1
|
Ahmad R, Barcellini A, Baumann K, Benje M, Bender T, Bragado P, Charalampopoulou A, Chowdhury R, Davis AJ, Ebner DK, Eley J, Kloeber JA, Mutter RW, Friedrich T, Gutierrez-Uzquiza A, Helm A, Ibáñez-Moragues M, Iturri L, Jansen J, Morcillo MÁ, Puerta D, Kokko AP, Sánchez-Parcerisa D, Scifoni E, Shimokawa T, Sokol O, Story MD, Thariat J, Tinganelli W, Tommasino F, Vandevoorde C, von Neubeck C. Particle Beam Radiobiology Status and Challenges: A PTCOG Radiobiology Subcommittee Report. Int J Part Ther 2024; 13:100626. [PMID: 39258166 PMCID: PMC11386331 DOI: 10.1016/j.ijpt.2024.100626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 08/02/2024] [Indexed: 09/12/2024] Open
Abstract
Particle therapy (PT) represents a significant advancement in cancer treatment, precisely targeting tumor cells while sparing surrounding healthy tissues thanks to the unique depth-dose profiles of the charged particles. Furthermore, their linear energy transfer and relative biological effectiveness enhance their capability to treat radioresistant tumors, including hypoxic ones. Over the years, extensive research has paved the way for PT's clinical application, and current efforts aim to refine its efficacy and precision, minimizing the toxicities. In this regard, radiobiology research is evolving toward integrating biotechnology to advance drug discovery and radiation therapy optimization. This shift from basic radiobiology to understanding the molecular mechanisms of PT aims to expand the therapeutic window through innovative dose delivery regimens and combined therapy approaches. This review, written by over 30 contributors from various countries, provides a comprehensive look at key research areas and new developments in PT radiobiology, emphasizing the innovations and techniques transforming the field, ranging from the radiobiology of new irradiation modalities to multimodal radiation therapy and modeling efforts. We highlight both advancements and knowledge gaps, with the aim of improving the understanding and application of PT in oncology.
Collapse
Affiliation(s)
- Reem Ahmad
- Department of Medical Physics and Biomedical Engineering, University College London, London, UK
| | - Amelia Barcellini
- Department of Internal Medicine and Therapeutics, University of Pavia, Pavia, Italy
- Clinical Department Radiation Oncology Unit, National Center for Oncological Hadrontherapy (CNAO), Pavia, Italy
| | - Kilian Baumann
- Institute of Medical Physics and Radiation Protection, University of Applied Sciences Giessen, Giessen, Germany
- Marburg Ion-Beam Therapy Center, Marburg, Germany
| | - Malte Benje
- Biophysics Department, GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany
| | - Tamara Bender
- Biophysics Department, GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany
| | - Paloma Bragado
- Biochemistry and Molecular Biology Department, Complutense University of Madrid, Madrid, Spain
| | - Alexandra Charalampopoulou
- University School for Advanced Studies (IUSS), Pavia, Italy
- Radiobiology Unit, Development and Research Department, National Center for Oncological Hadrontherapy (CNAO), Pavia, Italy
| | - Reema Chowdhury
- Biophysics Department, GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany
| | - Anthony J Davis
- University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Daniel K Ebner
- Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota, USA
| | - John Eley
- Department of Radiation Oncology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Jake A Kloeber
- Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota, USA
| | - Robert W Mutter
- Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota, USA
| | - Thomas Friedrich
- Biophysics Department, GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany
| | | | - Alexander Helm
- Biophysics Department, GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany
| | - Marta Ibáñez-Moragues
- Medical Applications of Ionizing Radiation Unit, Technology Department, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), Madrid, Spain
| | - Lorea Iturri
- Institut Curie, Université PSL, CNRS UMR3347, Inserm U1021, Signalisation Radiobiologie et Cancer, Orsay, France
| | - Jeannette Jansen
- Biophysics Department, GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany
| | - Miguel Ángel Morcillo
- Medical Applications of Ionizing Radiation Unit, Technology Department, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), Madrid, Spain
| | - Daniel Puerta
- Departamento de Física Atómica, Molecular y Nuclear, Universidad de Granada, Granada, Spain
- Instituto de Investigación Biosanitaria (ibs.GRANADA), Complejo Hospitalario Universitario de Granada/Universidad de Granada, Granada, Spain
| | | | | | - Emanuele Scifoni
- TIFPA-INFN - Trento Institute for Fundamental Physics and Applications, Trento, Italy
| | - Takashi Shimokawa
- National Institutes for Quantum Science and Technology (QST), Chiba, Japan
| | - Olga Sokol
- Biophysics Department, GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany
| | | | - Juliette Thariat
- Centre François Baclesse, Université de Caen Normandie, ENSICAEN, CNRS/IN2P3, LPC Caen UMR6534, Caen, France
| | - Walter Tinganelli
- Biophysics Department, GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany
| | - Francesco Tommasino
- TIFPA-INFN - Trento Institute for Fundamental Physics and Applications, Trento, Italy
- Department of Physics, University of Trento, Trento, Italy
| | - Charlot Vandevoorde
- Biophysics Department, GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany
| | - Cläre von Neubeck
- Department of Particle Therapy, University Hospital Essen, University of Duisburg-Essen, Duisburg, Germany
| |
Collapse
|
2
|
Besuglow J, Tessonnier T, Mein S, Eichkorn T, Haberer T, Herfarth K, Abdollahi A, Debus J, Mairani A. Understanding Relative Biological Effectiveness and Clinical Outcome of Prostate Cancer Therapy Using Particle Irradiation: Analysis of Tumor Control Probability With the Modified Microdosimetric Kinetic Model. Int J Radiat Oncol Biol Phys 2024; 119:1545-1556. [PMID: 38423224 DOI: 10.1016/j.ijrobp.2024.02.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 12/22/2023] [Accepted: 02/10/2024] [Indexed: 03/02/2024]
Abstract
PURPOSE Recent experimental studies and clinical trial results might indicate that-at least for some indications-continued use of the mechanistic model for relative biological effectiveness (RBE) applied at carbon ion therapy facilities in Europe for several decades (LEM-I) may be unwarranted. We present a novel clinical framework for prostate cancer treatment planning and tumor control probability (TCP) prediction based on the modified microdosimetric kinetic model (mMKM) for particle therapy. METHODS AND MATERIALS Treatment plans of 91 patients with prostate tumors (proton: 46, carbon ions: 45) applying 66 GyRBE [RBE = 1.1 for protons and LEM-I, (α/β)x = 2.0 Gy, for carbon ions] in 20 fractions were recalculated using mMKM [(α/β)x = 3.1 Gy]). Based solely on the response data of photon-irradiated patient groups stratified according to risk and usage of androgen deprivation therapy, we derived parameters for an mMKM-based Poisson-TCP model. Subsequently, new carbon and helium ion plans, adhering to prescribed biological dose criteria, were generated. These were systematically compared with the clinical experience of Japanese centers employing an analogous fractionation scheme and existing proton plans. RESULTS mMKM predictions suggested significant biological dose deviation between the proton and carbon ion arms. Patients irradiated with protons received (3.25 ± 0.08) GyRBEmMKM/Fx, whereas patients treated with carbon ions received(2.51 ± 0.05) GyRBEmMKM/Fx. TCP predictions were (86 ± 3)% for protons and (52 ± 4)% for carbon ions, matching the clinical outcome of 85% and 50%. Newly optimized carbon ion plans, guided by the mMKM/TCP model, effectively replicated clinical data from Japanese centers. Using mMKM, helium ions exhibited similar target coverage as proton and carbon ions and improved rectum and bladder sparing compared with proton. CONCLUSIONS Our mMKM-based model for prostate cancer treatment planning and TCP prediction was validated against clinical data for proton and carbon ion therapy, and its application was extended to helium ion therapy. Based on the data presented in this work, mMKM seems to be a good candidate for clinical biological calculations in carbon ion therapy for prostate cancer.
Collapse
Affiliation(s)
- Judith Besuglow
- Clinical Cooperation Unit Translational Radiation Oncology (E210), National Center for Tumor Diseases (NCT), Heidelberg University Hospital (UKHD) and German Cancer Research Center (DKFZ), Heidelberg, Germany; Division of Molecular and Translational Radiation Oncology, Department of Radiation Oncology, Heidelberg Faculty of Medicine (MFHD) and Heidelberg University Hospital (UKHD), Heidelberg Ion-Beam Therapy Center (HIT), Heidelberg, Germany; German Cancer Consortium (DKTK) Core-Center Heidelberg, German Cancer Research Center (DKFZ), Heidelberg, Germany; National Center for Radiation Oncology (NCRO), Heidelberg Institute of Radiation Oncology (HIRO), Heidelberg University and German Cancer Research Center (DKFZ), Heidelberg, Germany; Department of Physics and Astronomy, Heidelberg University, Heidelberg, Germany
| | - Thomas Tessonnier
- Clinical Cooperation Unit Translational Radiation Oncology (E210), National Center for Tumor Diseases (NCT), Heidelberg University Hospital (UKHD) and German Cancer Research Center (DKFZ), Heidelberg, Germany; Heidelberg Ion-Beam Therapy Center (HIT), Heidelberg, Germany
| | - Stewart Mein
- Clinical Cooperation Unit Translational Radiation Oncology (E210), National Center for Tumor Diseases (NCT), Heidelberg University Hospital (UKHD) and German Cancer Research Center (DKFZ), Heidelberg, Germany; Division of Molecular and Translational Radiation Oncology, Department of Radiation Oncology, Heidelberg Faculty of Medicine (MFHD) and Heidelberg University Hospital (UKHD), Heidelberg Ion-Beam Therapy Center (HIT), Heidelberg, Germany; German Cancer Consortium (DKTK) Core-Center Heidelberg, German Cancer Research Center (DKFZ), Heidelberg, Germany; National Center for Radiation Oncology (NCRO), Heidelberg Institute of Radiation Oncology (HIRO), Heidelberg University and German Cancer Research Center (DKFZ), Heidelberg, Germany; Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Tanja Eichkorn
- National Center for Radiation Oncology (NCRO), Heidelberg Institute of Radiation Oncology (HIRO), Heidelberg University and German Cancer Research Center (DKFZ), Heidelberg, Germany; Heidelberg Ion-Beam Therapy Center (HIT), Heidelberg, Germany; Department of Radiation Oncology, Heidelberg University Hospital (UKHD), Heidelberg, Germany; National Center for Tumor Diseases (NCT), Heidelberg, Germany
| | - Thomas Haberer
- National Center for Radiation Oncology (NCRO), Heidelberg Institute of Radiation Oncology (HIRO), Heidelberg University and German Cancer Research Center (DKFZ), Heidelberg, Germany; Heidelberg Ion-Beam Therapy Center (HIT), Heidelberg, Germany
| | - Klaus Herfarth
- National Center for Radiation Oncology (NCRO), Heidelberg Institute of Radiation Oncology (HIRO), Heidelberg University and German Cancer Research Center (DKFZ), Heidelberg, Germany; Heidelberg Ion-Beam Therapy Center (HIT), Heidelberg, Germany; Department of Radiation Oncology, Heidelberg University Hospital (UKHD), Heidelberg, Germany; National Center for Tumor Diseases (NCT), Heidelberg, Germany
| | - Amir Abdollahi
- Clinical Cooperation Unit Translational Radiation Oncology (E210), National Center for Tumor Diseases (NCT), Heidelberg University Hospital (UKHD) and German Cancer Research Center (DKFZ), Heidelberg, Germany; Division of Molecular and Translational Radiation Oncology, Department of Radiation Oncology, Heidelberg Faculty of Medicine (MFHD) and Heidelberg University Hospital (UKHD), Heidelberg Ion-Beam Therapy Center (HIT), Heidelberg, Germany; German Cancer Consortium (DKTK) Core-Center Heidelberg, German Cancer Research Center (DKFZ), Heidelberg, Germany; National Center for Radiation Oncology (NCRO), Heidelberg Institute of Radiation Oncology (HIRO), Heidelberg University and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Jürgen Debus
- German Cancer Consortium (DKTK) Core-Center Heidelberg, German Cancer Research Center (DKFZ), Heidelberg, Germany; National Center for Radiation Oncology (NCRO), Heidelberg Institute of Radiation Oncology (HIRO), Heidelberg University and German Cancer Research Center (DKFZ), Heidelberg, Germany; Heidelberg Ion-Beam Therapy Center (HIT), Heidelberg, Germany; Department of Radiation Oncology, Heidelberg University Hospital (UKHD), Heidelberg, Germany; National Center for Tumor Diseases (NCT), Heidelberg, Germany; Clinical Cooperation Unit Radiation Oncology (E050), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Andrea Mairani
- Clinical Cooperation Unit Translational Radiation Oncology (E210), National Center for Tumor Diseases (NCT), Heidelberg University Hospital (UKHD) and German Cancer Research Center (DKFZ), Heidelberg, Germany; Heidelberg Ion-Beam Therapy Center (HIT), Heidelberg, Germany; Medical Physics, National Centre of Oncological Hadrontherapy (CNAO), Pavia, Italy.
| |
Collapse
|
3
|
Paganetti H, Simone CB, Bosch WR, Haas-Kogan D, Kirsch DG, Li H, Liang X, Liu W, Mahajan A, Story MD, Taylor PA, Willers H, Xiao Y, Buchsbaum JC. NRG Oncology White Paper on the Relative Biological Effectiveness in Proton Therapy. Int J Radiat Oncol Biol Phys 2024:S0360-3016(24)02974-2. [PMID: 39059509 DOI: 10.1016/j.ijrobp.2024.07.2152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 06/17/2024] [Accepted: 07/06/2024] [Indexed: 07/28/2024]
Abstract
This position paper, led by the NRG Oncology Particle Therapy Work Group, focuses on the concept of relative biologic effect (RBE) in clinical proton therapy (PT), with the goal of providing recommendations for the next-generation clinical trials with PT on the best practice of investigating and using RBE, which could deviate from the current standard proton RBE value of 1.1 relative to photons. In part 1, current clinical utilization and practice are reviewed, giving the context and history of RBE. Evidence for variation in RBE is presented along with the concept of linear energy transfer (LET). The intertwined nature of tumor radiobiology, normal tissue constraints, and treatment planning with LET and RBE considerations is then reviewed. Part 2 summarizes current and past clinical data and then suggests the next steps to explore and employ tools for improved dynamic models for RBE. In part 3, approaches and methods for the next generation of prospective clinical trials are explored, with the goal of optimizing RBE to be both more reflective of clinical reality and also deployable in trials to allow clinical validation and interpatient comparisons. These concepts provide the foundation for personalized biologic treatments reviewed in part 4. Finally, we conclude with a summary including short- and long-term scientific focus points for clinical PT. The practicalities and capacity to use RBE in treatment planning are reviewed and considered with more biological data in hand. The intermediate step of LET optimization is summarized and proposed as a potential bridge to the ultimate goal of case-specific RBE planning that can be achieved as a hypothesis-generating tool in near-term proton trials.
Collapse
Affiliation(s)
- Harald Paganetti
- Department of Radiation Oncology, Massachusetts General Hospital, Boston, Massachusetts; Department of Radiation Oncology, Harvard Medical School, Boston, Massachusetts
| | - Charles B Simone
- New York Proton Center, New York, New York; Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Walter R Bosch
- Department of Radiation Oncology, Washington University, St. Louis, Missouri
| | - Daphne Haas-Kogan
- Department of Radiation Oncology, Harvard Medical School, Boston, Massachusetts; Department of Radiation Oncology, Dana-Farber Cancer Institute, Brigham and Women's Hospital, Boston Children's Hospital, Boston, Massachusetts
| | - David G Kirsch
- Radiation Medicine Program, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada; Department of Radiation Oncology, University of Toronto, Toronto, Ontario, Canada
| | - Heng Li
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University, Baltimore, Maryland
| | - Xiaoying Liang
- Department of Radiation Oncology, Mayo Clinic Florida, Jacksonville, Florida
| | - Wei Liu
- Department of Radiation Oncology, Mayo Clinic Arizona, Phoenix, Arizona
| | - Anita Mahajan
- Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota
| | - Michael D Story
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, Texas
| | | | - Henning Willers
- Department of Radiation Oncology, Massachusetts General Hospital, Boston, Massachusetts; Department of Radiation Oncology, Harvard Medical School, Boston, Massachusetts
| | - Ying Xiao
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Jeffrey C Buchsbaum
- National Cancer Institute, National Institutes of Health, Bethesda, Maryland.
| |
Collapse
|
4
|
Grau C, Dasu A, Troost EGC, Haustermans K, Weber DC, Langendijk JA, Gregoire V, Orlandi E, Thariat J, Journy N, Chaikh A, Isambert A, Jereczek-Fossa BA, Vaniqui A, Vitek P, Kopec R, Fijten R, Luetgendorf-Caucig C, Olko P. Towards a European prospective data registry for particle therapy. Radiother Oncol 2024; 196:110293. [PMID: 38653379 DOI: 10.1016/j.radonc.2024.110293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 04/18/2024] [Accepted: 04/18/2024] [Indexed: 04/25/2024]
Abstract
The evidence for the value of particle therapy (PT) is still sparse. While randomized trials remain a cornerstone for robust comparisons with photon-based radiotherapy, data registries collecting real-world data can play a crucial role in building evidence for new developments. This Perspective describes how the European Particle Therapy Network (EPTN) is actively working on establishing a prospective data registry encompassing all patients undergoing PT in European centers. Several obstacles and hurdles are discussed, for instance harmonization of nomenclature and structure of technical and dosimetric data and data protection issues. A preferred approach is the adoption of a federated data registry model with transparent and agile governance to meet European requirements for data protection, transfer, and processing. Funding of the registry, especially for operation after the initial setup process, remains a major challenge.
Collapse
Affiliation(s)
- Cai Grau
- Danish Center for Particle Therapy, Aarhus University Hospital, Aarhus, Denmark.
| | - Alexandru Dasu
- The Skandion Clinic, Uppsala, Sweden; Department of Immunology, Genetics and Pathology, Uppsala University, Sweden.
| | - Esther G C Troost
- Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany; OncoRay - National Center for Radiation Research in Oncology, Dresden, Germany; Helmholtz-Zentrum Dresden - Rossendorf, Institute of Radiooncology - OncoRay, Dresden, Germany.
| | - Karin Haustermans
- Department of Radiation Oncology, University Hospital, KU Leuven, Leuven, Belgium.
| | - Damien C Weber
- Proton Therapy Center, Paul Scherrer Institute, ETH Domain, Switzerland; Radiation Oncology Department, University Hospital Zürich, Switzerland; Department of Radiation Oncology, Inselspital, Bern University Hospital, University of Bern, Switzerland.
| | - Johannes A Langendijk
- Department of Radiation Oncology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands.
| | | | - Ester Orlandi
- Department of Clinical, Surgical, Diagnostic, and Pediatric Sciences, University of Pavia, Pavia, Italy; Clinical Department, National Center for Oncological Hadrontherapy (Fondazione CNAO), Pavia, Italy.
| | - Juliette Thariat
- Université de Caen Normandie, ENSICAEN, CNRS/IN2P3, LPC Caen UMR6534, F-14000, Centre François Baclesse, Caen, France
| | - Neige Journy
- National Institute of Health and Medical Research (INSERM) Unit 1018, Centre for Research in Epidemiology and Population Health, Paris Saclay University, Gustave Roussy, Villejuif, France.
| | - Abdulhamid Chaikh
- Institut de Radioprotection et de Sûreté Nucléaire IRSN/PSE-SANTE/SER/UEM, France.
| | - Aurelie Isambert
- Institut de Radioprotection et de Sûreté Nucléaire IRSN/PSE-SANTE/SER/UEM, France.
| | - Barbara Alicja Jereczek-Fossa
- Dept. of Oncology and Hemato-oncology, University of Milan, Milan, Italy; Dept. of Radiation Oncology, IEO European Institute of Oncology IRCCS, Milan, Italy.
| | - Ana Vaniqui
- Belgian Nuclear Research Center (SCK CEN), Mol, Belgium.
| | - Pavel Vitek
- Proton Therapy Center Czech, Prague, Czech Republic.
| | - Renata Kopec
- Institute of Nuclear Physics Polish Academy of Sciences, Kraków, Poland.
| | - Rianne Fijten
- Department of Radiation Oncology (Maastro), GROW School for Oncology and Reproduction, Maastricht University Medical Centre, Maastricht, the Netherlands.
| | | | - Pawel Olko
- Institute of Nuclear Physics Polish Academy of Sciences, Kraków, Poland.
| |
Collapse
|
5
|
Parrella G, Magro G, Chalaszczyk A, Rotondi M, Ciocca M, Glimelius L, Fiore MR, Paganelli C, Orlandi E, Molinelli S, Baroni G. Balancing benefits and limitations of linear energy transfer optimization in carbon ion radiotherapy for large sacral chordomas. Phys Imaging Radiat Oncol 2024; 31:100624. [PMID: 39206357 PMCID: PMC11357807 DOI: 10.1016/j.phro.2024.100624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 08/02/2024] [Accepted: 08/04/2024] [Indexed: 09/04/2024] Open
Abstract
Background and Purpose A low linear energy transfer (LET) in the target can reduce the effectiveness of carbon ion radiotherapy (CIRT). This study aimed at exploring benefits and limitations of LET optimization for large sacral chordomas (SC) undergoing CIRT. Materials and Methods Seventeen cases were used to tune LET-based optimization, and seven to independently test interfraction plan robustness. For each patient, a reference plan was optimized on biologically-weighted dose cost functions. For the first group, 7 LET-optimized plans were obtained by increasing the gross tumor volume (GTV) minimum LETd (minLETd) in the range 37-55 keV/μm, in steps of 3 keV/μm. The optimal LET-optimized plan (LETOPT) was the one maximizing LETd, while adhering to clinical acceptability criteria. Reference and LETOPT plans were compared through dose and LETd metrics (D x , L x to x% volume) for the GTV, clinical target volume (CTV), and organs at risk (OARs). The 7 held-out cases were optimized setting minLETd to the average GTV L98% of the investigation cohort. Both reference and LETOPT plans were recalculated on re-evaluation CTs and compared. Results GTV L98% increased from (31.8 ± 2.5)keV/μm to (47.6 ± 3.1)keV/μm on the LETOPT plans, while the fraction of GTV receiving over 50 keV/μm increased on average by 36% (p < 0.001), without affecting target coverage goals, or impacting LETd and dose to OARs. The interfraction analysis showed no significant worsening with minLETd set to 48 keV/μm. Conclusion LETd optimization for large SC could boost the LETd in the GTV without significantly compromising plan quality, potentially improving the therapeutic effects of CIRT for large radioresistant tumors.
