1
|
Prengel TM, Brunne B, Habiballa M, Rune GM. Sexually differentiated microglia and CA1 hippocampal synaptic connectivity. J Neuroendocrinol 2023; 35:e13276. [PMID: 37170708 DOI: 10.1111/jne.13276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 03/14/2023] [Accepted: 03/31/2023] [Indexed: 05/13/2023]
Abstract
Microglia have been shown to sculpt postnatal circuitry from birth up to adulthood due to their role in both synapse formation, synaptic pruning, and the elimination of weak, redundant synapses. Microglia are differentiated in a sex-dependent manner. In this study, we tested whether sexual differentiation of microglia results in sex-dependent postnatal reorganization of CA1 synaptic connectivity in the hippocampus. The stereological counting of synapses in mice using electron microscopy showed a continuous rise in synapse density until the fourth week, followed by a plateau phase and loss of synapses from the eighth week onwards, with no difference between sexes. This course of alteration in synapse numbers did not differ between sexes. However, selectively, on postnatal day (P) 14 the density of synapses was significantly higher in the female than in the male hippocampus. Higher synapse density in females was paralleled by higher activity of microglia, as indicated by morphological changes, CD68 expression, and proximity of microglia to synaptic sites. In Thy1-GFP mice, consistent with increased synapse numbers, bouton density was also clearly increased in females at P14. At this time point, CD47 expression, the "don't eat me" signal of neurons, was similar in males and females. The decrease in bouton density thereafter in conjunction with increased synapse numbers argues for a role of microglia in the formation of multispine boutons (MSB). Our data in females at P14 support the regulatory role of microglia in synapse density. Sexual differentiation of microglia, however, does not substantially affect long-term synaptic reorganization in the hippocampus.
Collapse
Affiliation(s)
- Tim M Prengel
- Institute of Neuroanatomy, University Medical Center Hamburg Eppendorf, Hamburg, Germany
| | - Bianka Brunne
- Institute of Neuroanatomy, University Medical Center Hamburg Eppendorf, Hamburg, Germany
| | - Moataz Habiballa
- Institute of Neuroanatomy, University Medical Center Hamburg Eppendorf, Hamburg, Germany
| | - Gabriele M Rune
- Institute of Cell Biology and Neurobiology, Charité Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
2
|
Keefe RSE, Woods SW, Cannon TD, Ruhrmann S, Mathalon DH, McGuire P, Rosenbrock H, Daniels K, Cotton D, Roy D, Pollentier S, Sand M. A randomized Phase II trial evaluating efficacy, safety, and tolerability of oral BI 409306 in attenuated psychosis syndrome: Design and rationale. Early Interv Psychiatry 2021; 15:1315-1325. [PMID: 33354862 PMCID: PMC8451588 DOI: 10.1111/eip.13083] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 09/23/2020] [Accepted: 11/14/2020] [Indexed: 12/17/2022]
Abstract
AIM Attenuated psychosis syndrome (APS), a condition for further study in the Diagnostic and Statistical Manual of Mental Disorders-5, comprises psychotic symptoms that are qualitatively similar to those observed in schizophrenia but are less severe. Patients with APS are at high risk of converting to first-episode psychosis (FEP). As evidence for effective pharmacological interventions in APS is limited, novel treatments may provide symptomatic relief and delay/prevent psychotic conversion. This trial aims to investigate the efficacy, safety, and tolerability of BI 409306, a potent and selective phosphodiesterase-9 inhibitor, versus placebo in APS. Novel biomarkers of psychosis are being investigated. METHODS In this Phase II, multinational, double-blind, parallel-group trial, randomized (1:1) patients will receive BI 409306 50 mg or placebo twice daily for 52 weeks. Patients (n = 300) will be enrolled to determine time to remission of APS, time to FEP, change in everyday functional capacity (Schizophrenia Cognition Rating Scale), and change from baseline in Brief Assessment of Cognition composite score and Positive and Negative Syndrome Scale scores. Potential biomarkers of psychosis under investigation include functional measures of brain activity and automated speech analyses. Safety is being assessed throughout. CONCLUSIONS This trial will determine whether BI 409306 is superior to placebo in achieving sustainable remission of APS and improvements in cognition and functional capacity. These advances may provide evidence-based treatment options for symptomatic relief in APS. Furthermore, the study will assess the effect of BI 409306 on psychotic conversion and explore the identification of patients at risk for conversion using novel biomarkers.
Collapse
Affiliation(s)
- Richard S. E. Keefe
- Department of Psychiatry and Behavioral SciencesDuke UniversityDurhamNorth CarolinaUSA
- VeraSciDurhamNCUSA
| | - Scott W. Woods
- Department of PsychiatryYale UniversityNew HavenConnecticutUSA
| | - Tyrone D. Cannon
- Department of PsychiatryYale UniversityNew HavenConnecticutUSA
- Department of PsychologyYale UniversityNew HavenConnecticutUSA
| | - Stephan Ruhrmann
- Department of Psychiatry and PsychotherapyUniversity of CologneCologneGermany
| | - Daniel H. Mathalon
- Department of PsychologyUCSF School of MedicineSan FranciscoCaliforniaUSA
| | - Philip McGuire
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and NeuroscienceKing's College LondonLondonUK
| | | | - Kristen Daniels
- Boehringer Ingelheim Pharmaceuticals Inc.RidgefieldConnecticutUSA
| | - Daniel Cotton
- Boehringer Ingelheim Pharmaceuticals Inc.RidgefieldConnecticutUSA
| | - Dooti Roy
- Boehringer Ingelheim Pharmaceuticals Inc.RidgefieldConnecticutUSA
| | | | - Michael Sand
- Boehringer Ingelheim Pharmaceuticals Inc.RidgefieldConnecticutUSA
| |
Collapse
|
3
|
Mastrandrea R, Piras F, Gabrielli A, Banaj N, Caldarelli G, Spalletta G, Gili T. The unbalanced reorganization of weaker functional connections induces the altered brain network topology in schizophrenia. Sci Rep 2021; 11:15400. [PMID: 34321538 PMCID: PMC8319172 DOI: 10.1038/s41598-021-94825-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 07/08/2021] [Indexed: 01/10/2023] Open
Abstract
Network neuroscience shed some light on the functional and structural modifications occurring to the brain associated with the phenomenology of schizophrenia. In particular, resting-state functional networks have helped our understanding of the illness by highlighting the global and local alterations within the cerebral organization. We investigated the robustness of the brain functional architecture in 44 medicated schizophrenic patients and 40 healthy comparators through an advanced network analysis of resting-state functional magnetic resonance imaging data. The networks in patients showed more resistance to disconnection than in healthy controls, with an evident discrepancy between the two groups in the node degree distribution computed along a percolation process. Despite a substantial similarity of the basal functional organization between the two groups, the expected hierarchy of healthy brains' modular organization is crumbled in schizophrenia, showing a peculiar arrangement of the functional connections, characterized by several topologically equivalent backbones. Thus, the manifold nature of the functional organization's basal scheme, together with its altered hierarchical modularity, may be crucial in the pathogenesis of schizophrenia. This result fits the disconnection hypothesis that describes schizophrenia as a brain disorder characterized by an abnormal functional integration among brain regions.
Collapse
Affiliation(s)
| | - Fabrizio Piras
- Laboratory of Neuropsychiatry, IRCCS Santa Lucia Foundation, 00179, Rome, Italy
| | - Andrea Gabrielli
- Dipartimento di Ingegneria, Università Roma Tre, 00146, Rome, Italy.,Istituto dei Sistemi Complessi (ISC)-CNR, UoS Sapienza, Dipartimento di Fisica, Università "Sapienza", 00185, Rome, Italy
| | - Nerisa Banaj
- Laboratory of Neuropsychiatry, IRCCS Santa Lucia Foundation, 00179, Rome, Italy
| | - Guido Caldarelli
- Networks Unit, IMT School for Advanced Studies, 55100, Lucca, Italy.,Istituto dei Sistemi Complessi (ISC)-CNR, UoS Sapienza, Dipartimento di Fisica, Università "Sapienza", 00185, Rome, Italy
| | - Gianfranco Spalletta
- Laboratory of Neuropsychiatry, IRCCS Santa Lucia Foundation, 00179, Rome, Italy. .,Division of Neuropsychiatry, Menninger Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston, TX, 77030, USA.
| | - Tommaso Gili
- Networks Unit, IMT School for Advanced Studies, 55100, Lucca, Italy
| |
Collapse
|
4
|
Chamera K, Szuster-Głuszczak M, Basta-Kaim A. Shedding light on the role of CX3CR1 in the pathogenesis of schizophrenia. Pharmacol Rep 2021; 73:1063-1078. [PMID: 34021899 PMCID: PMC8413165 DOI: 10.1007/s43440-021-00269-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 04/22/2021] [Accepted: 04/26/2021] [Indexed: 11/24/2022]
Abstract
Schizophrenia has a complex and heterogeneous molecular and clinical picture. Over the years of research on this disease, many factors have been suggested to contribute to its pathogenesis. Recently, the inflammatory processes have gained particular interest in the context of schizophrenia due to the increasing evidence from epidemiological, clinical and experimental studies. Within the immunological component, special attention has been brought to chemokines and their receptors. Among them, CX3C chemokine receptor 1 (CX3CR1), which belongs to the family of seven-transmembrane G protein-coupled receptors, and its cognate ligand (CX3CL1) constitute a unique system in the central nervous system. In the view of regulation of the brain homeostasis through immune response, as well as control of microglia reactivity, the CX3CL1–CX3CR1 system may represent an attractive target for further research and schizophrenia treatment. In the review, we described the general characteristics of the CX3CL1–CX3CR1 axis and the involvement of this signaling pathway in the physiological processes whose disruptions are reported to participate in mechanisms underlying schizophrenia. Furthermore, based on the available clinical and experimental data, we presented a guide to understanding the implication of the CX3CL1–CX3CR1 dysfunctions in the course of schizophrenia.
