1
|
Yilma AN, Sahu R, Subbarayan P, Villinger F, Coats MT, Singh SR, Dennis VA. PLGA-Chitosan Encapsulated IL-10 Nanoparticles Modulate Chlamydia Inflammation in Mice. Int J Nanomedicine 2024; 19:1287-1301. [PMID: 38348174 PMCID: PMC10860865 DOI: 10.2147/ijn.s432970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Accepted: 12/12/2023] [Indexed: 02/15/2024] Open
Abstract
Introduction Interleukin-10 (IL-10) is a key anti-inflammatory mediator in protecting host from over-exuberant responses to pathogens and play important roles in wound healing, autoimmunity, cancer, and homeostasis. However, its application as a therapeutic agent for biomedical applications has been limited due to its short biological half-life. Therefore, it is important to prolong the half-life of IL-10 to replace the current therapeutic application, which relies on administering large and repeated dosages. Therefore, not a cost-effective approach. Thus, studies that aim to address this type of challenges are always in need. Methods Recombinant IL-10 was encapsulated in biodegradable nanoparticles (Poly-(Lactic-co-Glycolic Acid) and Chitosan)) by the double emulsion method and then characterized for size, surface charge, thermal stability, cytotoxicity, in vitro release, UV-visible spectroscopy, and Fourier Transform-Infrared Spectroscopy as well as evaluated for its anti-inflammatory effects. Bioactivity of encapsulated IL-10 was evaluated in vitro using J774A.1 macrophage cell-line and in vivo using BALB/c mice. Inflammatory cytokines (IL-6 and TNF-α) were quantified from culture supernatants using specific enzyme-linked immunosorbent assay (ELISA), and significance was analyzed using ANOVA. Results We obtained a high 96% encapsulation efficiency with smooth encapsulated IL-10 nanoparticles of ~100-150 nm size and release from nanoparticles as measurable to 22 days. Our result demonstrated that encapsulated IL-10 was biocompatible and functional by reducing the inflammatory responses induced by LPS in macrophages. Of significance, we also proved the functionality of encapsulated IL-10 by its capacity to reduce inflammation in BALB/c mice as provoked by Chlamydia trachomatis, an inflammatory sexually transmitted infectious bacterium. Discussion Collectively, our results show the successful IL-10 encapsulation, slow release to prolong its biological half-life and reduce inflammatory cytokines IL-6 and TNF production in vitro and in mice. Our results serve as proof of concept to further explore the therapeutic prospective of encapsulated IL-10 for biomedical applications, including inflammatory diseases.
Collapse
Affiliation(s)
- Abebayehu N Yilma
- Center for NanoBiotechnology Research (CNBR), Alabama State University, Montgomery, AL, USA
- Department of Public Health Sciences, Pennsylvania State University College of Medicine, Hershey, PA, USA
| | - Rajnish Sahu
- Center for NanoBiotechnology Research (CNBR), Alabama State University, Montgomery, AL, USA
| | - Praseetha Subbarayan
- Center for NanoBiotechnology Research (CNBR), Alabama State University, Montgomery, AL, USA
| | - Francois Villinger
- Department of Biology, University of Louisiana at Lafayette, New Iberia, LA, USA
| | - Mamie T Coats
- Department of Clinical and Diagnostics Sciences, School of Health Professionals, The University at Alabama at Birmingham (UAB), Birmingham, AL, USA
| | - Shree R Singh
- Center for NanoBiotechnology Research (CNBR), Alabama State University, Montgomery, AL, USA
| | - Vida A Dennis
- Center for NanoBiotechnology Research (CNBR), Alabama State University, Montgomery, AL, USA
| |
Collapse
|
2
|
Sahu R, Verma R, Egbo TE, Giambartolomei GH, Singh SR, Dennis VA. Effects of prime-boost strategies on the protective efficacy and immunogenicity of a PLGA (85:15)-encapsulated Chlamydia recombinant MOMP nanovaccine. Pathog Dis 2024; 82:ftae004. [PMID: 38862192 PMCID: PMC11186516 DOI: 10.1093/femspd/ftae004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 01/08/2024] [Accepted: 06/10/2024] [Indexed: 06/13/2024] Open
Abstract
To begin to optimize the immunization routes for our reported PLGA-rMOMP nanovaccine [PLGA-encapsulated Chlamydia muridarum (Cm) recombinant major outer membrane protein (rMOMP)], we compared two prime-boost immunization strategies [subcutaneous (SC) and intramuscular (IM-p) prime routes followed by two SC-boosts)] to evaluate the nanovaccine-induced protective efficacy and immunogenicity in female BALB/c mice. Our results showed that mice immunized via the SC and IM-p routes were protected against a Cm genital challenge by a reduction in bacterial burden and with fewer bacteria in the SC mice. Protection of mice correlated with rMOMP-specific Th1 (IL-2 and IFN-γ) and not Th2 (IL-4, IL-9, and IL-13) cytokines, and CD4+ memory (CD44highCD62Lhigh) T-cells, especially in the SC mice. We also observed higher levels of IL-1α, IL-6, IL-17, CCL-2, and G-CSF in SC-immunized mice. Notably, an increase of cytokines/chemokines was seen after the challenge in the SC, IM-p, and control mice (rMOMP and PBS), suggesting a Cm stimulation. In parallel, rMOMP-specific Th1 (IgG2a and IgG2b) and Th2 (IgG1) serum, mucosal, serum avidity, and neutralizing antibodies were more elevated in SC than in IM-p mice. Overall, the homologous SC prime-boost immunization of mice induced enhanced cellular and antibody responses with better protection against a genital challenge compared to the heterologous IM-p.
Collapse
Affiliation(s)
- Rajnish Sahu
- Center for NanoBiotechnology Research, Department of Biological Sciences, 1627 Harris Way, Alabama State University, Montgomery AL, 36104, United States
| | - Richa Verma
- Center for NanoBiotechnology Research, Department of Biological Sciences, 1627 Harris Way, Alabama State University, Montgomery AL, 36104, United States
| | - Timothy E Egbo
- US Army Medical Research Institute of Infectious Diseases, Unit 8900, DPO, AE, Box 330, 09831, United States
| | - Guillermo H Giambartolomei
- Instituto de Inmunología, Genética y Metabolismo (INIGEM). CONICET. AV. Cordoba 2351, Universidad de Buenos Aires, Buenos Aires, C1120AAR, Argentina
| | - Shree R Singh
- Center for NanoBiotechnology Research, Department of Biological Sciences, 1627 Harris Way, Alabama State University, Montgomery AL, 36104, United States
| | - Vida A Dennis
- Center for NanoBiotechnology Research, Department of Biological Sciences, 1627 Harris Way, Alabama State University, Montgomery AL, 36104, United States
| |
Collapse
|
3
|
Silvarrey C, Alvite G, Esteves A. Nanoparticle formulation for the development of a dog nanovaccine against Cystic Echinococcosis. Biologicals 2024; 85:101737. [PMID: 38101003 DOI: 10.1016/j.biologicals.2023.101737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 11/03/2023] [Accepted: 11/30/2023] [Indexed: 12/17/2023] Open
Abstract
Cystic Echinococcosis is a cosmopolitan zoonosis closely linked to poverty and ignorance. It affects both cattle and humans, causing significant losses to both human and animal health. To date, there is no effective way to combat this. Our proposal focused on the formulation of poly (lactic-co-glycolic acid (PLGA) and Eudragit-RSPO polymeric nanoparticles, which are suitable to encapsulate an antigen for oral administration in dogs. This antigen, named EgFABP1, belonging to the family of fatty acid-binding proteins, was isolated from the larval form of the parasite Echinococcus granulosus. Several reports point to proteins from this family from parasitic flatworms as candidates for a successful vaccine, considering the restricted lipid metabolism of these organisms. The encapsulation of the antigen yielded an efficiency higher than 50 %, and the nanoparticles showed the expected size range. In addition, antigen integrity was conserved and the formulation was resistant to artificial gastric and intestinal fluid effects.
Collapse
Affiliation(s)
- Cecilia Silvarrey
- Sección Bioquímica, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay.
| | - Gabriela Alvite
- Sección Bioquímica, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay.
| | - Adriana Esteves
- Sección Bioquímica, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay.
| |
Collapse
|
4
|
Wan W, Li Y, Wang J, Jin Z, Xin W, Kang L, Wang J, Li X, Cao Y, Yang H, Wang J, Gao S. PLGA Nanoparticle-Based Dissolving Microneedle Vaccine of Clostridium perfringens ε Toxin. Toxins (Basel) 2023; 15:461. [PMID: 37505730 PMCID: PMC10467084 DOI: 10.3390/toxins15070461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 07/12/2023] [Accepted: 07/14/2023] [Indexed: 07/29/2023] Open
Abstract
Epsilon toxin (ETX) is an exotoxin produced by type B and D Clostridium perfringens that causes enterotoxemia or necrotic enteritis in animals such as goats, sheep, and cattle. Vaccination is a key method in preventing such diseases. In this study, we developed a new type of dissolving microneedle patch (dMN) with a nanoparticle adjuvant for enhanced immune response to deliver the rETXY196E-C protein vaccine. We chose FDA-approved poly(lactic-co-glycolic acid) (PLGA) to prepare nanospheres as the vaccine adjuvant and introduced dimethyldioctadecylammonium bromide (DDAB) to make the surface of PLGA nanoparticles (PLGA NPs) positively charged for antigen adsorption. PLGA NPs with a diameter of 100~200 nm, a surface ZETA potential of approximately +40 mV, and good safety were successfully prepared and could effectively adsorb rETXY196E-C protein. Using non-toxic and antibacterial fish gelatin as the microneedle (MN) matrix, we prepared a PLGA-DDAB dMN vaccine with good mechanical properties that successfully penetrated the skin. After immunization of subcutaneous (SC) and dMN, antibody titers of the PLGA and Al adjuvant groups were similar in both two immune ways. However, in vivo neutralization experiments showed that the dMN vaccines had a better protective effect. When challenged with 100 × LD50 GST-ETX, the survival rate of the MN group was 100%, while that of the SC Al group was 80%. However, a 100% protective effect was achieved in both immunization methods using PLGA NPs. In vitro neutralization experiments showed that the serum antibodies from the dMN and SC PLGA NPs groups both protect naive mice from 10 × LD50 GST-ETX attack after being diluted 20 times and could also protect MDCK cells from 20 × CT50 GST-ETX attack. In conclusion, the PLGA-DDAB dMN vaccine we prepared has good mechanical properties, immunogenicity, and protection, and can effectively prevent ETX poisoning. This provides a better way of delivering protein vaccines.