Collapse
Affiliation(s)
- Giovanni Parrella
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Via G.Ponzio 34/5, 20133 Milan, Italy
| | - Giuseppe Magro
- Medical Physics Unit, National Center of Oncological Hadrontherapy (CNAO), Strada Campeggi, 53, 11 27100 Pavia, Italy
| | - Agnieszka Chalaszczyk
- Radiotherapy Unit, National Center of Oncological Hadrontherapy (CNAO), Strada Campeggi, 53, 11 27100 Pavia, Italy
| | - Marco Rotondi
- Raysearch Laboratories, Eugeniavägen 18, 113 68 Stockholm, Sweden
| | - Mario Ciocca
- Medical Physics Unit, National Center of Oncological Hadrontherapy (CNAO), Strada Campeggi, 53, 11 27100 Pavia, Italy
| | - Lars Glimelius
- Raysearch Laboratories, Eugeniavägen 18, 113 68 Stockholm, Sweden
| | - Maria R. Fiore
- Radiotherapy Unit, National Center of Oncological Hadrontherapy (CNAO), Strada Campeggi, 53, 11 27100 Pavia, Italy
| | - Chiara Paganelli
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Via G.Ponzio 34/5, 20133 Milan, Italy
| | - Ester Orlandi
- Department of Clinical, Surgical, Diagnostic and Pediatric Sciences, University of Pavia, Via A. Brambilla 74, 27100 Pavia, Italy
- Clinical Unit, National Center of Oncological Hadrontherapy (CNAO), Strada Campeggi, 53, 11 27100 Pavia, Italy
| | - Silvia Molinelli
- Medical Physics Unit, National Center of Oncological Hadrontherapy (CNAO), Strada Campeggi, 53, 11 27100 Pavia, Italy
| | - Guido Baroni
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Via G.Ponzio 34/5, 20133 Milan, Italy
| |
Collapse
|
6
|
Barcellini A, Murata K, Fontana G, Vai A, Cassani C, Landoni F, Locati LD, Raspagliesi F, Secondino S, Pecorilla M, Yamada S, Okonogi N, Orlandi E. The first real-world study on the role of carbon ion radiotherapy for oligo-metastatic, persistent, or recurrent (MPR) ovarian/fallopian tube cancer. Clin Transl Radiat Oncol 2024; 47:100781. [PMID: 38726346 PMCID: PMC11081775 DOI: 10.1016/j.ctro.2024.100781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 02/27/2024] [Accepted: 04/20/2024] [Indexed: 05/12/2024] Open
Abstract
Introduction In the multidisciplinary management of oligometastatic, persistent, or recurrent (MPR) ovarian cancer, radiotherapy (RT) is becoming a more and more worthwhile treatment to potentially improve the chronicity of the disease. Particle beam RT has proved to be effective in several gynecological malignancies, but so far no data are available for ovarian cancer. Material and Methods This is a real-world, retrospective, bi-institutional, single-arm study aimed to assess the effectiveness and the safety of carbon ion RT (CIRT) in this setting. The co-first endpoints are 1-year and 2-year actuarial local control (LC) rates and the objective response rate (ORR) defined on a "per lesion" basis. The secondary endpoint was toxicity. Actuarial outcomes were evaluated using the Kaplan-Meier method while potential predictors were explored using the Log-rank test. Bi-variable logistic regression was employed in the analysis of factors predicting the complete response on a per-lesion basis. Results 26 patients accounting for a total of 36 lesions underwent CIRT with a total median dose of 52.8 Gy[RBE] (range: 39-64 Gy[RBE]). Five patients received CIRT for re-irradiation. No concomitant systemic therapies were administered during CIRT. Within 12 months after the treatment, 17 lesions (47 %) achieved complete response while 18 (50 %) obtained a partial response with an ORR of 97 %. The achievement of a complete response is related to the dose per fraction (>4.2 Gy[RBE], p = 0.04) and total dose (>52,8 Gy[RBE], p = 0.05). The 1-year LC was 92 % and the 2-year LC was 83 %, according to the achievement of a CR (p = 0.007) and GTV ≤ 14 cm3 (p = 0.024). No grade > 3 toxicities were recorded both in naïve and re-irradiated patients. PARP-i and anti-VEGF seemed not to exacerbate the risk of severe toxicities. Conclusions CIRT was effective and safe in MPR ovarian cancers, even in the case of re-irradiation. Largest cohort studies and longer follow-up are needed to confirm these data.
Collapse
Affiliation(s)
- Amelia Barcellini
- Department of Internal Medicine and Therapeutics, University of Pavia, Pavia, Italy
- Radiation Oncology Unit, Clinical Department, CNAO National Center for Oncological Hadrontherapy Pavia, Italy
| | - Kazutoshi Murata
- QST Hospital, National Institutes for Quantum Science and Technology, Chiba, Japan
| | - Giulia Fontana
- Clinical Department, CNAO National Center for Oncological Hadrontherapy Pavia, Italy
| | - Alessandro Vai
- Medical Physics Unit, Clinical Department, CNAO National Center for Oncological Hadrontherapy Pavia, Italy
| | - Chiara Cassani
- Department of Clinical, Surgical, Diagnostic and Pediatric Sciences, University of Pavia, Pavia, Italy
- Unit of Obstetrics and Gynecology, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Fabio Landoni
- Department of Medicine and Surgery, University of Milan-Bicocca & Division of Gynecologic Surgery, IRCCS Fondazione San Gerardo dei Tintori, Monza, Italy
| | - Laura Deborah Locati
- Department of Internal Medicine and Therapeutics, University of Pavia, Pavia, Italy
- Medical Oncology Unit, Istituti Clinici Scientifici Maugeri IRCCS, Pavia, Italy
| | | | - Simona Secondino
- Department of Oncology, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Mattia Pecorilla
- Radiology Unit, Clinical Department, CNAO National Center for Oncological Hadrontherapy Pavia, Italy
| | - Shigeru Yamada
- QST Hospital, National Institutes for Quantum Science and Technology, Chiba, Japan
| | - Noriyuki Okonogi
- QST Hospital, National Institutes for Quantum Science and Technology, Chiba, Japan
- Department of Radiation Oncology, Juntendo University Graduate School of Medicine, Japan
| | - Ester Orlandi
- Radiation Oncology Unit, Clinical Department, CNAO National Center for Oncological Hadrontherapy Pavia, Italy
- Department of Clinical, Surgical, Diagnostic and Pediatric Sciences, University of Pavia, Pavia, Italy
| |
Collapse
|
7
|
Góra J, Grosshagauer S, Fossati P, Mumot M, Stock M, Schafasand M, Carlino A. The sensitivity of radiobiological models in carbon ion radiotherapy (CIRT) and its consequences on the clinical treatment plan: Differences between LEM and MKM models. J Appl Clin Med Phys 2024; 25:e14321. [PMID: 38436509 PMCID: PMC11244672 DOI: 10.1002/acm2.14321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 01/11/2024] [Accepted: 02/07/2024] [Indexed: 03/05/2024] Open
Abstract
PURPOSE Carbon ion radiotherapy (CIRT) relies on relative biological effectiveness (RBE)-weighted dose calculations. Japanese clinics predominantly use the microdosimetric kinetic model (MKM), while European centers utilize the local effect model (LEM). Despite both models estimating RBE-distributions in tissue, their physical and mathematical assumptions differ, leading to significant disparities in RBE-weighted doses. Several European clinics adopted Japanese treatment schedules, necessitating adjustments in dose prescriptions and organ at risk (OAR) constraints. In the context of these two clinically used standards for RBE-weighted dose estimation, the objective of this study was to highlight specific scenarios for which the translations between models diverge, as shortcomings between them can influence clinical decisions. METHODS Our aim was to discuss planning strategies minimizing those discrepancies, ultimately striving for more accurate and robust treatments. Evaluations were conducted in a virtual water phantom and patient CT-geometry, optimizing LEM RBE-weighted dose first and recomputing MKM thereafter. Dose-averaged linear energy transfer (LETd) distributions were also assessed. RESULTS Results demonstrate how various parameters influence LEM/MKM translation. Similar LEM-dose distributions lead to markedly different MKM-dose distributions and variations in LETd. Generally, a homogeneous LEM RBE-weighted dose aligns with lower MKM values in most of the target volume. Nevertheless, paradoxical MKM hotspots may emerge (at the end of the range), potentially influencing clinical outcomes. Therefore, translation between models requires great caution. CONCLUSIONS Understanding the relationship between these two clinical standards enables combining European and Japanese based experiences. The implementation of optimal planning strategies ensures the safety and acceptability of the clinical plan for both models and therefore enhances plan robustness from the RBE-weighted dose and LETd distribution point of view. This study emphasizes the importance of optimal planning strategies and the need for comprehensive CIRT plan quality assessment tools. In situations where simultaneous LEM and MKM computation capabilities are lacking, it can provide guidance in plan design, ultimately contributing to enhanced CIRT outcomes.
Collapse
Affiliation(s)
- Joanna Góra
- MedAustron Ion Therapy CenterWiener NeustadtAustria
| | - Sarah Grosshagauer
- MedAustron Ion Therapy CenterWiener NeustadtAustria
- Technical University of ViennaWienAustria
| | - Piero Fossati
- MedAustron Ion Therapy CenterWiener NeustadtAustria
- Karl Landsteiner University of Health SciencesKrems an der DonauAustria
| | - Marta Mumot
- MedAustron Ion Therapy CenterWiener NeustadtAustria
| | - Markus Stock
- MedAustron Ion Therapy CenterWiener NeustadtAustria
- Karl Landsteiner University of Health SciencesKrems an der DonauAustria
| | - Mansure Schafasand
- MedAustron Ion Therapy CenterWiener NeustadtAustria
- Karl Landsteiner University of Health SciencesKrems an der DonauAustria
- Medical University of ViennaWienAustria
| | | |
Collapse
|
8
|
Yang J, Liu X, Zhang H, Dai Z, He P, Ma Y, Shen G, Chen W, Li Q. Nanodosimetric quantity-weighted dose optimization for carbon-ion treatment planning. Phys Eng Sci Med 2024; 47:703-715. [PMID: 38416372 DOI: 10.1007/s13246-024-01399-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 02/04/2024] [Indexed: 02/29/2024]
Abstract
Dose verification of treatment plans is an essential step in radiotherapy workflows. In this work, we propose a novel method of treatment planning based on nanodosimetric quantity-weighted dose (NQWD), which could realize biological representation using pure physical quantities for biological-oriented carbon ion-beam treatment plans and their direct verification. The relationship between nanodosimetric quantities and relative biological effectiveness (RBE) was studied with the linear least-squares method for carbon-ion radiation fields. Next, under the framework of the matRad treatment planning platform, NQWD was optimized using the existing RBE-weighted dose (RWD) optimization algorithm. The schemes of NQWD-based treatment planning were compared with the RWD treatment plans in term of the microdosimetric kinetic model (MKM). The results showed that the nanodosimetric quantity F3 - 10 had a good correlation with the radiobiological effect reflected by the relationship between RBE and F3 - 10. Moreover, the NQWD-based treatment plans reproduced the RWD plans generally. Therefore, F3 - 10 could be adopted as a radiation quality descriptor for carbon-ion treatment planning. The novel method proposed herein not only might be helpful for rapid physical verification of biological-oriented ion-beam treatment plans with the development of experimental nanodosimetry, but also makes the direct comparison of ion-beam treatment plans in different institutions possible. Thus, our proposed method might be potentially developed to be a new strategy for carbon-ion treatment planning and improve patient safety for carbon-ion radiotherapy.
Collapse
Affiliation(s)
- Jingfen Yang
- Institute of Modern Physics, Chinese Academy of Sciences, 730000, Lanzhou, China
- Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Science, 730000, Lanzhou, China
- Key Laboratory of Basic Research on Heavy Ion Radiation Application in Medicine, Gansu Province, 730000, Lanzhou, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Xinguo Liu
- Institute of Modern Physics, Chinese Academy of Sciences, 730000, Lanzhou, China
- Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Science, 730000, Lanzhou, China
- Key Laboratory of Basic Research on Heavy Ion Radiation Application in Medicine, Gansu Province, 730000, Lanzhou, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Hui Zhang
- Institute of Modern Physics, Chinese Academy of Sciences, 730000, Lanzhou, China
- Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Science, 730000, Lanzhou, China
- Key Laboratory of Basic Research on Heavy Ion Radiation Application in Medicine, Gansu Province, 730000, Lanzhou, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Zhongying Dai
- Institute of Modern Physics, Chinese Academy of Sciences, 730000, Lanzhou, China
- Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Science, 730000, Lanzhou, China
- Key Laboratory of Basic Research on Heavy Ion Radiation Application in Medicine, Gansu Province, 730000, Lanzhou, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Pengbo He
- Institute of Modern Physics, Chinese Academy of Sciences, 730000, Lanzhou, China
- Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Science, 730000, Lanzhou, China
- Key Laboratory of Basic Research on Heavy Ion Radiation Application in Medicine, Gansu Province, 730000, Lanzhou, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Yuanyuan Ma
- Institute of Modern Physics, Chinese Academy of Sciences, 730000, Lanzhou, China
- Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Science, 730000, Lanzhou, China
- Key Laboratory of Basic Research on Heavy Ion Radiation Application in Medicine, Gansu Province, 730000, Lanzhou, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Guosheng Shen
- Institute of Modern Physics, Chinese Academy of Sciences, 730000, Lanzhou, China
- Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Science, 730000, Lanzhou, China
- Key Laboratory of Basic Research on Heavy Ion Radiation Application in Medicine, Gansu Province, 730000, Lanzhou, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Weiqiang Chen
- Institute of Modern Physics, Chinese Academy of Sciences, 730000, Lanzhou, China
- Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Science, 730000, Lanzhou, China
- Key Laboratory of Basic Research on Heavy Ion Radiation Application in Medicine, Gansu Province, 730000, Lanzhou, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Qiang Li
- Institute of Modern Physics, Chinese Academy of Sciences, 730000, Lanzhou, China.
- Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Science, 730000, Lanzhou, China.
- Key Laboratory of Basic Research on Heavy Ion Radiation Application in Medicine, Gansu Province, 730000, Lanzhou, China.
- University of Chinese Academy of Sciences, 100049, Beijing, China.
| |
Collapse
|
9
|
Barcellini A, Cassani C, Orlandi E, Nappi RE, Broglia F, Delmonte MP, Molinelli S, Vai A, Vitolo V, Gronchi A, D'Ambrosio G, Cobianchi L, Fiore MR. Is motherhood still possible after pelvic carbon ion radiotherapy? A promising combined fertility-preservation approach. TUMORI JOURNAL 2024; 110:132-138. [PMID: 38183176 DOI: 10.1177/03008916231218794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2024]
Abstract
INTRODUCTION Preserving the endocrine and reproductive function in young female cancer patients undergoing pelvic radiation is a significant challenge. While the photon beam radiation's adverse effects on the uterus and ovaries are well established, the impact of pelvic carbon ion radiotherapy on women's reproductive function is largely unexplored. Strategies such as oocyte cryopreservation and ovarian transposition are commonly recommended for safeguarding future fertility. METHODS This study presents a pioneering case of successful pregnancy after carbon ion radiotherapy for locally advanced sacral chondrosarcoma. RESULTS A multidisciplinary approach facilitated the displacement of ovaries and uterus before carbon ion radiotherapy, resulting in the preservation of endocrine and reproductive function. CONCLUSION The patient achieved optimal oncological response and delivered a healthy infant following the completion of cancer treatment.
Collapse
Affiliation(s)
- Amelia Barcellini
- Radiation Oncology Unit, Clinical Department, CNAO National Center for Oncological Hadrontherapy, Pavia, Italy
- Department of Internal Medicine and Therapeutics, University of Pavia, Pavia, Italy
| | - Chiara Cassani
- Department of Clinical, Surgical, Diagnostic and Pediatric Sciences, University of Pavia, Pavia, Italy
- Unit of Obstetrics and Gynecology, Foundation IRCCS Polyclinic San Matteo, Pavia, Italy
| | - Ester Orlandi
- Radiation Oncology Unit, Clinical Department, CNAO National Center for Oncological Hadrontherapy, Pavia, Italy
- Department of Clinical, Surgical, Diagnostic and Pediatric Sciences, University of Pavia, Pavia, Italy
| | - Rossella E Nappi
- Department of Clinical, Surgical, Diagnostic and Pediatric Sciences, University of Pavia, Pavia, Italy
- Research Center for Reproductive Medicine, Gynecological Endocrinology and Menopause, Foundation IRCCS Polyclinic San Matteo, Pavia, Italy
| | - Federica Broglia
- Department of Anesthesia and Intensive Care, Unit of Obstetric Anesthesia, Foundation IRCCS Polyclinic San Matteo, Pavia, Italy
| | - Maria Paola Delmonte
- Department of Anesthesia and Intensive Care, Unit of Obstetric Anesthesia, Foundation IRCCS Polyclinic San Matteo, Pavia, Italy
| | - Silvia Molinelli
- Medical Physics Unit, CNAO National Center for Oncological Hadrontherapy, Pavia, Italy
| | - Alessandro Vai
- Medical Physics Unit, CNAO National Center for Oncological Hadrontherapy, Pavia, Italy
| | - Viviana Vitolo
- Radiation Oncology Unit, Clinical Department, CNAO National Center for Oncological Hadrontherapy, Pavia, Italy
| | - Alessandro Gronchi
- Department of Surgery, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Gioacchino D'Ambrosio
- Department of Molecular Medicine, Anatomic Pathology Unit, University of Pavia and Foundation IRCCS Polyclinic San Matteo, Pavia, Italy
| | - Lorenzo Cobianchi
- Department of Clinical, Surgical, Diagnostic and Pediatric Sciences, University of Pavia, Pavia, Italy
- Department of General Surgery, Foundation IRCCS Polyclinic San Matteo, Pavia, Italy
- ITIR-Institute for Transformative Innovation Research, University of Pavia, Pavia, Italy
| | - Maria Rosaria Fiore
- Radiation Oncology Unit, Clinical Department, CNAO National Center for Oncological Hadrontherapy, Pavia, Italy
| |
Collapse
|
10
|
Nachankar A, Schafasand M, Hug E, Martino G, Góra J, Carlino A, Stock M, Fossati P. Sacral-Nerve-Sparing Planning Strategy in Pelvic Sarcomas/Chordomas Treated with Carbon-Ion Radiotherapy. Cancers (Basel) 2024; 16:1284. [PMID: 38610962 PMCID: PMC11010899 DOI: 10.3390/cancers16071284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 03/20/2024] [Accepted: 03/23/2024] [Indexed: 04/14/2024] Open
Abstract
To minimize radiation-induced lumbosacral neuropathy (RILSN), we employed sacral-nerve-sparing optimized carbon-ion therapy strategy (SNSo-CIRT) in treating 35 patients with pelvic sarcomas/chordomas. Plans were optimized using Local Effect Model-I (LEM-I), prescribed DRBE|LEM-I|D50% (median dose to HD-PTV) = 73.6 (70.4-76.8) Gy (RBE)/16 fractions. Sacral nerves were contoured between L5-S3 levels. DRBE|LEM-I to 5% of sacral nerves-to-spare (outside HD-CTV) (DRBE|LEM-I|D5%) were restricted to <69 Gy (RBE). The median follow-up was 25 months (range of 2-53). Three patients (9%) developed late RILSN (≥G3) after an average period of 8 months post-CIRT. The RILSN-free survival at 2 years was 91% (CI, 81-100). With SNSo-CIRT, DRBE|LEM-I|D5% for sacral nerves-to-spare = 66.9 ± 1.9 Gy (RBE), maintaining DRBE|LEM-I to 98% of HD-CTV (DRBE|LEM-I|D98%) = 70 ± 3.6 Gy (RBE). Two-year OS and LC were 100% and 93% (CI, 84-100), respectively. LETd and DRBE with modified-microdosimetric kinetic model (mMKM) were recomputed retrospectively. DRBE|LEM-I and DRBE|mMKM were similar, but DRBE-filtered-LETd was higher in sacral nerves-to-spare in patients with RILSN than those without. At DRBE|LEM-I cutoff = 64 Gy (RBE), 2-year RILSN-free survival was 100% in patients with <12% of sacral nerves-to-spare voxels receiving LETd > 55 keV/µm than 75% (CI, 54-100) in those with ≥12% of voxels (p < 0.05). DRBE-filtered-LETd holds promise for the SNSo-CIRT strategy but requires longer follow-up for validation.
Collapse
Affiliation(s)
- Ankita Nachankar
- ACMIT Gmbh, 2700 Wiener Neustadt, Austria
- Department of Radiation Oncology, MedAustron Ion Therapy Center, 2700 Wiener Neustadt, Austria; (E.H.); (P.F.)
| | - Mansure Schafasand
- Department of Medical Physics, MedAustron Ion Therapy Center, 2700 Wiener Neustadt, Austria; (M.S.); (G.M.); (J.G.); (A.C.); (M.S.)
- Department of Radiation Oncology, Medical University of Vienna, 1090 Wien, Austria
- Division Medical Physics, Karl Landsteiner University of Health Sciences, 3500 Krems an der Donau, Austria
| | - Eugen Hug
- Department of Radiation Oncology, MedAustron Ion Therapy Center, 2700 Wiener Neustadt, Austria; (E.H.); (P.F.)
| | - Giovanna Martino
- Department of Medical Physics, MedAustron Ion Therapy Center, 2700 Wiener Neustadt, Austria; (M.S.); (G.M.); (J.G.); (A.C.); (M.S.)
| | - Joanna Góra
- Department of Medical Physics, MedAustron Ion Therapy Center, 2700 Wiener Neustadt, Austria; (M.S.); (G.M.); (J.G.); (A.C.); (M.S.)
| | - Antonio Carlino
- Department of Medical Physics, MedAustron Ion Therapy Center, 2700 Wiener Neustadt, Austria; (M.S.); (G.M.); (J.G.); (A.C.); (M.S.)
| | - Markus Stock
- Department of Medical Physics, MedAustron Ion Therapy Center, 2700 Wiener Neustadt, Austria; (M.S.); (G.M.); (J.G.); (A.C.); (M.S.)
- Division Medical Physics, Karl Landsteiner University of Health Sciences, 3500 Krems an der Donau, Austria
| | - Piero Fossati
- Department of Radiation Oncology, MedAustron Ion Therapy Center, 2700 Wiener Neustadt, Austria; (E.H.); (P.F.)