Collapse
Affiliation(s)
- Katarzyna Chamera
- Laboratory of Immunoendocrinology, Department of Experimental Neuroendocrinology, Maj Institute of Pharmacology, Polish Academy of Sciences, 12 Smętna St., 31-343, Kraków, Poland.
| | - Magdalena Szuster-Głuszczak
- Laboratory of Immunoendocrinology, Department of Experimental Neuroendocrinology, Maj Institute of Pharmacology, Polish Academy of Sciences, 12 Smętna St., 31-343, Kraków, Poland
| | - Agnieszka Basta-Kaim
- Laboratory of Immunoendocrinology, Department of Experimental Neuroendocrinology, Maj Institute of Pharmacology, Polish Academy of Sciences, 12 Smętna St., 31-343, Kraków, Poland
| |
Collapse
|
5
|
McHail DG, Dumas TC. Hippocampal gamma rhythms during Y‐maze navigation in the juvenile rat. Hippocampus 2020; 30:505-525. [DOI: 10.1002/hipo.23168] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 09/01/2019] [Accepted: 09/17/2019] [Indexed: 12/20/2022]
Affiliation(s)
- Daniel G. McHail
- Interdisciplinary Program in NeuroscienceGeorge Mason University Fairfax Virginia
| | - Theodore C. Dumas
- Interdisciplinary Program in NeuroscienceGeorge Mason University Fairfax Virginia
- Psychology DepartmentGeorge Mason University Fairfax Virginia
| |
Collapse
|
6
|
Torres-Espín A, Beaudry E, Fenrich K, Fouad K. Rehabilitative Training in Animal Models of Spinal Cord Injury. J Neurotrauma 2019; 35:1970-1985. [PMID: 30074874 DOI: 10.1089/neu.2018.5906] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Rehabilitative motor training is currently one of the most widely used approaches to promote moderate recovery following injuries of the central nervous system. Such training is generally applied in the clinical setting, whereas it is not standard in preclinical research. This is a concern as it is becoming increasingly apparent that neuroplasticity enhancing treatments require training or some form of activity as a co-therapy to promote functional recovery. Despite the importance of training and the many open questions regarding its mechanistic consequences, its use in preclinical animal models is rather limited. Here we review approaches, findings and challenges when training is applied in animal models of spinal cord injury, and we suggest recommendations to facilitate the integration of training using an appropriate study design, into pre-clinical studies.
Collapse
Affiliation(s)
- Abel Torres-Espín
- Faculty of Rehabilitation Medicine and Institute for Neuroscience and Mental Health, University of Alberta , Edmonton, Alberta, Canada
| | - Eric Beaudry
- Faculty of Rehabilitation Medicine and Institute for Neuroscience and Mental Health, University of Alberta , Edmonton, Alberta, Canada
| | | | - Karim Fouad
- Faculty of Rehabilitation Medicine and Institute for Neuroscience and Mental Health, University of Alberta , Edmonton, Alberta, Canada
| |
Collapse
|
7
|
Ranneva SV, Maksimov VF, Korostyshevskaja IM, Lipina TV. Lack of synaptic protein, calsyntenin‐2, impairs morphology of synaptic complexes in mice. Synapse 2019; 74:e22132. [DOI: 10.1002/syn.22132] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 09/05/2019] [Accepted: 09/11/2019] [Indexed: 12/31/2022]
Affiliation(s)
- Svetlana V. Ranneva
- Federal State Budgetary Scientific Institution Scientific Research Institute of Physiology and Basic Medicine Novosibirsk Russia
| | - Valeriy F. Maksimov
- Federal State Budgetary Scientific Institution Scientific Research Institute of Physiology and Basic Medicine Novosibirsk Russia
| | - Irina M. Korostyshevskaja
- Federal State Budgetary Scientific Institution Scientific Research Institute of Physiology and Basic Medicine Novosibirsk Russia
| | - Tatiana V. Lipina
- Federal State Budgetary Scientific Institution Scientific Research Institute of Physiology and Basic Medicine Novosibirsk Russia
- Department of Medicine and Psychology Novosibirsk State University Novosibirsk Russia
- Department of Pharmacology and Toxicology University of Toronto Toronto Ontario Canada
| |
Collapse
|
8
|
Yuan Y, Liu J, Zhao P, Xing F, Huo H, Fang T. Structural Insights Into the Dynamic Evolution of Neuronal Networks as Synaptic Density Decreases. Front Neurosci 2019; 13:892. [PMID: 31507365 PMCID: PMC6714520 DOI: 10.3389/fnins.2019.00892] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2019] [Accepted: 08/08/2019] [Indexed: 11/13/2022] Open
Abstract
The human brain is thought to be an extremely complex but efficient computing engine, processing vast amounts of information from a changing world. The decline in the synaptic density of neuronal networks is one of the most important characteristics of brain development, which is closely related to synaptic pruning, synaptic growth, synaptic plasticity, and energy metabolism. However, because of technical limitations in observing large-scale neuronal networks dynamically connected through synapses, how neuronal networks are organized and evolve as their synaptic density declines remains unclear. Here, by establishing a biologically reasonable neuronal network model, we show that despite a decline in the synaptic density, the connectivity, and efficiency of neuronal networks can be improved. Importantly, by analyzing the degree distribution, we also find that both the scale-free characteristic of neuronal networks and the emergence of hub neurons rely on the spatial distance between neurons. These findings may promote our understanding of neuronal networks in the brain and have guiding significance for the design of neuronal network models.
Collapse
Affiliation(s)
- Ye Yuan
- Department of Automation, Shanghai Jiao Tong University, Shanghai, China.,Key Laboratory of System Control and Information Processing, Ministry of Education, Shanghai, China
| | - Jian Liu
- Department of Automation, Shanghai Jiao Tong University, Shanghai, China.,Key Laboratory of System Control and Information Processing, Ministry of Education, Shanghai, China
| | - Peng Zhao
- Department of Automation, Shanghai Jiao Tong University, Shanghai, China.,Key Laboratory of System Control and Information Processing, Ministry of Education, Shanghai, China
| | - Fu Xing
- Department of Automation, Shanghai Jiao Tong University, Shanghai, China.,Key Laboratory of System Control and Information Processing, Ministry of Education, Shanghai, China
| | - Hong Huo
- Department of Automation, Shanghai Jiao Tong University, Shanghai, China.,Key Laboratory of System Control and Information Processing, Ministry of Education, Shanghai, China
| | - Tao Fang
- Department of Automation, Shanghai Jiao Tong University, Shanghai, China.,Key Laboratory of System Control and Information Processing, Ministry of Education, Shanghai, China
| |
Collapse
|
9
|
Kaur C, Pal I, Saini S, Jacob T, Nag T, Thakar A, Bhardwaj D, Roy T. Comparison of unbiased stereological estimation of total number of cresyl violet stained neurons and parvalbumin positive neurons in the adult human spiral ganglion. J Chem Neuroanat 2018. [DOI: 10.1016/j.jchemneu.2017.06.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
10
|
Sanders EM, Nyarko-Odoom AO, Zhao K, Nguyen M, Liao HH, Keith M, Pyon J, Kozma A, Sanyal M, McHail DG, Dumas TC. Separate functional properties of NMDARs regulate distinct aspects of spatial cognition. ACTA ACUST UNITED AC 2018; 25:264-272. [PMID: 29764972 PMCID: PMC5959228 DOI: 10.1101/lm.047290.118] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Accepted: 03/12/2018] [Indexed: 11/25/2022]
Abstract
N-methyl-d-aspartate receptors (NMDARs) at excitatory synapses are central to activity-dependent synaptic plasticity and learning and memory. NMDARs act as ionotropic and metabotropic receptors by elevating postsynaptic calcium concentrations and by direct intracellular protein signaling. In the forebrain, these properties are controlled largely by the auxiliary GluN2 subunits, GluN2A and GluN2B. While calcium conductance through NMDAR channels and intracellular protein signaling make separate contributions to synaptic plasticity, it is not known if these properties individually influence learning and memory. To address this issue, we created chimeric GluN2 subunits containing the amino-terminal domain and transmembrane domains from GluN2A or GluN2B fused to the carboxy-terminal domain of GluN2B (termed ABc) or GluN2A ATD (termed BAc), respectively, and expressed these mutated GluN2 subunits in transgenic mice. Expression was confirmed at the mRNA level and protein subunit translation and translocation into dendrites were observed in forebrain neurons. In the spatial version of the Morris water maze, BAc mice displayed signs of a learning deficit. In contrast, ABc animals performed similarly to wild-types during training, but showed a more direct approach to the goal location during a long-term memory test. There was no effect of ABc or BAc expression in a nonspatial water escape task. Since background expression is predominantly GluN2A in mature animals, the results suggest that spatial learning is more sensitive to manipulations of the amino-terminal domain and transmembrane domains (calcium conductance) and long-term memory is regulated more by the carboxy-terminal domain (intracellular protein signaling).
Collapse
Affiliation(s)
- Erin M Sanders
- Krasnow Institute for Advanced Study, George Mason University, Fairfax, Virginia 22030, USA
| | - Akua O Nyarko-Odoom
- Krasnow Institute for Advanced Study, George Mason University, Fairfax, Virginia 22030, USA
| | - Kevin Zhao
- Krasnow Institute for Advanced Study, George Mason University, Fairfax, Virginia 22030, USA
| | - Michael Nguyen
- Krasnow Institute for Advanced Study, George Mason University, Fairfax, Virginia 22030, USA
| | - Hong Hong Liao
- Krasnow Institute for Advanced Study, George Mason University, Fairfax, Virginia 22030, USA
| | - Matthew Keith
- Krasnow Institute for Advanced Study, George Mason University, Fairfax, Virginia 22030, USA
| | - Jane Pyon
- Krasnow Institute for Advanced Study, George Mason University, Fairfax, Virginia 22030, USA
| | - Alyssa Kozma
- Krasnow Institute for Advanced Study, George Mason University, Fairfax, Virginia 22030, USA
| | - Mohima Sanyal
- Krasnow Institute for Advanced Study, George Mason University, Fairfax, Virginia 22030, USA
| | - Daniel G McHail
- Krasnow Institute for Advanced Study, George Mason University, Fairfax, Virginia 22030, USA
| | - Theodore C Dumas
- Krasnow Institute for Advanced Study, George Mason University, Fairfax, Virginia 22030, USA.,Psychology Department, George Mason University, Fairfax, Virginia 22030, USA
| |
Collapse
|
11
|
McHail DG, Valibeigi N, Dumas TC. A Barnes maze for juvenile rats delineates the emergence of spatial navigation ability. Learn Mem 2018; 25:138-146. [PMID: 29449458 PMCID: PMC5817281 DOI: 10.1101/lm.046300.117] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Accepted: 12/22/2017] [Indexed: 11/29/2022]
Abstract
The neural bases of cognition may be greatly informed by relating temporally defined developmental changes in behavior with concurrent alterations in neural function. A robust improvement in performance in spatial learning and memory tasks occurs at 3 wk of age in rodents. We reported that the developmental increase of spontaneous alternation in a Y-maze was related to changes in temporal dynamics of fast glutamatergic synaptic transmission in the hippocampus. We also showed that, during allothetic behaviors in the Y-maze, network oscillation power increased at frequency bands known to support spatial learning and memory in adults. However, there are no discrete learning and memory phases during free exploration in the Y-maze. Thus, we adapted the Barnes maze for use with juvenile rats. Following a single platform exposure in dim light on the day before training (to encourage exploration), animals were trained on the subsequent 2 d in bright light to find a hidden escape box and then underwent a memory test 24 h later. During escape training, the older animals learned the task in 1 d, while the younger animals required 2 d and did not reach the performance of older animals. Long-term memory performance was also superior in the older animals. Thus, we have validated the use of the Barnes maze for this developmental period and established a timeline for the ontogeny of spatial navigation ability in this maze around 3 wk of age. Subsequent work will pair in vivo recording of hippocampal oscillations and single units with this task to help identify how hippocampal maturation might relate to performance improvements.