Collapse
Affiliation(s)
- Wei Wan
- State Key Laboratory of Pathogen and Biosecurity, Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences (AMMS), Beijing 100071, China; (W.W.); (Y.L.); (J.W.); (Z.J.); (W.X.); (L.K.); (X.L.); (Y.C.)
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yue Li
- State Key Laboratory of Pathogen and Biosecurity, Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences (AMMS), Beijing 100071, China; (W.W.); (Y.L.); (J.W.); (Z.J.); (W.X.); (L.K.); (X.L.); (Y.C.)
| | - Jing Wang
- State Key Laboratory of Pathogen and Biosecurity, Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences (AMMS), Beijing 100071, China; (W.W.); (Y.L.); (J.W.); (Z.J.); (W.X.); (L.K.); (X.L.); (Y.C.)
| | - Zhiying Jin
- State Key Laboratory of Pathogen and Biosecurity, Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences (AMMS), Beijing 100071, China; (W.W.); (Y.L.); (J.W.); (Z.J.); (W.X.); (L.K.); (X.L.); (Y.C.)
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China
| | - Wenwen Xin
- State Key Laboratory of Pathogen and Biosecurity, Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences (AMMS), Beijing 100071, China; (W.W.); (Y.L.); (J.W.); (Z.J.); (W.X.); (L.K.); (X.L.); (Y.C.)
| | - Lin Kang
- State Key Laboratory of Pathogen and Biosecurity, Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences (AMMS), Beijing 100071, China; (W.W.); (Y.L.); (J.W.); (Z.J.); (W.X.); (L.K.); (X.L.); (Y.C.)
| | - Junhong Wang
- School of Medical Technology, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China;
| | - Xiaoyang Li
- State Key Laboratory of Pathogen and Biosecurity, Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences (AMMS), Beijing 100071, China; (W.W.); (Y.L.); (J.W.); (Z.J.); (W.X.); (L.K.); (X.L.); (Y.C.)
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yakun Cao
- State Key Laboratory of Pathogen and Biosecurity, Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences (AMMS), Beijing 100071, China; (W.W.); (Y.L.); (J.W.); (Z.J.); (W.X.); (L.K.); (X.L.); (Y.C.)
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China
| | - Hao Yang
- Beijing Noninvasion Biomedical Technology Co., Ltd., Beijing 101111, China;
| | - Jinglin Wang
- State Key Laboratory of Pathogen and Biosecurity, Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences (AMMS), Beijing 100071, China; (W.W.); (Y.L.); (J.W.); (Z.J.); (W.X.); (L.K.); (X.L.); (Y.C.)
| | - Shan Gao
- State Key Laboratory of Pathogen and Biosecurity, Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences (AMMS), Beijing 100071, China; (W.W.); (Y.L.); (J.W.); (Z.J.); (W.X.); (L.K.); (X.L.); (Y.C.)
| |
Collapse
|
5
|
Chavda VP, Pandya A, Kypreos E, Patravale V, Apostolopoulos V. Chlamydia trachomatis: quest for an eye-opening vaccine breakthrough. Expert Rev Vaccines 2022; 21:771-781. [PMID: 35470769 DOI: 10.1080/14760584.2022.2061461] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
INTRODUCTION Chlamydia trachomatis, commonly referred to as chlamydia (a bacterium), is a common sexually transmitted infection, and if attended to early, it can be treatable. However, if left untreated it can lead to serious consequences. C. trachomatis infects both females and males although its occurrence in females is more common, and it can spread to the eyes causing disease and in some case blindness. AREA COVERED With ongoing attempts in the most impoverished regions of the country, trachoma will be eradicated as a blinding disease by the year 2022. A prophylactic vaccine candidate with established safety and efficacy is a cogent tool to achieve this goal. This manuscript covers the vaccine development programs for chlamydial infection. EXPERT OPINION Currently, the Surgery Antibiotics Facial Environmental (SAFE) program is being implemented in endemic countries in order to reduce transmission and control of the disease. Vaccines have been shown over the years to protect against infectious diseases. Charge variant-based adjuvant can also be used for the successful delivery of chlamydial specific antigen for efficient vaccine delivery through nano delivery platform. Thus, a vaccine against C. trachomatis would be of great public health benefit.
Collapse
Affiliation(s)
- Vivek P Chavda
- Department of Pharmaceutics and Pharmaceutical Technology, L M College of Pharmacy, Ahmedabad India
| | - Anjali Pandya
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Mumbai India
| | - Erica Kypreos
- Department of Immunology, Institute for Health and Sport, Victoria University, Melbourne VIC Australia
| | - Vandana Patravale
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Mumbai India
| | - Vasso Apostolopoulos
- Department of Immunology, Institute for Health and Sport, Victoria University, Melbourne VIC Australia
| |
Collapse
|
6
|
Firdaus FZ, Skwarczynski M, Toth I. Developments in Vaccine Adjuvants. METHODS IN MOLECULAR BIOLOGY (CLIFTON, N.J.) 2022; 2412:145-178. [PMID: 34918245 DOI: 10.1007/978-1-0716-1892-9_8] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Vaccines, including subunit, recombinant, and conjugate vaccines, require the use of an immunostimulator/adjuvant for maximum efficacy. Adjuvants not only enhance the strength and longevity of immune responses but may also influence the type of response. In this chapter, we review the adjuvants that are available for use in human vaccines, such as alum, MF59, AS03, and AS01. We extensively discuss their composition, characteristics, mechanism of action, and effects on the immune system. Additionally, we summarize recent trends in adjuvant discovery, providing a brief overview of saponins, TLRs agonists, polysaccharides, nanoparticles, cytokines, and mucosal adjuvants.
Collapse
Affiliation(s)
- Farrhana Ziana Firdaus
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD, Australia
| | - Mariusz Skwarczynski
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD, Australia
| | - Istvan Toth
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD, Australia. .,Institute of Molecular Biosciences, The University of Queensland, St Lucia, QLD, Australia. .,School of Pharmacy, The University of Queensland, Woolloongabba, QLD, Australia.
| |
Collapse
|
7
|
Abisoye-Ogunniyan A, Carrano IM, Weilhammer DR, Gilmore SF, Fischer NO, Pal S, de la Maza LM, Coleman MA, Rasley A. A Survey of Preclinical Studies Evaluating Nanoparticle-Based Vaccines Against Non-Viral Sexually Transmitted Infections. Front Pharmacol 2021; 12:768461. [PMID: 34899322 PMCID: PMC8662999 DOI: 10.3389/fphar.2021.768461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 11/01/2021] [Indexed: 11/13/2022] Open
Abstract
A worldwide estimate of over one million STIs are acquired daily and there is a desperate need for effective preventive as well as therapeutic measures to curtail this global health burden. Vaccines have been the most effective means for the control and potential eradication of infectious diseases; however, the development of vaccines against STIs has been a daunting task requiring extensive research for the development of safe and efficacious formulations. Nanoparticle-based vaccines represent a promising platform as they offer benefits such as targeted antigen presentation and delivery, co-localized antigen-adjuvant combinations for enhanced immunogenicity, and can be designed to be biologically inert. Here we discuss promising types of nanoparticles along with outcomes from nanoparticle-based vaccine preclinical studies against non-viral STIs including chlamydia, syphilis, gonorrhea, and recommendations for future nanoparticle-based vaccines against STIs.
Collapse
Affiliation(s)
- Abisola Abisoye-Ogunniyan
- Biosciences and Biotechnology Division, Lawrence Livermore National Laboratory, Livermore, CA, United States
| | - Isabella M Carrano
- Department of Plant and Microbial Biology, Rausser College of Natural Resources, University of California, Berkeley, Berkeley, CA, United States
| | - Dina R Weilhammer
- Biosciences and Biotechnology Division, Lawrence Livermore National Laboratory, Livermore, CA, United States
| | - Sean F Gilmore
- Biosciences and Biotechnology Division, Lawrence Livermore National Laboratory, Livermore, CA, United States
| | - Nicholas O Fischer
- Biosciences and Biotechnology Division, Lawrence Livermore National Laboratory, Livermore, CA, United States
| | - Sukumar Pal
- Department of Pathology and Laboratory Medicine, University of California, Irvine, Irvine, CA, United States
| | - Luis M de la Maza
- Department of Pathology and Laboratory Medicine, University of California, Irvine, Irvine, CA, United States
| | - Matthew A Coleman
- Biosciences and Biotechnology Division, Lawrence Livermore National Laboratory, Livermore, CA, United States
| | - Amy Rasley
- Biosciences and Biotechnology Division, Lawrence Livermore National Laboratory, Livermore, CA, United States
| |
Collapse
|
8
|
Nanomedicines for the topical treatment of vulvovaginal infections: Addressing the challenges of antimicrobial resistance. Adv Drug Deliv Rev 2021; 178:113855. [PMID: 34214638 DOI: 10.1016/j.addr.2021.113855] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 05/24/2021] [Accepted: 06/25/2021] [Indexed: 12/11/2022]
Abstract
Recent years have, surprisingly, witnessed an increase in incidence of sexually transmitted infections (STIs). At the same time, antimicrobial therapy came under the threat of ever rising antimicrobial resistance (AMR), resulting in STIs with extremely limited therapy options. In this review, we addressed the challenges of treating vaginal infections in an era of AMR. We focused on published work regarding nanomedicine destined for localized treatment of vaginal infections. Localized therapy offers numerous advantages such as assuring high drug concentration at the infection site, limiting systemic drug exposure that can lead to faster development of AMR reduction in the systemic side effects and potentially safe therapy in pregnancy. We provided a state-of-the-art overview of nanoformulations proposed to topically treat STIs, emphasizing the challenges and advantages of each type of nanocarriers, as well as issues of potential toxicity.
