1
|
Balczon R, Lin MT, Voth S, Nelson AR, Schupp JC, Wagener BM, Pittet JF, Stevens T. Lung endothelium, tau, and amyloids in health and disease. Physiol Rev 2024; 104:533-587. [PMID: 37561137 PMCID: PMC11281824 DOI: 10.1152/physrev.00006.2023] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 06/26/2023] [Accepted: 08/04/2023] [Indexed: 08/11/2023] Open
Abstract
Lung endothelia in the arteries, capillaries, and veins are heterogeneous in structure and function. Lung capillaries in particular represent a unique vascular niche, with a thin yet highly restrictive alveolar-capillary barrier that optimizes gas exchange. Capillary endothelium surveys the blood while simultaneously interpreting cues initiated within the alveolus and communicated via immediately adjacent type I and type II epithelial cells, fibroblasts, and pericytes. This cell-cell communication is necessary to coordinate the immune response to lower respiratory tract infection. Recent discoveries identify an important role for the microtubule-associated protein tau that is expressed in lung capillary endothelia in the host-pathogen interaction. This endothelial tau stabilizes microtubules necessary for barrier integrity, yet infection drives production of cytotoxic tau variants that are released into the airways and circulation, where they contribute to end-organ dysfunction. Similarly, beta-amyloid is produced during infection. Beta-amyloid has antimicrobial activity, but during infection it can acquire cytotoxic activity that is deleterious to the host. The production and function of these cytotoxic tau and amyloid variants are the subject of this review. Lung-derived cytotoxic tau and amyloid variants are a recently discovered mechanism of end-organ dysfunction, including neurocognitive dysfunction, during and in the aftermath of infection.
Collapse
Affiliation(s)
- Ron Balczon
- Department of Biochemistry and Molecular Biology, University of South Alabama, Mobile, Alabama, United States
- Center for Lung Biology, University of South Alabama, Mobile, Alabama, United States
| | - Mike T Lin
- Department of Physiology and Cell Biology, University of South Alabama, Mobile, Alabama, United States
- Center for Lung Biology, University of South Alabama, Mobile, Alabama, United States
| | - Sarah Voth
- Department of Cell Biology and Physiology, Edward Via College of Osteopathic Medicine, Monroe, Louisiana, United States
| | - Amy R Nelson
- Department of Physiology and Cell Biology, University of South Alabama, Mobile, Alabama, United States
- Center for Lung Biology, University of South Alabama, Mobile, Alabama, United States
| | - Jonas C Schupp
- Pulmonary and Critical Care Medicine, Department of Internal Medicine, Yale University, New Haven, Connecticut, United States
- Department of Respiratory Medicine, Hannover Medical School, Hannover, Germany
- German Center for Lung Research (DZL), Hannover, Germany
| | - Brant M Wagener
- Department of Anesthesiology and Perioperative Medicine, University of Alabama-Birmingham, Birmingham, Alabama, United States
| | - Jean-Francois Pittet
- Department of Anesthesiology and Perioperative Medicine, University of Alabama-Birmingham, Birmingham, Alabama, United States
| | - Troy Stevens
- Department of Physiology and Cell Biology, University of South Alabama, Mobile, Alabama, United States
- Department of Internal Medicine, University of South Alabama, Mobile, Alabama, United States
- Center for Lung Biology, University of South Alabama, Mobile, Alabama, United States
| |
Collapse
|
2
|
Rios FJ, Sarafian RD, Camargo LL, Montezano AC, Touyz RM. Recent Advances in Understanding the Mechanistic Role of Transient Receptor Potential Ion Channels in Patients With Hypertension. Can J Cardiol 2023; 39:1859-1873. [PMID: 37865227 DOI: 10.1016/j.cjca.2023.10.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 10/17/2023] [Accepted: 10/17/2023] [Indexed: 10/23/2023] Open
Abstract
The transient receptor potential (TRP) channel superfamily is a group of nonselective cation channels that function as cellular sensors for a wide range of physical, chemical, and environmental stimuli. According to sequence homology, TRP channels are categorized into 6 subfamilies: TRP canonical, TRP vanilloid, TRP melastatin, TRP ankyrin, TRP mucolipin, and TRP polycystin. They are widely expressed in different cell types and tissues and have essential roles in various physiological and pathological processes by regulating the concentration of ions (Ca2+, Mg2+, Na+, and K+) and influencing intracellular signalling pathways. Human data and experimental models indicate the importance of TRP channels in vascular homeostasis and hypertension. Furthermore, TRP channels have emerged as key players in oxidative stress and inflammation, important in the pathophysiology of cardiovascular diseases, including hypertension. In this review, we present an overview of the TRP channels with a focus on their role in hypertension. In particular, we highlight mechanisms activated by TRP channels in vascular smooth muscle and endothelial cells and discuss their contribution to processes underlying vascular dysfunction in hypertension.
Collapse
Affiliation(s)
- Francisco J Rios
- Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada.
| | - Raquel D Sarafian
- Institute of Biosciences, Department of Genetics and Evolutionary Biology, University of Sao Paulo, Sao Paulo, Brazil
| | - Livia L Camargo
- Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
| | - Augusto C Montezano
- Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
| | - Rhian M Touyz
- Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada; Department of Medicine, McGill University, Montreal, Quebec, Canada.
| |
Collapse
|
3
|
Granfeldt A, Andersen LW, Vallentin MF, Hilberg O, Hasselstrøm JB, Sørensen LK, Mogensen S, Christensen S, Grejs AM, Rasmussen BS, Kristiansen KT, Strøm T, Johansen IS, Schjørring OL, Simonsen U. Senicapoc treatment in COVID-19 patients with severe respiratory insufficiency-A randomized, open-label, phase II trial. Acta Anaesthesiol Scand 2022; 66:838-846. [PMID: 35403225 PMCID: PMC9111301 DOI: 10.1111/aas.14072] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 02/07/2022] [Accepted: 03/28/2022] [Indexed: 01/08/2023]
Abstract
BACKGROUND The aim of the current study was to determine if treatment with senicapoc, improves the PaO2 /FiO2 ratio in patients with COVID-19 and severe respiratory insufficiency. METHODS Investigator-initiated, randomized, open-label, phase II trial in four intensive care units (ICU) in Denmark. We included patients aged ≥18 years and admitted to an ICU with severe respiratory insufficiency due to COVID-19. The intervention consisted of 50 mg enteral senicapoc administered as soon as possible after randomization and again after 24 h. Patients in the control group received standard care only. The primary outcome was the PaO2 /FiO2 ratio at 72 h. RESULTS Twenty patients were randomized to senicapoc and 26 patients to standard care. Important differences existed in patient characteristics at baseline, including more patients being on non-invasive/invasive ventilation in the control group (54% vs. 35%). The median senicapoc concentration at 72 h was 62.1 ng/ml (IQR 46.7-71.2). The primary outcome, PaO2 /FiO2 ratio at 72 h, was significantly lower in the senicapoc group (mean 19.5 kPa, SD 6.6) than in the control group (mean 24.4 kPa, SD 9.2) (mean difference -5.1 kPa [95% CI -10.2, -0.04] p = .05). The 28-day mortality in the senicapoc group was 2/20 (10%) compared with 6/26 (23%) in the control group (OR 0.36 95% CI 0.06-2.07, p = .26). CONCLUSIONS Treatment with senicapoc resulted in a significantly lower PaO2 /FiO2 ratio at 72 h with no differences for other outcomes.
Collapse
Affiliation(s)
- Asger Granfeldt
- Department of Anesthesiology and Intensive Care Aarhus University Hospital Aarhus Denmark
- Department of Clinical Medicine Aarhus University Aarhus Denmark
| | - Lars W. Andersen
- Department of Anesthesiology and Intensive Care Aarhus University Hospital Aarhus Denmark
- Department of Clinical Medicine Aarhus University Aarhus Denmark
- Prehospital Emergency Medical Services Central Denmark Region Denmark
- Research Center for Emergency Medicine Aarhus University Hospital Aarhus Denmark
| | - Mikael F. Vallentin
- Department of Clinical Medicine Aarhus University Aarhus Denmark
- Prehospital Emergency Medical Services Central Denmark Region Denmark
| | - Ole Hilberg
- Department of Medicine Vejle Hospital Vejle Denmark
| | - Jørgen B. Hasselstrøm
- Section for Forensic Chemistry, Department of Forensic Medicine Aarhus University Aarhus Denmark
| | - Lambert K. Sørensen
- Section for Forensic Chemistry, Department of Forensic Medicine Aarhus University Aarhus Denmark
| | - Susie Mogensen
- Department of Biomedicine, Pulmonary and Cardiovascular Pharmacology Aarhus University Aarhus Denmark
| | - Steffen Christensen
- Department of Anesthesiology and Intensive Care Aarhus University Hospital Aarhus Denmark
- Department of Clinical Medicine Aarhus University Aarhus Denmark
| | - Anders M. Grejs
- Department of Anesthesiology and Intensive Care Aarhus University Hospital Aarhus Denmark
- Department of Clinical Medicine Aarhus University Aarhus Denmark
| | - Bodil S. Rasmussen
- Department of Anesthesia and Intensive Care Aalborg University Hospital Aalborg Denmark
- Department of Clinical Medicine Aalborg University Aalborg Denmark
| | | | - Thomas Strøm
- Department of Anesthesiology Odense University Hospital Odense Denmark
- Department of Anesthesiology, Hospital of Southern Jutland University of Southern Denmark Odense Denmark
| | - Isik S. Johansen
- Department of Infectious Diseases Odense University Hospital Odense Denmark
| | - Olav L. Schjørring
- Department of Anesthesia and Intensive Care Aalborg University Hospital Aalborg Denmark
- Department of Clinical Medicine Aalborg University Aalborg Denmark
| | - Ulf Simonsen
- Department of Biomedicine, Pulmonary and Cardiovascular Pharmacology Aarhus University Aarhus Denmark
| |
Collapse
|
4
|
Taylor MS, Lowery J, Choi CS, Francis M. Restricted Intimal Ca 2+ Signaling Associated With Cardiovascular Disease. Front Physiol 2022; 13:848681. [PMID: 35492608 PMCID: PMC9040708 DOI: 10.3389/fphys.2022.848681] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 03/03/2022] [Indexed: 11/13/2022] Open
Abstract
Endothelial dysfunction is a key feature of cardiovascular disease (CVD) including atherosclerosis. Impaired endothelial signaling leads to plaque formation, vascular wall remodeling and widespread cardiovascular dysregulation. The specific changes along the vascular intima associated with atherosclerosis, including the vulnerable circulation downstream of the flow obstruction, remain poorly understood. Previous findings from animal models suggest that preservation of a distinct Ca2+ signaling profile along the arterial endothelial network is crucial for maintaining vasculature homeostasis and preventing arterial disease. Ca2+ signaling in the intact human artery intima has not been well characterized. Here, we employed confocal imaging and a custom analysis algorithm to assess the spatially and temporally dynamic Ca2+ signaling profiles of human peripheral arteries isolated from the amputated legs of patients with advanced CVD (peripheral artery disease and/or diabetes) or patients who had lost limbs due to non-cardiovascular trauma. In all tibial artery branches (0.5-5 mm diameter) assessed, the intima consistently elicited a broad range of basal Ca2+ signals ranging from isolated focal transients to broad waves. Arteries from patients with existing CVD displayed a restricted intimal Ca2+ signaling pattern characterized by diminished event amplitude and area. Stimulation of type-4 vanilloid transient receptor potential channels (TRPV4) amplified endothelial Ca2+ signals; however, these signals remained smaller and spatially confined in arteries from patients with CVD verses those without CVD. Our findings reveal a characteristic underlying basal Ca2+ signaling pattern within the intima of human peripheral arteries and suggest a distinct truncation of the inherent Ca2+ profile with CVD.