Collapse
Affiliation(s)
- Daniel G McHail
- Krasnow Institute for Advanced Study, George Mason University, Fairfax, Virginia 22030, USA
| | - Nazanin Valibeigi
- Krasnow Institute for Advanced Study, George Mason University, Fairfax, Virginia 22030, USA
| | - Theodore C Dumas
- Krasnow Institute for Advanced Study, George Mason University, Fairfax, Virginia 22030, USA
- Psychology Department, George Mason University, Fairfax, Virginia 22030, USA
| |
Collapse
|
12
|
Habibi A, Damasio A, Ilari B, Veiga R, Joshi AA, Leahy RM, Haldar JP, Varadarajan D, Bhushan C, Damasio H. Childhood Music Training Induces Change in Micro and Macroscopic Brain Structure: Results from a Longitudinal Study. Cereb Cortex 2017; 28:4336-4347. [DOI: 10.1093/cercor/bhx286] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Accepted: 10/06/2017] [Indexed: 12/21/2022] Open
Affiliation(s)
- Assal Habibi
- Brain and Creativity Institute, Dornsife College of Letters, Arts and Sciences, University of Southern California, CA, USA
| | - Antonio Damasio
- Brain and Creativity Institute, Dornsife College of Letters, Arts and Sciences, University of Southern California, CA, USA
| | - Beatriz Ilari
- Thornton School of Music, University of Southern California, CA, USA
| | - Ryan Veiga
- Brain and Creativity Institute, Dornsife College of Letters, Arts and Sciences, University of Southern California, CA, USA
| | - Anand A Joshi
- Brain and Creativity Institute, Dornsife College of Letters, Arts and Sciences, University of Southern California, CA, USA
- Signal and Image Processing Institute, Ming Hsieh Department of Electrical Engineering, University of Southern California, CA, USA
| | - Richard M Leahy
- Signal and Image Processing Institute, Ming Hsieh Department of Electrical Engineering, University of Southern California, CA, USA
| | - Justin P Haldar
- Brain and Creativity Institute, Dornsife College of Letters, Arts and Sciences, University of Southern California, CA, USA
- Signal and Image Processing Institute, Ming Hsieh Department of Electrical Engineering, University of Southern California, CA, USA
| | - Divya Varadarajan
- Signal and Image Processing Institute, Ming Hsieh Department of Electrical Engineering, University of Southern California, CA, USA
| | - Chitresh Bhushan
- Signal and Image Processing Institute, Ming Hsieh Department of Electrical Engineering, University of Southern California, CA, USA
| | - Hanna Damasio
- Brain and Creativity Institute, Dornsife College of Letters, Arts and Sciences, University of Southern California, CA, USA
| |
Collapse
|
13
|
Navlakha S, Bar-Joseph Z, Barth AL. Network Design and the Brain. Trends Cogn Sci 2017; 22:64-78. [PMID: 29054336 DOI: 10.1016/j.tics.2017.09.012] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Revised: 09/18/2017] [Accepted: 09/25/2017] [Indexed: 12/30/2022]
Abstract
Neural circuits have evolved to accommodate similar information processing challenges as those faced by engineered systems. Here, we compare neural versus engineering strategies for constructing networks. During circuit development, synapses are overproduced and then pruned back over time, whereas in engineered networks, connections are initially sparse and are then added over time. We provide a computational perspective on these two different approaches, including discussion of how and why they are used, insights that one can provide the other, and areas for future joint investigation. By thinking algorithmically about the goals, constraints, and optimization principles used by neural circuits, we can develop brain-derived strategies for enhancing network design, while also stimulating experimental hypotheses about circuit development and function.
Collapse
Affiliation(s)
- Saket Navlakha
- The Salk Institute for Biological Studies, Integrative Biology Laboratory, La Jolla, CA 92037, USA.
| | - Ziv Bar-Joseph
- Carnegie Mellon University, Machine Learning Department, Computational Biology Department, Pittsburgh, PA 15213, USA
| | - Alison L Barth
- Carnegie Mellon University, Center for the Neural Basis of Cognition, Department of Biological Sciences, Pittsburgh, PA 15213, USA
| |
Collapse
|
14
|
Chen X, Liu C, He H, Chang X, Jiang Y, Li Y, Duan M, Li J, Luo C, Yao D. Transdiagnostic differences in the resting-state functional connectivity of the prefrontal cortex in depression and schizophrenia. J Affect Disord 2017; 217:118-124. [PMID: 28407554 DOI: 10.1016/j.jad.2017.04.001] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Revised: 02/22/2017] [Accepted: 04/02/2017] [Indexed: 01/06/2023]
Abstract
BACKGROUND Depression and schizophrenia are two of the most serious psychiatric disorders. They share similar symptoms but the pathology-specific commonalities and differences remain unknown. This study was conducted to acquire a full picture of the functional alterations in schizophrenia and depression patients. METHODS The resting-state fMRI data from 20 patients with schizophrenia, 20 patients with depression and 20 healthy control subjects were collected. A data-driven approach that included local functional connectivity density (FCD) analysis combined with multivariate pattern analysis (MVPA) was used to compare the three groups. RESULTS Based on the results of the MVPA, the local FCD value in the orbitofrontal cortex (OFC) can differentiate depression patients from schizophrenia patients. The patients with depression had a higher local FCD value in the medial and anterior parts of the OFC than the subjects in the other two groups, which suggested altered abstract and reward reinforces processing in depression patients. Subsequent functional connectivity analysis indicated that the connection in the prefrontal cortex was significantly lower in people with schizophrenia compared to people with depression and healthy controls. LIMITATION The systematically different medications for schizophrenia and depression may have different effects on functional connectivity. CONCLUSIONS These results suggested that the resting-state functional connectivity pattern in the prefrontal cortex may be a transdiagnostic difference between depression and schizophrenia patients.
Collapse
Affiliation(s)
- Xi Chen
- Key Laboratory for NeuroInformation of Ministry of Education, Center for Information in Medicine, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Chang Liu
- Key Laboratory for NeuroInformation of Ministry of Education, Center for Information in Medicine, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China; College of Information Science and Engineering, Chengdu University, Chengdu 610106, China
| | - Hui He
- Key Laboratory for NeuroInformation of Ministry of Education, Center for Information in Medicine, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Xin Chang
- Key Laboratory for NeuroInformation of Ministry of Education, Center for Information in Medicine, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Yuchao Jiang
- Key Laboratory for NeuroInformation of Ministry of Education, Center for Information in Medicine, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Yingjia Li
- Key Laboratory for NeuroInformation of Ministry of Education, Center for Information in Medicine, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Mingjun Duan
- Key Laboratory for NeuroInformation of Ministry of Education, Center for Information in Medicine, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China; Department of psychiatry, Chengdu Mental Health Center, Chengdu, China
| | - Jianfu Li
- Key Laboratory for NeuroInformation of Ministry of Education, Center for Information in Medicine, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Cheng Luo
- Key Laboratory for NeuroInformation of Ministry of Education, Center for Information in Medicine, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China.
| | - Dezhong Yao
- Key Laboratory for NeuroInformation of Ministry of Education, Center for Information in Medicine, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China.
| |
Collapse
|
15
|
Correas A, Cuesta P, López-Caneda E, Rodríguez Holguín S, García-Moreno LM, Pineda-Pardo JA, Cadaveira F, Maestú F. Functional and structural brain connectivity of young binge drinkers: a follow-up study. Sci Rep 2016; 6:31293. [PMID: 27506835 PMCID: PMC4978962 DOI: 10.1038/srep31293] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Accepted: 07/15/2016] [Indexed: 12/25/2022] Open
Abstract
Adolescence is a period of ongoing brain maturation characterized by hierarchical changes in the functional and structural networks. For this reason, the young brain is particularly vulnerable to the toxic effects of alcohol. Nowadays, binge drinking is a pattern of alcohol consumption increasingly prevalent among adolescents. The aim of the present study is to evaluate the evolution of the functional and anatomical connectivity of the Default Mode Network (DMN) in young binge drinkers along two years. Magnetoencephalography signal during eyes closed resting state as well as Diffusion Tensor Imaging (DTI) were acquired twice within a 2-year interval from 39 undergraduate students (22 controls, 17 binge drinkers) with neither personal nor family history of alcoholism. The group comparison showed that, after maintaining a binge drinking pattern along at least two years, binge drinkers displayed an increased brain connectivity of the DMN in comparison with the control group. On the other hand, the structural connectivity did not show significant differences neither between groups nor over the time. These findings point out that a continued pattern of binge drinking leads to functional alterations in the normal brain maturation process, even before anatomical changes can be detected.