Collapse
|
9
|
Sahu R, Dixit S, Verma R, Duncan SA, Smith L, Giambartolomei GH, Singh SR, Dennis VA. Encapsulation of Recombinant MOMP in Extended-Releasing PLGA 85:15 Nanoparticles Confer Protective Immunity Against a Chlamydia muridarum Genital Challenge and Re-Challenge. Front Immunol 2021; 12:660932. [PMID: 33936096 PMCID: PMC8081181 DOI: 10.3389/fimmu.2021.660932] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 03/24/2021] [Indexed: 01/12/2023] Open
Abstract
Recently we reported the immune-potentiating capacity of a Chlamydia nanovaccine (PLGA-rMOMP) comprising rMOMP (recombinant major outer membrane protein) encapsulated in extended-releasing PLGA [poly (D, L-lactide-co-glycolide) (85:15)] nanoparticles. Here we hypothesized that PLGA-rMOMP would bolster immune-effector mechanisms to confer protective efficacy in mice against a Chlamydia muridarum genital challenge and re-challenge. Female BALB/c mice received three immunizations, either subcutaneously (SC) or intranasally (IN), before receiving an intravaginal challenge with C. muridarum on day 49 and a re-challenge on day 170. Both the SC and IN immunization routes protected mice against genital challenge with enhanced protection after a re-challenge, especially in the SC mice. The nanovaccine induced robust antigen-specific Th1 (IFN-γ, IL-2) and IL-17 cytokines plus CD4+ proliferating T-cells and memory (CD44high CD62Lhigh) and effector (CD44high CD62Llow) phenotypes in immunized mice. Parallel induction of antigen-specific systemic and mucosal Th1 (IgG2a, IgG2b), Th2 (IgG1), and IgA antibodies were also noted. Importantly, immunized mice produced highly functional Th1 avidity and serum antibodies that neutralized C. muridarum infectivity of McCoy fibroblasts in-vitro that correlated with their respective protection levels. The SC, rather than the IN immunization route, triggered higher cellular and humoral immune effectors that improved mice protection against genital C. muridarum. We report for the first time that the extended-releasing PLGA 85:15 encapsulated rMOMP nanovaccine confers protective immunity in mice against genital Chlamydia and advances the potential towards acquiring a nano-based Chlamydia vaccine.
Collapse
Affiliation(s)
- Rajnish Sahu
- Center for NanoBiotechnology Research, Department of Biological Sciences, Alabama State University, Montgomery, AL, United States
| | - Saurabh Dixit
- Center for NanoBiotechnology Research, Department of Biological Sciences, Alabama State University, Montgomery, AL, United States
| | - Richa Verma
- Center for NanoBiotechnology Research, Department of Biological Sciences, Alabama State University, Montgomery, AL, United States
| | - Skyla A. Duncan
- Center for NanoBiotechnology Research, Department of Biological Sciences, Alabama State University, Montgomery, AL, United States
| | - Lula Smith
- Center for NanoBiotechnology Research, Department of Biological Sciences, Alabama State University, Montgomery, AL, United States
| | - Guillermo H. Giambartolomei
- Instituto de Inmunología, Genética y Metabolismo (INIGEM), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Shree R. Singh
- Center for NanoBiotechnology Research, Department of Biological Sciences, Alabama State University, Montgomery, AL, United States
| | - Vida A. Dennis
- Center for NanoBiotechnology Research, Department of Biological Sciences, Alabama State University, Montgomery, AL, United States
| |
Collapse
|
10
|
Rezaei F, Keshvari H, Shokrgozar MA, Doroud D, Gholami E, Khabiri A, Farokhi M. Nano-adjuvant based on silk fibroin for the delivery of recombinant hepatitis B surface antigen. Biomater Sci 2021; 9:2679-2695. [PMID: 33605970 DOI: 10.1039/d0bm01518k] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Nanotechnology has a vital role in vaccine development. Nano-adjuvants, as robust delivery systems, could stimulate immune responses. Using nanoparticles (NPs) in vaccine formulations enhances the target delivery, immunogenicity, and stability of the antigens. Herein, silk fibroin nanoparticles (SFNPs) were used as a nano-adjuvant for delivering recombinant hepatitis B surface antigen (HBsAg). HBsAg was loaded physically and chemically on the surface of SFNPs. The HBsAg-loaded SFNPs had a spherical morphology. The in vitro release studies showed that HBsAg had a continuous and slow release from SFNPs during 56 days. During this time, ∼45.6% and 34.1% HBsAg was released from physical-SFNPs and chemical-SFNPs, respectively. HBsAg-loaded SFNPs were also stable for six months with slight changes in the size, surface charge, and morphology. The results of circular dichroism (CD) and fluorescence spectroscopy indicated that the released HBsAg preserved the native secondary and tertiary structures. The quantitative cellular uptake study also showed that physical-SFNPs were taken up more into J774A.1 macrophage cells than chemical-SFNPs. After 28 and 56 days post-injection, the immunogenicity studies showed that the specific total IgG, IgG1, and IgG2a levels against HBsAg were significantly higher in the physically loaded group than in the chemically loaded group and commercial hepatitis B vaccine. IgG2a levels were detected only in mice immunized with physical-SFNPs. However, the low levels of IL-4 and IFN-γ were produced in all vaccinated groups and differences in mean values were not significant compared with control groups. Results indicated an improvement in the levels of anti-HBsAg IgG in mice immunized with the physical-SFNPs group compared to other groups.
Collapse
Affiliation(s)
- Fatemeh Rezaei
- Faculty of Biomedical Engineering, Amirkabir University of Technology, Tehran, Iran.
| | | | | | | | | | | | | |
Collapse
|
11
|
Afshari H, Maleki M, Salouti M. Immunological effects of two new nanovaccines against Brucella based on OPS and LPS antigens conjugated with PLGA nanoparticles. Eur Polym J 2020. [DOI: 10.1016/j.eurpolymj.2020.110021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
12
|
Sahu R, Dixit S, Verma R, Duncan SA, Coats MT, Giambartolomei GH, Singh SR, Dennis VA. A nanovaccine formulation of Chlamydia recombinant MOMP encapsulated in PLGA 85:15 nanoparticles augments CD4+ effector (CD44high CD62Llow) and memory (CD44high CD62Lhigh) T-cells in immunized mice. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2020; 29:102257. [PMID: 32610072 DOI: 10.1016/j.nano.2020.102257] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 05/08/2020] [Accepted: 06/18/2020] [Indexed: 02/05/2023]
Abstract
Vaccine developmental strategies are utilizing antigens encapsulated in biodegradable polymeric nanoparticles. Here, we developed a Chlamydia nanovaccine (PLGA-rMOMP) by encapsulating its recombinant major outer membrane protein (rMOMP) in the extended-releasing and self-adjuvanting PLGA [poly (D, L-lactide-co-glycolide) (85:15)] nanoparticles. PLGA-rMOMP was small (nanometer size), round and smooth, thermally stable, and exhibited a sustained release of rMOMP. Stimulation of mouse primary dendritic cells (DCs) with PLGA-rMOMP augmented endosome processing, induced Th1 cytokines (IL-6 and IL-12p40), and expression of MHC-II and co-stimulatory (CD40, CD80, and CD86) molecules. BALB/c mice immunized with PLGA-rMOMP produced enhanced CD4+ T-cells-derived memory (CD44high CD62Lhigh), and effector (CD44high CD62Llow) phenotypes and functional antigen-specific serum IgG antibodies. In vivo biodistribution of PLGA-rMOMP revealed its localization within lymph nodes, suggesting migration from the injection site via DCs. Our data provide evidence that the PLGA (85:15) nanovaccine activates DCs and augments Chlamydia-specific rMOMP adaptive immune responses that are worthy of efficacy testing.
Collapse
|
13
|
Kong D, Han X, Shevlin SA, Windle C, Warner JH, Guo ZX, Tang J. A Metal-Free Oxygenated Covalent Triazine 2-D Photocatalyst Works Effectively from the Ultraviolet to Near-Infrared Spectrum for Water Oxidation Apart from Water Reduction. ACS APPLIED ENERGY MATERIALS 2020; 3:8960-8968. [PMID: 33015589 PMCID: PMC7525806 DOI: 10.1021/acsaem.0c01153] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 08/24/2020] [Indexed: 06/11/2023]
Abstract
Solar-driven water splitting is highly desirable for hydrogen fuel production, particularly if water oxidation is effectively sustained in a complete cycle and/or by means of stable and efficient photocatalysts of main group elements, for example, carbon and nitrogen. Despite extensive success on H2 production on polymer photocatalysts, polymers have met with very limited success for the rate-determining step of the water splitting-water oxidation reaction due to the extremely slow "four-hole" chemistry. Here, the synthesized metal-free oxygenated covalent triazine (OCT) is remarkably active for oxygen production in a wide operation window from UV to visible and even to NIR (up to 800 nm), neatly matching the solar spectrum with an unprecedented external quantum efficiency (even 1% at 600 nm) apart from excellent activity for H2 production under full arc irradiation, a big step moving toward full solar spectrum water splitting. Experimental results and DFT calculations show that the oxygen incorporation not only narrows the band gap but also causes appropriate band-edge shifts. In the end, a controlled small amount of oxygen in the ionothermal reaction is found to be a promising and facile way of achieving such oxygen incorporation. This discovery is a significant step toward both scientific understanding and practical development of metal-free photocatalysts for cost-effective water oxidation and hydrogen generation over a large spectral window.
