID: 39337422 PMCID: PMC11432213 DOI: 10.3390/ijms25189933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 09/05/2024] [Accepted: 09/10/2024] [Indexed: 09/30/2024] Open
Abstract
Infections caused by methicillin-resistant Staphylococcus aureus (MRSA) are a major public health burden. Emerging antibiotic resistance has heightened the need for new treatment approaches for MRSA infection such as developing novel antimicrobial agents and enhancing the host's defense response. The thermo-ion channels Transient Receptor Potential (TRP-) A1 and V1 have been identified as modulators of S. aureus quorum sensing in cell culture models. However, their effects on in vivo infection control are unknown. In this study, we investigated the therapeutic effect of natural TRP ion channel inhibitors on MRSA skin infection in mice. While deletion of TRPV1 did not affect lesion size or inflammatory markers, TRPA1-/- mice demonstrated significantly reduced infection severity and abscess size. Treatment with natural inhibitors of TRPA1 with or without blockade of TRPV1 also reduced abscess size. Tissue transcriptomic data coupled with immunohistochemistry revealed that TRPA1 inhibition impacted heat shock protein expression (HSP), modulated the HIF-1a and MAPK pathways, and reduced IL4 expression. Additionally, metabolomics data showed an impact on purine and glycosaminoglycan pathways. Multi-omic integration of transcriptomic and metabolic data revealed that diacylglycerol metabolism was the likely bridge between metabolic and immunological impacts. Our findings suggest that TRPA1 antagonism could provide a promising and cost-effective therapeutic approach for reducing the severity of MRSA infection, and presents a novel underlying molecular mechanism.
Collapse
Affiliation(s)
- Manoj Yadav
- Epithelial Therapeutic Unit, National Institute of Allergy, and Infectious Disease, National Institutes of Health, Bethesda, MD 20892, USA; (P.P.C.); (G.R.); (B.D.); (M.K.); (I.A.M.)
| | - Prem Prashant Chaudhary
- Epithelial Therapeutic Unit, National Institute of Allergy, and Infectious Disease, National Institutes of Health, Bethesda, MD 20892, USA; (P.P.C.); (G.R.); (B.D.); (M.K.); (I.A.M.)
| | - Grace Ratley
- Epithelial Therapeutic Unit, National Institute of Allergy, and Infectious Disease, National Institutes of Health, Bethesda, MD 20892, USA; (P.P.C.); (G.R.); (B.D.); (M.K.); (I.A.M.)
| | - Brandon D’Souza
- Epithelial Therapeutic Unit, National Institute of Allergy, and Infectious Disease, National Institutes of Health, Bethesda, MD 20892, USA; (P.P.C.); (G.R.); (B.D.); (M.K.); (I.A.M.)
| | - Mahaldeep Kaur
- Epithelial Therapeutic Unit, National Institute of Allergy, and Infectious Disease, National Institutes of Health, Bethesda, MD 20892, USA; (P.P.C.); (G.R.); (B.D.); (M.K.); (I.A.M.)
| | - Sundar Ganesan
- Biological Imaging Section, Research Technologies Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA; (S.G.); (J.K.)
| | - Juraj Kabat
- Biological Imaging Section, Research Technologies Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA; (S.G.); (J.K.)
| | - Ian A. Myles
- Epithelial Therapeutic Unit, National Institute of Allergy, and Infectious Disease, National Institutes of Health, Bethesda, MD 20892, USA; (P.P.C.); (G.R.); (B.D.); (M.K.); (I.A.M.)
| |
Collapse
|
3
|
Nygaard TK, Borgogna TR, Pallister KB, Predtechenskaya M, Burroughs OS, Gao A, Lubick EG, Voyich JM. The Relative Importance of Cytotoxins Produced by Methicillin-Resistant Staphylococcus aureus Strain USA300 for Causing Human PMN Destruction. Microorganisms 2024; 12:1782. [PMID: 39338457 PMCID: PMC11434515 DOI: 10.3390/microorganisms12091782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 08/20/2024] [Accepted: 08/22/2024] [Indexed: 09/30/2024] Open
Abstract
Staphylococcus aureus (S. aureus) is a prominent Gram-positive bacterial pathogen that expresses numerous cytotoxins known to target human polymorphonuclear leukocytes (PMNs or neutrophils). These include leukocidin G/H (LukGH, also known as LukAB), the Panton-Valentine leukocidin (PVL), γ-hemolysin A/B (HlgAB), γ-hemolysin B/C (HlgBC), leukocidin E/D (LukED), α-hemolysin (Hla), and the phenol-soluble modulin-α peptides (PSMα). However, the relative contribution of each of these cytotoxins in causing human PMN lysis is not clear. In this study, we used a library of cytotoxin deletion mutants in the clinically relevant methicillin-resistant S. aureus (MRSA) isolate LAC (strain ST8:USA300) to determine the relative importance of each for causing human PMN lysis upon exposure to extracellular components as well as following phagocytosis. Using flow cytometry to examine plasma membrane permeability and assays quantifying lactose dehydrogenase release, we found that PVL was the dominant extracellular factor causing human PMN lysis produced by USA300. In contrast, LukGH was the most important cytotoxin causing human PMN lysis immediately following phagocytosis with contributions from the other bicomponent leukocidins only observed at later time points. These results not only clarify the relative importance of different USA300 cytotoxins for causing human PMN destruction but also demonstrate how two apparently redundant virulence factors play distinctive roles in promoting S. aureus pathogenesis.
Collapse
Affiliation(s)
- Tyler K Nygaard
- Department of Microbiology Cell Biology, Montana State University, Bozeman, MT 59718, USA
| | - Timothy R Borgogna
- Department of Microbiology Cell Biology, Montana State University, Bozeman, MT 59718, USA
| | - Kyler B Pallister
- Department of Microbiology Cell Biology, Montana State University, Bozeman, MT 59718, USA
| | - Maria Predtechenskaya
- Department of Microbiology Cell Biology, Montana State University, Bozeman, MT 59718, USA
| | - Owen S Burroughs
- Department of Microbiology Cell Biology, Montana State University, Bozeman, MT 59718, USA
| | - Annika Gao
- Department of Microbiology Cell Biology, Montana State University, Bozeman, MT 59718, USA
| | - Evan G Lubick
- Department of Microbiology Cell Biology, Montana State University, Bozeman, MT 59718, USA
| | - Jovanka M Voyich
- Department of Microbiology Cell Biology, Montana State University, Bozeman, MT 59718, USA
| |
Collapse
|
4
|
Freiberg JA, Reyes Ruiz VM, Gimza BD, Murdoch CC, Green ER, Curry JM, Cassat JE, Skaar EP. Restriction of arginine induces antibiotic tolerance in Staphylococcus aureus. Nat Commun 2024; 15:6734. [PMID: 39112491 PMCID: PMC11306626 DOI: 10.1038/s41467-024-51144-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 07/31/2024] [Indexed: 08/10/2024] Open
Abstract
Staphylococcus aureus is responsible for a substantial number of invasive infections globally each year. These infections are problematic because they are frequently recalcitrant to antibiotic treatment. Antibiotic tolerance, the ability of bacteria to persist despite normally lethal doses of antibiotics, contributes to antibiotic treatment failure in S. aureus infections. To understand how antibiotic tolerance is induced, S. aureus biofilms exposed to multiple anti-staphylococcal antibiotics are examined using both quantitative proteomics and transposon sequencing. These screens indicate that arginine metabolism is involved in antibiotic tolerance within a biofilm and support the hypothesis that depletion of arginine within S. aureus communities can induce antibiotic tolerance. Consistent with this hypothesis, inactivation of argH, the final gene in the arginine synthesis pathway, induces antibiotic tolerance. Arginine restriction induces antibiotic tolerance via inhibition of protein synthesis. In murine skin and bone infection models, an argH mutant has enhanced ability to survive antibiotic treatment with vancomycin, highlighting the relationship between arginine metabolism and antibiotic tolerance during S. aureus infection. Uncovering this link between arginine metabolism and antibiotic tolerance has the potential to open new therapeutic avenues targeting previously recalcitrant S. aureus infections.
Collapse
Affiliation(s)
- Jeffrey A Freiberg
- Division of Infectious Diseases, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA.
- Vanderbilt Institute for Infection, Immunology and Inflammation, Vanderbilt University Medical Center, Nashville, TN, USA.
| | - Valeria M Reyes Ruiz
- Vanderbilt Institute for Infection, Immunology and Inflammation, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Brittney D Gimza
- Division of Pediatric Infectious Diseases, Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Caitlin C Murdoch
- Vanderbilt Institute for Infection, Immunology and Inflammation, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Erin R Green
- Vanderbilt Institute for Infection, Immunology and Inflammation, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Microbiology, University of Chicago, Chicago, IL, USA
| | - Jacob M Curry
- Division of Pediatric Infectious Diseases, Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - James E Cassat
- Vanderbilt Institute for Infection, Immunology and Inflammation, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
- Division of Pediatric Infectious Diseases, Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN, USA
- Vanderbilt Center for Bone Biology, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
| | - Eric P Skaar
- Vanderbilt Institute for Infection, Immunology and Inflammation, Vanderbilt University Medical Center, Nashville, TN, USA.
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA.
| |
Collapse
|
5
|
Raghuram V, Petit RA, Karol Z, Mehta R, Weissman DB, Read TD. Average nucleotide identity-based Staphylococcus aureus strain grouping allows identification of strain-specific genes in the pangenome. mSystems 2024; 9:e0014324. [PMID: 38934646 PMCID: PMC11265343 DOI: 10.1128/msystems.00143-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 04/16/2024] [Indexed: 06/28/2024] Open
Abstract
Staphylococcus aureus causes both hospital- and community-acquired infections in humans worldwide. Due to the high incidence of infection, S. aureus is also one of the most sampled and sequenced pathogens today, providing an outstanding resource to understand variation at the bacterial subspecies level. We processed and downsampled 83,383 public S. aureus Illumina whole-genome shotgun sequences and 1,263 complete genomes to produce 7,954 representative substrains. Pairwise comparison of average nucleotide identity revealed a natural boundary of 99.5% that could be used to define 145 distinct strains within the species. We found that intermediate frequency genes in the pangenome (present in 10%-95% of genomes) could be divided into those closely linked to strain background ("strain-concentrated") and those highly variable within strains ("strain-diffuse"). Non-core genes had different patterns of chromosome location. Notably, strain-diffuse genes were associated with prophages; strain-concentrated genes were associated with the vSaβ genome island and rare genes (<10% frequency) concentrated near the origin of replication. Antibiotic resistance genes were enriched in the strain-diffuse class, while virulence genes were distributed between strain-diffuse, strain-concentrated, core, and rare classes. This study shows how different patterns of gene movement help create strains as distinct subspecies entities and provide insight into the diverse histories of important S. aureus functions. IMPORTANCE We analyzed the genomic diversity of Staphylococcus aureus, a globally prevalent bacterial species that causes serious infections in humans. Our goal was to build a genetic picture of the different strains of S. aureus and which genes may be associated with them. We reprocessed >84,000 genomes and subsampled to remove redundancy. We found that individual samples sharing >99.5% of their genome could be grouped into strains. We also showed that a portion of genes that are present in intermediate frequency in the species are strongly associated with some strains but completely absent from others, suggesting a role in strain specificity. This work lays the foundation for understanding individual gene histories of the S. aureus species and also outlines strategies for processing large bacterial genomic data sets.
Collapse
Affiliation(s)
- Vishnu Raghuram
- Microbiology and Molecular Genetics Program, Graduate Division of Biological and Biomedical Sciences, Laney Graduate School, Emory University, Atlanta, Georgia, USA
| | - Robert A. Petit
- Division of Infectious Diseases, Department of Medicine, Emory University, Atlanta, Georgia, USA
| | - Zach Karol
- Department of Physics, Emory University, Atlanta, Georgia, USA
| | - Rohan Mehta
- Department of Physics, Emory University, Atlanta, Georgia, USA
| | | | - Timothy D. Read
- Division of Infectious Diseases, Department of Medicine, Emory University, Atlanta, Georgia, USA
| |
Collapse
|
6
|
Cullum E, Perez-Betancourt Y, Shi M, Gkika E, Schneewind O, Missiakas D, Golovkina T. Deficiency in non-classical major histocompatibility class II-like molecule, H2-O confers protection against Staphylococcus aureus in mice. PLoS Pathog 2024; 20:e1012306. [PMID: 38843309 PMCID: PMC11185455 DOI: 10.1371/journal.ppat.1012306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 06/18/2024] [Accepted: 05/29/2024] [Indexed: 06/19/2024] Open
Abstract
Staphylococcus aureus is a human-adapted pathogen that replicates by asymptomatically colonizing its host. S. aureus is also the causative agent of purulent skin and soft tissue infections as well as bloodstream infections that result in the metastatic seeding of abscess lesions in all organ tissues. Prolonged colonization, infection, disease relapse, and recurrence point to the versatile capacity of S. aureus to bypass innate and adaptive immune defenses as well as the notion that some hosts fail to generate protective immune responses. Here, we find a genetic trait that provides protection against this pathogen. Mice lacking functional H2-O, the equivalent of human HLA-DO, inoculated with a mouse-adapted strain of S. aureus, efficiently decolonize the pathogen. Further, these decolonized animals resist subsequent bloodstream challenge with methicillin-resistant S. aureus. A genetic approach demonstrates that T-cell dependent B cell responses are required to control S. aureus colonization and infection in H2-O-deficient mice. Reduced bacterial burdens in these animals correlate with increased titers and enhanced phagocytic activity of S. aureus-specific antibodies. H2-O negatively regulates the loading of high affinity peptides on major histocompatibility class II (MHC-II) molecules. Thus, we hypothesize that immune responses against S. aureus are derepressed in mice lacking H2-O because more high affinity peptides are presented by MHC-II. We speculate that loss-of-function HLA-DO alleles may similarly control S. aureus replication in humans.
Collapse
Affiliation(s)
- Emily Cullum
- Department of Microbiology, University of Chicago, Chicago, Illinois, United States of America
- Committee on Immunology, University of Chicago, Chicago, Illinois, United States of America
| | - Yunys Perez-Betancourt
- Department of Microbiology, University of Chicago, Chicago, Illinois, United States of America
- Howard T. Ricketts Laboratory, University of Chicago, Chicago, Illinois, United States of America
| | - Miaomiao Shi
- Department of Microbiology, University of Chicago, Chicago, Illinois, United States of America
- Howard T. Ricketts Laboratory, University of Chicago, Chicago, Illinois, United States of America
| | - Eirinaios Gkika
- Department of Microbiology, University of Chicago, Chicago, Illinois, United States of America
| | - Olaf Schneewind
- Department of Microbiology, University of Chicago, Chicago, Illinois, United States of America
| | - Dominique Missiakas
- Department of Microbiology, University of Chicago, Chicago, Illinois, United States of America
- Howard T. Ricketts Laboratory, University of Chicago, Chicago, Illinois, United States of America
| | - Tatyana Golovkina
- Department of Microbiology, University of Chicago, Chicago, Illinois, United States of America
- Committee on Immunology, University of Chicago, Chicago, Illinois, United States of America
- Committee on Microbiology, University of Chicago, Chicago, Illinois, United States of America
- Committee on Genetics, Genomics and System Biology, University of Chicago, Chicago, Illinois, United States of America
| |
Collapse
|
7
|
Hofstetter KS, Jacko NF, Shumaker MJ, Talbot BM, Petit RA, Read TD, David MZ. Strain Differences in Bloodstream and Skin Infection: Methicillin-Resistant Staphylococcus aureus Isolated in 2018-2021 in a Single Health System. Open Forum Infect Dis 2024; 11:ofae261. [PMID: 38854395 PMCID: PMC11160326 DOI: 10.1093/ofid/ofae261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 05/02/2024] [Indexed: 06/11/2024] Open
Abstract
Staphylococcus aureus is a common cause of skin and soft-tissue infections (SSTIs) and has become the most common cause of bloodstream infections (BSIs) in recent years, but whether the strains causing these two clinical syndromes overlap has not been studied adequately. USA300/500 (clonal complex [CC] 8-sequence type [ST] 8) and USA100 (CC5-ST5) have dominated among methicillin-resistant S aureus (MRSA) strains in the United States since the early 2000s. We compared the genomes of unselected MRSA isolates from 131 SSTIs with those from 145 BSIs at a single US center in overlapping periods in 2018-2021. CC8 MRSA was more common among SSTIs, and CC5 was more common among BSIs, consistent with prior literature. Based on clustering genomes with a threshold of 15 single-nucleotide polymorphisms, we identified clusters limited to patients with SSTI and separate clusters exclusively comprising patients with BSIs. However, we also identified eight clusters that included at least one SSTI and one BSI isolate. This suggests that virulent MRSA strains are transmitted from person to person locally in the healthcare setting or the community and that single lineages are often capable of causing both SSTIs and BSIs.
Collapse
Affiliation(s)
- Katrina S Hofstetter
- Division of Infectious Diseases, Department of Medicine, Emory University, Atlanta, Georgia, USA
| | - Natasia F Jacko
- Division of Infectious Diseases, Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Margot J Shumaker
- Division of Infectious Diseases, Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Brooke M Talbot
- Division of Infectious Diseases, Department of Medicine, Emory University, Atlanta, Georgia, USA
| | - Robert A Petit
- Division of Infectious Diseases, Department of Medicine, Emory University, Atlanta, Georgia, USA
| | - Timothy D Read
- Division of Infectious Diseases, Department of Medicine, Emory University, Atlanta, Georgia, USA
| | - Michael Z David
- Division of Infectious Diseases, Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
8
|
Nagarajan A, Scoggin K, Gupta J, Aminian M, Adams LG, Kirby M, Threadgill D, Andrews-Polymenis H. Collaborative Cross mice have diverse phenotypic responses to infection with Methicillin-resistant Staphylococcus aureus USA300. PLoS Genet 2024; 20:e1011229. [PMID: 38696518 PMCID: PMC11108197 DOI: 10.1371/journal.pgen.1011229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 05/21/2024] [Accepted: 03/18/2024] [Indexed: 05/04/2024] Open
Abstract
Staphylococcus aureus (S. aureus) is an opportunistic pathogen causing diseases ranging from mild skin infections to life threatening conditions, including endocarditis, pneumonia, and sepsis. To identify host genes modulating this host-pathogen interaction, we infected 25 Collaborative Cross (CC) mouse strains with methicillin-resistant S. aureus (MRSA) and monitored disease progression for seven days using a surgically implanted telemetry system. CC strains varied widely in their response to intravenous MRSA infection. We identified eight 'susceptible' CC strains with high bacterial load, tissue damage, and reduced survival. Among the surviving strains, six with minimal colonization were classified as 'resistant', while the remaining six tolerated higher organ colonization ('tolerant'). The kidney was the most heavily colonized organ, but liver, spleen and lung colonization were better correlated with reduced survival. Resistant strains had higher pre-infection circulating neutrophils and lower post-infection tissue damage compared to susceptible and tolerant strains. We identified four CC strains with sexual dimorphism: all females survived the study period while all males met our euthanasia criteria earlier. In these CC strains, males had more baseline circulating monocytes and red blood cells. We identified several CC strains that may be useful as new models for endocarditis, myocarditis, pneumonia, and resistance to MRSA infection. Quantitative Trait Locus (QTL) analysis identified two significant loci, on Chromosomes 18 and 3, involved in early susceptibility and late survival after infection. We prioritized Npc1 and Ifi44l genes as the strongest candidates influencing survival using variant analysis and mRNA expression data from kidneys within these intervals.
