1
|
Chen Y, Shokouhi AR, Voelcker NH, Elnathan R. Nanoinjection: A Platform for Innovation in Ex Vivo Cell Engineering. Acc Chem Res 2024; 57:1722-1735. [PMID: 38819691 PMCID: PMC11191407 DOI: 10.1021/acs.accounts.4c00190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 05/20/2024] [Accepted: 05/21/2024] [Indexed: 06/01/2024]
Abstract
ConspectusIn human cells, intracellular access and therapeutic cargo transport, including gene-editing tools (e.g., CRISPR-Cas9 and transposons), nucleic acids (e.g., DNA, mRNA, and siRNA), peptides, and proteins (e.g., enzymes and antibodies), are tightly constrained to ensure healthy cell function and behavior. This principle is exemplified in the delivery mechanisms of chimeric antigen receptor (CAR)-T cells for ex-vivo immunotherapy. In particular, the clinical success of CAR-T cells has established a new standard of care by curing previously incurable blood cancers. The approach involves the delivery, typically via the use of electroporation (EP) and lentivirus, of therapeutic CAR genes into a patient's own T cells, which are then engineered to express CARs that target and combat their blood cancer. But the key difficulty lies in genetically manipulating these cells without causing irreversible damage or loss of function─all the while minimizing complexities of manufacturing, safety concerns, and costs, and ensuring the efficacy of the final CAR-T cell product.Nanoinjection─the process of intracellular delivery using nanoneedles (NNs)─is an emerging physical delivery route that efficiently negotiates the plasma membrane of many cell types, including primary human T cells. It occurs with minimal perturbation, invasiveness, and toxicity, with high efficiency and throughput at high spatial and temporal resolutions. Nanoinjection promises greatly improved delivery of a broad range of therapeutic cargos with little or no damage to those cargos. A nanoinjection platform allows these cargos to function in the intracellular space as desired. The adaptability of nanoinjection platforms is now bringing major advantages in immunomodulation, mechanotransduction, sampling of cell states (nanobiopsy), controlled intracellular interrogation, and the primary focus of this account─intracellular delivery and its applications in ex vivo cell engineering.Mechanical nanoinjection typically exerts direct mechanical force on the cell membrane, offering a straightforward route to improve membrane perturbation by the NNs and subsequent transport of genetic cargo into targeted cell type (adherent or suspension cells). By contrast, electroactive nanoinjection is controlled by coupling NNs with an electric field─a new route for activating electroporation (EP) at the nanoscale─allowing a dramatic reduction of the applied voltage to a cell and so minimizing post-EP damage to cells and cargo, and overcoming many of the limitations of conventional bulk EP. Nanoinjection transcends mere technique; it is an approach to cell engineering ex vivo, offering the potential to endow cells with new, powerful features such as generating chimeric antigen receptor (CAR)-T cells for future CAR-T cell technologies.We first discuss the manufacturing of NN devices (Section 2), then delve into nanoinjection-mediated cell engineering (Section 3), nanoinjection mechanisms and interfacing methodologies (Section 4), and emerging applications in using nanoinjection to create functional CAR-T cells (Section 5).
Collapse
Affiliation(s)
- Yaping Chen
- Oujiang
Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain
Health), Institute of Aging, Key Laboratory of Alzheimer’s
Disease of Zhejiang Province, Zhejiang Provincial Clinical Research
Center for Mental Disorders, The Affiliated Wenzhou Kangning Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325035, P.R. China
- Monash
Institute of Pharmaceutical Sciences, Monash
University, 381 Royal Parade, Parkville, VIC 3052, Australia
| | - Ali-Reza Shokouhi
- Monash
Institute of Pharmaceutical Sciences, Monash
University, 381 Royal Parade, Parkville, VIC 3052, Australia
| | - Nicolas H. Voelcker
- Monash
Institute of Pharmaceutical Sciences, Monash
University, 381 Royal Parade, Parkville, VIC 3052, Australia
- Melbourne
Centre for Nanofabrication, Victorian Node of the Australian National
Fabrication Facility, 151 Wellington Road, Clayton, VIC 3168, Australia
- Department
of Materials Science and Engineering, Monash
University, 22 Alliance Lane, Clayton, VIC 3168, Australia
| | - Roey Elnathan
- Monash
Institute of Pharmaceutical Sciences, Monash
University, 381 Royal Parade, Parkville, VIC 3052, Australia
- Melbourne
Centre for Nanofabrication, Victorian Node of the Australian National
Fabrication Facility, 151 Wellington Road, Clayton, VIC 3168, Australia
- School
of Medicine, Faculty of Health, Deakin University, Waurn Ponds, VIC 3216, Australia
- Institute
for Frontier Materials, Deakin University, Geelong Waurn Ponds campus, VIC 3216, Australia
- The
Institute for Mental and Physical Health and Clinical Translation,
School of Medicine, Deakin University, Geelong Waurn Ponds Campus, Melbourne, VIC 3216, Australia
| |
Collapse
|
2
|
Cortés-Llanos B, Rauti R, Ayuso-Sacido Á, Pérez L, Ballerini L. Impact of Magnetite Nanowires on In Vitro Hippocampal Neural Networks. Biomolecules 2023; 13:biom13050783. [PMID: 37238653 DOI: 10.3390/biom13050783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 04/20/2023] [Accepted: 04/25/2023] [Indexed: 05/28/2023] Open
Abstract
Nanomaterials design, synthesis, and characterization are ever-expanding approaches toward developing biodevices or neural interfaces to treat neurological diseases. The ability of nanomaterials features to tune neuronal networks' morphology or functionality is still under study. In this work, we unveil how interfacing mammalian brain cultured neurons and iron oxide nanowires' (NWs) orientation affect neuronal and glial densities and network activity. Iron oxide NWs were synthesized by electrodeposition, fixing the diameter to 100 nm and the length to 1 µm. Scanning electron microscopy, Raman, and contact angle measurements were performed to characterize the NWs' morphology, chemical composition, and hydrophilicity. Hippocampal cultures were seeded on NWs devices, and after 14 days, the cell morphology was studied by immunocytochemistry and confocal microscopy. Live calcium imaging was performed to study neuronal activity. Using random nanowires (R-NWs), higher neuronal and glial cell densities were obtained compared with the control and vertical nanowires (V-NWs), while using V-NWs, more stellate glial cells were found. R-NWs produced a reduction in neuronal activity, while V-NWs increased the neuronal network activity, possibly due to a higher neuronal maturity and a lower number of GABAergic neurons, respectively. These results highlight the potential of NWs manipulations to design ad hoc regenerative interfaces.
Collapse
Affiliation(s)
- Belén Cortés-Llanos
- Departamento de Física de Materiales, Universidad Complutense de Madrid, 28040 Madrid, Spain
- Fundación IMDEA Nanociencia, C/Faraday 9, 28049 Madrid, Spain
- Department of Medicine, Duke University, Durham, NC 27705, USA
| | - Rossana Rauti
- International School for Advanced Studies (ISAS-SISSA), 34136 Trieste, Italy
- Deparment of Biomolecular Sciences, Università degli Studi di Urbino Carlo Bo, 61029 Urbino, Italy
| | - Ángel Ayuso-Sacido
- Brain Tumor Laboratory, Fundación Vithas, Grupo Hospitales Vithas, 28043 Madrid, Spain
- Faculty of Experimental Science and Faculty of Medicine, University of Francisco de Vitoria, 28223 Madrid, Spain
| | - Lucas Pérez
- Departamento de Física de Materiales, Universidad Complutense de Madrid, 28040 Madrid, Spain
- Fundación IMDEA Nanociencia, C/Faraday 9, 28049 Madrid, Spain
| | - Laura Ballerini
- International School for Advanced Studies (ISAS-SISSA), 34136 Trieste, Italy
| |
Collapse
|
3
|
Valderas-Gutiérrez J, Davtyan R, Sivakumar S, Anttu N, Li Y, Flatt P, Shin JY, Prinz CN, Höök F, Fioretos T, Magnusson MH, Linke H. Enhanced Optical Biosensing by Aerotaxy Ga(As)P Nanowire Platforms Suitable for Scalable Production. ACS APPLIED NANO MATERIALS 2022; 5:9063-9071. [PMID: 35909504 PMCID: PMC9315950 DOI: 10.1021/acsanm.2c01372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Sensitive detection of low-abundance biomolecules is central for diagnostic applications. Semiconductor nanowires can be designed to enhance the fluorescence signal from surface-bound molecules, prospectively improving the limit of optical detection. However, to achieve the desired control of physical dimensions and material properties, one currently uses relatively expensive substrates and slow epitaxy techniques. An alternative approach is aerotaxy, a high-throughput and substrate-free production technique for high-quality semiconductor nanowires. Here, we compare the optical sensing performance of custom-grown aerotaxy-produced Ga(As)P nanowires vertically aligned on a polymer substrate to GaP nanowires batch-produced by epitaxy on GaP substrates. We find that signal enhancement by individual aerotaxy nanowires is comparable to that from epitaxy nanowires and present evidence of single-molecule detection. Platforms based on both types of nanowires show substantially higher normalized-to-blank signal intensity than planar glass surfaces, with the epitaxy platforms performing somewhat better, owing to a higher density of nanowires. With further optimization, aerotaxy nanowires thus offer a pathway to scalable, low-cost production of highly sensitive nanowire-based platforms for optical biosensing applications.
