1
|
Chaudhary S, Srivastava VK, Kumar M, Lakshmi GBVS, Agarwal DC, Ojha S, Kumar M, Kumar T, Pandey RK, Ghosh S, Avasthi DK, Yadav RP, Singh RS, Singh UB. Formation of partially embedded Au nanostructures: Ion beam irradiation on thin film. Microsc Res Tech 2024; 87:2301-2311. [PMID: 38747091 DOI: 10.1002/jemt.24598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 04/29/2024] [Accepted: 05/02/2024] [Indexed: 09/02/2024]
Abstract
The Au partially embedded nanostructure (PEN) is synthesized by ion irradiation on an Au thin film deposited on a glass substrate using a 50 keV Ar ion. Scanning electron microscopy results show ion beam-induced restructuring from irregularly shaped nanostructures (NSs) to spherical Au NSs, and further ion irradiation leads to the formation of well-separated spherical nanoparticles. Higuchi's algorithm of surface analysis is utilized to find the evolution of surface morphology with ion irradiation in terms of the Hurst exponent and fractal dimension. The Au PEN is evidenced by Rutherford backscattering spectrometry and optical studies. Also, the depth of the mechanism behind synthesized PEN is explained on the basis of theoretical simulations, namely, a unified thermal spike and a Monte Carlo simulation consisting of dynamic compositional changes (TRIDYN). Another set of plasmonic NSs was formed on the surface by thermal annealing of the Au film on the substrate. Glucose sensing has been studied on the two types of plasmonic layers: nanoparticles on the surface and PEN. The results reveal the sensing responses of both types of plasmonic layers. However, PEN retains its plasmonic behavior as the NSs are still present after washing with water, which demonstrates the potential for reusability. RESEARCH HIGHLIGHTS: Synthesis of PENs by ion irradiation Utilization of Higuchi's algorithm to explore the surface morphology. Unified thermal spike and TRIDYN simulations being used to explain the results. Glucose is only used as a test case for reusability of substrate.
Collapse
Affiliation(s)
- Shivani Chaudhary
- Department of Physics, Deen Dayal Upadhyaya Gorakhpur University, Gorakhpur, Uttar Pradesh, India
| | - Vinay K Srivastava
- Department of Physics, Deen Dayal Upadhyaya Gorakhpur University, Gorakhpur, Uttar Pradesh, India
| | - Mukesh Kumar
- Department of Physics, Deen Dayal Upadhyaya Gorakhpur University, Gorakhpur, Uttar Pradesh, India
| | - G B V S Lakshmi
- Special Center for Nanoscience, Jawaharlal Nehru University, New Delhi, India
| | - D C Agarwal
- Inter-University Accelerator Centre, Aruna Asaf Ali Marg, New Delhi, India
- Department of Physics, Indian Institute of Technology Delhi, New Delhi, India
| | - Sunil Ojha
- Inter-University Accelerator Centre, Aruna Asaf Ali Marg, New Delhi, India
| | - Manish Kumar
- Inter-University Accelerator Centre, Aruna Asaf Ali Marg, New Delhi, India
| | - Tanuj Kumar
- Department of Nanosciences and Materials, Central University of Jammu, Jammu, India
| | - Ratnesh K Pandey
- Department of Physics, School of Engineering, UPES, Dehradun, India
| | - Santanu Ghosh
- Department of Physics, Indian Institute of Technology Delhi, New Delhi, India
| | - D K Avasthi
- Department of Physics, School of Engineering, UPES, Dehradun, India
| | - R P Yadav
- Department of Physics, Deen Dayal Upadhyay Govt. P.G. College, Prayagraj, India
| | - Ravi S Singh
- Department of Physics, Deen Dayal Upadhyaya Gorakhpur University, Gorakhpur, Uttar Pradesh, India
| | - Udai B Singh
- Department of Physics, Deen Dayal Upadhyaya Gorakhpur University, Gorakhpur, Uttar Pradesh, India
| |
Collapse
|
2
|
Ameen Sha M, Meenu PC, Haspel H, Kónya Z. Metal-based non-enzymatic systems for cholesterol detection: mechanisms, features, and performance. RSC Adv 2024; 14:24561-24573. [PMID: 39108964 PMCID: PMC11299639 DOI: 10.1039/d4ra04104f] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 07/17/2024] [Indexed: 01/18/2025] Open
Abstract
Metal based catalysts and electrodes are versatile tools known for their redox properties, catalytic efficiency, and stability under various conditions. Despite the absence of significant scientific hurdles, the utilization of these methods in cholesterol detection, particularly in non-enzymatic approaches, has been relatively underexplored. To this end, there is a pressing need to delve deeper into existing metal-based systems used in non-enzymatic cholesterol sensing, with the goal of fostering the development of innovative practical solutions. Various electrode systems, such as those employing Ni, Ti, Cu, Zn, W, Mn, and Fe, have already been reported for non-enzymatic cholesterol detection, some of them elucidated sensing mechanisms and potential in physiological detection. A detailed mechanistic understanding of oxide-based cholesterol sensors, along with the methodologies for constructing such systems, holds promise of advancing the exploration of practical applications. This review aims to provide a broad perspective on metal oxide systems and their characteristics that are conducive to non-enzymatic cholesterol sensing. It is intended to serve as a springboard with offering a guide to the design and development of efficient and sensitive electrochemical cholesterol sensors.