- Division Radiation Oncology, Karl Landsteiner University of Health Sciences, 3500 Krems an der Donau, Austria
| |
Collapse
|
11
|
Orlandi E, Barcellini A, Vischioni B, Fiore MR, Vitolo V, Iannalfi A, Bonora M, Chalaszczyk A, Ingargiola R, Riva G, Ronchi S, Valvo F, Fossati P, Ciocca M, Mirandola A, Molinelli S, Pella A, Baroni G, Pullia MG, Facoetti A, Orecchia R, Licitra L, Vago G, Rossi S. The Role of Carbon Ion Therapy in the Changing Oncology Landscape-A Narrative Review of the Literature and the Decade of Carbon Ion Experience at the Italian National Center for Oncological Hadrontherapy. Cancers (Basel) 2023; 15:5068. [PMID: 37894434 PMCID: PMC10605728 DOI: 10.3390/cancers15205068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 10/03/2023] [Accepted: 10/17/2023] [Indexed: 10/29/2023] Open
Abstract
BACKGROUND Currently, 13 Asian and European facilities deliver carbon ion radiotherapy (CIRT) for preclinical and clinical activity, and, to date, 55 clinical studies including CIRT for adult and paediatric solid neoplasms have been registered. The National Center for Oncological Hadrontherapy (CNAO) is the only Italian facility able to accelerate both protons and carbon ions for oncological treatment and research. METHODS To summarise and critically evaluate state-of-the-art knowledge on the application of carbon ion radiotherapy in oncological settings, the authors conducted a literature search till December 2022 in the following electronic databases: PubMed, Web of Science, MEDLINE, Google Scholar, and Cochrane. The results of 68 studies are reported using a narrative approach, highlighting CNAO's clinical activity over the last 10 years of CIRT. RESULTS The ballistic and radiobiological hallmarks of CIRT make it an effective option in several rare, radioresistant, and difficult-to-treat tumours. CNAO has made a significant contribution to the advancement of knowledge on CIRT delivery in selected tumour types. CONCLUSIONS After an initial ramp-up period, CNAO has progressively honed its clinical, technical, and dosimetric skills. Growing engagement with national and international networks and research groups for complex cancers has led to increasingly targeted patient selection for CIRT and lowered barriers to facility access.
Collapse
Affiliation(s)
- Ester Orlandi
- Radiation Oncology Unit, Clinical Department, CNAO National Center for Oncological Hadrontherapy, 27100 Pavia, Italy
| | - Amelia Barcellini
- Radiation Oncology Unit, Clinical Department, CNAO National Center for Oncological Hadrontherapy, 27100 Pavia, Italy
- Department of Internal Medicine and Medical Therapy, University of Pavia, 27100 Pavia, Italy
| | - Barbara Vischioni
- Radiation Oncology Unit, Clinical Department, CNAO National Center for Oncological Hadrontherapy, 27100 Pavia, Italy
| | - Maria Rosaria Fiore
- Radiation Oncology Unit, Clinical Department, CNAO National Center for Oncological Hadrontherapy, 27100 Pavia, Italy
| | - Viviana Vitolo
- Radiation Oncology Unit, Clinical Department, CNAO National Center for Oncological Hadrontherapy, 27100 Pavia, Italy
| | - Alberto Iannalfi
- Radiation Oncology Unit, Clinical Department, CNAO National Center for Oncological Hadrontherapy, 27100 Pavia, Italy
| | - Maria Bonora
- Radiation Oncology Unit, Clinical Department, CNAO National Center for Oncological Hadrontherapy, 27100 Pavia, Italy
| | - Agnieszka Chalaszczyk
- Radiation Oncology Unit, Clinical Department, CNAO National Center for Oncological Hadrontherapy, 27100 Pavia, Italy
| | - Rossana Ingargiola
- Radiation Oncology Unit, Clinical Department, CNAO National Center for Oncological Hadrontherapy, 27100 Pavia, Italy
| | - Giulia Riva
- Radiation Oncology Unit, Clinical Department, CNAO National Center for Oncological Hadrontherapy, 27100 Pavia, Italy
| | - Sara Ronchi
- Radiation Oncology Unit, Clinical Department, CNAO National Center for Oncological Hadrontherapy, 27100 Pavia, Italy
| | - Francesca Valvo
- Scientific Directorate, CNAO National Center for Oncological Hadrontherapy, 27100 Pavia, Italy
| | - Piero Fossati
- Department of Radiation Oncology, MedAustron Ion Therapy Center, 2700 Wiener Neustadt, Austria
- Department for Basic and Translational Oncology and Haematology, Karl Landsteiner University of Health Sciences, 3500 Krems, Austria
| | - Mario Ciocca
- Medical Physics Unit, National Center for Oncological Hadrontherapy (CNAO), 27100 Pavia, Italy
| | - Alfredo Mirandola
- Medical Physics Unit, National Center for Oncological Hadrontherapy (CNAO), 27100 Pavia, Italy
| | - Silvia Molinelli
- Medical Physics Unit, National Center for Oncological Hadrontherapy (CNAO), 27100 Pavia, Italy
| | - Andrea Pella
- Bioengineering Unit, National Center for Oncological Hadrontherapy (CNAO), 27100 Pavia, Italy
| | - Guido Baroni
- Bioengineering Unit, National Center for Oncological Hadrontherapy (CNAO), 27100 Pavia, Italy
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milan, Italy
| | - Marco Giuseppe Pullia
- Radiobiology Unit, Research and Development Department, CNAO National Center for Oncological Hadrontherapy, 27100 Pavia, Italy
| | - Angelica Facoetti
- Radiobiology Unit, Research and Development Department, CNAO National Center for Oncological Hadrontherapy, 27100 Pavia, Italy
| | - Roberto Orecchia
- Scientific Directorate, IEO-European Institute of Oncology, IRCCS, 20141 Milan, Italy
| | - Lisa Licitra
- Scientific Directorate, CNAO National Center for Oncological Hadrontherapy, 27100 Pavia, Italy
- Department of Head & Neck Medical Oncology 3, Fondazione IRCCS Istituto Nazionale dei Tumori, 20133 Milan, Italy
- Department of Oncology & Haemato-Oncology, University of Milan, 20122 Milan, Italy
| | - Gianluca Vago
- Presidency, CNAO National Center for Oncological Hadrontherapy, 27100 Pavia, Italy
- School of Pathology, University of Milan, 20122 Milan, Italy
| | - Sandro Rossi
- General Directorate, CNAO National Center for Oncological Hadrontherapy, 27100 Pavia, Italy
| |
Collapse
|
12
|
Nachankar A, Schafasand M, Carlino A, Hug E, Stock M, Góra J, Fossati P. Planning Strategy to Optimize the Dose-Averaged LET Distribution in Large Pelvic Sarcomas/Chordomas Treated with Carbon-Ion Radiotherapy. Cancers (Basel) 2023; 15:4903. [PMID: 37835598 PMCID: PMC10571585 DOI: 10.3390/cancers15194903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 09/29/2023] [Accepted: 10/04/2023] [Indexed: 10/15/2023] Open
Abstract
To improve outcomes in large sarcomas/chordomas treated with CIRT, there has been recent interest in LET optimization. We evaluated 22 pelvic sarcoma/chordoma patients treated with CIRT [large: HD-CTV ≥ 250 cm3 (n = 9), small: HD-CTV < 250 cm3 (n = 13)], DRBE|LEM-I = 73.6 (70.4-73.6) Gy (RBE)/16 fractions, using the local effect model-I (LEM-I) optimization and modified-microdosimetric kinetic model (mMKM) recomputation. We observed that to improve high-LETd distribution in large tumors, at least 27 cm3 (low-LETd region) of HD-CTV should receive LETd of ≥33 keV/µm (p < 0.05). Hence, LETd optimization using 'distal patching' was explored in a treatment planning setting (not implemented clinically yet). Distal-patching structures were created to stop beams 1-2 cm beyond the HD-PTV-midplane. These plans were reoptimized and DRBE|LEM-I, DRBE|mMKM, and LETd were recomputed. Distal patching increased (a) LETd50% in HD-CTV (from 38 ± 3.4 keV/µm to 47 ± 8.1 keV/µm), (b) LETdmin in low-LETd regions of the HD-CTV (from 32 ± 2.3 keV/µm to 36.2 ± 3.6 keV/µm), (c) the GTV fraction receiving LETd of ≥50 keV/µm, (from <10% to >50%) and (d) the high-LETd component in the central region of the GTV, without significant compromise in DRBE distribution. However, distal patching is sensitive to setup/range uncertainties, and efforts to ascertain robustness are underway, before routine clinical implementation.
Collapse
Affiliation(s)
- Ankita Nachankar
- MedAustron Ion Therapy Center, 2700 Wiener Neustadt, Austria; (M.S.); (A.C.); (E.H.); (M.S.); (J.G.); (P.F.)
- ACMIT Gmbh, 2700 Wiener Neustadt, Austria
| | - Mansure Schafasand
- MedAustron Ion Therapy Center, 2700 Wiener Neustadt, Austria; (M.S.); (A.C.); (E.H.); (M.S.); (J.G.); (P.F.)
- Department of Radiation Oncology, Medical University of Vienna, 1090 Wien, Austria
- Division Medical Physics, Karl Landsteiner University of Health Sciences, 3500 Krems an der Donau, Austria
| | - Antonio Carlino
- MedAustron Ion Therapy Center, 2700 Wiener Neustadt, Austria; (M.S.); (A.C.); (E.H.); (M.S.); (J.G.); (P.F.)
| | - Eugen Hug
- MedAustron Ion Therapy Center, 2700 Wiener Neustadt, Austria; (M.S.); (A.C.); (E.H.); (M.S.); (J.G.); (P.F.)
| | - Markus Stock
- MedAustron Ion Therapy Center, 2700 Wiener Neustadt, Austria; (M.S.); (A.C.); (E.H.); (M.S.); (J.G.); (P.F.)
- Division Medical Physics, Karl Landsteiner University of Health Sciences, 3500 Krems an der Donau, Austria
| | - Joanna Góra
- MedAustron Ion Therapy Center, 2700 Wiener Neustadt, Austria; (M.S.); (A.C.); (E.H.); (M.S.); (J.G.); (P.F.)
| | - Piero Fossati
- MedAustron Ion Therapy Center, 2700 Wiener Neustadt, Austria; (M.S.); (A.C.); (E.H.); (M.S.); (J.G.); (P.F.)
- Division Radiation Oncology, Karl Landsteiner University of Health Sciences, 3500 Krems an der Donau, Austria
| |
Collapse
|
13
|
Wang W, Sun W, Shen H, Zhao J. Validation of the relative biological effectiveness of active-energy scanning carbon-ion radiotherapy on a commercial treatment planning system with a microdosimetic kinetic model. Radiat Oncol 2023; 18:82. [PMID: 37198685 DOI: 10.1186/s13014-023-02267-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 04/20/2023] [Indexed: 05/19/2023] Open
Abstract
BACKGROUND The study objective was to validate the relative biological effectiveness (RBE) calculated by the modified microdosimetric kinetic model in RayStation (Ray-MKM) for active-energy scanning carbon-ion radiotherapy. METHODS The Ray-MKM was benchmarked using a spread-out Bragg-peak (SOBP) plan, which was suggested in literature from the National Institute of Radiobiological Science (NIRS) in Japan. The residual RBE differences from the MKM at NIRS (NIRS-MKM) were derived using several SOBP plans with different ranges, SOBP widths, and prescriptions. To investigate the origins of the differences, we compared the saturation-corrected dose-mean specific energy [Formula: see text] of the aforementioned SOBPs. Furthermore, we converted the RBE-weighted doses with the Ray-MKM to those with local effect model I (LEM doses). The purpose was to investigate whether the Ray-MKM could reproduce the RBE-weighted conversion study. RESULTS The benchmark determined the value of the clinical dose scaling factor, [Formula: see text], as 2.40. The target mean RBE deviations between the Ray-MKM and NIRS-MKM were median: 0.6 (minimum: 0.0 to maximum: 1.69) %. The [Formula: see text] difference in-depth led to the RBE difference in-depth and was remarkable at the distal end. The converted LEM doses from the Ray-MKM doses were comparable (the deviation being - 1.8-0.7%) to existing literature. CONCLUSION This study validated the Ray-MKM based on our active-energy scanning carbon-ion beam via phantom studies. The Ray-MKM could generate similar RBEs as the NIRS-MKM after benchmarking. Analysis based on [Formula: see text] indicated that the different beam qualities and fragment spectra caused the RBE differences. Since the absolute dose differences at the distal end were small, we neglected them. Furthermore, each centre may determine its centre-specific [Formula: see text] based on this approach.
Collapse
Affiliation(s)
- Weiwei Wang
- Department of Medical Physics, Shanghai Proton and Heavy Ion Center, Fudan University Cancer Hospital, Shanghai Key Laboratory of Radiation Oncology (20dz2261000), Shanghai Engineering Research Center of Proton and Heavy Ion Radiation Therapy, 4365 Kangxin Road, Pudong District, Shanghai, 201315, China
- Institute of Modern Physics, Applied Ion Beam Physics Laboratory, Fudan University, Shanghai, 200433, China
| | - Wei Sun
- Department of Medical Physics, Shanghai Proton and Heavy Ion Center, Fudan University Cancer Hospital, Shanghai Key Laboratory of Radiation Oncology (20dz2261000), Shanghai Engineering Research Center of Proton and Heavy Ion Radiation Therapy, 4365 Kangxin Road, Pudong District, Shanghai, 201315, China
| | - Hao Shen
- Institute of Modern Physics, Applied Ion Beam Physics Laboratory, Fudan University, Shanghai, 200433, China
| | - Jingfang Zhao
- Department of Medical Physics, Shanghai Proton and Heavy Ion Center, Fudan University Cancer Hospital, Shanghai Key Laboratory of Radiation Oncology (20dz2261000), Shanghai Engineering Research Center of Proton and Heavy Ion Radiation Therapy, 4365 Kangxin Road, Pudong District, Shanghai, 201315, China.
- Department of Medical Physics, Shanghai Proton and Heavy Ion Center, Fudan University Cancer Hospital, 270 Dongan Road, Xuhui District, Shanghai, 200032, China.
| |
Collapse
|
14
|
Endo M. Creation, evolution, and future challenges of ion beam therapy from a medical physicist's viewpoint (Part 2). Chapter 2. Biophysical model, treatment planning system and image guided radiotherapy. Radiol Phys Technol 2023; 16:137-159. [PMID: 37129777 DOI: 10.1007/s12194-023-00722-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 04/13/2023] [Accepted: 04/13/2023] [Indexed: 05/03/2023]
Abstract
When an ion beam penetrates deeply into the body, its kinetic energy decreases, and its biological effect increases due to the change of the beam quality. To give a uniform biological effect to the target, it is necessary to reduce the absorbed dose with the depth. A bio-physical model estimating the relationship between ion beam quality and biological effect is necessary to determine the relative biological effectiveness (RBE) of the ion beam that changes with depth. For this reason, Lawrence Berkeley Laboratory, National Institute of Radiological Sciences (NIRS) and GSI have each developed their own model at the starting of the ion beam therapy. Also, NIRS developed a new model at the starting of the scanning irradiation. Although the Local Effect Model (LEM) at the GSI and the modified Microdosimetric Kinetic Model (MKM) at the NIRS, the both are currently used, can similarly predict radiation quality-induced changes in surviving fraction of cultured cell, the clinical RBE-weighted doses for the same absorbed dose are different. This is because the LEM uses X-rays as a reference for clinical RBE, whereas the modified MKM uses carbon ion beam as a reference and multiplies it by a clinical factor of 2.41. Therefore, both are converted through the absorbed dose. In PART 2, I will describe the development of such a bio-physical model, as well as the birth and evolution of a treatment planning system and image guided radiotherapy.
Collapse
Affiliation(s)
- Masahiro Endo
- Association for Nuclear Technology in Medicine, Nikkei Bldg., 7-16 Nihombashi-Kodemmacho, Chuo-Ku, Tokyo, Tokyo, 103-0001, Japan.
| |
Collapse
|
15
|
Hong Z, Zhang W, Cai X, Yu Z, Sun J, Wang W, Lin L, Zhao J, Cheng J, Zhang G, Zhang Q, Jiang G, Wang Z. Carbon ion radiotherapy with pencil beam scanning for hepatocellular carcinoma: Long-term outcomes from a phase I trial. Cancer Sci 2023; 114:976-983. [PMID: 36310409 PMCID: PMC9986066 DOI: 10.1111/cas.15633] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 10/13/2022] [Accepted: 10/16/2022] [Indexed: 11/06/2022] Open
Abstract
This study evaluates the feasibility of the pencil beam scanning technique of carbon ion radiotherapy (CIRT) in the setting of hepatocellular carcinoma (HCC) and establishes the maximum tolerated dose (MTD) calculated by the Local Effect Model version I (LEM-I) with a dose escalation plan. The escalated relative biological effectiveness-weighted dose levels included 55, 60, 65, and 70 Gy in 10 fractions. Active motion management techniques were employed, and several measures were applied to mitigate the interplay effect induced by a moving target. CIRT was planned with the LEM-I-based treatment planning system and delivered by raster scanning. Offline PET/CT imaging was used to verify the beam range. Offline adaptive replanning was performed whenever required. Twenty-three patients with a median tumor size of 4.3 cm (range, 1.7-8.5 cm) were enrolled in the present study. The median follow-up time was 56.1 months (range, 5.7-74.4 months). No dose limiting toxicity was observed until 70 Gy, and MTD had not been reached. No patients experienced radiation-induced liver disease within 6 months after the completion of CIRT. The overall survival rates at 1, 3, and 5 years were 91.3%, 81.9%, and 67.1% after CIRT, respectively. The local progression-free survival and progression-free survival rates at 1, 3 and 5 years were 100%, 94.4%, and 94.4% and 73.6%, 59.2%, and 37.0%, respectively. The raster scanning technique could be used to treat HCC. However, caution should be exercised to mitigate the interplay effect. CIRT up to 70 Gy in 10 fractions over 2 weeks was safe and effective for HCC.
Collapse
Affiliation(s)
- Zhengshan Hong
- Department of Radiation Oncology, Shanghai Proton and Heavy Ion Center, Shanghai, China.,Shanghai Key Laboratory of Radiation Oncology (20dz2261000), Shanghai, China.,Shanghai Engineering Research Center of Proton and Heavy Ion Radiation Therapy, Shanghai, China
| | - Wenna Zhang
- Department of Radiation Oncology, Shanghai Proton and Heavy Ion Center, Shanghai, China.,Shanghai Key Laboratory of Radiation Oncology (20dz2261000), Shanghai, China.,Shanghai Engineering Research Center of Proton and Heavy Ion Radiation Therapy, Shanghai, China
| | - Xin Cai
- Department of Radiation Oncology, Shanghai Proton and Heavy Ion Center, Shanghai, China.,Shanghai Key Laboratory of Radiation Oncology (20dz2261000), Shanghai, China.,Shanghai Engineering Research Center of Proton and Heavy Ion Radiation Therapy, Shanghai, China
| | - Zhan Yu
- Department of Radiation Oncology, Shanghai Proton and Heavy Ion Center, Shanghai, China.,Shanghai Key Laboratory of Radiation Oncology (20dz2261000), Shanghai, China.,Shanghai Engineering Research Center of Proton and Heavy Ion Radiation Therapy, Shanghai, China
| | - Jiayao Sun
- Shanghai Key Laboratory of Radiation Oncology (20dz2261000), Shanghai, China.,Shanghai Engineering Research Center of Proton and Heavy Ion Radiation Therapy, Shanghai, China.,Department of Medical Physics, Shanghai Proton and Heavy Ion Center, Shanghai, China
| | - Weiwei Wang
- Shanghai Key Laboratory of Radiation Oncology (20dz2261000), Shanghai, China.,Shanghai Engineering Research Center of Proton and Heavy Ion Radiation Therapy, Shanghai, China.,Department of Medical Physics, Shanghai Proton and Heavy Ion Center, Shanghai, China
| | - Lienchun Lin
- Shanghai Key Laboratory of Radiation Oncology (20dz2261000), Shanghai, China.,Shanghai Engineering Research Center of Proton and Heavy Ion Radiation Therapy, Shanghai, China.,Department of Medical Physics, Shanghai Proton and Heavy Ion Center, Shanghai, China
| | - Jingfang Zhao
- Shanghai Key Laboratory of Radiation Oncology (20dz2261000), Shanghai, China.,Shanghai Engineering Research Center of Proton and Heavy Ion Radiation Therapy, Shanghai, China.,Department of Medical Physics, Shanghai Proton and Heavy Ion Center, Shanghai, China
| | - Jingyi Cheng
- Shanghai Key Laboratory of Radiation Oncology (20dz2261000), Shanghai, China.,Shanghai Engineering Research Center of Proton and Heavy Ion Radiation Therapy, Shanghai, China.,Department of Nuclear Medicine, Shanghai Proton and Heavy Ion Center, Fudan University Cancer Hospital, Shanghai, China
| | - Guangyuan Zhang
- Shanghai Key Laboratory of Radiation Oncology (20dz2261000), Shanghai, China.,Shanghai Engineering Research Center of Proton and Heavy Ion Radiation Therapy, Shanghai, China.,Department of Radiology, Shanghai Proton and Heavy Ion Center, Shanghai, China
| | - Qing Zhang
- Department of Radiation Oncology, Shanghai Proton and Heavy Ion Center, Shanghai, China.,Shanghai Key Laboratory of Radiation Oncology (20dz2261000), Shanghai, China.,Shanghai Engineering Research Center of Proton and Heavy Ion Radiation Therapy, Shanghai, China
| | - Guoliang Jiang
- Department of Radiation Oncology, Shanghai Proton and Heavy Ion Center, Shanghai, China.,Shanghai Key Laboratory of Radiation Oncology (20dz2261000), Shanghai, China.,Shanghai Engineering Research Center of Proton and Heavy Ion Radiation Therapy, Shanghai, China.,Department of Radiation Oncology, Shanghai Proton and Heavy Ion Center, Fudan University Cancer Hospital, Shanghai, China
| | - Zheng Wang
- Department of Radiation Oncology, Shanghai Proton and Heavy Ion Center, Shanghai, China.,Shanghai Key Laboratory of Radiation Oncology (20dz2261000), Shanghai, China.,Shanghai Engineering Research Center of Proton and Heavy Ion Radiation Therapy, Shanghai, China.,Department of Radiation Oncology, Shanghai Proton and Heavy Ion Center, Fudan University Cancer Hospital, Shanghai, China
| |
Collapse
|
16
|
Wang W, Huang Z, Sun W, Wang X, Zhao J, Shen H. Calibration and evaluation of the relative biological effectiveness for carbon-ion radiotherapy in a new relative to a clinically applied treatment planning system. Radiat Oncol 2022; 17:219. [PMID: 36587224 PMCID: PMC9805684 DOI: 10.1186/s13014-022-02181-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 12/15/2022] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND The study objective was to validate the relative biological effectiveness (RBE) in RayStation for carbon-ion radiotherapy (CIRT) using the Syngo treatment planning system as reference. METHODS Local effect model I was established in RayStation (Ray-LEM) with the same parameters as in LEM I in Syngo (Syngo-LEM). Three cube plans covering most of the tumors treated at our center were generated with Syngo-LEM. Ray-LEM re-calculated the Syngo plans and compared the RBEs to the Syngo counterparts. The results showed that RayStation RBE was smaller than Syngo RBE. To ensure that Ray-LEM reproduced Syngo RBE, the observed deviations were used to scale the maximum RBE (RBEmax) in Ray-LEM. After this calibration, we further compared the RayStation RBE to Syngo RBE using additional plans in both homogeneous phantoms and patients, to ensure that the calibrated Ray-LEM reproduced Syngo RBE even with more complex planning features. RESULTS The calibration increased the RBEmax by 2.3% to raise the Ray-LEM RBE. The target mean RBE deviations in the phantom evaluation plans were median: 0.0 (minimum: - 1.1 to maximum: 0.7) %, and the target mean RBE deviations of the clinical target volumes of 16 patient cases were - 0.4 (- 1.5 to 0.2) %. CONCLUSIONS The residual RBE difference between RayStation and Syngo was found to be ≤ 1.0%. Thus, we can propose to use RayStation for clinical CIRT treatment planning. However, the potential differences due to the absorbed beam model warrants further exploration.