Collapse
Affiliation(s)
- Aravindh Nagarajan
- Interdisciplinary Program in Genetics and Genomics, Texas A&M University, College Station, Texas, United States of America
- Department of Microbial Pathogenesis and Immunology, Texas A&M University, College Station, Texas, United States of America
| | - Kristin Scoggin
- Interdisciplinary Program in Genetics and Genomics, Texas A&M University, College Station, Texas, United States of America
- Department of Molecular and Cellular Medicine, Texas A&M University, College Station, Texas, United States of America
| | - Jyotsana Gupta
- Department of Microbial Pathogenesis and Immunology, Texas A&M University, College Station, Texas, United States of America
| | - Manuchehr Aminian
- Department of Mathematics, Colorado State University, Fort Collins, Colorado, United States of America
- Department of Mathematics and Statistics, California State Polytechnic University, Pomona, California, United States of America
| | - L. Garry Adams
- Department of Veterinary Pathobiology, Texas A&M University, College Station, Texas, United States of America
| | - Michael Kirby
- Department of Mathematics, Colorado State University, Fort Collins, Colorado, United States of America
| | - David Threadgill
- Interdisciplinary Program in Genetics and Genomics, Texas A&M University, College Station, Texas, United States of America
- Department of Molecular and Cellular Medicine, Texas A&M University, College Station, Texas, United States of America
- Texas A&M Institute for Genome Sciences and Society, Texas A&M University, College Station, Texas, United States of America
- Department of Biochemistry & Biophysics and Department of Nutrition, Texas A&M University, College Station, Texas, United States of America
| | - Helene Andrews-Polymenis
- Interdisciplinary Program in Genetics and Genomics, Texas A&M University, College Station, Texas, United States of America
- Department of Microbial Pathogenesis and Immunology, Texas A&M University, College Station, Texas, United States of America
| |
Collapse
|
9
|
Raghuram V, Petit RA, Karol Z, Mehta R, Weissman DB, Read TD. Average Nucleotide Identity based Staphylococcus aureus strain grouping allows identification of strain-specific genes in the pangenome. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.29.577756. [PMID: 38352482 PMCID: PMC10862745 DOI: 10.1101/2024.01.29.577756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/22/2024]
Abstract
Staphylococcus aureus causes both hospital and community acquired infections in humans worldwide. Due to the high incidence of infection S. aureus is also one of the most sampled and sequenced pathogens today, providing an outstanding resource to understand variation at the bacterial subspecies level. We processed and downsampled 83,383 public S. aureus Illumina whole genome shotgun sequences and 1,263 complete genomes to produce 7,954 representative substrains. Pairwise comparison of core gene Average Nucleotide Identity (ANI) revealed a natural boundary of 99.5% that could be used to define 145 distinct strains within the species. We found that intermediate frequency genes in the pangenome (present in 10-95% of genomes) could be divided into those closely linked to strain background ("strain-concentrated") and those highly variable within strains ("strain-diffuse"). Non-core genes had different patterns of chromosome location; notably, strain-diffuse associated with prophages, strain-concentrated with the vSaβ genome island and rare genes (<10% frequency) concentrated near the origin of replication. Antibiotic genes were enriched in the strain-diffuse class, while virulence genes were distributed between strain-diffuse, strain-concentrated, core and rare classes. This study shows how different patterns of gene movement help create strains as distinct subspecies entities and provide insight into the diverse histories of important S. aureus functions.
Collapse
Affiliation(s)
- Vishnu Raghuram
- Microbiology and Molecular Genetics Program, Graduate Division of Biological and Biomedical Sciences, Laney Graduate School, Emory University, Atlanta, Georgia, USA
| | - Robert A Petit
- Division of Infectious Diseases, Department of Medicine, Emory University, Atlanta, Georgia, USA
| | - Zach Karol
- Department of Physics, Emory University, Atlanta, Georgia, USA
| | - Rohan Mehta
- Department of Physics, Emory University, Atlanta, Georgia, USA
| | | | - Timothy D. Read
- Division of Infectious Diseases, Department of Medicine, Emory University, Atlanta, Georgia, USA
| |
Collapse
|
10
|
Cranmer KD, Pant MD, Quesnel S, Sharp JA. Clonal Diversity, Antibiotic Resistance, and Virulence Factor Prevalence of Community Associated Staphylococcus aureus in Southeastern Virginia. Pathogens 2023; 13:25. [PMID: 38251333 PMCID: PMC10821353 DOI: 10.3390/pathogens13010025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 12/13/2023] [Accepted: 12/19/2023] [Indexed: 01/23/2024] Open
Abstract
Staphylococcus aureus is a significant human pathogen with a formidable propensity for antibiotic resistance. Worldwide, it is the leading cause of skin and soft tissue infections (SSTI), septic arthritis, osteomyelitis, and infective endocarditis originating from both community- and healthcare-associated settings. Although often grouped by methicillin resistance, both methicillin-resistant (MRSA) and methicillin-sensitive (MSSA) strains are known to cause significant pathologies and injuries. Virulence factors and growing resistance to antibiotics play major roles in the pathogenicity of community-associated strains. In our study, we examined the genetic variability and acquired antibiograms of 122 S. aureus clinical isolates from SSTI, blood, and urinary tract infections originating from pediatric patients within the southeast region of Virginia, USA. We identified a suite of clinically relevant virulence factors and evaluated their prevalence within these isolates. Five genes (clfA, spA, sbi, scpA, and vwb) with immune-evasive functions were identified in all isolates. MRSA isolates had a greater propensity to be resistant to more antibiotics as well as significantly more likely to carry several virulence factors compared to MSSA strains. Further, the carriage of various genes was found to vary significantly based on the infection type (SSTI, blood, urine).
Collapse
Affiliation(s)
- Katelyn D. Cranmer
- Microbiology and Molecular Cell Biology, Eastern Virginia Medical School, Norfolk, VA 23507, USA
| | - Mohan D. Pant
- School of Health Professions, Eastern Virginia Medical School, Norfolk, VA 23507, USA
| | - Suzanne Quesnel
- Children’s Hospital of the King’s Daughters, Norfolk, VA 23507, USA
| | - Julia A. Sharp
- Microbiology and Molecular Cell Biology, Eastern Virginia Medical School, Norfolk, VA 23507, USA
- School of Health Professions, Eastern Virginia Medical School, Norfolk, VA 23507, USA
| |
Collapse
|
11
|
Jiang JH, Cameron DR, Nethercott C, Aires-de-Sousa M, Peleg AY. Virulence attributes of successful methicillin-resistant Staphylococcus aureus lineages. Clin Microbiol Rev 2023; 36:e0014822. [PMID: 37982596 PMCID: PMC10732075 DOI: 10.1128/cmr.00148-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2023] Open
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) is a leading cause of severe and often fatal infections. MRSA epidemics have occurred in waves, whereby a previously successful lineage has been replaced by a more fit and better adapted lineage. Selection pressures in both hospital and community settings are not uniform across the globe, which has resulted in geographically distinct epidemiology. This review focuses on the mechanisms that trigger the establishment and maintenance of current, dominant MRSA lineages across the globe. While the important role of antibiotic resistance will be mentioned throughout, factors which influence the capacity of S. aureus to colonize and cause disease within a host will be the primary focus of this review. We show that while MRSA possesses a diverse arsenal of toxins including alpha-toxin, the success of a lineage involves more than just producing toxins that damage the host. Success is often attributed to the acquisition or loss of genetic elements involved in colonization and niche adaptation such as the arginine catabolic mobile element, as well as the activity of regulatory systems, and shift metabolism accordingly (e.g., the accessory genome regulator, agr). Understanding exactly how specific MRSA clones cause prolonged epidemics may reveal targets for therapies, whereby both core (e.g., the alpha toxin) and acquired virulence factors (e.g., the Panton-Valentine leukocidin) may be nullified using anti-virulence strategies.
Collapse
Affiliation(s)
- Jhih-Hang Jiang
- Department of Microbiology, Infection Program, Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
- Department of Infectious Diseases, The Alfred Hospital and Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - David R. Cameron
- Department of Biomedical Research, University of Bern, Bern, Switzerland
| | - Cara Nethercott
- Department of Microbiology, Infection Program, Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Marta Aires-de-Sousa
- Laboratory of Molecular Genetics, Institutode Tecnologia Químicae Biológica António Xavier (ITQB-NOVA), Universidade Nova de Lisboa, Oeiras, Portugal
- Escola Superior de Saúde da Cruz Vermelha Portuguesa-Lisboa (ESSCVP-Lisboa), Lisbon, Portugal
| | - Anton Y. Peleg
- Department of Microbiology, Infection Program, Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
- Department of Infectious Diseases, The Alfred Hospital and Central Clinical School, Monash University, Melbourne, Victoria, Australia
- Centre to Impact Antimicrobial Resistance, Monash University, Clayton, Melbourne, Victoria, Australia
| |
Collapse
|
12
|
Liyanage SH, Yan M. Maltose-Derivatized Fluorescence Turn-On Imaging Probe for Bacteria Detection. ACS Infect Dis 2023; 9:2560-2571. [PMID: 37936289 DOI: 10.1021/acsinfecdis.3c00403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2023]
Abstract
We report a maltose-derivatized fluorescence turn-on imaging probe, Mal-Cz, to detect E. coli and Staphylococci. The fluorescence turn-on is achieved through an intramolecular C-H insertion reaction of the perfluoroaryl azide-functionalized carbazole to give a fluorescent product. Confocal fluorescence microscopy confirmed the successful uptake of Mal-Cz by E. coli and Staphylococci upon photoactivation. The Mal-Cz probe could selectively detect E. coli and S. epidermidis in the presence of P. aeruginosa and M. smegmatis without interference from these bacteria. Both the photoactivation and bacteria detection can be accomplished using a hand-held UV lamp at 365 nm, with the limit of detection of 103 CFU/mL by the naked eye. Mal-Cz could also be used to detect E. coli and S. epidermidis spiked in milk by the naked eye under a hand-held UV lamp. The uptake of Mal-Cz requires metabolically active bacteria: the uptake was reduced in stationary phase bacteria and was diminished in bacteria that were killed by heating or treating with antibiotics or sodium azide. The uptake decreased with increasing concentration of added free maltose, indicating that Mal-Cz hijacked the maltose uptake pathways. In E. coli, the maltose transport systems, including maltoporin LamB, maltose binding protein MBP, and the maltose ATP binding cassette (ABC) transporter MalFGK2, are all critical for the transport of Mal-Cz. The uptake was diminished in the deletion mutants ΔLamB, ΔMalE, ΔMalF, and ΔMalK.
Collapse
Affiliation(s)
- Sajani H Liyanage
- Department of Chemistry, University of Massachusetts Lowell, Lowell, Massachusetts 01854, United States
| | - Mingdi Yan
- Department of Chemistry, University of Massachusetts Lowell, Lowell, Massachusetts 01854, United States
| |
Collapse
|
13
|
Freiberg JA, Ruiz VMR, Green ER, Skaar EP. Restriction of Arginine Induces Antibiotic Tolerance in Staphylococcus aureus. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.12.561972. [PMID: 37873095 PMCID: PMC10592767 DOI: 10.1101/2023.10.12.561972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Staphylococcus aureus is responsible for a substantial number of invasive infections globally each year. These infections are problematic because they are frequently recalcitrant to antibiotic treatment, particularly when they are caused by Methicillin-Resistant Staphylococcus aureus (MRSA). Antibiotic tolerance, the ability for bacteria to persist despite normally lethal doses of antibiotics, is responsible for most antibiotic treatment failure in MRSA infections. To understand how antibiotic tolerance is induced, S. aureus biofilms exposed to multiple anti-MRSA antibiotics (vancomycin, ceftaroline, delafloxacin, and linezolid) were examined using both quantitative proteomics and transposon sequencing. These screens indicated that arginine metabolism is involved in antibiotic tolerance within a biofilm and led to the hypothesis that depletion of arginine within S. aureus communities can induce antibiotic tolerance. Consistent with this hypothesis, inactivation of argH, the final gene in the arginine synthesis pathway, induces antibiotic tolerance under conditions in which the parental strain is susceptible to antibiotics. Arginine restriction was found to induce antibiotic tolerance via inhibition of protein synthesis. Finally, although S. aureus fitness in a mouse skin infection model is decreased in an argH mutant, its ability to survive in vivo during antibiotic treatment with vancomycin is enhanced, highlighting the relationship between arginine metabolism and antibiotic tolerance during S. aureus infection. Uncovering this link between arginine metabolism and antibiotic tolerance has the potential to open new therapeutic avenues targeting previously recalcitrant S. aureus infections.
Collapse
Affiliation(s)
- Jeffrey A. Freiberg
- Division of Infectious Diseases, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232
- Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University Medical Center, Nashville, TN 37232
| | - Valeria M. Reyes Ruiz
- Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University Medical Center, Nashville, TN 37232
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232
| | - Erin R. Green
- Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University Medical Center, Nashville, TN 37232
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232
- Department of Microbiology, University of Chicago, Chicago, IL 60637
| | - Eric P. Skaar
- Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University Medical Center, Nashville, TN 37232
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232
| |
Collapse
|
14
|
Ludwig N, Thörner-van Almsick J, Mersmann S, Bardel B, Niemann S, Chasan AI, Schäfers M, Margraf A, Rossaint J, Kahl BC, Zarbock A, Block H. Nuclease activity and protein A release of Staphylococcus aureus clinical isolates determine the virulence in a murine model of acute lung infection. Front Immunol 2023; 14:1259004. [PMID: 37849760 PMCID: PMC10577289 DOI: 10.3389/fimmu.2023.1259004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 09/19/2023] [Indexed: 10/19/2023] Open
Abstract
Staphylococcus aureus is a common cause of hospital-acquired pneumonia associated with high mortality. Adequate clinical treatment is impeded by increasing occurrence of antibiotic resistances. Understanding the underlying mechanisms of its virulence during infections is a prerequisite to finding alternative treatments. Here, we demonstrated that an increased nuclease activity of a S. aureus isolate from a person with cystic fibrosis confers a growth advantage in a model of acute lung infection compared to the isogenic strain with low nuclease activity. Comparing these CF-isolates with a common MRSA-USA300 strain with similarly high nuclease activity but significantly elevated levels of Staphylococcal Protein A (SpA) revealed that infection with USA300 resulted in a significantly increased bacterial burden in a model of murine lung infection. Replenishment with the cell wall-bound SpA of S. aureus, which can also be secreted into the environment and binds to tumor necrosis factor receptor -1 (TNFR-1) to the CF-isolates abrogated these differences. In vitro experiments confirmed significant differences in spa-expression between USA300 compared to CF-isolates, thereby influencing TNFR-1 shedding, L-selectin shedding, and production of reactive oxygen species through activation of ADAM17.
Collapse
Affiliation(s)
- Nadine Ludwig
- Department of Anesthesiology, Intensive Care and Pain Medicine, University Hospital Muenster, Muenster, Germany
| | - Julia Thörner-van Almsick
- Department of Anesthesiology, Intensive Care and Pain Medicine, University Hospital Muenster, Muenster, Germany
| | - Sina Mersmann
- Department of Anesthesiology, Intensive Care and Pain Medicine, University Hospital Muenster, Muenster, Germany
| | - Bernadette Bardel
- Department of Anesthesiology, Intensive Care and Pain Medicine, University Hospital Muenster, Muenster, Germany
| | - Silke Niemann
- Institute for Medical Microbiology, University Hospital Muenster, Muenster, Germany
| | - Achmet Imam Chasan
- Institute of Immunology, University Hospital Muenster, Muenster, Germany
| | - Michael Schäfers
- European Institute for Molecular Imaging (EIMI), University of Muenster, Muenster, Germany
| | - Andreas Margraf
- Department of Anesthesiology, Intensive Care and Pain Medicine, University Hospital Muenster, Muenster, Germany
| | - Jan Rossaint
- Department of Anesthesiology, Intensive Care and Pain Medicine, University Hospital Muenster, Muenster, Germany
| | - Barbara C. Kahl
- Institute for Medical Microbiology, University Hospital Muenster, Muenster, Germany
| | - Alexander Zarbock
- Department of Anesthesiology, Intensive Care and Pain Medicine, University Hospital Muenster, Muenster, Germany
| | - Helena Block
- Department of Anesthesiology, Intensive Care and Pain Medicine, University Hospital Muenster, Muenster, Germany
| |
Collapse
|
15
|
Barnes V L, Heithoff DM, Mahan SP, House JK, Mahan MJ. Antimicrobial susceptibility testing to evaluate minimum inhibitory concentration values of clinically relevant antibiotics. STAR Protoc 2023; 4:102512. [PMID: 37566547 PMCID: PMC10448204 DOI: 10.1016/j.xpro.2023.102512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/03/2023] [Accepted: 07/25/2023] [Indexed: 08/13/2023] Open
Abstract
Antimicrobial susceptibility testing is used to determine the minimum inhibitory concentration (MIC), the standard measurement of antibiotic activity. Here, we present a protocol for evaluating MIC values of clinically relevant antibiotics against bacterial isolates cultured in standard bacteriologic medium and in mammalian cell culture medium. We describe steps for pathogen identification, culturing bacteria, preparing MIC plates, MIC assay incubation, and determining MIC. This protocol can potentially optimize the use of existing antibiotics while enhancing efforts to discover new ones. For complete details on the use and execution of this protocol, please refer to Heithoff et al.1.