Collapse
Affiliation(s)
- M Ameen Sha
- Department of Applied and Environmental Chemistry, Faculty of Science and Informatics, University of Szeged Rerrich Béla tér 1 Szeged H-6720 Hungary
| | - P C Meenu
- Department of Chemistry, Birla Institute of Technology and Science Hyderabad Campus 500078 India
| | - H Haspel
- Department of Applied and Environmental Chemistry, Faculty of Science and Informatics, University of Szeged Rerrich Béla tér 1 Szeged H-6720 Hungary
- HUN-REN-SZTE Reaction Kinetics and Surface Chemistry Research Group, University of Szeged Rerrich Béla tér 1 Szeged H-6720 Hungary
| | - Z Kónya
- Department of Applied and Environmental Chemistry, Faculty of Science and Informatics, University of Szeged Rerrich Béla tér 1 Szeged H-6720 Hungary
- HUN-REN-SZTE Reaction Kinetics and Surface Chemistry Research Group, University of Szeged Rerrich Béla tér 1 Szeged H-6720 Hungary
| |
Collapse
|
3
|
Himanshu JK, Lakshmi GBVS, Verma AK, Ahlawat A, Solanki PR. Development of aptasensor for chlorpyrifos detection using paper-based screen-printed electrode. ENVIRONMENTAL RESEARCH 2024; 240:117478. [PMID: 37879395 DOI: 10.1016/j.envres.2023.117478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 09/22/2023] [Accepted: 10/22/2023] [Indexed: 10/27/2023]
Abstract
Novel Carbon quantum dots-graphite composite ink-based Screen-printed electrodes (CQDs/SPEs) were used to assemble a highly sensitive electrochemical aptasensor against chlorpyrifos (CPF). The aptasensor showed a broad linear range from 1 pM (0.445 ng/ml) to 500 nM (0.22 mg/ml) with a detection limit (LOD) 0.834 pM (0.37 ng/ml); sensitivity 21.39 μA pM-1 cm- 2 and with good linearity of R2 = 0.973. Moreover, the aptasensor's showed better selectivity among few other pesticides. Further, the aptasensor electrode showed high stability for five months when stored at 4 °C. In the final step, the aptasensor's ability to identify CPF in real samples was evaluated on spiked potato (Solanum tuberosum) extract samples. Potato extract spiked with CPF in the electrochemical aptasensing platform showed excellent linearity of R2 = 0.981. The developed aptasensor showed good response to without spiked potato extract with increasing volumes. Hence, the developed aptasensor demonstrated reasonable applicability in real food and agriculture samples.
Collapse
Affiliation(s)
- Jayendra Kumar Himanshu
- Special Centre for Nanoscience, Jawaharlal Nehru University (JNU), New Delhi, 110067, India; Department of Biotechnology, School of Life Sciences, Mahatma Gandhi Central University, Motihari, Bihar, 845401, India
| | - G B V S Lakshmi
- Special Centre for Nanoscience, Jawaharlal Nehru University (JNU), New Delhi, 110067, India
| | - Awadhesh Kumar Verma
- Special Centre for Nanoscience, Jawaharlal Nehru University (JNU), New Delhi, 110067, India
| | - Amit Ahlawat
- Special Centre for Nanoscience, Jawaharlal Nehru University (JNU), New Delhi, 110067, India; Deenbandhu Chhotu Ram University of Science and Technology, Murthal, 131039, India
| | - Pratima R Solanki
- Special Centre for Nanoscience, Jawaharlal Nehru University (JNU), New Delhi, 110067, India.