Collapse
Affiliation(s)
- Julia Valderas-Gutiérrez
- NanoLund, Lund University, P.O. Box 118, SE-22100 Lund, Sweden
- Division
of Solid State Physics, Lund University, P.O. Box 118, SE-22100 Lund, Sweden
| | - Rubina Davtyan
- NanoLund, Lund University, P.O. Box 118, SE-22100 Lund, Sweden
- Division
of Solid State Physics, Lund University, P.O. Box 118, SE-22100 Lund, Sweden
| | - Sudhakar Sivakumar
- NanoLund, Lund University, P.O. Box 118, SE-22100 Lund, Sweden
- Division
of Solid State Physics, Lund University, P.O. Box 118, SE-22100 Lund, Sweden
| | - Nicklas Anttu
- Physics,
Faculty of Science and Engineering, Åbo
Akademi University, Henrikinkatu
2, FI-20500 Turku, Finland
| | - Yuyu Li
- AlignedBio
AB, Medicon Village,
Scheeletorget 1, SE-22363, Lund 22100, Sweden
| | - Patrick Flatt
- AlignedBio
AB, Medicon Village,
Scheeletorget 1, SE-22363, Lund 22100, Sweden
| | - Jae Yen Shin
- NanoLund, Lund University, P.O. Box 118, SE-22100 Lund, Sweden
- Division
of Solid State Physics, Lund University, P.O. Box 118, SE-22100 Lund, Sweden
| | - Christelle N. Prinz
- NanoLund, Lund University, P.O. Box 118, SE-22100 Lund, Sweden
- Division
of Solid State Physics, Lund University, P.O. Box 118, SE-22100 Lund, Sweden
| | - Fredrik Höök
- NanoLund, Lund University, P.O. Box 118, SE-22100 Lund, Sweden
- Department
of Physics, Chalmers University of Technology, SE-41296 Göteborg, Sweden
| | - Thoas Fioretos
- Division
of Clinical Genetics, Lund University, SE-22185 Lund, Sweden
| | - Martin H. Magnusson
- NanoLund, Lund University, P.O. Box 118, SE-22100 Lund, Sweden
- Division
of Solid State Physics, Lund University, P.O. Box 118, SE-22100 Lund, Sweden
| | - Heiner Linke
- NanoLund, Lund University, P.O. Box 118, SE-22100 Lund, Sweden
- Division
of Solid State Physics, Lund University, P.O. Box 118, SE-22100 Lund, Sweden
| |
Collapse
|
4
|
Unksov IN, Korosec CS, Surendiran P, Verardo D, Lyttleton R, Forde NR, Linke H. Through the Eyes of Creators: Observing Artificial Molecular Motors. ACS NANOSCIENCE AU 2022; 2:140-159. [PMID: 35726277 PMCID: PMC9204826 DOI: 10.1021/acsnanoscienceau.1c00041] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 12/20/2021] [Accepted: 12/20/2021] [Indexed: 11/28/2022]
Abstract
Inspired by molecular motors in biology, there has been significant progress in building artificial molecular motors, using a number of quite distinct approaches. As the constructs become more sophisticated, there is also an increasing need to directly observe the motion of artificial motors at the nanoscale and to characterize their performance. Here, we review the most used methods that tackle those tasks. We aim to help experimentalists with an overview of the available tools used for different types of synthetic motors and to choose the method most suited for the size of a motor and the desired measurements, such as the generated force or distances in the moving system. Furthermore, for many envisioned applications of synthetic motors, it will be a requirement to guide and control directed motions. We therefore also provide a perspective on how motors can be observed on structures that allow for directional guidance, such as nanowires and microchannels. Thus, this Review facilitates the future research on synthetic molecular motors, where observations at a single-motor level and a detailed characterization of motion will promote applications.
Collapse
Affiliation(s)
- Ivan N. Unksov
- Solid
State Physics and NanoLund, Lund University, Box 118, SE-221 00 Lund, Sweden
| | - Chapin S. Korosec
- Department
of Physics, Simon Fraser University, V5A 1S6 Burnaby, British Columbia, Canada
| | | | - Damiano Verardo
- Solid
State Physics and NanoLund, Lund University, Box 118, SE-221 00 Lund, Sweden
- AlignedBio
AB, Medicon Village, Scheeletorget 1, 223 63 Lund, Sweden
| | - Roman Lyttleton
- Solid
State Physics and NanoLund, Lund University, Box 118, SE-221 00 Lund, Sweden
| | - Nancy R. Forde
- Department
of Physics, Simon Fraser University, V5A 1S6 Burnaby, British Columbia, Canada
| | - Heiner Linke
- Solid
State Physics and NanoLund, Lund University, Box 118, SE-221 00 Lund, Sweden
| |
Collapse
|
5
|
Chiappini C, Chen Y, Aslanoglou S, Mariano A, Mollo V, Mu H, De Rosa E, He G, Tasciotti E, Xie X, Santoro F, Zhao W, Voelcker NH, Elnathan R. Tutorial: using nanoneedles for intracellular delivery. Nat Protoc 2021; 16:4539-4563. [PMID: 34426708 DOI: 10.1038/s41596-021-00600-7] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 06/30/2021] [Indexed: 02/08/2023]
Abstract
Intracellular delivery of advanced therapeutics, including biologicals and supramolecular agents, is complex because of the natural biological barriers that have evolved to protect the cell. Efficient delivery of therapeutic nucleic acids, proteins, peptides and nanoparticles is crucial for clinical adoption of emerging technologies that can benefit disease treatment through gene and cell therapy. Nanoneedles are arrays of vertical high-aspect-ratio nanostructures that can precisely manipulate complex processes at the cell interface, enabling effective intracellular delivery. This emerging technology has already enabled the development of efficient and non-destructive routes for direct access to intracellular environments and delivery of cell-impermeant payloads. However, successful implementation of this technology requires knowledge of several scientific fields, making it complex to access and adopt by researchers who are not directly involved in developing nanoneedle platforms. This presents an obstacle to the widespread adoption of nanoneedle technologies for drug delivery. This tutorial aims to equip researchers with the knowledge required to develop a nanoinjection workflow. It discusses the selection of nanoneedle devices, approaches for cargo loading and strategies for interfacing to biological systems and summarises an array of bioassays that can be used to evaluate the efficacy of intracellular delivery.
Collapse
Affiliation(s)
- Ciro Chiappini
- Centre for Craniofacial and Regenerative Biology, King's College London, London, UK.
- London Centre for Nanotechnology, King's College London, London, UK.
| | - Yaping Chen
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
- Melbourne Centre for Nanofabrication, Victorian Node of the Australian National Fabrication Facility, Clayton, Victoria, Australia
| | - Stella Aslanoglou
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
- Melbourne Centre for Nanofabrication, Victorian Node of the Australian National Fabrication Facility, Clayton, Victoria, Australia
- CSIRO Manufacturing, Clayton, Victoria, Australia
| | - Anna Mariano
- Center for Advanced Biomaterials for Healthcare, Istituto Italiano di Tecnologia, Naples, Italy
| | - Valentina Mollo
- Center for Advanced Biomaterials for Healthcare, Istituto Italiano di Tecnologia, Naples, Italy
| | - Huanwen Mu
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore, Singapore
| | - Enrica De Rosa
- Center for Musculoskeletal Regeneration, Orthopedics & Sports Medicine, Houston Methodist Research Institute, Houston, TX, USA
| | - Gen He
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou, China
| | - Ennio Tasciotti
- IRCCS San Raffaele Pisana Hospital, Rome, Italy
- San Raffaele University, Rome, Italy
- Sclavo Pharma, Siena, Italy
| | - Xi Xie
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou, China.
| | - Francesca Santoro
- Center for Advanced Biomaterials for Healthcare, Istituto Italiano di Tecnologia, Naples, Italy.
| | - Wenting Zhao
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore, Singapore.
| | - Nicolas H Voelcker
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia.
- Melbourne Centre for Nanofabrication, Victorian Node of the Australian National Fabrication Facility, Clayton, Victoria, Australia.
- CSIRO Manufacturing, Clayton, Victoria, Australia.
- Department of Materials Science and Engineering, Monash University, Clayton, Victoria, Australia.
| | - Roey Elnathan
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia.
- Melbourne Centre for Nanofabrication, Victorian Node of the Australian National Fabrication Facility, Clayton, Victoria, Australia.
- Department of Materials Science and Engineering, Monash University, Clayton, Victoria, Australia.
| |
Collapse
|
6
|
Vinje JB, Guadagno NA, Progida C, Sikorski P. Analysis of Actin and Focal Adhesion Organisation in U2OS Cells on Polymer Nanostructures. NANOSCALE RESEARCH LETTERS 2021; 16:143. [PMID: 34524556 PMCID: PMC8443752 DOI: 10.1186/s11671-021-03598-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 08/28/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND In this work, we explore how U2OS cells are affected by arrays of polymer nanopillars fabricated on flat glass surfaces. We focus on describing changes to the organisation of the actin cytoskeleton and in the location, number and shape of focal adhesions. From our findings we identify that the cells can be categorised into different regimes based on their spreading and adhesion behaviour on nanopillars. A quantitative analysis suggests that cells seeded on dense nanopillar arrays are suspended on top of the pillars with focal adhesions forming closer to the cell periphery compared to flat surfaces or sparse pillar arrays. This change is analogous to similar responses for cells seeded on soft substrates. RESULTS In this work, we explore how U2OS cells are affected by arrays of polymer nanopillars fabricated on flat glass surfaces. We focus on describing changes to the organisation of the actin cytoskeleton and in the location, number and shape of focal adhesions. From our findings we identify that the cells can be categorised into different regimes based on their spreading and adhesion behaviour on nanopillars. A quantitative analysis suggests that cells seeded on dense nanopillar arrays are suspended on top of the pillars with focal adhesions forming closer to the cell periphery compared to flat surfaces or sparse pillar arrays. This change is analogous to similar responses for cells seeded on soft substrates. CONCLUSION Overall, we show that the combination of high throughput nanofabrication, advanced optical microscopy, molecular biology tools to visualise cellular processes and data analysis can be used to investigate how cells interact with nanostructured surfaces and will in the future help to create culture substrates that induce particular cell function.
Collapse
Affiliation(s)
- Jakob B Vinje
- Department of Physics, Norwegian University of Science and Technology (NTNU), Trondheim, Norway.
- Department of Electronic Systems, Norwegian University of Science and Technology (NTNU), Trondheim, Norway.
| | | | - Cinzia Progida
- Department of Biosciences, University of Oslo (UiO), Oslo, Norway
| | - Pawel Sikorski
- Department of Physics, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| |
Collapse
|
7
|
Sjökvist R, Jacobsson D, Tornberg M, Wallenberg R, Leshchenko ED, Johansson J, Dick KA. Compositional Correlation between the Nanoparticle and the Growing Au-Assisted In xGa 1-xAs Nanowire. J Phys Chem Lett 2021; 12:7590-7595. [PMID: 34347497 PMCID: PMC8397339 DOI: 10.1021/acs.jpclett.1c02121] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
The nanowire geometry is favorable for the growth of ternary semiconductor materials, because the composition and properties can be tuned freely without substrate lattice matching. To achieve precise control of the composition in ternary semiconductor nanowires, a deeper understanding of the growth is required. One unknown aspect of seeded nanowire growth is how the composition of the catalyst nanoparticle affects the resulting composition of the growing nanowire. We report the first in situ measurements of the nanoparticle and InxGa1-xAs nanowire compositional relationship using an environmental transmission electron microscopy setup. The compositions were measured and correlated during growth, via X-ray energy dispersive spectroscopy. Contrary to predictions from thermodynamic models, the experimental results do not show a miscibility gap. Therefore, we construct a kinetic model that better predicts the compositional trends by suppressing the miscibility gap. The findings imply that compositional control of InxGa1-xAs nanowires is possible across the entire compositional range.