Collapse
Affiliation(s)
- Lucien Barnes V
- Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, CA 93106, USA.
| | - Douglas M Heithoff
- Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, CA 93106, USA
| | - Scott P Mahan
- Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, CA 93106, USA; Department of Medical Microbiology and Immunology, School of Medicine, University of California, Davis, CA 95616, USA
| | - John K House
- Faculty of Science, School of Veterinary Science, The University of Sydney, Camden, NSW 2570, Australia
| | - Michael J Mahan
- Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, CA 93106, USA.
| |
Collapse
|
16
|
Kao CC, Lai CH, Wong MY, Huang TY, Tseng YH, Lu CH, Lin CC, Huang YK. Insight into the Clonal Lineage and Antimicrobial Resistance of Staphylococcus aureus from Vascular Access Infections before and during the COVID-19 Pandemic. Antibiotics (Basel) 2023; 12:1070. [PMID: 37370389 DOI: 10.3390/antibiotics12061070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 06/14/2023] [Accepted: 06/16/2023] [Indexed: 06/29/2023] Open
Abstract
Patients receiving hemodialysis are at risk of vascular access infections (VAIs) and are particularly vulnerable to the opportunistic pathogen Staphylococcus aureus. Hemodialysis patients were also at increased risk of infection during the COVID-19 pandemic. Therefore, this study determined the change in the molecular and antibiotic resistance profiles of S. aureus isolates from VAIs during the pandemic compared with before. A total of 102 S. aureus isolates were collected from VAIs between November 2013 and December 2021. Before the pandemic, 69 isolates were collected, 58%, 39.1%, and 2.9% from arteriovenous grafts (AVGs), tunneled cuffed catheters (TCCs), and arteriovenous fistulas (AVFs), respectively. The prevalence of AVG and TCC isolates changed to 39.4% and 60.6%, respectively, of the 33 isolates during the pandemic. Sequence type (ST)59 was the predominant clone in TCC methicillin-resistant S. aureus (MRSA) and AVG-MRSA before the pandemic, whereas the predominant clone was ST8 in AVG-MRSA during the pandemic. ST59 carrying the ermB gene was resistant to clindamycin and erythromycin. By contrast, ST8 carrying the msrA gene was exclusively resistant to erythromycin. The ST distribution for different VAIs changed from before to during the pandemic. The change in antibiotic resistance rate for different VAIs was closely related to the distribution of specific STs.
Collapse
Affiliation(s)
- Chih-Chen Kao
- Division of Thoracic and Cardiovascular Surgery, Chiayi Chang Gung Memorial Hospital, Chiayi 10020, Taiwan
- College of Medicine, Chang Gung University, Taoyuan 33041, Taiwan
- Division of Thoracic and Cardiovascular Surgery, Chiayi Hospital, MOHW, Chiayi City 10020, Taiwan
| | - Chi-Hsiang Lai
- Division of Thoracic and Cardiovascular Surgery, Chiayi Chang Gung Memorial Hospital, Chiayi 10020, Taiwan
| | - Min-Yi Wong
- Division of Thoracic and Cardiovascular Surgery, Chiayi Chang Gung Memorial Hospital, Chiayi 10020, Taiwan
| | - Tsung-Yu Huang
- College of Medicine, Chang Gung University, Taoyuan 33041, Taiwan
- Division of Infectious Diseases, Department of Internal Medicine, Chang Gung Memorial Hospital, Chiayi 10020, Taiwan
| | - Yuan-Hsi Tseng
- Division of Infectious Diseases, Department of Internal Medicine, Chang Gung Memorial Hospital, Chiayi 10020, Taiwan
- Division of Cardiovascular Surgery, New Taipei Municipal Tu-Cheng Hospital, New Taipei City 23656, Taiwan
| | - Chu-Hsueh Lu
- Division of Thoracic and Cardiovascular Surgery, Chiayi Chang Gung Memorial Hospital, Chiayi 10020, Taiwan
- Division of Infectious Diseases, Department of Internal Medicine, Chang Gung Memorial Hospital, Chiayi 10020, Taiwan
| | - Chien-Chao Lin
- Division of Thoracic and Cardiovascular Surgery, Chiayi Chang Gung Memorial Hospital, Chiayi 10020, Taiwan
- Division of Infectious Diseases, Department of Internal Medicine, Chang Gung Memorial Hospital, Chiayi 10020, Taiwan
| | - Yao-Kuang Huang
- Division of Thoracic and Cardiovascular Surgery, Chiayi Chang Gung Memorial Hospital, Chiayi 10020, Taiwan
- College of Medicine, Chang Gung University, Taoyuan 33041, Taiwan
- Division of Thoracic and Cardiovascular Surgery, Chiayi Hospital, MOHW, Chiayi City 10020, Taiwan
| |
Collapse
|
17
|
Helbig U, Riemschneider C, Werner G, Kriebel N, Layer-Nicolaou F. Mandatory Notification of Panton-Valentine Leukocidin-Positive Methicillin-Resistant Staphylococcus aureus in Saxony, Germany: Analysis of Cases from the City of Leipzig in 2019. Microorganisms 2023; 11:1437. [PMID: 37374939 DOI: 10.3390/microorganisms11061437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 05/22/2023] [Accepted: 05/26/2023] [Indexed: 06/29/2023] Open
Abstract
In Germany, Saxony is the only federal state where the detection of a Panton-Valentine Leukocidin (PVL)-positive Methicillin-resistant Staphylococcus aureus (MRSA) has to be notified to the local health authority (LHA). The LHA reports the case to the state health authority and introduces concrete infection control measures. We analyzed isolates from the respective cases in 2019, which were collected in local microbiological laboratories and sent to the National Reference Centre (NRC) for Staphylococci and Enterococci for strain characterization and typing. Antibiotic resistance testing was done by broth microdilution. Molecular characterization was performed using spa and SCCmec typing, MLST, and the PCR detection of marker genes associated with distinct MRSA lineages. Demographic and clinical data of the individual cases were assessed and the LHA performed epidemiological investigations. Thirty-nine (index) persons, diagnosed with a PVL-positive MRSA, were initially reported to the LHA. Most patients suffered from skin and soft-tissue infections (SSTI). For 21 of the index cases, household contacts were screened for MRSA. Seventeen out of 62 contacts were also colonized with a PVL-positive MRSA. The median age of altogether 58 individuals was 23.5 years. In over half of the cases, the home country was not Germany and/or a history of travel or migration was reported. Molecular characterization revealed the presence of various epidemic community-associated MRSA lineages, with "USA300", including the North American Epidemic (ST8-MRSA-IVa) and the South American Epidemic Clone (ST8-MRSA-IVc), the "Sri Lankan Clone" (ST5-MRSA-IVc), and the "Bengal Bay Clone" (ST772-MRSA-V) being more prevalent. In eight out of nine households, the contact persons were colonized with the same clone as the respective index case, suggesting a close epidemic and microbiological link. The obligation to report PVL-positive MRSA enables us to detect the occurrence of PVL-producing MRSA and its spread in the population as early as possible. Timely detection allows the targeted deployment of reliable anti-infective measures.
Collapse
Affiliation(s)
- Utta Helbig
- Department of Hygiene, Local Health Authority City of Leipzig, Rohrteichstraße 16-20, 04347 Leipzig, Germany
| | - Constance Riemschneider
- Department of Hygiene, Local Health Authority City of Leipzig, Rohrteichstraße 16-20, 04347 Leipzig, Germany
| | - Guido Werner
- National Reference Centre for Staphylococci and Enterococci, Division of Nosocomial Pathogens and Antimicrobial Resistances, Department of Infectious Diseases, Robert Koch-Institute, Wernigerode Branch, Burgstraße 37, 38855 Wernigerode, Germany
| | - Nancy Kriebel
- National Reference Centre for Staphylococci and Enterococci, Division of Nosocomial Pathogens and Antimicrobial Resistances, Department of Infectious Diseases, Robert Koch-Institute, Wernigerode Branch, Burgstraße 37, 38855 Wernigerode, Germany
| | - Franziska Layer-Nicolaou
- National Reference Centre for Staphylococci and Enterococci, Division of Nosocomial Pathogens and Antimicrobial Resistances, Department of Infectious Diseases, Robert Koch-Institute, Wernigerode Branch, Burgstraße 37, 38855 Wernigerode, Germany
| |
Collapse
|
18
|
Heithoff DM, Barnes V L, Mahan SP, Fried JC, Fitzgibbons LN, House JK, Mahan MJ. Re-evaluation of FDA-approved antibiotics with increased diagnostic accuracy for assessment of antimicrobial resistance. Cell Rep Med 2023; 4:101023. [PMID: 37116500 PMCID: PMC10213814 DOI: 10.1016/j.xcrm.2023.101023] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 02/16/2023] [Accepted: 04/05/2023] [Indexed: 04/30/2023]
Abstract
Accurate assessment of antibiotic susceptibility is critical for treatment of antimicrobial resistant (AMR) infections. Here, we examine whether antimicrobial susceptibility testing in media more physiologically representative of in vivo conditions improves prediction of clinical outcome relative to standard bacteriologic medium. This analysis reveals that ∼15% of minimum inhibitory concentration (MIC) values obtained in physiologic media predicted a change in susceptibility that crossed a clinical breakpoint used to categorize patient isolates as susceptible or resistant. The activities of antibiotics having discrepant results in different media were evaluated in murine sepsis models. Testing in cell culture medium improves the accuracy by which MIC assays predict in vivo efficacy. This analysis identifies several antibiotics for treatment of AMR infections that standard testing failed to identify and those that are ineffective despite indicated use by standard testing. Methods with increased diagnostic accuracy mitigate the AMR crisis via utilizing existing agents and optimizing drug discovery.
Collapse
Affiliation(s)
- Douglas M Heithoff
- Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, Santa Barbara, CA 93106, USA; Institute for Collaborative Biotechnologies, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
| | - Lucien Barnes V
- Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, Santa Barbara, CA 93106, USA; Institute for Collaborative Biotechnologies, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
| | - Scott P Mahan
- Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, Santa Barbara, CA 93106, USA; Institute for Collaborative Biotechnologies, University of California, Santa Barbara, Santa Barbara, CA 93106, USA; Department of Medical Microbiology and Immunology, School of Medicine, University of California, Davis, Davis, CA 95616, USA
| | - Jeffrey C Fried
- Department of Medical Education, Santa Barbara Cottage Hospital, Santa Barbara, CA 93105, USA; Department of Pulmonary and Critical Care Medicine, Santa Barbara Cottage Hospital, Santa Barbara, CA 93105, USA
| | - Lynn N Fitzgibbons
- Department of Medical Education, Santa Barbara Cottage Hospital, Santa Barbara, CA 93105, USA; Division of Infectious Diseases, Santa Barbara Cottage Hospital, Santa Barbara, CA 93105, USA
| | - John K House
- Faculty of Science, School of Veterinary Science, The University of Sydney, Camden, NSW 2570, Australia.
| | - Michael J Mahan
- Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, Santa Barbara, CA 93106, USA; Institute for Collaborative Biotechnologies, University of California, Santa Barbara, Santa Barbara, CA 93106, USA.
| |
Collapse
|
19
|
Breed MW, Perez HL, Otto M, Villaruz AE, Weese JS, Alvord GW, Donohue DE, Washington F, Kramer JA. Bacterial Genotype, Carrier Risk Factors, and an Antimicrobial Stewardship Approach Relevant To Methicillin-resistant Staphylococcus Aureus Prevalence in a Population of Macaques Housed in a Research Facility. Comp Med 2023; 73:134-144. [PMID: 36941053 PMCID: PMC10162382 DOI: 10.30802/aalas-cm-22-000018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 03/31/2022] [Accepted: 10/27/2022] [Indexed: 03/22/2023]
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) remains a significant problem for human and animal health and can negatively affect the health status of macaques and other nonhuman primates (NHP) in research colonies. However, few publications provide guidance on the prevalence, genotype, or risk factors for macaques with MRSA and even fewer on how to effectively respond to MRSA once identified in a population. After having a clinical case of MRSA in a rhesus macaque, we sought to determine the MRSA carrier prevalence, risk factors, and genotypes of MRSA in a population of research NHPs. Over a 6-wk period in 2015, we collected nasal swabs from 298 NHPs. MRSA was isolated from 28% (n = 83). We then reviewed each macaque's medical record for a variety of variables including animal housing room, sex, age, number of antibiotic courses, number of surgical interventions, and SIV status. Analysis of these data suggests that MRSA carriage is associated with the room location, age of the animal, SIV status, and the number of antibiotic courses. We used multilocus sequence typing and spa typing on a subset of MRSA and MSSA isolates to determine whether the MRSA present in NHPs was comparable with common human strains. Two MRSA sequence types were predominant: ST188 and a novel MRSA genotype, neither of which is a common human isolate in the United States. We subsequently implemented antimicrobial stewardship practices (significantly reducing antimicrobial use) and then resampled the colony in 2018 and found that MRSA carriage had fallen to 9% (26/285). These data suggest that, as in humans, macaques may have a high carrier status of MRSA despite low clinically apparent disease. Implementing strategic antimicrobial stewardship practices resulted in a marked reduction in MRSA carriage in the NHP colony, highlighting the importance of limiting antimicrobial use when possible.
Collapse
Affiliation(s)
- Matthew W Breed
- Laboratory Animal Sciences Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Bethesda, Maryland;,
| | - Hannah L Perez
- Salem Animal Hospital, Salem, Virginia; National Institutes of Health, Bethesda, Maryland
| | - Michael Otto
- Laboratory of Bacteriology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland
| | - Amer E Villaruz
- Laboratory of Bacteriology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland
| | - J Scott Weese
- Centre for Public Health and Zoonoses, Department of Pathobiology, University of Guelph, Guelph, Ontario, Canada; National Institutes of Health, Bethesda, Maryland
| | - Gregory W Alvord
- Statistical Consulting, Data Management Services, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland
| | - Duncan E Donohue
- Statistical Consulting, Data Management Services, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland
| | | | - Joshua A Kramer
- Laboratory Animal Sciences Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Bethesda, Maryland
| |
Collapse
|
20
|
Thomas P, Deming MA, Sarkar A. β-Lactamase Suppression as a Strategy to Target Methicillin-Resistant Staphylococcus aureus: Proof of Concept. ACS OMEGA 2022; 7:46213-46221. [PMID: 36570253 PMCID: PMC9773349 DOI: 10.1021/acsomega.2c04381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 11/21/2022] [Indexed: 06/17/2023]
Abstract
β-Lactamase (penicillinase) renders early, natural β-lactams like penicillin G useless against methicillin-resistant Staphylococcus aureus (MRSA), which also expresses PBP2a, responsible for resistance to semisynthetic, penicillinase-insensitive β-lactams like oxacillin. Antimicrobial discovery is difficult, and resistance exists against most treatment options. Enhancing β-lactams against MRSA would revive its clinical utility. Most research on antimicrobial enhancement against MRSA focuses on oxacillin due to β-lactamase expression. Yet, Moreillon and others have demonstrated that penicillin G is as potent against a β-lactamase gene knockout strain, as vancomycin is against wild-type MRSA. Penicillin G overcame PBP2a because β-lactamase activity was blocked. Additionally, animals treated with a combination of direct β-lactamase inhibitors like sulbactam and clavulanate with penicillin G developed resistant infections, clearly demonstrating that direct inhibition of β-lactamase is not a good strategy. Here, we show that 50 μM pyrimidine-2-amines (P2As) reduce the minimum inhibitory concentration (MIC) of penicillin G against MRSA strains by up to 16-fold by reducing β-lactamase activity but not by direct inhibition of the enzyme. Oxacillin was not enhanced due to PBP2a expression, demonstrating the advantage of penicillin G over penicillinase-insensitive β-lactams. P2As modulate an unknown global regulator but not established antimicrobial-enhancement targets Stk1 and VraS. P2As are a practical implementation of Moreillon's principle of suppressing β-lactamase activity to make penicillin G useful against MRSA, without employing direct enzyme inhibitors.
Collapse
|
21
|
Augusto MF, da Silva Fernandes DC, de Oliveira TLR, Cavalcante FS, Chamon RC, Ferreira ALP, Nouér SA, Rangel AP, Castiñeiras AC, Gonçalez CM, Freire J, Guimarães LF, Batista R, dos Santos KRN. Pandemic clone USA300 in a Brazilian hospital: detection of an emergent lineage among methicillin-resistant Staphylococcus aureus isolates from bloodstream infections. Antimicrob Resist Infect Control 2022; 11:114. [PMID: 36104710 PMCID: PMC9472717 DOI: 10.1186/s13756-022-01154-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 08/22/2022] [Indexed: 12/21/2022] Open
Abstract
Abstract
Background
Staphylococcus aureus is one of the leading causes of bloodstream infections (BSI) worldwide. In Brazil, the hospital-acquired methicillin-resistant S. aureus USA100/SCCmecII lineage replaced the previously well-established clones. However, the emergence of community-associated (CA) MRSA lineages among hospitalized patients is an increasing issue.
Methods
Consecutive S. aureus isolates recovered from BSI episodes of patients admitted between January 2016 and December 2018 in a Brazilian teaching hospital were tested for antimicrobial resistance, their genotypic features were characterized, and the clinical characteristics of the patients were evaluated.
Results
A total of 123 S. aureus isolates were recovered from 113 patients. All isolates were susceptible to linezolid, teicoplanin and vancomycin and 13.8% were not susceptible to daptomycin. Vancomycin MIC50 and MIC90 of 2 mg/L were found for both MRSA and MSSA isolates. The MRSA isolation rate was 30.1% (37/123), and 51.4% of them carried the SCCmec type II, followed by SCCmecIV (40.5%). Among the 37 MRSA isolates, the main lineages found were USA100/SCCmecII/ST5 and ST105 (53.7%) and USA800/ST5/SCCmecIV (18.9%). Surprisingly, six (16%) CA-MRSA isolates, belonging to USA300/ST8/SCCmecIVa that carried PVL genes and the ACME cassette type I, were detected. These six patients with USA300 BSI had severe comorbidities, including cancer, and most had a Charlson score ≥ 5; furthermore, they were in wards attended by the same health professionals. MRSA isolates were associated with hospital acquired infections (p = 0.02) in more elderly patients (p = 0.03) and those diagnosed with hematologic cancer (p = 0.04). Among patients diagnosed with MRSA BSI, 19 (54.3%) died.