| |
Collapse
|
4
|
Nagabooshanam S, Kumar A, Ramamoorthy S, Saravanan N, Sundaramurthy A. Rapid and sensitive electrochemical detection of oxidized form of glutathione in whole blood samples using Bi-metallic nanocomposites. CHEMOSPHERE 2024; 346:140517. [PMID: 37879374 DOI: 10.1016/j.chemosphere.2023.140517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 10/07/2023] [Accepted: 10/20/2023] [Indexed: 10/27/2023]
Abstract
We report a facile one-pot synthesis of bimetallic nickel-gold (Ni-Au) nanocomposite for ultra-sensitive and selective electrochemical detection of oxidized glutathione (GSSG) by electrochemical deposition on fluorine doped tin oxide (FTO) substrate. The electrodeposition of Ni-Au nanocomposite on FTO was confirmed by various characterization techniques such as field emission scanning electron microscopy (FE-SEM), X-ray diffractometer (XRD) and Fourier transform infra-red (FTIR) spectroscopy. The cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) was utilized for the electrochemical characterization of glutathione reductase (GR)/Ni-Au/FTO working electrode at each stage of modification. The GR enzyme immobilized on the Ni-Au/FTO working electrode via glutaraldehyde cross-linking exhibited excellent selectivity against GSSG in the presence of nicotinamide adenine dinucleotide phosphate (NADPH). The immobilized GR enzyme breaks down the GSSG to reduced glutathione (GSH) and converting NADPH to NADP+ whereby generating an electron for the electrochemical sensing of GSSG. The synergistic behavior of bimetals and good electro-catalytic property of the fabricated sensor provided a broad linear detection range from 1 fM to 1 μM with a limit of detection (LOD) of 6.8 fM, limit of quantification (LOQ) of 20.41 fM and sensitivity of 0.024 mA/μM/cm2. The interference with other molecules such as dopamine, glycine, ascorbic acid, uric acid and glucose was found to be negligible due to the better selectivity of GR enzyme towards GSSG. The shelf-life and response time of the fabricated electrode was found to be 30 days and 32 s, respectively. The real sample analysis of GSSG in whole blood samples showed average recovery percentage from 95 to 101% which matched well with the standard calibration plot of the fabricated sensor with relative standard deviation (RSD) below 10%.
Collapse
Affiliation(s)
- Shalini Nagabooshanam
- Biomaterials Research Laboratory (BMRL), Department of Chemical Engineering, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, 603203, Chengalpattu, Tamil Nadu, India; Department of Mechanical Engineering, Toyohashi University of Technology, 1-1 Hibarigaoka, Tenpaku-cho, Toyohashi, Aichi, 441-8580, Japan
| | - Akash Kumar
- Department of Physics and Nanotechnology, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, 603203, Chengalpattu, Tamil Nadu, India
| | - Sharmiladevi Ramamoorthy
- Department of Physics and Nanotechnology, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, 603203, Chengalpattu, Tamil Nadu, India
| | - Nishakavya Saravanan
- Department of Physics and Nanotechnology, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, 603203, Chengalpattu, Tamil Nadu, India
| | - Anandhakumar Sundaramurthy
- Biomaterials Research Laboratory (BMRL), Department of Chemical Engineering, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, 603203, Chengalpattu, Tamil Nadu, India.
| |
Collapse
|
5
|
Electrochemical devices for cholesterol detection. J Pharm Biomed Anal 2023; 224:115195. [PMID: 36493575 DOI: 10.1016/j.jpba.2022.115195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 11/28/2022] [Accepted: 11/30/2022] [Indexed: 12/11/2022]
Abstract
Cholesterol can be considered as a biomarker of illnesses such as heart and coronary artery diseases or arteriosclerosis. Therefore, the fast determination of its concentration in blood is interesting as a means of achieving an early diagnosis of these unhealthy conditions. Electrochemical sensors and biosensors have become a potential tool for selective and sensitive detection of this biomolecule, combining the analytical advantages of electrochemical techniques with the selective recognition features of modified electrodes. This review covers the different approaches carried out in the development of electrochemical sensors for cholesterol, differentiating between enzymatic biosensors and non-enzymatic systems, highlighting lab-on-a-chip devices. A description of the different modification procedures of the working electrode has been included and the role of the different functional materials used has been discussed.