Collapse
Affiliation(s)
- Dan Kong
- Department
of Chemical Engineering, University College
London, Torrington Place, London WC1E 7JE, U.K.
| | - Xiaoyu Han
- Department
of Chemistry, University College London, 20 Gordon St., London WC1H 0AJ, U.K.
| | - Stephen A. Shevlin
- Department
of Chemistry, University College London, 20 Gordon St., London WC1H 0AJ, U.K.
| | - Christopher Windle
- Department
of Chemical Engineering, University College
London, Torrington Place, London WC1E 7JE, U.K.
| | - Jamie H. Warner
- Department
of Materials, University of Oxford, 16 Parks Road, Oxford OX1 3PH, U.K.
| | - Zheng-Xiao Guo
- Department
of Chemistry, University College London, 20 Gordon St., London WC1H 0AJ, U.K.
| | - Junwang Tang
- Department
of Chemical Engineering, University College
London, Torrington Place, London WC1E 7JE, U.K.
| |
Collapse
|
14
|
Hasanzadeh S, Farokhi M, Habibi M, Shokrgozar MA, Ahangari Cohan R, Rezaei F, Asadi Karam MR, Bouzari S. Silk Fibroin Nanoadjuvant as a Promising Vaccine Carrier to Deliver the FimH-IutA Antigen for Urinary Tract Infection. ACS Biomater Sci Eng 2020; 6:4573-4582. [DOI: 10.1021/acsbiomaterials.0c00736] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Sara Hasanzadeh
- Department of Molecular Biology, Pasteur Institute of Iran, Tehran 1316943551, Iran
| | - Mehdi Farokhi
- National Cell Bank, Pasteur Institute of Iran, Tehran 1316943551, Iran
| | - Mehri Habibi
- Department of Molecular Biology, Pasteur Institute of Iran, Tehran 1316943551, Iran
| | | | - Reza Ahangari Cohan
- Department of Nanobiotechnology, Pasteur Institute of Iran, Tehran 1316943551, Iran
| | - Fatemeh Rezaei
- Faculty of Biomedical Engineering, Amirkabir University of Technology, Tehran 1591634311, Iran
| | | | - Saeid Bouzari
- Department of Molecular Biology, Pasteur Institute of Iran, Tehran 1316943551, Iran
| |
Collapse
|
15
|
Duncan SA, Sahu R, Dixit S, Singh SR, Dennis VA. Suppressors of Cytokine Signaling (SOCS)1 and SOCS3 Proteins Are Mediators of Interleukin-10 Modulation of Inflammatory Responses Induced by Chlamydia muridarum and Its Major Outer Membrane Protein (MOMP) in Mouse J774 Macrophages. Mediators Inflamm 2020; 2020:7461742. [PMID: 32684836 PMCID: PMC7333066 DOI: 10.1155/2020/7461742] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 04/10/2020] [Indexed: 12/26/2022] Open
Abstract
The immunopathology of chlamydial diseases is exacerbated by a broad-spectrum of inflammatory mediators, which we reported are inhibited by IL-10 in macrophages. However, the chlamydial protein moiety that induces the inflammatory mediators and the mechanisms by which IL-10 inhibits them are unknown. We hypothesized that Chlamydia major outer membrane protein (MOMP) mediates its disease pathogenesis, and the suppressor of cytokine signaling (SOCS)1 and SOCS3 proteins are mediators of the IL-10 inhibitory actions. Our hypothesis was tested by exposing mouse J774 macrophages to chlamydial stimulants (live Chlamydia muridarum and MOMP) with and without IL-10. MOMP significantly induced several inflammatory mediators (IL-6, IL-12p40, CCL5, CXCL10), which were dose-dependently inhibited by IL-10. Chlamydial stimulants induced the mRNA gene transcripts and protein expression of SOCS1 and SOCS3, with more SOCS3 expression. Notably, IL-10 reciprocally regulated their expression by reducing SOCS1 and increasing SOCS3. Specific inhibitions of MAPK pathways revealed that p38, JNK, and MEK1/2 are required for inducing inflammatory mediators as well as SOCS1 and SOCS3. Chlamydial stimulants triggered an M1 pro-inflammatory phenotype evidently by an enhanced nos2 (M1 marker) expression, which was skewed by IL-10 towards a more M2 anti-inflammatory phenotype by the increased expression of mrc1 and arg1 (M2 markers) and the reduced SOCS1/SOCS3 ratios. Neutralization of endogenously produced IL-10 augmented the secretion of inflammatory mediators, reduced SOCS3 expression, and skewed the chlamydial M1 to an M2 phenotype. Inhibition of proteasome degradation increased TNF but decreased IL-10, CCL5, and CXCL10 secretion by suppressing SOCS1 and SOCS3 expressions and dysregulating their STAT1 and STAT3 transcription factors. Our data show that SOCS1 and SOCS3 are regulators of IL-10 inhibitory actions, and underscore SOCS proteins as therapeutic targets for IL-10 control of inflammation for Chlamydia and other bacterial inflammatory diseases.
Collapse
Affiliation(s)
- Skyla A. Duncan
- Center for NanoBiotechnology Research (CNBR), Department of Biological Sciences, Alabama State University, 1627 Harris Way, Montgomery, AL 36104, USA
| | - Rajnish Sahu
- Center for NanoBiotechnology Research (CNBR), Department of Biological Sciences, Alabama State University, 1627 Harris Way, Montgomery, AL 36104, USA
| | - Saurabh Dixit
- Center for NanoBiotechnology Research (CNBR), Department of Biological Sciences, Alabama State University, 1627 Harris Way, Montgomery, AL 36104, USA
| | - Shree R. Singh
- Center for NanoBiotechnology Research (CNBR), Department of Biological Sciences, Alabama State University, 1627 Harris Way, Montgomery, AL 36104, USA
| | - Vida A. Dennis
- Center for NanoBiotechnology Research (CNBR), Department of Biological Sciences, Alabama State University, 1627 Harris Way, Montgomery, AL 36104, USA
| |
Collapse
|
16
|
Chen Q, Bao Y, Burner D, Kaushal S, Zhang Y, Mendoza T, Bouvet M, Ozkan C, Minev B, Ma W. Tumor growth inhibition by mSTEAP peptide nanovaccine inducing augmented CD8 + T cell immune responses. Drug Deliv Transl Res 2020; 9:1095-1105. [PMID: 31228097 DOI: 10.1007/s13346-019-00652-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Poly(lactic-co-glycolic) acid (PLGA) has been successfully used in drug delivery and biomaterial applications, but very little attention has been directed towards the potential in vivo effects of peptide-loaded PLGA nanoparticles (NPs), specifically the potency of intravenous (IV) STEAP peptide-loaded PLGA-NP (nanovaccine) dosing and whether STEAP-specific CD8+ T cells directly play a key role in tumor inhibition. To address these concerns, syngeneic prostate cancer mouse models were established and treated with either mSTEAP peptide emulsified in incomplete Freund's adjuvant (IFA) via subcutaneous (SC) injection or mSTEAP peptide nanovaccine containing the same amount of peptide via IV or SC injection. Meanwhile, mice were treated with either CD8b mAb followed by nanovaccine treatment, free mSTEAP peptide, or empty PLGA-NPs. Immune responses in these mice were examined using cytotoxicity assays at 14 days after treatment. Tumor size and survival in various treatment groups were measured and monitored. The results demonstrated that mSTEAP peptide nanovaccine resulted in tumor inhibition by eliciting a significantly stronger CD8+ T cell immune response when compared with the controls. Moreover, the survival periods of mice treated with mSTEAP nanovaccine were significantly longer than those of mice treated with mSTEAP peptide emulsified in IFA or the treatment controls. Additionally, it was observed that the peptide nanovaccine was mainly distributed in the mouse liver and lungs after IV injection. These findings suggest that the peptide nanovaccine is a promising immunotherapeutic approach and offers a new opportunity for prostate cancer therapies.
Collapse
Affiliation(s)
- Qiuqiang Chen
- Key Laboratory for Translational Medicine, The First Affiliated Hospital of Huzhou University School of Medicine, Huzhou, 313000, Zhejiang, China
- Department of Clinical Medicine, Huzhou University School of Medicine, Huzhou, 313000, Zhejiang, China
| | - Ying Bao
- Key Laboratory for Translational Medicine, The First Affiliated Hospital of Huzhou University School of Medicine, Huzhou, 313000, Zhejiang, China
| | - Danielle Burner
- Department of Medicine and Moores Cancer Center, University of California San Diego, La Jolla, CA, 92093, USA
| | - Sharmeela Kaushal
- Department of Medicine and Moores Cancer Center, University of California San Diego, La Jolla, CA, 92093, USA
| | - Yu Zhang
- Materials Science and Engineering Program, Department of Mechanical Engineering, University of California Riverside, Riverside, CA, 92521, USA
- Mechanical and Automotive Engineering, School of Engineering, RMIT University, Melbourne, Victoria, 3083, Australia
| | - Theresa Mendoza
- Department of Medicine and Moores Cancer Center, University of California San Diego, La Jolla, CA, 92093, USA
| | - Michael Bouvet
- Department of Medicine and Moores Cancer Center, University of California San Diego, La Jolla, CA, 92093, USA
| | - Cengiz Ozkan
- Materials Science and Engineering Program, Department of Mechanical Engineering, University of California Riverside, Riverside, CA, 92521, USA
| | - Boris Minev
- Department of Medicine and Moores Cancer Center, University of California San Diego, La Jolla, CA, 92093, USA.
- Calidi Biotherapeutics, San Diego, CA, 92121, USA.
| | - Wenxue Ma
- Department of Clinical Medicine, Huzhou University School of Medicine, Huzhou, 313000, Zhejiang, China.
- Department of Medicine and Moores Cancer Center, University of California San Diego, La Jolla, CA, 92093, USA.
| |
Collapse
|
17
|
Duncan SA, Dixit S, Sahu R, Martin D, Baganizi DR, Nyairo E, Villinger F, Singh SR, Dennis VA. Prolonged Release and Functionality of Interleukin-10 Encapsulated within PLA-PEG Nanoparticles. NANOMATERIALS 2019; 9:nano9081074. [PMID: 31357440 PMCID: PMC6723354 DOI: 10.3390/nano9081074] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 07/09/2019] [Accepted: 07/24/2019] [Indexed: 01/12/2023]
Abstract
Inflammation, as induced by the presence of cytokines and chemokines, is an integral part of chlamydial infections. The anti-inflammatory cytokine, interleukin (IL)-10, has been reported to efficiently suppress the secretion of inflammatory cytokines triggered by Chlamydia in mouse macrophages. Though IL-10 is employed in clinical applications, its therapeutic usage is limited due to its short half-life. Here, we document the successful encapsulation of IL-10 within the biodegradable polymeric nanoparticles of PLA-PEG (Poly (lactic acid)-Poly (ethylene glycol), to prolong its half-life. Our results show the encapsulated-IL-10 size (~238 nm), zeta potential (−14.2 mV), polydispersity index (0.256), encapsulation efficiency (~77%), and a prolonged slow release pattern up to 60 days. Temperature stability of encapsulated-IL-10 was favorable, demonstrating a heat capacity of up to 89 °C as shown by differential scanning calorimetry analysis. Encapsulated-IL-10 modulated the release of IL-6 and IL-12p40 in stimulated macrophages in a time- and concentration-dependent fashion, and differentially induced SOCS1 and SOCS3 as induced by chlamydial stimulants in macrophages. Our finding offers the tremendous potential for encapsulated-IL-10 not only for chlamydial inflammatory diseases but also biomedical therapeutic applications.