Conclusions
The pandemic MRSA USA300 was detected for the first time in the Brazilian teaching hospital under study, and its cross-transmission most probably occurred between patients with BSI. This lineage may already be circulating among other Brazilian hospitals, which highlights the importance of carrying out surveillance programs to fight multidrug resistant and hypervirulent isolates.
Collapse
|
22
|
Selb R, Albert-Braun S, Weltzien A, Schürmann J, Werner G, Layer F. Characterization of Methicillin-resistant Staphylococcus aureus From Children at Hospital Admission: Experiences From a Hospital in a German Metropolitan Area. Pediatr Infect Dis J 2022; 41:720-727. [PMID: 35703280 DOI: 10.1097/inf.0000000000003596] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
BACKGROUND Since the 1990s, community-associated Methicillin-resistant Staphylococcus aureus (CA-MRSA) are described as emerging independent of health care. CA-MRSA is associated with the colonization and infection of healthy, immunocompetent younger individuals. While skin and soft tissue infections (SSTI) are predominant, life-threatening syndromes can also occur. METHODS In this retrospective study, we investigated MRSA stains isolated from community-onset infections and from MRSA screening of children at admission to a tertiary-care hospital in 2012-2018. In total, 102 isolates were subjected to antibiotic susceptibility testing by broth microdilution, spa -typing, multilocus sequence typing, SCC mec typing and virulence/resistance gene detection by polymerase chain reaction. RESULTS The majority of isolates originated from community-onset infections (80/102), of these primarily from SSTI (70/80). Additional strains were isolated by MRSA screening (22/102). In total 61.8% of the MRSA carried the gene for the Panton-Valentine leukocidin ( lukPV ). Molecular characterization of isolates revealed various epidemic MRSA clones, circulating in both community and hospital settings. Most prevalent epidemic lineages were isolates of the "European CA-MRSA clone" (CC80-MRSA-IV), the "Bengal Bay clone" (ST772-MRSA-V), or the "USA300 NAE clone" (ST8-MRSA-IVa). CONCLUSIONS Our data highlight the importance of CA-MRSA causing SSTI in children. More frequent microbiological and molecular analysis of these strains is important for targeted treatment and can provide valuable data for molecular surveillance of the pathogen.
Collapse
Affiliation(s)
- Regina Selb
- From the Unit for Mycotic and Parasitic Agents and Mycobacteria, Department of Infectious Diseases, Robert Koch Institute, Berlin, Germany
- European Public Health Microbiology Programme (EUPHEM), European Centre for Disease Prevention and Control (ECDC), Stockholm, Sweden
| | | | - Alexandra Weltzien
- Department of Paediatric Surgery, Varisano Klinikum Frankfurt Höchst, Frankfurt, Germany
| | - Jacqueline Schürmann
- National Reference Centre for Staphylococci and Enterococci, Division Nosocomial Pathogens and Antibiotic Resistances, Department of Infectious Diseases, Robert Koch Institute, Wernigerode Branch, Wernigerode, Germany
| | - Guido Werner
- National Reference Centre for Staphylococci and Enterococci, Division Nosocomial Pathogens and Antibiotic Resistances, Department of Infectious Diseases, Robert Koch Institute, Wernigerode Branch, Wernigerode, Germany
| | - Franziska Layer
- National Reference Centre for Staphylococci and Enterococci, Division Nosocomial Pathogens and Antibiotic Resistances, Department of Infectious Diseases, Robert Koch Institute, Wernigerode Branch, Wernigerode, Germany
| |
Collapse
|
23
|
Siwczak F, Cseresnyes Z, Hassan MIA, Aina KO, Carlstedt S, Sigmund A, Groger M, Surewaard BGJ, Werz O, Figge MT, Tuchscherr L, Loffler B, Mosig AS. Human macrophage polarization determines bacterial persistence of Staphylococcus aureus in a liver-on-chip-based infection model. Biomaterials 2022; 287:121632. [PMID: 35728409 DOI: 10.1016/j.biomaterials.2022.121632] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 05/13/2022] [Accepted: 06/09/2022] [Indexed: 11/17/2022]
Abstract
Infections with Staphylococcus aureus (S. aureus) have been reported from various organs ranging from asymptomatic colonization to severe infections and sepsis. Although considered an extracellular pathogen, S. aureus can invade and persist in professional phagocytes such as monocytes and macrophages. Its capability to persist and manipulate macrophages is considered a critical step to evade host antimicrobial reactions. We leveraged a recently established human liver-on-chip model to demonstrate that S. aureus specifically targets macrophages as essential niche facilitating bacterial persistence and phenotype switching to small colony variants (SCVs). In vitro, M2 polarization was found to favor SCV-formation and was associated with increased intracellular bacterial loads in macrophages, increased cell death, and impaired recruitment of circulating monocytes to sites of infection. These findings expand the knowledge about macrophage activation in the liver and its impact on bacterial persistence and dissemination in the course of infection.
Collapse
Affiliation(s)
- Fatina Siwczak
- Institute of Biochemistry II, Center for Sepsis Control and Care, Jena University Hospital, Am Nonnenplan 1, 07743, Jena, Germany
| | - Zoltan Cseresnyes
- Applied Systems Biology Research Group, Leibniz Institute for Natural Product Research and Infection Biology-Hans Knöll Institute (HKI), Beutenbergstraße 13, 07745, Jena, Germany
| | - Mohamed I Abdelwahab Hassan
- Institute of Biochemistry II, Center for Sepsis Control and Care, Jena University Hospital, Am Nonnenplan 1, 07743, Jena, Germany
| | - Kehinde Oluwasegun Aina
- Institute of Biochemistry II, Center for Sepsis Control and Care, Jena University Hospital, Am Nonnenplan 1, 07743, Jena, Germany
| | - Swen Carlstedt
- Institute of Biochemistry II, Center for Sepsis Control and Care, Jena University Hospital, Am Nonnenplan 1, 07743, Jena, Germany
| | - Anke Sigmund
- Institute of Medical Microbiology, Jena University Hospital, Am Klinikum 1, 07747, Jena, Germany
| | - Marko Groger
- Institute of Biochemistry II, Center for Sepsis Control and Care, Jena University Hospital, Am Nonnenplan 1, 07743, Jena, Germany
| | - Bas G J Surewaard
- Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, 2500 University Drive NW, Calgary, Alberta, Canada; Department of Microbiology, Immunology and Infectious Diseases, Cumming School of Medicine, University of Calgary, 3330 Hospital Dr NW, Calgary, Alberta, Canada
| | - Oliver Werz
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich Schiller University Jena, Jena, Germany
| | - Marc Thilo Figge
- Applied Systems Biology Research Group, Leibniz Institute for Natural Product Research and Infection Biology-Hans Knöll Institute (HKI), Beutenbergstraße 13, 07745, Jena, Germany; Institute of Microbiology, Faculty of Biological Sciences, Friedrich Schiller University Jena, Neugasse 25, 07743, Jena, Germany
| | - Lorena Tuchscherr
- Institute of Medical Microbiology, Jena University Hospital, Am Klinikum 1, 07747, Jena, Germany
| | - Bettina Loffler
- Institute of Medical Microbiology, Jena University Hospital, Am Klinikum 1, 07747, Jena, Germany
| | - Alexander S Mosig
- Institute of Biochemistry II, Center for Sepsis Control and Care, Jena University Hospital, Am Nonnenplan 1, 07743, Jena, Germany.
| |
Collapse
|
24
|
Pinto SN, Mil-Homens D, Pires RF, Alves MM, Serafim G, Martinho N, Melo M, Fialho AM, Bonifácio VDB. Core-shell polycationic polyurea pharmadendrimers: new-generation of sustainable broad-spectrum antibiotics and antifungals. Biomater Sci 2022; 10:5197-5207. [PMID: 35880970 DOI: 10.1039/d2bm00679k] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The efficacy of conventional antimicrobials is falling to critical levels and raising alarming concerns around the globe. In this scenery, engineered nanoparticles emerged as a solid strategy to fight growing deadly infections. Here, we show the in vitro and in vivo performance of pharmadendrimers, a novel class of engineered polyurea dendrimers that are synthetic mimics of antibacterial peptides, against a collection of both Gram-positive and Gram-negative bacteria and fungi. These nanobiomaterials are stable solids prepared by low-cost and green processes, display a dense positively charged core-shell, and are biocompatible and hemocompatible drugs. Mechanistic data, corroborated by coarse-grained molecular dynamics simulations, points towards a fast-killing mechanism via membrane disruption, triggered by electrostatic interactions. Altogether this study provides strong evidence and support for the future use of polyurea pharmadendrimers in antibacterial and antifungal nanotherapeutics.
Collapse
Affiliation(s)
- Sandra N Pinto
- iBB-Institute for Bioengineering and Biosciences and i4HB-Institute for Health and Bioeconomy, Instituto Superior Técnico, Av. Rovisco Pais, 1049-001 Lisboa, Portugal.
| | - Dalila Mil-Homens
- iBB-Institute for Bioengineering and Biosciences and i4HB-Institute for Health and Bioeconomy, Instituto Superior Técnico, Av. Rovisco Pais, 1049-001 Lisboa, Portugal.
| | - Rita F Pires
- iBB-Institute for Bioengineering and Biosciences and i4HB-Institute for Health and Bioeconomy, Instituto Superior Técnico, Av. Rovisco Pais, 1049-001 Lisboa, Portugal.
| | - Marta M Alves
- Centro de Química Estrutural (CQE), Institute of Molecular Sciences, Instituto Superior Técnico (IST), Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Gabriel Serafim
- iBB-Institute for Bioengineering and Biosciences and i4HB-Institute for Health and Bioeconomy, Instituto Superior Técnico, Av. Rovisco Pais, 1049-001 Lisboa, Portugal.
| | - Nuno Martinho
- iBB-Institute for Bioengineering and Biosciences and i4HB-Institute for Health and Bioeconomy, Instituto Superior Técnico, Av. Rovisco Pais, 1049-001 Lisboa, Portugal.
| | - Manuel Melo
- Instituto de Tecnologia Química Biológica António Xavier, Universidade NOVA de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| | - Arsénio M Fialho
- iBB-Institute for Bioengineering and Biosciences and i4HB-Institute for Health and Bioeconomy, Instituto Superior Técnico, Av. Rovisco Pais, 1049-001 Lisboa, Portugal. .,Bioengineering Department, Instituto Superior Técnico, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Vasco D B Bonifácio
- iBB-Institute for Bioengineering and Biosciences and i4HB-Institute for Health and Bioeconomy, Instituto Superior Técnico, Av. Rovisco Pais, 1049-001 Lisboa, Portugal. .,Bioengineering Department, Instituto Superior Técnico, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| |
Collapse
|
25
|
Malachowa N, McGuinness W, Kobayashi SD, Porter AR, Shaia C, Lovaglio J, Smith B, Rungelrath V, Saturday G, Scott DP, Falugi F, Missiakas D, Schneewind O, DeLeo FR. Toward Optimization of a Rabbit Model of Staphylococcus aureus (USA300) Skin and Soft Tissue Infection. Microbiol Spectr 2022; 10:e0271621. [PMID: 35389241 PMCID: PMC9045089 DOI: 10.1128/spectrum.02716-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 03/22/2022] [Indexed: 11/20/2022] Open
Abstract
Staphylococcus aureus remains a leading cause of skin and soft tissue infections (SSTIs) globally. In the United States, many of these infections are caused by isolates classified as USA300. Our understanding of the success of USA300 as a human pathogen is due in part to data obtained from animal infection models, including rabbit SSTI models. These animal models have been used to study S. aureus virulence and pathogenesis and to gain an enhanced understanding of the host response to infection. Although significant knowledge has been gained, the need to use a relatively high inoculum of USA300 (1 × 108 to 5 × 108 CFU) is a caveat of these infection models. As a step toward addressing this issue, we created mutations in USA300 that mimic those found in S. aureus strains with naturally occurring rabbit tropism-namely, single nucleotide polymorphisms in dltB and/or deletion of rot. We then developed a rabbit SSTI model that utilizes an inoculum of 106 USA300 CFU to cause reproducible disease and tested whether primary SSTI protects rabbits against severe reinfection caused by the same strain. Although there was modest protection against severe reinfection, primary infection and reinfection with rabbit-tropic USA300 strains failed to increase the overall level of circulating anti-S. aureus antibodies significantly. These findings provide additional insight into the host response to S. aureus. More work is needed to further develop a low-inoculum infection model that can be used to better test the potential of new therapeutics or vaccine target antigens. IMPORTANCE Animal models of S. aureus infection are important for evaluating bacterial pathogenesis and host immune responses. These animal infection models are often used as an initial step in the testing of vaccine antigens and new therapeutics. The extent to which animal models of S. aureus infection approximate human infections remains a significant consideration for translation of results to human clinical trials. Although significant progress has been made with rabbit models of S. aureus infection, one concern is the high inoculum needed to cause reproducible disease. Here, we generated USA300 strains that have tropism for rabbits and developed a rabbit SSTI model that uses fewer CFU than previous models.
Collapse
Affiliation(s)
- Natalia Malachowa
- Laboratory of Bacteriology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA
| | - Will McGuinness
- Laboratory of Bacteriology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA
| | - Scott D. Kobayashi
- Laboratory of Bacteriology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA
| | - Adeline R. Porter
- Laboratory of Bacteriology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA
| | - Carl Shaia
- Rocky Mountain Veterinary Branch, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA
| | - Jamie Lovaglio
- Rocky Mountain Veterinary Branch, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA
| | - Brian Smith
- Rocky Mountain Veterinary Branch, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA
| | - Viktoria Rungelrath
- Laboratory of Bacteriology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA
| | - Greg Saturday
- Rocky Mountain Veterinary Branch, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA
| | - Dana P. Scott
- Rocky Mountain Veterinary Branch, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA
| | - Fabiana Falugi
- Department of Microbiology, University of Chicago, Chicago, Illinois, USA
| | | | - Olaf Schneewind
- Department of Microbiology, University of Chicago, Chicago, Illinois, USA
| | - Frank R. DeLeo
- Laboratory of Bacteriology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA
| |
Collapse
|
26
|
Fernandez JS, Tuttobene MR, Montaña S, Subils T, Cantera V, Iriarte A, Tuchscherr L, Ramirez MS. Staphylococcus aureus α-Toxin Effect on Acinetobacter baumannii Behavior. BIOLOGY 2022; 11:biology11040570. [PMID: 35453769 PMCID: PMC9028598 DOI: 10.3390/biology11040570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 04/02/2022] [Accepted: 04/06/2022] [Indexed: 11/16/2022]
Abstract
Polymicrobial infections are more challenging to treat and are recognized as responsible for significant morbidity and mortality. It has been demonstrated that multiple Gram-negative organisms take advantage of the effects of Staphylococcus aureus α-toxin on mucosal host defense, resulting in proliferation and dissemination of the co-infecting pathogens. Through phenotypic approaches, we observed a decrease in the motility of A. baumannii A118 after exposure to cell-free conditioned media (CFCM) of S. aureus strains, USA300 and LS1. However, the motility of A. baumannii A118 was increased after exposure to the CFCM of S. aureus strains USA300 Δhla and S. aureus LSI ΔagrA. Hemolytic activity was seen in A118, in the presence of CFCM of S. aureus LS1. Further, A. baumannii A118 showed an increase in biofilm formation and antibiotic resistance to tetracycline, in the presence of CFCM of S. aureus USA300. Transcriptomic analysis of A. baumannii A118, with the addition of CFCM from S. aureus USA300, was carried out to study A. baumannii response to S. aureus’ released molecules. The RNA-seq data analysis showed a total of 463 differentially expressed genes, associated with a wide variety of functions, such as biofilm formation, virulence, and antibiotic susceptibility, among others. The present results showed that A. baumannii can sense and respond to molecules secreted by S. aureus. These findings demonstrate that A. baumannii may perceive and respond to changes in its environment; specifically, when in the presence of CFCM from S. aureus.
Collapse
Affiliation(s)
- Jennifer S. Fernandez
- Center for Applied Biotechnology Studies, Department of Biological Science, California State University Fullerton, Fullerton, CA 92831, USA; (J.S.F.); (M.R.T.)
| | - Marisel R. Tuttobene
- Center for Applied Biotechnology Studies, Department of Biological Science, California State University Fullerton, Fullerton, CA 92831, USA; (J.S.F.); (M.R.T.)
- Instituto de Biología Molecular y Celular de Rosario (IBR-CONICET), Rosario S2000, Argentina
| | - Sabrina Montaña
- Laboratorio de Bacteriología Clínica, Departamento de Bioquímica Clínica, Hospital de Clínicas José de San Martín, Facultad de Farmacia y Bioquímica, Buenos Aires C1113, Argentina;
| | - Tomás Subils
- Instituto de Procesos Biotecnológicos y Químicos de Rosario (IPROBYQ, CONICET-UNR), Rosario S2000, Argentina;
| | - Virginia Cantera
- Laboratorio de Biología Computacional, Departamento de Desarrollo Biotecnológico, Facultad de Medicina, Universidad de la República, Montevideo 11200, Uruguay; (V.C.); (A.I.)
| | - Andrés Iriarte
- Laboratorio de Biología Computacional, Departamento de Desarrollo Biotecnológico, Facultad de Medicina, Universidad de la República, Montevideo 11200, Uruguay; (V.C.); (A.I.)
| | - Lorena Tuchscherr
- Institute of Medical Microbiology, Jena University Hospital, 07747 Jena, Germany;
| | - Maria Soledad Ramirez
- Center for Applied Biotechnology Studies, Department of Biological Science, California State University Fullerton, Fullerton, CA 92831, USA; (J.S.F.); (M.R.T.)