Collapse
|
6
|
Thakur N, Gupta D, Mandal D, Nagaiah TC. Ultrasensitive electrochemical biosensors for dopamine and cholesterol: recent advances, challenges and strategies. Chem Commun (Camb) 2021; 57:13084-13113. [PMID: 34811563 DOI: 10.1039/d1cc05271c] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
The rapid and accurate determination of the dopamine (neurotransmitter) and cholesterol level in bio-fluids is significant because they are crucial bioanalytes for several lethal diseases, which require early diagnosis. The level of DA in the brain is modulated by the dopamine active transporter (DAT), and is influenced by cholesterol levels in the lipid membrane environment. Accordingly, electrochemical biosensors offer rapid and accurate detection and exhibit unique features such as low detection limits even with reduced volumes of analyte, affordability, simple handling, portability and versatility, making them appropriate to deal with augmented challenges in current clinical and point-of-care diagnostics for the determination of dopamine (DA) and cholesterol. This feature article focuses on the development of ultrasensitive electrochemical biosensors for the detection of cholesterol and DA for real-time and onsite applications that can detect targeted analytes with reduced volumes and sub-picomolar concentrations with quick response times. Furthermore, the development of ultrasensitive biosensors via cost-effective, simple fabrication procedures, displaying high sensitivity, selectivity, reliability and good stability is significant in the impending era of electrochemical biosensing. Herein, we emphasize on recent advanced nanomaterials used for the ultrasensitive detection of DA and cholesterol and discuss in depth their electrochemical activities towards ultrasensitive responses. Key points describing future perspectives and the challenges during detection with their probable solutions are discussed, and the current market is also surveyed. Further, a comprehensive review of the literature indicates that there is room for improvement in the miniaturization of cholesterol and dopamine biosensors for lab-on-chip devices and overcoming the current technical limitations to facilitate full utilization by patients at home.
Collapse
Affiliation(s)
- Neha Thakur
- Department of Chemistry, Indian Institute of Technology Ropar, Rupnagar, Punjab - 140001, India.
| | - Divyani Gupta
- Department of Chemistry, Indian Institute of Technology Ropar, Rupnagar, Punjab - 140001, India.
| | - Debaprasad Mandal
- Department of Chemistry, Indian Institute of Technology Ropar, Rupnagar, Punjab - 140001, India.
| | - Tharamani C Nagaiah
- Department of Chemistry, Indian Institute of Technology Ropar, Rupnagar, Punjab - 140001, India.
| |
Collapse
|
7
|
Singh AK, Lakshmi G, Fernandes M, Sarkar T, Gulati P, Singh RP, Solanki PR. A simple detection platform based on molecularly imprinted polymer for AFB1 and FuB1 mycotoxins. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106730] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
8
|
Khan S, Akrema, Qazi S, Ahmad R, Raza K, Rahisuddin. In Silico and Electrochemical Studies for a ZnO-CuO-Based Immunosensor for Sensitive and Selective Detection of E. coli. ACS OMEGA 2021; 6:16076-16085. [PMID: 34179653 PMCID: PMC8223399 DOI: 10.1021/acsomega.1c01959] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 06/01/2021] [Indexed: 12/04/2023]
Abstract
Escherichia coli is a harmful Gram-negative bacterium commonly found in the gut of warm-blooded organisms and affects millions of people annually worldwide. In this study, we have synthesized a ZnO-CuO nanocomposite (NC) by a co-precipitation method and characterized the as-synthesized NC using FTIR spectroscopy, XRD, Raman spectroscopy, and FESEM techniques. To fabricate the immunosensor, the ZnO-CuO NC composite was screen-printed on gold-plated electrodes followed by physisorption of the anti-LPS E. coli antibody. The biosensor was optimized for higher specificity and sensitivity. The immunosensor exhibited a high sensitivity (11.04 μA CFU mL-1) with a low detection limit of 2 CFU mL-1 with a redox couple. The improved performance of the immunosensor is attributed to the synergistic effect of the NC and the antilipopolysaccharide antibody against E. coli. The selectivity studies were also carried out with Staphylococcus aureus to assess the specificity of the immunosensor. Testing in milk samples was done by spiking the milk samples with different concentrations of E. coli to check the potential of this immunosensor. We further checked the affinity between ZnO-CuO NC with E. coli LPS and the anti-LPS antibody using molecular docking studies. Atomic charge computation and interaction analyses were performed to support our hypothesis. Our results discern that there is a strong correlation between molecular docking studies and electrochemical characterization. The interaction analysis further displays the strong affinity between the antibody-LPS complex when immobilized with a nanoparticle composite (ZnO-CuO).
