1
|
Dydak K, Zalewski T, Kempka M, Florczak P, Nowaczyk G, Przysiecka Ł, Jagielski J, Loppinet B, Banaszak M, Flak D. Nanoassemblies with Gd-chelating lipids (GMO@DTPA-BSA-Gd) as a potential new type of high molecular weight contrast agents. J Mater Chem B 2024. [PMID: 39451020 DOI: 10.1039/d4tb01684j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2024]
Abstract
Self-assembled lipid nanoparticles containing Gd-chelating lipids are a new type of positive magnetic resonance imaging contrast agents (MRI CAs). High molecular weight imposes reduced molecular reorientation (τr) and corresponding longer reorientation correlation times (τc), finally resulting in overall high relaxivity (r1) of such contrast agents. Therefore, we report nanoassemblies based on two types of amphiphile molecules: glyceryl monooleate (GMO) as a matrix embedded with DTPA-bis(stearylamide) and its gadolinium salt (DTPA-BSA-Gd) as a Gd-chelating lipid, stabilized by surfactant Pluronic F127 molecules. The loading of DTPA-BSA-Gd into the GMO matrix was investigated at low (5% w/w) and high (30, 40, 50% w/w) contents. Small angle X-ray scattering (SAXS), cryogenic transmission electron microscopy (cryo-TEM) and dynamic light scattering (DLS) results show that although the nanoassembly of both amphiphile molecules within the nanoparticle is disturbed in terms of the formed phases, this composition ensures their colloidal stability. In nanoparticles with low DTPA-BSA-Gd contents, the assembly results in a cubic diamond phase that is co-existing with a fraction of liposomes. For high DTPA-BSA-Gd contents, swelling of the structure occurs such that the initially formed primitive cubic phase transforms toward a lamellar phase in the nanoassemblies. Results from inductively coupled plasma mass spectrometry (ICP-MS) indicate that for almost all systems, the loading efficiency (LE) of DTPA-BSA-Gd is high (reaching up to approx. 85%), and the nanoassembly provides strong entrapment of Gd3+ ions, which are then efficiently uptaken by cells. Moreover, the higher the surfactant content, the higher the LE. The viability studies demonstrate that the prepared nanoassemblies preserve high biocompatibility towards both cancer (HeLa) and normal cells (MSU 1.1). Nuclear magnetic resonance relaxometry studies (NMR relaxometry) followed by MRI on the prepared nanoassembly dispersions proved that the formation of GMO@DTPA-BSA-Gd nanoassemblies, considered as high molecular weight CAs, results in high relaxivity parameters (e.g., r1 = 19.72 mM-1 s-1 for 2GMO-40DTPA-10F127) that are superior to commercially developed ones (e.g., Magnevist or Gadovist). These comprehensive studies imply that a high degree of internal ordering of nanoassemblies with a higher content of Gd-chelating lipid is not a decisive factor in determining the increase in relaxivity, thus confirming their potential as positive MRI CAs.
Collapse
Affiliation(s)
- Karolina Dydak
- Faculty of Physics, Adam Mickiewicz University, Uniwersytetu Poznańskiego 2, 61-614 Poznań, Poland
- NanoBioMedical Centre, Adam Mickiewicz University, Wszechnicy Piastowskiej 3, 61-614 Poznań, Poland.
| | - Tomasz Zalewski
- NanoBioMedical Centre, Adam Mickiewicz University, Wszechnicy Piastowskiej 3, 61-614 Poznań, Poland.
| | - Marek Kempka
- Faculty of Physics, Adam Mickiewicz University, Uniwersytetu Poznańskiego 2, 61-614 Poznań, Poland
- NanoBioMedical Centre, Adam Mickiewicz University, Wszechnicy Piastowskiej 3, 61-614 Poznań, Poland.
| | - Patryk Florczak
- NanoBioMedical Centre, Adam Mickiewicz University, Wszechnicy Piastowskiej 3, 61-614 Poznań, Poland.
| | - Grzegorz Nowaczyk
- NanoBioMedical Centre, Adam Mickiewicz University, Wszechnicy Piastowskiej 3, 61-614 Poznań, Poland.
| | - Łucja Przysiecka
- NanoBioMedical Centre, Adam Mickiewicz University, Wszechnicy Piastowskiej 3, 61-614 Poznań, Poland.
| | - Jakub Jagielski
- NanoBioMedical Centre, Adam Mickiewicz University, Wszechnicy Piastowskiej 3, 61-614 Poznań, Poland.
| | - Benoit Loppinet
- Institute of Electronic Structure and Laser, Foundation for Research and Technology-Hellas, P.O. Box 1385, 711 10 Heraklion, Crete, Greece
| | - Michał Banaszak
- Faculty of Physics, Adam Mickiewicz University, Uniwersytetu Poznańskiego 2, 61-614 Poznań, Poland
- NanoBioMedical Centre, Adam Mickiewicz University, Wszechnicy Piastowskiej 3, 61-614 Poznań, Poland.
| | - Dorota Flak
- NanoBioMedical Centre, Adam Mickiewicz University, Wszechnicy Piastowskiej 3, 61-614 Poznań, Poland.
| |
Collapse
|
2
|
Yang B, Picchetti P, Wang Y, Wang W, Seeger C, Bozov K, Malik S, Mallach D, Schäfer AH, Ibrahim M, Hirtz M, Powell AK. Patterned immobilization of polyoxometalate-loaded mesoporous silica particles via amine-ene Michael additions on alkene functionalized surfaces. Sci Rep 2024; 14:1249. [PMID: 38218940 PMCID: PMC10787769 DOI: 10.1038/s41598-023-50846-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 12/27/2023] [Indexed: 01/15/2024] Open
Abstract
Polyoxometalates (POM) are anionic oxoclusters of early transition metals that are of great interest for a variety of applications, including the development of sensors and catalysts. A crucial step in the use of POM in functional materials is the production of composites that can be further processed into complex materials, e.g. by printing on different substrates. In this work, we present an immobilization approach for POMs that involves two key processes: first, the stable encapsulation of POMs in the pores of mesoporous silica nanoparticles (MSPs) and, second, the formation of microstructured arrays with these POM-loaded nanoparticles. Specifically, we have developed a strategy that leads to water-stable, POM-loaded mesoporous silica that can be covalently linked to alkene-bearing surfaces by amine-Michael addition and patterned into microarrays by scanning probe lithography (SPL). The immobilization strategy presented facilitates the printing of hybrid POM-loaded nanomaterials onto different surfaces and provides a versatile method for the fabrication of POM-based composites. Importantly, POM-loaded MSPs are useful in applications such as microfluidic systems and sensors that require frequent washing. Overall, this method is a promising way to produce surface-printed POM arrays that can be used for a wide range of applications.
Collapse
Affiliation(s)
- Bingquan Yang
- Institute of Nanotechnology (INT), Karlsruhe Institute of Technology (KIT), 76344, Eggenstein-Leopoldshafen, Germany
- Karlsruhe Nano Micro Facility (KNMFi), Karlsruhe Institute of Technology (KIT), 76344, Eggenstein-Leopoldshafen, Germany
| | - Pierre Picchetti
- Institute of Nanotechnology (INT), Karlsruhe Institute of Technology (KIT), 76344, Eggenstein-Leopoldshafen, Germany
| | - Yangxin Wang
- Institute of Biological and Chemical Systems - Functional Molecular Systems (IBCS-FMS), Karlsruhe Institute of Technology (KIT), 76344, Eggenstein-Leopoldshafen, Germany
- College of Materials Science and Engineering, Nanjing Tech University, Puzhu Road(S) 30, 211816, Nanjing, People's Republic of China
| | - Wenjing Wang
- Institute of Nanotechnology (INT), Karlsruhe Institute of Technology (KIT), 76344, Eggenstein-Leopoldshafen, Germany
- Karlsruhe Nano Micro Facility (KNMFi), Karlsruhe Institute of Technology (KIT), 76344, Eggenstein-Leopoldshafen, Germany
| | - Christoph Seeger
- Institute of Nanotechnology (INT), Karlsruhe Institute of Technology (KIT), 76344, Eggenstein-Leopoldshafen, Germany
| | - Kliment Bozov
- Institute of Nanotechnology (INT), Karlsruhe Institute of Technology (KIT), 76344, Eggenstein-Leopoldshafen, Germany
| | - Sharali Malik
- Institute for Quantum Materials and Technologies (IQMT), Karlsruhe Institute of Technology (KIT), 76344, Eggenstein-Leopoldshafen, Germany
| | - Dennis Mallach
- nanoAnalytics GmbH, Heisenbergstraße 11, 48149, Münster, Germany
| | | | - Masooma Ibrahim
- Institute of Nanotechnology (INT), Karlsruhe Institute of Technology (KIT), 76344, Eggenstein-Leopoldshafen, Germany
| | - Michael Hirtz
- Institute of Nanotechnology (INT), Karlsruhe Institute of Technology (KIT), 76344, Eggenstein-Leopoldshafen, Germany.
- Karlsruhe Nano Micro Facility (KNMFi), Karlsruhe Institute of Technology (KIT), 76344, Eggenstein-Leopoldshafen, Germany.
| | - Annie K Powell
- Institute of Nanotechnology (INT), Karlsruhe Institute of Technology (KIT), 76344, Eggenstein-Leopoldshafen, Germany
- Institute of Inorganic Chemistry (AOC), Karlsruhe Institute of Technology (KIT), Engesserstraße 15, 76131, Karlsruhe, Germany
- Institute for Quantum Materials and Technologies (IQMT), Karlsruhe Institute of Technology (KIT), 76344, Eggenstein-Leopoldshafen, Germany
| |
Collapse
|
3
|
Shariati A, Ebrahimi T, Babadinia P, Shariati FS, Ahangari Cohan R. Synthesis and characterization of Gd 3+-loaded hyaluronic acid-polydopamine nanoparticles as a dual contrast agent for CT and MRI scans. Sci Rep 2023; 13:4520. [PMID: 36934115 PMCID: PMC10024681 DOI: 10.1038/s41598-023-31252-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 03/08/2023] [Indexed: 03/19/2023] Open
Abstract
Magnetic resonance imaging and computed tomography (CT) suffer from low contrast sensitivity and potential toxicity of contrast agents. To overcome these limitations, we developed and tested a new class of dual contrast agents based on polydopamine nanoparticles (PDA-NPs) that are functionalized and targeted with hyaluronic acid (HA). These nanoparticles (NPs) are chelated with Gd3+ to provide suitable contrast. The targeted NPs were characterized through ultraviolet-visible spectroscopy (UV-vis), scanning electron microscopy (SEM), infrared Fourier transform (FTIR), and dynamic light scattering (DLS). The cytotoxicity was investigated on HEK293 cells using an MTT assay. The contrast property of synthesized Gd3+/PDA/HA was compared with Barium sulfate and Dotarem, as commercial contrast agents (CAs) for CT and MRI, respectively. The results illustrated that synthesized PDA-NPs have a spherical morphology and an average diameter of 72 nm. A distinct absorption peak around 280 nm in the UV-vis spectrum reported the self-polymerization of PDA-NPs. The HA coating on PDA-NPs was revealed through a shift in the FTIR peak of C=O from 1618 cm-1 to 1635 cm-1. The Gd3+ adsorption on PDA/HA-NPs was confirmed using an adsorption isotherm assay. The developed CA showed low in vitro toxicity (up to 158.98 µM), and created a similar contrast in MRI and CT when compared to the commercial agents. The r1 value for PDA/HA/Gd3+ (6.5 (mg/ml)-1 s-1) was more than Dotarem (5.6 (mg/ml)-1 s-1) and the results of the hemolysis test showed that at concentrations of 2, 4, 6, and 10 mg/ml, the hemolysis rate of red blood cells is very low. Additionally, the results demonstrated that PDA/HA/Gd3+ could better target the CD44+-expressing cancer cells than PDA/Gd3+. Thus, it can be concluded that lower doses of developed CA are needed to achieve similar contrast of Dotarem, and the developed CA has no safety concerns in terms of hemolysis. The stability of PDA/HA/Gd3+ has also been evaluated by ICP-OES, zeta potential, and DLS during 3 days, and the results suggested that Gd-HA NPs were stable.