Collapse
Affiliation(s)
- Robin Sjökvist
- Centre
for Analysis and Synthesis, Lund University, Box 124, 22100 Lund, Sweden
- NanoLund, Lund University, Box
118, 22100 Lund, Sweden
| | - Daniel Jacobsson
- Centre
for Analysis and Synthesis, Lund University, Box 124, 22100 Lund, Sweden
- NanoLund, Lund University, Box
118, 22100 Lund, Sweden
- National
Centre for High Resolution Electron Microscopy, Lund University, Box 124, 22100 Lund, Sweden
| | - Marcus Tornberg
- Centre
for Analysis and Synthesis, Lund University, Box 124, 22100 Lund, Sweden
- NanoLund, Lund University, Box
118, 22100 Lund, Sweden
| | - Reine Wallenberg
- Centre
for Analysis and Synthesis, Lund University, Box 124, 22100 Lund, Sweden
- NanoLund, Lund University, Box
118, 22100 Lund, Sweden
- National
Centre for High Resolution Electron Microscopy, Lund University, Box 124, 22100 Lund, Sweden
| | - Egor D. Leshchenko
- NanoLund, Lund University, Box
118, 22100 Lund, Sweden
- Solid
State Physics, Lund University, Box 118, 22100 Lund, Sweden
| | - Jonas Johansson
- NanoLund, Lund University, Box
118, 22100 Lund, Sweden
- Solid
State Physics, Lund University, Box 118, 22100 Lund, Sweden
| | - Kimberly A. Dick
- Centre
for Analysis and Synthesis, Lund University, Box 124, 22100 Lund, Sweden
- NanoLund, Lund University, Box
118, 22100 Lund, Sweden
| |
Collapse
|
8
|
Bhingardive V, Kossover A, Iraqi M, Khand B, Le Saux G, Porgador A, Schvartzman M. Antibody-Functionalized Nanowires: A Tuner for the Activation of T Cells. NANO LETTERS 2021; 21:4241-4248. [PMID: 33989498 DOI: 10.1021/acs.nanolett.1c00245] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
T cells sense both chemical cues delivered by antigen molecules and physical cues delivered by the environmental elasticity and topography; yet, it is still largely unclear how these cues cumulatively regulate the immune activity of T cells. Here, we engineered a nanoscale platform for ex vivo stimulation of T cells based on antigen-functionalized nanowires. The nanowire topography and elasticity, as well as the immobilized antigens, deliver the physical and chemical cues, respectively, enabling the systematic study of the integrated effect of these cues on a T cell's immune response. We found that T cells sense both the topography and bending modulus of the nanowires and modulate their signaling, degranulation, and cytotoxicity with the variation in these physical features. Our study provides an important insight into the physical mechanism of T cell activation and paves the way to novel nanomaterials for the controlled ex vivo activation of T cells in immunotherapy.
Collapse
|
9
|
Bhingardive V, Le Saux G, Edri A, Porgador A, Schvartzman M. Nanowire Based Guidance of the Morphology and Cytotoxic Activity of Natural Killer Cells. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2007347. [PMID: 33719212 DOI: 10.1002/smll.202007347] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Revised: 01/13/2021] [Indexed: 06/12/2023]
Abstract
The cytotoxic activity of natural killer (NK) cells is regulated by many chemical and physical cues, whose integration mechanism is still obscure. Here, a multifunctional platform is engineered for NK cell stimulation, to study the effect of the signal integration and spatial heterogeneity on NK cell function. The platform is based on nanowires, whose mechanical compliance and site-selective tip functionalization with antigens produce the physical and chemical stimuli, respectively. The nanowires are confined to micron-sized islands, which induce a splitting of the NK cells into two subpopulations with distinct morphologies and immune responses: NK cells atop the nanowire islands display symmetrical spreading and enhanced activation, whereas cells lying in the straits between the islands develop elongated profiles and show lower activation levels. The demonstrated tunability of NK cell cytotoxicity provides an important insight into the mechanism of their immune function and introduces a novel technological route for the ex vivo shaping of cytotoxic lymphocytes in immunotherapy.
Collapse
Affiliation(s)
- Viraj Bhingardive
- Department of Materials Engineering, Ben-Gurion University of the Negev, P.O. Box 653, Beer-Sheva, 84105, Israel
- Ilse Katz Institute for Nanoscale Science and Technology, The Shraga Segal Department of Microbiology, Immunology, Ben-Gurion University of the Negev, P.O. Box 653, Beer-Sheva, 84105, Israel
| | - Guillaume Le Saux
- Department of Materials Engineering, Ben-Gurion University of the Negev, P.O. Box 653, Beer-Sheva, 84105, Israel
- Ilse Katz Institute for Nanoscale Science and Technology, The Shraga Segal Department of Microbiology, Immunology, Ben-Gurion University of the Negev, P.O. Box 653, Beer-Sheva, 84105, Israel
| | - Avishay Edri
- Genetics Faculty of Health Sciences, Ben-Gurion University of the Negev, P.O. Box 653, Beer-Sheva, 84105, Israel
| | - Angel Porgador
- Genetics Faculty of Health Sciences, Ben-Gurion University of the Negev, P.O. Box 653, Beer-Sheva, 84105, Israel
| | - Mark Schvartzman
- Department of Materials Engineering, Ben-Gurion University of the Negev, P.O. Box 653, Beer-Sheva, 84105, Israel
- Ilse Katz Institute for Nanoscale Science and Technology, The Shraga Segal Department of Microbiology, Immunology, Ben-Gurion University of the Negev, P.O. Box 653, Beer-Sheva, 84105, Israel
| |
Collapse
|
10
|
Brooks J, Minnick G, Mukherjee P, Jaberi A, Chang L, Espinosa HD, Yang R. High Throughput and Highly Controllable Methods for In Vitro Intracellular Delivery. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e2004917. [PMID: 33241661 PMCID: PMC8729875 DOI: 10.1002/smll.202004917] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 10/06/2020] [Indexed: 05/03/2023]
Abstract
In vitro and ex vivo intracellular delivery methods hold the key for releasing the full potential of tissue engineering, drug development, and many other applications. In recent years, there has been significant progress in the design and implementation of intracellular delivery systems capable of delivery at the same scale as viral transfection and bulk electroporation but offering fewer adverse outcomes. This review strives to examine a variety of methods for in vitro and ex vivo intracellular delivery such as flow-through microfluidics, engineered substrates, and automated probe-based systems from the perspective of throughput and control. Special attention is paid to a particularly promising method of electroporation using micro/nanochannel based porous substrates, which expose small patches of cell membrane to permeabilizing electric field. Porous substrate electroporation parameters discussed include system design, cells and cargos used, transfection efficiency and cell viability, and the electric field and its effects on molecular transport. The review concludes with discussion of potential new innovations which can arise from specific aspects of porous substrate-based electroporation platforms and high throughput, high control methods in general.
Collapse
Affiliation(s)
- Justin Brooks
- Department of Mechanical and Materials Engineering, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
| | - Grayson Minnick
- Department of Mechanical and Materials Engineering, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
| | - Prithvijit Mukherjee
- Department of Mechanical Engineering, Northwestern University, Evanston, IL, 60208, USA
| | - Arian Jaberi
- Department of Mechanical and Materials Engineering, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
| | - Lingqian Chang
- School of Biological Science and Medical Engineering, Beihang University, Beijing, 100191, China
| | - Horacio D. Espinosa
- Department of Mechanical Engineering, Northwestern University, Evanston, IL, 60208, USA
- Theoretical and Applied Mechanics Program, Northwestern University, Evanston, IL, 60208, USA
| | - Ruiguo Yang
- Department of Mechanical and Materials Engineering, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
- Nebraska Center for Integrated Biomolecular Communication, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
| |
Collapse
|
11
|
Chen Y, Wang J, Li X, Hu N, Voelcker NH, Xie X, Elnathan R. Emerging Roles of 1D Vertical Nanostructures in Orchestrating Immune Cell Functions. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e2001668. [PMID: 32844502 PMCID: PMC7461044 DOI: 10.1002/adma.202001668] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 05/16/2020] [Indexed: 05/07/2023]
Abstract
Engineered nano-bio cellular interfaces driven by 1D vertical nanostructures (1D-VNS) are set to prompt radical progress in modulating cellular processes at the nanoscale. Here, tuneable cell-VNS interfacial interactions are probed and assessed, highlighting the use of 1D-VNS in immunomodulation, and intracellular delivery into immune cells-both crucial in fundamental and translational biomedical research. With programmable topography and adaptable surface functionalization, 1D-VNS provide unique biophysical and biochemical cues to orchestrate innate and adaptive immunity, both ex vivo and in vivo. The intimate nanoscale cell-VNS interface leads to membrane penetration and cellular deformation, facilitating efficient intracellular delivery of diverse bioactive cargoes into hard-to-transfect immune cells. The unsettled interfacial mechanisms reported to be involved in VNS-mediated intracellular delivery are discussed. By identifying up-to-date progress and fundamental challenges of current 1D-VNS technology in immune-cell manipulation, it is hoped that this report gives timely insights for further advances in developing 1D-VNS as a safe, universal, and highly scalable platform for cell engineering and enrichment in advanced cancer immunotherapy such as chimeric antigen receptor-T therapy.