Collapse
Affiliation(s)
- Mark S. Taylor
- Department of Physiology and Cell Biology, University of South Alabama College of Medicine, Mobile, AL, United States
| | - Jordan Lowery
- Department of Pathology, University of South Alabama College of Medicine, Mobile, AL, United States
| | - Chung-Sik Choi
- Department of Physiology and Cell Biology, University of South Alabama College of Medicine, Mobile, AL, United States
| | - Michael Francis
- Department of Physiology and Cell Biology, University of South Alabama College of Medicine, Mobile, AL, United States
| |
Collapse
|
5
|
Abstract
The alveolo-capillary barrier is relatively impermeable, and facilitates gas exchange via the large alveolar surface in the lung. Disruption of alveolo-capillary barrier leads to accumulation of edema fluid in lung injury. Studies in animal models of various forms of lung injury provide evidence that TRPV4 channels play a critical role in disruption of the alveolo-capillary barrier and pathogenesis of lung injury. TRPV4 channels from capillary endothelial cells, alveolar epithelial cells, and immune cells have been implicated in the pathogenesis of lung injury. Recent studies in endothelium-specific TRPV4 knockout mice point to a central role for endothelial TRPV4 channels in lung injury. In this chapter, we review the findings on the pathological roles of endothelial TRPV4 channels in different forms of lung injury and future directions for further investigation.
Collapse
|
6
|
Augmented K Ca2.3 Channel Feedback Regulation of Oxytocin Stimulated Uterine Strips from Nonpregnant Mice. Int J Mol Sci 2021; 22:ijms222413585. [PMID: 34948381 PMCID: PMC8709448 DOI: 10.3390/ijms222413585] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 12/07/2021] [Accepted: 12/11/2021] [Indexed: 11/16/2022] Open
Abstract
Uterine contractions prior to 37 weeks gestation can result in preterm labor with significant risk to the infant. Current tocolytic therapies aimed at suppressing premature uterine contractions are largely ineffective and cause serious side effects. Calcium (Ca2+) dependent contractions of uterine smooth muscle are physiologically limited by the opening of membrane potassium (K+) channels. Exploiting such inherent negative feedback mechanisms may offer new strategies to delay labor and reduce risk. Positive modulation of small conductance Ca2+-activated K+ (KCa2.3) channels with cyclohexyl-[2-(3,5-dimethyl-pyrazol-1-yl)-6-methyl-pyrimidin-4-yl]-amine (CyPPA), effectively decreases uterine contractions. This study investigates whether the receptor agonist oxytocin might solicit KCa2.3 channel feedback that facilitates CyPPA suppression of uterine contractions. Using isometric force myography, we found that spontaneous phasic contractions of myometrial tissue from nonpregnant mice were suppressed by CyPPA and, in the presence of CyPPA, oxytocin failed to augment contractions. In tissues exposed to oxytocin, depletion of internal Ca2+ stores with cyclopiazonic acid (CPA) impaired CyPPA relaxation, whereas blockade of nonselective cation channels (NSCC) using gadolinium (Gd3+) had no significant effect. Immunofluorescence revealed close proximity of KCa2.3 channels and ER inositol trisphosphate receptors (IP3Rs) within myometrial smooth muscle cells. The findings suggest internal Ca2+ stores play a role in KCa2.3-dependent feedback control of uterine contraction and offer new insights for tocolytic therapies.
Collapse
|
7
|
Petersen AG, Lind PC, Mogensen S, Jensen ASB, Granfeldt A, Simonsen U. Treatment with senicapoc, a KCa3.1 channel blocker, alleviates hypoxemia in a mouse model for acute respiratory distress syndrome. Br J Pharmacol 2021; 179:2175-2192. [PMID: 34623632 DOI: 10.1111/bph.15704] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 08/30/2021] [Accepted: 09/02/2021] [Indexed: 11/02/2022] Open
Abstract
BACKGROUND AND PURPOSE Acute respiratory distress syndrome (ARDS) is characterized by pulmonary oedema and severe hypoxaemia. We investigated whether genetic deficit or blockade of calcium-activated potassium (KCa3.1) channels would counteract pulmonary oedema and hypoxaemia in ventilator-induced lung injury, an experimental model for ARDS. EXPERIMENTAL APPROACH KCa3.1 channel knockout mice were exposed to ventilator-induced lung injury. Control mice exposed to ventilator-induced lung injury were treated with the KCa3.1 channel inhibitor, senicapoc. The outcomes were oxygenation (PaO2 /FiO2 ratio), lung compliance, lung wet-to-dry weight, and protein and cytokines in bronchoalveolar lavage fluid (BALF). KEY RESULTS Ventilator-induced lung injury resulted in lung oedema, decreased lung compliance, a severe drop in PaO2 /FiO2 ratio, increased protein, neutrophils, and tumor necrosis factor-alpha (TNFα) in BALF from wild-type mice compared to KCa3.1 knockout mice. Pre-treatment with senicapoc (10-70 mg/kg) prevented the reduction in PaO2 /FiO2 ratio, decrease in lung compliance, increased protein, and TNFα. Senicapoc (30 mg/kg) reduced histopathological lung injury score and neutrophils in BALF. After injurious ventilation, administration of 30 mg/kg senicapoc also improved the PaO2 /FiO2 ratio and reduced lung injury score and neutrophils in the BALF compared to vehicle-treated mice. In human lung epithelial cells, senicapoc decreased TNFα-induced permeability. CONCLUSIONS AND IMPLICATIONS Genetic deficiency of KCa3.1 channels and senicapoc improved the PaO2 /FiO2 ratio and decreased the cytokines after a ventilator-induced lung injury. Moreover, senicapoc directly affects lung epithelial cells and blocks neutrophil infiltration of the injured lung. These findings open the perspective that blocking KCa3.1 channels is a potential treatment in ARDS-like disease.
Collapse
Affiliation(s)
- Asbjørn Graver Petersen
- Department of Biomedicine, Pulmonary and Cardiovascular Pharmacology, Aarhus University, Aarhus, Denmark
| | - Peter Carøe Lind
- Department of Biomedicine, Pulmonary and Cardiovascular Pharmacology, Aarhus University, Aarhus, Denmark
| | - Susie Mogensen
- Department of Biomedicine, Pulmonary and Cardiovascular Pharmacology, Aarhus University, Aarhus, Denmark
| | - Anne-Sophie Bonde Jensen
- Department of Biomedicine, Pulmonary and Cardiovascular Pharmacology, Aarhus University, Aarhus, Denmark
| | - Asger Granfeldt
- Department of Clinical Medicine, Anaesthesiology, Aarhus University Hospital, Aarhus, Denmark.,Intensive care, Aarhus University Hospital, Aarhus, Denmark.,Department of Intensive Care Medicine, Randers Regional Hospital, Randers, Denmark
| | - Ulf Simonsen
- Department of Biomedicine, Pulmonary and Cardiovascular Pharmacology, Aarhus University, Aarhus, Denmark
| |
Collapse
|
8
|
Zergane M, Kuebler WM, Michalick L. Heteromeric TRP Channels in Lung Inflammation. Cells 2021; 10:cells10071654. [PMID: 34359824 PMCID: PMC8307017 DOI: 10.3390/cells10071654] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 06/09/2021] [Accepted: 06/25/2021] [Indexed: 12/15/2022] Open
Abstract
Activation of Transient Receptor Potential (TRP) channels can disrupt endothelial barrier function, as their mediated Ca2+ influx activates the CaM (calmodulin)/MLCK (myosin light chain kinase)-signaling pathway, and thereby rearranges the cytoskeleton, increases endothelial permeability and thus can facilitate activation of inflammatory cells and formation of pulmonary edema. Interestingly, TRP channel subunits can build heterotetramers, whereas heteromeric TRPC1/4, TRPC3/6 and TRPV1/4 are expressed in the lung endothelium and could be targeted as a protective strategy to reduce endothelial permeability in pulmonary inflammation. An update on TRP heteromers and their role in lung inflammation will be provided with this review.