Collapse
Affiliation(s)
- Alireza Shariati
- Department of Materials Engineering, Tarbiat Modares University, Tehran, Iran
| | - Tahereh Ebrahimi
- Department of Nanobiotechnology, New Technologies Research Group, Pasteur Institute of Iran, Tehran, Iran
| | - Parva Babadinia
- Farzanegan High School, National Organization for Development of Exceptional Talents, Tehran, Iran
| | | | - Reza Ahangari Cohan
- Department of Nanobiotechnology, New Technologies Research Group, Pasteur Institute of Iran, Tehran, Iran.
| |
Collapse
|
4
|
Kaster M, Levasseur MD, Edwardson TGW, Caldwell MA, Hofmann D, Licciardi G, Parigi G, Luchinat C, Hilvert D, Meade TJ. Engineered Nonviral Protein Cages Modified for MR Imaging. ACS APPLIED BIO MATERIALS 2023; 6:591-602. [PMID: 36626688 PMCID: PMC9945100 DOI: 10.1021/acsabm.2c00892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 11/23/2022] [Indexed: 01/11/2023]
Abstract
Diagnostic medical imaging utilizes magnetic resonance (MR) to provide anatomical, functional, and molecular information in a single scan. Nanoparticles are often labeled with Gd(III) complexes to amplify the MR signal of contrast agents (CAs) with large payloads and high proton relaxation efficiencies (relaxivity, r1). This study examined the MR performance of two structurally unique cages, AaLS-13 and OP, labeled with Gd(III). The cages have characteristics relevant for the development of theranostic platforms, including (i) well-defined structure, symmetry, and size; (ii) the amenability to extensive engineering; (iii) the adjustable loading of therapeutically relevant cargo molecules; (iv) high physical stability; and (v) facile manufacturing by microbial fermentation. The resulting conjugates showed significantly enhanced proton relaxivity (r1 = 11-18 mM-1 s-1 at 1.4 T) compared to the Gd(III) complex alone (r1 = 4 mM-1 s-1). Serum phantom images revealed 107% and 57% contrast enhancements for Gd(III)-labeled AaLS-13 and OP cages, respectively. Moreover, proton nuclear magnetic relaxation dispersion (1H NMRD) profiles showed maximum relaxivity values of 50 mM-1 s-1. Best-fit analyses of the 1H NMRD profiles attributed the high relaxivity of the Gd(III)-labeled cages to the slow molecular tumbling of the conjugates and restricted local motion of the conjugated Gd(III) complex.
Collapse
Affiliation(s)
- Megan
A. Kaster
- Departments
of Chemistry, Molecular Biosciences, Neurobiology and Radiology, Northwestern University, 2145 N. Sheridan Road, Evanston, Illinois60208, United States
| | - Mikail D. Levasseur
- Laboratory
of Organic Chemistry, ETH Zurich, Vladimir-Prelog-Weg 1-5/10, Zürich8093, Switzerland
| | - Thomas G. W. Edwardson
- Laboratory
of Organic Chemistry, ETH Zurich, Vladimir-Prelog-Weg 1-5/10, Zürich8093, Switzerland
| | - Michael A. Caldwell
- Departments
of Chemistry, Molecular Biosciences, Neurobiology and Radiology, Northwestern University, 2145 N. Sheridan Road, Evanston, Illinois60208, United States
| | - Daniela Hofmann
- Laboratory
of Organic Chemistry, ETH Zurich, Vladimir-Prelog-Weg 1-5/10, Zürich8093, Switzerland
| | - Giulia Licciardi
- Magnetic
Resonance Center (CERM), University of Florence, via Luigi Sacconi 6, Sesto Fiorentino50019Italy
- Department
of Chemistry “Ugo Schiff”, University of Florence, via della Lastruccia 3, Sesto Fiorentino50019, Italy
- Consorzio
Interuniversitario Risonanze Magnetiche Metallo Proteine (CIRMMP), via Luigi Sacconi 6, Sesto Fiorentino50019, Italy
| | - Giacomo Parigi
- Magnetic
Resonance Center (CERM), University of Florence, via Luigi Sacconi 6, Sesto Fiorentino50019Italy
- Department
of Chemistry “Ugo Schiff”, University of Florence, via della Lastruccia 3, Sesto Fiorentino50019, Italy
- Consorzio
Interuniversitario Risonanze Magnetiche Metallo Proteine (CIRMMP), via Luigi Sacconi 6, Sesto Fiorentino50019, Italy
| | - Claudio Luchinat
- Magnetic
Resonance Center (CERM), University of Florence, via Luigi Sacconi 6, Sesto Fiorentino50019Italy
- Department
of Chemistry “Ugo Schiff”, University of Florence, via della Lastruccia 3, Sesto Fiorentino50019, Italy
- Consorzio
Interuniversitario Risonanze Magnetiche Metallo Proteine (CIRMMP), via Luigi Sacconi 6, Sesto Fiorentino50019, Italy
| | - Donald Hilvert
- Laboratory
of Organic Chemistry, ETH Zurich, Vladimir-Prelog-Weg 1-5/10, Zürich8093, Switzerland
| | - Thomas J. Meade
- Departments
of Chemistry, Molecular Biosciences, Neurobiology and Radiology, Northwestern University, 2145 N. Sheridan Road, Evanston, Illinois60208, United States
| |
Collapse
|
5
|
Margalik DA, Chen J, Ho T, Ding L, Dhaliwal A, Doria AS, Zheng G. Prolonged Circulating Lipid Nanoparticles Enabled by High-Density Gd-DTPA-Bis(stearylamide) for Long-Lasting Enhanced Tumor Magnetic Resonance Imaging. Bioconjug Chem 2022; 33:2213-2222. [DOI: 10.1021/acs.bioconjchem.2c00445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Denis A. Margalik
- Princess Margaret Cancer Centre, University Health Network 101 College St., PMCRT 5-354, Toronto, ON M5G 1L7, Canada
- Institute of Biomedical Engineering, University of Toronto 64 College St., Toronto, ON M5S 3G9, Canada
| | - Juan Chen
- Princess Margaret Cancer Centre, University Health Network 101 College St., PMCRT 5-354, Toronto, ON M5G 1L7, Canada
| | - Tiffany Ho
- Princess Margaret Cancer Centre, University Health Network 101 College St., PMCRT 5-354, Toronto, ON M5G 1L7, Canada
- Department of Pharmaceutical Sciences, University of Toronto 144 College St., Toronto, ON M5S 3M2, Canada
| | - Lili Ding
- Princess Margaret Cancer Centre, University Health Network 101 College St., PMCRT 5-354, Toronto, ON M5G 1L7, Canada
| | - Alexander Dhaliwal
- Princess Margaret Cancer Centre, University Health Network 101 College St., PMCRT 5-354, Toronto, ON M5G 1L7, Canada
- Department of Medical Biophysics, University of Toronto 101 College St., Toronto, ON M5G 1L7, Canada
| | - Andrea S. Doria
- Department of Diagnostic Imaging, Research Institute, The Hospital for Sick Children, Toronto, ON M5G 1X8, Canada
| | - Gang Zheng
- Princess Margaret Cancer Centre, University Health Network 101 College St., PMCRT 5-354, Toronto, ON M5G 1L7, Canada
- Institute of Biomedical Engineering, University of Toronto 64 College St., Toronto, ON M5S 3G9, Canada
- Department of Pharmaceutical Sciences, University of Toronto 144 College St., Toronto, ON M5S 3M2, Canada
- Department of Medical Biophysics, University of Toronto 101 College St., Toronto, ON M5G 1L7, Canada
| |
Collapse
|
6
|
Pothayee N, Sail D, Dodd S, Swenson RE, Koretsky AP. Multivalent Gd-DOTA Decorated Oligopeptide as Sensitive MRI Molecular Probes for In Vivo Imaging of Brain Connectivity. ACS Chem Neurosci 2022; 13:2674-2680. [PMID: 36040317 DOI: 10.1021/acschemneuro.2c00236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
One of the most important goals of brain imaging is to define the anatomical connections within the brain. In addition to revealing normal circuitry, studies of neural connections and neuronal transport can show rewiring and degeneration following brain injury and diseases. In this work, a highly sensitive magnetic resonance imaging (MRI)-visible neural tracer that can be used to visualize brain connectivity in vivo is developed. It is based on an oligopeptide with gadolinium chelates appended to the peptide backbone. This peptide construct is a sensitive MRI contrast agent that was conjugated to the classical neurotracer, Cholera-toxin Subunit-B. Injection of this probe enabled it to be used to trace neural connections in vivo. This complements other MRI tracing techniques such as diffusion tensor imaging and manganese-enhanced MRI for neural tracing.
Collapse
Affiliation(s)
- Nikorn Pothayee
- Laboratory of Functional and Molecular Imaging, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Deepak Sail
- Chemistry and Synthesis Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Rockville, Maryland 20850, United States
| | - Stephen Dodd
- Laboratory of Functional and Molecular Imaging, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Rolf E Swenson
- Chemistry and Synthesis Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Rockville, Maryland 20850, United States
| | - Alan P Koretsky
- Laboratory of Functional and Molecular Imaging, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland 20892, United States
| |
Collapse
|
7
|
Kondakova OA, Evtushenko EA, Baranov OA, Nikitin NA, Karpova OV. Structurally Modified Plant Viruses and Bacteriophages with Helical Structure. Properties and Applications. BIOCHEMISTRY (MOSCOW) 2022; 87:548-558. [PMID: 35790410 PMCID: PMC9201271 DOI: 10.1134/s0006297922060062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Structurally modified virus particles can be obtained from the rod-shaped or filamentous virions of plant viruses and bacteriophages by thermal or chemical treatment. They have recently attracted attention of the researchers as promising biogenic platforms for the development of new biotechnologies. This review presents data on preparation, structure, and properties of the structurally modified virus particles. In addition, their biosafety for animals is considered, as well as the areas of application of such particles in biomedicine. A separate section is devoted to one of the most relevant and promising areas for the use of structurally modified plant viruses – design of vaccine candidates based on them.
Collapse
Affiliation(s)
- Olga A Kondakova
- Faculty of Biology, Lomonosov Moscow State University, Moscow, 119234, Russia
| | | | - Oleg A Baranov
- Faculty of Biology, Lomonosov Moscow State University, Moscow, 119234, Russia
| | - Nikolai A Nikitin
- Faculty of Biology, Lomonosov Moscow State University, Moscow, 119234, Russia
| | - Olga V Karpova
- Faculty of Biology, Lomonosov Moscow State University, Moscow, 119234, Russia
| |
Collapse
|
8
|
Marsden CJ, Breen C, Tinkler J, Berki T, Lester DW, Martinelli J, Tei L, Butler SJ, Willcock H. Crosslinked p(MMA) Particles by RAFT Emulsion Polymerisation: Tuning Size and Stability. Polym Chem 2022. [DOI: 10.1039/d2py00337f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The controlled synthesis of amphiphilic di-block copolymers allows a large array of nanostructures to be created, including block copolymer particles, which have proved valuable for biomedical applications. Despite progress in...
Collapse
|
9
|
Aljabali AAA, Hassan S, Pabari RM, Shahcheraghi SH, Mishra V, Charbe NB, Chellappan DK, Dureja H, Gupta G, Almutary AG, Alnuqaydan AM, Verma SK, Panda PK, Mishra YK, Serrano-Aroca Á, Dua K, Uversky VN, Redwan EM, Bahar B, Bhatia A, Negi P, Goyal R, McCarron P, Bakshi HA, Tambuwala MM. The viral capsid as novel nanomaterials for drug delivery. Future Sci OA 2021; 7:FSO744. [PMID: 34737885 PMCID: PMC8558853 DOI: 10.2144/fsoa-2021-0031] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 06/14/2021] [Indexed: 12/11/2022] Open
Abstract
The purpose of this review is to highlight recent scientific developments and provide an overview of virus self-assembly and viral particle dynamics. Viruses are organized supramolecular structures with distinct yet related features and functions. Plant viruses are extensively used in biotechnology, and virus-like particulate matter is generated by genetic modification. Both provide a material-based means for selective distribution and delivery of drug molecules. Through surface engineering of their capsids, virus-derived nanomaterials facilitate various potential applications for selective drug delivery. Viruses have significant implications in chemotherapy, gene transfer, vaccine production, immunotherapy and molecular imaging.