Collapse
Affiliation(s)
- Yaping Chen
- Monash Institute of Pharmaceutical SciencesMonash University381 Royal ParadeParkvilleVIC3052Australia
- Melbourne Centre for NanofabricationVictorian Node of the Australian National Fabrication Facility151 Wellington RoadClayton3168Australia
| | - Ji Wang
- The First Affiliated Hospital of Sun Yat‐sen UniversitySun Yat‐sen UniversityGuangzhou510006China
| | - Xiangling Li
- State Key Laboratory of Optoelectronic Materials and TechnologiesSchool of Electronics and Information TechnologySun Yat‐sen UniversityGuangzhou510006China
| | - Ning Hu
- State Key Laboratory of Optoelectronic Materials and TechnologiesSchool of Electronics and Information TechnologySun Yat‐sen UniversityGuangzhou510006China
| | - Nicolas H. Voelcker
- Monash Institute of Pharmaceutical SciencesMonash University381 Royal ParadeParkvilleVIC3052Australia
- Melbourne Centre for NanofabricationVictorian Node of the Australian National Fabrication Facility151 Wellington RoadClayton3168Australia
- Department of Materials Science and EngineeringMonash University22 Alliance LaneClaytonVIC3168Australia
- Commonwealth Scientific and Industrial Research Organisation (CSIRO)ClaytonVIC3168Australia
- INM‐Leibniz Institute for New MaterialsCampus D2 2Saarbrücken66123Germany
| | - Xi Xie
- The First Affiliated Hospital of Sun Yat‐sen UniversitySun Yat‐sen UniversityGuangzhou510006China
- State Key Laboratory of Optoelectronic Materials and TechnologiesSchool of Electronics and Information TechnologySun Yat‐sen UniversityGuangzhou510006China
| | - Roey Elnathan
- Monash Institute of Pharmaceutical SciencesMonash University381 Royal ParadeParkvilleVIC3052Australia
- Melbourne Centre for NanofabricationVictorian Node of the Australian National Fabrication Facility151 Wellington RoadClayton3168Australia
- Department of Materials Science and EngineeringMonash University22 Alliance LaneClaytonVIC3168Australia
| |
Collapse
|
12
|
Kharaghani D, Tajbakhsh Z, Duy Nam P, Soo Kim I. Application of Nanowires for Retinal Regeneration. Regen Med 2020. [DOI: 10.5772/intechopen.90149] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
|
13
|
Lee Y, Wu D, Fang Y, Peng Y, Tian B. Tracking Longitudinal Rotation of Silicon Nanowires for Biointerfaces. NANO LETTERS 2020; 20:3852-3857. [PMID: 32208712 PMCID: PMC7227009 DOI: 10.1021/acs.nanolett.0c00974] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 03/21/2020] [Indexed: 06/01/2023]
Abstract
The rolling motion (i.e., longitudinal rotation) of nanomaterials may serve as a proxy to probe microscopic environments. Furthermore, nanoscale rotations in biological systems are common but difficult to measure. Here, we report a new tool that measures rolling motion of a nanowire with a short arm grown at one end. We present a particle detection algorithm with subpixel resolution and image segmentation with principal component analysis that enables precise and automated determination of the nanowire orientation. We show that the nanowires' rolling dynamics can be significantly affected by their surroundings and demonstrate the probes' ability to reflect different nanobio interactions. A non-cell-interacting nanowire undergoes rapid subdiffusive rotation, while a cell-interacting nanowire exhibits superdiffusive unidirectional rotation when the cell membrane actively interacts with the nanowire and slow subdiffusive rotation when it is fully encompassed by the cell. Our method can be used to yield insights into various biophysical and assembly processes.
Collapse
Affiliation(s)
- Youjin
V. Lee
- Department
of Chemistry, University of Chicago, Chicago, Illinois 60637, United States
| | - David Wu
- Department
of Medicine, Section of Pulmonary and Critical Care Medicine, University of Chicago, Chicago, Illinois 60637, United States
| | - Yun Fang
- Department
of Medicine, Section of Pulmonary and Critical Care Medicine, University of Chicago, Chicago, Illinois 60637, United States
| | - Yuxing Peng
- Research
Computing Center, University of Chicago, Chicago, Illinois 60637, United States
| | - Bozhi Tian
- Department
of Chemistry, University of Chicago, Chicago, Illinois 60637, United States
- James
Franck Institute, The University of Chicago, Chicago, Illinois 60637, United States
| |
Collapse
|
14
|
Higgins SG, Becce M, Belessiotis-Richards A, Seong H, Sero JE, Stevens MM. High-Aspect-Ratio Nanostructured Surfaces as Biological Metamaterials. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e1903862. [PMID: 31944430 PMCID: PMC7610849 DOI: 10.1002/adma.201903862] [Citation(s) in RCA: 109] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 10/02/2019] [Indexed: 04/14/2023]
Abstract
Materials patterned with high-aspect-ratio nanostructures have features on similar length scales to cellular components. These surfaces are an extreme topography on the cellular level and have become useful tools for perturbing and sensing the cellular environment. Motivation comes from the ability of high-aspect-ratio nanostructures to deliver cargoes into cells and tissues, access the intracellular environment, and control cell behavior. These structures directly perturb cells' ability to sense and respond to external forces, influencing cell fate, and enabling new mechanistic studies. Through careful design of their nanoscale structure, these systems act as biological metamaterials, eliciting unusual biological responses. While predominantly used to interface eukaryotic cells, there is growing interest in nonanimal and prokaryotic cell interfacing. Both experimental and theoretical studies have attempted to develop a mechanistic understanding for the observed behaviors, predominantly focusing on the cell-nanostructure interface. This review considers how high-aspect-ratio nanostructured surfaces are used to both stimulate and sense biological systems.
Collapse
Affiliation(s)
- Stuart G. Higgins
- Department of Bioengineering, Imperial College London, London, SW7 2AZ, UK
| | | | | | - Hyejeong Seong
- Department of Bioengineering, Imperial College London, London, SW7 2AZ, UK
| | - Julia E. Sero
- Department of Bioengineering, Imperial College London, London, SW7 2AZ, UK
| | - Molly M. Stevens
- Department of Materials, Imperial College London, London, SW7 2AZ, UK
- Department of Bioengineering, Imperial College London, London, SW7 2AZ, UK
- Institute of Biomedical Engineering, Imperial College London, London, SW7 2AZ, UK
| |
Collapse
|
15
|
Chen Y, Aslanoglou S, Gervinskas G, Abdelmaksoud H, Voelcker NH, Elnathan R. Cellular Deformations Induced by Conical Silicon Nanowire Arrays Facilitate Gene Delivery. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2019; 15:e1904819. [PMID: 31599099 DOI: 10.1002/smll.201904819] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 09/29/2019] [Indexed: 06/10/2023]
Abstract
Engineered cell-nanostructured interfaces generated by vertically aligned silicon nanowire (SiNW) arrays have become a promising platform for orchestrating cell behavior, function, and fate. However, the underlying mechanism in SiNW-mediated intracellular access and delivery is still poorly understood. This study demonstrates the development of a gene delivery platform based on conical SiNW arrays for mechanical cell transfection, assisted by centrifugal force, for both adherent and nonadherent cells in vitro. Cells form focal adhesions on SiNWs within 6 h, and maintain high viability and motility. Such a functional and dynamic cell-SiNW interface features conformational changes in the plasma membrane and in some cases the nucleus, promoting both direct penetration and endocytosis; this synergistically facilitates SiNW-mediated delivery of nucleic acids into immortalized cell lines, and into difficult-to-transfect primary immune T cells without pre-activation. Moreover, transfected cells retrieved from SiNWs retain the capacity to proliferate-crucial to future biomedical applications. The results indicate that SiNW-mediated intracellular delivery holds great promise for developing increasingly sophisticated investigative and therapeutic tools.
Collapse
Affiliation(s)
- Yaping Chen
- Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC, 3052, Australia
- Melbourne Centre for Nanofabrication, Victorian Node of the Australian National Fabrication Facility, 151 Wellington Road, Clayton, VIC, 3168, Australia
- Commonwealth Scientific and Industrial Research Organisation (CSIRO), Clayton, VIC, 3168, Australia
| | - Stella Aslanoglou
- Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC, 3052, Australia
- Melbourne Centre for Nanofabrication, Victorian Node of the Australian National Fabrication Facility, 151 Wellington Road, Clayton, VIC, 3168, Australia
- Commonwealth Scientific and Industrial Research Organisation (CSIRO), Clayton, VIC, 3168, Australia
| | - Gediminas Gervinskas
- Ramaciotti Centre for Cryo-Electron Microscopy, Monash University, 15 Innovation Walk, Clayton, VIC, 3800, Australia
| | - Hazem Abdelmaksoud
- Melbourne Centre for Nanofabrication, Victorian Node of the Australian National Fabrication Facility, 151 Wellington Road, Clayton, VIC, 3168, Australia
- Future Industries Institute, University of South Australia, Mawson Lakes, SA, 5095, Australia
| | - Nicolas H Voelcker
- Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC, 3052, Australia
- Melbourne Centre for Nanofabrication, Victorian Node of the Australian National Fabrication Facility, 151 Wellington Road, Clayton, VIC, 3168, Australia
- Commonwealth Scientific and Industrial Research Organisation (CSIRO), Clayton, VIC, 3168, Australia
- INM-Leibniz Institute for New Materials, Campus D2 2, Saarbrücken, 66123, Germany
| | - Roey Elnathan
- Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC, 3052, Australia
- Melbourne Centre for Nanofabrication, Victorian Node of the Australian National Fabrication Facility, 151 Wellington Road, Clayton, VIC, 3168, Australia
| |
Collapse
|
16
|
Abstract
Biological systems have evolved biochemical, electrical, mechanical, and genetic networks to perform essential functions across various length and time scales. High-aspect-ratio biological nanowires, such as bacterial pili and neurites, mediate many of the interactions and homeostasis in and between these networks. Synthetic materials designed to mimic the structure of biological nanowires could also incorporate similar functional properties, and exploiting this structure-function relationship has already proved fruitful in designing biointerfaces. Semiconductor nanowires are a particularly promising class of synthetic nanowires for biointerfaces, given (1) their unique optical and electronic properties and (2) their high degree of synthetic control and versatility. These characteristics enable fabrication of a variety of electronic and photonic nanowire devices, allowing for the formation of well-defined, functional bioelectric interfaces at the biomolecular level to the whole-organ level. In this Focus Review, we first discuss the history of bioelectric interfaces with semiconductor nanowires. We next highlight several important, endogenous biological nanowires and use these as a framework to categorize semiconductor nanowire-based biointerfaces. Within this framework we then review the fundamentals of bioelectric interfaces with semiconductor nanowires and comment on both material choice and device design to form biointerfaces spanning multiple length scales. We conclude with a discussion of areas with the potential for greatest impact using semiconductor nanowire-enabled biointerfaces in the future.
Collapse
Affiliation(s)
- Bozhi Tian
- Department of Chemistry, the University of Chicago, Chicago, IL USA
- The James Franck Institute, the University of Chicago, Chicago, IL USA
- The Institute for Biophysical Dynamics, Chicago, IL USA
| | - Charles M. Lieber
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
- Center for Brain Science, Harvard University, Cambridge, MA, USA
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
| |
Collapse
|
17
|
Lard M, Linke H, Prinz CN. Biosensing using arrays of vertical semiconductor nanowires: mechanosensing and biomarker detection. NANOTECHNOLOGY 2019; 30:214003. [PMID: 30699399 DOI: 10.1088/1361-6528/ab0326] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Due to their high aspect ratio and increased surface-to-foot-print area, arrays of vertical semiconductor nanowires are used in numerous biological applications, such as cell transfection and biosensing. Here we focus on two specific valuable biosensing approaches that, so far, have received relatively limited attention in terms of their potential capabilities: cellular mechanosensing and lightguiding-induced enhanced fluorescence detection. Although proposed a decade ago, these two applications for using vertical nanowire arrays have only very recently achieved significant breakthroughs, both in terms of understanding their fundamental phenomena, and in the ease of their implementation. We review the status of the field in these areas and describe significant findings and potential future directions.