Collapse
Affiliation(s)
- Summaiyya Khan
- Department
of Chemistry, Jamia Millia Islamia, New Delhi 110025, India
| | - Akrema
- Department
of Chemistry, Jamia Millia Islamia, New Delhi 110025, India
| | - Sahar Qazi
- Department
of Computer Science, Jamia Millia Islamia, New Delhi 110025, India
| | - Rafiq Ahmad
- Centre
for Nanoscience and Nanotechnology, Jamia
Millia Islamia, New Delhi 110025, India
| | - Khalid Raza
- Department
of Computer Science, Jamia Millia Islamia, New Delhi 110025, India
| | - Rahisuddin
- Department
of Chemistry, Jamia Millia Islamia, New Delhi 110025, India
| |
Collapse
|
9
|
Speranza G. Carbon Nanomaterials: Synthesis, Functionalization and Sensing Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:967. [PMID: 33918769 PMCID: PMC8069879 DOI: 10.3390/nano11040967] [Citation(s) in RCA: 90] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 03/16/2021] [Accepted: 03/17/2021] [Indexed: 02/07/2023]
Abstract
Recent advances in nanomaterial design and synthesis has resulted in robust sensing systems that display superior analytical performance. The use of nanomaterials within sensors has accelerated new routes and opportunities for the detection of analytes or target molecules. Among others, carbon-based sensors have reported biocompatibility, better sensitivity, better selectivity and lower limits of detection to reveal a wide range of organic and inorganic molecules. Carbon nanomaterials are among the most extensively studied materials because of their unique properties spanning from the high specific surface area, high carrier mobility, high electrical conductivity, flexibility, and optical transparency fostering their use in sensing applications. In this paper, a comprehensive review has been made to cover recent developments in the field of carbon-based nanomaterials for sensing applications. The review describes nanomaterials like fullerenes, carbon onions, carbon quantum dots, nanodiamonds, carbon nanotubes, and graphene. Synthesis of these nanostructures has been discussed along with their functionalization methods. The recent application of all these nanomaterials in sensing applications has been highlighted for the principal applicative field and the future prospects and possibilities have been outlined.
Collapse
Affiliation(s)
- Giorgio Speranza
- CMM—FBK, v. Sommarive 18, 38123 Trento, Italy;
- IFN—CNR, CSMFO Lab., via alla Cascata 56/C Povo, 38123 Trento, Italy
- Department of Industrial Engineering, University of Trento, v. Sommarive 9, 38123 Trento, Italy
| |
Collapse
|
10
|
Lakshmi GBVS, Yadav AK, Mehlawat N, Jalandra R, Solanki PR, Kumar A. Gut microbiota derived trimethylamine N-oxide (TMAO) detection through molecularly imprinted polymer based sensor. Sci Rep 2021; 11:1338. [PMID: 33446682 PMCID: PMC7809026 DOI: 10.1038/s41598-020-80122-6] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 12/15/2020] [Indexed: 01/29/2023] Open
Abstract
Trimethylamine N-oxide (TMAO), a microbiota-derived metabolite has been implicated in human health and disease. Its early detection in body fluids has been presumed to be significant in understanding the pathogenesis and treatment of many diseases. Hence, the development of reliable and rapid technologies for TMAO detection may augment our understanding of pathogenesis and diagnosis of diseases that TMAO has implicated. The present work is the first report on the development of a molecularly imprinted polymer (MIP) based electrochemical sensor for sensitive and selective detection of TMAO in body fluids. The MIP developed was based on the polypyrrole (PPy), which was synthesized via chemical oxidation polymerization method, with and without the presence of TMAO. The MIP, NIP and the non-sonicated polymer (PPy-TMAO) were separately deposited electrophoretically onto the hydrolyzed indium tin oxide (ITO) coated glasses. The chemical, morphological, and electrochemical behavior of MIP, non-imprinted polymer (NIP), and PPy-TMAO were characterized using Fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), and electrochemical techniques. The detection response was recorded using differential pulse voltammetry (DPV), which revealed a decrease in the peak current with the increase in concentration of TMAO. The MIP sensor showed a dynamic detection range of 1-15 ppm with a sensitivity of 2.47 µA mL ppm-1 cm-2. The developed sensor is easy to construct and operate and is also highly selective to detect TMAO in body fluids such as urine. The present research provides a basis for innovative strategies to develop sensors based on MIP to detect other metabolites derived from gut microbiota that are implicated in human health and diseases.