Collapse
Affiliation(s)
- A Correas
- Laboratory of Cognitive and Computational Neuroscience, Centre of Biomedical Technology (CTB), 28223, Madrid, Spain
| | - P Cuesta
- Laboratory of Cognitive and Computational Neuroscience, Centre of Biomedical Technology (CTB), 28223, Madrid, Spain
| | - E López-Caneda
- Neuropsychophysiology Lab, Research Center on Psychology (CIPsi), School of Psychology, 4710, University of Minho, Braga, Portugal
| | - S Rodríguez Holguín
- Department of Clinical Psychology and Psychobiology, University of Santiago de Compostela, 15782, Santiago de Compostela, Spain
| | - L M García-Moreno
- Department of Psychobiology, Complutense University Madrid, 28040, Madrid, Spain
| | - J A Pineda-Pardo
- Laboratory of Cognitive and Computational Neuroscience, Centre of Biomedical Technology (CTB), 28223, Madrid, Spain
| | - F Cadaveira
- Department of Clinical Psychology and Psychobiology, University of Santiago de Compostela, 15782, Santiago de Compostela, Spain
| | - F Maestú
- Laboratory of Cognitive and Computational Neuroscience, Centre of Biomedical Technology (CTB), 28223, Madrid, Spain
| |
Collapse
|
16
|
Holmes GL, Noebels JL. The Epilepsy Spectrum: Targeting Future Research Challenges. Cold Spring Harb Perspect Med 2016; 6:6/7/a028043. [PMID: 27371672 DOI: 10.1101/cshperspect.a028043] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
There have been tremendous recent advances in our understanding of the biological underpinnings of epilepsy and associated comorbidities that justify its representation as a spectrum disorder. Advances in genetics, electrophysiology, and neuroimaging have greatly improved our ability to differentiate, diagnose, and treat individuals with epilepsy. However, we have made little overall progress in preventing epilepsy, and the number of patients who are cured remains small. Likewise, the comorbidities of epilepsy are often underdiagnosed or not adequately treated. In this article, we suggest a few areas in which additional research will likely pay big dividends for patients and their families.
Collapse
Affiliation(s)
- Gregory L Holmes
- Department of Neurological Sciences, University of Vermont College of Medicine, Burlington, Vermont 05405
| | - Jeffrey L Noebels
- Developmental Neurogenetics Laboratory, Departments of Neurology, Neuroscience, and Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030
| |
Collapse
|
17
|
Morton RA, Valenzuela CF. Further characterization of the effect of ethanol on voltage-gated Ca(2+) channel function in developing CA3 hippocampal pyramidal neurons. Brain Res 2015; 1633:19-26. [PMID: 26711851 DOI: 10.1016/j.brainres.2015.12.023] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Revised: 11/16/2015] [Accepted: 12/14/2015] [Indexed: 10/22/2022]
Abstract
Developmental ethanol exposure damages the hippocampus, a brain region involved in learning and memory. Alterations in synaptic transmission and plasticity may play a role in this effect of ethanol. We previously reported that acute and repeated exposure to ethanol during the third trimester-equivalent inhibits long-term potentiation of GABAA receptor-dependent synaptic currents in CA3 pyramidal neurons through a mechanism that depends on retrograde release of brain-derived neurotrophic factor driven by activation of voltage-gated Ca(2+) channels (Zucca and Valenzuela, 2010). We found evidence indicating that voltage-gated Ca(2+) channels are inhibited in the presence of ethanol, an effect that may play a role in its mechanism of action. Here, we further investigated the acute effect of ethanol on the function of voltage-gated Ca(2+) channels in CA3 pyramidal neurons using Ca(2+) imaging techniques. These experiments revealed that acute ethanol exposure inhibits voltage-gated Ca(2+) channels both in somatic and proximal dendritic compartments. To investigate the long-term consequences of ethanol on voltage-gated Ca(2+) channels, we used patch-clamp electrophysiological techniques to assess the function of L-type voltage-gated Ca(2+) channels during and following ten days of vapor ethanol exposure. During ethanol withdrawal periods, the function of these channels was not significantly affected by vapor chamber exposure. Taken together with our previous findings, our results suggest that 3(rd) trimester-equivalent ethanol exposure transiently inhibits L-type voltage-gated Ca(2+) channel function in CA3 pyramidal neurons and that compensatory mechanisms restore their function during ethanol withdrawal. Transient inhibition of these channels by ethanol may be, in part, responsible for the hippocampal abnormalities associated with developmental exposure to this agent.
Collapse
Affiliation(s)
- Russell A Morton
- Department of Neurosciences, School of Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM, USA
| | - C Fernando Valenzuela
- Department of Neurosciences, School of Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM, USA.
| |
Collapse
|
18
|
Converging models of schizophrenia--Network alterations of prefrontal cortex underlying cognitive impairments. Prog Neurobiol 2015; 134:178-201. [PMID: 26408506 DOI: 10.1016/j.pneurobio.2015.09.010] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Revised: 09/10/2015] [Accepted: 09/17/2015] [Indexed: 02/08/2023]
Abstract
The prefrontal cortex (PFC) and its connections with other brain areas are crucial for cognitive function. Cognitive impairments are one of the core symptoms associated with schizophrenia, and manifest even before the onset of the disorder. Altered neural networks involving PFC contribute to cognitive impairments in schizophrenia. Both genetic and environmental risk factors affect the development of the local circuitry within PFC as well as development of broader brain networks, and make the system vulnerable to further insults during adolescence, leading to the onset of the disorder in young adulthood. Since spared cognitive functions correlate with functional outcome and prognosis, a better understanding of the mechanisms underlying cognitive impairments will have important implications for novel therapeutics for schizophrenia focusing on cognitive functions. Multidisciplinary approaches, from basic neuroscience to clinical studies, are required to link molecules, circuitry, networks, and behavioral phenotypes. Close interactions among such fields by sharing a common language on connectomes, behavioral readouts, and other concepts are crucial for this goal.
Collapse
|
19
|
Li S, Wang SU, Guo ZG, Huang N, Zhao FR, Zhu ML, Ma LJ, Liang JY, Zhang YL, Huang ZL, Wan GR. Protective effect of Xingnaojia formulation on rats with brain and liver damage caused by chronic alcoholism. Exp Ther Med 2015; 10:1643-1652. [PMID: 26640531 PMCID: PMC4665616 DOI: 10.3892/etm.2015.2773] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2014] [Accepted: 07/31/2015] [Indexed: 01/08/2023] Open
Abstract
The aim of this study was to observe the effect of a formulation of traditional Chinese medicine extracts known as Xingnaojia (XNJ) on the liver function, learning ability and memory of rats with chronic alcoholism and to verify the mechanism by which it protects the brain and liver. A rat model of chronic alcoholism was used in the study. The spatial learning ability and memory of the rats were tested. The rats were then sacrificed and their brains and hepatic tissues were isolated. The activity of superoxide dismutase (SOD) and levels of glutamate (Glu), N-methyl D-aspartate receptor subtype 2B (NR2B), cyclin-dependent kinase 5 (CDK5) and cannabinoid receptor 1 (CB1) in the hippocampus were analyzed. The ultrastructure of the hepatic tissue was observed by electron microscopy. In addition, the activities of alcohol dehydrogenase (ADH) and aldehyde dehydrogenase (ALDH) in serum were tested and the levels of low-density lipoprotein (LDL), high-density lipoprotein (HDL), triglycerides (TG) and total cholesterol (TCHOL) were analyzed. XNJ enhanced the learning and memory of rats with chronic alcoholism. Treatment with XNJ increased the activity of SOD, and decreased the expression levels of NR2B mRNA and NR2B, CB1 and CDK5 proteins in the brain tissues compared with those in the model rats. It also increased the activity of ALDH in the serum and liver, decreased the serum levels of LDL, TG and TCHOL and increased the serum level of HDL. These results indicate that XNJ exhibited a protective effect against brain and liver damage in rats with chronic alcoholism.
Collapse
Affiliation(s)
- Shuang Li
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan 453003, P.R. China
| | - S U Wang
- College of Pharmacy, The Third Affiliated Hospital, Xinxiang Medical University, Xinxiang, Henan 453003, P.R. China
| | - Zhi-Gang Guo
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan 453003, P.R. China
| | - Ning Huang
- College of Pharmacy, Xinxiang Medical University, Xinxiang, Henan 453003, P.R. China
| | - Fan-Rong Zhao
- College of Pharmacy, Xinxiang Medical University, Xinxiang, Henan 453003, P.R. China
| | - Mo-Li Zhu
- College of Pharmacy, Xinxiang Medical University, Xinxiang, Henan 453003, P.R. China
| | - Li-Juan Ma
- College of Pharmacy, Xinxiang Medical University, Xinxiang, Henan 453003, P.R. China
| | - Jin-Ying Liang
- College of Pharmacy, Xinxiang Medical University, Xinxiang, Henan 453003, P.R. China
| | - Yu-Lin Zhang
- College of Pharmacy, Xinxiang Medical University, Xinxiang, Henan 453003, P.R. China
| | - Zhong-Lin Huang
- College of Pharmacy, Xinxiang Medical University, Xinxiang, Henan 453003, P.R. China
| | - Guang-Rui Wan
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan 453003, P.R. China
| |
Collapse
|
20
|
Navlakha S, Barth AL, Bar-Joseph Z. Decreasing-Rate Pruning Optimizes the Construction of Efficient and Robust Distributed Networks. PLoS Comput Biol 2015. [PMID: 26217933 PMCID: PMC4517947 DOI: 10.1371/journal.pcbi.1004347] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Robust, efficient, and low-cost networks are advantageous in both biological and engineered systems. During neural network development in the brain, synapses are massively over-produced and then pruned-back over time. This strategy is not commonly used when designing engineered networks, since adding connections that will soon be removed is considered wasteful. Here, we show that for large distributed routing networks, network function is markedly enhanced by hyper-connectivity followed by aggressive pruning and that the global rate of pruning, a developmental parameter not previously studied by experimentalists, plays a critical role in optimizing network structure. We first used high-throughput image analysis techniques to quantify the rate of pruning in the mammalian neocortex across a broad developmental time window and found that the rate is decreasing over time. Based on these results, we analyzed a model of computational routing networks and show using both theoretical analysis and simulations that decreasing rates lead to more robust and efficient networks compared to other rates. We also present an application of this strategy to improve the distributed design of airline networks. Thus, inspiration from neural network formation suggests effective ways to design distributed networks across several domains.