Collapse
Affiliation(s)
- Mercy Lard
- Division of Solid State Physics and NanoLund, Lund University, Box 118, SE-221 00 Lund Sweden
| | | | | |
Collapse
|
18
|
Lee JW, Chae S, Oh S, Kim SH, Choi KH, Meeseepong M, Chang J, Kim N, Lee NE, Lee JH, Choi JY. Single-Chain Atomic Crystals as Extracellular Matrix-Mimicking Material with Exceptional Biocompatibility and Bioactivity. NANO LETTERS 2018; 18:7619-7627. [PMID: 30474985 DOI: 10.1021/acs.nanolett.8b03201] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
In this study, Mo3Se3- single-chain atomic crystals (SCACs) with atomically small chain diameters of ∼0.6 nm, large surface areas, and mechanical flexibility were synthesized and investigated as an extracellular matrix (ECM)-mimicking scaffold material for tissue engineering applications. The proliferation of L-929 and MC3T3-E1 cell lines increased up to 268.4 ± 24.4% and 396.2 ± 8.1%, respectively, after 48 h of culturing with Mo3Se3- SCACs. More importantly, this extremely high proliferation was observed when the cells were treated with 200 μg mL-1 of Mo3Se3- SCACs, which is above the cytotoxic concentration of most nanomaterials reported earlier. An ECM-mimicking scaffold film prepared by coating Mo3Se3- SCACs on a glass substrate enabled the cells to adhere to the surface in a highly stretched manner at the initial stage of cell adhesion. Most cells cultured on the ECM-mimicking scaffold film remained alive; in contrast, a substantial number of cells cultured on glass substrates without the Mo3Se3- SCAC coating did not survive. This work not only proves the exceptional biocompatible and bioactive characteristics of the Mo3Se3- SCACs but also suggests that, as an ECM-mimicking scaffold material, Mo3Se3- SCACs can overcome several critical limitations of most other nanomaterials.
Collapse
Affiliation(s)
- Jin Woong Lee
- School of Advanced Materials Science & Engineering , Sungkyunkwan University (SKKU) , Suwon 16419 , Republic of Korea
| | - Sudong Chae
- School of Advanced Materials Science & Engineering , Sungkyunkwan University (SKKU) , Suwon 16419 , Republic of Korea
| | - Seoungbae Oh
- School of Advanced Materials Science & Engineering , Sungkyunkwan University (SKKU) , Suwon 16419 , Republic of Korea
| | - Si Hyun Kim
- SKKU Advanced Institute of Nanotechnology (SAINT) , Sungkyunkwan University (SKKU) , Suwon 16419 , Republic of Korea
| | - Kyung Hwan Choi
- SKKU Advanced Institute of Nanotechnology (SAINT) , Sungkyunkwan University (SKKU) , Suwon 16419 , Republic of Korea
| | - Montri Meeseepong
- SKKU Advanced Institute of Nanotechnology (SAINT) , Sungkyunkwan University (SKKU) , Suwon 16419 , Republic of Korea
| | - Jongwha Chang
- School of Pharmacy , University of Texas , El Paso , Texas 79968 , United States
| | - Namsoo Kim
- Department of Metallurgical & Materials Engineering , The University of Texas , El Paso , Texas 79968 , United States
| | - Nae-Eung Lee
- School of Advanced Materials Science & Engineering , Sungkyunkwan University (SKKU) , Suwon 16419 , Republic of Korea
- SKKU Advanced Institute of Nanotechnology (SAINT) , Sungkyunkwan University (SKKU) , Suwon 16419 , Republic of Korea
- Samsung Advanced Institute for Health Sciences & Technology (SAIHST) , Sungkyunkwan University (SKKU) , Suwon 16419 , Republic of Korea
- Biomedical Institute for Convergence at SKKU (BICS) , Sungkyunkwan University (SKKU) , Suwon 16419 , Republic of Korea
| | - Jung Heon Lee
- School of Advanced Materials Science & Engineering , Sungkyunkwan University (SKKU) , Suwon 16419 , Republic of Korea
- SKKU Advanced Institute of Nanotechnology (SAINT) , Sungkyunkwan University (SKKU) , Suwon 16419 , Republic of Korea
- Biomedical Institute for Convergence at SKKU (BICS) , Sungkyunkwan University (SKKU) , Suwon 16419 , Republic of Korea
| | - Jae-Young Choi
- School of Advanced Materials Science & Engineering , Sungkyunkwan University (SKKU) , Suwon 16419 , Republic of Korea
- SKKU Advanced Institute of Nanotechnology (SAINT) , Sungkyunkwan University (SKKU) , Suwon 16419 , Republic of Korea
| |
Collapse
|
19
|
Stewart MP, Langer R, Jensen KF. Intracellular Delivery by Membrane Disruption: Mechanisms, Strategies, and Concepts. Chem Rev 2018; 118:7409-7531. [PMID: 30052023 PMCID: PMC6763210 DOI: 10.1021/acs.chemrev.7b00678] [Citation(s) in RCA: 412] [Impact Index Per Article: 68.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Intracellular delivery is a key step in biological research and has enabled decades of biomedical discoveries. It is also becoming increasingly important in industrial and medical applications ranging from biomanufacture to cell-based therapies. Here, we review techniques for membrane disruption-based intracellular delivery from 1911 until the present. These methods achieve rapid, direct, and universal delivery of almost any cargo molecule or material that can be dispersed in solution. We start by covering the motivations for intracellular delivery and the challenges associated with the different cargo types-small molecules, proteins/peptides, nucleic acids, synthetic nanomaterials, and large cargo. The review then presents a broad comparison of delivery strategies followed by an analysis of membrane disruption mechanisms and the biology of the cell response. We cover mechanical, electrical, thermal, optical, and chemical strategies of membrane disruption with a particular emphasis on their applications and challenges to implementation. Throughout, we highlight specific mechanisms of membrane disruption and suggest areas in need of further experimentation. We hope the concepts discussed in our review inspire scientists and engineers with further ideas to improve intracellular delivery.
Collapse
Affiliation(s)
- Martin P. Stewart
- Department of Chemical Engineering, Massachusetts Institute
of Technology, Cambridge, USA
- The Koch Institute for Integrative Cancer Research,
Massachusetts Institute of Technology, Cambridge, USA
| | - Robert Langer
- Department of Chemical Engineering, Massachusetts Institute
of Technology, Cambridge, USA
- The Koch Institute for Integrative Cancer Research,
Massachusetts Institute of Technology, Cambridge, USA
| | - Klavs F. Jensen
- Department of Chemical Engineering, Massachusetts Institute
of Technology, Cambridge, USA
| |
Collapse
|
20
|
Verardo D, Lindberg FW, Anttu N, Niman CS, Lard M, Dabkowska AP, Nylander T, Månsson A, Prinz CN, Linke H. Nanowires for Biosensing: Lightguiding of Fluorescence as a Function of Diameter and Wavelength. NANO LETTERS 2018; 18:4796-4802. [PMID: 30001138 PMCID: PMC6377180 DOI: 10.1021/acs.nanolett.8b01360] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Revised: 06/12/2018] [Indexed: 05/27/2023]
Abstract
Semiconductor nanowires can act as nanoscaled optical fibers, enabling them to guide and concentrate light emitted by surface-bound fluorophores, potentially enhancing the sensitivity of optical biosensing. While parameters such as the nanowire geometry and the fluorophore wavelength can be expected to strongly influence this lightguiding effect, no detailed description of their effect on in-coupling of fluorescent emission is available to date. Here, we use confocal imaging to quantify the lightguiding effect in GaP nanowires as a function of nanowire geometry and light wavelength. Using a combination of finite-difference time-domain simulations and analytical approaches, we identify the role of multiple waveguide modes for the observed lightguiding. The normalized frequency parameter, based on the step-index approximation, predicts the lightguiding ability of the nanowires as a function of diameter and fluorophore wavelength, providing a useful guide for the design of optical biosensors based on nanowires.
Collapse
Affiliation(s)
- Damiano Verardo
- NanoLund, Lund University, P.O. Box 118, SE-22100 Lund, Sweden
- Division
of Solid State Physics, Lund University, P.O. Box 118, SE-22100 Lund, Sweden
| | - Frida W. Lindberg
- NanoLund, Lund University, P.O. Box 118, SE-22100 Lund, Sweden
- Division
of Solid State Physics, Lund University, P.O. Box 118, SE-22100 Lund, Sweden
| | - Nicklas Anttu
- NanoLund, Lund University, P.O. Box 118, SE-22100 Lund, Sweden
- Division
of Solid State Physics, Lund University, P.O. Box 118, SE-22100 Lund, Sweden
| | - Cassandra S. Niman
- NanoLund, Lund University, P.O. Box 118, SE-22100 Lund, Sweden
- Department
of Cellular & Molecular Medicine, University
of California San Diego, 9500 Gilman Dr, La Jolla, California 92093, United States
| | - Mercy Lard
- NanoLund, Lund University, P.O. Box 118, SE-22100 Lund, Sweden
- Division
of Solid State Physics, Lund University, P.O. Box 118, SE-22100 Lund, Sweden
| | - Aleksandra P. Dabkowska
- NanoLund, Lund University, P.O. Box 118, SE-22100 Lund, Sweden
- Division
of Physical Chemistry, Lund University, P.O. Box 124, SE-22100 Lund, Sweden
| | - Tommy Nylander
- NanoLund, Lund University, P.O. Box 118, SE-22100 Lund, Sweden
- Division
of Physical Chemistry, Lund University, P.O. Box 124, SE-22100 Lund, Sweden
| | - Alf Månsson
- NanoLund, Lund University, P.O. Box 118, SE-22100 Lund, Sweden
- Department
of Chemistry and Biomedical Sciences, Linnaeus
University, Norra vägen
49, SE-391 82 Kalmar, Sweden
| | - Christelle N. Prinz
- NanoLund, Lund University, P.O. Box 118, SE-22100 Lund, Sweden
- Division
of Solid State Physics, Lund University, P.O. Box 118, SE-22100 Lund, Sweden
| | - Heiner Linke
- NanoLund, Lund University, P.O. Box 118, SE-22100 Lund, Sweden
- Division
of Solid State Physics, Lund University, P.O. Box 118, SE-22100 Lund, Sweden
| |
Collapse
|
21
|
McGuire AF, Santoro F, Cui B. Interfacing Cells with Vertical Nanoscale Devices: Applications and Characterization. ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2018; 11:101-126. [PMID: 29570360 PMCID: PMC6530470 DOI: 10.1146/annurev-anchem-061417-125705] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Measurements of the intracellular state of mammalian cells often require probes or molecules to breach the tightly regulated cell membrane. Mammalian cells have been shown to grow well on vertical nanoscale structures in vitro, going out of their way to reach and tightly wrap the structures. A great deal of research has taken advantage of this interaction to bring probes close to the interface or deliver molecules with increased efficiency or ease. In turn, techniques have been developed to characterize this interface. Here, we endeavor to survey this research with an emphasis on the interface as driven by cellular mechanisms.