Collapse
Affiliation(s)
- Weiwei Wang
- grid.8547.e0000 0001 0125 2443Institute of Modern Physics, Applied Ion Beam Physics Laboratory, Fudan University, Shanghai, 200433 China ,grid.452404.30000 0004 1808 0942Department of Medical Physics, Shanghai Proton and Heavy Ion Center, Fudan University Cancer Hospital, Shanghai Key Laboratory of Radiation Oncology (20dz2261000), Shanghai Engineering Research Center of Proton and Heavy Ion Radiation Therapy, 4365 Kangxin Road, Pudong District, Shanghai, 201315 China
| | - Zhijie Huang
- grid.452404.30000 0004 1808 0942Department of Medical Physics, Shanghai Proton and Heavy Ion Center, Fudan University Cancer Hospital, Shanghai Key Laboratory of Radiation Oncology (20dz2261000), Shanghai Engineering Research Center of Proton and Heavy Ion Radiation Therapy, 4365 Kangxin Road, Pudong District, Shanghai, 201315 China
| | - Wei Sun
- grid.452404.30000 0004 1808 0942Department of Medical Physics, Shanghai Proton and Heavy Ion Center, Fudan University Cancer Hospital, Shanghai Key Laboratory of Radiation Oncology (20dz2261000), Shanghai Engineering Research Center of Proton and Heavy Ion Radiation Therapy, 4365 Kangxin Road, Pudong District, Shanghai, 201315 China
| | - Xufei Wang
- grid.8547.e0000 0001 0125 2443Institute of Modern Physics, Applied Ion Beam Physics Laboratory, Fudan University, Shanghai, 200433 China
| | - Jingfang Zhao
- grid.452404.30000 0004 1808 0942Department of Medical Physics, Shanghai Proton and Heavy Ion Center, Fudan University Cancer Hospital, Shanghai Key Laboratory of Radiation Oncology (20dz2261000), Shanghai Engineering Research Center of Proton and Heavy Ion Radiation Therapy, 4365 Kangxin Road, Pudong District, Shanghai, 201315 China ,grid.452404.30000 0004 1808 0942Department of Medical Physics, Shanghai Proton and Heavy Ion Center, Fudan University Cancer Hospital, 270 Dongan Road, Xuhui District, Shanghai, 200032 China
| | - Hao Shen
- grid.8547.e0000 0001 0125 2443Institute of Modern Physics, Applied Ion Beam Physics Laboratory, Fudan University, Shanghai, 200433 China
| |
Collapse
|
17
|
Wang W, Li P, Shahnazi K, Wu X, Zhao J. Calculating dose-averaged linear energy transfer in an analytical treatment planning system for carbon-ion radiotherapy. J Appl Clin Med Phys 2022; 24:e13866. [PMID: 36527366 PMCID: PMC9924117 DOI: 10.1002/acm2.13866] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 11/08/2022] [Accepted: 11/24/2022] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Compelling evidence shows the association between the relative biological effectiveness (RBE) of carbon-ion radiotherapy (CIRT) and the dose averaged linear energy transfer (LETd). However, the ability to calculate the LETd in commercially available treatment planning systems (TPS) is lacking. PURPOSE This study aims to develop a method of calculating the LETd of CIRT plans that could be robustly carried out in RayStation (V10B, Raysearch, Sweden). METHODS The calculation used the fragment spectra in RayStation for the CIRT treatment planning. The dose-weighted averaging procedure was supported by the microdosimetric kinetic model (MKM). The MKM-based pencil beam dose engine (PBA, v4.2) for calculating RBE-weighted doses was reformulated to become a LET-weighted calculating engine. A separate module was then configured to inversely calculate the LETd from the absorbed dose of a plan and the associated fragment spectra. In this study, the ion and energy-specific LET table in the LETd module was further matched with the values decoded from the baseline data of the Syngo TPS (V13C, Siemens, Germany). The LETd distributions of several monoenergetic and modulated beams were calculated and validated against the values derived from the Syngo TPS and the published data. RESULTS The differences in LETds of the monoenergetic beams between the new method and the traditional method were within 3% in the entrance and Bragg-peak regions. However, a larger difference was observed in the distal region. The results of the modulated beams were in good agreement with the works from the published literature. CONCLUSIONS The method presented herein reformulates the MKM dose engine in the RayStation TPS to inversely calculate LETds. The robustness and accuracy were demonstrated.
Collapse
Affiliation(s)
- Weiwei Wang
- Department of Medical PhysicsShanghai Proton and Heavy Ion CenterFudan University Cancer HospitalShanghai Key Laboratory of Radiation Oncology (20dz2261000)Shanghai Engineering Research Center of Proton and Heavy Ion Radiation TherapyShanghaiChina,Institute of Modern PhysicsApplied Ion Beam Physics LaboratoryFudan UniversityShanghaiChina
| | - Ping Li
- Department of Radiation OncologyShanghai Proton and Heavy Ion CenterShanghai Key Laboratory of Radiation Oncology (20dz2261000)Shanghai Engineering Research Center of Proton and Heavy Ion Radiation TherapyShanghaiChina
| | - Kambiz Shahnazi
- Department of Medical PhysicsShanghai Proton and Heavy Ion CenterFudan University Cancer HospitalShanghai Key Laboratory of Radiation Oncology (20dz2261000)Shanghai Engineering Research Center of Proton and Heavy Ion Radiation TherapyShanghaiChina
| | - Xiaodong Wu
- Department of Medical PhysicsShanghai Proton and Heavy Ion CenterFudan University Cancer HospitalShanghai Key Laboratory of Radiation Oncology (20dz2261000)Shanghai Engineering Research Center of Proton and Heavy Ion Radiation TherapyShanghaiChina
| | - Jingfang Zhao
- Department of Medical PhysicsShanghai Proton and Heavy Ion CenterFudan University Cancer HospitalShanghai Key Laboratory of Radiation Oncology (20dz2261000)Shanghai Engineering Research Center of Proton and Heavy Ion Radiation TherapyShanghaiChina,Department of Medical PhysicsShanghai Proton and Heavy Ion CenterFudan University Cancer HospitalShanghaiChina
| |
Collapse
|
18
|
Grosshagauer S, Fossati P, Schafasand M, Carlino A, Poljanc K, Radakovits T, Stock M, Hug E, Georg P, Pelak M, Góra J. Organs at risk dose constraints in carbon ion radiotherapy at MedAustron: Translations between LEM and MKM RBE models and preliminary clinical results. Radiother Oncol 2022; 175:73-78. [PMID: 35952977 DOI: 10.1016/j.radonc.2022.08.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 07/15/2022] [Accepted: 08/01/2022] [Indexed: 11/27/2022]
Abstract
BACKGROUND Carbon ion radiotherapy (CIRT) treatment planning is based on relative biological effectiveness (RBE) weighted dose calculations. A large amount of clinical evidence for CIRT was collected in Japan with RBE estimated by the modified microdosimetric kinetic model (MKM) while all European centres apply the first version of the local effect model (LEM). Japanese schedules have been used in Europe with adapted prescription dose and organs at risk (OAR) dose constraints. Recently, less conservative adapted LEM constraints have been implemented in clinical practice. The aim of this study was to analyse the new set of LEM dose constraints for brain parenchyma, brainstem and optic system considering both RBE models and evaluating early clinical data. MATERIAL AND METHODS 31 patients receiving CIRT at MedAustron were analysed using the RayStation v9A planning system by recalculating clinical LEM-based plans in MKM. Dose statistics (D1cm3, D5cm3, D0.1cm3, D0.7cm3, D10%, D20%) were extracted for relevant critical OARs. Curve fitting for those values was performed, resulting in linear quadratic translation models. Clinical and radiological toxicity was evaluated. RESULTS Based on derived fits, currently applied LEM constraints matched recommended MKM constraints with deviations between -8% and +3.9%. For particular cases, data did not follow the expected LEM vs MKM trends resulting in outliers. Radiological (asymptomatic) toxicity was detected in two outlier cases. CONCLUSION Respecting LEM constraints does not automatically ensure that MKM constraints are met. Constraints for both RBE models need to be fulfilled for future CIRT patients at MedAustron. Careful selection of planning strategies is essential.
Collapse
Affiliation(s)
- Sarah Grosshagauer
- MedAustron Ion Therapy Center, Austria; Technical University of Vienna, Austria
| | | | - Mansure Schafasand
- MedAustron Ion Therapy Center, Austria; Medical University of Vienna, Austria
| | | | | | | | | | - Eugen Hug
- MedAustron Ion Therapy Center, Austria
| | | | | | | |
Collapse
|
19
|
Mairani A, Mein S, Blakely E, Debus J, Durante M, Ferrari A, Fuchs H, Georg D, Grosshans DR, Guan F, Haberer T, Harrabi S, Horst F, Inaniwa T, Karger CP, Mohan R, Paganetti H, Parodi K, Sala P, Schuy C, Tessonnier T, Titt U, Weber U. Roadmap: helium ion therapy. Phys Med Biol 2022; 67. [PMID: 35395649 DOI: 10.1088/1361-6560/ac65d3] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 04/08/2022] [Indexed: 12/16/2022]
Abstract
Helium ion beam therapy for the treatment of cancer was one of several developed and studied particle treatments in the 1950s, leading to clinical trials beginning in 1975 at the Lawrence Berkeley National Laboratory. The trial shutdown was followed by decades of research and clinical silence on the topic while proton and carbon ion therapy made debuts at research facilities and academic hospitals worldwide. The lack of progression in understanding the principle facets of helium ion beam therapy in terms of physics, biological and clinical findings persists today, mainly attributable to its highly limited availability. Despite this major setback, there is an increasing focus on evaluating and establishing clinical and research programs using helium ion beams, with both therapy and imaging initiatives to supplement the clinical palette of radiotherapy in the treatment of aggressive disease and sensitive clinical cases. Moreover, due its intermediate physical and radio-biological properties between proton and carbon ion beams, helium ions may provide a streamlined economic steppingstone towards an era of widespread use of different particle species in light and heavy ion therapy. With respect to the clinical proton beams, helium ions exhibit superior physical properties such as reduced lateral scattering and range straggling with higher relative biological effectiveness (RBE) and dose-weighted linear energy transfer (LETd) ranging from ∼4 keVμm-1to ∼40 keVμm-1. In the frame of heavy ion therapy using carbon, oxygen or neon ions, where LETdincreases beyond 100 keVμm-1, helium ions exhibit similar physical attributes such as a sharp lateral penumbra, however, with reduced radio-biological uncertainties and without potentially spoiling dose distributions due to excess fragmentation of heavier ion beams, particularly for higher penetration depths. This roadmap presents an overview of the current state-of-the-art and future directions of helium ion therapy: understanding physics and improving modeling, understanding biology and improving modeling, imaging techniques using helium ions and refining and establishing clinical approaches and aims from learned experience with protons. These topics are organized and presented into three main sections, outlining current and future tasks in establishing clinical and research programs using helium ion beams-A. Physics B. Biological and C. Clinical Perspectives.
Collapse
Affiliation(s)
- Andrea Mairani
- Heidelberg Ion-Beam Therapy Center (HIT), Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany.,National Centre of Oncological Hadrontherapy (CNAO), Medical Physics, Pavia, Italy.,Division of Molecular and Translational Radiation Oncology, National Center for Tumor Diseases (NCT), Heidelberg University Hospital, 69120 Heidelberg, Germany.,National Center for Radiation Research in Oncology (NCRO), Heidelberg Institute for Radiation Oncology (HIRO), Heidelberg, Germany
| | - Stewart Mein
- Heidelberg Ion-Beam Therapy Center (HIT), Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany.,Division of Molecular and Translational Radiation Oncology, National Center for Tumor Diseases (NCT), Heidelberg University Hospital, 69120 Heidelberg, Germany.,National Center for Radiation Research in Oncology (NCRO), Heidelberg Institute for Radiation Oncology (HIRO), Heidelberg, Germany.,German Cancer Consortium (DKTK) Core-Center Heidelberg, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Eleanor Blakely
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, United States of America
| | - Jürgen Debus
- Heidelberg Ion-Beam Therapy Center (HIT), Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany.,Division of Molecular and Translational Radiation Oncology, National Center for Tumor Diseases (NCT), Heidelberg University Hospital, 69120 Heidelberg, Germany.,National Center for Radiation Research in Oncology (NCRO), Heidelberg Institute for Radiation Oncology (HIRO), Heidelberg, Germany.,German Cancer Consortium (DKTK) Core-Center Heidelberg, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Clinical Cooperation Unit Radiation Oncology, Heidelberg Institute of Radiation Oncology (HIRO), National Center for Radiation Oncology (NCRO), Heidelberg University and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Marco Durante
- GSI Helmholtzzentrum für Schwerionenforschung, D-64291 Darmstadt, Germany.,Technische Universität Darmstadt, Institut für Physik Kondensierter Materie, Darmstadt, Germany
| | - Alfredo Ferrari
- Heidelberg Ion-Beam Therapy Center (HIT), Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany
| | - Hermann Fuchs
- Division of Medical Physics, Department of Radiation Oncology, Medical University of Vienna, Austria.,MedAustron Ion Therapy Center, Wiener Neustadt, Austria
| | - Dietmar Georg
- Division of Medical Physics, Department of Radiation Oncology, Medical University of Vienna, Austria.,MedAustron Ion Therapy Center, Wiener Neustadt, Austria
| | - David R Grosshans
- The University of Texas MD Anderson cancer Center, Houston, Texas, United States of America
| | - Fada Guan
- The University of Texas MD Anderson cancer Center, Houston, Texas, United States of America.,Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, CT, 06510, United States of America
| | - Thomas Haberer
- Heidelberg Ion-Beam Therapy Center (HIT), Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany
| | - Semi Harrabi
- Heidelberg Ion-Beam Therapy Center (HIT), Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany.,National Center for Radiation Research in Oncology (NCRO), Heidelberg Institute for Radiation Oncology (HIRO), Heidelberg, Germany.,German Cancer Consortium (DKTK) Core-Center Heidelberg, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Clinical Cooperation Unit Radiation Oncology, Heidelberg Institute of Radiation Oncology (HIRO), National Center for Radiation Oncology (NCRO), Heidelberg University and German Cancer Research Center (DKFZ), Heidelberg, Germany.,National Center for Tumor Diseases (NCT), Heidelberg University Hospital, 69120 Heidelberg, Germany
| | - Felix Horst
- GSI Helmholtzzentrum für Schwerionenforschung, D-64291 Darmstadt, Germany
| | - Taku Inaniwa
- Department of Accelerator and Medical Physics, Institute for Quantum Medical Science, QST, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan.,Medical Physics Laboratory, Division of Health Science, Graduate School of Medicine, Osaka University, 1-7 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Christian P Karger
- National Center for Radiation Research in Oncology (NCRO), Heidelberg Institute for Radiation Oncology (HIRO), Heidelberg, Germany.,Department of Medical Physics in Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Radhe Mohan
- The University of Texas MD Anderson cancer Center, Houston, Texas, United States of America
| | - Harald Paganetti
- Department of Radiation Oncology, Massachusetts General Hospital, Boston, United States of America.,Harvard Medical School, Boston, United States of America
| | - Katia Parodi
- Ludwig-Maximilians-Universität München, Department of Experimental Physics-Medical Physics, Munich, Germany
| | - Paola Sala
- Ludwig-Maximilians-Universität München, Department of Experimental Physics-Medical Physics, Munich, Germany
| | - Christoph Schuy
- GSI Helmholtzzentrum für Schwerionenforschung, D-64291 Darmstadt, Germany
| | - Thomas Tessonnier
- Heidelberg Ion-Beam Therapy Center (HIT), Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany
| | - Uwe Titt
- The University of Texas MD Anderson cancer Center, Houston, Texas, United States of America
| | - Ulrich Weber
- GSI Helmholtzzentrum für Schwerionenforschung, D-64291 Darmstadt, Germany
| |
Collapse
|
20
|
Eichkorn T, Karger CP, Brons S, Koerber SA, Mielke T, Haberer T, Debus J, Herfarth K. Results of a prospective randomized trial on long-term effectiveness of protons and carbon ions in prostate cancer: LEM I and α/β = 2 Gy overestimates the RBE. Radiother Oncol 2022; 173:223-230. [PMID: 35714806 DOI: 10.1016/j.radonc.2022.06.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 06/08/2022] [Accepted: 06/09/2022] [Indexed: 10/18/2022]
Abstract
AIM To analyze the long-term effectiveness of carbon ions relative to protons in the prospective randomized controlled ion prostate irradiation (IPI) trial. METHODS Effectiveness via PSA assessment in a randomized study on prostate irradiation with 20x3.3 Gy(RBE) protons versus carbon ions was analyzed in 92 patients. Proton RBE was based on a fixed RBE of 1.1 while the local effect model (LEM) I and an α/β = 2 Gy was used for carbon ions. The dose in the prostate was recalculated based on the delivered treatment plan using LEM I and LEM IV and different α/β values. RESULTS Five-year overall and progression free survival was 98% and 85% with protons and 91% and 50% with carbon ions, respectively, with the latter being unexpectedly low compared to Japanese carbon ion data and rather corresponding to a photon dose <72 Gy in 2 Gy fractions. According to LEM I and the applied α/β-value of 2 Gy, the applied carbon ion dose in 2 Gy(RBE) fractions (EQD2) was 87.46 Gy(RBE). Recalculations confirmed a strong dependence of RBE-weighted dose on the α/β ratio as well as on the RBE-model. CONCLUSION The data demonstrate a significant lower effectiveness of the calculated RBE-weighted dose in the carbon ion as compared to the proton arm. LEM I and an α/β = 2 Gy overestimates the RBE for carbon ions in prostate cancer treatment. Adjusting the biological dose calculation by using LEM I with α/β = 4 Gy could be a pragmatic way to safely escalate dose in carbon ion radiotherapy for prostate cancer.
Collapse
Affiliation(s)
- Tanja Eichkorn
- Department of Radiation Oncology, Heidelberg University Hospital, Germany; National Center for Radiation Oncology (NCRO), Heidelberg Institute for Radiation Oncology (HIRO), Germany; National Center for Tumor Diseases (NCT), Heidelberg, Germany; Heidelberg Ion Beam Therapy Center (HIT), Heidelberg, Germany.
| | - Christian P Karger
- National Center for Radiation Oncology (NCRO), Heidelberg Institute for Radiation Oncology (HIRO), Germany; Dept. of Medical Physics in Radiation Oncology, German Cancer Research Center, Heidelberg, Germany.
| | - Stephan Brons
- National Center for Radiation Oncology (NCRO), Heidelberg Institute for Radiation Oncology (HIRO), Germany.
| | - Stefan Alexander Koerber
- Department of Radiation Oncology, Heidelberg University Hospital, Germany; National Center for Radiation Oncology (NCRO), Heidelberg Institute for Radiation Oncology (HIRO), Germany; National Center for Tumor Diseases (NCT), Heidelberg, Germany; Heidelberg Ion Beam Therapy Center (HIT), Heidelberg, Germany.
| | - Thomas Mielke
- Department of Radiation Oncology, Heidelberg University Hospital, Germany; Heidelberg Ion Beam Therapy Center (HIT), Heidelberg, Germany.
| | - Thomas Haberer
- National Center for Radiation Oncology (NCRO), Heidelberg Institute for Radiation Oncology (HIRO), Germany; Heidelberg Ion Beam Therapy Center (HIT), Heidelberg, Germany.
| | - Juergen Debus
- Department of Radiation Oncology, Heidelberg University Hospital, Germany; National Center for Radiation Oncology (NCRO), Heidelberg Institute for Radiation Oncology (HIRO), Germany; National Center for Tumor Diseases (NCT), Heidelberg, Germany; Clinical Cooperation Unit Radiation Oncology (E050), German Cancer Research Center (DKFZ), Heidelberg, Germany; Heidelberg Ion Beam Therapy Center (HIT), Heidelberg, Germany; German Cancer Consortium (DKTK), Partner Site Heidelberg, German Cancer Research Center (DKFZ), Germany.
| | - Klaus Herfarth
- Department of Radiation Oncology, Heidelberg University Hospital, Germany; National Center for Radiation Oncology (NCRO), Heidelberg Institute for Radiation Oncology (HIRO), Germany; National Center for Tumor Diseases (NCT), Heidelberg, Germany; Heidelberg Ion Beam Therapy Center (HIT), Heidelberg, Germany.
| |
Collapse
|
21
|
Abstract
Protons and carbon ions (hadrons) have useful properties for the treatments of patients affected by oncological pathologies. They are more precise than conventional X-rays and possess radiobiological characteristics suited for treating radio-resistant or inoperable tumours. This paper gives an overview of the status of hadron therapy around the world. It focusses on the Italian National Centre for Oncological Hadron therapy (CNAO), introducing operation procedures, system performance, expansion projects, methodologies and modelling to build individualized treatments. There is growing evidence that supports safety and effectiveness of hadron therapy for a variety of clinical situations. However, there is still a lack of high-level evidence directly comparing hadron therapy with modern conventional radiotherapy techniques. The results give an overview of pre-clinical and clinical research studies and of the treatments of 3700 patients performed at CNAO. The success and development of hadron therapy is strongly associated with the creation of networks among hadron therapy facilities, clinics, universities and research institutions. These networks guarantee the growth of cultural knowledge on hadron therapy, favour the efficient recruitment of patients and present available competences for R&D (Research and Development) programmes.
Collapse
|
22
|
Li P, Hong Z, Li Y, Fu S, Zhang Q. Two-Year Toxicity and Efficacy of Carbon Ion Radiotherapy in the Treatment of Localized Prostate Cancer: A Single-Centered Study. Front Oncol 2022; 11:808216. [PMID: 35223457 PMCID: PMC8881099 DOI: 10.3389/fonc.2021.808216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 12/27/2021] [Indexed: 11/25/2022] Open
Abstract
Background We aimed at determining the safety and feasibility of spot-scanning carbon ion radiotherapy (CIRT) for patients with localized prostate cancer. Methods We enrolled 118 patients with localized prostate cancer who underwent treatment with spot-scanning CIRT at the Shanghai Proton and Heavy Ion Center (SPHIC) from January 2016 to December 2020. The dose was gradually increased from relative biological effectiveness (RBE)-weighted dose (DRBE) = 59.2–65.6 Gy in 16 fractions. The primary endpoint was the occurrence of acute and late toxicities, while the secondary endpoints were biochemical relapse-free survival (bRFS), distant metastasis-free survival (DMFS), prostate cancer-specific survival (PCSS), and overall survival (OS). Results The median follow-up time was 30.2 months (4.8–62.7 months). Acute grade 1 and 2 genitourinary (GU) toxicities were 15.3% and 18.6%, while acute grade 1 and 2 gastrointestinal (GI) toxicities were 2.5% and 0%, respectively. Late grade 1 and 2 GU toxicities were 4.2% and 1.7%, respectively. No late GI toxicity was observed. Moreover, there were no cases of severe acute or late toxicity (≥ grade 3). No significant association were observed between the factors and the acute GU toxicities, except for clinical target volume (CTV) (p = 0.031) on multivariate analysis. The 2-year bRFS, DMFS, PCSS, and OS were 100%, 100%, 100%, and 98.8%, respectively. Conclusion The 2-year outcomes were encouraging, providing additional and useful information on the feasibility and safety of spot-scanning CIRT for treating prostate cancer. Thus, we recommend long-term follow-up and prospective multicentered studies to reinforce the role of CIRT in the management of localized prostate cancer.