Collapse
Affiliation(s)
- Skyla A Duncan
- Center for NanoBiotechnology & Life Sciences Research, Department of Biological Sciences, Alabama State University, 915 South Jackson Street, Montgomery, AL 36104, USA
| | - Saurabh Dixit
- Center for NanoBiotechnology & Life Sciences Research, Department of Biological Sciences, Alabama State University, 915 South Jackson Street, Montgomery, AL 36104, USA
| | - Rajnish Sahu
- Center for NanoBiotechnology & Life Sciences Research, Department of Biological Sciences, Alabama State University, 915 South Jackson Street, Montgomery, AL 36104, USA
| | - David Martin
- Center for NanoBiotechnology & Life Sciences Research, Department of Biological Sciences, Alabama State University, 915 South Jackson Street, Montgomery, AL 36104, USA
| | - Dieudonné R Baganizi
- Center for NanoBiotechnology & Life Sciences Research, Department of Biological Sciences, Alabama State University, 915 South Jackson Street, Montgomery, AL 36104, USA
| | - Elijah Nyairo
- Center for NanoBiotechnology & Life Sciences Research, Department of Biological Sciences, Alabama State University, 915 South Jackson Street, Montgomery, AL 36104, USA
| | - Francois Villinger
- New Iberia Research Center, University of Louisiana at Lafayette, 4401 W Admiral Doyle Drive, New Iberia, LA 70560, USA
| | - Shree R Singh
- Center for NanoBiotechnology & Life Sciences Research, Department of Biological Sciences, Alabama State University, 915 South Jackson Street, Montgomery, AL 36104, USA
| | - Vida A Dennis
- Center for NanoBiotechnology & Life Sciences Research, Department of Biological Sciences, Alabama State University, 915 South Jackson Street, Montgomery, AL 36104, USA.
| |
Collapse
|
18
|
Verma R, Sahu R, Singh DD, Egbo TE. A CRISPR/Cas9 based polymeric nanoparticles to treat/inhibit microbial infections. Semin Cell Dev Biol 2019; 96:44-52. [PMID: 30986568 DOI: 10.1016/j.semcdb.2019.04.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 04/11/2019] [Indexed: 12/17/2022]
Abstract
The latest breakthrough towards the adequate and decisive methods of gene editing tools provided by CRISPR/Cas9 (Clustered Regularly Interspaced Short Palindromic Repeat/CRISPR Associated System), has been repurposed into a tool for genetically engineering eukaryotic cells and now considered as the major innovation in gene-related disorders. Nanotechnology has provided an alternate way to overcome the conventional problems where methods to deliver therapeutic agents have failed. The use of nanotechnology has the potential to safe-side the CRISPR/Cas9 components delivery by using customized polymeric nanoparticles for safety and efficacy. The pairing of two (CRISPR/Cas9 and nanotechnology) has the potential for opening new avenues in therapeutic use. In this review, we will discuss the most recent advances in developing nanoparticle-based CRISPR/Cas9 gene editing cargo delivery with a focus on several polymeric nanoparticles including fabrication proposals to combat microbial infections.
Collapse
Affiliation(s)
- Richa Verma
- Center for Nanobiotechnology Research, Department of Biological Sciences, Alabama State University, Montgomery, AL, 36104, USA
| | - Rajnish Sahu
- Center for Nanobiotechnology Research, Department of Biological Sciences, Alabama State University, Montgomery, AL, 36104, USA
| | - Desh Deepak Singh
- Amity Institute of Biotechnology, Amity University, Jaipur, Rajasthan, 303002, India
| | - Timothy E Egbo
- Department of Biological Sciences, College of Science Technology Engineering and Mathematics, Alabama State University, Montgomery, AL, 36104, USA.
| |
Collapse
|
19
|
Biocompatibility, biodegradation and biomedical applications of poly(lactic acid)/poly(lactic-co-glycolic acid) micro and nanoparticles. JOURNAL OF PHARMACEUTICAL INVESTIGATION 2019. [DOI: 10.1007/s40005-019-00439-x] [Citation(s) in RCA: 187] [Impact Index Per Article: 37.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
20
|
Verma R, Sahu R, Dixit S, Duncan SA, Giambartolomei GH, Singh SR, Dennis VA. The Chlamydia M278 Major Outer Membrane Peptide Encapsulated in the Poly(lactic acid)-Poly(ethylene glycol) Nanoparticulate Self-Adjuvanting Delivery System Protects Mice Against a Chlamydia muridarum Genital Tract Challenge by Stimulating Robust Systemic and Local Mucosal Immune Responses. Front Immunol 2018; 9:2369. [PMID: 30374357 PMCID: PMC6196261 DOI: 10.3389/fimmu.2018.02369] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Accepted: 09/24/2018] [Indexed: 12/26/2022] Open
Abstract
Recently, we reported that our PPM chlamydial nanovaccine [a biodegradable co-polymeric PLA-PEG (poly(lactic acid)-poly(ethylene glycol))-encapsulated M278 peptide (derived from the major outer membrane protein (MOMP) of Chlamydia)] exploits the caveolin-mediated endocytosis pathway for endosomal processing and MHC class II presentation to immune-potentiate Chlamydia-specific CD4+ T-cell immune effector responses. In the present study, we employed the Chlamydia muridarum mouse infection model to evaluate the protective efficacy of PPM against a genital tract challenge. Our results show that mice immunized with PPM were significantly protected against a homologous genital tract challenge evidently by reduced vaginal bacterial loads. Protection of mice correlated with enhanced Chlamydia-specific adaptive immune responses predominated by IFN-γ along with CD4+ T-cells proliferation and their differentiation to CD4+ memory (CD44high CD62Lhigh) and effector (CD44high CD62Llow) T-cell phenotypes. We observed the elevation of M278- and MOMP-specific serum antibodies with high avidity in the ascending order IgG1 > IgG2b > IgG2a. A key finding was the elevated mucosal IgG1 and IgA antibody titers followed by an increase in MOMP-specific IgA after the challenge. The Th1/Th2 antibody titer ratios (IgG2a/IgG1 and IgG2b/IgG1) revealed that PPM evoked a Th2-directed response, which skewed to a Th1-dominated antibody response after the bacterial challenge of mice. In addition, PPM immune sera neutralized the infectivity of C. muridarum in McCoy cells, suggesting the triggering of functional neutralizing antibodies. Herein, we reveal for the first time that subcutaneous immunization with the self-adjuvanting biodegradable co-polymeric PPM nanovaccine immune-potentiated robust CD4+ T cell-mediated immune effector responses; a mixed Th1 and Th2 antibody response and local mucosal IgA to protect mice against a chlamydial genital tract challenge.
Collapse
Affiliation(s)
- Richa Verma
- Center for NanoBiotechnology Research, Alabama State University, Montgomery, AL, United States
| | - Rajnish Sahu
- Center for NanoBiotechnology Research, Alabama State University, Montgomery, AL, United States
| | - Saurabh Dixit
- Center for NanoBiotechnology Research, Alabama State University, Montgomery, AL, United States
| | - Skyla A Duncan
- Center for NanoBiotechnology Research, Alabama State University, Montgomery, AL, United States
| | - Guillermo H Giambartolomei
- Instituto de Inmunología, Genética y Metabolismo (INIGEM), CONICET, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Shree R Singh
- Center for NanoBiotechnology Research, Alabama State University, Montgomery, AL, United States
| | - Vida A Dennis
- Center for NanoBiotechnology Research, Alabama State University, Montgomery, AL, United States
| |
Collapse
|
21
|
Lin LCW, Chattopadhyay S, Lin JC, Hu CMJ. Advances and Opportunities in Nanoparticle- and Nanomaterial-Based Vaccines against Bacterial Infections. Adv Healthc Mater 2018; 7:e1701395. [PMID: 29508547 DOI: 10.1002/adhm.201701395] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 01/22/2018] [Indexed: 02/06/2023]
Abstract
As the dawn of the postantibiotic era we approach, antibacterial vaccines are becoming increasingly important for managing bacterial infection and reducing the need for antibiotics. Despite the success of vaccination, vaccines remain unavailable for many pressing microbial diseases, including tuberculosis, chlamydia, and staphylococcus infections. Amid continuing research efforts in antibacterial vaccine development, the advancement of nanomaterial engineering has brought forth new opportunities in vaccine designs. With increasing knowledge in antibacterial immunity and immunologic adjuvants, innovative nanoparticles are designed to elicit the appropriate immune responses for effective antimicrobial defense. Rationally designed nanoparticles are demonstrated to overcome delivery barriers to shape the adaptive immunity. This article reviews the advances in nanoparticle- and nanomaterial-based antibacterial vaccines and summarizes the development of nanoparticulate adjuvants for immune potentiation against microbial pathogens. In addition, challenges and progress in ongoing antibacterial vaccine development are discussed to highlight the opportunities for future vaccine designs.
Collapse
Affiliation(s)
- Leon Chien-Wei Lin
- Institute of Biomedical Sciences; Academia Sinica; 128, Sec. 2, Academia Road Nangang District Taipei 11529 Taiwan
| | - Saborni Chattopadhyay
- Institute of Biomedical Sciences; Academia Sinica; 128, Sec. 2, Academia Road Nangang District Taipei 11529 Taiwan
| | - Jung-Chen Lin
- Institute of Biomedical Sciences; Academia Sinica; 128, Sec. 2, Academia Road Nangang District Taipei 11529 Taiwan
| | - Che-Ming Jack Hu
- Institute of Biomedical Sciences; Academia Sinica; 128, Sec. 2, Academia Road Nangang District Taipei 11529 Taiwan
| |
Collapse
|
22
|
Naeem H, Sana M, Islam S, Khan M, Riaz F, Zafar Z, Akbar H, Shehzad W, Rashid I. Induction of Th1 type-oriented humoral response through intranasal immunization of mice with SAG1-Toxoplasma gondii polymeric nanospheres. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2018; 46:1025-1034. [PMID: 29873522 DOI: 10.1080/21691401.2018.1478421] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
About one-third of the world population is prone to have infection with T. gondii, which can cause toxoplasmosis in the developing fetus and in people whose immune system is compromised through disease or chemotherapy. Surface antigen-1 (SAG1) is the candidate of vaccine against toxoplasmosis. Recent advances in biotechnology and nano-pharmaceuticals have made possible to formulate nanospheres of recombinant protein, which are suitable for sub-unit vaccine delivery. In current study, the local strain was obtained from cat feces as toxoplasma oocysts. Amplified 957 bp of SAG1 was cloned into pGEM-T and further sub-cloned into pET28-SAG1. BL21 bacteria were induced at different concentrations of isopropyl β-d-1-thiogalactopyranoside for the expression of rSAG1 protein. An immunoblot was developed for the confirmation of recombinant protein expression at 35 kDa that was actually recognized by anti-HIS antibodies and sera were collected from infected mice. PLGA encapsulated nanospheres of recombinant SAG1 were characterized through scanning electron microscopy. Experimental mice were intraperitoneally immunized with rSAG1 protein and intra-nasally immunized with nanosphere. The immune response was evaluated by indirect ELISA. In results intra-nasally administered rSAG1 in nanospheres appeared to elicit elevated responses of specific IgA and IgG2a than in control. Nanospheres of rSAG1 are found to be a bio-compatible candidate for the development of vaccine against T. gondii.