Collapse
Affiliation(s)
- Allister F McGuire
- Department of Chemistry, Stanford University, Stanford, California 94305, USA;
| | - Francesca Santoro
- Department of Chemistry, Stanford University, Stanford, California 94305, USA;
- Center for Advanced Biomaterials for Healthcare, Istituto Italiano di Tecnologia, 80125 Naples, Italy;
| | - Bianxiao Cui
- Department of Chemistry, Stanford University, Stanford, California 94305, USA;
| |
Collapse
|
22
|
Parameswaran R, Tian B. Rational Design of Semiconductor Nanostructures for Functional Subcellular Interfaces. Acc Chem Res 2018; 51:1014-1022. [PMID: 29668260 PMCID: PMC5983887 DOI: 10.1021/acs.accounts.7b00555] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
One of the fundamental questions guiding research in the biological sciences is how cellular systems process complex physical and environmental cues and communicate with each other across multiple length scales. Importantly, aberrant signal processing in these systems can lead to diseases that can have devastating impacts on human lives. Biophysical studies in the past several decades have demonstrated that cells can respond to not only biochemical cues but also mechanical and electrical ones. Thus, the development of new materials that can both sense and modulate all of these pathways is necessary. Semiconducting nanostructures are an emerging class of discovery platforms and tools that can push the limits of our ability to modulate and sense biological behaviors for both fundamental research and clinical applications. These materials are of particular interest for interfacing with cellular systems due to their matched dimension with subcellular components (e.g., cytoskeletal filaments), and easily tunable properties in the electrical, optical and mechanical regimes. Rational design via traditional or new approaches, such as nanocasting and mesoscale chemical lithography, can allow us to control micro- and nanoscale features in nanowires to achieve new biointerfaces. Both processes endogenous to the target cell and properties of the material surface dictate the character of these interfaces. In this Account, we focus on (1) approaches for the rational design of semiconducting nanowires that exhibit unique structures for biointerfaces, (2) recent fundamental discoveries that yield robust biointerfaces at the subcellular level, (3) intracellular electrical and mechanical sensing, and (4) modulation of cellular behaviors through material topography and remote physical stimuli. In the first section, we discuss new approaches for the synthetic control of micro- and nanoscale features of these materials. In the second section, we focus on achieving biointerfaces with these rationally designed materials either intra- or extracellularly. We last delve into the use of these materials in sensing mechanical forces and electrical signals in various cellular systems as well as in instructing cellular behaviors. Future research in this area may shift the paradigm in fundamental biophysical research and biomedical applications through (1) the design and synthesis of new semiconductor-based materials and devices that interact specifically with targeted cells, (2) the clarification of many developmental, physiological, and anatomical aspects of cellular communications, (3) an understanding of how signaling between cells regulates synaptic development (e.g., information like this would offer new insight into how the nervous system works and provide new targets for the treatment of neurological diseases), (4) and the creation of new cellular materials that have the potential to open up completely new areas of application, such as in hybrid information processing systems.
Collapse
Affiliation(s)
- Ramya Parameswaran
- The Graduate Program in Biophysical Sciences , The University of Chicago , Chicago , Illinois 60637 , United States
- Medical Scientist Training Program , The University of Chicago , Chicago , Illinois 60637 , United States
| | - Bozhi Tian
- Department of Chemistry , The University of Chicago , Chicago , Illinois 60637 , United States
- The James Franck Institute , The University of Chicago , Chicago , Illinois 60637 , United States
- The Institute for Biophysical Dynamics , The University of Chicago , Chicago , Illinois 60637 , United States
| |
Collapse
|
23
|
Morphology of living cells cultured on nanowire arrays with varying nanowire densities and diameters. SCIENCE CHINA-LIFE SCIENCES 2018; 61:427-435. [PMID: 29656338 DOI: 10.1007/s11427-017-9264-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Accepted: 12/25/2017] [Indexed: 10/17/2022]
Abstract
Vertical nanowire arrays are increasingly investigated for their applications in steering cell behavior. The geometry of the array is an important parameter, which influences the morphology and adhesion of cells. Here, we investigate the effects of array geometry on the morphology of MCF7 cancer cells and MCF10A normal-like epithelial cells. Different gallium phosphide nanowire array-geometries were produced by varying the nanowire density and diameter. Our results show that the cell size is smaller on nanowires compared to flat gallium phosphide. The cell area decreases with increasing the nanowire density on the substrate. We observed an effect of the nanowire diameter on MCF10A cells, with a decreased cell area on 40 nm diameter nanowires, compared to 60 and 80 nm diameter nanowires in high-density arrays. The focal adhesion morphology depends on the extent to which cells are contacting the substrate. For low nanowire densities and diameters, cells are lying on the substrate and we observed large focal adhesions at the cell edges. In contrast, for high nanowire densities and diameters, cells are lying on top of the nanowires and we observed point-like focal adhesions distributed over the whole cell. Our results constitute a step towards the ability to fine-tune cell behavior on nanowire arrays.
Collapse
|
24
|
Shadmani S, Salehi Z, Doosthosseini H, Mohajerzadeh S, Roozbahani S. Folate functionalized silicon nanowires with highly enhanced adhesion to cancer cells. CAN J CHEM ENG 2018. [DOI: 10.1002/cjce.22926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Saeid Shadmani
- School of Chemical Engineering; College of Engineering; University of Tehran; Tehran Iran
| | - Zeinab Salehi
- School of Chemical Engineering; College of Engineering; University of Tehran; Tehran Iran
| | - Hamid Doosthosseini
- School of Chemical Engineering; College of Engineering; University of Tehran; Tehran Iran
| | - Shams Mohajerzadeh
- Thin Film and Nano-Electronic Lab; Nano-Electronic Center of Excellence; School of Electrical and Computer Eng.; University of Tehran; Tehran Iran
| | - Sahar Roozbahani
- Faculty of New Sciences and Technologies; University of Tehran; Tehran Iran
| |
Collapse
|
25
|
Adolfsson K, Abariute L, Dabkowska AP, Schneider M, Häcker U, Prinz CN. Direct comparison between in vivo and in vitro microsized particle phagocytosis assays in Drosophila melanogaster. Toxicol In Vitro 2017; 46:213-218. [PMID: 29024778 DOI: 10.1016/j.tiv.2017.10.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Revised: 10/05/2017] [Accepted: 10/08/2017] [Indexed: 11/19/2022]
Abstract
The effects of micro and nanoparticles on the innate immune system have been widely investigated and a general lack of agreement between in vivo and in vitro assays has been observed. In order to determine the origin of these discrepancies, there is a need for comparing the results of in vivo and in vitro phagocytosis assays obtained using the same particles and same immune cells. Here, we establish an in vivo polystyrene microsized particle phagocytosis assay in Drosophila melanogaster and compare it with an in vitro assay consisting of exposing the same immune cells in culture to the same particles. The distribution of number of phagocytized beads per cell was shifted to lower numbers of beads per cell in the case of the in vitro assay compared to the in vivo assay, which we suggest is partly due to a reduced amount of membrane available in cultured cells.
Collapse
Affiliation(s)
- K Adolfsson
- Division of Solid State Physics, Box 118, 221 00 Lund, Sweden; NanoLund, Box 118, 221 00 Lund, Sweden
| | - L Abariute
- Division of Solid State Physics, Box 118, 221 00 Lund, Sweden; NanoLund, Box 118, 221 00 Lund, Sweden
| | - A P Dabkowska
- NanoLund, Box 118, 221 00 Lund, Sweden; Division of Physical Chemistry, Lund University, Box 124, 221 00 Lund, Sweden
| | - M Schneider
- Department of Experimental Medical Sciences, BMC I13, 221 84 Lund, Sweden
| | - U Häcker
- Department of Experimental Medical Sciences, BMC I13, 221 84 Lund, Sweden
| | - C N Prinz
- Division of Solid State Physics, Box 118, 221 00 Lund, Sweden; NanoLund, Box 118, 221 00 Lund, Sweden.
| |
Collapse
|
26
|
Andolfi L, Murello A, Cassese D, Ban J, Dal Zilio S, Lazzarino M. High aspect ratio silicon nanowires control fibroblast adhesion and cytoskeleton organization. NANOTECHNOLOGY 2017; 28:155102. [PMID: 28177298 DOI: 10.1088/1361-6528/aa5f3a] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Cell-cell and cell-matrix interactions are essential to the survival and proliferation of most cells, and are responsible for triggering a wide range of biochemical pathways. More recently, the biomechanical role of those interactions was highlighted, showing, for instance, that adhesion forces are essential for cytoskeleton organization. Silicon nanowires (Si NWs) with their small size, high aspect ratio and anisotropic mechanical response represent a useful model to investigate the forces involved in the adhesion processes and their role in cellular development. In this work we explored and quantified, by single cell force spectroscopy (SCFS), the interaction of mouse embryonic fibroblasts with a flexible forest of Si NWs. We observed that the cell adhesion forces are comparable to those found on collagen and bare glass coverslip, analogously the membrane tether extraction forces are similar to that on collagen but stronger than that on bare flat glass. Cell survival did not depend significantly on the substrate, although a reduced proliferation after 36 h was observed. On the contrary both cell morphology and cytoskeleton organization revealed striking differences. The cell morphology on Si-NW was characterized by a large number of filopodia and a significant decrease of the cell mobility. The cytoskeleton organization was characterized by the absence of actin fibers, which were instead dominant on collagen and flat glass support. Such findings suggest that the mechanical properties of disordered Si NWs, and in particular their strong asymmetry, play a major role in the adhesion, morphology and cytoskeleton organization processes. Indeed, while adhesion measurements by SCFS provide out-of-plane forces values consistent with those measured on conventional substrates, weaker in-plane forces hinder proper cytoskeleton organization and migration processes.