Collapse
Affiliation(s)
- Ping Li
- Department of Radiation Oncology, Shanghai Proton and Heavy Ion Center, Shanghai, China
- Shanghai Engineering Research Center of Proton and Heavy Ion Radiation Therapy, Shanghai, China
- Shanghai Key Laboratory of Radiation Oncology, Shanghai, China
| | - Zhengshan Hong
- Department of Radiation Oncology, Shanghai Proton and Heavy Ion Center, Shanghai, China
- Shanghai Engineering Research Center of Proton and Heavy Ion Radiation Therapy, Shanghai, China
- Shanghai Key Laboratory of Radiation Oncology, Shanghai, China
| | - Yongqiang Li
- Shanghai Engineering Research Center of Proton and Heavy Ion Radiation Therapy, Shanghai, China
- Shanghai Key Laboratory of Radiation Oncology, Shanghai, China
- Department of Medical Physics, Shanghai Proton and Heavy Ion Center, Shanghai, China
| | - Shen Fu
- Key Laboratory of Nuclear Physics and Ion-Beam Application (MOE), Fudan University, Shanghai, China
- Department of Radiation Oncology, Shanghai Concord Cancer Hospital, Shanghai, China
| | - Qing Zhang
- Department of Radiation Oncology, Shanghai Proton and Heavy Ion Center, Shanghai, China
- Shanghai Engineering Research Center of Proton and Heavy Ion Radiation Therapy, Shanghai, China
- Shanghai Key Laboratory of Radiation Oncology, Shanghai, China
- *Correspondence: Qing Zhang,
| |
Collapse
|
23
|
Mastella E, Molinelli S, Magro G, Russo S, Bonora M, Ronchi S, Ingargiola R, Jensen AD, Ciocca M, Vischioni B, Orlandi E. In Silico Feasibility Study of Carbon Ion Radiotherapy With Simultaneous Integrated Boost for Head and Neck Adenoid Cystic Carcinoma. Front Oncol 2021; 11:772580. [PMID: 34966678 PMCID: PMC8710479 DOI: 10.3389/fonc.2021.772580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 11/11/2021] [Indexed: 11/13/2022] Open
Abstract
Purpose In carbon ion radiotherapy (CIRT), a simultaneous integrated boost (SIB) approach has not been fully exploited so far. The feasibility of a CIRT-SIB strategy for head and neck adenoid cystic carcinoma (ACC) patients was investigated in order to improve treatment planning dose distributions. Methods and Materials CIRT plans of 10 ACC patients treated at the National Center for Oncological Hadrontherapy (CNAO, Pavia, Italy) with sequential boost (SEQ) irradiation and prescription doses of 41.0 Gy [relative biological effectiveness (RBE)]/10 fractions to low-risk (LR) clinical target volume (CTV) plus 24.6 Gy(RBE)/6 fractions to the high-risk (HR) CTV were re-planned with two SIB dose levels to the LR-CTV, namely, 48.0 Gy(RBE) and 54.4 Gy(RBE). While planning with SIB, the HR-CTV coverage had higher priority, with fixed organ-at-risk dose constraints among the SIB and SEQ plans. The homogeneity and conformity indexes were selected for CTV coverage comparison. The biologically effective dose (BED) was calculated to compare the different fractionation schemes. Results Comparable HR-CTV coverage was achieved with the treatment approaches, while superior conformality and homogeneity were obtained with the SIB technique in both CTVs. With the SEQ, SIB48.0, and SIB54.4, the LR-CTV median doses were respectively 50.3%, 11.9%, and 6.0% higher than the prescriptions. Significant reductions of the median and near-maximum BEDs were achieved with both SIB dose levels in the LR-CTV. Conclusions The SIB approach resulted in highly conformal dose distributions with the reduction of the unintended dose to the LR-CTV. A prescription dose range for the LR-CTV will be clinically defined to offer tailored personalized treatments, according to the clinical and imaging characteristics of the patients.
Collapse
Affiliation(s)
- Edoardo Mastella
- Clinical Department, National Center for Oncological Hadrontherapy (CNAO), Pavia, Italy
| | - Silvia Molinelli
- Clinical Department, National Center for Oncological Hadrontherapy (CNAO), Pavia, Italy
| | - Giuseppe Magro
- Clinical Department, National Center for Oncological Hadrontherapy (CNAO), Pavia, Italy
| | - Stefania Russo
- Clinical Department, National Center for Oncological Hadrontherapy (CNAO), Pavia, Italy
| | - Maria Bonora
- Clinical Department, National Center for Oncological Hadrontherapy (CNAO), Pavia, Italy
| | - Sara Ronchi
- Clinical Department, National Center for Oncological Hadrontherapy (CNAO), Pavia, Italy
| | - Rossana Ingargiola
- Clinical Department, National Center for Oncological Hadrontherapy (CNAO), Pavia, Italy
| | - Alexandra D Jensen
- Department of Radiation Oncology, University Hospitals Gießen and Marburg (UKGM), Gießen, Germany.,FB20 (Medicine), Philipps University Marburg, Marburg, Germany
| | - Mario Ciocca
- Clinical Department, National Center for Oncological Hadrontherapy (CNAO), Pavia, Italy
| | - Barbara Vischioni
- Clinical Department, National Center for Oncological Hadrontherapy (CNAO), Pavia, Italy
| | - Ester Orlandi
- Clinical Department, National Center for Oncological Hadrontherapy (CNAO), Pavia, Italy
| |
Collapse
|
24
|
Rucinski A, Biernacka A, Schulte R. Applications of nanodosimetry in particle therapy planning and beyond. Phys Med Biol 2021; 66. [PMID: 34731854 DOI: 10.1088/1361-6560/ac35f1] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 11/03/2021] [Indexed: 12/28/2022]
Abstract
This topical review summarizes underlying concepts of nanodosimetry. It describes the development and current status of nanodosimetric detector technology. It also gives an overview of Monte Carlo track structure simulations that can provide nanodosimetric parameters for treatment planning of proton and ion therapy. Classical and modern radiobiological assays that can be used to demonstrate the relationship between the frequency and complexity of DNA lesion clusters and nanodosimetric parameters are reviewed. At the end of the review, existing approaches of treatment planning based on relative biological effectiveness (RBE) models or dose-averaged linear energy transfer are contrasted with an RBE-independent approach based on nandosimetric parameters. Beyond treatment planning, nanodosimetry is also expected to have applications and give new insights into radiation protection dosimetry.
Collapse
Affiliation(s)
| | - Anna Biernacka
- University of Gdansk, Intercollegiate Faculty of Biotechnology of University of Gdańsk and Medical University of Gdansk, 80-307 Gdansk, Poland
| | | |
Collapse
|
25
|
Ricotti R, Pella A, Mirandola A, Fiore MR, Chalaszczyk A, Paganelli C, Antonioli L, Vai A, Tagaste B, Belotti G, Rossi M, Ciocca M, Orlandi E, Baroni G. Dosimetric effect of variable rectum and sigmoid colon filling during carbon ion radiotherapy to sacral chordoma. Phys Med 2021; 90:123-133. [PMID: 34628271 DOI: 10.1016/j.ejmp.2021.09.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 08/13/2021] [Accepted: 09/23/2021] [Indexed: 11/17/2022] Open
Abstract
PURPOSE Carbon ion radiotherapy (CIRT) is sensitive to anatomical density variations. We examined the dosimetric effect of variable intestinal filling condition during CIRT to ten sacral chordoma patients. METHODS For each patient, eight virtual computed tomography scans (vCTs) were generated by varying the density distribution within the rectum and the sigmoid in the planning computed tomography (pCT) with a density override approach mimicking a heterogeneous combination of gas and feces. Totally full and empty intestinal preparations were modelled. In addition, five different intestinal filling conditions were modelled by a mixed density pattern derived from two combined and weighted Gaussian distributions simulating gas and feces respectively. Finally, a patient-specific mixing proportion was estimated by evaluating the daily amount of gas detected in the cone beam computed tomography (CBCT). Dose distribution was recalculated on each vCT and dose volume histograms (DVHs) were examined. RESULTS No target coverage degradation was observed at different vCTs. Rectum and sigma dose degradation ranged respectively between: [-6.7; 21.6]GyE and [-0.7; 15.4]GyE for D50%; [-377.4; 1197.9] and [-95.2; 1027.5] for AUC; [-1.2; 10.7]GyE and [-2.6; 21.5]GyE for D1%. CONCLUSIONS Variation of intestinal density can greatly influence the penetration depth of charged particle and might compromise dose distribution. In particular cases, with large clinical target volume in very close proximity to rectum and sigmoid colon, it is appropriate to evaluate the amount of gas present in the daily CBCT images even if it is totally included in the reference planning structures.
Collapse
Affiliation(s)
- R Ricotti
- Bioengineering Unit, Clinical Department, National Center for Oncological Hadrontherapy (CNAO), Pavia, Italy.
| | - A Pella
- Bioengineering Unit, Clinical Department, National Center for Oncological Hadrontherapy (CNAO), Pavia, Italy
| | - A Mirandola
- Medical Physics Unit, Clinical Department, National Center for Oncological Hadrontherapy (CNAO), Pavia, Italy
| | - M R Fiore
- Radiation Oncology Unit, Clinical Department, National Center for Oncological Hadrontherapy (CNAO), Pavia, Italy
| | - A Chalaszczyk
- Radiation Oncology Unit, Clinical Department, National Center for Oncological Hadrontherapy (CNAO), Pavia, Italy
| | - C Paganelli
- Department of Electronics Information and Bioengineering, Politecnico di Milano, Milano, Italy
| | - L Antonioli
- Bioengineering Unit, Clinical Department, National Center for Oncological Hadrontherapy (CNAO), Pavia, Italy
| | - A Vai
- Medical Physics Unit, Clinical Department, National Center for Oncological Hadrontherapy (CNAO), Pavia, Italy
| | - B Tagaste
- Bioengineering Unit, Clinical Department, National Center for Oncological Hadrontherapy (CNAO), Pavia, Italy
| | - G Belotti
- Department of Electronics Information and Bioengineering, Politecnico di Milano, Milano, Italy
| | - M Rossi
- Department of Electronics Information and Bioengineering, Politecnico di Milano, Milano, Italy
| | - M Ciocca
- Medical Physics Unit, Clinical Department, National Center for Oncological Hadrontherapy (CNAO), Pavia, Italy
| | - E Orlandi
- Radiation Oncology Unit, Clinical Department, National Center for Oncological Hadrontherapy (CNAO), Pavia, Italy
| | - G Baroni
- Bioengineering Unit, Clinical Department, National Center for Oncological Hadrontherapy (CNAO), Pavia, Italy; Department of Electronics Information and Bioengineering, Politecnico di Milano, Milano, Italy
| |
Collapse
|
26
|
Molinelli S, Magro G, Mairani A, Allajbej A, Mirandola A, Chalaszczyk A, Imparato S, Ciocca M, Fiore MR, Orlandi E. How LEM-based RBE and dose-averaged LET affected clinical outcomes of sacral chordoma patients treated with carbon ion radiotherapy. Radiother Oncol 2021; 163:209-214. [PMID: 34506829 DOI: 10.1016/j.radonc.2021.08.024] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 08/26/2021] [Accepted: 08/27/2021] [Indexed: 01/18/2023]
Abstract
PURPOSE/OBJECTIVE To understand the role of relative biological effectiveness (RBE) and dose-averaged linear energy transfer (LETd) distributions in the treatment of sacral chordoma (SC) patients with carbon ion radiotherapy (CIRT). MATERIAL/METHODS Clinical plans of 50 SC patients consecutively treated before August 2018 with a local effect model-based optimization were recalculated with the modified microdosimetric kinetic RBE model (mMKM). Twenty-six patients were classified as progressive disease and the relapse volume was contoured on the corresponding follow-up diagnostic sequence. The remaining 24 patients populated the control group. Target prescription dose (DRBE|50%), near-to-minimum- (DRBE|95%) and near-to-maximum- (DRBE|2%) doses were compared between the two cohorts in both RBE systems. LETd distribution was evaluated for in-field relapsed cases with respect to the control group. RESULTS Target DMKM|50% and DMKM|95% were respectively 10% and 18% lower than what we aimed at. Dosimetric evaluators showed no significant difference, in neither of the RBE frameworks, between relapsed and control sets. Half of the relapse volumes were located in a well-covered high dose region. On average, over these cases, median target LETd was significantly lower than the control cohort mean value (27 vs 30 keV/μm). Most notably, the volume receiving dose from high-LET particles (>50 keV/μm) lay substantially below recently reported data in the literature. CONCLUSION A combined multi model RBE- and LET-based optimization could play a key role in the enhancement of the therapeutic ratio of CIRT for large radioresistant tumors such as sacral chordomas.
Collapse
|
27
|
Cavalieri S, Ronchi S, Barcellini A, Bonora M, Vischioni B, Vitolo V, Villa R, Del Vecchio M, Licitra L, Orlandi E. Toxicity of carbon ion radiotherapy and immune checkpoint inhibitors in advanced melanoma. Radiother Oncol 2021; 164:1-5. [PMID: 34506831 DOI: 10.1016/j.radonc.2021.08.021] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 08/13/2021] [Accepted: 08/28/2021] [Indexed: 01/04/2023]
Abstract
We analyzed CTCAE adverse events of sequential Carbon Ion radiotherapy (CIRT) and immune checkpoint inhibitors (ICIs) in advanced melanoma patients. The frequencies of early and late adverse events (AEs) were 100% and 82% of patients, respectively. The frequency of G3+ AEs was in line with the literature.
Collapse
Affiliation(s)
- Stefano Cavalieri
- Head and Neck Medical Oncology Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Sara Ronchi
- Radiation Oncology Clinical Department, National Center for Oncological Hadrontherapy (CNAO), Pavia, Italy.
| | - Amelia Barcellini
- Radiation Oncology Clinical Department, National Center for Oncological Hadrontherapy (CNAO), Pavia, Italy
| | - Maria Bonora
- Radiation Oncology Clinical Department, National Center for Oncological Hadrontherapy (CNAO), Pavia, Italy
| | - Barbara Vischioni
- Radiation Oncology Clinical Department, National Center for Oncological Hadrontherapy (CNAO), Pavia, Italy
| | - Viviana Vitolo
- Radiation Oncology Clinical Department, National Center for Oncological Hadrontherapy (CNAO), Pavia, Italy
| | - Riccardo Villa
- Radiation Oncology Clinical Department, National Center for Oncological Hadrontherapy (CNAO), Pavia, Italy
| | - Michele Del Vecchio
- Medical Oncology Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Lisa Licitra
- Head and Neck Medical Oncology Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy; Department of Oncology and Hemato-Oncology, University of Milan, Italy
| | - Ester Orlandi
- Radiation Oncology Clinical Department, National Center for Oncological Hadrontherapy (CNAO), Pavia, Italy
| |
Collapse
|
28
|
Fossati P, Perpar A, Stock M, Georg P, Carlino A, Gora J, Martino G, Hug EB. Carbon Ion Dose Constraints in the Head and Neck and Skull Base: Review of MedAustron Institutional Protocols. Int J Part Ther 2021; 8:25-35. [PMID: 34285933 PMCID: PMC8270085 DOI: 10.14338/ijpt-20-00093.1] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 03/16/2021] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Dose constraints are of paramount importance for the outcome of any radiotherapy treatment. In this article, we report dose-volume constraints as well as currently used fractionation schedules for carbon ion radiotherapy as applied in MedAustron (Wiener Neustadt, Austria). MATERIALS AND METHODS For fractionation schedules, both German and Japanese regimes were used. From the clinical experience of National Institute of Radiological Sciences (Chiba, Japan) and Heidelberg Ion Therapy (Heidelberg, Germany; formerly GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany) and the work by colleagues in Centro Nazionale Adroterapia Oncologica (Pavia, Italy) recalculating the dose from the microdosimetric kinetic model to the local effect model, we have set the dose constraints for critical organs of the head and neck area. Where no clinical data was available, an educated guess was made, based on data available from photon and proton series. RESULTS We report the constraints for the optic nerve and chiasm, brainstem, spinal cord, cochlea, brain parenchyma, salivary gland, eye and adnexa, and mandibular/maxillary bone; constraints are grouped based on a fractionation scheme (German versus Japanese) and the risk of toxicity (safe, low to middle, and middle to high). CONCLUSION We think validation of dose constraints should present a relevant part of the activity of any carbon ion radiotherapy facility, and we anticipate future multicentric, joint evaluations.
Collapse
Affiliation(s)
- Piero Fossati
- MedAustron Ion Therapy Center, Wiener Neustadt, Austria
| | - Ana Perpar
- Oncology Institute Ljubljana, Ljubljana, Slovenia
| | - Markus Stock
- MedAustron Ion Therapy Center, Wiener Neustadt, Austria
| | - Petra Georg
- MedAustron Ion Therapy Center, Wiener Neustadt, Austria
| | | | - Joanna Gora
- MedAustron Ion Therapy Center, Wiener Neustadt, Austria
| | | | - Eugen B. Hug
- MedAustron Ion Therapy Center, Wiener Neustadt, Austria
| |
Collapse
|
29
|
Clinical features and dosimetric evaluation of carbon ion radiation-induced osteoradionecrosis of mandible in head and neck tumors. Radiother Oncol 2021; 161:205-210. [PMID: 34147522 DOI: 10.1016/j.radonc.2021.06.022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Revised: 06/05/2021] [Accepted: 06/10/2021] [Indexed: 11/21/2022]
Abstract
BACKGROUND AND PURPOSE Osteoradionecrosis (ORN) affects the patient's quality of life by making eating and maintaining oral hygiene painful. This study aimed to analyze carbon ion radiotherapy (C-ion RT)-induced ORN of the mandible. MATERIALS AND METHODS A retrospective study of 199 patients with head and neck tumors treated with C-ion RT was performed from 2010 to 2019. Only 11 patients with tumors located in the oropharynx and floor of the mouth were analyzed. C-ion RT consisted of 57.6 Gy or 64.0 Gy (relative biological effectiveness) in 16 fractions. The mandible was analyzed for magnetic resonance imaging (MRI) changes and bone exposure. The relationship between the radiation dose and ORN of the mandible was analyzed. RESULTS Five patients (45.5%) had ORN of the mandible. The median follow-up time was 68 months. The median onset times based on MRI changes and bone exposure were 9 and 15 months, respectively. Doses of 30 Gy (relative biological effectiveness) to the mandible and teeth showed the most significant effect, causing ORN at 29.5 ± 6.7 cc and 3.9 ± 1.8 cc, respectively, with cut-off values at 16.5 cc (p = 0.002) and 1.8 cc (p = 0.0059), respectively. CONCLUSION This is the first study reporting the incidence, onset time, and risk-predictive dosimetry parameters of C-ion RT-induced ORN of the mandible. Our study will be useful for establishing clinical strategies for C-ion RT to the head and neck near the mandible.
Collapse
|
30
|
Mastella E, Mirandola A, Russo S, Vai A, Magro G, Molinelli S, Barcellini A, Vitolo V, Orlandi E, Ciocca M. High-dose hypofractionated pencil beam scanning carbon ion radiotherapy for lung tumors: Dosimetric impact of different spot sizes and robustness to interfractional uncertainties. Phys Med 2021; 85:79-86. [PMID: 33984821 DOI: 10.1016/j.ejmp.2021.05.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 03/18/2021] [Accepted: 05/03/2021] [Indexed: 02/08/2023] Open
Abstract
PURPOSE The robustness against setup and motion uncertainties of gated four-dimensional restricted robust optimization (4DRRO) was investigated for hypofractionated carbon ion radiotherapy (CIRT) of lung tumors. METHODS CIRT plans of 9 patients were optimized using 4DRRO strategy with 3 mm setup errors, 3% density errors and 3 breathing phases related to the gate window. The prescription was 60 Gy(RBE) in 4 fractions. Standard spots (SS) were compared to big spots (BS). Plans were recalculated on multiple 4DCTs acquired within 3 weeks from treatment simulation and rigidly registered with planning images using bone matching. Warped dose distributions were generated using deformable image registration and accumulated on the planning 4DCTs. Target coverage (D98%, D95% and V95%) and dose to lung were evaluated in the recalculated and accumulated dose distributions. RESULTS Comparable target coverage was obtained with both spot sizes (p = 0.53 for D95%). The mean lung dose increased of 0.6 Gy(RBE) with BS (p = 0.0078), still respecting the dose constraint of a 4-fraction stereotactic treatment for the risk of radiation pneumonitis. Statistically significant differences were found in the recalculated and accumulated D95% (p = 0.048 and p = 0.024), with BS showing to be more robust. Using BS, the average degradations of the D98%, D95% and V95% in the accumulated doses were -2.7%, -1.6% and -1.5%. CONCLUSIONS Gated 4DRRO was highly robust against setup and motion uncertainties. BS increased the dose to healthy tissues but were more robust than SS. The selected optimization settings guaranteed adequate target coverage during the simulated treatment course with acceptable risk of toxicity.