Collapse
Affiliation(s)
- Meryam Zergane
- Institute of Physiology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10117 Berlin, Germany; (M.Z.); (L.M.)
| | - Wolfgang M. Kuebler
- Institute of Physiology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10117 Berlin, Germany; (M.Z.); (L.M.)
- German Centre for Cardiovascular Research (DZHK), 10785 Berlin, Germany
- German Center for Lung Research (DZL), 35392 Gießen, Germany
- The Keenan Research Centre for Biomedical Science, St. Michael’s Hospital, Toronto, ON M5B 1W8, Canada
- Department of Surgery and Physiology, University of Toronto, Toronto, ON M5S 1A8, Canada
- Correspondence:
| | - Laura Michalick
- Institute of Physiology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10117 Berlin, Germany; (M.Z.); (L.M.)
- German Centre for Cardiovascular Research (DZHK), 10785 Berlin, Germany
| |
Collapse
|
9
|
Chen M, Li X. Role of TRPV4 channel in vasodilation and neovascularization. Microcirculation 2021; 28:e12703. [PMID: 33971061 DOI: 10.1111/micc.12703] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 05/02/2021] [Indexed: 12/12/2022]
Abstract
The transient receptor potential vanilloid type 4 (TRPV4) channel, a Ca2+ -permeable nonselective cation channel, is widely distributed in the circulatory system, particularly in vascular endothelial cells (ECs) and smooth muscle cells (SMCs). The TRPV4 channel is activated by various endogenous and exogenous stimuli, including shear stress, low intravascular pressure, and arachidonic acid. TRPV4 has a role in mediating vascular tone and arterial blood pressure. The activation of the TRPV4 channel induces Ca2+ influx, thereby resulting in endothelium-dependent hyperpolarization and SMC relaxation through SKCa and IKCa activation on ECs or through BKCa activation on SMCs. Ca2+ binds to calmodulin, which leads to the production of nitric oxide, causing vasodilation. Furthermore, the TRPV4 channel plays an important role in angiogenesis and arteriogenesis and is critical for tumor angiogenesis and growth, since it promotes or inhibits the development of various types of cancer. The TRPV4 channel is involved in the active growth of collateral arteries induced by flow shear stress, which makes it a promising therapeutic target in the occlusion or stenosis of the main arteries. In this review, we explore the role and the potential mechanism of action of the TRPV4 channel in the regulation of vascular tone and in the induction of neovascularization to provide a reference for future research.
Collapse
Affiliation(s)
- Miao Chen
- Department of Hand and Foot Surgery, The First Hospital of Jilin University, Changchun, China
| | - Xiucun Li
- Department of Hand and Foot Surgery, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,Department of Anatomy and Histoembryology, School of Basic Medical Science, Cheeloo College of Medicine, Shandong University, Jinan, China
| |
Collapse
|
10
|
Daneva Z, Marziano C, Ottolini M, Chen YL, Baker TM, Kuppusamy M, Zhang A, Ta HQ, Reagan CE, Mihalek AD, Kasetti RB, Shen Y, Isakson BE, Minshall RD, Zode GS, Goncharova EA, Laubach VE, Sonkusare SK. Caveolar peroxynitrite formation impairs endothelial TRPV4 channels and elevates pulmonary arterial pressure in pulmonary hypertension. Proc Natl Acad Sci U S A 2021; 118:e2023130118. [PMID: 33879616 PMCID: PMC8092599 DOI: 10.1073/pnas.2023130118] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Recent studies have focused on the contribution of capillary endothelial TRPV4 channels to pulmonary pathologies, including lung edema and lung injury. However, in pulmonary hypertension (PH), small pulmonary arteries are the focus of the pathology, and endothelial TRPV4 channels in this crucial anatomy remain unexplored in PH. Here, we provide evidence that TRPV4 channels in endothelial cell caveolae maintain a low pulmonary arterial pressure under normal conditions. Moreover, the activity of caveolar TRPV4 channels is impaired in pulmonary arteries from mouse models of PH and PH patients. In PH, up-regulation of iNOS and NOX1 enzymes at endothelial cell caveolae results in the formation of the oxidant molecule peroxynitrite. Peroxynitrite, in turn, targets the structural protein caveolin-1 to reduce the activity of TRPV4 channels. These results suggest that endothelial caveolin-1-TRPV4 channel signaling lowers pulmonary arterial pressure, and impairment of endothelial caveolin-1-TRPV4 channel signaling contributes to elevated pulmonary arterial pressure in PH. Thus, inhibiting NOX1 or iNOS activity, or lowering endothelial peroxynitrite levels, may represent strategies for restoring vasodilation and pulmonary arterial pressure in PH.
Collapse
Affiliation(s)
- Zdravka Daneva
- Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, VA 22908
| | - Corina Marziano
- Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, VA 22908
| | - Matteo Ottolini
- Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, VA 22908
- Department of Pharmacology, University of Virginia, Charlottesville, VA 22908
| | - Yen-Lin Chen
- Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, VA 22908
| | - Thomas M Baker
- Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, VA 22908
| | - Maniselvan Kuppusamy
- Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, VA 22908
| | - Aimee Zhang
- Department of Surgery, University of Virginia, Charlottesville, VA 22908
| | - Huy Q Ta
- Department of Surgery, University of Virginia, Charlottesville, VA 22908
| | - Claire E Reagan
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA 22908
| | - Andrew D Mihalek
- Department of Pulmonary and Critical Care Medicine, University of Virginia, Charlottesville, VA 22908
| | - Ramesh B Kasetti
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, TX 76107
- North Texas Eye Research Institute, University of North Texas Health Science Center, Fort Worth, TX 76107
| | - Yuanjun Shen
- Pittsburgh Heart, Lung and Blood Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA 15213
- Division of Pulmonary, Allergy, and Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA 15213
- Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15213
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15213
| | - Brant E Isakson
- Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, VA 22908
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA 22908
| | - Richard D Minshall
- Department of Anesthesiology, University of Illinois at Chicago, Chicago, IL 60612
- Department of Pharmacology, University of Illinois at Chicago, Chicago, IL 60612
| | - Gulab S Zode
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, TX 76107
- North Texas Eye Research Institute, University of North Texas Health Science Center, Fort Worth, TX 76107
| | - Elena A Goncharova
- Pittsburgh Heart, Lung and Blood Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA 15213
- Division of Pulmonary, Allergy, and Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA 15213
- Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15213
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15213
| | - Victor E Laubach
- Department of Surgery, University of Virginia, Charlottesville, VA 22908
| | - Swapnil K Sonkusare
- Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, VA 22908;
- Department of Pharmacology, University of Virginia, Charlottesville, VA 22908
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA 22908
| |
Collapse
|
11
|
Petersen AG, Lind PC, Jensen ASB, Eggertsen MA, Granfeldt A, Simonsen U. Treatment with senicapoc in a porcine model of acute respiratory distress syndrome. Intensive Care Med Exp 2021; 9:20. [PMID: 33870468 PMCID: PMC8053424 DOI: 10.1186/s40635-021-00381-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 03/03/2021] [Indexed: 11/21/2022] Open
Abstract
Background Senicapoc is a potent and selective blocker of KCa3.1, a calcium-activated potassium channel of intermediate conductance. In the present study, we investigated whether there is a beneficial effect of senicapoc in a large animal model of acute respiratory distress syndrome (ARDS). The primary end point was the PaO2/FiO2 ratio. Methods ARDS was induced in female pigs (42–49 kg) by repeated lung lavages followed by injurious mechanical ventilation. Animals were then randomly assigned to vehicle (n = 9) or intravenous senicapoc (10 mg, n = 9) and received lung-protective ventilation for 6 h. Results Final senicapoc plasma concentrations were 67 ± 18 nM (n = 9). Senicapoc failed to change the primary endpoint PaO2/FiO2 ratio (senicapoc, 133 ± 23 mmHg; vehicle, 149 ± 68 mmHg). Lung compliance remained similar in the two groups. Senicapoc reduced the level of white blood cells and neutrophils, while the proinflammatory cytokines TNFα, IL-1β, and IL-6 in the bronchoalveolar lavage fluid were unaltered 6 h after induction of the lung injury. Senicapoc-treatment reduced the level of neutrophils in the alveolar space but with no difference between groups in the cumulative lung injury score. Histological analysis of pulmonary hemorrhage indicated a positive effect of senicapoc on alveolar–capillary barrier function, but this was not supported by measurements of albumin content and total protein in the bronchoalveolar lavage fluid. Conclusions In summary, senicapoc failed to improve the primary endpoint PaO2/FiO2 ratio, but reduced pulmonary hemorrhage and the influx of neutrophils into the lung. These findings open the perspective that blocking KCa3.1 channels is a potential treatment to reduce alveolar neutrophil accumulation and improve long-term outcome in ARDS. Supplementary Information The online version contains supplementary material available at 10.1186/s40635-021-00381-z.