Collapse
Affiliation(s)
- Alaa AA Aljabali
- Faculty of Pharmacy, Department of Pharmaceutics & Pharmaceutical Technology, Yarmouk University, Irbid, 21163, Jordan
| | - Sk Sarif Hassan
- Department of Mathematics, Pingla Thana Mahavidyalaya, Paschim Medinipur, India
| | - Ritesh M Pabari
- School of Pharmacy, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Seyed H Shahcheraghi
- Infectious Diseases Research Center, Shahid Sadoughi Hospital, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Vijay Mishra
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, 144411, India
| | - Nitin B Charbe
- Department of Pharmaceutical Sciences, Rangel College of Pharmacy, Texas A&M University, Kingsville, TX 78363, USA
| | - Dinesh K Chellappan
- Department of Life Sciences, School of Pharmacy, International Medical University, Bukit Jalil, Kuala Lumpur, 57000, Malaysia
| | - Harish Dureja
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak, 124001, India
| | - Gaurav Gupta
- School of Pharmacy, Suresh Gyan Vihar University, Mahal Road, Jagatpura, Jaipur, 302017, India
| | - Abdulmajeed G Almutary
- Department of Medical Biotechnology, College of Applied Medical Sciences, Qassim University, Saudi Arabia
| | - Abdullah M Alnuqaydan
- Department of Medical Biotechnology, College of Applied Medical Sciences, Qassim University, Saudi Arabia
| | - Suresh K Verma
- Condensed Matter Theory Group, Materials Theory Division, Department of Physics & Astronomy, Uppsala University, Uppsala, 75120, Sweden
| | - Pritam K Panda
- Condensed Matter Theory Group, Materials Theory Division, Department of Physics & Astronomy, Uppsala University, Uppsala, 75120, Sweden
| | - Yogendra Kumar Mishra
- University of Southern Denmark, Mads Clausen Institute, NanoSYD, Alsion 2, Sønderborg 6400, Denmark
| | - Ángel Serrano-Aroca
- Biomaterials & Bioengineering Lab, Centro de Investigación Traslacional San Alberto Magno, Universidad Católica de Valencia San Vicente Mártir, Valencia, 46001, Spain
| | - Kamal Dua
- Discipline of Pharmacy, Graduate School of Health, University of Technology, Sydney, Australia
| | - Vladimir N Uversky
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
| | - Elrashdy M Redwan
- King Abdulazizi University, Faculty of Science, Department of Biological Science, Saudi Arabia
| | - Bojlul Bahar
- International Institute of Nutritional Sciences & Food Safety Studies, School of Sport & Health Sciences, University of Central Lancashire, Preston, Lancashire, PR1 2HE, UK
| | - Amit Bhatia
- Maharaja Ranjit Singh Punjab Technical University Dabwali Road, Bathinda, Punjab, 151001, India
| | - Poonam Negi
- School of Pharmaceutical Sciences, Shoolini University of Biotechnology & Management Sciences, Solan, 173229, India
| | - Rohit Goyal
- School of Pharmaceutical Sciences, Shoolini University of Biotechnology & Management Sciences, Solan, 173229, India
| | - Paul McCarron
- School of Pharmacy & Pharmaceutical Science, Ulster University, Coleraine, County Londonderry, Northern Ireland, BT52 1SA, UK
| | - Hamid A Bakshi
- School of Pharmacy & Pharmaceutical Science, Ulster University, Coleraine, County Londonderry, Northern Ireland, BT52 1SA, UK
| | - Murtaza M Tambuwala
- School of Pharmacy & Pharmaceutical Science, Ulster University, Coleraine, County Londonderry, Northern Ireland, BT52 1SA, UK
| |
Collapse
|
10
|
Dong YC, Bouché M, Uman S, Burdick JA, Cormode DP. Detecting and Monitoring Hydrogels with Medical Imaging. ACS Biomater Sci Eng 2021; 7:4027-4047. [PMID: 33979137 PMCID: PMC8440385 DOI: 10.1021/acsbiomaterials.0c01547] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Hydrogels, water-swollen polymer networks, are being applied to numerous biomedical applications, such as drug delivery and tissue engineering, due to their potential tunable rheologic properties, injectability into tissues, and encapsulation and release of therapeutics. Despite their promise, it is challenging to assess their properties in vivo and crucial information such as hydrogel retention at the site of administration and in situ degradation kinetics are often lacking. To address this, technologies to evaluate and track hydrogels in vivo with various imaging techniques have been developed in recent years, including hydrogels functionalized with contrast generating material that can be imaged with methods such as X-ray computed tomography (CT), magnetic resonance imaging (MRI), optical imaging, and nuclear imaging systems. In this review, we will discuss emerging approaches to label hydrogels for imaging, review the advantages and limitations of these imaging techniques, and highlight examples where such techniques have been implemented in biomedical applications.
Collapse
Affiliation(s)
- Yuxi C Dong
- Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Mathilde Bouché
- Université de Lorraine, CNRS, L2CM UMR 7053, F-54000 Nancy, France
| | - Selen Uman
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Jason A Burdick
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - David P Cormode
- Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
11
|
The Design of Abnormal Microenvironment Responsive MRI Nanoprobe and Its Application. Int J Mol Sci 2021; 22:ijms22105147. [PMID: 34067989 PMCID: PMC8152268 DOI: 10.3390/ijms22105147] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 05/06/2021] [Accepted: 05/11/2021] [Indexed: 02/07/2023] Open
Abstract
Magnetic resonance imaging (MRI) is often used to diagnose diseases due to its high spatial, temporal and soft tissue resolution. Frequently, probes or contrast agents are used to enhance the contrast in MRI to improve diagnostic accuracy. With the development of molecular imaging techniques, molecular MRI can be used to obtain 3D anatomical structure, physiology, pathology, and other relevant information regarding the lesion, which can provide an important reference for the accurate diagnosis and treatment of the disease in the early stages. Among existing contrast agents, smart or activatable nanoprobes can respond to selective stimuli, such as proving the presence of acidic pH, active enzymes, or reducing environments. The recently developed environment-responsive or smart MRI nanoprobes can specifically target cells based on differences in the cellular environment and improve the contrast between diseased tissues and normal tissues. Here, we review the design and application of these environment-responsive MRI nanoprobes.
Collapse
|
12
|
Fracassi A, Cao J, Yoshizawa-Sugata N, Tóth É, Archer C, Gröninger O, Ricciotti E, Tang SY, Handschin S, Bourgeois JP, Ray A, Liosi K, Oriana S, Stark W, Masai H, Zhou R, Yamakoshi Y. LDL-mimetic lipid nanoparticles prepared by surface KAT ligation for in vivo MRI of atherosclerosis. Chem Sci 2020; 11:11998-12008. [PMID: 34094421 PMCID: PMC8162946 DOI: 10.1039/d0sc04106h] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Low-density lipoprotein (LDL)-mimetic lipid nanoparticles (LNPs), decorated with MRI contrast agents and fluorescent dyes, were prepared by the covalent attachment of apolipoprotein-mimetic peptide (P), Gd(iii)-chelate (Gd), and sulforhodamine B (R) moieties on the LNP surface. The functionalized LNPs were prepared using the amide-forming potassium acyltrifluoroborate (KAT) ligation reaction. The KAT groups on the surface of LNPs were allowed to react with the corresponding hydroxylamine (HA) derivatives of P and Gd to provide bi-functionalized LNPs (PGd-LNP). The reaction proceeded with excellent yields, as observed by ICP-MS (for B and Gd amounts) and MALDI-TOF-MS data, and did not alter the morphology of the LNPs (mean diameter: ca. 50 nm), as shown by DLS and cryoTEM analyses. With the help of the efficient KAT ligation, a high payload of Gd(iii)-chelate on the PGd-LNP surface (ca. 2800 Gd atoms per LNP) was successfully achieved and provided a high r1 relaxivity (r1 = 22.0 s−1 mM−1 at 1.4 T/60 MHz and 25 °C; r1 = 8.2 s−1 mM−1 at 9.4 T/400 MHz and 37 °C). This bi-functionalized PGd-LNP was administered to three atherosclerotic apoE−/− mice to reveal the clear enhancement of atherosclerotic plaques in the brachiocephalic artery (BA) by MRI, in good agreement with the high accumulation of Gd in the aortic arch as shown by ICP-MS. The parallel in vivo MRI and ex vivo studies of whole mouse cryo-imaging were performed using triply functionalized LNPs with P, Gd, and R (PGdR-LNP). The clear presence of atherosclerotic plaques in BA was observed by ex vivo bright field cryo-imaging, and they were also observed by high emission fluorescent imaging. These directly corresponded to the enhanced tissue in the in vivo MRI of the identical mouse. LDL-mimetic lipid nanoparticles, decorated with MRI contrast agents and fluorescent dyes, were prepared by the covalent attachments of an apoB100-mimetic peptide, Gd(iii)-chelate, and rhodamine to enhance atherosclerosis in the in vivo imaging.![]()
Collapse
Affiliation(s)
- Alessandro Fracassi
- Laboratorium für Organische Chemie, ETH Zürich Vladimir-Prelog-Weg 3 CH-8093 Zürich Switzerland
| | - Jianbo Cao
- Department of Radiology, Institute for Translational Medicine and Therapeutics, University of Pennsylvania John Morgan 198, 3620 Hamilton Walk Philadelphia PA19104 USA
| | - Naoko Yoshizawa-Sugata
- Department of Genome Medicine, Tokyo Metropolitan Institute of Medical Science 2-1-6 Kamikitazawa, Setagaya Tokyo 156-8506 Japan
| | - Éva Tóth
- Centre de Biophysique Moléculaire, CNRS UPR 4301, Université dOrléans Rue Charles Sadron, 45071 Orléans Cedex 2 France
| | - Corey Archer
- Institut für Geochemie und Petrologie, ETH Zürich Clausiusstrasse 25 CH-8092 Zürich Switzerland
| | - Olivier Gröninger
- Institute for Chemical and Bioengineering, ETH Zurich Vladimir-Prelog-Weg 1 CH-8093 Zurich Switzerland
| | - Emanuela Ricciotti
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania 3400 Civic Center Boulevard Philadelphia PA19104 USA
| | - Soon Yew Tang
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania 3400 Civic Center Boulevard Philadelphia PA19104 USA
| | - Stephan Handschin
- Scientific Center for Optical and Electron Microscopy, ETH Zürich Auguste-Piccard-Hof 1 Zürich CH-8093 Switzerland
| | - Jean-Pascal Bourgeois
- University of Applied Science and Arts Western Switzerland Bd de Pérolles 80 CH-1700 Fribourg Switzerland
| | - Ankita Ray
- Laboratorium für Organische Chemie, ETH Zürich Vladimir-Prelog-Weg 3 CH-8093 Zürich Switzerland
| | - Korinne Liosi
- Laboratorium für Organische Chemie, ETH Zürich Vladimir-Prelog-Weg 3 CH-8093 Zürich Switzerland
| | - Sean Oriana
- Laboratorium für Organische Chemie, ETH Zürich Vladimir-Prelog-Weg 3 CH-8093 Zürich Switzerland
| | - Wendelin Stark
- Institute for Chemical and Bioengineering, ETH Zurich Vladimir-Prelog-Weg 1 CH-8093 Zurich Switzerland
| | - Hisao Masai
- Department of Genome Medicine, Tokyo Metropolitan Institute of Medical Science 2-1-6 Kamikitazawa, Setagaya Tokyo 156-8506 Japan
| | - Rong Zhou
- Department of Radiology, Institute for Translational Medicine and Therapeutics, University of Pennsylvania John Morgan 198, 3620 Hamilton Walk Philadelphia PA19104 USA
| | - Yoko Yamakoshi
- Laboratorium für Organische Chemie, ETH Zürich Vladimir-Prelog-Weg 3 CH-8093 Zürich Switzerland
| |
Collapse
|
13
|
Shahgolzari M, Pazhouhandeh M, Milani M, Yari Khosroushahi A, Fiering S. Plant viral nanoparticles for packaging and in vivo delivery of bioactive cargos. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2020; 12:e1629. [PMID: 32249552 DOI: 10.1002/wnan.1629] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 02/14/2020] [Accepted: 02/21/2020] [Indexed: 01/15/2023]
Abstract
Nanoparticles have unique capabilities and considerable promise for many different biological uses. One capability is delivering bioactive cargos to specific cells, tissues, or organisms. Depending on the task, there are multiple variables to consider including nanoparticle selection, targeting strategies, and incorporating cargo so it can be delivered in a biologically active form. One nanoparticle option, genetically controlled plant viral nanoparticles (PVNPs), is highly uniform within a given virus but quite variable between viruses with a broad range of useful properties. PVNPs are flexible and versatile tools for incorporating and delivering a wide range of small or large molecule cargos. Furthermore, PVNPs can be modified to create nanostructures that can solve problems in medical, environmental, and basic research. This review discusses the currently available techniques for delivering bioactive cargos with PVNPs and potential cargos that can be delivered with these strategies. This article is categorized under: Implantable Materials and Surgical Technologies > Nanomaterials and Implants Biology-Inspired Nanomaterials > Protein and Virus-Based Structures.