- Correspondence: ; Tel.: +1-657-278-4562
| |
Collapse
|
27
|
Almeida ST, Paulo AC, de Lencastre H, Sá-Leão R. Evaluation of Methicillin-Resistant Staphylococcus aureus Carriage in the Elderly in Portugal Using Selective Enrichment Followed by quantitative real-time PCR. Microb Drug Resist 2022; 28:585-592. [PMID: 35363078 DOI: 10.1089/mdr.2021.0383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The prevalence of methicillin-resistant Staphylococcus aureus (MRSA) in hospitals in Portugal is worrisome and among the highest in Europe. Surprisingly, MRSA prevalence in the community was described as very low (<2%) based on studies that used classical culture-based methods (CCBM). We investigated whether the apparent limited spread of MRSA in the community in Portugal might result from low sensitivity of CCBM. Nasopharyngeal- and oropharyngeal-paired samples obtained from senior adults living in nursing (n = 299) or family homes (n = 300) previously characterized by CCBM were reanalyzed. Samples were inoculated in a semi-selective enrichment medium, and those showing visible growth were evaluated by qPCR targeting nuc, mecA, and mecC genes (SSE+qPCR). By SSE+qPCR, 34 of the 1,198 (2.8%) samples were MRSA positive compared with 21 (1.8%) by CCBM. SSE+qPCR improved non-significantly detection of MRSA carriers from 5.4% to 8.0% (p = 0.12) in the nursing home collection, and from 0.3% to 1.7% (p = 0.13) in the family home collection. MRSA isolates belonged to three HA-MRSA clones widely disseminated in Portuguese hospitals. In conclusion, use of semi-selective medium combined with qPCR did not change the overall scenario previously described. In Portugal, MRSA circulation in the community among senior adults is low.
Collapse
Affiliation(s)
- Sónia Tavares Almeida
- Laboratory of Molecular Microbiology of Human Pathogens, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa (ITQB NOVA), Oeiras, Portugal
| | - Ana Cristina Paulo
- Laboratory of Molecular Microbiology of Human Pathogens, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa (ITQB NOVA), Oeiras, Portugal
| | - Hermínia de Lencastre
- Laboratory of Molecular Genetics, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa (ITQB NOVA), Oeiras, Portugal
- Laboratory of Microbiology and Infectious Diseases, The Rockefeller University, New York, New York, USA
| | - Raquel Sá-Leão
- Laboratory of Molecular Microbiology of Human Pathogens, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa (ITQB NOVA), Oeiras, Portugal
| |
Collapse
|
28
|
Burgin DJ, Liu R, Hsieh RC, Heinzinger LR, Otto M. Investigational agents for the treatment of methicillin-resistant Staphylococcus aureus (MRSA) bacteremia: progress in clinical trials. Expert Opin Investig Drugs 2022; 31:263-279. [PMID: 35129409 PMCID: PMC10988647 DOI: 10.1080/13543784.2022.2040015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 02/06/2022] [Indexed: 12/27/2022]
Abstract
INTRODUCTION Bacteremia caused by Staphylococcus aureus is common. Cases caused by methicillin-resistant S. aureus (MRSA) are particularly formidable and often lethal. The mortality associated with MRSA bacteremia has not significantly decreased over the past couple of decades and concerns regarding efficacy and toxicity of standard therapy highlight the need for novel agents and new therapeutic approaches. AREAS COVERED This paper explores clinical trials investigating novel therapeutic approaches to S. aureus bacteremia. There is a special focus on MRSA bacteremia. Monotherapy and combination therapies and novel antimicrobials and adjunctive therapies that are only recently being established for therapeutic use are discussed. EXPERT OPINION The unfavorable safety profile of combination antimicrobial therapy in clinical trials has outweighed its benefits. Therefore, future investigation should focus on optimizing duration and de-escalation protocols. Antibody and bacteriophage lysin-based candidates have mostly been limited to safety trials, but progress with these agents is demonstrated through a lysin-based agent receiving a phase III trial. Antibiotics indicated for use in treating MRSA skin infections see continued investigation as treatments for MRSA bacteremia despite the difficulty of completing trials in this patient population. Promising agents include dalbavancin, ceftobiprole, ceftaroline, and exebacase.
Collapse
Affiliation(s)
- Dylan J. Burgin
- Pathogen Molecular Genetics Section, Laboratory of Bacteriology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Ryan Liu
- Pathogen Molecular Genetics Section, Laboratory of Bacteriology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Roger C. Hsieh
- Pathogen Molecular Genetics Section, Laboratory of Bacteriology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Lauren R. Heinzinger
- Pathogen Molecular Genetics Section, Laboratory of Bacteriology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Michael Otto
- Pathogen Molecular Genetics Section, Laboratory of Bacteriology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| |
Collapse
|
29
|
Maeda R, Kobayashi H, Higashidani M, Matsuhisa T, Sawa A, Miyake K, Tayama Y, Kimura K, Itoh H, Okano T, Seike S, Yamanaka H. Molecular epidemiological and pharmaceutical studies of methicillin-resistant Staphylococcus aureus isolated at hospitals in Kure City, Japan. Access Microbiol 2022; 4:000319. [PMID: 35355871 PMCID: PMC8941957 DOI: 10.1099/acmi.0.000319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 12/13/2021] [Indexed: 11/18/2022] Open
Abstract
Introduction Methicillin-resistant Staphylococcus aureus (MRSA) is one of the major pathogens of nosocomial infections throughout the world. In the medical field, it is extremely important to this pathogen’s trends when considering infection control. Hypothesis/Gap Statement We hypothesized that clarifying the characteristics of clinically isolated MRSA would contribute to infection control and proper use of antimicrobial agents against MRSA. Aim The purpose of this study is to elucidate the genetic and biological characteristics of the MRSA isolates found at our hospital and to reveal changes in the spread of this pathogen in the local area where we live. Methodology Pulse-field gel electrophoresis (PFGE) and polymerase chain reaction were used for the genetic analyses of MRSA isolates. Toxin production by each isolate was examined using toxin-specific detection systems. Results During the 3 years from 2017 through 2019, over 1000 MRSA strains were isolated at our hospital. Genomic analysis of 237 of these clinical isolates by PFGE revealed 12 PFGE types (types A to L), each consisting of five or more MRSA clinical strains with over 80% genetic similarity. Examination of the SCCmec genotypes found that 219 of 237 isolated MRSA strains (approximately 92%) were SCCmec genotype II or IV and that only four of the isolates carried the Panton−Valentine leukocidin (PVL) gene. Examination of the toxin production of the isolates using staphylococcal enterotoxin detection kits found that most isolates carrying the SCCmec genotype II produced enterotoxin B and/or C, and that most isolates carrying the SCCmec genotype IV produced enterotoxin A. Conclusion The present results revealed that MRSA isolates with common properties were isolated at certain rates throughout the 3 year study period, suggesting that relatively specific MRSA clones may have settled in the local area around our hospital. We also examine the relationship between antimicrobial usage over time and changes in MRSA isolation rates.
Collapse
Affiliation(s)
- Ryuto Maeda
- National Hospital Organization, Kure Medical Center and Chugoku Cancer Center, Aoyama-cho, Kure, Hiroshima 737-0023, Japan
- Research Center for Pharmaceutical Health Care and Sciences, Faculty of Pharmaceutical Sciences, Hiroshima International University, Hiro-Koshingai, Kure, Hiroshima 737-0112, Japan
| | - Hidetomo Kobayashi
- Laboratory of Molecular Microbiological Science, Faculty of Pharmaceutical Sciences, Hiroshima International University, Hiro-Koshingai, Kure, Hiroshima 737-0112, Japan
| | - Mami Higashidani
- National Hospital Organization, Kure Medical Center and Chugoku Cancer Center, Aoyama-cho, Kure, Hiroshima 737-0023, Japan
| | - Tetsuaki Matsuhisa
- National Hospital Organization, Kure Medical Center and Chugoku Cancer Center, Aoyama-cho, Kure, Hiroshima 737-0023, Japan
| | - Akihiro Sawa
- Research Center for Pharmaceutical Health Care and Sciences, Faculty of Pharmaceutical Sciences, Hiroshima International University, Hiro-Koshingai, Kure, Hiroshima 737-0112, Japan
| | - Katsushi Miyake
- Research Center for Pharmaceutical Health Care and Sciences, Faculty of Pharmaceutical Sciences, Hiroshima International University, Hiro-Koshingai, Kure, Hiroshima 737-0112, Japan
| | - Yoshitaka Tayama
- Research Center for Pharmaceutical Health Care and Sciences, Faculty of Pharmaceutical Sciences, Hiroshima International University, Hiro-Koshingai, Kure, Hiroshima 737-0112, Japan
| | - Kouji Kimura
- Research Center for Pharmaceutical Health Care and Sciences, Faculty of Pharmaceutical Sciences, Hiroshima International University, Hiro-Koshingai, Kure, Hiroshima 737-0112, Japan
| | - Hiroyuki Itoh
- Saiseikai Kure Hospital, Sanjo, Kure, Hiroshima 737-0821, Japan
| | - Taichi Okano
- Saiseikai Kure Hospital, Sanjo, Kure, Hiroshima 737-0821, Japan
| | - Soshi Seike
- Laboratory of Molecular Microbiological Science, Faculty of Pharmaceutical Sciences, Hiroshima International University, Hiro-Koshingai, Kure, Hiroshima 737-0112, Japan
| | - Hiroyasu Yamanaka
- Laboratory of Molecular Microbiological Science, Faculty of Pharmaceutical Sciences, Hiroshima International University, Hiro-Koshingai, Kure, Hiroshima 737-0112, Japan
| |
Collapse
|
30
|
Kim D, Yoon EJ, Hong JS, Choi MH, Kim HS, Kim YR, Kim YA, Uh Y, Shin KS, Shin JH, Park JS, Park KU, Won EJ, Kim SH, Shin JH, Kim JW, Lee S, Jeong SH. Major Bloodstream Infection-Causing Bacterial Pathogens and Their Antimicrobial Resistance in South Korea, 2017-2019: Phase I Report From Kor-GLASS. Front Microbiol 2022; 12:799084. [PMID: 35069503 PMCID: PMC8770956 DOI: 10.3389/fmicb.2021.799084] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 11/29/2021] [Indexed: 12/13/2022] Open
Abstract
To monitor national antimicrobial resistance (AMR), the Korea Global AMR Surveillance System (Kor-GLASS) was established. This study analyzed bloodstream infection (BSI) cases from Kor-GLASS phase I from January 2017 to December 2019. Nine non-duplicated Kor-GLASS target pathogens, including Staphylococcus aureus, Enterococcus faecalis, Enterococcus faecium, Streptococcus pneumoniae, Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa, Acinetobacter spp., and Salmonella spp., were isolated from blood specimens from eight sentinel hospitals. Antimicrobial susceptibility testing, AMR genotyping, and strain typing were carried out. Among the 20,041 BSI cases, 15,171 cases were caused by one of the target pathogens, and 12,578 blood isolates were collected for the study. Half (1,059/2,134) of S. aureus isolates were resistant to cefoxitin, and 38.1% (333/873) of E. faecium isolates were resistant to vancomycin. Beta-lactamase-non-producing ampicillin-resistant and penicillin-resistant E. faecalis isolates by disk diffusion method were identified, but the isolates were confirmed as ampicillin-susceptible by broth microdilution method. Among E. coli, an increasing number of isolates carried the bla CTX-M-27 gene, and the ertapenem resistance in 1.4% (30/2,110) of K. pneumoniae isolates was mostly (23/30) conferred by K. pneumoniae carbapenemases. A quarter (108/488) of P. aeruginosa isolates were resistant to meropenem, and 30.5% (33/108) of those carried acquired carbapenemase genes. Over 90% (542/599) of A. baumannii isolates were imipenem-resistant, and all except one harbored the bla OXA-23 gene. Kor-GLASS provided comprehensive AMR surveillance data, and the defined molecular mechanisms of resistance helped us to better understand AMR epidemiology. Comparative analysis with other GLASS-enrolled countries is possible owing to the harmonized system provided by GLASS.
Collapse
Affiliation(s)
- Dokyun Kim
- Department of Laboratory Medicine and Research Institute of Bacterial Resistance, Yonsei University College of Medicine, Seoul, South Korea
| | - Eun-Jeong Yoon
- Department of Laboratory Medicine and Research Institute of Bacterial Resistance, Yonsei University College of Medicine, Seoul, South Korea.,National Institute of Health, Korea Disease Control and Prevention Agency, Cheongju, South Korea
| | - Jun Sung Hong
- Department of Laboratory Medicine and Research Institute of Bacterial Resistance, Yonsei University College of Medicine, Seoul, South Korea
| | - Min Hyuk Choi
- Department of Laboratory Medicine and Research Institute of Bacterial Resistance, Yonsei University College of Medicine, Seoul, South Korea
| | - Hyun Soo Kim
- Department of Laboratory Medicine, Hallym University Dongtan Sacred Heart Hospital, Hallym University College of Medicine, Hwaseong, South Korea
| | - Young Ree Kim
- Department of Laboratory Medicine, Jeju National University School of Medicine, Jeju, South Korea
| | - Young Ah Kim
- Department of Laboratory Medicine, National Health Insurance Service Ilsan Hospital, Goyang, South Korea
| | - Young Uh
- Department of Laboratory Medicine, Yonsei University Wonju College of Medicine, Wonju, South Korea
| | - Kyeong Seob Shin
- Department of Laboratory Medicine, College of Medicine, Chungbuk National University, Cheongju, South Korea
| | - Jeong Hwan Shin
- Department of Laboratory Medicine and Paik Institute for Clinical Research, Inje University College of Medicine, Busan, South Korea
| | - Jeong Su Park
- Department of Laboratory Medicine, Seoul National University College of Medicine, Seoul National University Bundang Hospital, Seongnam, South Korea
| | - Kyoung Un Park
- Department of Laboratory Medicine, Seoul National University College of Medicine, Seoul National University Bundang Hospital, Seongnam, South Korea
| | - Eun Jeong Won
- Department of Laboratory Medicine, Chonnam National University Medical School, Gwangju, South Korea
| | - Soo Hyun Kim
- Department of Laboratory Medicine, Chonnam National University Medical School, Gwangju, South Korea
| | - Jong Hee Shin
- Department of Laboratory Medicine, Chonnam National University Medical School, Gwangju, South Korea
| | - Jung Wook Kim
- National Institute of Health, Korea Disease Control and Prevention Agency, Cheongju, South Korea
| | - SungYoung Lee
- National Institute of Health, Korea Disease Control and Prevention Agency, Cheongju, South Korea
| | - Seok Hoon Jeong
- Department of Laboratory Medicine and Research Institute of Bacterial Resistance, Yonsei University College of Medicine, Seoul, South Korea
| |
Collapse
|
31
|
Cheung GYC, Bae JS, Otto M. Pathogenicity and virulence of Staphylococcus aureus. Virulence 2021; 12:547-569. [PMID: 33522395 PMCID: PMC7872022 DOI: 10.1080/21505594.2021.1878688] [Citation(s) in RCA: 517] [Impact Index Per Article: 172.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Revised: 01/13/2021] [Accepted: 01/15/2021] [Indexed: 12/15/2022] Open
Abstract
Staphylococcus aureus is one of the most frequent worldwide causes of morbidity and mortality due to an infectious agent. This pathogen can cause a wide variety of diseases, ranging from moderately severe skin infections to fatal pneumonia and sepsis. Treatment of S. aureus infections is complicated by antibiotic resistance and a working vaccine is not available. There has been ongoing and increasing interest in the extraordinarily high number of toxins and other virulence determinants that S. aureus produces and how they impact disease. In this review, we will give an overview of how S. aureus initiates and maintains infection and discuss the main determinants involved. A more in-depth understanding of the function and contribution of S. aureus virulence determinants to S. aureus infection will enable us to develop anti-virulence strategies to counteract the lack of an anti-S. aureus vaccine and the ever-increasing shortage of working antibiotics against this important pathogen.
Collapse
Affiliation(s)
- Gordon Y. C. Cheung
- Pathogen Molecular Genetics Section, Laboratory of Bacteriology, National Institute of Allergy and Infectious Diseases, U.S. National Institutes of Health, Bethesda, Maryland, USA
| | - Justin S. Bae
- Pathogen Molecular Genetics Section, Laboratory of Bacteriology, National Institute of Allergy and Infectious Diseases, U.S. National Institutes of Health, Bethesda, Maryland, USA
| | - Michael Otto
- Pathogen Molecular Genetics Section, Laboratory of Bacteriology, National Institute of Allergy and Infectious Diseases, U.S. National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
32
|
Eichenberger EM, Ruffin F, Sharma-Kuinkel B, Dagher M, Park L, Kohler C, Sinclair MR, Maskarinec SA, Fowler VG. Bacterial genotype and clinical outcomes in solid organ transplant recipients with Staphylococcus aureus bacteremia. Transpl Infect Dis 2021; 23:e13730. [PMID: 34500502 PMCID: PMC8785702 DOI: 10.1111/tid.13730] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 08/26/2021] [Indexed: 11/27/2022]
Abstract
INTRODUCTION Outcomes from Staphylococcus aureus bacteremia (SAB) in solid organ transplant (SOT) recipients are poorly understood. METHODS This is a prospective cohort study comparing the bacterial genotype and clinical outcomes of SAB among SOT and non-transplant (non-SOT) recipients from 2005 to 2019. Each subject's initial S. aureus bloodstream isolate was genotyped using spa typing and assigned to a clonal complex. RESULTS A total of 103 SOT and 1783 non-SOT recipients with SAB were included. Bacterial genotype did not differ significantly between SOT and non-SOT recipients (p = .4673), including the proportion of SAB caused by USA300 (13.2% vs. 16.0%, p = .2680). Transplant status was not significantly associated with 90-day mortality (18.4% vs. 29.5%; adjusted odds ratio [aOR] 0.74; 95% confidence interval [CI]: 0.44, 1.25), but was associated with increased risk for septic shock (50.0% vs. 21.8%; aOR 2.31; 95% CI: 1.48, 3.61) and acute respiratory distress syndrome (21.4% vs. 13.7%; aOR 2.03; 95% CI: 1.22, 3.37), and a significantly lower risk of metastatic complications (33.0% vs. 45.5%; aOR 0.49; 95% CI: 0.32, 0.76). No association was found between bacterial genotype and 90-day mortality (p = .6222) or septic shock (p = .5080) in SOT recipients with SAB. CONCLUSIONS SOT recipients with SAB do not experience greater mortality than non-SOT recipients. The genotype of S. aureus bloodstream isolates in SOT recipients is similar to that of non-SOT recipients, and does not appear to be an important determinant of outcome in SOT recipients with SAB.