Collapse
Affiliation(s)
- Laura Andolfi
- Istituto Officina dei Materiali, Consiglio Nazionale delle Ricerche (IOM-CNR) Basovizza, Area Science Park, I-34149 Trieste, Italy
| | | | | | | | | | | |
Collapse
|
27
|
Oracz J, Adolfsson K, Westphal V, Radzewicz C, Borgström MT, Sahl SJ, Prinz CN, Hell SW. Ground State Depletion Nanoscopy Resolves Semiconductor Nanowire Barcode Segments at Room Temperature. NANO LETTERS 2017; 17:2652-2659. [PMID: 28262023 PMCID: PMC5391501 DOI: 10.1021/acs.nanolett.7b00468] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Revised: 03/03/2017] [Indexed: 05/22/2023]
Abstract
Nanowires hold great promise as tools for probing and interacting with various molecular and biological systems. Their unique geometrical properties (typically <100 nm in diameter and a few micrometers in length) enable minimally invasive interactions with living cells, so that electrical signals or forces can be monitored. All such experiments require in situ high-resolution imaging to provide context. While there is a clear need to extend visualization capabilities to the nanoscale, no suitable super-resolution far-field photoluminescence microscopy of extended semiconductor emitters has been described. Here, we report that ground state depletion (GSD) nanoscopy resolves heterostructured semiconductor nanowires formed by alternating GaP/GaInP segments ("barcodes") at a 5-fold resolution enhancement over confocal imaging. We quantify the resolution and contrast dependence on the dimensions of GaInP photoluminescence segments and illustrate the effects by imaging different nanowire barcode geometries. The far-red excitation wavelength (∼700 nm) and low excitation power (∼3 mW) make GSD nanoscopy attractive for imaging semiconductor structures in biological applications.
Collapse
Affiliation(s)
- Joanna Oracz
- Department of NanoBiophotonics, Max Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany
- Faculty of Physics, University of Warsaw, 02-093 Warsaw, Poland
- E-mail:
| | - Karl Adolfsson
- Division of Solid State Physics and NanoLund, Lund University, 22100 Lund, Sweden
| | - Volker Westphal
- Department of NanoBiophotonics, Max Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany
| | | | - Magnus T. Borgström
- Division of Solid State Physics and NanoLund, Lund University, 22100 Lund, Sweden
| | - Steffen J. Sahl
- Department of NanoBiophotonics, Max Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany
| | - Christelle N. Prinz
- Division of Solid State Physics and NanoLund, Lund University, 22100 Lund, Sweden
- E-mail:
| | - Stefan W. Hell
- Department of NanoBiophotonics, Max Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany
- E-mail:
| |
Collapse
|
28
|
Xu AM, Wang DS, Shieh P, Cao Y, Melosh NA. Direct Intracellular Delivery of Cell-Impermeable Probes of Protein Glycosylation by Using Nanostraws. Chembiochem 2017; 18:623-628. [PMID: 28130882 DOI: 10.1002/cbic.201600689] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Indexed: 12/24/2022]
Abstract
Bioorthogonal chemistry is an effective tool for elucidating metabolic pathways and measuring cellular activity, yet its use is currently limited by the difficulty of getting probes past the cell membrane and into the cytoplasm, especially if more complex probes are desired. Here we present a simple and minimally perturbative technique to deliver functional probes of glycosylation into cells by using a nanostructured "nanostraw" delivery system. Nanostraws provide direct intracellular access to cells through fluid conduits that remain small enough to minimize cell perturbation. First, we demonstrate that our platform can deliver an unmodified azidosugar, N-azidoacetylmannosamine, into cells with similar effectiveness to a chemical modification strategy (peracetylation). We then show that the nanostraw platform enables direct delivery of an azidosugar modified with a charged uridine diphosphate group (UDP) that prevents intracellular penetration, thereby bypassing multiple enzymatic processing steps. By effectively removing the requirement for cell permeability from the probe, the nanostraws expand the toolbox of bioorthogonal probes that can be used to study biological processes on a single, easy-to-use platform.
Collapse
Affiliation(s)
- Alexander M Xu
- Department of Materials Science and Engineering, Stanford University, 476 Lomita Mall, Stanford, CA, 94305, USA.,Present address: Chemistry and Chemical Engineering Division, California Institute of Technology, 1200 E California Boulevard, Pasadena, CA, 91106, USA
| | - Derek S Wang
- Department of Materials Science and Engineering, Stanford University, 476 Lomita Mall, Stanford, CA, 94305, USA
| | - Peyton Shieh
- Department of Chemistry, Stanford University, 333 Campus Drive, Stanford, CA, 94305, USA
| | - Yuhong Cao
- Department of Materials Science and Engineering, Stanford University, 476 Lomita Mall, Stanford, CA, 94305, USA
| | - Nicholas A Melosh
- Department of Materials Science and Engineering, Stanford University, 476 Lomita Mall, Stanford, CA, 94305, USA
| |
Collapse
|
29
|
Kavaldzhiev M, Perez JE, Ivanov Y, Bertoncini A, Liberale C, Kosel J. Biocompatible 3D printed magnetic micro needles. Biomed Phys Eng Express 2017. [DOI: 10.1088/2057-1976/aa5ccb] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
30
|
Bouloudenine M, Bououdina M. Toxic Effects of Engineered Nanoparticles on Living Cells. PHARMACEUTICAL SCIENCES 2017. [DOI: 10.4018/978-1-5225-1762-7.ch053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Measuring toxic effects of engineered nanoparticles on living cells would require a deep understanding of themselves by the mean of their composition, physical and chemical properties and exposure concentrations. Actually, high exposure concentrations are needed to generate quantifiable effects and to perceive accumulation above background. This chapter presents an overview on the assessment about the toxic effects of engineered nanoparticles on living cells. It consists of three main sections starting with a brief introduction, the current state of engineered nanoparticles in the environment, physical and chemical properties of some important engineered nanoparticles such as “Ag, Au, ZnO, TiO2” and the target organ toxicity of the engineered nanoparticles in several biological organisms.
Collapse
Affiliation(s)
- Manel Bouloudenine
- Mohamed Chérif Messaâdia University, Algeria & Badji Mokhtar University, Algeria
| | | |
Collapse
|
31
|
Harding FJ, Surdo S, Delalat B, Cozzi C, Elnathan R, Gronthos S, Voelcker NH, Barillaro G. Ordered Silicon Pillar Arrays Prepared by Electrochemical Micromachining: Substrates for High-Efficiency Cell Transfection. ACS APPLIED MATERIALS & INTERFACES 2016; 8:29197-29202. [PMID: 27744675 DOI: 10.1021/acsami.6b07850] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Ordered arrays of silicon nano- to microscale pillars are used to enable biomolecular trafficking into primary human cells, consistently demonstrating high transfection efficiency can be achieved with broader and taller pillars than reported to date. Cell morphology on the pillar arrays is often strikingly elongated. Investigation of the cellular interaction with the pillar reveals that cells are suspended on pillar tips and do not interact with the substrate between the pillars. Although cells remain suspended on pillar tips, acute local deformation of the cell membrane was noted, allowing pillar tips to penetrate the cell interior, while retaining cell viability.
Collapse
Affiliation(s)
- Frances J Harding
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Future Industries Institute, Mawson Lakes, University of South Australia , Adelaid, South Australia 5095, Australia
| | - Salvatore Surdo
- Dipartimento di Ingegneria dell'Informazione, Università di Pisa , via G. Caruso 16, 56122 Pisa, Italy
| | - Bahman Delalat
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Future Industries Institute, Mawson Lakes, University of South Australia , Adelaid, South Australia 5095, Australia
| | - Chiara Cozzi
- Dipartimento di Ingegneria dell'Informazione, Università di Pisa , via G. Caruso 16, 56122 Pisa, Italy
| | - Roey Elnathan
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Future Industries Institute, Mawson Lakes, University of South Australia , Adelaid, South Australia 5095, Australia
| | - Stan Gronthos
- South Australian Health and Medical Research Institute , Adelaide 5005, South Australia, Australia
- Mesenchymal Stem Cell Group Laboratory, School of Medicine, Faculty of Health Sciences, University of Adelaide , Adelaide, South Australia, Australia
| | - Nicolas H Voelcker
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Future Industries Institute, Mawson Lakes, University of South Australia , Adelaid, South Australia 5095, Australia
| | - Giuseppe Barillaro
- Dipartimento di Ingegneria dell'Informazione, Università di Pisa , via G. Caruso 16, 56122 Pisa, Italy
| |
Collapse
|
32
|
Gällentoft L, Pettersson LME, Danielsen N, Schouenborg J, Prinz CN, Linsmeier CE. Impact of degradable nanowires on long-term brain tissue responses. J Nanobiotechnology 2016; 14:64. [PMID: 27507159 PMCID: PMC4979107 DOI: 10.1186/s12951-016-0216-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2016] [Accepted: 08/03/2016] [Indexed: 01/12/2023] Open
Abstract
Background A promising approach to improve the performance of neural implants consists of adding nanomaterials, such as nanowires, to the surface of the implant. Nanostructured interfaces could improve the integration and communication stability, partly through the reduction of the cell-to-electrode distance. However, the safety issues of implanted nanowires in the brain need to be evaluated and understood before nanowires can be used on the surface of implants for long periods of time. To this end we here investigate whether implanted degradable nanowires offer any advantage over non-degradable nanowires in a long-term in vivo study (1 year) with respect to brain tissue responses. Results The tissue response after injection of degradable silicon oxide (SiOx)-coated gallium phosphide nanowires and biostable hafnium oxide-coated GaP nanowires into the rat striatum was compared. One year after nanowire injection, no significant difference in microglial or astrocytic response, as measured by staining for ED1 and glial fibrillary acidic protein, respectively, or in neuronal density, as measured by staining for NeuN, was found between degradable and biostable nanowires. Of the cells investigated, only microglia cells had engulfed the nanowires. The SiOx-coated nanowire residues were primarily seen in aggregated hypertrophic ED1-positive cells, possibly microglial cells that have fused to create multinucleated giant cells. Occasionally, degradable nanowires with an apparently intact shape were found inside single, small ED1-positive cells. The biostable nanowires were found intact in microglia cells of both phenotypes described. Conclusion The present study shows that the degradable nanowires remain at least partly in the brain over long time periods, i.e. 1 year; however, no obvious bio-safety issues for this degradable nanomaterial could be detected. Electronic supplementary material The online version of this article (doi:10.1186/s12951-016-0216-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Lina Gällentoft
- Department of Experimental Medical Science, Medical Faculty, Neuronano Research Center (NRC), Lund University, Scheelevägen 2, 223 81, Lund, Sweden.