Collapse
Affiliation(s)
- Mehdi Shahgolzari
- Department of Medical Nanotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Maghsoud Pazhouhandeh
- Biotechnology Department, Agricultural Faculty, Azarbaijan Shahid Madani University, Tabriz, Iran
| | - Morteza Milani
- Department of Medical Nanotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ahmad Yari Khosroushahi
- Department of Medical Nanotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Steven Fiering
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
- Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth and Dartmouth-Hitchcock Medical Center, Lebanon, New Hampshire, USA
| |
Collapse
|
14
|
Casabianca LB. Solid-state nuclear magnetic resonance studies of nanoparticles. SOLID STATE NUCLEAR MAGNETIC RESONANCE 2020; 107:101664. [PMID: 32361159 DOI: 10.1016/j.ssnmr.2020.101664] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 03/06/2020] [Accepted: 04/02/2020] [Indexed: 05/24/2023]
Abstract
In this trends article, we review seminal and recent studies using static and magic-angle spinning solid-state NMR to study the structure of nanoparticles and ligands attached to nanoparticles. Solid-state NMR techniques including one-dimensional multinuclear NMR, cross-polarization, techniques for measuring dipolar coupling and internuclear distances, and multidimensional NMR have provided insight into the core-shell structure of nanoparticles as well as the structure of ligands on the nanoparticle surface. Hyperpolarization techniques, in particular solid-state dynamic nuclear polarization (DNP), have enabled detailed studies of nanoparticle core-shell structure and surface chemistry, by allowing unprecedented levels of sensitivity to be achieved. The high signal-to-noise afforded by DNP has allowed homonuclear and heteronuclear correlation experiments involving nuclei with low natural abundance to be performed in reasonable experimental times, which previously would not have been possible. The use of DNP to study nanoparticles and their applications will be a fruitful area of study in the coming years as well.
Collapse
|
15
|
Mathieu P, Chalet M, Clain MM, Teulon L, Benoist E, Leygue N, Picard C, Boutry S, Laurent S, Stanicki D, Hénoumont C, Novio F, Lorenzo J, Montpeyó D, Ciuculescu-Pradines D, Amiens C. Surface engineering of silica nanoparticles with a gadolinium–PCTA complex for efficient T1-weighted MRI contrast agents. NEW J CHEM 2020. [DOI: 10.1039/d0nj04430j] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Covalent grafting of diaqua Gd(iii)-complexes onto dense silica nanoparticles affords non-toxic contrast agents suitable for high field MRI pre-clinical studies.
Collapse
|
16
|
Maddah M, Delavari H. H, Mehravi B. Preparation of Bio‐Inspired Melanin Nanoplatforms Chelated with Manganese Ions as a Potential T1 MRI Contrast Agent. ChemistrySelect 2019. [DOI: 10.1002/slct.201802926] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Mahsa Maddah
- Department of Higher TechnologiesTarbiat Modares University, Tehran Iran
| | - Hamid Delavari H.
- Department of Materials EngineeringTarbiat Modares University P.O. Box 14115–143, Tehran Iran
| | - Bita Mehravi
- Department of Medical NanotechnologyIran University of Medical Science, Tehran Iran
| |
Collapse
|
17
|
Targeted Gold Nanoparticle⁻Oligonucleotide Contrast Agents in Combination with a New Local Voxel-Wise MRI Analysis Algorithm for In Vitro Imaging of Triple-Negative Breast Cancer. NANOMATERIALS 2019; 9:nano9050709. [PMID: 31067749 PMCID: PMC6566234 DOI: 10.3390/nano9050709] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 04/26/2019] [Accepted: 04/28/2019] [Indexed: 01/23/2023]
Abstract
Gold nanoparticles (GNPs) have tremendous potential as cancer-targeted contrast agents for diagnostic imaging. The ability to modify the particle surface with both disease-targeting molecules (such as the cancer-specific aptamer AS1411) and contrast agents (such as the gadolinium chelate Gd(III)-DO3A-SH) enables tailoring the particles for specific cancer-imaging and diagnosis. While the amount of image contrast generated by nanoparticle contrast agents is often low, it can be augmented with the assistance of computer image analysis algorithms. In this work, the ability of cancer-targeted gold nanoparticle–oligonucleotide conjugates to distinguish between malignant (MDA-MB-231) and healthy cells (MCF-10A) is tested using a T1-weighted image analysis algorithm based on three-dimensional, deformable model-based segmentation to extract the Volume of Interest (VOI). The gold nanoparticle/algorithm tandem was tested using contrast agent GNP-Gd(III)-DO3A-SH-AS1411) and nontargeted c-rich oligonucleotide (CRO) analogs and control (CTR) counterparts (GNP-Gd(III)-DO3A-SH-CRO/CTR) via in vitro studies. Remarkably, the cancer cells were notably distinguished from the nonmalignant cells, especially at nanomolar contrast agent concentrations. The T1-weighted image analysis algorithm provided similar results to the industry standard Varian software interface (VNMRJ) analysis of T1 maps at micromolar contrast agent concentrations, in which the VNMRJ produced a 19.5% better MRI contrast enhancement. However, our algorithm provided more sensitive and consistent results at nanomolar contrast agent concentrations, where our algorithm produced ~500% better MRI contrast enhancement.
Collapse
|
18
|
Plant virus-based materials for biomedical applications: Trends and prospects. Adv Drug Deliv Rev 2019; 145:96-118. [PMID: 30176280 DOI: 10.1016/j.addr.2018.08.011] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 08/06/2018] [Accepted: 08/27/2018] [Indexed: 12/14/2022]
Abstract
Nanomaterials composed of plant viral components are finding their way into medical technology and health care, as they offer singular properties. Precisely shaped, tailored virus nanoparticles (VNPs) with multivalent protein surfaces are efficiently loaded with functional compounds such as contrast agents and drugs, and serve as carrier templates and targeting vehicles displaying e.g. peptides and synthetic molecules. Multiple modifications enable uses including vaccination, biosensing, tissue engineering, intravital delivery and theranostics. Novel concepts exploit self-organization capacities of viral building blocks into hierarchical 2D and 3D structures, and their conversion into biocompatible, biodegradable units. High yields of VNPs and proteins can be harvested from plants after a few days so that various products have reached or are close to commercialization. The article delineates potentials and limitations of biomedical plant VNP uses, integrating perspectives of chemistry, biomaterials sciences, molecular plant virology and process engineering.
Collapse
|
19
|
Wahsner J, Gale EM, Rodríguez-Rodríguez A, Caravan P. Chemistry of MRI Contrast Agents: Current Challenges and New Frontiers. Chem Rev 2019; 119:957-1057. [PMID: 30350585 PMCID: PMC6516866 DOI: 10.1021/acs.chemrev.8b00363] [Citation(s) in RCA: 859] [Impact Index Per Article: 171.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Tens of millions of contrast-enhanced magnetic resonance imaging (MRI) exams are performed annually around the world. The contrast agents, which improve diagnostic accuracy, are almost exclusively small, hydrophilic gadolinium(III) based chelates. In recent years concerns have arisen surrounding the long-term safety of these compounds, and this has spurred research into alternatives. There has also been a push to develop new molecularly targeted contrast agents or agents that can sense pathological changes in the local environment. This comprehensive review describes the state of the art of clinically approved contrast agents, their mechanism of action, and factors influencing their safety. From there we describe different mechanisms of generating MR image contrast such as relaxation, chemical exchange saturation transfer, and direct detection and the types of molecules that are effective for these purposes. Next we describe efforts to make safer contrast agents either by increasing relaxivity, increasing resistance to metal ion release, or by moving to gadolinium(III)-free alternatives. Finally we survey approaches to make contrast agents more specific for pathology either by direct biochemical targeting or by the design of responsive or activatable contrast agents.
Collapse
Affiliation(s)
- Jessica Wahsner
- Athinoula A. Martinos Center for Biomedical Imaging and the Institute for Innovation in Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, USA
| | - Eric M. Gale
- Athinoula A. Martinos Center for Biomedical Imaging and the Institute for Innovation in Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, USA
| | - Aurora Rodríguez-Rodríguez
- Athinoula A. Martinos Center for Biomedical Imaging and the Institute for Innovation in Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, USA
| | - Peter Caravan
- Athinoula A. Martinos Center for Biomedical Imaging and the Institute for Innovation in Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, USA
| |
Collapse
|
20
|
Deng T, Zhang L, Wu HH, Zink JI. A nanoparticle enabled focused ultrasound-stimulated magnetic resonance imaging spotlight. Chem Commun (Camb) 2019; 55:10261-10264. [DOI: 10.1039/c9cc03701b] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Periodic high-intensity focused ultrasound modulation of a nanoparticle generates reversible MRI T1 relaxivity changes at the 1.5 mm3 focal point. A modulation enhancement map spotlights the region of interest by increasing contrast almost 100-fold.
Collapse
Affiliation(s)
- Tian Deng
- Department of Chemistry and Biochemistry
- University of California Los Angeles
- Los Angeles
- USA
- California Nano Systems Institute (CNSI)
| | - Le Zhang
- Department of Radiological Sciences
- David Geffen School of Medicine
- University of California Los Angeles
- Los Angeles
- USA
| | - Holden H. Wu
- Department of Radiological Sciences
- David Geffen School of Medicine
- University of California Los Angeles
- Los Angeles
- USA
| | - Jeffrey I. Zink
- Department of Chemistry and Biochemistry
- University of California Los Angeles
- Los Angeles
- USA
- California Nano Systems Institute (CNSI)
| |
Collapse
|
21
|
Bisso S, Degrassi A, Brambilla D, Leroux JC. Poly(ethylene glycol)-alendronate coated nanoparticles for magnetic resonance imaging of lymph nodes. J Drug Target 2018; 27:659-669. [DOI: 10.1080/1061186x.2018.1545235] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Sofia Bisso
- Department of Chemistry and Applied Biosciences, Institute of Pharmaceutical Sciences, ETH Zurich, Zurich, Switzerland
| | - Anna Degrassi
- Department of Biology, Nerviano Medical Sciences Srl, Milan, Italy
| | - Davide Brambilla
- Department of Chemistry and Applied Biosciences, Institute of Pharmaceutical Sciences, ETH Zurich, Zurich, Switzerland
- Faculté de Pharmacie, Université de Montréal, Montréal, Canada
| | - Jean-Christophe Leroux
- Department of Chemistry and Applied Biosciences, Institute of Pharmaceutical Sciences, ETH Zurich, Zurich, Switzerland
| |
Collapse
|
22
|
Affiliation(s)
- Fabio Carniato
- Dipartimento di Scienze e Innovazione Tecnologica; Università degli Studi del Piemonte Orientale “Amedeo Avogadro”; Viale T. Michel 11 15121 Alessandria Italy
| | - Lorenzo Tei
- Dipartimento di Scienze e Innovazione Tecnologica; Università degli Studi del Piemonte Orientale “Amedeo Avogadro”; Viale T. Michel 11 15121 Alessandria Italy
| | - Mauro Botta
- Dipartimento di Scienze e Innovazione Tecnologica; Università degli Studi del Piemonte Orientale “Amedeo Avogadro”; Viale T. Michel 11 15121 Alessandria Italy
| |
Collapse
|
23
|
Poon C, Gallo J, Joo J, Chang T, Bañobre-López M, Chung EJ. Hybrid, metal oxide-peptide amphiphile micelles for molecular magnetic resonance imaging of atherosclerosis. J Nanobiotechnology 2018; 16:92. [PMID: 30442135 PMCID: PMC6238287 DOI: 10.1186/s12951-018-0420-8] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2018] [Accepted: 11/07/2018] [Indexed: 01/17/2023] Open
Abstract
Background Atherosclerosis, a major source of cardiovascular disease, is asymptomatic for decades until the activation of thrombosis and the rupture of enlarged plaques, resulting in acute coronary syndromes and sudden cardiac arrest. Magnetic resonance imaging (MRI) is a noninvasive nuclear imaging technique to assess the degree of atherosclerotic plaque with high spatial resolution and excellent soft tissue contrast. However, MRI lacks sensitivity for preventive medicine, which limits the ability to observe the onset of vulnerable plaques. In this study, we engineered hybrid metal oxide-peptide amphiphile micelles (HMO-Ms) that combine an inorganic, magnetic iron oxide or manganese oxide inner core with organic, fibrin-targeting peptide amphiphiles, consisting of the sequence CREKA, for potential MRI imaging of thrombosis on atherosclerotic plaques. Results Hybrid metal oxide-peptide amphiphile micelles, consisting of an iron oxide (Fe-Ms) or manganese oxide (Mn-Ms) core with CREKA peptides, were self-assembled into 20–30 nm spherical nanoparticles, as confirmed by dynamic light scattering and transmission electron microscopy. These hybrid nanoparticles were found to be biocompatible with human aortic endothelial cells in vitro, and HMO-Ms bound to human clots three to five times more efficiently than its non-targeted counterparts. Relaxivity studies showed ultra-high r2 value of 457 mM−1 s−1 and r1 value of 0.48 mM−1 s−1 for Fe-Ms and Mn-Ms, respectively. In vitro, MR imaging studies demonstrated the targeting capability of CREKA-functionalized hybrid nanoparticles with twofold enhancement of MR signals. Conclusion This novel hybrid class of MR agents has potential as a non-invasive imaging method that specifically detects thrombosis during the pathogenesis of atherosclerosis. Electronic supplementary material The online version of this article (10.1186/s12951-018-0420-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Christopher Poon
- Department of Biomedical Engineering, University of Southern California, 1042 Downey Way, Los Angeles, CA, 90089, USA
| | - Juan Gallo
- Advanced (Magnetic) Theranostic Nanostructures Lab, Department of Life Sciences, International Iberian Nanotechnology Laboratory, Avenida Mestre José Veiga, Braga, Portugal
| | - Johan Joo
- Department of Biomedical Engineering, University of Southern California, 1042 Downey Way, Los Angeles, CA, 90089, USA
| | - Timothy Chang
- Department of Biomedical Engineering, University of Southern California, 1042 Downey Way, Los Angeles, CA, 90089, USA
| | - Manuel Bañobre-López
- Advanced (Magnetic) Theranostic Nanostructures Lab, Department of Life Sciences, International Iberian Nanotechnology Laboratory, Avenida Mestre José Veiga, Braga, Portugal.