Collapse
Affiliation(s)
- G. B. V. S. Lakshmi
- grid.10706.300000 0004 0498 924XSpecial Center for Nanoscience, Jawaharlal Nehru University, New Delhi, India
| | - Amit K. Yadav
- grid.10706.300000 0004 0498 924XSpecial Center for Nanoscience, Jawaharlal Nehru University, New Delhi, India
| | - Neha Mehlawat
- grid.444644.20000 0004 1805 0217Amity Institute of Applied Sciences, Amity University, Uttar Pradesh, Noida, India
| | - Rekha Jalandra
- grid.411524.70000 0004 1790 2262Department of Zoology, Maharshi Dayanand University, Rohtak, 124001 India ,grid.19100.390000 0001 2176 7428National Institute of Immunology, New Delhi, India
| | - Pratima R. Solanki
- grid.10706.300000 0004 0498 924XSpecial Center for Nanoscience, Jawaharlal Nehru University, New Delhi, India
| | - Anil Kumar
- grid.19100.390000 0001 2176 7428National Institute of Immunology, New Delhi, India
| |
Collapse
|
11
|
Derina K, Korotkova E, Barek J. Non-enzymatic electrochemical approaches to cholesterol determination. J Pharm Biomed Anal 2020; 191:113538. [PMID: 32919143 DOI: 10.1016/j.jpba.2020.113538] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 08/02/2020] [Accepted: 08/05/2020] [Indexed: 01/06/2023]
Abstract
Cholesterol plays a vital role in a human body. It is known as one of the most important sterols, because it forms cell walls and participates in signal transduction. Moreover, cholesterol was recognized as biomarker of cardiovascular diseases and of some metabolic disorders. As a result, cholesterol blood levels should be controlled in a variety of diseases such as ischemic heart disease, cerebrovascular ischemia, stroke, hypertension, type II diabetes, and many others. Hence, the accurate cholesterol quantification plays an important role in diagnosis and treatment of these diseases. Modern voltammetric and amperometric methods are increasingly used for cholesterol monitoring. Consequently, the problem of electrode fabrication for cholesterol detection has high importance for clinical tests. Novel electrode materials initiated the fast growth of electrochemical biosensors. Biomaterials are still the most frequently used modifiers for cholesterol sensors due to their high selectivity. However, biomaterials have low stability complicating their practical applications. This fact is crucial for analytical parameters such as limit of detection (LOD) and sensitivity. Therefore, nanomaterials are used to eliminate disadvantages of biomaterials and to improve sensors performance by increasing the electrode surface, conductivity and sensitivity. This review is focused on the use of non-enzymatic electrodes for cholesterol quantification and on different approaches to their fabrication. Firstly, the necessity and role of modifier is discussed. Afterwards, the advantages and disadvantages of currently used modifiers are critically compared together with all aspects and approaches to sensors fabrication. Finally, the prospects of non-enzymatic electrodes application for cholesterol sensors engineering are summarised.
Collapse
Affiliation(s)
- Ksenia Derina
- National Research Tomsk Polytechnic University, Division for Chemical Engineering, School of Earth Science and Engineering, Lenin Avenue 30, 634050 Tomsk, Russia
| | - Elena Korotkova
- National Research Tomsk Polytechnic University, Division for Chemical Engineering, School of Earth Science and Engineering, Lenin Avenue 30, 634050 Tomsk, Russia
| | - Jiří Barek
- National Research Tomsk Polytechnic University, Division for Chemical Engineering, School of Earth Science and Engineering, Lenin Avenue 30, 634050 Tomsk, Russia; Charles University, Faculty of Science, Department of Analytical Chemistry, UNESCO Laboratory of Environmental Electrochemistry, Albertov 6, 128 43 Prague 2, Czech Republic.