Collapse
Affiliation(s)
| | - Peter C Lind
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | | | | | - Asger Granfeldt
- Department of Clinical Medicine, Anesthesiology, Aarhus University Hospital, Aarhus, Denmark. .,Department of Intensive Care, Aarhus University Hospital, Palle Juul-Jensens Boulevard 99 G304, 8200, Aarhus, Denmark.
| | - Ulf Simonsen
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| |
Collapse
|
12
|
Ottolini M, Daneva Z, Chen YL, Cope EL, Kasetti RB, Zode GS, Sonkusare SK. Mechanisms underlying selective coupling of endothelial Ca 2+ signals with eNOS vs. IK/SK channels in systemic and pulmonary arteries. J Physiol 2020; 598:3577-3596. [PMID: 32463112 DOI: 10.1113/jp279570] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Accepted: 05/26/2020] [Indexed: 12/21/2022] Open
Abstract
KEY POINTS Endothelial cell TRPV4 (TRPV4EC ) channels exert a dilatory effect on the resting diameter of resistance mesenteric and pulmonary arteries. Functional intermediate- and small-conductance K+ (IK and SK) channels and endothelial nitric oxide synthase (eNOS) are present in the endothelium of mesenteric and pulmonary arteries. TRPV4EC sparklets preferentially couple with IK/SK channels in mesenteric arteries and with eNOS in pulmonary arteries. TRPV4EC channels co-localize with IK/SK channels in mesenteric arteries but not in pulmonary arteries, which may explain TRPV4EC -IK/SK channel coupling in mesenteric arteries and its absence in pulmonary arteries. The presence of the nitric oxide-scavenging protein, haemoglobin α, limits TRPV4EC -eNOS signalling in mesenteric arteries. Spatial proximity of TRPV4EC channels with eNOS and the absence of haemoglobin α favour TRPV4EC -eNOS signalling in pulmonary arteries. ABSTRACT Spatially localized Ca2+ signals activate Ca2+ -sensitive intermediate- and small-conductance K+ (IK and SK) channels in some vascular beds and endothelial nitric oxide synthase (eNOS) in others. The present study aimed to uncover the signalling organization that determines selective Ca2+ signal to vasodilatory target coupling in the endothelium. Resistance-sized mesenteric arteries (MAs) and pulmonary arteries (PAs) were used as prototypes for arteries with predominantly IK/SK channel- and eNOS-dependent vasodilatation, respectively. Ca2+ influx signals through endothelial transient receptor potential vanilloid 4 (TRPV4EC ) channels played an important role in controlling the baseline diameter of both MAs and PAs. TRPV4EC channel activity was similar in MAs and PAs. However, the TRPV4 channel agonist GSK1016790A (10 nm) selectively activated IK/SK channels in MAs and eNOS in PAs, revealing preferential TRPV4EC -IK/SK channel coupling in MAs and TRPV4EC -eNOS coupling in PAs. IK/SK channels co-localized with TRPV4EC channels at myoendothelial projections (MEPs) in MAs, although they lacked the spatial proximity necessary for their activation by TRPV4EC channels in PAs. Additionally, the presence of the NO scavenging protein haemoglobin α (Hbα) within nanometer proximity to eNOS limits TRPV4EC -eNOS signalling in MAs. By contrast, co-localization of TRPV4EC channels and eNOS at MEPs, and the absence of Hbα, favour TRPV4EC -eNOS coupling in PAs. Thus, our results reveal that differential spatial organization of signalling elements determines TRPV4EC -IK/SK vs. TRPV4EC -eNOS coupling in resistance arteries.
Collapse
Affiliation(s)
- Matteo Ottolini
- Robert M. Berne Cardiovascular Research Center, University of Virginia-School of Medicine, Charlottesville, VA, USA.,Department of Pharmacology, University of Virginia-School of Medicine, Charlottesville, VA, USA
| | - Zdravka Daneva
- Robert M. Berne Cardiovascular Research Center, University of Virginia-School of Medicine, Charlottesville, VA, USA
| | - Yen-Lin Chen
- Robert M. Berne Cardiovascular Research Center, University of Virginia-School of Medicine, Charlottesville, VA, USA
| | - Eric L Cope
- Robert M. Berne Cardiovascular Research Center, University of Virginia-School of Medicine, Charlottesville, VA, USA
| | - Ramesh B Kasetti
- Department of Pharmacology and Neuroscience and the North Texas Eye Research Institute, University of North Texas Health Science Center, Fort Worth, TX, USA
| | - Gulab S Zode
- Department of Pharmacology and Neuroscience and the North Texas Eye Research Institute, University of North Texas Health Science Center, Fort Worth, TX, USA
| | - Swapnil K Sonkusare
- Robert M. Berne Cardiovascular Research Center, University of Virginia-School of Medicine, Charlottesville, VA, USA.,Department of Pharmacology, University of Virginia-School of Medicine, Charlottesville, VA, USA.,Department of Molecular Physiology and Biological Physics, University of Virginia-School of Medicine, Charlottesville, VA, USA
| |
Collapse
|
13
|
Genova T, Gaglioti D, Munaron L. Regulation of Vessel Permeability by TRP Channels. Front Physiol 2020; 11:421. [PMID: 32431625 PMCID: PMC7214926 DOI: 10.3389/fphys.2020.00421] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 04/07/2020] [Indexed: 12/13/2022] Open
Abstract
The vascular endothelium constitutes a semi-permeable barrier between blood and interstitial fluids. Since an augmented endothelial permeability is often associated to pathological states, understanding the molecular basis for its regulation is a crucial biomedical and clinical challenge. This review focuses on the processes controlling paracellular permeability that is the permeation of fluids between adjacent endothelial cells (ECs). Cytosolic calcium changes are often detected as early events preceding the alteration of the endothelial barrier (EB) function. For this reason, great interest has been devoted in the last decades to unveil the molecular mechanisms underlying calcium fluxes and their functional relationship with vessel permeability. Beyond the dicotomic classification between store-dependent and independent calcium entry at the plasma membrane level, the search for the molecular components of the related calcium-permeable channels revealed a difficult task for intrinsic and technical limitations. The contribution of redundant channel-forming proteins including members of TRP superfamily and Orai1, together with the very complex intracellular modulatory pathways, displays a huge variability among tissues and along the vascular tree. Moreover, calcium-independent events could significantly concur to the regulation of vascular permeability in an intricate and fascinating multifactorial framework.
Collapse
Affiliation(s)
- Tullio Genova
- Department of Life Sciences and Systems Biology, University of Turin, Turin, Italy
| | - Deborah Gaglioti
- Department of Life Sciences and Systems Biology, University of Turin, Turin, Italy
| | - Luca Munaron
- Department of Life Sciences and Systems Biology, University of Turin, Turin, Italy
| |
Collapse
|
14
|
Olivares-Rubio HF, Espinosa-Aguirre JJ. Role of epoxyeicosatrienoic acids in the lung. Prostaglandins Other Lipid Mediat 2020; 149:106451. [PMID: 32294527 DOI: 10.1016/j.prostaglandins.2020.106451] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 03/10/2020] [Accepted: 04/02/2020] [Indexed: 12/16/2022]
Abstract
Epoxyeicosatrienoic acids (EETs) are synthetized from arachidonic acid by the action of members of the CYP2C and CYP2J subfamilies of cytochrome P450 (CYPs). The effects of EETs on cardiovascular function, the nervous system, the kidney and metabolic disease have been reviewed. In the lungs, the presence of these CYPs and EETs has been documented. In general, EETs play a beneficial role in this essential tissue. Among the most important effects of EETs in the lungs are the induction of vasorelaxation in the bronchi, the stimulation of Ca2+-activated K+ channels, the induction of vasoconstriction of pulmonary arteries, anti-inflammatory effects induced by asthma, and protection against infection or exposure to chemical substances such as cigarette smoke. EETs also participate in tissue regeneration, but on the downside, they are possibly involved in the progression of lung cancer. More research is necessary to design therapies with EETs for the treatment of lung disease.
Collapse
Affiliation(s)
- Hugo F Olivares-Rubio
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ap. Postal 70-228, Ciudad de México, México.
| | - J J Espinosa-Aguirre
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ap. Postal 70-228, Ciudad de México, México.
| |
Collapse
|
15
|
McFarland SJ, Weber DS, Choi CS, Lin MT, Taylor MS. Ablation of Endothelial TRPV4 Channels Alters the Dynamic Ca 2+ Signaling Profile in Mouse Carotid Arteries. Int J Mol Sci 2020; 21:ijms21062179. [PMID: 32235694 PMCID: PMC7139994 DOI: 10.3390/ijms21062179] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 03/13/2020] [Accepted: 03/17/2020] [Indexed: 01/22/2023] Open
Abstract
Transient receptor potential vanilloid 4 channels (TRPV4) are pivotal regulators of vascular homeostasis. Altered TRPV4 signaling has recently been implicated in various cardiovascular diseases, including hypertension and atherosclerosis. These versatile nonselective cation channels increase endothelial Ca2+ influx in response to various stimuli including shear stress and G protein-coupled receptor (GPCR) activation. Recent findings suggest TRPV4 channels produce localized Ca2+ transients at the endothelial cell plasma membrane that may allow targeted effector recruitment and promote large-scale Ca2+ events via release from internal stores (endoplasmic reticulum). However, the specific impact of TRPV4 channels on Ca2+ signaling in the intact arterial intima remains unknown. In the current study, we employ an endothelium-specific TRPV4 knockout mouse model (ecTRPV4-/-) to identify and characterize TRPV4-dependent endothelial Ca2+ dynamics. We find that carotid arteries from both ecTRPV4-/- and WT mice exhibit a range of basal and acetylcholine (ACh)-induced Ca2+ dynamics, similar in net frequency. Analysis of discrete Ca2+ event parameters (amplitude, duration, and spread) and event composite values reveals that while ecTRPV4-/- artery endothelium predominantly produces large Ca2+ events comparable to and in excess of those produced by WT endothelium, they are deficient in a particular population of small events, under both basal and ACh-stimulated conditions. These findings support the concept that TRPV4 channels are responsible for generating a distinct population of focal Ca2+ transients in the intact arterial endothelium, likely underlying their essential role in vascular homeostasis.