| | - Eun Ji Chung
- Department of Biomedical Engineering, University of Southern California, 1042 Downey Way, Los Angeles, CA, 90089, USA. .,Department of Materials Science and Chemical Engineering, University of Southern California, 925 Bloom Walk, Los Angeles, CA, 90089, USA. .,Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA. .,Division of Nephrology and Hypertension, Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA. .,Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA.
| |
Collapse
|
24
|
Kolouchova K, Sedlacek O, Jirak D, Babuka D, Blahut J, Kotek J, Vit M, Trousil J, Konefał R, Janouskova O, Podhorska B, Slouf M, Hruby M. Self-Assembled Thermoresponsive Polymeric Nanogels for 19F MR Imaging. Biomacromolecules 2018; 19:3515-3524. [PMID: 30011367 DOI: 10.1021/acs.biomac.8b00812] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Magnetic resonance imaging using fluorinated contrast agents (19F MRI) enables to achive highcontrast in images due to the negligible fluorine background in living tissues. In this pilot study, we developed new biocompatible, temperature-responsive, and easily synthesized polymeric nanogels containing a sufficient concentration of magnetically equivalent fluorine atoms for 19F MRI purposes. The structure of the nanogels is based on amphiphilic copolymers containing two blocks, a hydrophilic poly[ N-(2-hydroxypropyl)methacrylamide] (PHPMA) or poly(2-methyl-2-oxazoline) (PMeOx) block, and a thermoresponsive poly[ N(2,2difluoroethyl)acrylamide] (PDFEA) block. The thermoresponsive properties of the PDFEA block allow us to control the process of nanogel self-assembly upon its heating in an aqueous solution. Particle size depends on the copolymer composition, and the most promising copolymers with longer thermoresponsive blocks form nanogels of suitable size for angiogenesis imaging or the labeling of cells (approximately 120 nm). The in vitro 19F MRI experiments reveal good sensitivity of the copolymer contrast agents, while the nanogels were proven to be noncytotoxic for several cell lines.
Collapse
Affiliation(s)
- Kristyna Kolouchova
- Institute of Macromolecular Chemistry AS CR , v.v.i., Heyrovského sq. 2 , Prague 6 162 06 , Czech Republic
| | - Ondrej Sedlacek
- Institute of Macromolecular Chemistry AS CR , v.v.i., Heyrovského sq. 2 , Prague 6 162 06 , Czech Republic.,Department of Organic and Macromolecular Chemistry , Ghent University , Krijgslaan 281-S4 , 9000 Ghent , Belgium
| | - Daniel Jirak
- Institute for Clinical and Experimental Medicine , Vídeňská 9 , Prague 4 140 21 , Czech Republic.,Institute of Biophysics and Informatics, First Medicine Faculty , Charles University , Salmovská 1 , Prague 120 00 , Czech Republic
| | - David Babuka
- Institute of Macromolecular Chemistry AS CR , v.v.i., Heyrovského sq. 2 , Prague 6 162 06 , Czech Republic
| | - Jan Blahut
- Department of Inorganic Chemistry, Faculty of Science , Charles University , Hlavova 8 , Prague 2 128 00 , Czech Republic
| | - Jan Kotek
- Department of Inorganic Chemistry, Faculty of Science , Charles University , Hlavova 8 , Prague 2 128 00 , Czech Republic
| | - Martin Vit
- Institute for Clinical and Experimental Medicine , Vídeňská 9 , Prague 4 140 21 , Czech Republic.,TU Liberec, Faculty of mechatronics, informatics and interdisciplinary studies , Studentská 1402/2 , Liberec 1 461 17 , Czech Republic
| | - Jiri Trousil
- Institute of Macromolecular Chemistry AS CR , v.v.i., Heyrovského sq. 2 , Prague 6 162 06 , Czech Republic.,Department of Analytical Chemistry, Faculty of Science , Charles University , Hlavova 8 , Prague 2 128 43 , Czech Republic
| | - Rafał Konefał
- Institute of Macromolecular Chemistry AS CR , v.v.i., Heyrovského sq. 2 , Prague 6 162 06 , Czech Republic
| | - Olga Janouskova
- Institute of Macromolecular Chemistry AS CR , v.v.i., Heyrovského sq. 2 , Prague 6 162 06 , Czech Republic
| | - Bohumila Podhorska
- Institute of Macromolecular Chemistry AS CR , v.v.i., Heyrovského sq. 2 , Prague 6 162 06 , Czech Republic
| | - Miroslav Slouf
- Institute of Macromolecular Chemistry AS CR , v.v.i., Heyrovského sq. 2 , Prague 6 162 06 , Czech Republic
| | - Martin Hruby
- Institute of Macromolecular Chemistry AS CR , v.v.i., Heyrovského sq. 2 , Prague 6 162 06 , Czech Republic
| |
Collapse
|
25
|
Liu K, Zang S, Xue R, Yang J, Wang L, Huang J, Yan Y. Coordination-Triggered Hierarchical Folate/Zinc Supramolecular Hydrogels Leading to Printable Biomaterials. ACS APPLIED MATERIALS & INTERFACES 2018; 10:4530-4539. [PMID: 29336146 DOI: 10.1021/acsami.7b18155] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Printable hydrogels desired in bioengineering have extremely high demands on biocompatibility and mechanic strength, which can hardly be achieved in conventional hydrogels made with biopolymers. Here, we show that on employment of the strategy of coordination-triggered hierarchical self-assembly of naturally occurring small-molecule folic acid, supramolecular hydrogels with robust mechanical elastic modulus comparable to synthetic double-network polymer gels can be made at concentrations below 1%. A sequence of hierarchical steps are involved in the formation of this extraordinary hydrogel: petrin rings on folate form tetramers through hydrogen bonding, tetramers stack into nanofibers by π-π stacking, and zinc ions cross-link the nanofibers into larger-scale fibrils and further cross-link the fibril network to gel water. These supramolecular qualities endow the hydrogel with shear-thinning and instant healing ability, which makes the robust gel injectable and printable into various three-dimensional structures. Owing to the excellent biocompatibility, the gel can support cells three-dimensionally and can be used as an ideal carrier for imaging agent (Gd3+), as well as chemodrugs. In combination with its easy formation and abundant sources, this newly discovered metallo-folate supramolecular hydrogel is promising in various bioengineering technological applications.
Collapse
Affiliation(s)
- Kaerdun Liu
- Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory for Structural Chemistry of Unstable and Stable Species, College of Chemistry and Molecular Engineering, Peking University , Beijing 100871, P. R. China
| | - Shihao Zang
- Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory for Structural Chemistry of Unstable and Stable Species, College of Chemistry and Molecular Engineering, Peking University , Beijing 100871, P. R. China
| | - Rongrong Xue
- Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory for Structural Chemistry of Unstable and Stable Species, College of Chemistry and Molecular Engineering, Peking University , Beijing 100871, P. R. China
| | - Jinghui Yang
- College of Chemistry and Chemical Engineering, Xinjiang University , Urumqi 830046, P. R. China
| | - Lizhi Wang
- College of Chemistry and Chemical Engineering, Xinjiang University , Urumqi 830046, P. R. China
| | - Jianbin Huang
- Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory for Structural Chemistry of Unstable and Stable Species, College of Chemistry and Molecular Engineering, Peking University , Beijing 100871, P. R. China
| | - Yun Yan
- Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory for Structural Chemistry of Unstable and Stable Species, College of Chemistry and Molecular Engineering, Peking University , Beijing 100871, P. R. China
| |
Collapse
|
26
|
Kawano T, Murata M, Kang JH, Piao JS, Narahara S, Hyodo F, Hamano N, Guo J, Oguri S, Ohuchida K, Hashizume M. Ultrasensitive MRI detection of spontaneous pancreatic tumors with nanocage-based targeted contrast agent. Biomaterials 2018; 152:37-46. [DOI: 10.1016/j.biomaterials.2017.10.029] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Revised: 09/28/2017] [Accepted: 10/17/2017] [Indexed: 01/01/2023]
|
27
|
Ni D, Bu W, Ehlerding EB, Cai W, Shi J. Engineering of inorganic nanoparticles as magnetic resonance imaging contrast agents. Chem Soc Rev 2017; 46:7438-7468. [PMID: 29071327 PMCID: PMC5705441 DOI: 10.1039/c7cs00316a] [Citation(s) in RCA: 264] [Impact Index Per Article: 37.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Magnetic resonance imaging (MRI) is a highly valuable non-invasive imaging tool owing to its exquisite soft tissue contrast, high spatial resolution, lack of ionizing radiation, and wide clinical applicability. Contrast agents (CAs) can be used to further enhance the sensitivity of MRI to obtain information-rich images. Recently, extensive research efforts have been focused on the design and synthesis of high-performance inorganic nanoparticle-based CAs to improve the quality and specificity of MRI. Herein, the basic rules, including the choice of metal ions, effect of electron motion on water relaxation, and involved mechanisms, of CAs for MRI have been elucidated in detail. In particular, various design principles, including size control, surface modification (e.g. organic ligand, silica shell, and inorganic nanolayers), and shape regulation, to impact relaxation of water molecules have been discussed in detail. Comprehensive understanding of how these factors work can guide the engineering of future inorganic nanoparticles with high relaxivity. Finally, we have summarized the currently available strategies and their mechanism for obtaining high-performance CAs and discussed the challenges and future developments of nanoparticulate CAs for clinical translation in MRI.
Collapse
Affiliation(s)
- Dalong Ni
- State Key Laboratory of High Performance Ceramics and Superfine Microstructures, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, China.
| | | | | | | | | |
Collapse
|
28
|
Russo M, Grimaldi AM, Bevilacqua P, Tammaro O, Netti PA, Torino E. PEGylated crosslinked hyaluronic acid nanoparticles designed through a microfluidic platform for nanomedicine. Nanomedicine (Lond) 2017; 12:2211-2222. [DOI: 10.2217/nnm-2017-0103] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Aim: A high versatile microfluidic platform is proposed to design, in a one-step strategy, PEGylated crosslinked hyaluronic acid nanoparticles (cHANPs) entrapping a magnetic resonance imaging contrast agent and a dye for multimodal imaging applications. Materials & methods: Clinically relevant biomaterials were shaped in the form of spherical NPs through a microfluidic flow focusing approach. A comparison between post processing and simultaneous PEGylation is reported to evaluate the potentiality of the chemical decoration of the cHANPs in microfluidics. Results: An accurate control of the NPs in terms of size, PEGylation and loading was obtained. Furthermore, in vitro cell viability is reported and their ability to boost the magnetic resonance imaging signal is also confirmed. Conclusion: The proposed microfluidic approach reveals its ability to overcome several limitations of the traditional processes and to become an easy-to-use platform for theranostic applications.