| | - Lina M E Pettersson
- Department of Experimental Medical Science, Medical Faculty, Neuronano Research Center (NRC), Lund University, Scheelevägen 2, 223 81, Lund, Sweden
| | - Nils Danielsen
- Department of Experimental Medical Science, Medical Faculty, Neuronano Research Center (NRC), Lund University, Scheelevägen 2, 223 81, Lund, Sweden
| | - Jens Schouenborg
- Department of Experimental Medical Science, Medical Faculty, Neuronano Research Center (NRC), Lund University, Scheelevägen 2, 223 81, Lund, Sweden
| | - Christelle N Prinz
- Department of Experimental Medical Science, Medical Faculty, Neuronano Research Center (NRC), Lund University, Scheelevägen 2, 223 81, Lund, Sweden. .,Division of Solid State Physics/NanoLund, Lund University, P.O. Box 118, 221 00, Lund, Sweden.
| | - Cecilia Eriksson Linsmeier
- Department of Experimental Medical Science, Medical Faculty, Neuronano Research Center (NRC), Lund University, Scheelevägen 2, 223 81, Lund, Sweden.
| |
Collapse
|
33
|
Rani D, Pachauri V, Mueller A, Vu XT, Nguyen TC, Ingebrandt S. On the Use of Scalable NanoISFET Arrays of Silicon with Highly Reproducible Sensor Performance for Biosensor Applications. ACS OMEGA 2016; 1:84-92. [PMID: 30023473 PMCID: PMC6044623 DOI: 10.1021/acsomega.6b00014] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Accepted: 05/31/2016] [Indexed: 05/22/2023]
Abstract
As a prerequisite to the development of real label-free bioassay applications, a high-throughput top-down nanofabrication process is carried out with a combination of nanoimprint lithography, anisotropic wet-etching, and photolithography methods realizing nanoISFET arrays that are then analyzed for identical sensor characteristics. Here, a newly designed array-based sensor chip exhibits 32 high aspect ratio silicon nanowires (SiNWs) laid out in parallel with 8 unit groups that are connected to a very highly doped, Π-shaped common source and individual drain contacts. Intricately designed contact lines exert equal feed-line resistances and capacitances to homogenize the sensor response as well as to minimize parasitic transport effects and to render easy integration of a fluidic layer on top. The scalable nanofabrication process as outlined in this article casts out a total of 2496 nanowires (NWs) on a 4 inch p-type silicon-on-insulator (SOI) wafer, yielding 78 sensor chips based on nanoISFET arrays. The sensor platform exhibiting high-performance transistor characteristics in buffer solutions is thoroughly characterized using state-of-the-art surface and electrical measurement techniques. Deploying a pH sensor in liquid buffers after high-quality gas-phase silanization, nanoISEFT arrays demonstrate typical pH sensor behavior with sensitivity as high as 43 ± 3 mV·pH-1 and a device-to-device variation of 7% at the wafer scale. Demonstration of a high-density sensor platform with uniform characteristics such as nanoISFET arrays of silicon (Si) in a routine and refined nanofabrication process may serve as an ideal solution deployable for real assay-based applications.
Collapse
Affiliation(s)
- Dipti Rani
- Department
of Informatics and Microsystem Technology, University of Applied Sciences Kaiserslautern, Amerikastrasse 1, 66482 Zweibruecken, Germany
| | - Vivek Pachauri
- Department
of Informatics and Microsystem Technology, University of Applied Sciences Kaiserslautern, Amerikastrasse 1, 66482 Zweibruecken, Germany
- E-mail:
| | - Achim Mueller
- Department
of Informatics and Microsystem Technology, University of Applied Sciences Kaiserslautern, Amerikastrasse 1, 66482 Zweibruecken, Germany
- Ram
Group DE GmbH, Amerikastrasse
15, 66482 Zweibruecken, Germany
| | - Xuan Thang Vu
- Department
of Informatics and Microsystem Technology, University of Applied Sciences Kaiserslautern, Amerikastrasse 1, 66482 Zweibruecken, Germany
- Ram
Group DE GmbH, Amerikastrasse
15, 66482 Zweibruecken, Germany
| | | | - Sven Ingebrandt
- Department
of Informatics and Microsystem Technology, University of Applied Sciences Kaiserslautern, Amerikastrasse 1, 66482 Zweibruecken, Germany
- Ram
Group DE GmbH, Amerikastrasse
15, 66482 Zweibruecken, Germany
| |
Collapse
|
34
|
Nair BG, Hagiwara K, Ueda M, Yu HH, Tseng HR, Ito Y. High Density of Aligned Nanowire Treated with Polydopamine for Efficient Gene Silencing by siRNA According to Cell Membrane Perturbation. ACS APPLIED MATERIALS & INTERFACES 2016; 8:18693-18700. [PMID: 27420034 DOI: 10.1021/acsami.6b04913] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
High aspect ratio nanomaterials, such as vertically aligned silicon nanowire (SiNW) substrates, are three-dimensional topological features for cell manipulations. A high density of SiNWs significantly affects not only cell adhesion and proliferation but also the delivery of biomolecules to cells. Here, we used polydopamine (PD) that simply formed a thin coating on various material surfaces by the action of dopamine as a bioinspired approach. The PD coating not only enhanced cell adhesion, spreading, and growth but also anchored more siRNA by adsorption and provided more surface concentration for substrate-mediated delivery. By comparing plain and SiNW surfaces with the same amount of loaded siRNA, we quantitatively found that PD coating efficiently anchored siRNA on the surface, which knocked down the expression of a specific gene by RNA interference. It was also found that the interaction of SiNWs with the cell membrane perturbed the lateral diffusion of lipids in the membrane by fluorescence recovery after photobleaching. The perturbation was considered to induce the effective delivery of siRNA into cells and allow the cells to carry out their biological functions. These results suggest promising applications of PD-coated, high-density SiNWs as simple, fast, and versatile platforms for transmembrane delivery of biomolecules.
Collapse
Affiliation(s)
- Baiju G Nair
- Nano Medical Engineering Laboratory, RIKEN , 2-1 Hirosawa, Wako, Saitama 3510198, Japan
| | - Kyoji Hagiwara
- Emergent Bioengineering Material Research Team, RIKEN Centre for Emergent Matter Science , 2-1 Hirosawa, Wako, Saitama 3510198, Japan
- Laboratory of Human Science and Engineering , 1-3-1 Minaminagasaki, Toshima-ku, Tokyo 1710052, Japan
| | - Motoki Ueda
- Nano Medical Engineering Laboratory, RIKEN , 2-1 Hirosawa, Wako, Saitama 3510198, Japan
- Emergent Bioengineering Material Research Team, RIKEN Centre for Emergent Matter Science , 2-1 Hirosawa, Wako, Saitama 3510198, Japan
| | - Hsiao-Hua Yu
- Nano Medical Engineering Laboratory, RIKEN , 2-1 Hirosawa, Wako, Saitama 3510198, Japan
- Institute of Chemistry, Academia Sinica , 128 Academia Road Sec. 2, Nankang, Taipei 115, Taiwan
| | - Hsian-Rong Tseng
- Department of Molecular and Medical Pharmacology, University of California , Los Angeles CNSI, 570 Westwood Plaza, Los Angeles, California 90095, United States
| | - Yoshihiro Ito
- Nano Medical Engineering Laboratory, RIKEN , 2-1 Hirosawa, Wako, Saitama 3510198, Japan
- Emergent Bioengineering Material Research Team, RIKEN Centre for Emergent Matter Science , 2-1 Hirosawa, Wako, Saitama 3510198, Japan
| |
Collapse
|
35
|
Silicon nanowire based biosensing platform for electrochemical sensing of Mebendazole drug activity on breast cancer cells. Biosens Bioelectron 2016; 85:363-370. [PMID: 27196254 DOI: 10.1016/j.bios.2016.04.081] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Revised: 04/23/2016] [Accepted: 04/25/2016] [Indexed: 01/05/2023]
Abstract
Electrochemical approaches have played crucial roles in bio sensing because of their Potential in achieving sensitive, specific and low-cost detection of biomolecules and other bio evidences. Engineering the electrochemical sensing interface with nanomaterials tends to new generations of label-free biosensors with improved performances in terms of sensitive area and response signals. Here we applied Silicon Nanowire (SiNW) array electrodes (in an integrated architecture of working, counter and reference electrodes) grown by low pressure chemical vapor deposition (LPCVD) system with VLS procedure to electrochemically diagnose the presence of breast cancer cells as well as their response to anticancer drugs. Mebendazole (MBZ), has been used as antitubulin drug. It perturbs the anodic/cathodic response of the cell covered biosensor by releasing Cytochrome C in cytoplasm. Reduction of cytochrome C would change the ionic state of the cells monitored by SiNW biosensor. By applying well direct bioelectrical contacts with cancer cells, SiNWs can detect minor signal transduction and bio recognition events, resulting in precise biosensing. Our device detected the trace of MBZ drugs (with the concentration of 2nM) on electrochemical activity MCF-7 cells. Also, experimented biological analysis such as confocal and Flowcytometry assays confirmed the electrochemical results.
Collapse
|
36
|
From immobilized cells to motile cells on a bed-of-nails: effects of vertical nanowire array density on cell behaviour. Sci Rep 2015; 5:18535. [PMID: 26691936 PMCID: PMC4686997 DOI: 10.1038/srep18535] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Accepted: 11/19/2015] [Indexed: 01/27/2023] Open
Abstract
The field of vertical nanowire array-based applications in cell biology is growing rapidly and an increasing number of applications are being explored. These applications almost invariably rely on the physical properties of the nanowire arrays, creating a need for a better understanding of how their physical properties affect cell behaviour. Here, we investigate the effects of nanowire density on cell migration, division and morphology for murine fibroblasts. Our results show that few nanowires are sufficient to immobilize cells, while a high nanowire spatial density enables a ”bed-of-nails” regime, where cells reside on top of the nanowires and are fully motile. The presence of nanowires decreases the cell proliferation rate, even in the “bed-of-nails” regime. We show that the cell morphology strongly depends on the nanowire density. Cells cultured on low (0.1 μm−2) and medium (1 μm−2) density substrates exhibit an increased number of multi-nucleated cells and micronuclei. These were not observed in cells cultured on high nanowire density substrates (4 μm−2). The results offer important guidelines to minimize cell-function perturbations on nanowire arrays. Moreover, these findings offer the possibility to tune cell proliferation and migration independently by adjusting the nanowire density, which may have applications in drug testing.
Collapse
|