Collapse
|
16
|
Chambers L, Dorrance AM. Regulation of ion channels in the microcirculation by mineralocorticoid receptor activation. CURRENT TOPICS IN MEMBRANES 2020; 85:151-185. [PMID: 32402638 DOI: 10.1016/bs.ctm.2020.02.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The mineralocorticoid receptor (MR) has classically been studied in the renal epithelium for its role in regulating sodium and water balance and, subsequently, blood pressure. However, the MR also plays a critical role in the microvasculature by regulating ion channel expression and function. Activation of the MR by its endogenous agonist aldosterone results in translocation of the MR into the nucleus, where it can act as a transcription factor. Although most of the actions of the aldosterone can be attributed to its genomic activity though MR activation, it can also act by nongenomic mechanisms. Activation of this ubiquitous receptor increases the expression of epithelial sodium channels (ENaC) in both the endothelium and smooth muscle cells of peripheral and cerebral vessels. MR activation also regulates activity of calcium channels, calcium-activated potassium channels, and various transient receptor potential (TRP) channels. Modification of these ion channels results in a myriad of negative consequences, including impaired endothelium-dependent vasodilation, alterations in generation of myogenic tone, and increased inflammation and oxidative stress. Taken together, these studies demonstrate the importance of studying the impact of the MR on ion channel function in the vasculature. While research in this area has made advances in recent years, there are still many large gaps in knowledge that need to be filled. Crucial future directions of study include defining the molecular mechanisms involved in this interaction, as well as elucidating the potential sex differences that may exist, as these areas of understanding are currently lacking.
Collapse
Affiliation(s)
- Laura Chambers
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI, United States
| | - Anne M Dorrance
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI, United States.
| |
Collapse
|
17
|
Thakore P, Earley S. Transient Receptor Potential Channels and Endothelial Cell Calcium Signaling. Compr Physiol 2019; 9:1249-1277. [PMID: 31187891 DOI: 10.1002/cphy.c180034] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The vascular endothelium is a broadly distributed and highly specialized organ. The endothelium has a number of functions including the control of blood vessels diameter through the production and release of potent vasoactive substances or direct electrical communication with underlying smooth muscle cells, regulates the permeability of the vascular barrier, stimulates the formation of new blood vessels, and influences inflammatory and thrombotic processes. Endothelial cells that make up the endothelium express a variety of cell-surface receptors and ion channels on the plasma membrane that are capable of detecting circulating hormones, neurotransmitters, oxygen tension, and shear stress across the vascular wall. Changes in these stimuli activate signaling cascades that initiate an appropriate physiological response. Increases in the global intracellular Ca2+ concentration and localized Ca2+ signals that occur within specialized subcellular microdomains are fundamentally important components of many signaling pathways in the endothelium. The transient receptor potential (TRP) channels are a superfamily of cation-permeable ion channels that act as a primary means of increasing cytosolic Ca2+ in endothelial cells. Consequently, TRP channels are vitally important for the major functions of the endothelium. In this review, we provide an in-depth discussion of Ca2+ -permeable TRP channels in the endothelium and their role in vascular regulation. © 2019 American Physiological Society. Compr Physiol 9:1249-1277, 2019.
Collapse
Affiliation(s)
- Pratish Thakore
- Department of Pharmacology, Center for Cardiovascular Research, University of Nevada, Reno School of Medicine, Reno, Nevada, USA
| | - Scott Earley
- Department of Pharmacology, Center for Cardiovascular Research, University of Nevada, Reno School of Medicine, Reno, Nevada, USA
| |
Collapse
|
18
|
Behringer EJ, Hakim MA. Functional Interaction among K Ca and TRP Channels for Cardiovascular Physiology: Modern Perspectives on Aging and Chronic Disease. Int J Mol Sci 2019; 20:ijms20061380. [PMID: 30893836 PMCID: PMC6471369 DOI: 10.3390/ijms20061380] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 03/07/2019] [Accepted: 03/15/2019] [Indexed: 12/16/2022] Open
Abstract
Effective delivery of oxygen and essential nutrients to vital organs and tissues throughout the body requires adequate blood flow supplied through resistance vessels. The intimate relationship between intracellular calcium ([Ca2+]i) and regulation of membrane potential (Vm) is indispensable for maintaining blood flow regulation. In particular, Ca2+-activated K+ (KCa) channels were ascertained as transducers of elevated [Ca2+]i signals into hyperpolarization of Vm as a pathway for decreasing vascular resistance, thereby enhancing blood flow. Recent evidence also supports the reverse role for KCa channels, in which they facilitate Ca2+ influx into the cell interior through open non-selective cation (e.g., transient receptor potential; TRP) channels in accord with robust electrical (hyperpolarization) and concentration (~20,000-fold) transmembrane gradients for Ca2+. Such an arrangement supports a feed-forward activation of Vm hyperpolarization while potentially boosting production of nitric oxide. Furthermore, in vascular types expressing TRP channels but deficient in functional KCa channels (e.g., collecting lymphatic endothelium), there are profound alterations such as downstream depolarizing ionic fluxes and the absence of dynamic hyperpolarizing events. Altogether, this review is a refined set of evidence-based perspectives focused on the role of the endothelial KCa and TRP channels throughout multiple experimental animal models and vascular types. We discuss the diverse interactions among KCa and TRP channels to integrate Ca2+, oxidative, and electrical signaling in the context of cardiovascular physiology and pathology. Building from a foundation of cellular biophysical data throughout a wide and diverse compilation of significant discoveries, a translational narrative is provided for readers toward the treatment and prevention of chronic, age-related cardiovascular disease.
Collapse
Affiliation(s)
- Erik J Behringer
- Department of Basic Sciences, 11041 Campus Street, Risley Hall, Loma Linda University, Loma Linda, CA 92350, USA.
| | - Md A Hakim
- Department of Basic Sciences, 11041 Campus Street, Risley Hall, Loma Linda University, Loma Linda, CA 92350, USA.
| |
Collapse
|
19
|
Zhang B, Paffett ML, Naik JS, Jernigan NL, Walker BR, Resta TC. Cholesterol Regulation of Pulmonary Endothelial Calcium Homeostasis. CURRENT TOPICS IN MEMBRANES 2018; 82:53-91. [PMID: 30360783 DOI: 10.1016/bs.ctm.2018.09.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Cholesterol is a key structural component and regulator of lipid raft signaling platforms critical for cell function. Such regulation may involve changes in the biophysical properties of lipid microdomains or direct protein-sterol interactions that alter the function of ion channels, receptors, enzymes, and membrane structural proteins. Recent studies have implicated abnormal membrane cholesterol levels in mediating endothelial dysfunction that is characteristic of pulmonary hypertensive disorders, including that resulting from long-term exposure to hypoxia. Endothelial dysfunction in this setting is characterized by impaired pulmonary endothelial calcium entry and an associated imbalance that favors production vasoconstrictor and mitogenic factors that contribute to pulmonary hypertension. Here we review current knowledge of cholesterol regulation of pulmonary endothelial Ca2+ homeostasis, focusing on the role of membrane cholesterol in mediating agonist-induced Ca2+ entry and its components in the normal and hypertensive pulmonary circulation.
Collapse
Affiliation(s)
- Bojun Zhang
- Vascular Physiology Group, Department of Cell Biology and Physiology, University of New Mexico, Albuquerque, NM, United States
| | - Michael L Paffett
- Vascular Physiology Group, Department of Cell Biology and Physiology, University of New Mexico, Albuquerque, NM, United States
| | - Jay S Naik
- Vascular Physiology Group, Department of Cell Biology and Physiology, University of New Mexico, Albuquerque, NM, United States
| | - Nikki L Jernigan
- Vascular Physiology Group, Department of Cell Biology and Physiology, University of New Mexico, Albuquerque, NM, United States
| | - Benjimen R Walker
- Vascular Physiology Group, Department of Cell Biology and Physiology, University of New Mexico, Albuquerque, NM, United States
| | - Thomas C Resta
- Vascular Physiology Group, Department of Cell Biology and Physiology, University of New Mexico, Albuquerque, NM, United States.
| |
Collapse
|
20
|
Li Y, Hu H, O'Neil RG. Caveolae facilitate TRPV4-mediated Ca 2+ signaling and the hierarchical activation of Ca 2+-activated K + channels in K +-secreting renal collecting duct cells. Am J Physiol Renal Physiol 2018; 315:F1626-F1636. [PMID: 30207167 DOI: 10.1152/ajprenal.00076.2018] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Transient receptor potential cation channel subfamily V member 4 (TRPV4)-mediated Ca2+ signaling induces early activation of small/intermediate Ca2+-activated K+ channels, SK3 (KCNN3) and IK1 (KCNN4), which leads to membrane hyperpolarization and enhanced Ca2+ influx, which is critical for subsequent activation of the large conductance Ca2+-activated K+ channel BK (KCNMA1) and K+ secretion in kidney cortical collecting duct (CCD) cells. The focus of the present study was to determine if such coordinated hierarchical/sequential activation of these channels in CCD was orchestrated within caveolae, a known microcompartment underlying selective Ca2+-signaling events in other cells. In K+-secreting mouse principal cell (PC) line, mCCDcl1 cells, knockdown of caveolae caveolin-1 (CAV-1) depressed TRPV4-mediated Ca2+ signaling and activation of SK3, intermediate conductance channel (IK1), and BK. Immunofluorescence colocalization analysis and coimmunoprecipitation assays demonstrated direct coupling of TRPV4 with each of the KCa channels in both mCCDcl1 and whole mouse kidney homogenates. Likewise, extending this analysis to CAV-1 demonstrates colocalization and direct coupling of CAV-1 with TRPV4, SK3, IK1, and BK, providing strong support for coupling of the channels in caveolae microdomains. Furthermore, differential expression of CAV-1 along the CCD was apparent where CAV-1 was strongly expressed within and along the cell borders of kidney PCs and intercalated cells (ICs), although significantly less in ICs. It is concluded that caveolae provide a key microdomain in PCs and ICs for coupling of TRPV4 with SK3, IK1, and BK that directly contributes to TRPV4-mediated Ca2+ signaling in these domains leading to rapid and sequential coupling of TRPV4-SK3/IK1-BK that may play a central role in mediating Ca2+-dependent regulation of BK and K+ secretion.