Collapse
Affiliation(s)
- Maria Russo
- Center for Advanced Biomaterials for Health Care, Istituto Italiano di Tecnologia, IIT@CRIB, Largo Barsanti e Matteucci, 80125 Naples, Italy
- Department of Chemical Engineering, Materials & Industrial Production, University of Naples Federico II, P.le Tecchio 80, 80125 Naples, Italy
| | - Anna Maria Grimaldi
- IRCCS Fondazione SDN, Istituto di Ricerca Diagnostica e Nucleare, 80143 Naples, Italy
| | - Paolo Bevilacqua
- IRCCS Fondazione SDN, Istituto di Ricerca Diagnostica e Nucleare, 80143 Naples, Italy
| | - Olimpia Tammaro
- Center for Advanced Biomaterials for Health Care, Istituto Italiano di Tecnologia, IIT@CRIB, Largo Barsanti e Matteucci, 80125 Naples, Italy
- Department of Chemical Engineering, Materials & Industrial Production, University of Naples Federico II, P.le Tecchio 80, 80125 Naples, Italy
| | - Paolo Antonio Netti
- Center for Advanced Biomaterials for Health Care, Istituto Italiano di Tecnologia, IIT@CRIB, Largo Barsanti e Matteucci, 80125 Naples, Italy
- Department of Chemical Engineering, Materials & Industrial Production, University of Naples Federico II, P.le Tecchio 80, 80125 Naples, Italy
| | - Enza Torino
- Center for Advanced Biomaterials for Health Care, Istituto Italiano di Tecnologia, IIT@CRIB, Largo Barsanti e Matteucci, 80125 Naples, Italy
- Department of Chemical Engineering, Materials & Industrial Production, University of Naples Federico II, P.le Tecchio 80, 80125 Naples, Italy
| |
Collapse
|
29
|
Zhang W, Xu C, Yin GQ, Zhang XE, Wang Q, Li F. Encapsulation of Inorganic Nanomaterials inside Virus-Based Nanoparticles for Bioimaging. Nanotheranostics 2017; 1:358-368. [PMID: 29071199 PMCID: PMC5646737 DOI: 10.7150/ntno.21384] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Accepted: 07/23/2017] [Indexed: 01/06/2023] Open
Abstract
Virus-based nanoparticles (VNPs) can serve as containers for inorganic nanomaterials with excellent physical and chemical properties. Incorporation of nanomaterials inside the inner cavity of VNPs has opened up lots of possibilities for imaging applications in the field of biology and medicine. Encapsulation of inorganic nanoparticles (NPs) in VNPs can achieve the labeling of VNPs with nanoprobes and maintain the original outer surface features of VNPs at the same time. In return, VNPs enhance the stability and biocompatibility of the inorganic cargoes. This review briefly summarizes the current typical strategies to encapsulate inorganic nanomaterials in VNPs, i.e. mineralization and self-assembly, as well as the applications of these hybrid nanostructures in the field of bioimaging, including in vitro and in vivo fluorescence imaging, magnetic resonance imaging, and theranostics. Nanophotonic studies based on the VNP platform are also discussed. We anticipate that this field will continue to flourish, with new exciting opportunities stemming from advancements in the rational design of VNPs, the development of excellent inorganic nanomaterials, the integration of multiple functionalities, and the regulation of nano-bio interfacial interactions.
Collapse
Affiliation(s)
- Wenjing Zhang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chengchen Xu
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China.,Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, China
| | - Gen-Quan Yin
- Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, China
| | - Xian-En Zhang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Qiangbin Wang
- CAS Key Laboratory of Nano-Bio Interfaces, Division of Nanobiomedicine and i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China
| | - Feng Li
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China
| |
Collapse
|
30
|
Voet ARD, Tame JRH. Protein-templated synthesis of metal-based nanomaterials. Curr Opin Biotechnol 2017; 46:14-19. [DOI: 10.1016/j.copbio.2016.10.015] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Accepted: 10/24/2016] [Indexed: 01/07/2023]
|
31
|
Lam P, Steinmetz NF. Plant viral and bacteriophage delivery of nucleic acid therapeutics. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2017; 10. [DOI: 10.1002/wnan.1487] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Revised: 05/24/2017] [Accepted: 06/20/2017] [Indexed: 12/15/2022]
Affiliation(s)
- Patricia Lam
- Department of Biomedical EngineeringCase Western Reserve UniversityClevelandOHUSA
| | - Nicole F. Steinmetz
- Department of Biomedical EngineeringCase Western Reserve UniversityClevelandOHUSA
- Department of RadiologyCase Western Reserve UniversityClevelandOHUSA
- Department of Materials Science and EngineeringCase Western Reserve UniversityClevelandOHUSA
- Department of Macromolecular Science and EngineeringCase Western Reserve UniversityClevelandOHUSA
- Division of General Medical Sciences‐Oncology, Case Comprehensive Cancer CenterCase Western Reserve UniversityClevelandOHUSA
| |
Collapse
|
32
|
Liu Y, Wu X, Sun X, Wang D, Zhong Y, Jiang D, Wang T, Yu D, Zhang N. Design, synthesis, and evaluation of VEGFR-targeted macromolecular MRI contrast agent based on biotin-avidin-specific binding. Int J Nanomedicine 2017; 12:5039-5052. [PMID: 28765707 PMCID: PMC5523973 DOI: 10.2147/ijn.s131878] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Developing magnetic resonance imaging (MRI) contrast agents with high relaxivity and specificity was essential to increase MRI diagnostic sensitivity and accuracy. In this study, the MRI contrast agent, vascular endothelial growth factor receptor (VEGFR)-targeted poly (l-lysine) (PLL)-diethylene triamine pentacetate acid (DTPA)-gadolinium (Gd) (VEGFR-targeted PLL-DTPA-Gd, VPDG), was designed and prepared to enhance the MRI diagnosis capacity of tumor. Biotin-PLL-DTPA-Gd was synthesized first, then, VEGFR antibody was linked to biotin-PLL-DTPA-Gd using biotin-avidin reaction. In vitro cytotoxicity study results showed that VPDG had low toxicity to MCF-7 cells and HepG2 cells at experimental concentrations. In cell uptake experiments, VPDG could significantly increase the internalization rates (61.75%±5.22%) in VEGFR-positive HepG2 cells compared to PLL-DTPA-Gd (PDG) (25.16%±4.71%, P<0.05). In MRI studies in vitro, significantly higher T1 relaxivity (14.184 mM-1 s-1) was observed compared to Magnevist® (4.9 mM-1 s-1; P<0.01). Furthermore, in vivo MRI study results showed that VPDG could significantly enhance the tumor signal intensity and prolong the diagnostic time (from <1 h to 2.5 h). These results indicated that macromolecular VPDG was a promising MRI contrast agent and held great potential for molecular diagnosis of tumor.
Collapse
Affiliation(s)
- Yongjun Liu
- School of Pharmaceutical Science, Shandong University
| | - Xiaoyun Wu
- School of Pharmaceutical Science, Shandong University
| | - Xiaohe Sun
- School of Pharmaceutical Science, Shandong University
| | - Dan Wang
- School of Pharmaceutical Science, Shandong University
| | - Ying Zhong
- School of Pharmaceutical Science, Shandong University
| | - Dandan Jiang
- School of Pharmaceutical Science, Shandong University
| | - Tianqi Wang
- School of Pharmaceutical Science, Shandong University
| | - Dexin Yu
- Department of Radiology Medicine, Qilu Hospital, Jinan, People's Republic of China
| | - Na Zhang
- School of Pharmaceutical Science, Shandong University
| |
Collapse
|
33
|
Steele JFC, Peyret H, Saunders K, Castells‐Graells R, Marsian J, Meshcheriakova Y, Lomonossoff GP. Synthetic plant virology for nanobiotechnology and nanomedicine. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2017; 9:e1447. [PMID: 28078770 PMCID: PMC5484280 DOI: 10.1002/wnan.1447] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Revised: 10/12/2016] [Accepted: 11/23/2016] [Indexed: 12/12/2022]
Abstract
Nanotechnology is a rapidly expanding field seeking to utilize nano-scale structures for a wide range of applications. Biologically derived nanostructures, such as viruses and virus-like particles (VLPs), provide excellent platforms for functionalization due to their physical and chemical properties. Plant viruses, and VLPs derived from them, have been used extensively in biotechnology. They have been characterized in detail over several decades and have desirable properties including high yields, robustness, and ease of purification. Through modifications to viral surfaces, either interior or exterior, plant-virus-derived nanoparticles have been shown to support a range of functions of potential interest to medicine and nano-technology. In this review we highlight recent and influential achievements in the use of plant virus particles as vehicles for diverse functions: from delivery of anticancer compounds, to targeted bioimaging, vaccine production to nanowire formation. WIREs Nanomed Nanobiotechnol 2017, 9:e1447. doi: 10.1002/wnan.1447 For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
| | - Hadrien Peyret
- Department of Biology ChemistryJohn Innes CentreNorwichUK
| | - Keith Saunders
- Department of Biology ChemistryJohn Innes CentreNorwichUK
| | | | | | | | | |
Collapse
|
34
|
Enhancing T 1 magnetic resonance imaging contrast with internalized gadolinium(III) in a multilayer nanoparticle. Proc Natl Acad Sci U S A 2017. [PMID: 28630340 DOI: 10.1073/pnas.1701944114] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Multifunctional nanoparticles for biomedical applications have shown extraordinary potential as contrast agents in various bioimaging modalities, near-IR photothermal therapy, and for light-triggered therapeutic release processes. Over the past several years, numerous studies have been performed to synthesize and enhance MRI contrast with nanoparticles. However, understanding the MRI enhancement mechanism in a multishell nanoparticle geometry, and controlling its properties, remains a challenge. To systematically examine MRI enhancement in a nanoparticle geometry, we have synthesized MRI-active Au nanomatryoshkas. These are Au core-silica layer-Au shell nanoparticles, where Gd(III) ions are encapsulated within the silica layer between the inner core and outer Au layer of the nanoparticle (Gd-NM). This multifunctional nanoparticle retains its strong near-IR Fano-resonant optical absorption properties essential for photothermal or other near-IR light-triggered therapy, while simultaneously providing increased T1 contrast in MR imaging by concentrating Gd(III) within the nanoparticle. Measurements of Gd-NM revealed a strongly enhanced T1 relaxivity (r1 ∼ 24 mM-1⋅s-1) even at 4.7 T, substantially surpassing conventional Gd(III) chelating agents (r1 ∼ 3 mM-1⋅s-1 at 4.7 T) currently in clinical use. By varying the thickness of the outer gold layer of the nanoparticle, we show that the observed relaxivities are consistent with Solomon-Bloembergen-Morgan (SBM) theory, which takes into account the longer-range interactions between the encapsulated Gd(III) and the protons of the H2O molecules outside the nanoparticle. This nanoparticle complex and its MRI T1-enhancing properties open the door for future studies on quantitative tracking of therapeutic nanoparticles in vivo, an essential step for optimizing light-induced, nanoparticle-based therapies.
Collapse
|
35
|
McAdams SG, Lewis DJ, McNaughter PD, Lewis EA, Haigh SJ, O’Brien P, Tuna F. High magnetic relaxivity in a fluorescent CdSe/CdS/ZnS quantum dot functionalized with MRI contrast molecules. Chem Commun (Camb) 2017; 53:10500-10503. [DOI: 10.1039/c7cc05537d] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Fluorescent quantum dots functionalized with Gd(iii) MRI contrast agents produce an unprecedentedly high T1 relaxivity per particle (6800 mM−1 s−1).
Collapse
Affiliation(s)
| | - D. J. Lewis
- School Of Chemistry
- University of Manchester
- UK
- School of Materials
- University of Manchester
| | | | - E. A. Lewis
- School of Materials
- University of Manchester
- UK
| | - S. J. Haigh
- School of Materials
- University of Manchester
- UK
| | - P. O’Brien
- School Of Chemistry
- University of Manchester
- UK
- School of Materials
- University of Manchester
| | - F. Tuna
- School Of Chemistry
- University of Manchester
- UK
- Photon Science Institute
- University of Manchester
| |
Collapse
|
36
|
Wallat JD, Czapar AE, Wang C, Wen AM, Wek KS, Yu X, Steinmetz NF, Pokorski JK. Optical and Magnetic Resonance Imaging Using Fluorous Colloidal Nanoparticles. Biomacromolecules 2016; 18:103-112. [PMID: 27992176 DOI: 10.1021/acs.biomac.6b01389] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Improved imaging of cancerous tissue has the potential to aid prognosis and improve patient outcome through longitudinal imaging of treatment response and disease progression. While nuclear imaging has made headway in cancer imaging, fluorinated tracers that enable magnetic resonance imaging (19F MRI) hold promise, particularly for repeated imaging sessions because nonionizing radiation is used. Fluorine MRI detects molecular signatures by imaging a fluorinated tracer and takes advantage of the spatial and anatomical resolution afforded by MRI. This manuscript describes a fluorous polymeric nanoparticle that is capable of 19F MR imaging and fluorescent tracking for in vitro and in vivo monitoring of immune cells and cancerous tissue. The fluorous particle is derived from low-molecular-weight amphiphilic copolymers that self-assemble into micelles with a hydrodynamic diameter of 260 nm. The polymer is MR-active at concentrations as low as 2.1 mM in phantom imaging studies. The fluorinated particle demonstrated rapid uptake into immune cells for potential cell-tracking or delineation of the tumor microenvironment and showed negligible toxicity. Systemic administration indicates significant uptake into two tumor types, triple-negative breast cancer and ovarian cancer, with little accumulation in off-target tissue. These results indicate a robust platform imaging agent capable of immune cell tracking and systemic disease monitoring with exceptional uptake of the nanoparticle in multiple cancer models.