Collapse
Affiliation(s)
- Huma Naeem
- a Department of Parasitology , University of Veterinary and Animal Sciences , Lahore , Pakistan
| | - Madiha Sana
- a Department of Parasitology , University of Veterinary and Animal Sciences , Lahore , Pakistan
| | - Saher Islam
- b Institute of Biochemistry and Biotechnology , University of Veterinary and Animal Sciences , Lahore , Pakistan
| | - Matiullah Khan
- a Department of Parasitology , University of Veterinary and Animal Sciences , Lahore , Pakistan
| | - Farooq Riaz
- a Department of Parasitology , University of Veterinary and Animal Sciences , Lahore , Pakistan
| | - Zunaira Zafar
- b Institute of Biochemistry and Biotechnology , University of Veterinary and Animal Sciences , Lahore , Pakistan
| | - Haroon Akbar
- a Department of Parasitology , University of Veterinary and Animal Sciences , Lahore , Pakistan
| | - Wasim Shehzad
- b Institute of Biochemistry and Biotechnology , University of Veterinary and Animal Sciences , Lahore , Pakistan
| | - Imran Rashid
- a Department of Parasitology , University of Veterinary and Animal Sciences , Lahore , Pakistan
| |
Collapse
|
23
|
Sahu R, Verma R, Dixit S, Igietseme JU, Black CM, Duncan S, Singh SR, Dennis VA. Future of human Chlamydia vaccine: potential of self-adjuvanting biodegradable nanoparticles as safe vaccine delivery vehicles. Expert Rev Vaccines 2018; 17:217-227. [PMID: 29382248 PMCID: PMC6330895 DOI: 10.1080/14760584.2018.1435279] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Accepted: 01/29/2018] [Indexed: 01/12/2023]
Abstract
INTRODUCTION There is a persisting global burden and considerable public health challenge by the plethora of ocular, genital and respiratory diseases caused by members of the Gram-negative bacteria of the genus Chlamydia. The major diseases are conjunctivitis and blinding trachoma, non-gonococcal urethritis, cervicitis, pelvic inflammatory disease, ectopic pregnancy, tubal factor infertility, and interstitial pneumonia. The failures in screening and other prevention programs led to the current medical opinion that an efficacious prophylactic vaccine is the best approach to protect humans from chlamydial infections. Unfortunately, there is no human Chlamydia vaccine despite successful veterinary vaccines. A major challenge has been the effective delivery of vaccine antigens to induce safe and effective immune effectors to confer long-term protective immunity. The dawn of the era of biodegradable polymeric nanoparticles and the adjuvanted derivatives may accelerate the realization of the dream of human vaccine in the foreseeable future. AREAS COVERED This review focuses on the current status of human chlamydial vaccine research, specifically the potential of biodegradable polymeric nanovaccines to provide efficacious Chlamydia vaccines in the near future. EXPERT COMMENTARY The safety of biodegradable polymeric nanoparticles-based experimental vaccines with or without adjuvants and the array of available chlamydial vaccine candidates would suggest that clinical trials in humans may be imminent. Also, the promising results from vaccine testing in animal models could lead to human vaccines against trachoma and reproductive diseases simultaneously.
Collapse
Affiliation(s)
- Rajnish Sahu
- Department of Biological Sciences, Alabama State University, Montgomery, AL, USA
| | - Richa Verma
- Department of Biological Sciences, Alabama State University, Montgomery, AL, USA
| | - Saurabh Dixit
- Department of Biological Sciences, Alabama State University, Montgomery, AL, USA
| | - Joseph U. Igietseme
- National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control & Prevention (CDC), Atlanta, GA, USA
| | - Carolyn M Black
- National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control & Prevention (CDC), Atlanta, GA, USA
| | - Skyla Duncan
- Department of Biological Sciences, Alabama State University, Montgomery, AL, USA
| | - Shree R Singh
- Department of Biological Sciences, Alabama State University, Montgomery, AL, USA
| | - Vida A Dennis
- Department of Biological Sciences, Alabama State University, Montgomery, AL, USA
| |
Collapse
|
24
|
Dixit S, Sahu R, Verma R, Duncan S, Giambartolomei GH, Singh SR, Dennis VA. Caveolin-mediated endocytosis of the Chlamydia M278 outer membrane peptide encapsulated in poly(lactic acid)-Poly(ethylene glycol) nanoparticles by mouse primary dendritic cells enhances specific immune effectors mediated by MHC class II and CD4 + T cells. Biomaterials 2018; 159:130-145. [PMID: 29324305 PMCID: PMC5801148 DOI: 10.1016/j.biomaterials.2017.12.019] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2017] [Revised: 12/14/2017] [Accepted: 12/22/2017] [Indexed: 12/18/2022]
Abstract
We previously developed a Chlamydia trachomatis nanovaccine (PPM) by encapsulating a chlamydial M278 peptide within poly(lactic acid)-poly(ethylene glycol) biodegradable nanoparticles that immunopotentiated Chlamydia-specific immune effector responses in mice. Herein, we investigated the mechanistic interactions of PPM with mouse bone marrow-derived dendritic cells (DCs) for its uptake, trafficking, and T cell activation. Our results reveal that PPM triggered enhanced expression of effector cytokines and chemokines, surface activation markers (Cd1d2, Fcgr1), pathogen-sensing receptors (TLR2, Nod1), co-stimulatory (CD40, CD80, CD86) and MHC class I and II molecules. Co-culturing of PPM-primed DCs with T cells from C. muridarum vaccinated mice yielded an increase in Chlamydia-specific immune effector responses including CD3+ lymphoproliferation, CD3+CD4+ IFN-γ-secreting cells along with CD3+CD4+ memory (CD44high and CD62Lhigh) and effector (CD44high and CD62Llow) phenotypes. Intracellular trafficking analyses revealed an intense expression and colocalization of PPM predominantly in endosomes. PPM also upregulated the transcriptional and protein expression of the endocytic mediator, caveolin-1 in DCs. More importantly, the specific inhibition of caveolin-1 led to decreased expression of PPM-induced cytokines and co-stimulatory molecules. Our investigation shows that PPM provided enhancement of uptake, probably by exploiting the caveolin-mediated endocytosis pathway, endosomal processing, and MHC II presentation to immunopotentiate Chlamydia-specific immune effector responses mediated by CD4+ T cells.
Collapse
Affiliation(s)
- Saurabh Dixit
- Center for NanoBiotechnology Research, Alabama State University, Montgomery, AL 36104, USA
| | - Rajnish Sahu
- Center for NanoBiotechnology Research, Alabama State University, Montgomery, AL 36104, USA
| | - Richa Verma
- Center for NanoBiotechnology Research, Alabama State University, Montgomery, AL 36104, USA
| | - Skyla Duncan
- Center for NanoBiotechnology Research, Alabama State University, Montgomery, AL 36104, USA
| | - Guillermo H Giambartolomei
- Instituto de Inmunología, Genética y Metabolismo (INIGEM), CONICET, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Shree R Singh
- Center for NanoBiotechnology Research, Alabama State University, Montgomery, AL 36104, USA
| | - Vida A Dennis
- Center for NanoBiotechnology Research, Alabama State University, Montgomery, AL 36104, USA.
| |
Collapse
|
25
|
Cruz J, Flórez J, Torres R, Urquiza M, Gutiérrez JA, Guzmán F, Ortiz CC. Antimicrobial activity of a new synthetic peptide loaded in polylactic acid or poly(lactic-co-glycolic) acid nanoparticles against Pseudomonas aeruginosa, Escherichia coli O157:H7 and methicillin resistant Staphylococcus aureus (MRSA). NANOTECHNOLOGY 2017; 28:135102. [PMID: 28266350 DOI: 10.1088/1361-6528/aa5f63] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Nanocarrier systems are currently being developed for peptide, protein and gene delivery to protect them in the blood circulation and in the gastrointestinal tract. Polylactic acid (PLA) and poly(lactic-co-glycolic) acid (PLGA) nanoparticles loaded with a new antimicrobial GIBIM-P5S9K peptide were obtained by the double emulsion solvent extraction/evaporation method. PLA- and PLGA-NPs were spherical with sizes between 300 and 400 nm for PLA and 200 and 300 nm for PLGA and <0.3 polydispersity index as determined by dynamic light scattering and scanning electron microscopy), having the zeta potential of >20 mV. The peptide-loading efficiency of PLA-NP and PLGA-NPs was 75% and 55%, respectively. PLA- and PLGA-NPs released around 50% of this peptide over 8 h. In 10% human sera the size of peptide loaded PLA- and PLGA-NPs increased between 25.2% and 39.3%, the PDI changed from 3.2 to 5.1 and the surface charge from -7.15 to 14.6 mV. Both peptide loaded PLA- and PLGA-NPs at 0.5 μM peptide concentration inhibited the growth of Escherichia coli O157:H7 (E. coli O157:H7), methicillin-resistant Staphylococcus aureus (MRSA) and Pseudomonas. aeruginosa (P. aeruginosa). In contrast, free peptide inhibited at 10 μM but did not inhibit at 0.5 and 1 μM. These PLA- and PLGA-NPs presented <10% hemolysis indicating that they are hemocompatible and promising for delivery and protection system of GIBIM-P5S9K peptide.