Collapse
Affiliation(s)
- Yue Li
- Department of Integrative Biology and Pharmacology, The University of Texas Health Science Center at Houston , Houston, Texas
| | - Hongxiang Hu
- Department of Integrative Biology and Pharmacology, The University of Texas Health Science Center at Houston , Houston, Texas
| | - Roger G O'Neil
- Department of Integrative Biology and Pharmacology, The University of Texas Health Science Center at Houston , Houston, Texas
| |
Collapse
|
21
|
Dagenais A, Desjardins J, Shabbir W, Roy A, Filion D, Sauvé R, Berthiaume Y. Loss of barrier integrity in alveolar epithelial cells downregulates ENaC expression and activity via Ca 2+ and TRPV4 activation. Pflugers Arch 2018; 470:1615-1631. [PMID: 30088081 DOI: 10.1007/s00424-018-2182-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Revised: 06/14/2018] [Accepted: 07/09/2018] [Indexed: 01/08/2023]
Abstract
The epithelial Na channel (ENaC) plays an essential role in lung physiology by modulating the amount of liquid lining the respiratory epithelium. Here, we tested the effect of breaking alveolar epithelial cell barrier integrity on ENaC expression and function. We found that either mechanical wounding by scratching the monolayer or disruption of tight junction with EDTA induced a ~ 50% decrease of α,β and γENaC mRNA expression and an 80% reduction of ENaC short-circuit current (Isc) at 6 h. Scratching the cell monolayer generated a Ca2+ wave that spread from the margin of the scratch to distant cells. Pretreatment with BAPTA-AM, an intracellular Ca2+ chelator, abolished the effect of mechanical wounding and EDTA on αENaC mRNA expression, suggesting that [Ca2+]i is important for this modulation. We tested the hypothesis that a mechanosensitive channel such as TRPV4, a cationic channel known to increase [Ca2+]i, could mediate this effect. Activation of the channel with the TRPV4 specific agonist GSK-1016790A (GSK) decreased αENAC mRNA expression and almost completely abolished ENaC Isc. Pretreatment of alveolar epithelial cells with HC-067047 (HC0), a specific TRPV4 antagonist, reduced the extent of αENAC mRNA downregulation by mechanical wounding and EDTA. Altogether, our results suggest that mechanical stress induced by wounding or TRPV4-mediated loss of tight junction increases [Ca2+]i and elicits a Ca2+ wave that affects ENaC expression and function away from the site of injury. These data are important to better understand how Ca2+ signaling affects lung liquid clearance in injured lungs.
Collapse
Affiliation(s)
- André Dagenais
- Institut de recherches cliniques de Montréal, 110 Avenue des Pins Ouest, Montreal, Quebec, H2W 1R7, Canada.
- Département de médecine, Université de Montréal, Montreal, Quebec, Canada.
| | - Julie Desjardins
- Institut de recherches cliniques de Montréal, 110 Avenue des Pins Ouest, Montreal, Quebec, H2W 1R7, Canada
| | - Waheed Shabbir
- Institute of Pharmacology and Toxicology, University of Vienna, Vienna, Austria
| | - Antoine Roy
- Institut de recherches cliniques de Montréal, 110 Avenue des Pins Ouest, Montreal, Quebec, H2W 1R7, Canada
| | - Dominic Filion
- Institut de recherches cliniques de Montréal, 110 Avenue des Pins Ouest, Montreal, Quebec, H2W 1R7, Canada
| | - Rémy Sauvé
- Département de pharmacologie et physiologie, Université de Montréal, Montreal, Quebec, Canada
| | - Yves Berthiaume
- Institut de recherches cliniques de Montréal, 110 Avenue des Pins Ouest, Montreal, Quebec, H2W 1R7, Canada
- Département de médecine, Université de Montréal, Montreal, Quebec, Canada
| |
Collapse
|
22
|
Park SK, Herrnreiter A, Pfister SL, Gauthier KM, Falck BA, Falck JR, Campbell WB. GPR40 is a low-affinity epoxyeicosatrienoic acid receptor in vascular cells. J Biol Chem 2018; 293:10675-10691. [PMID: 29777058 DOI: 10.1074/jbc.ra117.001297] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Revised: 04/25/2018] [Indexed: 12/17/2022] Open
Abstract
Endothelium-derived epoxyeicosatrienoic acids (EETs) have numerous vascular activities mediated by G protein-coupled receptors. Long-chain free fatty acids and EETs activate GPR40, prompting us to investigate the role of GPR40 in some vascular EET activities. 14,15-EET, 11,12-EET, arachidonic acid, and the GPR40 agonist GW9508 increase intracellular calcium concentrations in human GPR40-overexpressing HEK293 cells (EC50 = 0.58 ± 0.08 μm, 0.91 ± 0.08 μm, 3.9 ± 0.06 μm, and 19 ± 0.37 nm, respectively). EETs with cis- and trans-epoxides had similar activities, whereas substitution of a thiirane sulfur for the epoxide oxygen decreased the activities. 8,9-EET, 5,6-EET, and the epoxide hydrolysis products 11,12- and 14,15-dihydroxyeicosatrienoic acids were less active than 11,12-EET. The GPR40 antagonist GW1100 and siRNA-mediated GPR40 silencing blocked the EET- and GW9508-induced calcium increases. EETs are weak GPR120 agonists. GPR40 expression was detected in human and bovine endothelial cells (ECs), smooth muscle cells, and arteries. 11,12-EET concentration-dependently relaxed preconstricted coronary arteries; however, these relaxations were not altered by GW1100. In human ECs, 11,12-EET increased MAP kinase (MAPK)-mediated ERK phosphorylation, phosphorylation and levels of connexin-43 (Cx43), and expression of cyclooxygenase-2 (COX-2), all of which were inhibited by GW1100 and the MAPK inhibitor U0126. Moreover, siRNA-mediated GPR40 silencing decreased 11,12-EET-induced ERK phosphorylation. These results indicated that GPR40 is a low-affinity EET receptor in vascular cells and arteries. We conclude that epoxidation of arachidonic acid to EETs enhances GPR40 agonist activity and that 11,12-EET stimulation of GPR40 increases Cx43 and COX-2 expression in ECs via ERK phosphorylation.
Collapse
Affiliation(s)
- Sang-Kyu Park
- From the Department of Pharmacology and Toxicology Medical College of Wisconsin, Milwaukee, Wisconsin 53226 and
| | - Anja Herrnreiter
- From the Department of Pharmacology and Toxicology Medical College of Wisconsin, Milwaukee, Wisconsin 53226 and
| | - Sandra L Pfister
- From the Department of Pharmacology and Toxicology Medical College of Wisconsin, Milwaukee, Wisconsin 53226 and
| | - Kathryn M Gauthier
- From the Department of Pharmacology and Toxicology Medical College of Wisconsin, Milwaukee, Wisconsin 53226 and
| | - Benjamin A Falck
- the Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas 75390
| | - John R Falck
- the Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas 75390
| | - William B Campbell
- From the Department of Pharmacology and Toxicology Medical College of Wisconsin, Milwaukee, Wisconsin 53226 and
| |
Collapse
|
23
|
Pizzoni A, López González M, Di Giusto G, Rivarola V, Capurro C, Ford P. AQP2 can modulate the pattern of Ca
2+
transients induced by store‐operated Ca
2+
entry under TRPV4 activation. J Cell Biochem 2018; 119:4120-4133. [DOI: 10.1002/jcb.26612] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2017] [Accepted: 12/07/2017] [Indexed: 12/15/2022]
Affiliation(s)
- Alejandro Pizzoni
- Laboratorio de Biomembranas, Facultad de Medicina, Departamento de Ciencias FisiológicasUniversidad de Buenos AiresBuenos AiresArgentina
- CONICET‐Universidad de Buenos AiresInstituto de Fisiología y Biofísica “Bernardo Houssay” (IFIBIO)Buenos AiresArgentina
| | - Macarena López González
- Laboratorio de Biomembranas, Facultad de Medicina, Departamento de Ciencias FisiológicasUniversidad de Buenos AiresBuenos AiresArgentina
| | - Gisela Di Giusto
- Laboratorio de Biomembranas, Facultad de Medicina, Departamento de Ciencias FisiológicasUniversidad de Buenos AiresBuenos AiresArgentina
- CONICET‐Universidad de Buenos AiresInstituto de Fisiología y Biofísica “Bernardo Houssay” (IFIBIO)Buenos AiresArgentina
| | - Valeria Rivarola
- Laboratorio de Biomembranas, Facultad de Medicina, Departamento de Ciencias FisiológicasUniversidad de Buenos AiresBuenos AiresArgentina
- CONICET‐Universidad de Buenos AiresInstituto de Fisiología y Biofísica “Bernardo Houssay” (IFIBIO)Buenos AiresArgentina
| | - Claudia Capurro
- Laboratorio de Biomembranas, Facultad de Medicina, Departamento de Ciencias FisiológicasUniversidad de Buenos AiresBuenos AiresArgentina
- CONICET‐Universidad de Buenos AiresInstituto de Fisiología y Biofísica “Bernardo Houssay” (IFIBIO)Buenos AiresArgentina
| | - Paula Ford
- Laboratorio de Biomembranas, Facultad de Medicina, Departamento de Ciencias FisiológicasUniversidad de Buenos AiresBuenos AiresArgentina
- CONICET‐Universidad de Buenos AiresInstituto de Fisiología y Biofísica “Bernardo Houssay” (IFIBIO)Buenos AiresArgentina
| |
Collapse
|
24
|
Ranchoux B, Harvey LD, Ayon RJ, Babicheva A, Bonnet S, Chan SY, Yuan JXJ, Perez VDJ. Endothelial dysfunction in pulmonary arterial hypertension: an evolving landscape (2017 Grover Conference Series). Pulm Circ 2018; 8:2045893217752912. [PMID: 29283043 PMCID: PMC5798691 DOI: 10.1177/2045893217752912] [Citation(s) in RCA: 90] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Accepted: 12/18/2017] [Indexed: 02/06/2023] Open
Abstract
Endothelial dysfunction is a major player in the development and progression of vascular pathology in pulmonary arterial hypertension (PAH), a disease associated with small vessel loss and obstructive vasculopathy that leads to increased pulmonary vascular resistance, subsequent right heart failure, and premature death. Over the past ten years, there has been tremendous progress in our understanding of pulmonary endothelial biology as it pertains to the genetic and molecular mechanisms that orchestrate the endothelial response to direct or indirect injury, and how their dysregulation can contribute to the pathogenesis of PAH. As one of the major topics included in the 2017 Grover Conference Series, discussion centered on recent developments in four areas of pulmonary endothelial biology: (1) angiogenesis; (2) endothelial-mesenchymal transition (EndMT); (3) epigenetics; and (4) biology of voltage-gated ion channels. The present review will summarize the content of these discussions and provide a perspective on the most promising aspects of endothelial dysfunction that may be amenable for therapeutic development.