Collapse
Affiliation(s)
- Emily M Eichenberger
- Division of Infectious Diseases, Department of Medicine, Duke University, Durham, North Carolina, United States of America
| | - Felicia Ruffin
- Division of Infectious Diseases, Department of Medicine, Duke University, Durham, North Carolina, United States of America
| | - Batu Sharma-Kuinkel
- Division of Infectious Diseases, Department of Medicine, Duke University, Durham, North Carolina, United States of America
| | - Michael Dagher
- Division of Infectious Diseases, Department of Medicine, Duke University, Durham, North Carolina, United States of America
| | - Lawrence Park
- Division of Infectious Diseases, Department of Medicine, Duke University, Durham, North Carolina, United States of America
| | - Celia Kohler
- Division of Infectious Diseases, Department of Medicine, Duke University, Durham, North Carolina, United States of America
| | - Matthew R Sinclair
- Division of Nephrology, Department of Medicine, Duke University, Durham, North Carolina, United States of America
- Duke Clinical Research Institute, Duke University, Durham, North Carolina, United States of America
| | - Stacey A Maskarinec
- Division of Infectious Diseases, Department of Medicine, Duke University, Durham, North Carolina, United States of America
| | - Vance G Fowler
- Division of Infectious Diseases, Department of Medicine, Duke University, Durham, North Carolina, United States of America
| |
Collapse
|
33
|
Creutz I, Busche T, Layer F, Bednarz H, Kalinowski J, Niehaus K. Evaluation of virulence potential of methicillin-sensitive and methicillin-resistant Staphylococcus aureus isolates from a German refugee cohort. Travel Med Infect Dis 2021; 45:102204. [PMID: 34785377 DOI: 10.1016/j.tmaid.2021.102204] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 11/04/2021] [Accepted: 11/09/2021] [Indexed: 11/15/2022]
Abstract
BACKGROUND Community-acquired methicillin-resistant Staphylococcus aureus (CA-MRSA) seem to be highly transmissible, often infect otherwise healthy humans and frequently occur in hospital outbreaks. METHODS Refugees, living in accommodations in Germany were screened for nasal carriage of S. aureus. The isolates were investigated regarding resistance and virulence, phenotypically and by whole genome data analysis. RESULTS 5.6% (9/161) of the refugees are carriers of S. aureus. 2.5% (4/161) are MRSA carriers. Among the refugees, spa-types t021, t084, t304, t991 and t4983 were detected, as well as the new spa-types t18794 and t18795. t304 and t991 are assumed to be local spa-types from the middle east. The isolates are less resistant and marginal biofilm formers. Each isolate has a remarkable set of virulence genes, although genes, encoding for proteins strongly associated with invasive S. aureus infections, like Panton-Valentine leucocidin, were not detected. CONCLUSION The detection of strains from the middle east, supports the assumption that strains co-travel with the refugees and persist despite a transition of the host's living conditions. Whole genome data analysis does not permit to finally evaluate a germ's virulence. Nevertheless, an impression of the virulence potential of the strains, regarding skills in colonization, resistance, immune evasion, and host cell damaging can be pictured.
Collapse
Affiliation(s)
- Ines Creutz
- Proteome and Metabolome Research, Faculty of Biology, Bielefeld University, Bielefeld, Germany; FlüGe Graduate School, School of Public Heath, Bielefeld University, Bielefeld, Germany.
| | - Tobias Busche
- Technology Platform Genomics, CeBiTec, Bielefeld University, Bielefeld, Germany.
| | - Franziska Layer
- Department of Infectious Diseases, Division Nosocomial Pathogens and Antibiotic Resistances, National Reference Centre for Staphylococci and Enterococci, Robert Koch Institute, Wernigerode, Germany.
| | - Hanna Bednarz
- Proteome and Metabolome Research, Faculty of Biology, Bielefeld University, Bielefeld, Germany.
| | - Jörn Kalinowski
- Technology Platform Genomics, CeBiTec, Bielefeld University, Bielefeld, Germany.
| | - Karsten Niehaus
- Proteome and Metabolome Research, Faculty of Biology, Bielefeld University, Bielefeld, Germany.
| |
Collapse
|
34
|
Chen H, Yin Y, van Dorp L, Shaw LP, Gao H, Acman M, Yuan J, Chen F, Sun S, Wang X, Li S, Zhang Y, Farrer RA, Wang H, Balloux F. Drivers of methicillin-resistant Staphylococcus aureus (MRSA) lineage replacement in China. Genome Med 2021; 13:171. [PMID: 34711267 PMCID: PMC8555231 DOI: 10.1186/s13073-021-00992-x] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 10/17/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Methicillin-resistant Staphylococcus aureus (MRSA) is a major nosocomial pathogen subdivided into lineages termed sequence types (STs). Since the 1950s, successive waves of STs have appeared and replaced previously dominant lineages. One such event has been occurring in China since 2013, with community-associated (CA-MRSA) strains including ST59 largely replacing the previously dominant healthcare-associated (HA-MRSA) ST239. We previously showed that ST59 isolates tend to have a competitive advantage in growth experiments against ST239. However, the underlying genomic and phenotypic drivers of this replacement event are unclear. METHODS Here, we investigated the replacement of ST239 using whole-genome sequencing data from 204 ST239 and ST59 isolates collected in Chinese hospitals between 1994 and 2016. We reconstructed the evolutionary history of each ST and considered two non-mutually exclusive hypotheses for ST59 replacing ST239: antimicrobial resistance (AMR) profile and/or ability to colonise and persist in the environment through biofilm formation. We also investigated the differences in cytolytic activity, linked to higher virulence, between STs. We performed an association study using the presence and absence of accessory virulence genes. RESULTS ST59 isolates carried fewer AMR genes than ST239 and showed no evidence of evolving towards higher AMR. Biofilm production was marginally higher in ST59 overall, though this effect was not consistent across sub-lineages so is unlikely to be a sole driver of replacement. Consistent with previous observations of higher virulence in CA-MRSA STs, we observed that ST59 isolates exhibit significantly higher cytolytic activity than ST239 isolates, despite carrying on average fewer putative virulence genes. Our association study identified the chemotaxis inhibitory protein (chp) as a strong candidate for involvement in the increased virulence potential of ST59. We experimentally validated the role of chp in increasing the virulence potential of ST59 by creating Δchp knockout mutants, confirming that ST59 can carry chp without a measurable impact on fitness. CONCLUSIONS Our results suggest that the ongoing replacement of ST239 by ST59 in China is not associated to higher AMR carriage or biofilm production. However, the increase in ST59 prevalence is concerning since it is linked to a higher potential for virulence, aided by the carriage of the chp gene.
Collapse
Affiliation(s)
- Hongbin Chen
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing, 100044, China
- UCL Genetics Institute, University College London, Gower Street, London, WC1E 6BT, UK
| | - Yuyao Yin
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing, 100044, China
| | - Lucy van Dorp
- UCL Genetics Institute, University College London, Gower Street, London, WC1E 6BT, UK.
| | - Liam P Shaw
- UCL Genetics Institute, University College London, Gower Street, London, WC1E 6BT, UK
- Department of Zoology, University of Oxford, Oxford, OX1 3SZ, UK
| | - Hua Gao
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing, 100044, China
| | - Mislav Acman
- UCL Genetics Institute, University College London, Gower Street, London, WC1E 6BT, UK
| | - Jizhen Yuan
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing, 100044, China
- The No. 971 Hospital of People's Liberation Army Navy, Qingdao, 266000, Shandong, China
| | - Fengning Chen
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing, 100044, China
| | - Shijun Sun
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing, 100044, China
| | - Xiaojuan Wang
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing, 100044, China
| | - Shuguang Li
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing, 100044, China
| | - Yawei Zhang
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing, 100044, China
| | - Rhys A Farrer
- UCL Genetics Institute, University College London, Gower Street, London, WC1E 6BT, UK
- Medical Research Council Centre for Medical Mycology at the University of Exeter, University of Exeter, Geoffrey Pope Building, Stocker Road, Exeter, EX4 4QD, UK
| | - Hui Wang
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing, 100044, China.
| | - Francois Balloux
- UCL Genetics Institute, University College London, Gower Street, London, WC1E 6BT, UK.
| |
Collapse
|
35
|
Rahman S, Das AK. Integrated Multi-omics, Virtual Screening and Molecular Docking Analysis of Methicillin-Resistant Staphylococcus aureus USA300 for the Identification of Potential Therapeutic Targets: An In-Silico Approach. Int J Pept Res Ther 2021; 27:2735-2755. [PMID: 34548853 PMCID: PMC8446483 DOI: 10.1007/s10989-021-10287-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/10/2021] [Indexed: 11/28/2022]
Abstract
Staphylococcus aureus infection is a leading cause of mortality and morbidity in community, hospital and live-stock sectors, especially with the widespread emergence of methicillin-resistant S. aureus (MRSA) strains. To identify new drug molecules to treat MRSA patients, we have undertaken to search essential proteins that are indispensable for their survival but non-homologous to human host proteins. The current study utilizes a subtractive genome and proteome approach to screen the possible therapeutic targets against S. aureus USA300. Bacterial essential genes are obtained from the DEG database and are compared to avoid cross-reactivity with human host genes. In silico analysis shows 198 proteins that may be considered as therapeutic candidates. Depending on their sub-cellular localization, proteins are grouped as either vaccine or drug targets or both. Extracellular proteins such as cell division proteins (Q2FZ91, Q2FZ95), penicillin-binding proteins (Q2FZ94, Q2FYI0) of the bacterial cell wall, phosphoglucomutase (Q2FE11) and lipoteichoic acid synthase (Q2FIS2) are considered as vaccine targets, and their epitopes have been mapped. Altogether, 53 drug targets are identified, which have shown similarity with the drug targets available in the DrugBank database. Predicted drug targets belong to the common metabolic pathways of MRSA, such as fatty acid biosynthesis, folate biosynthesis, peptidoglycan biosynthesis, ribosome, etc. Protein-protein interaction analysis emphasizing peptidoglycan biosynthesis reveals the connection between penicillin-binding proteins, mur-family proteins and FemXAB proteins. In this study, staphylococcal FemA protein (P0A0A5) is subjected to structure-based virtual screening for the drug repurposing approach. There are 20 residues missing in the crystal structure of FemA, and 12 of these residues are located at the catalytic site. The missing residues are modelled, and stereochemistry is checked. FDA approved drugs available in the DrugBank database have been used in virtual screening with FemA in search of potential repurposed molecules. This approach provides us with 10 drugs that may be used in the treatment of methicillin-resistant staphylococcal mediated diseases. AutoDock 4.2 is used for in silico screening and shows a comparable inhibition constant (Ki) for all 10 FDA-approved drugs towards FemA. Most of these drugs are used in the treatment of various cancers, migraines and leukaemia. Protein-drug interaction analysis shows that the drugs mostly interact with hydrophobic residues of FemA. Moreover, Tyr328 and Lys383 contribute largely to hydrogen bondings during interactions. All interacting amino acids that bind to the drugs are part of the active site cavity of FemA. Supplementary Information The online version contains supplementary material available at 10.1007/s10989-021-10287-9.
Collapse
Affiliation(s)
- Shakilur Rahman
- Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal 721302 India
| | - Amit Kumar Das
- Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal 721302 India
| |
Collapse
|
36
|
Yang E, Kim E, Chung H, Lee YW, Bae S, Jung J, Kim MJ, Chong YP, Kim SH, Choi SH, Lee SO, Kim YS. Changing characteristics of S. aureus bacteremia caused by PVL-negative, MRSA strain over 11 years. Sci Rep 2021; 11:15677. [PMID: 34344954 PMCID: PMC8333258 DOI: 10.1038/s41598-021-95115-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 07/21/2021] [Indexed: 11/09/2022] Open
Abstract
Community-acquired methicillin-resistant Staphylococcus aureus (MRSA) has emerged as an important cause of infection. We conducted a longitudinal study to evaluate changes in clinical and microbiological characteristics as well as outcomes of sequence type (ST) 72 MRSA bacteremia. We reviewed adult patients enrolled in a prospective cohort with ST72 MRSA bacteremia from August 2008 to December 2018 at Asan Medical Center, Seoul, South Korea. Changes in clinical characteristics, outcomes, and microbiological characteristics of patients over time were evaluated. Generalized linear and linear regression models were used to evaluate changes. Of the 1,760 isolates, 915 (62%) were MRSA bacteremia and 292 (31.9%) were ST72 MRSA. During the study period, the relative risk (RR) of MRSA bacteremia decreased annually by 3.7%; however, among MRSA bacteremia, RR of ST72 MRSA increased annually by 8.5%. Vancomycin minimum inhibitory concentration (MIC) decreased over the study period. Metastatic infection, persistent bacteremia, and recurrence of bacteremia within 12 weeks decreased significantly. There were no significant changes in 30-d and 12-week mortality. Antibiotic susceptibility of ST72 MRSA was evaluated, and the resistance rate to erythromycin decreased significantly. ST72 MRSA incidence increased annually; its vancomycin MIC and erythromycin resistance rate decreased over the 11 years.
Collapse
Affiliation(s)
- Eunmi Yang
- Division of Infectious Diseases, Asan Medical Center, University of Ulsan College of Medicine, 88, Olympic-ro43-gil, Songpa-gu, Seoul, 05505, Republic of Korea
| | - Eunsil Kim
- Center for Antimicrobial Resistance and Microbial Genetics, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Hyemin Chung
- Division of Infectious Diseases, Asan Medical Center, University of Ulsan College of Medicine, 88, Olympic-ro43-gil, Songpa-gu, Seoul, 05505, Republic of Korea
| | - Yun Woo Lee
- Division of Infectious Diseases, Asan Medical Center, University of Ulsan College of Medicine, 88, Olympic-ro43-gil, Songpa-gu, Seoul, 05505, Republic of Korea
| | - Seongman Bae
- Division of Infectious Diseases, Asan Medical Center, University of Ulsan College of Medicine, 88, Olympic-ro43-gil, Songpa-gu, Seoul, 05505, Republic of Korea.,Center for Antimicrobial Resistance and Microbial Genetics, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Jiwon Jung
- Division of Infectious Diseases, Asan Medical Center, University of Ulsan College of Medicine, 88, Olympic-ro43-gil, Songpa-gu, Seoul, 05505, Republic of Korea
| | - Min Jae Kim
- Division of Infectious Diseases, Asan Medical Center, University of Ulsan College of Medicine, 88, Olympic-ro43-gil, Songpa-gu, Seoul, 05505, Republic of Korea
| | - Yong Pil Chong
- Division of Infectious Diseases, Asan Medical Center, University of Ulsan College of Medicine, 88, Olympic-ro43-gil, Songpa-gu, Seoul, 05505, Republic of Korea
| | - Sung-Han Kim
- Division of Infectious Diseases, Asan Medical Center, University of Ulsan College of Medicine, 88, Olympic-ro43-gil, Songpa-gu, Seoul, 05505, Republic of Korea
| | - Sang-Ho Choi
- Division of Infectious Diseases, Asan Medical Center, University of Ulsan College of Medicine, 88, Olympic-ro43-gil, Songpa-gu, Seoul, 05505, Republic of Korea
| | - Sang-Oh Lee
- Division of Infectious Diseases, Asan Medical Center, University of Ulsan College of Medicine, 88, Olympic-ro43-gil, Songpa-gu, Seoul, 05505, Republic of Korea
| | - Yang Soo Kim
- Division of Infectious Diseases, Asan Medical Center, University of Ulsan College of Medicine, 88, Olympic-ro43-gil, Songpa-gu, Seoul, 05505, Republic of Korea. .,Center for Antimicrobial Resistance and Microbial Genetics, University of Ulsan College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
37
|
Genomic Update of Phenotypic Prediction Rule for Methicillin-Resistant Staphylococcus aureus (MRSA) USA300 Discloses Jail Transmission Networks with Increased Resistance. Microbiol Spectr 2021; 9:e0037621. [PMID: 34287060 PMCID: PMC8552710 DOI: 10.1128/spectrum.00376-21] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) is a leading cause of health care-associated (HA) and community-associated (CA) infections. USA300 strains are historically CA-MRSA, while USA100 strains are HA-MRSA. Here, we update an antibiotic prediction rule to distinguish these two genotypes based on antibiotic resistance phenotype using whole-genome sequencing (WGS), a more discriminatory methodology than pulsed-field gel electrophoresis (PFGE). MRSA clinical isolates collected from 2007 to 2017 underwent WGS; associated epidemiologic data were ascertained. In developing the rule, we examined MRSA isolates that included a population with a history of incarceration. Performance characteristics of antibiotic susceptibility for predicting USA300 compared to USA100, as defined by WGS, were examined. Phylogenetic analysis was performed to examine resistant USA300 clades. We identified 275 isolates (221 USA300, 54 USA100). Combination susceptibility to clindamycin or levofloxacin performed the best overall (sensitivity 80.7%, specificity 75.9%) to identify USA300. The average number of antibiotic classes with resistance was higher for USA100 (3 versus 2, P < 0.001). Resistance to ≤2 classes was predictive for USA300 (area under the curve (AUC) 0.84, 95% confidence interval 0.78 to 0.90). Phylogenetic analysis identified a cluster of USA300 strains characterized by increased resistance among incarcerated individuals. Using a combination of clindamycin or levofloxacin susceptibility, or resistance to ≤2 antibiotic classes, was predictive of USA300 as defined by WGS. Increased resistance was observed among individuals with incarceration exposure, suggesting circulation of a more resistant USA300 clade among at-risk community networks. Our phenotypic prediction rule could be used as an epidemiologic tool to describe community and nosocomial shifts in USA300 MRSA and quickly identify emergence of lineages with increased resistance. IMPORTANCE Methicillin-resistant Staphylococcus aureus (MRSA) is an important cause of health care-associated (HA) and community-associated (CA) infections, but the epidemiology of these strains (USA100 and USA300, respectively) now overlaps in health care settings. Although sequencing technology has become more available, many health care facilities still lack the capabilities to perform these analyses. In this study, we update a simple prediction rule based on antibiotic resistance phenotype with integration of whole-genome sequencing (WGS) to predict strain type based on antibiotic resistance profiles that can be used in settings without access to molecular strain typing methods. This prediction rule has many potential epidemiologic applications, such as analysis of retrospective data sets, regional monitoring, and ongoing surveillance of CA-MRSA infection trends. We demonstrate application of this rule to identify an emerging USA300 strain with increased antibiotic resistance among incarcerated individuals that deviates from the rule.