Collapse
Affiliation(s)
- Saket Navlakha
- Center for Integrative Biology, The Salk Institute for Biological Studies, La Jolla, California, United States of America
| | - Alison L. Barth
- Department of Biological Sciences, Center for the Neural Basis of Cognition, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States of America
- * E-mail: (ALB); (ZBJ)
| | - Ziv Bar-Joseph
- Lane Center for Computational Biology, Machine Learning Department, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States of America
- * E-mail: (ALB); (ZBJ)
| |
Collapse
|
21
|
Smith RF, McDonald CG, Bergstrom HC, Ehlinger DG, Brielmaier JM. Adolescent nicotine induces persisting changes in development of neural connectivity. Neurosci Biobehav Rev 2015; 55:432-43. [PMID: 26048001 DOI: 10.1016/j.neubiorev.2015.05.019] [Citation(s) in RCA: 82] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Revised: 05/28/2015] [Accepted: 05/29/2015] [Indexed: 01/16/2023]
Abstract
Adolescent nicotine induces persisting changes in development of neural connectivity. A large number of brain changes occur during adolescence as the CNS matures. These changes suggest that the adolescent brain may still be susceptible to developmental alterations by substances which impact its growth. Here we review recent studies on adolescent nicotine which show that the adolescent brain is differentially sensitive to nicotine-induced alterations in dendritic elaboration, in several brain areas associated with processing reinforcement and emotion, specifically including nucleus accumbens, medial prefrontal cortex, basolateral amygdala, bed nucleus of the stria terminalis, and dentate gyrus. Both sensitivity to nicotine, and specific areas responding to nicotine, differ between adolescent and adult rats, and dendritic changes in response to adolescent nicotine persist into adulthood. Areas sensitive to, and not sensitive to, structural remodeling induced by adolescent nicotine suggest that the remodeling generally corresponds to the extended amygdala. Evidence suggests that dendritic remodeling is accompanied by persisting changes in synaptic connectivity. Modeling, electrophysiological, neurochemical, and behavioral data are consistent with the implication of our anatomical studies showing that adolescent nicotine induces persisting changes in neural connectivity. Emerging data thus suggest that early adolescence is a period when nicotine consumption, presumably mediated by nicotine-elicited changes in patterns of synaptic activity, can sculpt late brain development, with consequent effects on synaptic interconnection patterns and behavior regulation. Adolescent nicotine may induce a more addiction-prone phenotype, and the structures altered by nicotine also subserve some emotional and cognitive functions, which may also be altered. We suggest that dendritic elaboration and associated changes are mediated by activity-dependent synaptogenesis, acting in part through D1DR receptors, in a network activated by nicotine. The adolescent nicotine effects reviewed here suggest that modification of late CNS development constitutes a hazard of adolescent nicotine use.
Collapse
Affiliation(s)
- Robert F Smith
- Department of Psychology, George Mason University, MSN 3F5, Fairfax, VA 22030, USA.
| | - Craig G McDonald
- Department of Psychology, George Mason University, MSN 3F5, Fairfax, VA 22030, USA
| | - Hadley C Bergstrom
- Laboratory of Behavioral and Genomic Neuroscience, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, 3625 Fishers Lane Room 2N09, Rockville, MD 20814, USA
| | - Daniel G Ehlinger
- Boston Children's Hospital, Department of Anesthesiology, Perioperative, and Pain Medicine, 300 Longwood Ave., Boston, MA 02115, USA
| | | |
Collapse
|
22
|
Albani SH, Andrawis MM, Abella RJH, Fulghum JT, Vafamand N, Dumas TC. Behavior in the elevated plus maze is differentially affected by testing conditions in rats under and over three weeks of age. Front Behav Neurosci 2015; 9:31. [PMID: 25741257 PMCID: PMC4330883 DOI: 10.3389/fnbeh.2015.00031] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2014] [Accepted: 01/28/2015] [Indexed: 12/01/2022] Open
Abstract
The late postnatal period in rats is marked by numerous changes in perceptual and cognitive abilities. As such, age-related variation in cognitive test performance might result in part from disparate sensitivities to environmental factors. To better understand how testing conditions might interact with age, we assessed anxiety behavior on an elevated plus maze (EPM) in juvenile rats around 3 weeks of age under diverse testing conditions. Plasma corticosterone and neuronal activation patterns in the forebrain were examined after maze exposure. We found that anxiety was differentially expressed during different stages of late postnatal development. Bright illumination and morning testing encouraged greatest open arm exploration on the EPM in younger animals, while older rats explored open areas more under dim illumination in the morning compared to bright illumination in the afternoon/evening. Older rats exhibited higher plasma corticosterone levels at baseline compared to younger rats; however, this trend was reversed for post-testing corticosterone. Additionally, post-testing corticosterone levels were inversely related to time of testing. Compared to testing in the morning, EPM exposure in the afternoon/evening elicited greater neuronal Arc expression in the amygdala. Arc expression in the amygdala after morning testing was greater at P22–24 than P17–19. In layer 2/3 of primary visual cortex, Arc expression was elevated in younger animals and age interacted with time of testing to produce opposing effects at P17–19 and P22–24. These data suggest that age-related differences in anxiety-associated behavior during the late postnatal period are due in part to changes in light sensitivity and emergence of a circadian cycle for corticosterone. The findings illustrate that late postnatal behavioral development in rodents is a complex orchestration of changes in neural systems involved in perception, cognition, affect and homeostatic regulation.
Collapse
Affiliation(s)
- Sarah H Albani
- Department of Molecular Neuroscience, Krasnow Institute for Advanced Study, George Mason University Fairfax, VA, USA
| | - Marina M Andrawis
- Department of Molecular Neuroscience, Krasnow Institute for Advanced Study, George Mason University Fairfax, VA, USA
| | - Rio Jeane H Abella
- Department of Molecular Neuroscience, Krasnow Institute for Advanced Study, George Mason University Fairfax, VA, USA
| | - John T Fulghum
- Department of Molecular Neuroscience, Krasnow Institute for Advanced Study, George Mason University Fairfax, VA, USA
| | - Naghmeh Vafamand
- Department of Molecular Neuroscience, Krasnow Institute for Advanced Study, George Mason University Fairfax, VA, USA
| | - Theodore C Dumas
- Department of Molecular Neuroscience, Krasnow Institute for Advanced Study, George Mason University Fairfax, VA, USA
| |
Collapse
|
23
|
Xu S, Gullapalli RP, Frost DO. Olanzapine antipsychotic treatment of adolescent rats causes long term changes in glutamate and GABA levels in the nucleus accumbens. Schizophr Res 2015; 161:452-7. [PMID: 25487700 PMCID: PMC4308953 DOI: 10.1016/j.schres.2014.10.034] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2014] [Revised: 10/20/2014] [Accepted: 10/23/2014] [Indexed: 10/24/2022]
Abstract
Atypical antipsychotic drugs (AAPDs) are widely used in children and adolescents to treat a variety of psychiatric disorders. However, little is known about the long-term effects of AAPD treatment before the brain is fully developed. Indeed, we and others have previously reported that treatment of adolescent rats with olanzapine (OLA; a widely prescribed AAPD) on postnatal days 28-49, under dosing conditions that approximate those employed therapeutically in humans, causes long-term behavioral and neurobiological perturbations. We have begun to study the mechanisms of these effects. Dopamine (DA) and serotonin (5HT) regulate many neurodevelopmental processes. Currently approved AAPDs exert their therapeutic effects principally through their DAergic activities, although in schizophrenia (SZ) and some other diseases for which AAPDs are prescribed, DAergic dysfunction is accompanied by abnormalities of glutamatergic (GLUergic) and γ-aminobutyric acidergic (GABAergic) transmission. Here, we use proton magnetic resonance spectroscopy ((1)H MRS) to investigate the effects of adolescent OLA administration on GABA and GLU levels. We found that the treatment caused long-term reductions in the levels of both GLU and GABA in the nucleus accumbens (NAc) of adult rats treated with OLA during adolescence. The NAc is a key node in the brain's "reward" system, whose function is also disrupted in schizophrenia. Further research into potential, OLA-induced changes in the levels of GLU and GABA in the NAc and other brain areas, and the dynamics and mechanisms of those changes, are an essential step for devising new adjunct therapies for existing AAPDs and for designing new drugs that increase therapeutic effects and reduce long-term abnormalities when administered to pediatric patients.
Collapse
Affiliation(s)
- Su Xu
- Dept. of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Rao P Gullapalli
- Dept. of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Douglas O Frost
- Dept. of Pharmacology, University of Maryland School of Medicine, Baltimore, MD 21201, USA; Dept. of Psychiatry, University of Maryland School of Medicine, Baltimore, MD 21201, USA.
| |
Collapse
|
24
|
Horling K, Schlegel G, Schulz S, Vierk R, Ullrich K, Santer R, Rune GM. Hippocampal synaptic connectivity in phenylketonuria. Hum Mol Genet 2014; 24:1007-18. [PMID: 25296915 DOI: 10.1093/hmg/ddu515] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
In humans, lack of phenylalanine hydroxylase (Pah) activity results in phenylketonuria (PKU), which is associated with the development of severe mental retardation after birth. The underlying mechanisms, however, are poorly understood. Mutations of the Pah gene in Pah(enu2)/c57bl6 mice result in elevated levels of phenylalanine in serum similar to those in humans suffering from PKU. In our study, long-term potentiation (LTP) and paired-pulse facilitation, measured at CA3-CA1 Schaffer collateral synapses, were impaired in acute hippocampal slices of Pah(enu2)/c57bl6 mice. In addition, we found reduced expression of presynaptic proteins, such as synaptophysin and the synaptosomal-associated protein 25 (SNAP-25), and enhanced expression of postsynaptic marker proteins, such as synaptopodin and spinophilin. Stereological counting of spine synapses at the ultrastructural level revealed higher synaptic density in the hippocampus, commencing at 3 weeks and persisting up to 12 weeks after birth. Consistent effects were seen in response to phenylalanine treatment in cultures of dissociated hippocampal neurones. Most importantly, in the hippocampus of Pah(enu2)/c57bl6 mice, we found a significant reduction in microglia activity. Reorganization of hippocampal circuitry after birth, namely synaptic pruning, relies on elimination of weak synapses by activated microglia in response to neuronal activity. Hence, our data strongly suggest that reduced microglial activity in response to impaired synaptic transmission affects physiological postnatal remodelling of synapses in the hippocampus and may trigger the development of mental retardation in PKU patients after birth.