Collapse
Affiliation(s)
- Jaqueline D Wallat
- Department of Macromolecular Science and Engineering, Case Western Reserve University, Case School of Engineering , Cleveland, Ohio 44106, United States
| | - Anna E Czapar
- Department of Pathology, Case Western Reserve University School of Medicine , Cleveland, Ohio 44106, United States
| | - Charlie Wang
- Department of Biomedical Engineering, Case Western Reserve University School of Medicine and Case School of Engineering , Cleveland, Ohio 44106, United States
| | - Amy M Wen
- Department of Biomedical Engineering, Case Western Reserve University School of Medicine and Case School of Engineering , Cleveland, Ohio 44106, United States
| | - Kristen S Wek
- Department of Macromolecular Science and Engineering, Case Western Reserve University, Case School of Engineering , Cleveland, Ohio 44106, United States
| | - Xin Yu
- Department of Biomedical Engineering, Case Western Reserve University School of Medicine and Case School of Engineering , Cleveland, Ohio 44106, United States
| | - Nicole F Steinmetz
- Department of Macromolecular Science and Engineering, Case Western Reserve University, Case School of Engineering , Cleveland, Ohio 44106, United States.,Department of Biomedical Engineering, Case Western Reserve University School of Medicine and Case School of Engineering , Cleveland, Ohio 44106, United States.,Department of Radiology, Case Western Reserve University School of Medicine , Cleveland, Ohio 44106, United States.,Department of Materials Science and Engineering, Case Western Reserve University , Cleveland, Ohio 44106, United States.,Case Comprehensive Cancer Center, Division of General Medical Sciences-Oncology, Case Western Reserve University , Cleveland, Ohio 44106, United States
| | - Jonathan K Pokorski
- Department of Macromolecular Science and Engineering, Case Western Reserve University, Case School of Engineering , Cleveland, Ohio 44106, United States
| |
Collapse
|
37
|
Ponsiglione AM, Russo M, Netti PA, Torino E. Impact of biopolymer matrices on relaxometric properties of contrast agents. Interface Focus 2016; 6:20160061. [PMID: 27920897 PMCID: PMC5071819 DOI: 10.1098/rsfs.2016.0061] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Properties of water molecules at the interface between contrast agents (CAs) for magnetic resonance imaging and macromolecules could have a valuable impact on the effectiveness of metal chelates. Recent studies, indeed, demonstrated that polymer architectures could influence CAs' relaxivity by modifying the correlation times of the metal chelate. However, an understanding of the physico-chemical properties of polymer/CA systems is necessary to improve the efficiency of clinically used CAs, still exhibiting low relaxivity. In this context, we investigate the impact of hyaluronic acid (HA) hydrogels on the relaxometric properties of Gd-DTPA, a clinically used CA, to understand better the determining role of the water, which is crucial for both the relaxation enhancement and the polymer conformation. To this aim, water self-diffusion coefficients, thermodynamic interactions and relaxometric properties of HA/Gd-DTPA solutions are studied through time-domain NMR relaxometry and isothermal titration calorimetry. We observed that the presence of Gd-DTPA could alter the polymer conformation and the behaviour of water molecules at the HA/Gd-DTPA interface, thus modulating the relaxivity of the system. In conclusion, the tunability of hydrogel structures could be exploited to improve magnetic properties of metal chelates, inspiring the development of new CAs as well as metallopolymer complexes with applications as sensors and memory devices.
Collapse
Affiliation(s)
- Alfonso Maria Ponsiglione
- Department of Chemical, Materials and Production Engineering, University of Naples Federico II, Piazzale V. Tecchio 80, 80125 Naples, Italy
- Center for Advanced Biomaterials for Healthcare IIT@CRIB, Istituto Italiano di Tecnologia, Largo Barsanti e Matteucci 53, 80125 Naples, Italy
| | - Maria Russo
- Department of Chemical, Materials and Production Engineering, University of Naples Federico II, Piazzale V. Tecchio 80, 80125 Naples, Italy
- Center for Advanced Biomaterials for Healthcare IIT@CRIB, Istituto Italiano di Tecnologia, Largo Barsanti e Matteucci 53, 80125 Naples, Italy
| | - Paolo Antonio Netti
- Department of Chemical, Materials and Production Engineering, University of Naples Federico II, Piazzale V. Tecchio 80, 80125 Naples, Italy
- Interdisciplinary Research Center on Biomaterials, University of Naples Federico II, Piazzale V. Tecchio 80, 80125 Naples, Italy
- Center for Advanced Biomaterials for Healthcare IIT@CRIB, Istituto Italiano di Tecnologia, Largo Barsanti e Matteucci 53, 80125 Naples, Italy
| | - Enza Torino
- Interdisciplinary Research Center on Biomaterials, University of Naples Federico II, Piazzale V. Tecchio 80, 80125 Naples, Italy
- Center for Advanced Biomaterials for Healthcare IIT@CRIB, Istituto Italiano di Tecnologia, Largo Barsanti e Matteucci 53, 80125 Naples, Italy
| |
Collapse
|
38
|
Hapuarachchige S, Artemov D. Click Chemistry in the Development of Contrast Agents for Magnetic Resonance Imaging. Top Magn Reson Imaging 2016; 25:205-213. [PMID: 27748712 PMCID: PMC5082715 DOI: 10.1097/rmr.0000000000000099] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Click chemistry provides fast, convenient, versatile, and reliable chemical reactions that take place between pairs of functional groups of small molecules that can be purified without chromatographic methods. Due to the fast kinetics and low or no elimination of byproducts, click chemistry is a promising approach that is rapidly gaining acceptance in drug discovery, radiochemistry, bioconjugation, and nanoscience applications. Increasing use of click chemistry in synthetic procedures or as a bioconjugation technique in diagnostic imaging is occurring because click reactions are fast, provide a quantitative yield, and produce a minimal amount of nontoxic byproducts. This review summarizes the recent application of click chemistry in magnetic resonance imaging and discusses the directions for applying novel click reactions and strategies for further improving magnetic resonance imaging performance.
Collapse
Affiliation(s)
- Sudath Hapuarachchige
- Division of Cancer Imaging Research, The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Dmitri Artemov
- Division of Cancer Imaging Research, The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| |
Collapse
|
39
|
Culver KSB, Shin YJ, Rotz MW, Meade TJ, Hersam MC, Odom TW. Shape-Dependent Relaxivity of Nanoparticle-Based T1 Magnetic Resonance Imaging Contrast Agents. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2016; 120:22103-22109. [PMID: 28008338 PMCID: PMC5172589 DOI: 10.1021/acs.jpcc.6b08362] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Gold nanostars functionalized with Gd(III) have shown significant promise as contrast agents for magnetic resonance imaging (MRI) because of their anisotropic, branched shape. However, the size and shape polydispersity of as-synthesized gold nanostars have precluded efforts to develop a rigorous relationship between the gold nanostar structure (e.g., number of branches) and relaxivity of surface-bound Gd(III). This paper describes the use of a centrifugal separation method that can produce structurally refined populations of gold nanostars and is compatible with Gd(III) functionalization. Combined transmission electron microscopy and relaxivity analyses revealed that the increased number of nanostar branches was correlated with enhanced relaxivity. By identifying the underlying relaxivity mechanisms for Gd(III)-functionalized gold nanostars, we can inform the design of high-performance MRI contrast agents.
Collapse
Affiliation(s)
- Kayla S. B. Culver
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Yu Jin Shin
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Matthew W. Rotz
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Thomas J. Meade
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
- Corresponding Authors. . Phone: 847-491-2481. . Phone: 847-491-2696. Phone: 847-491-7674
| | - Mark C. Hersam
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
- Corresponding Authors. . Phone: 847-491-2481. . Phone: 847-491-2696. Phone: 847-491-7674
| | - Teri W. Odom
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
- Corresponding Authors. . Phone: 847-491-2481. . Phone: 847-491-2696. Phone: 847-491-7674
| |
Collapse
|
40
|
Zhang M, Yeow JT. Nanotechnology-Based Terahertz Biological Sensing: A review of its current state and things to come. IEEE NANOTECHNOLOGY MAGAZINE 2016. [DOI: 10.1109/mnano.2016.2572244] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
41
|
Chen Z, Li N, Chen L, Lee J, Gassensmith JJ. Dual Functionalized Bacteriophage Qβ as a Photocaged Drug Carrier. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2016; 12:4563-4571. [PMID: 27351167 DOI: 10.1002/smll.201601053] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2016] [Revised: 05/16/2016] [Indexed: 06/06/2023]
Abstract
Proteinatious nanoparticles are emerging as promising materials in biomedical research owing to their many unique properties and our interest focuses on integrating environmental responsivity into these systems. In this work, the use of a virus-like particle (VLP) derived from bacteriophage Qβ as a photocaged drug delivery system is investigated. Ideally, a photocaged nanoparticle platform should be harmless and inert without activation by light yet, upon photoirradiation, should cause cell death. Approximately 530 photocleavable doxorubicin complexes are installed initially onto the surface of Qβ by CuAAC reaction for photocaging therapy; however, aggregation and precipitation are found to cause cell death at higher concentrations. In order to improve solution stability, thiol-dibromomaleimide chemistry has been developed to orthogonally modify the VLP. This chemistry provides a robust method of incorporating additional functionality at the disulfides on Qβ, which was used to increase the stability and solubility of the drug-loaded VLPs. As a result, the dual functionalied VLPs with polyethylene glycol and photocaged doxorubicin show not only negligible cytotoxicity before photoactivation but also highly controllable photorelease and cell killing power.
Collapse
Affiliation(s)
- Zhuo Chen
- Department of Chemistry and Biochemistry, The University of Texas at Dallas 800 West Campbell Road, Richardson, TX, 75080-3021, USA
| | - Na Li
- Department of Chemistry and Biochemistry, The University of Texas at Dallas 800 West Campbell Road, Richardson, TX, 75080-3021, USA
| | - Luxi Chen
- Department of Chemistry and Biochemistry, The University of Texas at Dallas 800 West Campbell Road, Richardson, TX, 75080-3021, USA
| | - Jiyong Lee
- Department of Chemistry and Biochemistry, The University of Texas at Dallas 800 West Campbell Road, Richardson, TX, 75080-3021, USA
| | - Jeremiah J Gassensmith
- Department of Chemistry and Biochemistry, The University of Texas at Dallas 800 West Campbell Road, Richardson, TX, 75080-3021, USA
| |
Collapse
|
42
|
Surender EM, Comby S, Martyn S, Cavanagh B, Lee TC, Brougham DF, Gunnlaugsson T. Cyclen lanthanide-based micellar structures for application as luminescent [Eu(iii)] and magnetic [Gd(iii)] resonance imaging (MRI) contrast agents. Chem Commun (Camb) 2016; 52:10858-61. [PMID: 27523566 DOI: 10.1039/c6cc03092k] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The synthesis of coordinatively unsaturated tetra-substituted 1,4,7,10-tetraazacyclododecane (cyclen) lanthanide complexes is described; these structures, possessing hydrophobic (C12-alkyl) tails and hydrophilic head groups, self-assemble into supramolecular micellar structures in aqueous solution, and hence can be utilised as novel contrast agents for MRI.
Collapse
Affiliation(s)
- Esther M Surender
- School of Chemistry, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland.
| | | | | | | | | | | | | |
Collapse
|
43
|
Randolph LM, LeGuyader CLM, Hahn ME, Andolina CM, Patterson JP, Mattrey RF, Millstone JE, Botta M, Scadeng M, Gianneschi NC. Polymeric Gd-DOTA amphiphiles form spherical and fibril-shaped nanoparticle MRI contrast agents. Chem Sci 2016; 7:4230-4236. [PMID: 30155069 PMCID: PMC6013922 DOI: 10.1039/c6sc00342g] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2016] [Accepted: 03/03/2016] [Indexed: 12/13/2022] Open
Abstract
A Gd3+-coordinated polymerizable analogue of the MRI contrast agent Gd-DOTA was used to prepare amphiphilic block copolymers, with hydrophilic blocks composed entirely of the polymerized contrast agent. The resulting amphiphilic block copolymers assemble into nanoparticles (NPs) of spherical- or fibril-shape, each demonstrating enhanced relaxivity over Gd-DOTA. As an initial examination of their behavior in vivo, intraperitoneal (IP) injection of NPs into live mice was performed, showing long IP residence times, observed by MRI. Extended residence times for particles of well-defined morphology may represent a valuable design paradigm for treatment or diagnosis of peritoneal malignances.