Collapse
|
38
|
Htwe YM, Wang H, Belvitch P, Meliton L, Bandela M, Letsiou E, Dudek SM. Group V Phospholipase A 2 Mediates Endothelial Dysfunction and Acute Lung Injury Caused by Methicillin-Resistant Staphylococcus Aureus. Cells 2021; 10:1731. [PMID: 34359901 PMCID: PMC8304832 DOI: 10.3390/cells10071731] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 06/25/2021] [Accepted: 07/03/2021] [Indexed: 12/12/2022] Open
Abstract
Lung endothelial dysfunction is a key feature of acute lung injury (ALI) and clinical acute respiratory distress syndrome (ARDS). Previous studies have identified the lipid-generating enzyme, group V phospholipase A2 (gVPLA2), as a mediator of lung endothelial barrier disruption and inflammation. The current study aimed to determine the role of gVPLA2 in mediating lung endothelial responses to methicillin-resistant Staphylococcus aureus (MRSA, USA300 strain), a major cause of ALI/ARDS. In vitro studies assessed the effects of gVPLA2 inhibition on lung endothelial cell (EC) permeability after exposure to heat-killed (HK) MRSA. In vivo studies assessed the effects of intratracheal live or HK-MRSA on multiple indices of ALI in wild-type (WT) and gVPLA2-deficient (KO) mice. In vitro, HK-MRSA increased gVPLA2 expression and permeability in human lung EC. Inhibition of gVPLA2 with either the PLA2 inhibitor, LY311727, or with a specific monoclonal antibody, attenuated the barrier disruption caused by HK-MRSA. LY311727 also reduced HK-MRSA-induced permeability in mouse lung EC isolated from WT but not gVPLA2-KO mice. In vivo, live MRSA caused significantly less ALI in gVPLA2 KO mice compared to WT, findings confirmed by intravital microscopy assessment in HK-MRSA-treated mice. After targeted delivery of gVPLA2 plasmid to lung endothelium using ACE antibody-conjugated liposomes, MRSA-induced ALI was significantly increased in gVPLA2-KO mice, indicating that lung endothelial expression of gVPLA2 is critical in vivo. In summary, these results demonstrate an important role for gVPLA2 in mediating MRSA-induced lung EC permeability and ALI. Thus, gVPLA2 may represent a novel therapeutic target in ALI/ARDS caused by bacterial infection.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Steven M. Dudek
- Division of Pulmonary, Critical Care, Sleep and Allergy, Department of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA; (Y.M.H.); (H.W.); (P.B.); (L.M.); (M.B.); (E.L.)
| |
Collapse
|
39
|
Tomlinson BR, Malof ME, Shaw LN. A global transcriptomic analysis of Staphylococcus aureus biofilm formation across diverse clonal lineages. Microb Genom 2021; 7. [PMID: 34227933 PMCID: PMC8477394 DOI: 10.1099/mgen.0.000598] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
A key characteristic of Staphylococcus aureus infections, and one that also varies phenotypically between clones, is that of biofilm formation, which aids in bacterial persistence through increased adherence and immune evasion. Though there is a general understanding of the process of biofilm formation - adhesion, proliferation, maturation and dispersal - the tightly orchestrated molecular events behind each stage, and what drives variation between S. aureus strains, has yet to be unravelled. Herein we measure biofilm progression and dispersal in real-time across the five major S. aureus CDC-types (USA100-USA500) revealing adherence patterns that differ markedly amongst strains. To gain insight into this, we performed transcriptomic profiling on these isolates at multiple timepoints, compared to planktonically growing counterparts. Our findings support a model in which eDNA release, followed by increased positive surface charge, perhaps drives initial abiotic attachment. This is seemingly followed by cooperative repression of autolysis and activation of poly-N-acetylglucosamine (PNAG) production, which may indicate a developmental shift in structuring the biofilm matrix. As biofilms mature, diminished translational capacity was apparent, with 53 % of all ribosomal proteins downregulated, followed by upregulation of anaerobic respiration enzymes. These findings are noteworthy because reduced cellular activity and an altered metabolic state have been previously shown to contribute to higher antibiotic tolerance and bacterial persistence. In sum, this work is, to our knowledge, the first study to investigate transcriptional regulation during the early, establishing phase of biofilm formation, and to compare global transcriptional regulation both temporally and across multiple clonal lineages.
Collapse
Affiliation(s)
- Brooke R Tomlinson
- Department of Cell Biology, Microbiology and Molecular Biology, University of South Florida, 4202 East Fowler Avenue, ISA 2015, Tampa, FL, USA
| | - Morgan E Malof
- Department of Cell Biology, Microbiology and Molecular Biology, University of South Florida, 4202 East Fowler Avenue, ISA 2015, Tampa, FL, USA
| | - Lindsey N Shaw
- Department of Cell Biology, Microbiology and Molecular Biology, University of South Florida, 4202 East Fowler Avenue, ISA 2015, Tampa, FL, USA
| |
Collapse
|
40
|
Tomlinson BR, Malof ME, Shaw LN. A global transcriptomic analysis of Staphylococcus aureus biofilm formation across diverse clonal lineages. Microb Genom 2021. [PMID: 34227933 DOI: 10.1099/mgen0000598] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2023] Open
Abstract
A key characteristic of Staphylococcus aureus infections, and one that also varies phenotypically between clones, is that of biofilm formation, which aids in bacterial persistence through increased adherence and immune evasion. Though there is a general understanding of the process of biofilm formation - adhesion, proliferation, maturation and dispersal - the tightly orchestrated molecular events behind each stage, and what drives variation between S. aureus strains, has yet to be unravelled. Herein we measure biofilm progression and dispersal in real-time across the five major S. aureus CDC-types (USA100-USA500) revealing adherence patterns that differ markedly amongst strains. To gain insight into this, we performed transcriptomic profiling on these isolates at multiple timepoints, compared to planktonically growing counterparts. Our findings support a model in which eDNA release, followed by increased positive surface charge, perhaps drives initial abiotic attachment. This is seemingly followed by cooperative repression of autolysis and activation of poly-N-acetylglucosamine (PNAG) production, which may indicate a developmental shift in structuring the biofilm matrix. As biofilms mature, diminished translational capacity was apparent, with 53 % of all ribosomal proteins downregulated, followed by upregulation of anaerobic respiration enzymes. These findings are noteworthy because reduced cellular activity and an altered metabolic state have been previously shown to contribute to higher antibiotic tolerance and bacterial persistence. In sum, this work is, to our knowledge, the first study to investigate transcriptional regulation during the early, establishing phase of biofilm formation, and to compare global transcriptional regulation both temporally and across multiple clonal lineages.
Collapse
Affiliation(s)
- Brooke R Tomlinson
- Department of Cell Biology, Microbiology and Molecular Biology, University of South Florida, 4202 East Fowler Avenue, ISA 2015, Tampa, FL, USA
| | - Morgan E Malof
- Department of Cell Biology, Microbiology and Molecular Biology, University of South Florida, 4202 East Fowler Avenue, ISA 2015, Tampa, FL, USA
| | - Lindsey N Shaw
- Department of Cell Biology, Microbiology and Molecular Biology, University of South Florida, 4202 East Fowler Avenue, ISA 2015, Tampa, FL, USA
| |
Collapse
|
41
|
Use of Pulsed-Field Gel Electrophoresis to Determine the Source of Methicillin-Resistant Staphylococcus aureus Bacteremia. Infect Dis Rep 2021; 13:602-610. [PMID: 34201948 PMCID: PMC8293202 DOI: 10.3390/idr13030056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Revised: 06/14/2021] [Accepted: 06/23/2021] [Indexed: 11/30/2022] Open
Abstract
Pulsed-field gel electrophoresis (PFGE) has historically been considered the gold standard in fingerprinting bacterial strains in epidemiological studies and outbreak investigations; little is known regarding its use in individual clinical cases. The current study detailed two clinical cases in which PFGE helped to determine the source of their methicillin-resistant Staphylococcus aureus (MRSA) bacteremia. Patient A was found to have MRSA bacteremia after trauma in her pelvic area. MRSA was also found in her groin but not in her nostril and rectum. PFGE was performed that showed variable bands of her MRSA isolates from blood and groin, suggestive of different strains of MRSA. Her MRSA bacteremia was determined to be unrelated to her pelvic trauma. Patient B was found to have MRSA bacteremia after colonoscopy. MRSA was also found in his nostril and rectum. PFGE was performed that showed variable bands of his MRSA isolates from blood and rectum but identical bands of MRSA isolates from his blood and nostril. His MRSA bacteremia was determined to be unrelated to his colonoscopy procedure. The current study demonstrates the use of PFGE to rule out the source of bacteremia in individual clinical cases.
Collapse
|
42
|
Perelman SS, James DBA, Boguslawski KM, Nelson CW, Ilmain JK, Zwack EE, Prescott RA, Mohamed A, Tam K, Chan R, Narechania A, Pawline MB, Vozhilla N, Moustafa AM, Kim SY, Dittmann M, Ekiert DC, Bhabha G, Shopsin B, Planet PJ, Koralov SB, Torres VJ. Genetic variation of staphylococcal LukAB toxin determines receptor tropism. Nat Microbiol 2021; 6:731-745. [PMID: 33875847 PMCID: PMC8597016 DOI: 10.1038/s41564-021-00890-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 03/11/2021] [Indexed: 02/02/2023]
Abstract
Staphylococcus aureus has evolved into diverse lineages, known as clonal complexes (CCs), which exhibit differences in the coding sequences of core virulence factors. Whether these alterations affect functionality is poorly understood. Here, we studied the highly polymorphic pore-forming toxin LukAB. We discovered that the LukAB toxin variants produced by S. aureus CC30 and CC45 kill human phagocytes regardless of whether CD11b, the previously established LukAB receptor, is present, and instead target the human hydrogen voltage-gated channel 1 (HVCN1). Biochemical studies identified the domain within human HVCN1 that drives LukAB species specificity, enabling the generation of humanized HVCN1 mice with enhanced susceptibility to CC30 LukAB and to bloodstream infection caused by CC30 S. aureus strains. Together, this work advances our understanding of an important S. aureus toxin and underscores the importance of considering genetic variation in characterizing virulence factors and understanding the tug of war between pathogens and the host.
Collapse
Affiliation(s)
- Sofya S Perelman
- Department of Microbiology, New York University Grossman School of Medicine, New York, NY, USA
| | - David B A James
- Department of Microbiology, New York University Grossman School of Medicine, New York, NY, USA
| | - Kristina M Boguslawski
- Department of Microbiology, New York University Grossman School of Medicine, New York, NY, USA
| | - Chase W Nelson
- Institute for Comparative Genomics, American Museum of Natural History, New York, NY, USA
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan
| | - Juliana K Ilmain
- Department of Microbiology, New York University Grossman School of Medicine, New York, NY, USA
| | - Erin E Zwack
- Department of Microbiology, New York University Grossman School of Medicine, New York, NY, USA
| | - Rachel A Prescott
- Department of Microbiology, New York University Grossman School of Medicine, New York, NY, USA
| | - Adil Mohamed
- Department of Microbiology, New York University Grossman School of Medicine, New York, NY, USA
| | - Kayan Tam
- Department of Microbiology, New York University Grossman School of Medicine, New York, NY, USA
| | - Rita Chan
- Department of Microbiology, New York University Grossman School of Medicine, New York, NY, USA
| | - Apurva Narechania
- Institute for Comparative Genomics, American Museum of Natural History, New York, NY, USA
| | - Miranda B Pawline
- Department of Microbiology, New York University Grossman School of Medicine, New York, NY, USA
- Department of Medicine, Division of Infectious Diseases, New York University Grossman School of Medicine, New York, NY, USA
| | - Nikollaq Vozhilla
- Department of Microbiology, New York University Grossman School of Medicine, New York, NY, USA
| | - Ahmed M Moustafa
- Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Sang Y Kim
- Department of Pathology, New York University Grossman School of Medicine, New York, NY, USA
- Office of Collaborative Sciences, NYU Grossman School of Medicine, New York, NY, USA
| | - Meike Dittmann
- Department of Microbiology, New York University Grossman School of Medicine, New York, NY, USA
| | - Damian C Ekiert
- Department of Microbiology, New York University Grossman School of Medicine, New York, NY, USA
- Skirball Institute of Biomolecular Medicine and Department of Cell Biology, New York University Grossman School of Medicine, New York, NY, USA
| | - Gira Bhabha
- Skirball Institute of Biomolecular Medicine and Department of Cell Biology, New York University Grossman School of Medicine, New York, NY, USA
| | - Bo Shopsin
- Department of Microbiology, New York University Grossman School of Medicine, New York, NY, USA
- Department of Medicine, Division of Infectious Diseases, New York University Grossman School of Medicine, New York, NY, USA
| | - Paul J Planet
- Institute for Comparative Genomics, American Museum of Natural History, New York, NY, USA
- Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Sergei B Koralov
- Department of Pathology, New York University Grossman School of Medicine, New York, NY, USA
| | - Victor J Torres
- Department of Microbiology, New York University Grossman School of Medicine, New York, NY, USA.
| |
Collapse
|
43
|
Cazer CL, Westblade LF, Simon MS, Magleby R, Castanheira M, Booth JG, Jenkins SG, Gröhn YT. Analysis of Multidrug Resistance in Staphylococcus aureus with a Machine Learning-Generated Antibiogram. Antimicrob Agents Chemother 2021; 65:e02132-20. [PMID: 33431415 PMCID: PMC8097487 DOI: 10.1128/aac.02132-20] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 12/24/2020] [Indexed: 01/12/2023] Open
Abstract
Multidrug resistance (MDR) surveillance consists of reporting MDR prevalence and MDR phenotypes. Detailed knowledge of the specific associations underlying MDR patterns can allow antimicrobial stewardship programs to accurately identify clinically relevant resistance patterns. We applied machine learning and graphical networks to quantify and visualize associations between resistance traits in a set of 1,091 Staphylococcus aureus isolates collected from one New York hospital between 2008 and 2018. Antimicrobial susceptibility testing was performed using reference broth microdilution. The isolates were analyzed by year, methicillin susceptibility, and infection site. Association mining was used to identify resistance patterns that consisted of two or more individual antimicrobial resistance (AMR) traits and quantify the association among the individual resistance traits in each pattern. The resistance patterns captured the majority of the most common MDR phenotypes and reflected previously identified pairwise relationships between AMR traits in S. aureus Associations between β-lactams and other antimicrobial classes (macrolides, lincosamides, and fluoroquinolones) were common, although the strength of the association among these antimicrobial classes varied by infection site and by methicillin susceptibility. Association mining identified associations between clinically important AMR traits, which could be further investigated for evidence of resistance coselection. For example, in skin and skin structure infections, clindamycin and tetracycline resistance occurred together 1.5 times more often than would be expected if they were independent from one another. Association mining efficiently discovered and quantified associations among resistance traits, allowing these associations to be compared between relevant subsets of isolates to identify and track clinically relevant MDR.
Collapse
Affiliation(s)
- Casey L Cazer
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA
| | - Lars F Westblade
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, New York, USA
- Division of Infectious Diseases, Department of Medicine, Weill Cornell Medicine, New York, New York, USA
| | - Matthew S Simon
- Division of Infectious Diseases, Department of Medicine, Weill Cornell Medicine, New York, New York, USA
| | - Reed Magleby
- Division of Infectious Diseases, Department of Medicine, Weill Cornell Medicine, New York, New York, USA
| | | | - James G Booth
- Department of Statistics and Data Science, Cornell University, Ithaca, New York, USA
| | - Stephen G Jenkins
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, New York, USA
- Division of Infectious Diseases, Department of Medicine, Weill Cornell Medicine, New York, New York, USA
| | - Yrjö T Gröhn
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA
| |
Collapse
|
44
|
Cheung GYC, Bae JS, Liu R, Hunt RL, Zheng Y, Otto M. Bacterial virulence plays a crucial role in MRSA sepsis. PLoS Pathog 2021; 17:e1009369. [PMID: 33630954 PMCID: PMC7942999 DOI: 10.1371/journal.ppat.1009369] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Revised: 03/09/2021] [Accepted: 02/10/2021] [Indexed: 12/29/2022] Open
Abstract
Bacterial sepsis is a major global cause of death. However, the pathophysiology of sepsis has remained poorly understood. In industrialized nations, Staphylococcus aureus represents the pathogen most commonly associated with mortality due to sepsis. Because of the alarming spread of antibiotic resistance, anti-virulence strategies are often proposed to treat staphylococcal sepsis. However, we do not yet completely understand if and how bacterial virulence contributes to sepsis, which is vital for a thorough assessment of such strategies. We here examined the role of virulence and quorum-sensing regulation in mouse and rabbit models of sepsis caused by methicillin-resistant S. aureus (MRSA). We determined that leukopenia was a predictor of disease outcome during an early critical stage of sepsis. Furthermore, in device-associated infection as the most frequent type of staphylococcal blood infection, quorum-sensing deficiency resulted in significantly higher mortality. Our findings give important guidance regarding anti-virulence drug development strategies for the treatment of staphylococcal sepsis. Moreover, they considerably add to our understanding of how bacterial sepsis develops by revealing a critical early stage of infection during which the battle between bacteria and leukocytes determines sepsis outcome. While sepsis has traditionally been attributed mainly to host factors, our study highlights a key role of the invading pathogen and its virulence mechanisms.