Collapse
Affiliation(s)
- J Cruz
- Escuela de Química, Facultad de Ciencias, Universidad Industrial de Santander, Cra 27 # calle 9 (CP680002) Bucaramanga, Colombia. Departamento de Química, Universidad Nacional de Colombia, Cra 30 # 45-03, 111321 Bogotá, Colombia
| | | | | | | | | | | | | |
Collapse
|
26
|
SYNTHESIS AND CHARACTERIZATION OF POLY(LACTIC-CO-GLYCOLIC-ACID) MICROPARTICLES LOADED WITH FOOT-AND-MOUTH DISEASE VIRUS 40–60 SYNTHETIC PEPTIDE. BIOTECHNOLOGIA ACTA 2017. [DOI: 10.15407/biotech10.01.052] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
27
|
Nabi H, Rashid I, Ahmad N, Durrani A, Akbar H, Islam S, Bajwa AA, Shehzad W, Ashraf K, Imran N. Induction of specific humoral immune response in mice immunized with ROP18 nanospheres from Toxoplasma gondii. Parasitol Res 2016; 116:359-370. [DOI: 10.1007/s00436-016-5298-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Accepted: 10/13/2016] [Indexed: 01/05/2023]
|
28
|
Genital Chlamydia trachomatis: understanding the roles of innate and adaptive immunity in vaccine research. Clin Microbiol Rev 2016; 27:346-70. [PMID: 24696438 DOI: 10.1128/cmr.00105-13] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Chlamydia trachomatis is the leading cause of bacterial sexually transmitted disease worldwide, and despite significant advances in chlamydial research, a prophylactic vaccine has yet to be developed. This Gram-negative obligate intracellular bacterium, which often causes asymptomatic infection, may cause pelvic inflammatory disease (PID), ectopic pregnancies, scarring of the fallopian tubes, miscarriage, and infertility when left untreated. In the genital tract, Chlamydia trachomatis infects primarily epithelial cells and requires Th1 immunity for optimal clearance. This review first focuses on the immune cells important in a chlamydial infection. Second, we summarize the research and challenges associated with developing a chlamydial vaccine that elicits a protective Th1-mediated immune response without inducing adverse immunopathologies.
Collapse
|
29
|
Allahyari M, Mohit E. Peptide/protein vaccine delivery system based on PLGA particles. Hum Vaccin Immunother 2016; 12:806-28. [PMID: 26513024 PMCID: PMC4964737 DOI: 10.1080/21645515.2015.1102804] [Citation(s) in RCA: 144] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Revised: 09/15/2015] [Accepted: 09/27/2015] [Indexed: 12/19/2022] Open
Abstract
Due to the excellent safety profile of poly (D,L-lactide-co-glycolide) (PLGA) particles in human, and their biodegradability, many studies have focused on the application of PLGA particles as a controlled-release vaccine delivery system. Antigenic proteins/peptides can be encapsulated into or adsorbed to the surface of PLGA particles. The gradual release of loaded antigens from PLGA particles is necessary for the induction of efficient immunity. Various factors can influence protein release rates from PLGA particles, which can be defined intrinsic features of the polymer, particle characteristics as well as protein and environmental related factors. The use of PLGA particles encapsulating antigens of different diseases such as hepatitis B, tuberculosis, chlamydia, malaria, leishmania, toxoplasma and allergy antigens will be described herein. The co-delivery of antigens and immunostimulants (IS) with PLGA particles can prevent the systemic adverse effects of immunopotentiators and activate both dendritic cells (DCs) and natural killer (NKs) cells, consequently enhancing the therapeutic efficacy of antigen-loaded PLGA particles. We will review co-delivery of different TLR ligands with antigens in various models, highlighting the specific strengths and weaknesses of the system. Strategies to enhance the immunotherapeutic effect of DC-based vaccine using PLGA particles can be designed to target DCs by functionalized PLGA particle encapsulating siRNAs of suppressive gene, and disease specific antigens. Finally, specific examples of cellular targeting where decorating the surface of PLGA particles target orally administrated vaccine to M-cells will be highlighted.
Collapse
Affiliation(s)
- Mojgan Allahyari
- Department of Recombinant Protein Production, Research & Production Complex, Pasteur Institute of Iran, Tehran, Iran
| | - Elham Mohit
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
30
|
Derman S, Mustafaeva ZA, Abamor ES, Bagirova M, Allahverdiyev A. Preparation, characterization and immunological evaluation: canine parvovirus synthetic peptide loaded PLGA nanoparticles. J Biomed Sci 2015; 22:89. [PMID: 26482775 PMCID: PMC4617543 DOI: 10.1186/s12929-015-0195-2] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2015] [Accepted: 10/06/2015] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Canine parvovirus 2 (CPV-2) remains a significant worldwide canine pathogen and the most common cause of viral enteritis in dogs. The 1 L15 and 7 L15 peptides overlap each other with QPDGGQPAV residues (7-15 of VP2 capsid protein of CPV) is shown to produce high immune response. PLGA nanoparticles were demonstrated to have special properties such as; controlled antigen release, protection from degradation, elimination of booster-dose and enhancing the cellular uptake by antigen presenting cells. Nevertheless, there is no study available in literature, about developing vaccine based on PLGA nanoparticles with adjuvant properties against CPV. Thus, the aim of the present study was to synthesize and characterize high immunogenic W-1 L19 peptide (from the VP2 capsid protein of CPV) loaded PLGA nanoparticle and to evaluate their in vitro immunogenic activity. RESULTS PLGA nanoparticles were produced with 5.26 ± 0.05 % loading capacity and high encapsulation efficiency with 81.2 ± 3.1 %. Additionally, it was evaluated that free NPs and W-1 L19 peptide encapsulated PLGA nanoparticles have Z-ave of 183.9 ± 12.1 nm, 221.7 ± 15.8 nm and polydispersity index of 0.107 ± 0.08, 0.135 ± 0.12 respectively. It was determined that peptide loaded PLGA nanoparticles were successfully phagocytized by macrophage cells and increased NO production at 2-folds (*P < 0.05) in contrast to free peptide, and 3-folds (*P < 0.01) in contrast to control. CONCLUSION In conclusion, for the first time, W-1 L19 peptide loaded PLGA nanoparticles were successfully synthesized and immunogenic properties evaluated. Obtained results showed that PLGA nanoparticles enhanced the capacity of W-1 L19 peptide to induce nitric oxide production in vitro due to its adjuvant properties. Depend on the obtained results, these nanoparticles can be accepted as potential vaccine candidate against Canine Parvovirus. Studies targeting PLGA nanoparticles based delivery system must be maintained in near future in order to develop new and more effective nano-vaccine formulations.
Collapse
Affiliation(s)
- Serap Derman
- Chemical and Metallurgy Faculty, Bioengineering Department, Yildiz Technical University, 34220, Istanbul, Turkey.
| | - Zeynep Akdeste Mustafaeva
- Chemical and Metallurgy Faculty, Bioengineering Department, Yildiz Technical University, 34220, Istanbul, Turkey.
| | - Emrah Sefik Abamor
- Chemical and Metallurgy Faculty, Bioengineering Department, Yildiz Technical University, 34220, Istanbul, Turkey.
| | - Melahat Bagirova
- Chemical and Metallurgy Faculty, Bioengineering Department, Yildiz Technical University, 34220, Istanbul, Turkey.
| | - Adil Allahverdiyev
- Chemical and Metallurgy Faculty, Bioengineering Department, Yildiz Technical University, 34220, Istanbul, Turkey.
| |
Collapse
|
31
|
Derman S, Akdeste ZM. Particle size and zeta potential investigation of synthetic peptide-protein conjugates / Sentetik peptid-protein konjugatlarının parçacık boyutu ve zeta potensiyel analizi. ACTA ACUST UNITED AC 2015. [DOI: 10.1515/tjb-2015-0014] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
AbstractObjective: Synthetic peptides are not sufficiently large or complex by themselves to induce immune system because of their small size. Synthetic peptides are usually conjugated to different carriers such as proteins and polyelectrolytes to enhance their immunogenic properties and antigen-specific antibody production (Abs) rate. Thus, the aim of this study is synthesis of peptide-protein covalent conjugates, and size and zeta potential analysis of these conjugates.Methods: In this study, synthetic peptide antigen of the 135-161 amino acids sequence of immunogenic VP1 capsid protein of “A” type foot-and-mouth disease virus (FMDV) was covalently conjugated to bovine serum albumin (BSA) with the carbodiimide method by using 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide hydrochloride (EDC) at different molar ratios of peptide (γ=nResults: The size and surface charge of bioconjugates are important factors in a synthetic peptide vaccine. Nevertheless, there virtually no research has been conducted on zeta potential and the size of peptide-protein bioconjugates detailed.Conclusion: Dynamic and electrophoretic light scattering analyses clearly demonstrated that zeta potential of the FMDV 135-161 synthetic peptide-BSA conjugates shifts to less negative potentials and particle sizes increase as the amount of peptide increased in conjugates. The data about peptide-carrier protein conjugates obtained by using these methods are very important for developing peptide-based vaccines.
Collapse
|
32
|
Skwarczynski M, Toth I. Recent advances in peptide-based subunit nanovaccines. Nanomedicine (Lond) 2014; 9:2657-69. [DOI: 10.2217/nnm.14.187] [Citation(s) in RCA: 141] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Vaccination is the most efficient way to protect humans against pathogens. Peptide-based vaccines offer several advantages over classical vaccines, which utilized whole organisms or proteins. However, peptides alone are not immunogenic and need a delivery system that can boost their recognition by the immune system. In recent years, nanotechnology-based approaches have become one of the most promising strategies in peptide vaccine delivery. This review summarizes knowledge on peptide vaccines and nanotechnology-based approaches for their delivery. The recently reported nano-sized delivery platforms for peptide antigens are reviewed, including nanoparticles composed of polymers, peptides, lipids, inorganic materials and nanotubes. The future prospects for peptide-based nanovaccines are discussed.