Collapse
Affiliation(s)
- Lyndsay M Randolph
- Department of Chemistry and Biochemistry , University of California , 9500 Gilman Dr., La Jolla , San Diego , CA 92093 , USA . ;
| | - Clare L M LeGuyader
- Department of Chemistry and Biochemistry , University of California , 9500 Gilman Dr., La Jolla , San Diego , CA 92093 , USA . ;
| | - Michael E Hahn
- Department of Chemistry and Biochemistry , University of California , 9500 Gilman Dr., La Jolla , San Diego , CA 92093 , USA . ;
- Department of Radiology , University of California , 9500 Gilman Dr., La Jolla , San Diego , CA 92093 , USA
| | - Christopher M Andolina
- Department of Chemistry , University of Pittsburgh , 4200 Fifth Ave , Pittsburgh , PA 15260 , USA
| | - Joseph P Patterson
- Department of Chemistry and Biochemistry , University of California , 9500 Gilman Dr., La Jolla , San Diego , CA 92093 , USA . ;
| | - Robert F Mattrey
- Department of Radiology , University of California , 9500 Gilman Dr., La Jolla , San Diego , CA 92093 , USA
| | - Jill E Millstone
- Department of Chemistry , University of Pittsburgh , 4200 Fifth Ave , Pittsburgh , PA 15260 , USA
| | - Mauro Botta
- Dipartimento di Scienze e Innovazione Tecnologica , Università del Piemonte Orientale "A. Avogadro" , Alessandria , Italy
| | - Miriam Scadeng
- Department of Radiology , University of California , 9500 Gilman Dr., La Jolla , San Diego , CA 92093 , USA
| | - Nathan C Gianneschi
- Department of Chemistry and Biochemistry , University of California , 9500 Gilman Dr., La Jolla , San Diego , CA 92093 , USA . ;
| |
Collapse
|
44
|
Bruckman MA, Czapar AE, VanMeter A, Randolph LN, Steinmetz NF. Tobacco mosaic virus-based protein nanoparticles and nanorods for chemotherapy delivery targeting breast cancer. J Control Release 2016; 231:103-13. [PMID: 26941034 DOI: 10.1016/j.jconrel.2016.02.045] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2015] [Revised: 02/25/2016] [Accepted: 02/28/2016] [Indexed: 01/28/2023]
Abstract
Drug delivery systems are required for drug targeting to avoid adverse effects associated with chemotherapy treatment regimes. Our approach is focused on the study and development of plant virus-based materials as drug delivery systems; specifically, this work focuses on the tobacco mosaic virus (TMV). Native TMV forms a hollow, high aspect-ratio nanotube measuring 300×18nm with a 4nm-wide central channel. Heat-transformation can be applied to TMV yielding spherical nanoparticles (SNPs) measuring ~50nm in size. While bioconjugate chemistries have been established to modify the TMV rod, such methods have not yet been described for the SNP platform. In this work, we probed the reactivity of SNPs toward bioconjugate reactions targeting lysine, glutamine/aspartic acid, and cysteine residues. We demonstrate functionalization of SNPs using these chemistries yielding efficient payload conjugation. In addition to covalent labeling techniques, we developed encapsulation techniques, where the cargo is loaded into the SNP during heat-transition from rod-to-sphere. Finally, we developed TMV and SNP formulations loaded with the chemotherapeutic doxorubicin, and we demonstrate the application of TMV rods and spheres for chemotherapy delivery targeting breast cancer.
Collapse
Affiliation(s)
- Michael A Bruckman
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, United States
| | - Anna E Czapar
- Department of Pathology, Case Western Reserve University, Cleveland, OH, United States
| | - Allen VanMeter
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, United States
| | - Lauren N Randolph
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, United States
| | - Nicole F Steinmetz
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, United States; Department of Radiology, Case Western Reserve University, Cleveland, OH, United States; Department of Materials Science and Engineering, Case Western Reserve University, Cleveland, OH, United States; Department of Macromolecular Science and Engineering, Case Western Reserve University, Cleveland, OH, United States.
| |
Collapse
|
45
|
Şen Karaman D, Desai D, Zhang J, Tadayon S, Unal G, Teuho J, Sarfraz J, Smått JH, Gu H, Näreoja T, Rosenholm JM. Modulation of the structural properties of mesoporous silica nanoparticles to enhance the T1-weighted MR imaging capability. J Mater Chem B 2016; 4:1720-1732. [DOI: 10.1039/c5tb02371h] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The contrast enchantment for Gd(iii) incorporated MSN based CAs is investigated by modulating the preparational and structural parameters.
Collapse
|
46
|
Chen Z, Li N, Li S, Dharmarwardana M, Schlimme A, Gassensmith JJ. Viral chemistry: the chemical functionalization of viral architectures to create new technology. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2015; 8:512-34. [DOI: 10.1002/wnan.1379] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Revised: 08/31/2015] [Accepted: 09/15/2015] [Indexed: 01/04/2023]
Affiliation(s)
- Zhuo Chen
- Department of Chemistry and BiochemistryThe University of Texas at DallasRichardsonTXUSA
| | - Na Li
- Department of Chemistry and BiochemistryThe University of Texas at DallasRichardsonTXUSA
| | - Shaobo Li
- Department of Chemistry and BiochemistryThe University of Texas at DallasRichardsonTXUSA
| | | | - Anna Schlimme
- Department of Chemistry and BiochemistryThe University of Texas at DallasRichardsonTXUSA
| | - Jeremiah J Gassensmith
- Department of Chemistry and BiochemistryThe University of Texas at DallasRichardsonTXUSA
| |
Collapse
|
47
|
Levi S, Mancier V, Rousse C, Garcia OL, Mejia J, Guzman M, Lucas S, Fricoteaux P. Synthesis of spherical copper-platinum nanoparticles by sonoelectrochemistry followed by conversion reaction. Electrochim Acta 2015. [DOI: 10.1016/j.electacta.2015.06.155] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
48
|
Shukla S, Steinmetz NF. Virus-based nanomaterials as positron emission tomography and magnetic resonance contrast agents: from technology development to translational medicine. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2015; 7:708-21. [PMID: 25683790 PMCID: PMC4620044 DOI: 10.1002/wnan.1335] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2014] [Accepted: 12/15/2014] [Indexed: 01/17/2023]
Abstract
Viruses have recently emerged as ideal protein scaffolds for a new class of contrast agents that can be used in medical imaging procedures such as positron emission tomography (PET) and magnetic resonance imaging (MRI). Whereas synthetic nanoparticles are difficult to produce as homogeneous formulations due to the inherently stochastic nature of the synthesis process, virus-based nanoparticles are genetically encoded and are therefore produced as homogeneous and monodisperse preparations with a high degree of quality control. Because the virus capsids have a defined chemical structure that has evolved to carry cargoes of nucleic acids, they can be modified to carry precisely defined cargoes of contrast agents and can be decorated with spatially defined contrast reagents on the internal or external surfaces. Viral nanoparticles can also be genetically programed or conjugated with targeting ligands to deliver contrast agents to specific cells, and the natural biocompatibility of viruses means that they are cleared rapidly from the body. Nanoparticles based on bacteriophages and plant viruses are safe for use in humans and can be produced inexpensively in large quantities as self-assembling recombinant proteins. Based on these considerations, a new generation of contrast agents has been developed using bacteriophages and plant viruses as scaffolds to carry positron-emitting radioisotopes such as [(18) F] fluorodeoxyglucose for PET imaging and iron oxide or Gd(3+) for MRI. Although challenges such as immunogenicity, loading efficiency, and regulatory compliance remain to be address, virus-based nanoparticles represent a promising new enabling technology for a new generation of highly biocompatible and biodegradable targeted imaging reagents.
Collapse
Affiliation(s)
- Sourabh Shukla
- Department of Biomedical Engineering, Case Western Reserve University, Schools of Medicine and Engineering, Cleveland OH 44106
| | - Nicole F. Steinmetz
- Department of Biomedical Engineering, Case Western Reserve University, Schools of Medicine and Engineering, Cleveland OH 44106
- Department of Radiology, Case Western Reserve University, Schools of Medicine and Engineering, Cleveland OH 44106
- Department of Materials Science and Engineering, Case Western Reserve University, Schools of Medicine and Engineering, Cleveland OH 44106
- Department of Macromolecular Science and Engineering, Case Western Reserve University, Schools of Medicine and Engineering, Cleveland OH 44106
| |
Collapse
|
49
|
Wu Z, Huang J, Yan Y. Electrostatic Polyion Micelles with Fluorescence and MRI Dual Functions. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2015; 31:7926-7933. [PMID: 26146850 DOI: 10.1021/acs.langmuir.5b01516] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
We report in this work the formation of fluorescence and MRI bimodal imaging nanoparticles achieved by electrostatic self-assembly. The nanoparticles are micelles formed with Gd(3+) ion, a bisligand that contains aggregation induced emission (AIE) group, and a block copolymer. The coordination between the Gd(3+) ion and the bisligand produces a negatively charged coordination complex, which interacted with the positive-neutral block copolymer to form polyion micelles. The micelles exhibit considerable fluorescence owing to the rotation restriction of the AIE group; meanwhile, the longitudinal relaxation of water was significantly slowed down which provide T1 contrast for magnetic resonance imaging. In vitro fluorescence imaging and in vivo MRI measurements verified this micelle indeed exhibit dual imaging ability. We expect that this orthogonal imaging may provide more accurate diagnosis in practical applications and will pave the way for the development of an advanced technique for diagnosis.
Collapse
Affiliation(s)
- Zheng Wu
- Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory for Structural Chemistry of Unstable and Stable Species, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Jianbin Huang
- Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory for Structural Chemistry of Unstable and Stable Species, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Yun Yan
- Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory for Structural Chemistry of Unstable and Stable Species, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| |
Collapse
|
50
|
Bruckman MA, Randolph LN, Gulati NM, Stewart PL, Steinmetz NF. Silica-coated Gd(DOTA)-loaded protein nanoparticles enable magnetic resonance imaging of macrophages. J Mater Chem B 2015; 3:7503-7510. [PMID: 26659591 DOI: 10.1039/c5tb01014d] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The molecular imaging of in vivo targets allows non-invasive disease diagnosis. Nanoparticles offer a promising platform for molecular imaging because they can deliver large payloads of imaging reagents to the site of disease. Magnetic resonance imaging (MRI) is often preferred for clinical diagnosis because it uses non-ionizing radiation and offers both high spatial resolution and excellent penetration. We have explored the use of plant viruses as the basis of for MRI contrast reagents, specifically Tobacco mosaic virus (TMV), which can assemble to form either stiff rods or spheres. We loaded TMV particles with paramagnetic Gd ions, increasing the ionic relaxivity compared to free Gd ions. The loaded TMV particles were then coated with silica maintaining high relaxivities. Interestingly, we found that when Gd(DOTA) was loaded into the interior channel of TMV and the exterior was coated with silica, the T1 relaxivities increased by three-fold from 10.9 mM-1 s-1 to 29.7 mM-1s-1 at 60 MHz compared to uncoated Gd-loaded TMV. To test the performance of the contrast agents in a biological setting, we focused on interactions with macrophages because the active or passive targeting of immune cells is a popular strategy to investigate the cellular components involved in disease progression associated with inflammation. In vitro assays and phantom MRI experiments indicate efficient targeting and imaging of macrophages, enhanced contrast-to-noise ratio was observed by shape-engineering (SNP > TMV) and silica-coating (Si-TMV/SNP > TMV/SNP). Because plant viruses are in the food chain, antibodies may be prevalent in the population. Therefore we investigated whether the silica-coating could prevent antibody recognition; indeed our data indicate that mineralization can be used as a stealth coating option to reduce clearance. Therefore, we conclude that the silica-coated protein-based contrast agent may provide an interesting candidate material for further investigation for in vivo delineation of disease through macrophage imaging.
Collapse
Affiliation(s)
| | | | | | | | - Nicole F Steinmetz
- Department of Biomedical Engineering, Cleveland, OH ; Department of Radiology, Cleveland, OH ; Department of Materials Science and Engineering, Cleveland, OH ; Department of Macromolecular Science and Engineering Case Western Reserve University, Cleveland, OH
| |
Collapse
|