Collapse
Affiliation(s)
- Katja Horling
- Institute of Neuroanatomy, Institute of Anatomy and Experimental Morphology and
| | | | | | | | - Kurt Ullrich
- Department of Pediatrics, University Medical Center Hamburg-Eppendorf, Hamburg 20246, Germany
| | - René Santer
- Department of Pediatrics, University Medical Center Hamburg-Eppendorf, Hamburg 20246, Germany
| | | |
Collapse
|
25
|
Rubino T, Prini P, Piscitelli F, Zamberletti E, Trusel M, Melis M, Sagheddu C, Ligresti A, Tonini R, Di Marzo V, Parolaro D. Adolescent exposure to THC in female rats disrupts developmental changes in the prefrontal cortex. Neurobiol Dis 2014; 73:60-9. [PMID: 25281318 DOI: 10.1016/j.nbd.2014.09.015] [Citation(s) in RCA: 132] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2014] [Revised: 09/15/2014] [Accepted: 09/24/2014] [Indexed: 01/25/2023] Open
Abstract
Current concepts suggest that exposure to THC during adolescence may act as a risk factor for the development of psychiatric disorders later in life. However, the molecular underpinnings of this vulnerability are still poorly understood. To analyze this, we investigated whether and how THC exposure in female rats interferes with different maturational events occurring in the prefrontal cortex during adolescence through biochemical, pharmacological and electrophysiological means. We found that the endocannabinoid system undergoes maturational processes during adolescence and that THC exposure disrupts them, leading to impairment of both endocannabinoid signaling and endocannabinoid-mediated LTD in the adult prefrontal cortex. THC also altered the maturational fluctuations of NMDA subunits, leading to larger amounts of gluN2B at adulthood. Adult animals exposed to THC during adolescence also showed increased AMPA gluA1 with no changes in gluA2 subunits. Finally, adolescent THC exposure altered cognition at adulthood. All these effects seem to be triggered by the disruption of the physiological role played by the endocannabinoid system during adolescence. Indeed, blockade of CB1 receptors from early to late adolescence seems to prevent the occurrence of pruning at glutamatergic synapses. These results suggest that vulnerability of adolescent female rats to long-lasting THC adverse effects might partly reside in disruption of the pivotal role played by the endocannabinoid system in the prefrontal cortex maturation.
Collapse
Affiliation(s)
- Tiziana Rubino
- Department of Theoretical and Applied Science, Biomedical Research Division, and Neuroscience Center, University of Insubria, 21052 Busto Arsizio, VA, Italy.
| | - Pamela Prini
- Department of Theoretical and Applied Science, Biomedical Research Division, and Neuroscience Center, University of Insubria, 21052 Busto Arsizio, VA, Italy
| | - Fabiana Piscitelli
- Endocannabinoid Research Group, Institute of Biomolecular Chemistry, CNR, 80078 Pozzuoli, NA, Italy
| | - Erica Zamberletti
- Department of Theoretical and Applied Science, Biomedical Research Division, and Neuroscience Center, University of Insubria, 21052 Busto Arsizio, VA, Italy
| | - Massimo Trusel
- Department of Neuroscience and Brain Technologies, Istituto Italiano di Tecnologia (IIT), 16163 Genova, Italy
| | - Miriam Melis
- Department of Biomedical Sciences, Division of Neuroscience and Clinical Pharmacology, University of Cagliari, 09042 Monserrato, CA, Italy
| | - Claudia Sagheddu
- Department of Biomedical Sciences, Division of Neuroscience and Clinical Pharmacology, University of Cagliari, 09042 Monserrato, CA, Italy
| | - Alessia Ligresti
- Endocannabinoid Research Group, Institute of Biomolecular Chemistry, CNR, 80078 Pozzuoli, NA, Italy
| | - Raffaella Tonini
- Department of Neuroscience and Brain Technologies, Istituto Italiano di Tecnologia (IIT), 16163 Genova, Italy
| | - Vincenzo Di Marzo
- Endocannabinoid Research Group, Institute of Biomolecular Chemistry, CNR, 80078 Pozzuoli, NA, Italy
| | - Daniela Parolaro
- Department of Theoretical and Applied Science, Biomedical Research Division, and Neuroscience Center, University of Insubria, 21052 Busto Arsizio, VA, Italy; Zardi Gori Foundation, 21100 Milan, Italy
| |
Collapse
|
26
|
Christensen MH, Ishibashi M, Nielsen ML, Leonard CS, Kohlmeier KA. Age-related changes in nicotine response of cholinergic and non-cholinergic laterodorsal tegmental neurons: implications for the heightened adolescent susceptibility to nicotine addiction. Neuropharmacology 2014; 85:263-83. [PMID: 24863041 DOI: 10.1016/j.neuropharm.2014.05.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2014] [Revised: 04/30/2014] [Accepted: 05/05/2014] [Indexed: 02/06/2023]
Abstract
The younger an individual starts smoking, the greater the likelihood that addiction to nicotine will develop, suggesting that neurobiological responses vary across age to the addictive component of cigarettes. Cholinergic neurons of the laterodorsal tegmental nucleus (LDT) are importantly involved in the development of addiction, however, the effects of nicotine on LDT neuronal excitability across ontogeny are unknown. Nicotinic effects on LDT cells across different age groups were examined using calcium imaging and whole-cell patch clamping. Within the youngest age group (P7-P15), nicotine induced larger intracellular calcium transients and inward currents. Nicotine induced a greater number of excitatory synaptic currents in the youngest animals, whereas larger amplitude inhibitory synaptic events were induced in cells from the oldest animals (P15-P34). Nicotine increased neuronal firing of cholinergic cells to a greater degree in younger animals, possibly linked to development associated differences found in nicotinic effects on action potential shape and afterhyperpolarization. We conclude that in addition to age-associated alterations of several properties expected to affect resting cell excitability, parameters affecting cell excitability are altered by nicotine differentially across ontogeny. Taken together, our data suggest that nicotine induces a larger excitatory response in cholinergic LDT neurons from the youngest animals, which could result in a greater excitatory output from these cells to target regions involved in development of addiction. Such output would be expected to be promotive of addiction; therefore, ontogenetic differences in nicotine-mediated increases in the excitability of the LDT could contribute to the differential susceptibility to nicotine addiction seen across age.
Collapse
Affiliation(s)
- Mark H Christensen
- University of Copenhagen, Department of Drug Design and Pharmacology, Faculty of Health Sciences, Universitetsparken 2, Copenhagen 2100, Denmark
| | - Masaru Ishibashi
- Department of Physiology, New York Medical College, Valhalla, NY 10595, USA
| | - Michael L Nielsen
- University of Copenhagen, Department of Drug Design and Pharmacology, Faculty of Health Sciences, Universitetsparken 2, Copenhagen 2100, Denmark
| | | | - Kristi A Kohlmeier
- University of Copenhagen, Department of Drug Design and Pharmacology, Faculty of Health Sciences, Universitetsparken 2, Copenhagen 2100, Denmark.
| |
Collapse
|
27
|
Treit S, Zhou D, Lebel C, Rasmussen C, Andrew G, Beaulieu C. Longitudinal MRI reveals impaired cortical thinning in children and adolescents prenatally exposed to alcohol. Hum Brain Mapp 2014; 35:4892-903. [PMID: 24700453 DOI: 10.1002/hbm.22520] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2013] [Revised: 02/26/2014] [Accepted: 03/17/2014] [Indexed: 12/12/2022] Open
Abstract
Brain imaging studies suggest that cortical thickness decreases during childhood and adolescence, in concert with underlying structural and synaptic changes required for cognitive maturation and regional specialization of function. Abnormalities of this protracted developmental process may provide key insights into the cognitive and behavioral deficits that emerge in individuals with fetal alcohol spectrum disorders (FASD). Several studies have demonstrated cortical thickness differences in children and adolescents who were prenatally exposed to alcohol, though all have been cross sectional, limiting conclusions about cortical development with age. In this study, we analyze serially collected T1 -weighted MRI from 11 children with FASD and 21 controls, scanned twice each ∼2 to 4 years apart. Mixed-models analysis of cortical thickness measurements revealed age-by-group interactions in cortical thinning, with FASD participants undergoing less developmental thinning than controls across many regions of the cortex, particularly in medial frontal and parietal areas. These results provide further longitudinal evidence in humans that prenatal alcohol exposure is associated with altered patterns of brain development that persist during childhood and adolescence.
Collapse
Affiliation(s)
- Sarah Treit
- Centre for Neuroscience, University of Alberta, Edmonton, Alberta, Canada
| | | | | | | | | | | |
Collapse
|
28
|
Brain volume reductions in adolescent heavy drinkers. Dev Cogn Neurosci 2014; 9:117-25. [PMID: 24632141 PMCID: PMC4061267 DOI: 10.1016/j.dcn.2014.02.005] [Citation(s) in RCA: 109] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2013] [Revised: 02/05/2014] [Accepted: 02/11/2014] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND Brain abnormalities in adolescent heavy drinkers may result from alcohol exposure, or stem from pre-existing neural features. METHODS This longitudinal morphometric study investigated 40 healthy adolescents, ages 12-17 at study entry, half of whom (n=20) initiated heavy drinking over the 3-year follow-up. Both assessments included high-resolution magnetic resonance imaging. FreeSurfer was used to segment brain volumes, which were measured longitudinally using the newly developed quantitative anatomic regional change analysis (QUARC) tool. RESULTS At baseline, participants who later transitioned into heavy drinking showed smaller left cingulate, pars triangularis, and rostral anterior cingulate volume, and less right cerebellar white matter volumes (p<.05), compared to continuous non-using teens. Over time, participants who initiated heavy drinking showed significantly greater volume reduction in the left ventral diencephalon, left inferior and middle temporal gyrus, and left caudate and brain stem, compared to substance-naïve youth (p<.05). CONCLUSION Findings suggest pre-existing volume differences in frontal brain regions in future drinkers and greater brain volume reduction in subcortical and temporal regions after alcohol use was initiated. This is consistent with literature showing pre-existing cognitive deficits on tasks recruited by frontal regions, as well as post-drinking consequences on brain regions involved in language and spatial tasks.