Collapse
Affiliation(s)
- Mariusz Skwarczynski
- School of Chemistry & Molecular Biosciences, University of Queensland, St Lucia, Australia
| | - Istvan Toth
- School of Chemistry & Molecular Biosciences, University of Queensland, St Lucia, Australia
| |
Collapse
|
33
|
Nanotechnology in reproductive medicine: Emerging applications of nanomaterials. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2014; 10:921-38. [DOI: 10.1016/j.nano.2014.01.001] [Citation(s) in RCA: 117] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2013] [Revised: 12/09/2013] [Accepted: 01/09/2014] [Indexed: 12/21/2022]
|
34
|
Tu J, Hou B, Wang B, Lin X, Gong W, Dong H, Zhu S, Chen S, Xue X, Zhao KN, Zhang L. A multi-epitope vaccine based on Chlamydia trachomatis major outer membrane protein induces specific immunity in mice. Acta Biochim Biophys Sin (Shanghai) 2014; 46:401-8. [PMID: 24681882 DOI: 10.1093/abbs/gmu016] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We evaluated the immunogenicity and efficacy of a candidate vaccine comprising the major outer membrane protein (MOMP) multi-epitope of Chlamydia trachomatis. A short gene of multi-epitope derived from MOMP containing multiple T- and B-cell epitopes was artificially synthesized. The recombinant plasmid pET32a(+) containing codon optimized MOMP multi-epitope gene was constructed. Expression of the fusion protein Trx-His-MOMP multi-epitope in Escherichia coli was confirmed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and western blot analysis. Balb/c mice were inoculated with the purified fusion protein subcutaneously three times with 2-week intervals. Results showed that the MOMP multi-epitope elicited not only strong humoral immune responses to C. trachomatis by generating significantly high levels of specific antibodies (IgG1 and IgG2a), but also a cellular immune response by inducing robust cytotoxic T lymphocyte responses in mice. Furthermore, the MOMP multi-epitope substantially primed secretion of IFN-γ, revealing that this vaccine could induce a strong Th1 response. Finally, the mice vaccinated with the MOMP multi-epitope displayed a reduction of C. trachomatis shedding upon a chlamydial challenge and an accelerated clearance of the infected C. trachomatis. In conclusion, the MOMP multi-epitope vaccine may have the potentiality for the development of effective prophylactic and therapeutic vaccines against the C. trachomatis infection.
Collapse
Affiliation(s)
- Jianxin Tu
- Department of Medical Microbiology and Immunology, Institute of Molecular Virology and Immunology, Wenzhou Medical University, Wenzhou 325000, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Dixit S, Singh SR, Yilma AN, Agee RD, Taha M, Dennis VA. Poly(lactic acid)-poly(ethylene glycol) nanoparticles provide sustained delivery of a Chlamydia trachomatis recombinant MOMP peptide and potentiate systemic adaptive immune responses in mice. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2014; 10:1311-21. [PMID: 24602605 DOI: 10.1016/j.nano.2014.02.009] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2013] [Revised: 02/04/2014] [Accepted: 02/21/2014] [Indexed: 12/22/2022]
Abstract
UNLABELLED PLA-PEG [poly(lactic acid)-poly (ethylene glycol)], a biodegradable copolymer, is underexploited for vaccine delivery although it exhibits enhanced biocompatibility and slow release immune-potentiating properties. We document here successful encapsulation of M278, a Chlamydia trachomatis MOMP (major outer-membrane protein) peptide, within PLA-PEG nanoparticles by size (~73-100nm), zeta potential (-16 mV), smooth morphology, encapsulation efficiency (~60%), slow release pattern, and non-toxicity to macrophages. Immunization of mice with encapsulated M278 elicited higher M278-specific T-cell cytokines [Th1 (IFN-γ, IL-2), Th17 (IL-17)] and antibodies [Th1 (IgG2a), Th2 (IgG1, IgG2b)] compared to bare M278. Encapsulated-M278 mouse serum inhibited Chlamydia infectivity of macrophages, with a concomitant transcriptional down-regulation of MOMP, its cognate TLR2 and CD80 co-stimulatory molecule. Collectively, encapsulated M278 potentiated crucial adaptive immune responses, which are required by a vaccine candidate for protective immunity against Chlamydia. Our data highlight PLA-PEG's potential for vaccines, which resides in its slow release and potentiating effects to bolster immune responses. FROM THE CLINICAL EDITOR This study highlights the potential of a PLA-PEG-based nanoparticle formulation containing a major outer membrane protein of chlamydia trachomatis in inducing a sustained enhanced immune response, paving the way to the development of a vaccination strategy against this infection.
Collapse
Affiliation(s)
- Saurabh Dixit
- Center for NanoBiotechnology Research (CNBR), Alabama State University, Montgomery, AL, USA
| | - Shree R Singh
- Center for NanoBiotechnology Research (CNBR), Alabama State University, Montgomery, AL, USA
| | - Abebayehu N Yilma
- Center for NanoBiotechnology Research (CNBR), Alabama State University, Montgomery, AL, USA; Global Institue of Public Health, New York University, New York, NY, USA
| | - Ronald D Agee
- Center for NanoBiotechnology Research (CNBR), Alabama State University, Montgomery, AL, USA; College of Podiatric Medicine, Western University of Health Sciences, Pomona, CA, USA
| | - Murtada Taha
- Center for NanoBiotechnology Research (CNBR), Alabama State University, Montgomery, AL, USA; Department of Natural Sciences, Albany State University, Albany, GA, USA
| | - Vida A Dennis
- Center for NanoBiotechnology Research (CNBR), Alabama State University, Montgomery, AL, USA.
| |
Collapse
|
36
|
Fairley SJ, Singh SR, Yilma AN, Waffo AB, Subbarayan P, Dixit S, Taha MA, Cambridge CD, Dennis VA. Chlamydia trachomatis recombinant MOMP encapsulated in PLGA nanoparticles triggers primarily T helper 1 cellular and antibody immune responses in mice: a desirable candidate nanovaccine. Int J Nanomedicine 2013; 8:2085-99. [PMID: 23785233 PMCID: PMC3682632 DOI: 10.2147/ijn.s44155] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2013] [Indexed: 11/23/2022] Open
Abstract
We recently demonstrated by in vitro experiments that PLGA (poly D, L-lactide-co-glycolide)
potentiates T helper 1 (Th1) immune responses induced by a peptide derived from the recombinant
major outer membrane protein (rMOMP) of Chlamydia trachomatis, and may be a
promising vaccine delivery system. Herein we evaluated the immune-potentiating potential of PLGA by
encapsulating the full-length rMOMP (PLGA-rMOMP), characterizing it in vitro, and investigating its
immunogenicity in vivo. Our hypothesis was that PLGA-rMOMP triggers Th1 immune responses in mice,
which are desirable prerequisites for a C. trachomatis candidate nanovaccine.
Physical-structural characterizations of PLGA-rMOMP revealed its size (approximately 272 nm), zeta
potential (−14.30 mV), apparent spherical smooth morphology, and continuous slow release
pattern. PLGA potentiated the ability of encapsulated rMOMP to trigger production of cytokines and
chemokines by mouse J774 macrophages. Flow cytometric analyses revealed that spleen cells from
BALB/c mice immunized with PLGA-rMOMP had elevated numbers of CD4+ and CD8+ T cell
subsets, and secreted more rMOMP-specific interferon-gamma (Th1) and interleukin (IL)-12p40
(Th1/Th17) than IL-4 and IL-10 (Th2) cytokines. PLGA-rMOMP-immunized mice produced higher serum
immunoglobulin (Ig)G and IgG2a (Th1) than IgG1 (Th2) rMOMP-specific antibodies. Notably, sera from
PLGA-rMOMP-immunized mice had a 64-fold higher Th1 than Th2 antibody titer, whereas mice immunized
with rMOMP in Freund’s adjuvant had only a four-fold higher Th1 than Th2 antibody titer,
suggesting primarily induction of a Th1 antibody response in PLGA-rMOMP-immunized mice. Our data
underscore PLGA as an effective delivery system for a C. trachomatis vaccine. The
capacity of PLGA-rMOMP to trigger primarily Th1 immune responses in mice promotes it as a highly
desirable candidate nanovaccine against C. trachomatis.
Collapse
Affiliation(s)
- Stacie J Fairley
- Center for NanoBiotechnology Research, Alabama State University, Montgomery, AL 36104, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Cambridge CD, Singh SR, Waffo AB, Fairley SJ, Dennis VA. Formulation, characterization, and expression of a recombinant MOMP Chlamydia trachomatis DNA vaccine encapsulated in chitosan nanoparticles. Int J Nanomedicine 2013; 8:1759-71. [PMID: 23690681 PMCID: PMC3656902 DOI: 10.2147/ijn.s42723] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Chlamydia trachomatis is a bacterial sexually transmitted infection affecting millions of people worldwide. Previous vaccination attempts have employed the recombinant major outer membrane protein (MOMP) of C. trachomatis nonetheless, with limited success, perhaps, due to stability, degradation, and delivery issues. In this study we cloned C. trachomatis recombinant MOMP DNA (DMOMP) and encapsulated it in chitosan nanoparticles (DMCNP) using the complex coacervation technique. Physiochemical characterizations of DMCNP included transmission and scanning electron microcopy, Fourier transform infrared and ultraviolet-visible spectroscopy, and zeta potential. Encapsulated DMOMP was 167–250 nm, with a uniform spherical shape and homogenous morphology, and an encapsulation efficiency > 90%. A slow release pattern of encapsulated DMOMP, especially in acidic solution, was observed over 7 days. The zeta potential of DMCNP was ~8.80 mV, which indicated that it was highly stable. Toxicity studies of DMCNP (25–400 μg/mL) to Cos-7 cells using the MTT assay revealed minimal toxicity over 24–72 hours with >90% viable cells. Ultra-violet visible (UV-vis) spectra indicated encapsulated DMOMP protection by chitosan, whereas agarose gel electrophoresis verified its protection from enzymatic degradation. Expression of MOMP protein in DMCNP-transfected Cos-7 cells was demonstrated via Western blotting and immunofluorescence microscopy. Significantly, intramuscular injection of BALB/c mice with DMCNP confirmed the delivery of encapsulated DMOMP, and expression of the MOMP gene transcript in thigh muscles and spleens. Our data show that encapsulation of DMOMP in biodegradable chitosan nanoparticles imparts stability and protection from enzymatic digestion, and enhances delivery and expression of DMOMP in vitro and in mice. Further investigations of the nanoencapsulated DMCNP vaccine formulation against C. trachomatis in mice are warranted.
Collapse
Affiliation(s)
- Chino D Cambridge
- Center for NanoBiotechnology Research (CNBR), Alabama State University, Montgomery, AL, USA
| | | | | | | | | |
Collapse
|