Collapse
Affiliation(s)
- Gordon Y. C. Cheung
- Pathogen Molecular Genetics Section, Laboratory of Bacteriology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Justin S. Bae
- Pathogen Molecular Genetics Section, Laboratory of Bacteriology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Ryan Liu
- Pathogen Molecular Genetics Section, Laboratory of Bacteriology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Rachelle L. Hunt
- Pathogen Molecular Genetics Section, Laboratory of Bacteriology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Yue Zheng
- Pathogen Molecular Genetics Section, Laboratory of Bacteriology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Michael Otto
- Pathogen Molecular Genetics Section, Laboratory of Bacteriology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
- * E-mail:
| |
Collapse
|
45
|
Ford CA, Spoonmore TJ, Gupta MK, Duvall CL, Guelcher SA, Cassat JE. Diflunisal-loaded poly(propylene sulfide) nanoparticles decrease S. aureus-mediated bone destruction during osteomyelitis. J Orthop Res 2021; 39:426-437. [PMID: 33300149 PMCID: PMC7855846 DOI: 10.1002/jor.24948] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 12/04/2020] [Accepted: 12/07/2020] [Indexed: 02/04/2023]
Abstract
Osteomyelitis is a debilitating infection of bone that results in substantial morbidity. Staphylococcus aureus is the most commonly isolated pathogen causing bone infections and features an arsenal of virulence factors that contribute to bone destruction and counteract immune responses. We previously demonstrated that diflunisal, a nonsteroidal anti-inflammatory drug, decreases S. aureus-induced bone destruction during osteomyelitis when delivered locally from a resorbable drug delivery depot. However, local diflunisal therapy was complicated by bacterial colonization of the depot's surface, highlighting a common pitfall of devices for local drug delivery to infected tissue. It is, therefore, critical to develop an alternative drug delivery method for diflunisal to successfully repurpose this drug as an antivirulence therapy for osteomyelitis. We hypothesized that a nanoparticle-based parenteral delivery strategy would provide a method for delivering diflunisal to infected tissue while circumventing the complications associated with local delivery. In this study, we demonstrate that poly(propylene sulfide) (PPS) nanoparticles accumulate at the infectious focus in a murine model of staphylococcal osteomyelitis and are capable of efficaciously delivering diflunisal to infected bone. Moreover, diflunisal-loaded PPS nanoparticles effectively decrease S. aureus-mediated bone destruction, establishing the feasibility of systemic delivery of an antivirulence compound to mitigate bone pathology during osteomyelitis.
Collapse
Affiliation(s)
- Caleb A. Ford
- Department of Biomedical EngineeringVanderbilt UniversityNashvilleTennesseeUSA
| | - Thomas J. Spoonmore
- Department of Chemical and Biomolecular EngineeringVanderbilt UniversityNashvilleTennesseeUSA
| | - Mukesh K. Gupta
- Department of Biomedical EngineeringVanderbilt UniversityNashvilleTennesseeUSA
| | - Craig L. Duvall
- Department of Biomedical EngineeringVanderbilt UniversityNashvilleTennesseeUSA
| | - Scott A. Guelcher
- Department of Biomedical EngineeringVanderbilt UniversityNashvilleTennesseeUSA
- Department of Chemical and Biomolecular EngineeringVanderbilt UniversityNashvilleTennesseeUSA
- Department of MedicineVanderbilt University Medical CenterNashvilleTennesseeUSA
- Vanderbilt Center for Bone BiologyVanderbilt University Medical CenterNashvilleTennesseeUSA
| | - James E. Cassat
- Department of Biomedical EngineeringVanderbilt UniversityNashvilleTennesseeUSA
- Vanderbilt Center for Bone BiologyVanderbilt University Medical CenterNashvilleTennesseeUSA
- Department of PediatricsVanderbilt University Medical CenterNashvilleTennesseeUSA
- Department of Pathology, Microbiology, and ImmunologyVanderbilt University Medical CenterNashvilleTennesseeUSA
- Vanderbilt Institute for Infection, Immunology, and InflammationVanderbilt University Medical CenterNashvilleTennesseeUSA
| |
Collapse
|
46
|
Bai Z, Chen M, Lin Q, Ye Y, Fan H, Wen K, Zeng J, Huang D, Mo W, Lei Y, Liao Z. Identification of Methicillin-Resistant Staphylococcus Aureus From Methicillin-Sensitive Staphylococcus Aureus and Molecular Characterization in Quanzhou, China. Front Cell Dev Biol 2021; 9:629681. [PMID: 33553185 PMCID: PMC7858276 DOI: 10.3389/fcell.2021.629681] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Accepted: 01/04/2021] [Indexed: 12/17/2022] Open
Abstract
To distinguish Methicillin-Resistant Staphylococcus aureus (MRSA) from Methicillin-Sensitive Staphylococcus aureus (MSSA) in the protein sequences level, test the susceptibility to antibiotic of all Staphylococcus aureus isolates from Quanzhou hospitals, define the virulence factor and molecular characteristics of the MRSA isolates. MRSA and MSSA Pfam protein sequences were used to extract feature vectors of 188D, n-gram and 400D. Weka software was applied to classify the two Staphylococcus aureus and performance effect was evaluated. Antibiotic susceptibility testing of the 81 Staphylococcus aureus was performed by the Mérieux Microbial Analysis Instrument. The 65 MRSA isolates were characterized by Panton-Valentine leukocidin (PVL), X polymorphic region of Protein A (spa), multilocus sequence typing test (MLST), staphylococcus chromosomal cassette mec (SCCmec) typing. After comparing the results of Weka six classifiers, the highest correctly classified rates were 91.94, 70.16, and 62.90% from 188D, n-gram and 400D, respectively. Antimicrobial susceptibility test of the 81 Staphylococcus aureus: Penicillin-resistant rate was 100%. No resistance to teicoplanin, linezolid, and vancomycin. The resistance rate of the MRSA isolates to clindamycin, erythromycin and tetracycline was higher than that of the MSSAs. Among the 65 MRSA isolates, the positive rate of PVL gene was 47.7% (31/65). Seventeen sequence types (STs) were identified among the 65 isolates, and ST59 was the most prevalent. SCCmec type III and IV were observed at 24.6 and 72.3%, respectively. Two isolates did not be typed. Twenty-one spa types were identified, spa t437 (34/65, 52.3%) was the most predominant type. MRSA major clone type of molecular typing was CC59-ST59-spa t437-IV (28/65, 43.1%). Overall, 188D feature vectors can be applied to successfully distinguish MRSA from MSSA. In Quanzhou, the detection rate of PVL virulence factor was high, suggesting a high pathogenic risk of MRSA infection. The cross-infection of CA-MRSA and HA-MRSA was presented, the molecular characteristics were increasingly blurred, HA-MRSA with typical CA-MRSA molecular characteristics has become an important cause of healthcare-related infections. CC59-ST59-spa t437-IV was the main clone type in Quanzhou, which was rare in other parts of mainland China.
Collapse
Affiliation(s)
- Zhimin Bai
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China.,Department of Clinical Laboratory, Jinjiang Municipal Hospital, Jinjiang, China
| | - Min Chen
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China.,Microbiological Laboratory Sanming Center for Disease Control and Prevention, Sanming, China
| | - Qiaofa Lin
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Ying Ye
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Hongmei Fan
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Kaizhen Wen
- Department of Clinical Laboratory, Jinjiang Municipal Hospital, Jinjiang, China
| | - Jianxing Zeng
- Department of Clinical Laboratory, Jinjiang Municipal Hospital, Jinjiang, China
| | - Donghong Huang
- Department of Clinical Laboratory, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Wenfei Mo
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Ying Lei
- Department of Clinical Laboratory, Quanzhou Women's and Children's Hospital, Quanzhou, China
| | - Zhijun Liao
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| |
Collapse
|
47
|
Algorri M, Jorth P, Wong-Beringer A. Variable Release of Lipoteichoic Acid From Staphylococcus aureus Bloodstream Isolates Relates to Distinct Clinical Phenotypes, Strain Background, and Antibiotic Exposure. Front Microbiol 2021; 11:609280. [PMID: 33519759 PMCID: PMC7840697 DOI: 10.3389/fmicb.2020.609280] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 12/16/2020] [Indexed: 11/18/2022] Open
Abstract
Background Staphylococcus aureus is a leading cause of bacterial bloodstream infections. The heterogeneity in patient outcomes in S. aureus bacteremia (SAB) can be attributed in part to strain characteristics, which may influence host response to infection. We specifically examined the relationship between lipoteichoic acid (LTA) release from S. aureus and disease phenotype, strain background, and antibiotic exposure. Methods Seven strains of S. aureus causing different clinical phenotypes of bacteremia and two reference strains (LAC USA 300 and Mu3) were analyzed for LTA release at baseline and following exposure to antibiotics from different pharmacologic classes (vancomycin, ceftaroline, and tedizolid). LTA release was quantified by LTA-specific ELISA. Whole genome sequencing was performed on the clinical strains and analyzed using open-source bioinformatics tools. Results Lipoteichoic acid release varied by 4-fold amongst the clinical strains and appeared to be related to duration of bacteremia, independent of MLST type. Low LTA releasing strains were isolated from patients who had prolonged duration of bacteremia and died. Antibiotic-mediated differences in LTA release appeared to be associated with MLST type, as ST8 strains released maximal LTA in response to tedizolid while other non-ST8 strains demonstrated high LTA release with vancomycin. Genetic variations related to the LTA biosynthesis pathway were detected in all non-ST8 strains, though ST8 strains showed no variations despite demonstrating differential LTA release. Conclusion Our findings provide the basis for future studies to evaluate the relationship between LTA release-mediated host immune response and clinical outcomes as well as the potential for antibiotic modulation of LTA release as a therapeutic strategy and deserve confirmation with larger number of strains with known clinical phenotypes.
Collapse
Affiliation(s)
- Marquerita Algorri
- School of Pharmacy, University of Southern California, Los Angeles, CA, United States
| | - Peter Jorth
- Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, United States.,Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, United States.,Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Annie Wong-Beringer
- School of Pharmacy, University of Southern California, Los Angeles, CA, United States
| |
Collapse
|
48
|
Austin ED, Sullivan SS, Macesic N, Mehta M, Miko BA, Nematollahi S, Shi Q, Lowy FD, Uhlemann AC. Reduced Mortality of Staphylococcus aureus Bacteremia in a Retrospective Cohort Study of 2139 Patients: 2007-2015. Clin Infect Dis 2021; 70:1666-1674. [PMID: 31185081 DOI: 10.1093/cid/ciz498] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Accepted: 06/10/2019] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Understanding the changing epidemiology of Staphylococcus aureus bacteremia, as well as the variables associated with poor outcomes, can yield insight into potential interventions. METHODS This study was a retrospective, observational cohort study of adult patients at an academic medical center in New York City who had S. aureus bloodstream infections between 1 January 2007 and 31 December 2015. Participants were divided into 3 periods: group 1 (2007-2009), group 2 (2010-2012), and group 3 (2013-2015) for trend analysis. All clinical strains were genotyped (spa.). The main outcome was 30-day all-cause mortality. RESULTS There were 1264 episodes of methicillin-susceptible S. aureus (MSSA) and 875 episodes of methicillin-resistant S. aureus (MRSA) bacteremia, with a rising proportion due to MSSA (55% group 1; 59% group 2; 63% group 3; P = .03.) There were no significant changes in average age, gender, Charlson score, and distribution of strain genotypes. Mortality in MRSA infection was unchanged (25% group 1; 25% group 2; 26% group 3), while mortality in MSSA infection significantly declined (18% group 1; 18% group 2; 13% group 3). The average time to antistaphylococcal therapy (AST) in MSSA infection declined during the study (3.7 days group 1; 3.5 group 2; 2.2 group 3). In multivariate analysis, AST within 7 days of initial positive MSSA culture was associated with survival. CONCLUSIONS Mortality in MSSA bloodstream infection is declining, associated with a decrease in time to targeted therapy. These results emphasize the potential for rapid diagnostics and early optimization of treatment to impact outcomes in MSSA bacteremia.
Collapse
Affiliation(s)
- Eloise D Austin
- Department of Medicine, Division of Infectious Diseases, Columbia University Irving Medical Center, New York, New York
| | - Sean S Sullivan
- Department of Medicine, Division of Infectious Diseases, Columbia University Irving Medical Center, New York, New York
| | - Nenad Macesic
- Department of Medicine, Division of Infectious Diseases, Columbia University Irving Medical Center, New York, New York.,Department of Infectious Diseases, Austin Hospital, Heidelberg, Victoria, Australia
| | - Monica Mehta
- Department of Pharmacy, New York Presbyterian Hospital, New York
| | - Benjamin A Miko
- Department of Medicine, Division of Infectious Diseases, Columbia University Irving Medical Center, New York, New York
| | - Saman Nematollahi
- Department of Medicine, Division of Infectious Diseases, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Qiuhu Shi
- Department of Public Health, School of Health Sciences and Practice, New York Medical College, Valhalla
| | - Franklin D Lowy
- Department of Medicine, Division of Infectious Diseases, Columbia University Irving Medical Center, New York, New York.,Department of Pathology and Cell Biology, Clinical Microbiology Laboratory, Columbia University Medical Center, New York, New York
| | - Anne-Catrin Uhlemann
- Department of Medicine, Division of Infectious Diseases, Columbia University Irving Medical Center, New York, New York.,Department of Medicine Microbiome & Pathogen Genomics Core, Columbia University Medical Center, New York, New York
| |
Collapse
|
49
|
Petrie LE, Leonard AC, Murphy J, Cox G. Development and validation of a high-throughput whole cell assay to investigate Staphylococcus aureus adhesion to host ligands. J Biol Chem 2020; 295:16700-16712. [PMID: 32978256 PMCID: PMC7864066 DOI: 10.1074/jbc.ra120.015360] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 09/22/2020] [Indexed: 12/20/2022] Open
Abstract
Staphylococcus aureus adhesion to the host's skin and mucosae enables asymptomatic colonization and the establishment of infection. This process is facilitated by cell wall-anchored adhesins that bind to host ligands. Therapeutics targeting this process could provide significant clinical benefits; however, the development of anti-adhesives requires an in-depth knowledge of adhesion-associated factors and an assay amenable to high-throughput applications. Here, we describe the development of a sensitive and robust whole cell assay to enable the large-scale profiling of S. aureus adhesion to host ligands. To validate the assay, and to gain insight into cellular factors contributing to adhesion, we profiled a sequence-defined S. aureus transposon mutant library, identifying mutants with attenuated adhesion to human-derived fibronectin, keratin, and fibrinogen. Our screening approach was validated by the identification of known adhesion-related proteins, such as the housekeeping sortase responsible for covalently linking adhesins to the cell wall. In addition, we also identified genetic loci that could represent undescribed anti-adhesive targets. To compare and contrast the genetic requirements of adhesion to each host ligand, we generated a S. aureus Genetic Adhesion Network, which identified a core gene set involved in adhesion to all three host ligands, and unique genetic signatures. In summary, this assay will enable high-throughput chemical screens to identify anti-adhesives and our findings provide insight into the target space of such an approach.
Collapse
Affiliation(s)
- Laurenne E Petrie
- College of Biological Sciences, Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| | - Allison C Leonard
- College of Biological Sciences, Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| | - Julia Murphy
- College of Biological Sciences, Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| | - Georgina Cox
- College of Biological Sciences, Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada.
| |
Collapse
|
50
|
Souli M, Ruffin F, Choi SH, Park LP, Gao S, Lent NC, Sharma-Kuinkel BK, Thaden JT, Maskarinec SA, Wanda L, Hill-Rorie J, Warren B, Hansen B, Fowler VG. Changing Characteristics of Staphylococcus aureus Bacteremia: Results From a 21-Year, Prospective, Longitudinal Study. Clin Infect Dis 2020; 69:1868-1877. [PMID: 31001618 DOI: 10.1093/cid/ciz112] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Accepted: 02/21/2019] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND We conducted a longitudinal study to evaluate changes in the clinical presentation and epidemiology of Staphylococcus aureus bacteremia (SAB) in an academic, US medical center. METHODS Consecutive patients with monomicrobial SAB were enrolled from January 1995 to December 2015. Each person's initial bloodstream S. aureus isolate was genotyped using spa typing. Clonal complexes (CCs) were assigned using Ridom StaphType software. Changes over time in both the patient and bacterial characteristics were estimated with linear regression. Associations between genotypes or clinical characteristics and complications were estimated using multivariable regression models. RESULTS Among the 2348 eligible participants, 54.2% had an implantable, foreign body of some type. This proportion increased significantly during the 21-year study period, by 0.96% annually (P = .002), as did comorbid conditions and acquisition outside of the hospital. Rates of any metastatic complication also significantly increased, by 0.94% annually (P = .019). Among the corresponding bloodstream S. aureus isolates, spa-CC012 (multi-locus sequence type [MLST] CC30), -CC004 (MLST CC45), -CC189 (MLST CC1), and -CC084 (MLST CC15) all significantly declined during the study period, while spa-CC008 (MLST CC8) significantly increased. Patients with SAB due to spa-CC008 were significantly more likely to develop metastatic complications in general, and abscesses, septic emboli, and persistent bacteremia in particular. After adjusting for demographic, racial, and clinical variables, the USA300 variant of spa-CC008 was independently associated with metastatic complications (odds ratio 1.42; 95% confidence interval 1.02-1.99). CONCLUSIONS Systematic approaches for monitoring complications of SAB and genotyping the corresponding bloodstream isolates will help identify the emergence of hypervirulent clones and likely improve clinical management of this syndrome.
Collapse
Affiliation(s)
- Maria Souli
- Department of Medicine, Duke University Medical Center, North Carolina.,Duke Clinical Research Institute, Durham, North Carolina.,Fourth Department of Internal Medicine, National and Kapodistrian University of Athens School of Medicine, Greece
| | - Felicia Ruffin
- Department of Medicine, Duke University Medical Center, North Carolina
| | - Seong-Ho Choi
- Department of Medicine, Duke University Medical Center, North Carolina.,Department of Internal Medicine, Division of Infectious Diseases, Chung-Ang University College of Medicine, Seoul, South Korea
| | - Lawrence P Park
- Department of Medicine, Duke University Medical Center, North Carolina.,Duke Global Health Institute, Duke University, Durham, North Carolina
| | - Shengli Gao
- Department of Medicine, Duke University Medical Center, North Carolina.,The First People's Hospital of Wujiang District, Suzhou City, Jiangsu Province, China
| | | | | | - Joshua T Thaden
- Department of Medicine, Duke University Medical Center, North Carolina
| | | | - Lisa Wanda
- Department of Medicine, Duke University Medical Center, North Carolina.,School of Medicine, University of North Carolina, Chapel Hill
| | - Jonathan Hill-Rorie
- Department of Medicine, Duke University Medical Center, North Carolina.,Harvard T. H. Chan School of Public Health, Boston, Massachusetts
| | - Bobby Warren
- Department of Medicine, Duke University Medical Center, North Carolina
| | - Brenda Hansen
- Department of Medicine, Duke University Medical Center, North Carolina.,Pediatric Gastroenterology, University of North Carolina, Chapel Hill
| | - Vance G Fowler
- Department of Medicine, Duke University Medical Center, North Carolina.,Duke Clinical Research Institute, Durham, North Carolina
| |
Collapse
|