Collapse
|
29
|
Yoshimura H, Hasumoto-Honjo M, Sugai T, Segami N, Kato N. Enhancement of oscillatory activity in the endopiriform nucleus of rats raised under abnormal oral conditions. Neurosci Lett 2014; 561:162-5. [PMID: 24406147 DOI: 10.1016/j.neulet.2013.12.067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2013] [Revised: 12/26/2013] [Accepted: 12/30/2013] [Indexed: 10/25/2022]
Abstract
Endopiriform nucleus (EPN) is located deep to the piriform cortex, and has neural connections with not only neighboring sensory areas but also subcortical areas where emotional and nociceptive information is processed. Well-balanced oral condition might play an important role in stability of brain activities. When the oral condition is impaired, several areas in the brain might be affected. In the present study, we investigated whether abnormal conditions of oral region influence neural activities in the EPN. Orthodontic appliance that generates continuous force and chronic pain-related stress was fixed to maxillary incisors of rats, and raised. Field potential recordings were made from the EPN of brain slices. We previously reported that the EPN has an ability to generate membrane potential oscillation. In the present study, we have applied the same methods to assess activities of neuron clusters in the EPN. In the case of normal rats, stable field potential oscillations were induced in the EPN by application of low-frequency electrical stimulation under the medium with caffeine. In the case of rats with the orthodontic appliance, stable field potential oscillations were also induced, but both duration of oscillatory activities and wavelet number were increased. The enhanced oscillations were depressed by blockade of NMDA receptors. Thus, impairment of oral health under application of continuous orthodontic force and chronic pain-related stress enhanced neural activities in the EPN, in which up-regulation of NMDA receptors may be concerned. These findings suggest that the EPN might be involved in information processing with regard to abnormal conditions of oral region.
Collapse
Affiliation(s)
- Hiroshi Yoshimura
- Department of Molecular Oral Physiology, Institute of Health Biosciences, The University of Tokushima Graduate School, 3-18-15 Kuramoto, Tokushima 770-8504, Japan; Department of Oral and Maxillofacial Surgery, Kanazawa Medical University, Ishikawa, Japan; Department of Physiology, Kanazawa Medical University, Uchinada-cho 920-0293, Japan.
| | - Miho Hasumoto-Honjo
- Department of Oral and Maxillofacial Surgery, Kanazawa Medical University, Ishikawa, Japan; Department of Physiology, Kanazawa Medical University, Uchinada-cho 920-0293, Japan
| | - Tokio Sugai
- Department of Physiology, Kanazawa Medical University, Uchinada-cho 920-0293, Japan
| | - Natsuki Segami
- Department of Oral and Maxillofacial Surgery, Kanazawa Medical University, Ishikawa, Japan
| | - Nobuo Kato
- Department of Physiology, Kanazawa Medical University, Uchinada-cho 920-0293, Japan
| |
Collapse
|
30
|
Navlakha S, Suhan J, Barth AL, Bar-Joseph Z. A high-throughput framework to detect synapses in electron microscopy images. Bioinformatics 2013; 29:i9-17. [PMID: 23813014 PMCID: PMC3694654 DOI: 10.1093/bioinformatics/btt222] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Motivation: Synaptic connections underlie learning and memory in the brain and are dynamically formed and eliminated during development and in response to stimuli. Quantifying changes in overall density and strength of synapses is an important pre-requisite for studying connectivity and plasticity in these cases or in diseased conditions. Unfortunately, most techniques to detect such changes are either low-throughput (e.g. electrophysiology), prone to error and difficult to automate (e.g. standard electron microscopy) or too coarse (e.g. magnetic resonance imaging) to provide accurate and large-scale measurements. Results: To facilitate high-throughput analyses, we used a 50-year-old experimental technique to selectively stain for synapses in electron microscopy images, and we developed a machine-learning framework to automatically detect synapses in these images. To validate our method, we experimentally imaged brain tissue of the somatosensory cortex in six mice. We detected thousands of synapses in these images and demonstrate the accuracy of our approach using cross-validation with manually labeled data and by comparing against existing algorithms and against tools that process standard electron microscopy images. We also used a semi-supervised algorithm that leverages unlabeled data to overcome sample heterogeneity and improve performance. Our algorithms are highly efficient and scalable and are freely available for others to use. Availability: Code is available at http://www.cs.cmu.edu/∼saketn/detect_synapses/ Contact:zivbj@cs.cmu.edu
Collapse
Affiliation(s)
- Saket Navlakha
- Machine Learning Department, School of Computer Science, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | | | | | | |
Collapse
|
31
|
Bailey JA, Zatorre RJ, Penhune VB. Early musical training is linked to gray matter structure in the ventral premotor cortex and auditory-motor rhythm synchronization performance. J Cogn Neurosci 2013; 26:755-67. [PMID: 24236696 DOI: 10.1162/jocn_a_00527] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Evidence in animals and humans indicates that there are sensitive periods during development, times when experience or stimulation has a greater influence on behavior and brain structure. Sensitive periods are the result of an interaction between maturational processes and experience-dependent plasticity mechanisms. Previous work from our laboratory has shown that adult musicians who begin training before the age of 7 show enhancements in behavior and white matter structure compared with those who begin later. Plastic changes in white matter and gray matter are hypothesized to co-occur; therefore, the current study investigated possible differences in gray matter structure between early-trained (ET; <7) and late-trained (LT; >7) musicians, matched for years of experience. Gray matter structure was assessed using voxel-wise analysis techniques (optimized voxel-based morphometry, traditional voxel-based morphometry, and deformation-based morphometry) and surface-based measures (cortical thickness, surface area and mean curvature). Deformation-based morphometry analyses identified group differences between ET and LT musicians in right ventral premotor cortex (vPMC), which correlated with performance on an auditory motor synchronization task and with age of onset of musical training. In addition, cortical surface area in vPMC was greater for ET musicians. These results are consistent with evidence that premotor cortex shows greatest maturational change between the ages of 6-9 years and that this region is important for integrating auditory and motor information. We propose that the auditory and motor interactions required by musical practice drive plasticity in vPMC and that this plasticity is greatest when maturation is near its peak.
Collapse
Affiliation(s)
- Jennifer Anne Bailey
- 1Concordia University
- 2International Laboratory for Brain, Music and Sound Research (BRAMS)
| | - Robert J. Zatorre
- 2International Laboratory for Brain, Music and Sound Research (BRAMS)
- 3McGill University
| | - Virginia B. Penhune
- 1Concordia University
- 2International Laboratory for Brain, Music and Sound Research (BRAMS)
| |
Collapse
|
32
|
Glutamate changes in healthy young adulthood. Eur Neuropsychopharmacol 2013; 23:1484-90. [PMID: 23245833 DOI: 10.1016/j.euroneuro.2012.11.003] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2012] [Revised: 05/31/2012] [Accepted: 11/09/2012] [Indexed: 11/20/2022]
Abstract
Glutamate is the major excitatory neurotransmitter in the mammalian central nervous system and has been associated with several cognitive functions that are known to change with age. In rodents and humans age-related glutamate changes have been found in several brain areas. In this cross-sectional study the presence and extent of age-associated glutamate changes in the medial frontal cortex of healthy young adults were measured. Proton magnetic resonance spectroscopy ((1)H-MRS) and brain imaging were performed at 7 T in a 2 × 2 × 2 cm(3) voxel in 33 participants between 18 and 31 years old. Glutamate concentrations and grey and white matter volume could be successfully determined at an ultra-high magnetic field strength. Glutamate concentrations were lower in older individuals (0.33 mM/year). This decline is in line with grey matter thinning in the medial frontal cortex, but could not be explained by cortical thinning alone. Therefore, the decrease in glutamate in young adulthood may be due to physiological changes rather than anatomical changes.
Collapse
|
33
|
Sanders EM, Nguyen MA, Zhou KC, Hanks ME, Yusuf KA, Cox DN, Dumas TC. Developmental modification of synaptic NMDAR composition and maturation of glutamatergic synapses: matching postsynaptic slots with receptor pegs. THE BIOLOGICAL BULLETIN 2013; 224:1-13. [PMID: 23493503 DOI: 10.1086/bblv224n1p1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
The numbers and types of ionotropic glutamate receptors at most vertebrate central excitatory synapses are altered as a function of changes in input activity patterns that occur during postnatal development. Activity-dependent developmental alterations in glutamate receptors underlie lasting changes in synaptic efficacy (plasticity) and metaplasticity (the plasticity of synaptic plasticity), which are critical elements of normal brain maturation. Understanding the specific involvement of glutamate receptors in synaptic development and function is made multiplicatively complex by the existence of a large number of glutamate receptor subunits, numerous subunit-specific amino acid sequences that regulate receptor function, and subunit-specific synaptic insertion restrictions imposed by associated anchoring proteins. Many receptor properties are altered when subunits are switched, so it is unclear which individual receptor property or properties underlie changes in synaptic function and plasticity during postnatal development. As a result, a more detailed understanding of the factors that regulate synaptic and cognitive development will involve mutations in glutamate receptor subunits that separate individual receptor properties and permit synaptic insertion at both immature and mature synapses in genetically modified organisms. This position paper focuses on structural modifications in N-methyl-d-aspartate receptors (NMDARs) that occur during postnatal forebrain development and attempts to provide a method for pursuing a more complete understanding of the functional ramifications of developmental alterations in NMDAR subunit composition.