Collapse
Affiliation(s)
| | - Lloyd D. Harvey
- University of Pittsburgh Vascular Medicine Institute Division of Cardiology, Pittsburgh, PA, USA
| | - Ramon J. Ayon
- Division of Translational and Regenerative Medicine, The University of Arizona College of Medicine, Tucson, AZ, USA
| | - Aleksandra Babicheva
- Division of Translational and Regenerative Medicine, The University of Arizona College of Medicine, Tucson, AZ, USA
| | | | - Stephen Y. Chan
- University of Pittsburgh Vascular Medicine Institute Division of Cardiology, Pittsburgh, PA, USA
| | - Jason X.-J. Yuan
- Division of Translational and Regenerative Medicine, The University of Arizona College of Medicine, Tucson, AZ, USA
| | - Vinicio de Jesus Perez
- Division of Pulmonary and Critical Care Medicine, Stanford University Medical Center, Stanford, CA, USA
- The Vera Moulton Wall Center for Pulmonary Vascular Medicine, Stanford University Medical Center, Stanford, CA, USA
- Stanford Cardiovascular Institute, Stanford University Medical Center, Stanford, CA, USA
| |
Collapse
|
25
|
Honrath B, Krabbendam IE, Culmsee C, Dolga AM. Small conductance Ca 2+-activated K + channels in the plasma membrane, mitochondria and the ER: Pharmacology and implications in neuronal diseases. Neurochem Int 2017; 109:13-23. [PMID: 28511953 DOI: 10.1016/j.neuint.2017.05.005] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Revised: 04/24/2017] [Accepted: 05/08/2017] [Indexed: 12/14/2022]
Abstract
Ca2+-activated K+ (KCa) channels regulate after-hyperpolarization in many types of neurons in the central and peripheral nervous system. Small conductance Ca2+-activated K+ (KCa2/SK) channels, a subfamily of KCa channels, are widely expressed in the nervous system, and in the cardiovascular system. Voltage-independent SK channels are activated by alterations in intracellular Ca2+ ([Ca2+]i) which facilitates the opening of these channels through binding of Ca2+ to calmodulin that is constitutively bound to the SK2 C-terminus. In neurons, SK channels regulate synaptic plasticity and [Ca2+]i homeostasis, and a number of recent studies elaborated on the emerging neuroprotective potential of SK channel activation in conditions of excitotoxicity and cerebral ischemia, as well as endoplasmic reticulum (ER) stress and oxidative cell death. Recently, SK channels were discovered in the inner mitochondrial membrane and in the membrane of the endoplasmic reticulum which sheds new light on the underlying molecular mechanisms and pathways involved in SK channel-mediated protective effects. In this review, we will discuss the protective properties of pharmacological SK channel modulation with particular emphasis on intracellularly located SK channels as potential therapeutic targets in paradigms of neuronal dysfunction.
Collapse
Affiliation(s)
- Birgit Honrath
- Institute of Pharmacology and Clinical Pharmacy, University of Marburg, 35043 Marburg, Germany; Faculty of Science and Engineering, Groningen Research Institute of Pharmacy, Department of Molecular Pharmacology, University of Groningen, 9713 AV Groningen, The Netherlands
| | - Inge E Krabbendam
- Faculty of Science and Engineering, Groningen Research Institute of Pharmacy, Department of Molecular Pharmacology, University of Groningen, 9713 AV Groningen, The Netherlands
| | - Carsten Culmsee
- Institute of Pharmacology and Clinical Pharmacy, University of Marburg, 35043 Marburg, Germany
| | - Amalia M Dolga
- Institute of Pharmacology and Clinical Pharmacy, University of Marburg, 35043 Marburg, Germany; Faculty of Science and Engineering, Groningen Research Institute of Pharmacy, Department of Molecular Pharmacology, University of Groningen, 9713 AV Groningen, The Netherlands.
| |
Collapse
|
26
|
Simonsen U, Wandall-Frostholm C, Oliván-Viguera A, Köhler R. Emerging roles of calcium-activated K channels and TRPV4 channels in lung oedema and pulmonary circulatory collapse. Acta Physiol (Oxf) 2017; 219:176-187. [PMID: 27497091 DOI: 10.1111/apha.12768] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Revised: 11/30/2015] [Accepted: 08/04/2016] [Indexed: 12/12/2022]
Abstract
It has been suggested that the transient receptor potential cation (TRP) channel subfamily V (vanilloid) type 4 (TRPV4) and intermediate conductance calcium-activated potassium (KCa3.1) channels contribute to endothelium-dependent vasodilation. Here, we summarize very recent evidence for a synergistic interplay of TRPV4 and KCa3.1 channels in lung disease. Among the endothelial Ca2+ -permeable TRPs, TRPV4 is best characterized and produces arterial dilation by stimulating Ca2+ -dependent nitric oxide synthesis and endothelium-dependent hyperpolarization. Besides these roles, some TRP channels control endothelial/epithelial barrier functions and vascular integrity, while KCa3.1 channels provide the driving force required for Cl- and water transport in some cells and most secretory epithelia. The three conditions, increased pulmonary venous pressure caused by left heart disease, high inflation pressure and chemically induced lung injury, may lead to activation of TRPV4 channels followed by Ca2+ influx leading to activation of KCa3.1 channels in endothelial cells ultimately leading to acute lung injury. We find that a deficiency in KCa3.1 channels protects against TRPV4-induced pulmonary arterial relaxation, fluid extravasation, haemorrhage, pulmonary circulatory collapse and cardiac arrest in vivo. These data identify KCa3.1 channels as crucial molecular components in downstream TRPV4 signal transduction and as a potential target for the prevention of undesired fluid extravasation, vasodilatation and pulmonary circulatory collapse.
Collapse
Affiliation(s)
- U. Simonsen
- Department of Biomedicine, Pulmonary and Cardiovascular Pharmacology; Aarhus University; Aarhus C Denmark
| | - C. Wandall-Frostholm
- Department of Biomedicine, Pulmonary and Cardiovascular Pharmacology; Aarhus University; Aarhus C Denmark
| | - A. Oliván-Viguera
- Translational Research Unit; University Hospital Miguel Servet and IACS/IIS; Aragonese Agency for Investigation and Development (ARAID); Zaragoza Spain
| | - R. Köhler
- Translational Research Unit; University Hospital Miguel Servet and IACS/IIS; Aragonese Agency for Investigation and Development (ARAID); Zaragoza Spain
| |
Collapse
|
27
|
Naik JS, Osmond JM, Walker BR, Kanagy NL. Hydrogen sulfide-induced vasodilation mediated by endothelial TRPV4 channels. Am J Physiol Heart Circ Physiol 2016; 311:H1437-H1444. [PMID: 27765747 DOI: 10.1152/ajpheart.00465.2016] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Accepted: 09/30/2016] [Indexed: 01/03/2023]
Abstract
Hydrogen sulfide (H2S) is a recently described gaseous vasodilator produced within the vasculature by the enzymes cystathionine γ-lyase and 3-mercaptopyruvate sulfurtransferase. Previous data demonstrate that endothelial cells (EC) are the source of endogenous H2S production and are required for H2S-induced dilation. However, the signal transduction pathway activated by H2S within EC has not been elucidated. TRPV4 and large-conductance Ca2+-activated K channels (BK channels) are expressed in EC. H2S-induced dilation is inhibited by luminal administration of iberiotoxin and disruption of the endothelium. Calcium influx through TRPV4 may activate these endothelial BK channels (eBK). We hypothesized that H2S-mediated vasodilation involves activation of TRPV4 within the endothelium. In pressurized, phenylephrine-constricted mesenteric arteries, H2S elicited a dose-dependent vasodilation blocked by inhibition of TRPV4 channels (GSK2193874A, 300 nM). H2S (1 μM) increased TRPV4-dependent (1.8-fold) localized calcium events in EC of pressurized arteries loaded with fluo-4 and Oregon Green. In pressurized EC tubes, H2S (1 μM) and the TRPV4 activator, GSK101679A (30 nM), increased calcium events 1.8- and 1.5-fold, respectively. H2S-induced an iberiotoxin-sensitive outward current measured using whole cell patch-clamp techniques in freshly dispersed EC. H2S increased K+ currents from 10 to 30 pA/pF at +150 mV. Treatment with Na2S increased the level of sulfhydration of TRPV4 channels in aortic ECs. These results demonstrate that H2S-mediated vasodilation involves activation of TRPV4-dependent Ca2+ influx and BK channel activation within EC. Activation of TRPV4 channels appears to cause calcium events that result in the opening of eBK channels, endothelial hyperpolarization, and subsequent vasodilation.