Collapse
Affiliation(s)
- Edoardo Mastella
- CNAO, National Center for Oncological Hadrontherapy, Strada Campeggi 53, I-27100 Pavia, Italy.
| | - Alfredo Mirandola
- CNAO, National Center for Oncological Hadrontherapy, Strada Campeggi 53, I-27100 Pavia, Italy
| | - Stefania Russo
- CNAO, National Center for Oncological Hadrontherapy, Strada Campeggi 53, I-27100 Pavia, Italy
| | - Alessandro Vai
- CNAO, National Center for Oncological Hadrontherapy, Strada Campeggi 53, I-27100 Pavia, Italy
| | - Giuseppe Magro
- CNAO, National Center for Oncological Hadrontherapy, Strada Campeggi 53, I-27100 Pavia, Italy
| | - Silvia Molinelli
- CNAO, National Center for Oncological Hadrontherapy, Strada Campeggi 53, I-27100 Pavia, Italy
| | - Amelia Barcellini
- CNAO, National Center for Oncological Hadrontherapy, Strada Campeggi 53, I-27100 Pavia, Italy
| | - Viviana Vitolo
- CNAO, National Center for Oncological Hadrontherapy, Strada Campeggi 53, I-27100 Pavia, Italy
| | - Ester Orlandi
- CNAO, National Center for Oncological Hadrontherapy, Strada Campeggi 53, I-27100 Pavia, Italy
| | - Mario Ciocca
- CNAO, National Center for Oncological Hadrontherapy, Strada Campeggi 53, I-27100 Pavia, Italy
| |
Collapse
|
31
|
Iannalfi A, D'Ippolito E, Riva G, Molinelli S, Gandini S, Viselner G, Fiore MR, Vischioni B, Vitolo V, Bonora M, Ronchi S, Petrucci R, Barcellini A, Mirandola A, Russo S, Vai A, Mastella E, Magro G, Maestri D, Ciocca M, Preda L, Valvo F, Orecchia R. Proton and carbon ion radiotherapy in skull base chordomas: a prospective study based on a dual particle and a patient-customized treatment strategy. Neuro Oncol 2021; 22:1348-1358. [PMID: 32193546 DOI: 10.1093/neuonc/noaa067] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND The aim of this study is to evaluate results in terms of local control (LC), overall survival (OS), and toxicity profile and to better identify factors influencing clinical outcome of skull base chordoma treated with proton therapy (PT) and carbon ion radiotherapy (CIRT). METHODS We prospectively collected and analyzed data of 135 patients treated between November 2011 and December 2018. Total prescription dose in the PT group (70 patients) and CIRT group (65 patients) was 74 Gy relative biological effectiveness (RBE) delivered in 37 fractions and 70.4 Gy(RBE) delivered in 16 fractions, respectively (CIRT in unfavorable patients). LC and OS were evaluated using the Kaplan-Meier method. Univariate and multivariate analyses were performed, to identify prognostic factors on clinical outcomes. RESULTS After a median follow-up of 44 (range, 6-87) months, 14 (21%) and 8 (11%) local failures were observed in CIRT and PT group, respectively. Five-year LC rate was 71% in CIRT cohort and 84% in PT cohort. The estimated 5-year OS rate in the CIRT and PT group was 82% and 83%, respectively. On multivariate analysis, gross tumor volume (GTV), optic pathways, and/or brainstem compression and dose coverage are independent prognostic factors of local failure risk. High rate toxicity grade ≥3 was reported in 11% of patients. CONCLUSIONS Particle radiotherapy is an effective treatment for skull base chordoma with acceptable late toxicity. GTV, optic pathways, and/or brainstem compression and target coverage were independent prognostic factors for LC. KEY POINTS • Proton and carbon ion therapy are effective and safe in skull base chordoma.• Prognostic factors are GTV, organs at risk compression, and dose coverage.• Dual particle therapy and customized strategy was adopted.
Collapse
Affiliation(s)
- Alberto Iannalfi
- Clinical Department, National Center for Oncological Hadrontherapy (CNAO), Pavia, Italy
| | - Emma D'Ippolito
- Clinical Department, National Center for Oncological Hadrontherapy (CNAO), Pavia, Italy
| | - Giulia Riva
- Clinical Department, National Center for Oncological Hadrontherapy (CNAO), Pavia, Italy
| | - Silvia Molinelli
- Clinical Department, National Center for Oncological Hadrontherapy (CNAO), Pavia, Italy
| | - Sara Gandini
- Department of Experimental Oncology, European Institute of Oncology, IRCCS, Milan, Italy
| | | | - Maria Rosaria Fiore
- Clinical Department, National Center for Oncological Hadrontherapy (CNAO), Pavia, Italy
| | - Barbara Vischioni
- Clinical Department, National Center for Oncological Hadrontherapy (CNAO), Pavia, Italy
| | - Viviana Vitolo
- Clinical Department, National Center for Oncological Hadrontherapy (CNAO), Pavia, Italy
| | - Maria Bonora
- Clinical Department, National Center for Oncological Hadrontherapy (CNAO), Pavia, Italy
| | - Sara Ronchi
- Clinical Department, National Center for Oncological Hadrontherapy (CNAO), Pavia, Italy
| | - Rachele Petrucci
- Clinical Department, National Center for Oncological Hadrontherapy (CNAO), Pavia, Italy
| | - Amelia Barcellini
- Clinical Department, National Center for Oncological Hadrontherapy (CNAO), Pavia, Italy
| | - Alfredo Mirandola
- Clinical Department, National Center for Oncological Hadrontherapy (CNAO), Pavia, Italy
| | - Stefania Russo
- Clinical Department, National Center for Oncological Hadrontherapy (CNAO), Pavia, Italy
| | - Alessandro Vai
- Clinical Department, National Center for Oncological Hadrontherapy (CNAO), Pavia, Italy
| | - Edoardo Mastella
- Clinical Department, National Center for Oncological Hadrontherapy (CNAO), Pavia, Italy
| | - Giuseppe Magro
- Clinical Department, National Center for Oncological Hadrontherapy (CNAO), Pavia, Italy
| | - Davide Maestri
- Clinical Department, National Center for Oncological Hadrontherapy (CNAO), Pavia, Italy
| | - Mario Ciocca
- Clinical Department, National Center for Oncological Hadrontherapy (CNAO), Pavia, Italy
| | - Lorenzo Preda
- Clinical Department, National Center for Oncological Hadrontherapy (CNAO), Pavia, Italy
| | - Francesca Valvo
- Clinical Department, National Center for Oncological Hadrontherapy (CNAO), Pavia, Italy
| | - Roberto Orecchia
- Scientific Directorate, European Institute of Oncology, IRCCS, Milan, Italy
| |
Collapse
|
32
|
Wang W, Li P, Sheng Y, Huang Z, Zhao J, Hong Z, Shahnazi K, Jiang GL, Zhang Q. Conversion and validation of rectal constraints for prostate carcinoma receiving hypofractionated carbon-ion radiotherapy with a local effect model. Radiat Oncol 2021; 16:72. [PMID: 33849589 PMCID: PMC8045205 DOI: 10.1186/s13014-021-01801-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Accepted: 04/07/2021] [Indexed: 11/12/2022] Open
Abstract
Background The study objective was to establish the local effect model (LEM) rectum constraints for 12-, 8-, and 4-fraction carbon-ion radiotherapy (CIRT) in patients with localized prostate carcinoma (PCA) using microdosimetric kinetic model (MKM)-defined and LEM-defined constraints for 16-fraction CIRT. Methods We analyzed 40 patients with PCA who received 16- or 12-fraction CIRT at our center. Linear-quadratic (LQ) and RBE-conversion models were employed to convert the constraints into various fractionations and biophysical models. Based on them, the MKM LQ strategy converted MKM rectum constraints for 16-fraction CIRT to 12-, 8-, and 4-fraction CIRT using the LQ model. Then, MKM constraints were converted to LEM using the RBE-conversion model. Meanwhile the LEM LQ strategy converted MKM rectum constraints for 16-fraction CIRT to LEM using the RBE-conversion model. Then, LEM constraints were converted from 16-fraction constraints to the rectum constraints for 12-, 8-, and 4-fraction CIRT using the LQ model. The LEM constraints for 16- and 12-fraction CIRT were evaluated using rectum doses and clinical follow-up. To adapt them for the MKM LQ strategy, CNAO LEM constraints were first converted to MKM constraints using the RBE-conversion model. Results The NIRS (i.e. DMKM|v, V-20%, 10%, 5%, and 0%) and CNAO rectum constraints (i.e. DLEM|v, V-10 cc, 5 cc, and 1 cc) were converted for 12-fraction CIRT using the MKM LQ strategy to LEM 37.60, 49.74, 55.27, and 58.01 Gy (RBE), and 45.97, 51.70, and 55.97 Gy (RBE), and using the LEM LQ strategy to 39.55, 53.08, 58.91, and 61.73 Gy (RBE), and 49.14, 55.30, and 59.69 Gy (RBE). We also established LEM constraints for 8- and 4-fraction CIRT. The 10-patient RBE-conversion model was comparable to 30-patient model. Eight patients who received 16-fraction CIRT exceeded the corresponding rectum constraints; the others were within the constraints. After a median follow-up of 10.8 months (7.1–20.8), No ≥ G1 late rectum toxicities were observed. Conclusions The LEM rectum constraints from the MKM LQ strategy were more conservative and might serve as the reference for hypofractionated CIRT. However, Long-term follow-up plus additional patients is necessary.
Collapse
Affiliation(s)
- Weiwei Wang
- Department of Medical Physics, Shanghai Proton and Heavy Ion Center, Shanghai Key Laboratory of Radiation Oncology (20dz226100), Shanghai Engineering Research Center of Proton and Heavy Ion Radiation Therapy, 4365 Kangxin Road, Pudong District, Shanghai, 201315, China
| | - Ping Li
- Department of Radiation Oncology, Shanghai Proton and Heavy Ion Center; Shanghai Key Laboratory of Radiation Oncology (20dz226100), Shanghai Engineering Research Center of Proton and Heavy Ion Radiation Therapy, 4365 Kangxin Road, Pudong District, Shanghai, 201315, China
| | - Yinxiangzi Sheng
- Department of Medical Physics, Shanghai Proton and Heavy Ion Center, Shanghai Key Laboratory of Radiation Oncology (20dz226100), Shanghai Engineering Research Center of Proton and Heavy Ion Radiation Therapy, 4365 Kangxin Road, Pudong District, Shanghai, 201315, China
| | - Zhijie Huang
- Department of Medical Physics, Shanghai Proton and Heavy Ion Center, Shanghai Key Laboratory of Radiation Oncology (20dz226100), Shanghai Engineering Research Center of Proton and Heavy Ion Radiation Therapy, 4365 Kangxin Road, Pudong District, Shanghai, 201315, China
| | - Jingfang Zhao
- Department of Medical Physics, Shanghai Proton and Heavy Ion Center, Shanghai Key Laboratory of Radiation Oncology (20dz226100), Shanghai Engineering Research Center of Proton and Heavy Ion Radiation Therapy, 4365 Kangxin Road, Pudong District, Shanghai, 201315, China.,Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Xuhui District, 270 Dongan Road, Shanghai, 200032, China
| | - Zhengshan Hong
- Department of Radiation Oncology, Shanghai Proton and Heavy Ion Center; Shanghai Key Laboratory of Radiation Oncology (20dz226100), Shanghai Engineering Research Center of Proton and Heavy Ion Radiation Therapy, 4365 Kangxin Road, Pudong District, Shanghai, 201315, China
| | - Kambiz Shahnazi
- Department of Medical Physics, Shanghai Proton and Heavy Ion Center, Shanghai Key Laboratory of Radiation Oncology (20dz226100), Shanghai Engineering Research Center of Proton and Heavy Ion Radiation Therapy, 4365 Kangxin Road, Pudong District, Shanghai, 201315, China
| | - Guo-Liang Jiang
- Department of Radiation Oncology, Shanghai Proton and Heavy Ion Center; Shanghai Key Laboratory of Radiation Oncology (20dz226100), Shanghai Engineering Research Center of Proton and Heavy Ion Radiation Therapy, 4365 Kangxin Road, Pudong District, Shanghai, 201315, China
| | - Qing Zhang
- Department of Radiation Oncology, Shanghai Proton and Heavy Ion Center; Shanghai Key Laboratory of Radiation Oncology (20dz226100), Shanghai Engineering Research Center of Proton and Heavy Ion Radiation Therapy, 4365 Kangxin Road, Pudong District, Shanghai, 201315, China.
| |
Collapse
|
33
|
Barcellini A, Vitolo V, Cobianchi L, Peloso A, Vanoli A, Mirandola A, Facoetti A, Fiore MR, Iannalfi A, Vischioni B, Cuccia F, Ronchi S, Bonora M, Riva G, Petrucci R, D'Ippolito E, Mas FD, Preda L, Valvo F. Re-irradiation With Carbon Ion Radiotherapy for Pelvic Rectal Cancer Recurrences in Patients Previously Irradiated to the Pelvis. In Vivo 2021; 34:1547-1553. [PMID: 32354961 DOI: 10.21873/invivo.11944] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 03/20/2020] [Accepted: 03/24/2020] [Indexed: 12/18/2022]
Abstract
BACKGROUND/AIM Re-irradiation of locally recurrent rectal cancer poses challenges due to the proximity of critical organs, such as the bowel. This study aimed at evaluating the safety and efficacy of re-irradiation with Carbon Ion Radiotherapy (CIRT) in rectal cancer patients with local recurrence. PATIENTS AND METHODS Between 2014 and 2018, 14 patients were treated at the National Center of Oncological Hadrontherapy (CNAO Foundation) with CIRT for locally recurrent rectal cancer. RESULTS All patients concluded the treatment. No G≥3 acute/late reaction nor pelvic infections were observed. The 1-year and 2-year local control rates were, 78% and 52%, respectively, and relapse occurred close to the bowel in 6 patients. The 1-year and 2-year overall survival rates were 100% and 76.2% each; while the 1-year and 2-year metastasis free survival rates were 64.3% and 43%. CONCLUSION CIRT as re-irradiation for locally recurrent rectal cancer emerges as a safe and valid treatment with an acceptable rate of morbidity of surrounding healthy tissue.
Collapse
Affiliation(s)
- Amelia Barcellini
- National Center of Oncological Hadrontherapy (Fondazione CNAO), Pavia, Italy
| | - Viviana Vitolo
- National Center of Oncological Hadrontherapy (Fondazione CNAO), Pavia, Italy
| | - Lorenzo Cobianchi
- Department of Clinical-Surgical, Diagnostic and Pediatric Sciences, University of Pavia, Pavia, Italy.,General Surgery, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Andrea Peloso
- Division of Abdominal Surgery, Department of Surgery, Faculty of Medicine, University of Geneva, Geneva, Switzerland.,HepatoPancreato-Biliary Centre, Geneva University Hospitals, Geneva, Switzerland
| | - Alessandro Vanoli
- Anatomic Pathology Unit, Department of Molecular Medicine, University of Pavia and Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Alfredo Mirandola
- National Center of Oncological Hadrontherapy (Fondazione CNAO), Pavia, Italy
| | - Angelica Facoetti
- National Center of Oncological Hadrontherapy (Fondazione CNAO), Pavia, Italy
| | - Maria Rosaria Fiore
- National Center of Oncological Hadrontherapy (Fondazione CNAO), Pavia, Italy
| | - Alberto Iannalfi
- National Center of Oncological Hadrontherapy (Fondazione CNAO), Pavia, Italy
| | - Barbara Vischioni
- National Center of Oncological Hadrontherapy (Fondazione CNAO), Pavia, Italy
| | - Francesco Cuccia
- School of Radiation Oncology, University of Palermo, Palermo, Italy
| | - Sara Ronchi
- National Center of Oncological Hadrontherapy (Fondazione CNAO), Pavia, Italy
| | - Maria Bonora
- National Center of Oncological Hadrontherapy (Fondazione CNAO), Pavia, Italy
| | - Giulia Riva
- National Center of Oncological Hadrontherapy (Fondazione CNAO), Pavia, Italy
| | - Rachele Petrucci
- National Center of Oncological Hadrontherapy (Fondazione CNAO), Pavia, Italy
| | - Emma D'Ippolito
- National Center of Oncological Hadrontherapy (Fondazione CNAO), Pavia, Italy
| | - Francesca Dal Mas
- Lincoln International Business School, University of Lincoln, Lincoln, U.K.,Department of Law and Economics of Productive Activities, Sapienza University of Rome, Rome, Italy
| | - Lorenzo Preda
- National Center of Oncological Hadrontherapy (Fondazione CNAO), Pavia, Italy.,Department of Clinical-Surgical, Diagnostic and Pediatric Sciences, University of Pavia, Pavia, Italy
| | - Francesca Valvo
- National Center of Oncological Hadrontherapy (Fondazione CNAO), Pavia, Italy
| |
Collapse
|
34
|
The RBE in ion beam radiotherapy: In vivo studies and clinical application. Z Med Phys 2021; 31:105-121. [PMID: 33568337 DOI: 10.1016/j.zemedi.2020.12.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 11/23/2020] [Accepted: 12/04/2020] [Indexed: 12/15/2022]
Abstract
Ion beams used for radiotherapy exhibit an increased relative biological effectiveness (RBE), which depends on several physical treatment parameters as well as on biological factors of the irradiated tissues. While the RBE is an experimentally well-defined quantity, translation to patients is complex and requires radiobiological studies, dedicated models to calculate the RBE in treatment planning as well as strategies for dose prescription. Preclinical in vivo studies and analysis of clinical outcome are important to validate and refine RBE-models. This review describes the concept of the experimental and clinical RBE and explains the fundamental dependencies of the RBE based on in vitro experiments. The available preclinical in vivo studies on normal tissue and tumor RBE for ions heavier than protons are reviewed in the context of the historical and present development of ion beam radiotherapy. In addition, the role of in vivo RBE-values in the development and benchmarking of RBE-models as well as the transition of these models to clinical application are described. Finally, limitations in the translation of experimental RBE-values into clinical application and the direction of future research are discussed.
Collapse
|
35
|
Zhang L, Wang W, Hu J, Lu J, Kong L. RBE-weighted dose conversions for patients with recurrent nasopharyngeal carcinoma receiving carbon-ion radiotherapy from the local effect model to the microdosimetric kinetic model. Radiat Oncol 2020; 15:277. [PMID: 33302998 PMCID: PMC7731771 DOI: 10.1186/s13014-020-01723-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Accepted: 12/06/2020] [Indexed: 11/22/2022] Open
Abstract
Background We sought to establish a conversion curve to convert the RBE-weighted doses calculated by local effect model I (LEM) (LEM RBE-weighted doses) in patients with locally recurrent nasopharyngeal carcinoma (rNPC) to the RBE-weighted doses calculated by microdosimetric kinetic model (MKM) (MKM RBE-weighted doses). We also converted the LEM dose constraints (RBE-weighted dose constraints in LEM plans) for the brain stem, spinal cord, and optic nerve based on this curve. Methods Data from 20 patients with rNPC receiving carbon-ion radiotherapy (CIRT) in our hospital were collected. LEM in Raystation (V8A, Raystation, Sweden) was used to generate treatment plans. The clinical target volume CTV1 (GTV + 5 mm) was given 3 Gy (RBE) per fraction. Ninety-nine percent of target volumes should be covered by 95% of the prescriptions; the maximum doses of the brainstem and spinal cord were < 45 Gy (RBE) and < 30 Gy (RBE), respectively. The doses covering 20% volumes of optical nerves/chiasms D20 were < 30 Gy (RBE). Then physical doses of the LEM plans were recalculated by using MKM in Raystation to generate MKM plans. A series of conversion factors (i.e., the ratio of LEM RBE-weighted dose to MKM RBE-weighted dose) was then obtained by using an isovolumetric dose method. The LEM plan prescriptions (LEM prescription) and dose constraints of the organs at risk (OARs) (OAR constraints) were converted to the corresponding MKM prescriptions and dose constraints using this conversion curve. Results For the CTV1 fractional RBE-weighted dose prescription of 3.00 Gy (RBE) and CTV2 of 2.70 Gy (RBE) in LEM plans, the conversion factors (LEM RBE-weighted dose/MKM RBE-weighted dose) were 1.37 (CI 95% 1.35–1.39) and 1.46 (1.41–1.51), respectively. The average conversion factors from 1.37 (CI 95% 1.33–1.41) to 3.09 (2.94–3.24) corresponded to the LEM fractionated doses from 2.86 Gy (RBE) to 0.24 Gy (RBE), including the doses constraining upon OARs. LEM RBE-weighted doses of 30 Gy (RBE) and 45 Gy (RBE) in 21 fractions were converted to MKM RBE-weighted doses of 16.64 Gy (RBE) and 30.72 Gy (RBE) in 16 fractions. Conclusions This conversion curve could be used to convert LEM RBE-weighted doses to MKM RBE-weighted doses for patients with rNPC receiving CIRT, providing dose references for re-irradiation therapy.
Collapse
Affiliation(s)
- Liwen Zhang
- Department of Medical Physics, Shanghai Proton and Heavy Ion Center, Fudan University Cancer Hospital, Shanghai, 201321, China.,Shanghai Engineering Research Center of Proton and Heavy Ion Radiation Therapy, Shanghai, China
| | - Weiwei Wang
- Shanghai Engineering Research Center of Proton and Heavy Ion Radiation Therapy, Shanghai, China.,Department of Medical Physics, Shanghai Proton and Heavy Ion Center, Shanghai, 201321, China
| | - Jiyi Hu
- Shanghai Engineering Research Center of Proton and Heavy Ion Radiation Therapy, Shanghai, China.,Department of Radiation Oncology, Shanghai Proton and Heavy Ion Center, Shanghai, 201321, China
| | - Jiade Lu
- Shanghai Engineering Research Center of Proton and Heavy Ion Radiation Therapy, Shanghai, China.,Department of Radiation Oncology, Shanghai Proton and Heavy Ion Center, Shanghai, 201321, China
| | - Lin Kong
- Shanghai Engineering Research Center of Proton and Heavy Ion Radiation Therapy, Shanghai, China. .,Department of Radiation Oncology, Shanghai Proton and Heavy Ion Center, Fudan University Cancer Hospital, Kangxin Road No. 4365, Shanghai, 201321, China.
| |
Collapse
|
36
|
Dale JE, Molinelli S, Vischioni B, Vitolo V, Bonora M, Magro G, Mairani A, Hasegawa A, Ohno T, Dahl O, Valvo F, Fossati P. Brainstem NTCP and Dose Constraints for Carbon Ion RT-Application and Translation From Japanese to European RBE-Weighted Dose. Front Oncol 2020; 10:531344. [PMID: 33330020 PMCID: PMC7735105 DOI: 10.3389/fonc.2020.531344] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 09/04/2020] [Indexed: 12/19/2022] Open
Abstract
Background and Purpose The Italian National Center of Oncological Hadrontherapy (CNAO) has applied dose constraints for carbon ion RT (CIRT) as defined by Japan’s National Institute of Radiological Sciences (NIRS). However, these institutions use different models to predict the relative biological effectiveness (RBE). CNAO applies the Local Effect Model I (LEM I), which in most clinical situations predicts higher RBE than NIRS’s Microdosimetric Kinetic Model (MKM). Equal constraints therefore become more restrictive at CNAO. Tolerance doses for the brainstem have not been validated for LEM I-weighted dose (DLEM I). However, brainstem constraints and a Normal Tissue Complication Probability (NTCP) model were recently reported for MKM-weighted dose (DMKM), showing that a constraint relaxation to DMKM|0.7 cm3 <30 Gy (RBE) and DMKM|0.1 cm3 <40 Gy (RBE) was feasible. The aim of this work was to evaluate the brainstem NTCP associated with CNAO’s current clinical practice and to propose new brainstem constraints for LEM I-optimized CIRT at CNAO. Material and Methods We reproduced the absorbed dose of 30 representative patient treatment plans from CNAO. Subsequently, we calculated both DLEM I and DMKM, and the relationship between DMKM and DLEM I for various brainstem dose metrics was analyzed. Furthermore, the NTCP model developed for DMKM was applied to estimate the NTCPs of the delivered plans. Results The translation of CNAO treatment plans to DMKM confirmed that the former CNAO constraints were conservative compared with DMKM constraints. Estimated NTCPs were 0% for all but one case, in which the NTCP was 2%. The relationship DMKM/DLEM I could be described by a quadratic regression model which revealed that the validated DMKM constraints corresponded to DLEM I|0.7 cm3 <41 Gy (RBE) (95% CI, 38–44 Gy (RBE)) and DLEM I|0.1 cm3 <49 Gy (RBE) (95% CI, 46–52 Gy (RBE)). Conclusion Our study demonstrates that RBE-weighted dose translation is of crucial importance in order to exchange experience and thus harmonize CIRT treatments globally. To mitigate uncertainties involved, we propose to use the lower bound of the 95% CI of the translation estimates, i.e., DLEM I|0.7 cm3 <38 Gy (RBE) and DLEM I|0.1 cm3 <46 Gy (RBE) as brainstem dose constraints for 16 fraction CIRT treatments optimized with LEM I.