Collapse
Affiliation(s)
- Erin M Sanders
- Molecular Neuroscience Department, Krasnow Institute for Advanced Study, George Mason University, Fairfax, VA 22030, USA
| | | | | | | | | | | | | |
Collapse
|
34
|
Snyder MA, Adelman AE, Gao WJ. Gestational methylazoxymethanol exposure leads to NMDAR dysfunction in hippocampus during early development and lasting deficits in learning. Neuropsychopharmacology 2013; 38:328-40. [PMID: 22968815 PMCID: PMC3527110 DOI: 10.1038/npp.2012.180] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The N-methyl-D-aspartate (NMDA) receptor has long been associated with learning and memory processes as well as diseased states, particularly in schizophrenia (SZ). Additionally, SZ is increasingly recognized as a neurodevelopmental disorder with cognitive impairments often preceding the onset of psychosis. However, the cause of these cognitive deficits and what initiates the pathological process is unknown. Growing evidence has implicated the glutamate system and, in particular, N-methyl-D-aspartate receptor (NMDAR) dysfunction in the pathophysiology of SZ. Yet, the vast majority of SZ-related research has focused on NMDAR function in adults leaving the role of NMDARs during development uncharacterized. We used the prenatal methylazoxymethanol acetate (MAM, E17) exposure model to determine the alterations of NMDAR protein levels and function, as well as associated cognitive deficits during development. We found that MAM-exposed animals have significantly altered NMDAR protein levels and function in the juvenile and adolescent hippocampus. Furthermore, these changes are associated with learning and memory deficits in the Morris Water Maze. Thus, in the prenatal MAM-exposure SZ model, NMDAR expression and function is altered during the critical period of hippocampal development. These changes may be involved in disease initiation and cognitive impairment in the early stage of SZ.
Collapse
Affiliation(s)
- Melissa A Snyder
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA, USA
| | - Alicia E Adelman
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA, USA
| | - Wen-Jun Gao
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA, USA,Department of Neurobiology and Anatomy, Drexel University College of Medicine, 2900 Queen Lane, Philadelphia, PA 19129, USA, Tel: +215 991 8907, Fax: +215 843 9802, E-mail:
| |
Collapse
|
35
|
Hermens DF, Lagopoulos J, Naismith SL, Tobias-Webb J, Hickie IB. Distinct neurometabolic profiles are evident in the anterior cingulate of young people with major psychiatric disorders. Transl Psychiatry 2012; 2:e110. [PMID: 22832954 PMCID: PMC3365254 DOI: 10.1038/tp.2012.35] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2011] [Revised: 03/15/2012] [Accepted: 04/05/2012] [Indexed: 12/30/2022] Open
Abstract
Currently, there are no validated neurobiological methods for distinguishing different pathophysiological pathways in young patients presenting in the early phases of major psychiatric disorders. Hence, treatments are delivered simply on the basis of their possible effects on nonspecific symptom constructs such as depression, cognitive change or psychotic symptoms. In this study, the ratios (relative to creatine) of key metabolites (N-acetyl aspartate, myoinositol, glutamate and glutathione) were measured with proton magnetic resonance spectroscopy ((1)H-MRS) within the anterior cingulate cortex of 88 young persons presenting with major mood or psychotic symptoms. We derived empirically (using a cluster analytical technique) three subgroups of subjects on the basis of their patterns of in vivo brain biochemistry. The three subgroups were distinguished (from each other) by all the four metabolites, in particular, glutathione and glutamate. By contrast, the groups could not be distinguished by differences in terms of other demographic, functional or clinical measures. We propose that this (1)H-MRS-based subclassification system could be used as the basis for much more specific tests of novel intervention strategies (notably, antioxidant and glutamatergic therapies) early in the course of major psychiatric disorders.
Collapse
Affiliation(s)
- D F Hermens
- Clinical Research Unit, Brain and Mind Research Institute, University of Sydney, Camperdown, New South Wales, Australia.
| | | | | | | | | |
Collapse
|
36
|
The effects of NMDA subunit composition on calcium influx and spike timing-dependent plasticity in striatal medium spiny neurons. PLoS Comput Biol 2012; 8:e1002493. [PMID: 22536151 PMCID: PMC3334887 DOI: 10.1371/journal.pcbi.1002493] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2011] [Accepted: 03/12/2012] [Indexed: 11/25/2022] Open
Abstract
Calcium through NMDA receptors (NMDARs) is necessary for the long-term potentiation (LTP) of synaptic strength; however, NMDARs differ in several properties that can influence the amount of calcium influx into the spine. These properties, such as sensitivity to magnesium block and conductance decay kinetics, change the receptor's response to spike timing dependent plasticity (STDP) protocols, and thereby shape synaptic integration and information processing. This study investigates the role of GluN2 subunit differences on spine calcium concentration during several STDP protocols in a model of a striatal medium spiny projection neuron (MSPN). The multi-compartment, multi-channel model exhibits firing frequency, spike width, and latency to first spike similar to current clamp data from mouse dorsal striatum MSPN. We find that NMDAR-mediated calcium is dependent on GluN2 subunit type, action potential timing, duration of somatic depolarization, and number of action potentials. Furthermore, the model demonstrates that in MSPNs, GluN2A and GluN2B control which STDP intervals allow for substantial calcium elevation in spines. The model predicts that blocking GluN2B subunits would modulate the range of intervals that cause long term potentiation. We confirmed this prediction experimentally, demonstrating that blocking GluN2B in the striatum, narrows the range of STDP intervals that cause long term potentiation. This ability of the GluN2 subunit to modulate the shape of the STDP curve could underlie the role that GluN2 subunits play in learning and development. The striatum of the basal ganglia plays a key role in fluent motor control; pathology in this structure causes the motor symptoms of Parkinson's Disease and Huntington's Chorea. A putative cellular mechanism underlying learning of motor control is synaptic plasticity, which is an activity dependent change in synaptic strength. A known mediator of synaptic potentiation is calcium influx through the NMDA-type glutamate receptor. The NMDA receptor is sensitive to the timing of neuronal activity, allowing calcium influx only when glutamate release and a post-synaptic depolarization coincide temporally. The NMDA receptor is comprised of specific subunits that modify its sensitivity to neuronal activity and these subunits are altered in animal models of Parkinson's disease. Here we use a multi-compartmental model of a striatal neuron to investigate the effect of different NMDA subunits on calcium influx through the NMDA receptor. Simulations show that the subunit composition changes the temporal intervals that allow coincidence detection and strong calcium influx. Our experiments manipulating the dominate subunit in brain slices show that the subunit effect on calcium influx predicted by our computational model is mirrored by a change in the amount of potentiation that occurs in our experimental preparation.
Collapse
|
37
|
Binge drinking differentially affects adolescent male and female brain morphometry. Psychopharmacology (Berl) 2012; 220:529-39. [PMID: 21952669 PMCID: PMC3527131 DOI: 10.1007/s00213-011-2500-4] [Citation(s) in RCA: 151] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2011] [Accepted: 09/09/2011] [Indexed: 10/17/2022]
Abstract
RATIONALE Adolescent binge drinking is concerning, as important neurodevelopments occur during this stage. Previous research suggests that binge drinking may disrupt typical brain development, and females may be particularly vulnerable. OBJECTIVES We used magnetic resonance imaging (MRI) to examine cortical thickness in adolescent females and males with and without histories of binge drinking. METHODS Participants (N = 59) were 16-19-year-old adolescents recruited from local schools. Recent binge drinkers (n = 29, 48% female) were matched to non-drinkers (n = 30, 50% female) on age, gender, pubertal development, and familial alcoholism. Participants completed a neuropsychological battery and MRI session. Cortical surfaces were reconstructed with FreeSurfer. RESULTS Binge × gender interactions (p < .05) were seen for cortical thickness in four left frontal regions: frontal pole, pars orbitalis, medial orbital frontal, and rostral anterior cingulate. For all interactions, female bingers had thicker cortices than female controls, while male bingers had thinner cortices than male controls. Thicker left frontal cortices corresponded with poorer visuospatial, inhibition, and attention performances for female bingers (r = -0.69 to 0.50, p < 0.05) and worse attention for male bingers (r = -0.69, p = 0.005). CONCLUSIONS Adolescent females with recent binge drinking showed ~8% thicker cortices in left frontal regions than demographically similar female non-drinkers, which was linked to worse visuospatial, inhibition, and attention performances. In contrast, adolescent binge-drinking males showed ~7% thinner cortices in these areas than non-drinking males. These cross-sectional data suggest either different gray matter risk factors for males as for females toward developing heavy drinking, or differential adverse sequelae.
Collapse
|
38
|
Palanisamy A. Maternal anesthesia and fetal neurodevelopment. Int J Obstet Anesth 2012; 21:152-62. [DOI: 10.1016/j.ijoa.2012.01.005] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2012] [Revised: 01/21/2012] [Accepted: 01/28/2012] [Indexed: 12/01/2022]
|
39
|
Young A, Machacek DW, Dhara SK, Macleish PR, Benveniste M, Dodla MC, Sturkie CD, Stice SL. Ion channels and ionotropic receptors in human embryonic stem cell derived neural progenitors. Neuroscience 2011; 192:793-805. [PMID: 21672611 DOI: 10.1016/j.neuroscience.2011.04.039] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2011] [Revised: 04/14/2011] [Accepted: 04/15/2011] [Indexed: 11/24/2022]
Abstract
Human neural progenitor cells differentiated from human embryonic stem cells offer a potential cell source for studying neurodegenerative diseases and for drug screening assays. Previously, we demonstrated that human neural progenitors could be maintained in a proliferative state with the addition of leukemia inhibitory factor and basic fibroblast growth factor. Here we demonstrate that 96 h after removal of basic fibroblast growth factor the neural progenitor cell culture was significantly altered and cell replication halted. Fourteen days after the removal of basic fibroblast growth factor, most cells expressed microtubule-associated protein 2 and TUJ1, markers characterizing a post-mitotic neuronal phenotype as well as neural developmental markers Cdh2 and Gbx2. Real-time PCR was performed to determine the ionotropic receptor subunit expression profile. Differentiated neural progenitors express subunits of glutamatergic, GABAergic, nicotinic, purinergic and transient receptor potential receptors. In addition, sodium and calcium channel subunits were also expressed. Functionally, virtually all the hNP cells tested under whole-cell voltage clamp exhibited delayed rectifier potassium channel currents and some differentiated cells exhibited tetrodotoxin-sensitive, voltage-dependent sodium channel current. Action potentials could also be elicited by currents injection under whole-cell current clamp in a minority of cells. These results indicate that removing basic fibroblast growth factor from the neural progenitor cell cultures leads to a post-mitotic state, and has the capability to produce excitable cells that can generate action potentials, a landmark characteristic of a neuronal phenotype. This is the first report of an efficient and simple means of generating human neuronal cells for ionotropic receptor assays and ultimately for electrically active human neural cell assays for drug discovery.
Collapse
Affiliation(s)
- A Young
- Regenerative Bioscience Center, 425 River Road Room 450, Athens, GA 30602, USA
| | | | | | | | | | | | | | | |
Collapse
|