Collapse
Affiliation(s)
- Jay S Naik
- Department of Cell Biology and Physiology, University of New Mexico, Albuquerque, New Mexico
| | - Jessica M Osmond
- Department of Cell Biology and Physiology, University of New Mexico, Albuquerque, New Mexico
| | - Benjimen R Walker
- Department of Cell Biology and Physiology, University of New Mexico, Albuquerque, New Mexico
| | - Nancy L Kanagy
- Department of Cell Biology and Physiology, University of New Mexico, Albuquerque, New Mexico
| |
Collapse
|
28
|
Expression of a Diverse Array of Ca2+-Activated K+ Channels (SK1/3, IK1, BK) that Functionally Couple to the Mechanosensitive TRPV4 Channel in the Collecting Duct System of Kidney. PLoS One 2016; 11:e0155006. [PMID: 27159616 PMCID: PMC4861333 DOI: 10.1371/journal.pone.0155006] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Accepted: 04/22/2016] [Indexed: 12/02/2022] Open
Abstract
The voltage- and Ca2+-activated, large conductance K+ channel (BK, maxi-K) is expressed in the collecting duct system of kidney where it underlies flow- and Ca2+-dependent K+ excretion. To determine if other Ca2+-activated K+ channels (KCa) may participate in this process, mouse kidney and the K+-secreting mouse cortical collecting duct (CCD) cell line, mCCDcl1, were assessed for TRPV4 and KCa channel expression and cross-talk. qPCR mRNA analysis and immunocytochemical staining demonstrated TRPV4 and KCa expression in mCCDcl1 cells and kidney connecting tubule (CNT) and CCD. Three subfamilies of KCa channels were revealed: the high Ca2+-binding affinity small-conductance SK channels, SK1and SK3, the intermediate conductance channel, IK1, and the low Ca2+-binding affinity, BK channel (BKα subunit). Apparent expression levels varied in CNT/CCD where analysis of CCD principal cells (PC) and intercalated cells (IC) demonstrated differential staining: SK1:PC<IC, and SK3:PC>IC, IK1:PC>IC, BKα:PC = IC, and TRPV4:PC>IC. Patch clamp analysis and fluorescence Ca2+ imaging of mCCDcl1 cells demonstrated potent TRPV4-mediated Ca2+ entry and strong functional cross-talk between TRPV4 and KCa channels. TRPV4-mediated Ca2+ influx activated each KCa channel, as evidenced by selective inhibition of KCa channels, with each active KCa channel enhancing Ca2+ entry (due to membrane hyperpolarization). Transepithelial electrical resistance (TEER) analysis of confluent mCCDcl1 cells grown on permeable supports further demonstrated this cross-talk where TRPV4 activation induce a decrease in TEER which was partially restored upon selective inhibition of each KCa channel. It is concluded that SK1/SK3 and IK1 are highly expressed along with BKα in CNT and CCD and are closely coupled to TRPV4 activation as observed in mCCDcl1 cells. The data support a model in CNT/CCD segments where strong cross talk between TRPV4-mediated Ca2+ influx and each KCa channel leads to enhance Ca2+ entry which will support activation of the low Ca2+-binding affinity BK channel to promote BK-mediated K+ secretion.
Collapse
|
29
|
Millar FR, Summers C, Griffiths MJ, Toshner MR, Proudfoot AG. The pulmonary endothelium in acute respiratory distress syndrome: insights and therapeutic opportunities. Thorax 2016; 71:462-73. [DOI: 10.1136/thoraxjnl-2015-207461] [Citation(s) in RCA: 116] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Accepted: 02/12/2016] [Indexed: 01/23/2023]
|
30
|
Yap FC, Weber DS, Taylor MS, Townsley MI, Comer BS, Maylie J, Adelman JP, Lin MT. Endothelial SK3 channel-associated Ca2+ microdomains modulate blood pressure. Am J Physiol Heart Circ Physiol 2016; 310:H1151-63. [PMID: 26945080 DOI: 10.1152/ajpheart.00787.2015] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Accepted: 02/22/2016] [Indexed: 11/22/2022]
Abstract
Activation of vascular endothelial small- (KCa2.3, SK3) or intermediate- (KCa3.1, IK1) conductance Ca(2+)-activated potassium channels induces vasorelaxation via an endothelium-derived hyperpolarization (EDH) pathway. Although the activation of SK3 and IK1 channels converges on EDH, their subcellular effects on signal transduction are different and not completely clear. In this study, a novel endothelium-specific SK3 knockout (SK3(-/-)) mouse model was utilized to specifically examine the contribution of SK3 channels to mesenteric artery vasorelaxation, endothelial Ca(2+) dynamics, and blood pressure. The absence of SK3 expression was confirmed using real-time quantitative PCR and Western blot analysis. Functional studies showed impaired EDH-mediated vasorelaxation in SK3(-/-) small mesenteric arteries. Immunostaining results from SK3(-/-) vessels confirmed the absence of SK3 and further showed altered distribution of transient receptor potential channels, type 4 (TRPV4). Electrophysiological recordings showed a lack of SK3 channel activity, while TRPV4-IK1 channel coupling remained intact in SK3(-/-) endothelial cells. Moreover, Ca(2+) imaging studies in SK3(-/-) endothelium showed increased Ca(2+) transients with reduced amplitude and duration under basal conditions. Importantly, SK3(-/-) endothelium lacked a distinct type of Ca(2+) dynamic that is sensitive to TRPV4 activation. Blood pressure measurements showed that the SK3(-/-) mice were hypertensive, and the blood pressure increase was further enhanced during the 12-h dark cycle when animals are most active. Taken together, our results reveal a previously unappreciated SK3 signaling microdomain that modulates endothelial Ca(2+) dynamics, vascular tone, and blood pressure.
Collapse
Affiliation(s)
- Fui C Yap
- Department of Physiology and Cell Biology, University of South Alabama, Mobile, Alabama
| | - David S Weber
- Department of Physiology and Cell Biology, University of South Alabama, Mobile, Alabama
| | - Mark S Taylor
- Department of Physiology and Cell Biology, University of South Alabama, Mobile, Alabama
| | - Mary I Townsley
- Department of Physiology and Cell Biology, University of South Alabama, Mobile, Alabama
| | - Brian S Comer
- Department of Cellular and Integrative Physiology, Indiana University, Indianapolis, Indiana
| | - James Maylie
- Department of Obstetrics and Gynecology, Oregon Health & Science University, Portland, Oregon; and
| | - John P Adelman
- Vollum Institute, Oregon Health & Science University, Portland, Oregon
| | - Mike T Lin
- Department of Physiology and Cell Biology, University of South Alabama, Mobile, Alabama;
| |
Collapse
|
31
|
Suresh K, Servinsky L, Reyes J, Baksh S, Undem C, Caterina M, Pearse DB, Shimoda LA. Hydrogen peroxide-induced calcium influx in lung microvascular endothelial cells involves TRPV4. Am J Physiol Lung Cell Mol Physiol 2015; 309:L1467-77. [PMID: 26453519 DOI: 10.1152/ajplung.00275.2015] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Accepted: 10/07/2015] [Indexed: 12/22/2022] Open
Abstract
In acute respiratory distress syndrome, both reactive oxygen species (ROS) and increased intracellular calcium ([Ca(2+)]i) are thought to play important roles in promoting endothelial paracellular permeability, but the mechanisms linking ROS and [Ca(2+)]i in microvascular endothelial cells are not known. In this study, we assessed the effect of hydrogen peroxide (H2O2) on [Ca(2+)]i in mouse and human lung microvascular endothelial cells (MLMVEC and HLMVEC, respectively). We found that in both MLMVECs and HLMVECs, exogenously applied H2O2 increased [Ca(2+)]i through Ca(2+) influx and that pharmacologic inhibition of the calcium channel transient receptor potential vanilloid 4 (TRPV4) attenuated the H2O2-induced Ca(2+) influx. Additionally, knockdown of TRPV4 in HLMVEC also attenuated calcium influx following H2O2 challenge. Administration of H2O2 or TRPV4 agonists decreased transmembrane electrical resistance (TER), suggesting increased barrier permeability. To explore the regulatory mechanisms underlying TRPV4 activation by ROS, we examined H2O2-induced Ca(2+) influx in MLMVECs and HLMVECs with either genetic deletion, silencing, or pharmacologic inhibition of Fyn, a Src family kinase. In both MLMVECs derived from mice deficient for Fyn and HLMVECs treated with either siRNA targeted to Fyn or the Src family kinase inhibitor SU-6656 for 24 or 48 h, the H2O2-induced Ca(2+) influx was attenuated. Treatment with SU-6656 decreased the levels of phosphorylated, but not total, TRPV4 protein and had no effect on TRPV4 response to the external agonist, GSK1016790A. In conclusion, our data suggest that application of exogenous H2O2 increases [Ca(2+)]i and decreases TER in microvascular endothelial cells via activation of TRPV4 through a mechanism that requires the Src kinase Fyn.
Collapse
Affiliation(s)
- Karthik Suresh
- Division of Pulmonary and Critical Care Medicine, Department of Medicine and
| | - Laura Servinsky
- Division of Pulmonary and Critical Care Medicine, Department of Medicine and
| | - Jose Reyes
- Division of Pulmonary and Critical Care Medicine, Department of Medicine and
| | - Syeda Baksh
- Division of Pulmonary and Critical Care Medicine, Department of Medicine and
| | - Clark Undem
- Division of Pulmonary and Critical Care Medicine, Department of Medicine and
| | - Michael Caterina
- Department of Neurosurgery, Johns Hopkins School of Medicine, Baltimore, Maryland
| | - David B Pearse
- Division of Pulmonary and Critical Care Medicine, Department of Medicine and
| | - Larissa A Shimoda
- Division of Pulmonary and Critical Care Medicine, Department of Medicine and
| |
Collapse
|