Collapse
Affiliation(s)
- Jon Espen Dale
- Department of Clinical Science, Faculty of Medicine, University of Bergen, Bergen, Norway.,Department of Oncology and Medical Physics, Haukeland University Hospital, Bergen, Norway
| | | | | | - Viviana Vitolo
- National Center of Oncological Hadrontherapy, Pavia, Italy
| | - Maria Bonora
- National Center of Oncological Hadrontherapy, Pavia, Italy
| | - Giuseppe Magro
- National Center of Oncological Hadrontherapy, Pavia, Italy
| | - Andrea Mairani
- National Center of Oncological Hadrontherapy, Pavia, Italy.,Heidelberg Ion-Beam Therapy Center, Heidelberg, Germany
| | - Azusa Hasegawa
- National Center of Oncological Hadrontherapy, Pavia, Italy.,Osaka Heavy Ion Therapy Center, Osaka, Japan
| | - Tatsuya Ohno
- Department of Radiation Oncology, Gunma University Graduate School of Medicine, Gunma, Japan
| | - Olav Dahl
- Department of Clinical Science, Faculty of Medicine, University of Bergen, Bergen, Norway
| | | | - Piero Fossati
- National Center of Oncological Hadrontherapy, Pavia, Italy.,MedAustron Ion Therapy Center, Wiener Neustadt, Austria
| |
Collapse
|
37
|
Tinganelli W, Durante M. Carbon Ion Radiobiology. Cancers (Basel) 2020; 12:E3022. [PMID: 33080914 PMCID: PMC7603235 DOI: 10.3390/cancers12103022] [Citation(s) in RCA: 110] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 10/12/2020] [Accepted: 10/14/2020] [Indexed: 12/15/2022] Open
Abstract
Radiotherapy using accelerated charged particles is rapidly growing worldwide. About 85% of the cancer patients receiving particle therapy are irradiated with protons, which have physical advantages compared to X-rays but a similar biological response. In addition to the ballistic advantages, heavy ions present specific radiobiological features that can make them attractive for treating radioresistant, hypoxic tumors. An ideal heavy ion should have lower toxicity in the entrance channel (normal tissue) and be exquisitely effective in the target region (tumor). Carbon ions have been chosen because they represent the best combination in this direction. Normal tissue toxicities and second cancer risk are similar to those observed in conventional radiotherapy. In the target region, they have increased relative biological effectiveness and a reduced oxygen enhancement ratio compared to X-rays. Some radiobiological properties of densely ionizing carbon ions are so distinct from X-rays and protons that they can be considered as a different "drug" in oncology, and may elicit favorable responses such as an increased immune response and reduced angiogenesis and metastatic potential. The radiobiological properties of carbon ions should guide patient selection and treatment protocols to achieve optimal clinical results.
Collapse
Affiliation(s)
- Walter Tinganelli
- Biophysics Department, GSI Helmholtzzentrum für Schwerionenforchung, Planckstraße 1, 64291 Darmstadt, Germany;
| | - Marco Durante
- Biophysics Department, GSI Helmholtzzentrum für Schwerionenforchung, Planckstraße 1, 64291 Darmstadt, Germany;
- Institut für Festkörperphysik, Technische Universität Darmstadt, Hochschulstraße 8, 64289 Darmstadt, Germany
| |
Collapse
|
38
|
Zhang W, Hu W, Hu J, Gao J, Yang J, Kong L, Lu JJ. Carbon ion radiation therapy for sinonasal malignancies: Promising results from 2282 cases from the real world. Cancer Sci 2020; 111:4465-4479. [PMID: 32936975 PMCID: PMC7734163 DOI: 10.1111/cas.14650] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Revised: 08/27/2020] [Accepted: 09/02/2020] [Indexed: 12/21/2022] Open
Abstract
The aim of this study is to compare the effectiveness of carbon ion radiation therapy (CIRT), proton radiation therapy (PRT), and photon‐based intensity‐modulated radiation therapy (IMRT) in the treatment of sinonasal malignancies. We identified studies through systematic review and divided them into three cohorts (CIRT group/PRT group/IMRT group). Primary outcomes of interest were overall survival (OS) and local control (LC). We pooled the outcomes with meta‐analysis and compared the survival difference among groups using Chi2 (χ2) test. A representative sample of 2282 patients with sinonasal malignancies (911 in the CIRT group, 599 in the PRT group, and 772 in the IMRT group) from 44 observation studies (7 CIRT, 16 PRT, and 21 IMRT) was included. The pooled 3‐year OS, LC, distant metastasis–free survival, and progression‐free survival rates were 67.0%, 72.8%, 69.4%, and 52.8%, respectively. Through cross‐group analysis, the OS was significantly higher after CIRT (75.1%, 95% CI: 67.1%‐83.2%) than PRT (66.2%, 95% CI: 57.7%‐74.6%; χ2 = 13.374, P < .0001) or IMRT (63.8%, 95% CI: 55.3%‐72.3%; χ2 = 23.814, P < .0001). LC was significantly higher after CIRT (80.2%, 95% CI: 73.9%‐86.5%) than PRT (72.9%, 95% CI: 63.7%‐82.0%; χ2 = 8.955, P = .003) or IMRT (67.8%, 95% CI: 59.4%‐76.2%; χ2 = 30.955, P < .0001). However, no significant difference between PRT and IMRT for OS and LC was observed. CIRT appeared to provide better OS and LC for patients with malignancies of nasal cavity and paranasal sinuses. A prospective randomized clinical trial is needed to confirm the superiority of CIRT in the treatment of sinonasal tumors.
Collapse
Affiliation(s)
- Wenna Zhang
- Department of Radiation Oncology, Shanghai Proton and Heavy Ion Center, Shanghai, China.,Shanghai Engineering Research Center of Proton and Heavy Ion Radiation Therapy, Shanghai, China
| | - Weixu Hu
- Department of Radiation Oncology, Shanghai Proton and Heavy Ion Center, Shanghai, China.,Shanghai Engineering Research Center of Proton and Heavy Ion Radiation Therapy, Shanghai, China
| | - Jiyi Hu
- Department of Radiation Oncology, Shanghai Proton and Heavy Ion Center, Shanghai, China.,Shanghai Engineering Research Center of Proton and Heavy Ion Radiation Therapy, Shanghai, China
| | - Jing Gao
- Department of Radiation Oncology, Shanghai Proton and Heavy Ion Center, Shanghai, China.,Shanghai Engineering Research Center of Proton and Heavy Ion Radiation Therapy, Shanghai, China
| | - Jing Yang
- Department of Radiation Oncology, Shanghai Proton and Heavy Ion Center, Shanghai, China.,Shanghai Engineering Research Center of Proton and Heavy Ion Radiation Therapy, Shanghai, China
| | - Lin Kong
- Shanghai Engineering Research Center of Proton and Heavy Ion Radiation Therapy, Shanghai, China.,Department of Radiation Oncology, Shanghai Proton and Heavy Ion Center, Fudan University Cancer Hospital, Shanghai, China
| | - Jiade J Lu
- Department of Radiation Oncology, Shanghai Proton and Heavy Ion Center, Shanghai, China.,Shanghai Engineering Research Center of Proton and Heavy Ion Radiation Therapy, Shanghai, China
| |
Collapse
|
39
|
Bostel T, Mattke M, Nicolay NH, Welzel T, Wollschläger D, Akbaba S, Mayer A, Sprave T, Debus J, Uhl M. High-dose carbon-ion based radiotherapy of primary and recurrent sacrococcygeal chordomas: long-term clinical results of a single particle therapy center. Radiat Oncol 2020; 15:206. [PMID: 32831113 PMCID: PMC7447564 DOI: 10.1186/s13014-020-01647-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Accepted: 08/19/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND This study aimed to analyze the oncological long-term results and late toxicity of carbon ion-based radiotherapy (RT) of patients with sacral chordoma and to identify potential prognostic factors for local control (LC) and overall survival (OS). METHODS A total of 68 patients with sacral chordoma treated at the Heidelberg Ion Beam Therapy Center were included in this study. Of these 52 patients (77%) received a primary RT and 16 patients (23%) received a RT in a recurrent situation. All patients were treated with carbon ion RT (CIRT), either in combination with photons (n = 22; 32%) or as a monotherapy (n = 46; 68%), with a median radiation dose of 66 Gy RBE (range 60-74 Gy). In 40 patients (59%), RT was performed in the postoperative situation. Postoperative care included regular MRI scans. Local progression was defined as an enlargement of the maximum tumor diameter by 10% or a new tumor growth within the planning target volume (PTV). LC and OS were determined using the Kaplan-Meier method. Furthermore, the relevance of various prognostic factors for LC and OS was assessed by univariate and multivariate analysis. RESULTS The median follow-up period was 60 months (range 1.3-97.4 months). The 5-year rates for LC, progression-free survival, metastasis-free survival and OS were 53, 53, 52 and 74%, respectively. Local recurrence was observed in 31 patients (46%), occurring after a median follow-up time of 25 months (range 2.5-73.1 months). Only 10% of local recurrences occurred later than 5 years after RT. Statistical analysis showed that RT in the relapse situation corresponded to inferior LC rates compared to the primary situation, while other factors such as the GTV, radiation dose (EQD2) and treatment approach (CIRT alone vs. CIRT combined with photons) were insignificant. For OS after RT, patient age and PTV size proved to be significant predictors. The incidence of late toxicity ≥ III° according to CTCAE v5.0 was 21%. Sacral insufficiency fractures occurred in 49% of patients (maximum III°: 16%) and were thus by far the most frequent late side effect in our analysis. Radiogenic damage to the peripheral nerves, intestinal tract and skin was observed in only 9% (≥ III°: 5%), 3% (all II°) and 9% (all I°) of patients. CONCLUSION Our analysis showed only moderate long-term LC rates after carbon ion-based RT, with sacral chordomas having a particularly poor prognosis in the recurrent situation. Therefore, future studies should evaluate the safety and effectiveness of further dose escalation and hypofractionation of RT in sacral chordoma and weight potential benefits of dose escalation against side effects.
Collapse
Affiliation(s)
- Tilman Bostel
- Department of Radiation Oncology, University Medical Center Mainz, Langenbeckstrasse 1, 55131, Mainz, Germany. .,Clinical Cooperation Unit Radiation Oncology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany.
| | - Matthias Mattke
- Department of Radiation Oncology, University Hospital of Heidelberg, Im Neuenheimer Feld 400, 69120, Heidelberg, Germany
| | - Nils Henrik Nicolay
- Clinical Cooperation Unit Radiation Oncology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany.,Department of Radiation Oncology, University Hospital of Freiburg, Robert-Koch-Strasse 3, 79106, Freiburg, Germany
| | - Thomas Welzel
- Department of Radiation Oncology, University Hospital of Heidelberg, Im Neuenheimer Feld 400, 69120, Heidelberg, Germany
| | - Daniel Wollschläger
- Institute of Medical Biostatistics, Epidemiology and Informatics (IMBEI), University Medical Center Mainz, Mainz, Germany
| | - Sati Akbaba
- Department of Radiation Oncology, University Medical Center Mainz, Langenbeckstrasse 1, 55131, Mainz, Germany
| | - Arnulf Mayer
- Department of Radiation Oncology, University Medical Center Mainz, Langenbeckstrasse 1, 55131, Mainz, Germany
| | - Tanja Sprave
- Department of Radiation Oncology, University Hospital of Freiburg, Robert-Koch-Strasse 3, 79106, Freiburg, Germany
| | - Jürgen Debus
- Clinical Cooperation Unit Radiation Oncology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany.,Department of Radiation Oncology, University Hospital of Heidelberg, Im Neuenheimer Feld 400, 69120, Heidelberg, Germany
| | - Matthias Uhl
- Department of Radiation Oncology, University Hospital of Heidelberg, Im Neuenheimer Feld 400, 69120, Heidelberg, Germany
| |
Collapse
|
40
|
Mein S, Klein C, Kopp B, Magro G, Harrabi S, Karger CP, Haberer T, Debus J, Abdollahi A, Dokic I, Mairani A. Assessment of RBE-Weighted Dose Models for Carbon Ion Therapy Toward Modernization of Clinical Practice at HIT: In Vitro, in Vivo, and in Patients. Int J Radiat Oncol Biol Phys 2020; 108:779-791. [PMID: 32504659 DOI: 10.1016/j.ijrobp.2020.05.041] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 04/02/2020] [Accepted: 05/21/2020] [Indexed: 12/13/2022]
Abstract
PURPOSE Present-day treatment planning in carbon ion therapy is conducted with assumptions for a limited number of tissue types and models for effective dose. Here, we comprehensively assess relative biological effectiveness (RBE) in carbon ion therapy and associated models toward the modernization of current clinical practice in effective dose calculation. METHODS Using 2 human (A549, H460) and 2 mouse (B16, Renca) tumor cell lines, clonogenic cell survival assay was performed for examination of changes in RBE along the full range of clinical-like spread-out Bragg peak (SOBP) fields. Prediction power of the local effect model (LEM1 and LEM4) and the modified microdosimetric kinetic model (mMKM) was assessed. Experimentation and analysis were carried out in the frame of a multidimensional end point study for clinically relevant ranges of physical dose (D), dose-averaged linear energy transfer (LETd), and base-line photon radio-sensitivity (α/β)x. Additionally, predictions were compared against previously reported RBE measurements in vivo and surveyed in patient cases. RESULTS RBE model prediction performance varied among the investigated perspectives, with mMKM prediction exhibiting superior agreement with measurements both in vitro and in vivo across the 3 investigated end points. LEM1 and LEM4 performed their best in the highest LET conditions but yielded overestimations and underestimations in low/midrange LET conditions, respectively, as demonstrated by comparison with measurements. Additionally, the analysis of patient treatment plans revealed substantial variability across the investigated models (±20%-30% uncertainty), largely dependent on the selected model and absolute values for input tissue parameters αx and βx. CONCLUSION RBE dependencies in vitro, in vivo, and in silico were investigated with respect to various clinically relevant end points in the context of tumor-specific tissue radio-sensitivity assignment and accurate RBE modeling. Discovered model trends and performances advocate upgrading current treatment planning schemes in carbon ion therapy and call for verification via clinical outcome analysis with large patient cohorts.
Collapse
Affiliation(s)
- Stewart Mein
- Clinical Cooperation Unit Translational Radiation Oncology, National Center for Tumor Diseases, Heidelberg University Hospital and German Cancer Research Center, Heidelberg, Germany; Division of Molecular and Translational Radiation Oncology, Department of Radiation Oncology, Heidelberg Faculty of Medicine and Heidelberg University Hospital, Heidelberg Ion-Beam Therapy Center, Heidelberg, Germany; German Cancer Consortium Core-Center Heidelberg, German Cancer Research Center, Heidelberg, Germany; Clinical Cooperation Unit Radiation Oncology, Heidelberg Institute of Radiation Oncology, National Center for Radiation Oncology, Heidelberg University and German Cancer Research Center, Heidelberg, Germany; Faculty of Physics and Astronomy, Heidelberg University, Germany
| | - Carmen Klein
- Clinical Cooperation Unit Translational Radiation Oncology, National Center for Tumor Diseases, Heidelberg University Hospital and German Cancer Research Center, Heidelberg, Germany; Division of Molecular and Translational Radiation Oncology, Department of Radiation Oncology, Heidelberg Faculty of Medicine and Heidelberg University Hospital, Heidelberg Ion-Beam Therapy Center, Heidelberg, Germany; German Cancer Consortium Core-Center Heidelberg, German Cancer Research Center, Heidelberg, Germany; Clinical Cooperation Unit Radiation Oncology, Heidelberg Institute of Radiation Oncology, National Center for Radiation Oncology, Heidelberg University and German Cancer Research Center, Heidelberg, Germany; Faculty of Biosciences, Heidelberg University, Germany
| | - Benedikt Kopp
- Clinical Cooperation Unit Translational Radiation Oncology, National Center for Tumor Diseases, Heidelberg University Hospital and German Cancer Research Center, Heidelberg, Germany; Division of Molecular and Translational Radiation Oncology, Department of Radiation Oncology, Heidelberg Faculty of Medicine and Heidelberg University Hospital, Heidelberg Ion-Beam Therapy Center, Heidelberg, Germany; German Cancer Consortium Core-Center Heidelberg, German Cancer Research Center, Heidelberg, Germany; Clinical Cooperation Unit Radiation Oncology, Heidelberg Institute of Radiation Oncology, National Center for Radiation Oncology, Heidelberg University and German Cancer Research Center, Heidelberg, Germany; Faculty of Physics and Astronomy, Heidelberg University, Germany
| | - Giuseppe Magro
- National Centre of Oncological Hadrontherapy, Medical Physics, Pavia, Italy
| | - Semi Harrabi
- Clinical Cooperation Unit Radiation Oncology, Heidelberg Institute of Radiation Oncology, National Center for Radiation Oncology, Heidelberg University and German Cancer Research Center, Heidelberg, Germany; National Center for Tumor Diseases, Heidelberg, Germany; Heidelberg Ion-Beam Therapy Center, Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany
| | - Christian P Karger
- Clinical Cooperation Unit Translational Radiation Oncology, National Center for Tumor Diseases, Heidelberg University Hospital and German Cancer Research Center, Heidelberg, Germany; Department of Medical Physics in Radiation Oncology, German Cancer Research Center, Heidelberg, Germany
| | - Thomas Haberer
- Heidelberg Ion-Beam Therapy Center, Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany
| | - Jürgen Debus
- German Cancer Consortium Core-Center Heidelberg, German Cancer Research Center, Heidelberg, Germany; Clinical Cooperation Unit Radiation Oncology, Heidelberg Institute of Radiation Oncology, National Center for Radiation Oncology, Heidelberg University and German Cancer Research Center, Heidelberg, Germany; Faculty of Physics and Astronomy, Heidelberg University, Germany; National Center for Tumor Diseases, Heidelberg, Germany; Heidelberg Ion-Beam Therapy Center, Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany
| | - Amir Abdollahi
- Clinical Cooperation Unit Translational Radiation Oncology, National Center for Tumor Diseases, Heidelberg University Hospital and German Cancer Research Center, Heidelberg, Germany; Division of Molecular and Translational Radiation Oncology, Department of Radiation Oncology, Heidelberg Faculty of Medicine and Heidelberg University Hospital, Heidelberg Ion-Beam Therapy Center, Heidelberg, Germany; German Cancer Consortium Core-Center Heidelberg, German Cancer Research Center, Heidelberg, Germany; Clinical Cooperation Unit Radiation Oncology, Heidelberg Institute of Radiation Oncology, National Center for Radiation Oncology, Heidelberg University and German Cancer Research Center, Heidelberg, Germany
| | - Ivana Dokic
- Clinical Cooperation Unit Translational Radiation Oncology, National Center for Tumor Diseases, Heidelberg University Hospital and German Cancer Research Center, Heidelberg, Germany; Division of Molecular and Translational Radiation Oncology, Department of Radiation Oncology, Heidelberg Faculty of Medicine and Heidelberg University Hospital, Heidelberg Ion-Beam Therapy Center, Heidelberg, Germany; German Cancer Consortium Core-Center Heidelberg, German Cancer Research Center, Heidelberg, Germany; Clinical Cooperation Unit Radiation Oncology, Heidelberg Institute of Radiation Oncology, National Center for Radiation Oncology, Heidelberg University and German Cancer Research Center, Heidelberg, Germany.
| | - Andrea Mairani
- Clinical Cooperation Unit Translational Radiation Oncology, National Center for Tumor Diseases, Heidelberg University Hospital and German Cancer Research Center, Heidelberg, Germany; National Centre of Oncological Hadrontherapy, Medical Physics, Pavia, Italy; Heidelberg Ion-Beam Therapy Center, Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany.
| |
Collapse
|
41
|
Lin LC, Jiang GL, Ohri N, Wang Z, Lu JJ, Garg M, Guha C, Wu X. Evaluating dosimetric constraints for carbon ion radiotherapy in the treatment of locally advanced pancreatic cancer. Radiat Oncol 2020; 15:101. [PMID: 32381042 PMCID: PMC7204055 DOI: 10.1186/s13014-020-01515-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Accepted: 03/13/2020] [Indexed: 02/08/2023] Open
Abstract
OBJECTIVE To identify a safe carbon ion radiotherapy (CIRT) regimen for patients with locally advanced pancreatic cancer (LAPC). METHODS We generated treatment plans for 13 consecutive, unselected patients who were treated for LAPC with CIRT at our center using three dose and fractionation schedules: 4.6 GyRBE × 12, 4.0 GyRBE × 14, and 3.0 GyRBE × 17. We tested the ability to meet published dose constraints for the duodenum, stomach, and small bowel as a function of dose schedule and distance between the tumor and organs at risk. RESULTS Using 4.6 GyRBE × 12 and 4.0 GyRBE × 14, critical (high-dose) constraints could only reliably be achieved when target volumes were not immediately adjacent to organs at risk. Critical constraints could be met in all cases using 3.0 GyRBE × 17. Low-dose constraints could not uniformly be achieved using any dose schedule. CONCLUSION While selected patients with LAPC may be treated safely with a CIRT regimen of 4.6 GyRBE × 12, our dosimetric analyses indicate that a more conservative schedule of 3.0 GyRBE × 17 may be required to safely treat a broader population of LAPC patients, including those with large tumors and tumors that approach gastrointestinal organs at risk. The result of this work was used to guide an ongoing clinical trial.
Collapse
Affiliation(s)
- Lien-Chun Lin
- Department of Medical Physics, Shanghai Proton and Heavy Ion Center, Fudan University Cancer Hospital, Shanghai Engineering Research Center of Proton and Heavy Ion Radiation Therapy, 4365 Kangxin Road, Shanghai, 201318, China
| | - Guo-Liang Jiang
- Department of Radiation Oncology, Shanghai Proton and Heavy Ion Center, Fudan University Cancer Hospital, Shanghai Engineering Research Center of Proton and Heavy Ion Radiation Therapy, Shanghai, China
| | - Nitin Ohri
- Department of Radiation Oncology, Albert Einstein College of Medicine and Montefiore Medical Center, 111 E 210th St, Bronx, NY, 10467, USA
| | - Zheng Wang
- Department of Radiation Oncology, Shanghai Proton and Heavy Ion Center, Fudan University Cancer Hospital, Shanghai Engineering Research Center of Proton and Heavy Ion Radiation Therapy, Shanghai, China
| | - Jiade J Lu
- Department of Radiation Oncology, Shanghai Proton and Heavy Ion Center, Fudan University Cancer Hospital, Shanghai Engineering Research Center of Proton and Heavy Ion Radiation Therapy, Shanghai, China
| | - Madhur Garg
- Department of Radiation Oncology, Albert Einstein College of Medicine and Montefiore Medical Center, 111 E 210th St, Bronx, NY, 10467, USA
| | - Chandan Guha
- Department of Radiation Oncology, Albert Einstein College of Medicine and Montefiore Medical Center, 111 E 210th St, Bronx, NY, 10467, USA.
| | - Xiaodong Wu
- Department of Medical Physics, Shanghai Proton and Heavy Ion Center, Fudan University Cancer Hospital, Shanghai Engineering Research Center of Proton and Heavy Ion Radiation Therapy, 4365 Kangxin Road, Shanghai, 201318, China.
| |
Collapse
|
42
|
The sacral chordoma margin. EUROPEAN JOURNAL OF SURGICAL ONCOLOGY 2020; 46:1415-1422. [PMID: 32402509 DOI: 10.1016/j.ejso.2020.04.028] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 04/15/2020] [Indexed: 11/23/2022]
Abstract
OBJECTIVE Aim of the manuscript is to discuss how to improve margins in sacral chordoma. BACKGROUND Chordoma is a rare neoplasm, arising in half cases from the sacrum, with reported local failure in >50% after surgery. METHODS A multidisciplinary meeting of the "Chordoma Global Consensus Group" was held in Milan in 2017, focusing on challenges in defining and achieving optimal margins in chordoma with respect to surgery, definitive particle radiation therapy (RT) and medical therapies. This review aims to report on the outcome of the consensus meeting and to provide a summary of the most recent evidence in this field. Possible new ways forward, including on-going international clinical studies, are discussed. RESULTS En-bloc tumor-sacrum resection is the cornerstone of treatment of primary sacral chordoma, aiming to achieve negative microscopic margins. Radical definitive particle therapy seems to offer a similar outcome compared to surgery, although confirmation in comparative trials is lacking; besides there is still a certain degree of technical variability across institutions, corresponding to different fields of treatment and different tumor coverage. To address some of these questions, a prospective, randomized international study comparing surgery versus definitive high-dose RT is ongoing. Available data do not support the routine use of any medical therapy as (neo)adjuvant/cytoreductive treatment. CONCLUSION Given the significant influence of margins status on local control in patients with primary localized sacral chordoma, the clear definition of adequate margins and a standard local approach across institutions for both surgery and particle RT is vital for improving the management of these patients.
Collapse
|
43
|
Development and Validation of Single Field Multi-Ion Particle Therapy Treatments. Int J Radiat Oncol Biol Phys 2020; 106:194-205. [DOI: 10.1016/j.ijrobp.2019.10.008] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 08/23/2019] [Accepted: 10/01/2019] [Indexed: 12/19/2022]
|
44
|
Rectum Dose Constraints for Carbon Ion Therapy: Relative Biological Effectiveness Model Dependence in Relation to Clinical Outcomes. Cancers (Basel) 2019; 12:cancers12010046. [PMID: 31877802 PMCID: PMC7016830 DOI: 10.3390/cancers12010046] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 12/04/2019] [Accepted: 12/09/2019] [Indexed: 12/13/2022] Open
Abstract
The clinical application of different relative biological effectiveness (RBE) models for carbon ion RBE-weighted dose calculation hinders a global consensus in defining normal tissue constraints. This work aims to update the local effect model (LEM)-based constraints for the rectum using microdosimetric kinetic model (mMKM)-defined values, relying on RBE translation and the analysis of long-term clinical outcomes. LEM-optimized plans of treated patients, having suffered from prostate adenocarcinoma (n = 22) and sacral chordoma (n = 41), were recalculated with the mMKM using an in-house developed tool. The relation between rectum dose-volume points in the two RBE systems (DLEM|v and DMKM|v) was fitted to translate new LEM-based constraints. Normal tissue complication probability (NTCP) values, predicting late rectal toxicity, were obtained by applying published parameters. No late rectal toxicity events were reported within the patient cohort. The rectal toxicity outcome was confirmed using dosimetric analysis: DMKMVHs lay largely below original constraints; the translated DLEM|v values were 4.5%, 8.3%, 18.5%, and 35.4% higher than the nominal DMKM|v of the rectum volume, v-1%, 5%, 10% and 20%. The average NTCP value ranged from 5% for the prostate adenocarcinoma, to 0% for the sacral chordoma group. The redefined constraints, to be confirmed prospectively with clinical data, are DLEM|5cc ≤ 61 Gy(RBE) and DLEM|1cc ≤ 66 Gy(RBE).
Collapse
|
45
|
Molinelli S, Bonora M, Magro G, Casale S, Dale JE, Fossati P, Hasegawa A, Mirandola A, Ronchi S, Russo S, Preda L, Valvo F, Orecchia R, Ciocca M, Vischioni B. RBE-weighted dose in carbon ion therapy for ACC patients: Impact of the RBE model translation on treatment outcomes. Radiother Oncol 2019; 141:227-233. [DOI: 10.1016/j.radonc.2019.08.022] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 07/23/2019] [Accepted: 08/26/2019] [Indexed: 11/30/2022]
|
46
|
Wang W, Huang Z, Sheng Y, Zhao J, Shahnazi K, Zhang Q, Jiang G. RBE-weighted dose conversions for carbon ionradiotherapy between microdosimetric kinetic model and local effect model for the targets and organs at risk in prostate carcinoma. Radiother Oncol 2019; 144:30-36. [PMID: 31710941 DOI: 10.1016/j.radonc.2019.10.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 07/26/2019] [Accepted: 10/06/2019] [Indexed: 10/25/2022]
Abstract
BACKGROUND AND PURPOSE The aim of this study was to establish curves for the conversion of RBE-weighted doses for targets and organs at risk (OARs) from the microdosimetric kinetic model (MKM) calculation to that of the local effect model I (LEM) for carbon ion radiotherapy (CIRT) for prostate carcinoma (PCA). MATERIALS AND METHODS This study was performed in the experimental treatment planning system (eTPS, V8A, Raystation, Sweden), which incorporates both MKM and LEM. CIRT plans from 10 PCA patients were collected. There were 5 steps to establish the curves: (1) design MKM plans in eTPS; (2) recalculate the physical doses from MKM to LEM and create a LEM plan in eTPS; (3) plot the RBE-weighted MKM to LEM conversion curves; (4) convert the MKM rectum constraint dose volume histogram (DVH) from NIRS to a LEM DVH; and (5) compare patients' rectum DVHs and follow-up with the converted constraint DVH. RESULTS The conversion factors for MKM doses of 0.18 Gy (RBE) to 4.55 Gy (RBE) per fraction to LEM doses were 2.72-1.06. For fraction sizes of >1 Gy (RBE), the conversion factors matched Fossati's curve and for fraction sizes of <1.00 Gy (RBE) the values were on the extrapolated Fossati's curve. A LEM rectum constraint DVH was established. Ten patients' rectum DVHs were all lower than LEM constraint DVHs. No complications were reported clinically. CONCLUSION For PCA receiving CIRT, the RBE-weighted doses using MKM for targets and OARs could be converted to LEM doses using conversion curves.
Collapse
Affiliation(s)
- Weiwei Wang
- Department of Medical Physics, Shanghai Proton and Heavy Ion Center, Shanghai Engineering Research Center of Proton and Heavy Ion Radiation Therapy, China
| | - Zhijie Huang
- Department of Medical Physics, Shanghai Proton and Heavy Ion Center, Shanghai Engineering Research Center of Proton and Heavy Ion Radiation Therapy, China
| | - Yinxiangzi Sheng
- Department of Medical Physics, Shanghai Proton and Heavy Ion Center, Shanghai Engineering Research Center of Proton and Heavy Ion Radiation Therapy, China
| | - Jingfang Zhao
- Department of Medical Physics, Shanghai Proton and Heavy Ion Center, Shanghai Engineering Research Center of Proton and Heavy Ion Radiation Therapy, China; Department of Radiation Oncology, Fudan University Shanghai Cancer Center, China
| | - Kambiz Shahnazi
- Department of Medical Physics, Shanghai Proton and Heavy Ion Center, Shanghai Engineering Research Center of Proton and Heavy Ion Radiation Therapy, China
| | - Qing Zhang
- Department of Radiation Oncology, Shanghai Proton and Heavy Ion Center, Shanghai Engineering Research Center of Proton and Heavy Ion Radiation Therapy, China
| | - Guoliang Jiang
- Department of Radiation Oncology, Shanghai Proton and Heavy Ion Center, Shanghai Engineering Research Center of Proton and Heavy Ion Radiation Therapy, China.
| |
Collapse
|
47
|
Dale JE, Molinelli S, Vitolo V, Vischioni B, Bonora M, Magro G, Pettersen HES, Mairani A, Hasegawa A, Dahl O, Valvo F, Fossati P. Optic nerve constraints for carbon ion RT at CNAO - Reporting and relating outcome to European and Japanese RBE. Radiother Oncol 2019; 140:175-181. [PMID: 31310888 DOI: 10.1016/j.radonc.2019.06.028] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 06/18/2019] [Accepted: 06/18/2019] [Indexed: 11/16/2022]
Abstract
BACKGROUND AND PURPOSE Until now, carbon ion RT (CIRT) dose constraints for the optic nerve (ON) have only been validated and reported in the NIRS RBE-weighted dose (DNIRS). The aim of this work is to improve CNAO's RBE-weighted dose (DLEM) constraints by analyzing institutional toxicity data and by relating it to DNIRS. MATERIAL AND METHODS A total of 65 ONs from 38 patients treated with CIRT to the head and neck region in the period 2013-14 were analyzed. The absorbed dose (DAbs) of the treatment plans was reproduced and subsequently both DLEM and DNIRS were applied, thus relating CNAO clinical toxicity to DNIRS. RESULTS Median FU was 47 (26-67) months. Visual acuity was preserved for the 56 ONs in which the old constraints were respected. Three ONs developed visual decline at DLEM|1% ≥71 Gy(RBE)/DLEM|20% ≥68 Gy(RBE), corresponding to DNIRS|1% ≥68 Gy(RBE)/DNIRS|20% ≥62 Gy(RBE). Dose recalculation revealed that NIRS constraints of DNIRS|1% ≤40 Gy(RBE)/DNIRS|20% ≤28 Gy(RBE) corresponded to DLEM|1% ≤50 Gy(RBE)/DLEM|20% ≤40 Gy(RBE). Reoptimization of treatment plans with these new DLEM constraints showed that the dose distribution still complied with NIRS constraints when evaluated in DNIRS. However, due to uncertainties in the method, and to comply with the EQD2-based constraints used at GSI/HIT, a more moderate constraint relaxation to DLEM|1% ≤45 Gy(RBE)/DLEM|20% ≤37 Gy(RBE) has been implemented in CNAO clinical routine since October 2018. CONCLUSION New DLEM constraints for the ON were derived by analyzing CNAO toxicity data and by linking our results to the experience of NIRS and GSI/HIT. This work demonstrates the value of recalculating and reporting results in both DLEM and DNIRS.
Collapse
Affiliation(s)
- Jon Espen Dale
- Department of Oncology and Medical Physics, Haukeland University Hospital, Bergen, Norway; Department of Clinical Science, Faculty of Medicine, University of Bergen, Norway.
| | | | - Viviana Vitolo
- National Center of Oncological Hadrontherapy, Pavia, Italy
| | | | - Maria Bonora
- National Center of Oncological Hadrontherapy, Pavia, Italy
| | - Giuseppe Magro
- National Center of Oncological Hadrontherapy, Pavia, Italy
| | | | - Andrea Mairani
- National Center of Oncological Hadrontherapy, Pavia, Italy; Heidelberg Ion-Beam Therapy Center, Heidelberg, Germany
| | - Azusa Hasegawa
- National Center of Oncological Hadrontherapy, Pavia, Italy; Osaka Heavy Ion Therapy Center, Osaka, Japan
| | - Olav Dahl
- Department of Oncology and Medical Physics, Haukeland University Hospital, Bergen, Norway; Department of Clinical Science, Faculty of Medicine, University of Bergen, Norway
| | | | - Piero Fossati
- National Center of Oncological Hadrontherapy, Pavia, Italy; MedAustron Ion Therapy Center, Wiener Neustadt, Austria
| |
Collapse
|
48
|
Wu S, Li P, Cai X, Hong Z, Yu Z, Zhang Q, Fu S. Carbon Ion Radiotherapy for Patients with Extracranial Chordoma or Chondrosarcoma - Initial Experience from Shanghai Proton and Heavy Ion Center. J Cancer 2019; 10:3315-3322. [PMID: 31293634 PMCID: PMC6603407 DOI: 10.7150/jca.29667] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Accepted: 04/12/2019] [Indexed: 12/22/2022] Open
Abstract
Purpose: The purpose of this study was to evaluate the outcomes of patients with extracranial chordoma or chondrosarcoma treated by carbon ion radiotherapy (CIRT). Patients and methods: Between May 2015 and April 2018, 21 consecutive patients with chordoma (n=16) or chondrosarcoma (n=5) treated by CIRT at Shanghai Proton and Heavy Ion Center (SPHIC) were enrolled. The local control (LC), progression free survival (PFS), and overall survival (OS) rates were estimated using the Kaplan-Meier method. Association between each of the candidate prognostic factors and the estimated LC, PFS or OS was tested using the log rank test. Results: The median gross tumor volume (GTV) was 512.7 ml (range, 142.6-2893.0 ml). The median prescription dose was 69 gray equivalent (GyE) (range, 57-80 GyE). After a median follow-up of 21.8 months (range, 7.2-39.2 months), the 1-year LC, PFS, and OS were 93.8%, 88.4%, and 100%, respectively, whereas the 2-year LC, PFS, and OS were 85.2%, 80.4%, and 100%, respectively. A univariate analysis revealed that age, metal implant status, treatment status, sex, dose, and GTV were not significant prognostic factors for LC, PFS or OS. No grade 2 or higher early and late toxicities were observed within the follow-up. Conclusion: The results of this retrospective study are encouraging. Patients with extracranial chordoma or chondrosarcoma treated by CIRT in our center achieved a favorable shot-term outcome, without developing severe acute or late adverse events. The long-term results deserve further investigation, even in a prospective randomized trial.
Collapse
Affiliation(s)
- Shuang Wu
- Department of Radiation Oncology, Shanghai Proton and Heavy Ion Center, Fudan University Cancer Hospital, Shanghai 201321, China.,Shanghai Engineering Research Center of Proton and Heavy Ion Radiation Therapy, Shanghai 201321, China
| | - Ping Li
- Department of Radiation Oncology, Shanghai Proton and Heavy Ion Center, Shanghai 201321, China.,Shanghai Engineering Research Center of Proton and Heavy Ion Radiation Therapy, Shanghai 201321, China
| | - Xin Cai
- Department of Radiation Oncology, Shanghai Proton and Heavy Ion Center, Shanghai 201321, China.,Shanghai Engineering Research Center of Proton and Heavy Ion Radiation Therapy, Shanghai 201321, China
| | - Zhengshan Hong
- Department of Radiation Oncology, Shanghai Proton and Heavy Ion Center, Shanghai 201321, China.,Shanghai Engineering Research Center of Proton and Heavy Ion Radiation Therapy, Shanghai 201321, China
| | - Zhan Yu
- Department of Radiation Oncology, Shanghai Proton and Heavy Ion Center, Shanghai 201321, China.,Shanghai Engineering Research Center of Proton and Heavy Ion Radiation Therapy, Shanghai 201321, China
| | - Qing Zhang
- Department of Radiation Oncology, Shanghai Proton and Heavy Ion Center, Shanghai 201321, China.,Shanghai Engineering Research Center of Proton and Heavy Ion Radiation Therapy, Shanghai 201321, China
| | - Shen Fu
- Department of Radiation Oncology, Shanghai Proton and Heavy Ion Center, Fudan University Cancer Hospital, Shanghai 201321, China.,Shanghai Engineering Research Center of Proton and Heavy Ion Radiation Therapy, Shanghai 201321, China.,Key Laboratory of Nuclear Physics and Ion-Beam Application (MOE), Fudan University, Shanghai 200433, China.,Department of Radiation Oncology, Shanghai Concord Cancer Hospital, Shanghai 200020, China
| |
Collapse
|
49
|
Vitolo V, Barcellini A, Fossati P, Fiore MR, Vischioni B, Iannalfi A, Facoetti A, Bonora M, Ronchi S, D'Ippolito E, Petrucci R, Viselner G, Preda L, Ciocca M, Valvo F, Orecchia R. Carbon Ion Radiotherapy in the Management of Unusual Liposarcomas: A Case Report. In Vivo 2019; 33:529-533. [PMID: 30804137 PMCID: PMC6506314 DOI: 10.21873/invivo.11506] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 12/07/2018] [Accepted: 12/11/2018] [Indexed: 01/15/2023]
Abstract
BACKGROUND Liposarcomas are the most common soft-tissue sarcomas in adulthood. Orbital and spermatic cord liposarcomas are uncommon and there is no consensus on their management. The treatment of choice is wide excision, which may be destructive and lead to unacceptable morbidity. When surgery is declined by patients and in recurrent disease, management can be challenging. We report two cases of liposarcoma treated with carbon ion radiotherapy at the National Center for Oncological Hadrontherapy (Fondazione CNAO) in Italy. CASE REPORT A woman with orbital liposarcoma and a man with spermatic cord liposarcoma were referred to our Center and accepted for carbon ion radiotherapy. The treatment was well tolerated and late toxicities were mild. Good local control was achieved in patients. CONCLUSION In our experience, carbon ion radiotherapy is an effective and safe option, especially in cases of tumor at high risk for local relapse, in patients with multiple local recurrences, and in patients who refuse destructive surgery.
Collapse
Affiliation(s)
- Viviana Vitolo
- National Center of Oncological Hadrontherapy (Fondazione CNAO), Pavia, Italy
| | - Amelia Barcellini
- National Center of Oncological Hadrontherapy (Fondazione CNAO), Pavia, Italy
| | - Piero Fossati
- National Center of Oncological Hadrontherapy (Fondazione CNAO), Pavia, Italy
| | - Maria Rosaria Fiore
- National Center of Oncological Hadrontherapy (Fondazione CNAO), Pavia, Italy
| | - Barbara Vischioni
- National Center of Oncological Hadrontherapy (Fondazione CNAO), Pavia, Italy
| | - Alberto Iannalfi
- National Center of Oncological Hadrontherapy (Fondazione CNAO), Pavia, Italy
| | - Angelica Facoetti
- National Center of Oncological Hadrontherapy (Fondazione CNAO), Pavia, Italy
| | - Maria Bonora
- National Center of Oncological Hadrontherapy (Fondazione CNAO), Pavia, Italy
| | - Sara Ronchi
- National Center of Oncological Hadrontherapy (Fondazione CNAO), Pavia, Italy
| | - Emma D'Ippolito
- National Center of Oncological Hadrontherapy (Fondazione CNAO), Pavia, Italy
| | - Rachele Petrucci
- National Center of Oncological Hadrontherapy (Fondazione CNAO), Pavia, Italy
| | - Gisela Viselner
- National Center of Oncological Hadrontherapy (Fondazione CNAO), Pavia, Italy
| | - Lorenzo Preda
- National Center of Oncological Hadrontherapy (Fondazione CNAO), Pavia, Italy
- Department of Clinical-Surgical, Diagnostic and Pediatric Sciences, University of Pavia, Pavia, Italy
| | - Mario Ciocca
- National Center of Oncological Hadrontherapy (Fondazione CNAO), Pavia, Italy
| | - Francesca Valvo
- National Center of Oncological Hadrontherapy (Fondazione CNAO), Pavia, Italy
| | - Roberto Orecchia
- National Center of Oncological Hadrontherapy (Fondazione CNAO), Pavia, Italy
- European Institute of Oncology, Milan, Italy
| |
Collapse
|
50
|
Barcellini A, Vitolo V, Facoetti A, Fossati P, Preda L, Fiore MR, Vischioni B, Iannalfi A, Bonora M, Ronchi S, D'Ippolito E, Petrucci R, Viselner G, Ciocca M, Valvo F, Orecchia R. Feasibility of Carbon Ion Radiotherapy in the Treatment of Gynecological Melanoma. In Vivo 2019; 33:473-476. [PMID: 30804128 PMCID: PMC6506293 DOI: 10.21873/invivo.11497] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 12/28/2018] [Accepted: 01/07/2019] [Indexed: 12/16/2022]
Abstract
BACKGROUND Malignant melanoma of the lower genital tract is a rare disease known to have a poor prognosis. Because of the high rate of distant metastasis and unsatisfactory survival benefit, a more conservative treatment approach, instead of extensive surgery, may be warranted. Gynecological melanoma is a radioresistant tumor, an ideal disease to test the biological efficacy of carbon ion radiotherapy (CIRT). AIM To report our preliminary experience with CIRT in the treatment of gynecological melanoma at the National Center of Oncological Hadrontherapy (CNAO). PATIENTS AND METHODS Between January 2016 and February 2017, four patients were admitted for CIRT at CNAO. A case of cervical melanoma was treated with palliative aim because of large volume macroscopic disease, while three cases of vaginal melanoma were irradiated with a total dose of 68.8 Gy (relative biological effectiveness) in 16 fractions delivered over 4 weeks (4 days a week). RESULTS The age of women ranged between 49 and 72 (median=60.5 years) years. Treatment was well tolerated in all patients and all women completed the scheduled treatment course. During CIRT, toxicity was mild. For patients with vaginal disease, local control was 10.23 and 12.6 months, while that for cervical malignant melanoma was 7.3 months. All patients experienced systemic progression, with median distant metastasis-free survival of 11.7 months. The median overall survival for the whole patient group was 11.41 months. CONCLUSION In our first experiences, CIRT appears to be a safe non-invasive option for malignant melanoma of the lower genital tract, but more data and longer follow-up are necessary in order to evaluate the effectiveness and late effects.
Collapse
Affiliation(s)
| | - Viviana Vitolo
- National Center of Oncological Hadrontherapy, Pavia, Italy
| | | | - Piero Fossati
- National Center of Oncological Hadrontherapy, Pavia, Italy
| | - Lorenzo Preda
- National Center of Oncological Hadrontherapy, Pavia, Italy
- Department of Clinical-Surgical, Diagnostic and Pediatric Sciences, University of Pavia, Pavia, Italy
| | | | | | | | - Maria Bonora
- National Center of Oncological Hadrontherapy, Pavia, Italy
| | - Sara Ronchi
- National Center of Oncological Hadrontherapy, Pavia, Italy
| | | | | | | | - Mario Ciocca
- National Center of Oncological Hadrontherapy, Pavia, Italy
| | | | - Roberto Orecchia
- National Center of Oncological Hadrontherapy, Pavia, Italy
- European Institute of Oncology, Milan, Italy
| |
Collapse
|