| |
Collapse
|
12
|
Affiliation(s)
- Mandana Amiri
- Department of ChemistryUniversity of Mohaghegh Ardabili Ardabil Iran
| | - Simin Arshi
- Department of ChemistryUniversity of Mohaghegh Ardabili Ardabil Iran
- Department of Chemical SciencesBernal Institute University of Limerick Ireland
| |
Collapse
|
13
|
Zare EN, Makvandi P, Ashtari B, Rossi F, Motahari A, Perale G. Progress in Conductive Polyaniline-Based Nanocomposites for Biomedical Applications: A Review. J Med Chem 2019; 63:1-22. [PMID: 31502840 DOI: 10.1021/acs.jmedchem.9b00803] [Citation(s) in RCA: 174] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Inherently conducting polymers (ICPs) are a specific category of synthetic polymers with distinctive electro-optic properties, which involve conjugated chains with alternating single and double bonds. Polyaniline (PANI), as one of the most well-known ICPs, has outstanding potential applications in biomedicine because of its high electrical conductivity and biocompatibility caused by its hydrophilic nature, low-toxicity, good environmental stability, and nanostructured morphology. Some of the limitations in the use of PANI, such as its low processability and degradability, can be overcome by the preparation of its blends and nanocomposites with various (bio)polymers and nanomaterials, respectively. This review describes the state-of-the-art of biological activities and applications of conductive PANI-based nanocomposites in the biomedical fields, such as antimicrobial therapy, drug delivery, biosensors, nerve regeneration, and tissue engineering. The latest progresses in the biomedical applications of PANI-based nanocomposites are reviewed to provide a background for future research.
Collapse
Affiliation(s)
| | - Pooyan Makvandi
- Department of Medical Nanotechnology, Faculty of Advanced Technology in Medicine , Iran University of Medical Sciences , Tehran 14496-14535 , Iran.,Institute for Polymers, Composites and Biomaterials (IPCB), National Research Council (CNR) , Naples 80125 , Italy
| | - Behnaz Ashtari
- Department of Medical Nanotechnology, Faculty of Advanced Technology in Medicine , Iran University of Medical Sciences , Tehran 14496-14535 , Iran.,Shadad Ronak Commercialization Company , Pasdaran Street , Tehran , 1947 , Iran
| | - Filippo Rossi
- Department of Chemistry, Materials and Chemical Engineering , Politecnico di Milano Technical University , Milano 20133 , Italy
| | - Ahmad Motahari
- Young Researchers and Elite Club, Jahrom Branch , Islamic Azad University , Jahrom 74147-85318 , Iran
| | - Giuseppe Perale
- Biomaterials Laboratory, Institute for Mechanical Engineering and Materials Technology , University of Applied Sciences and Arts of Southern Switzerland , Manno 6928 , Switzerland.,Department of Surgical Sciences, Faculty of Medical Sciences, Orthopaedic Clinic , IRCCS A.O.U. San Martino , Genova 16132 , Italy.,Ludwig Boltzmann Institute for Experimental and Clinical Traumatology , Donaueschingenstrasse 13 , 1200 Vienna , Austria
| |
Collapse
|
14
|
Thangamuthu M, Hsieh KY, Kumar PV, Chen GY. Graphene- and Graphene Oxide-Based Nanocomposite Platforms for Electrochemical Biosensing Applications. Int J Mol Sci 2019; 20:E2975. [PMID: 31216691 PMCID: PMC6628170 DOI: 10.3390/ijms20122975] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 06/01/2019] [Accepted: 06/04/2019] [Indexed: 12/14/2022] Open
Abstract
Graphene and its derivatives such as graphene oxide (GO) and reduced GO (rGO) offer excellent electrical, mechanical and electrochemical properties. Further, due to the presence of high surface area, and a rich oxygen and defect framework, they are able to form nanocomposites with metal/semiconductor nanoparticles, metal oxides, quantum dots and polymers. Such nanocomposites are becoming increasingly useful as electrochemical biosensing platforms. In this review, we present a brief introduction on the aforementioned graphene derivatives, and discuss their synthetic strategies and structure-property relationships important for biosensing. We then highlight different nanocomposite platforms that have been developed for electrochemical biosensing, introducing enzymatic biosensors, followed by non-enzymatic biosensors and immunosensors. Additionally, we briefly discuss their role in the emerging field of biomedical cell capture. Finally, a brief outlook on these topics is presented.
Collapse
Affiliation(s)
- Madasamy Thangamuthu
- Nanophotonics and Metrology Laboratory (NAM), Swiss Federal Institute of Technology Lausanne (EPFL), 1015 Lausanne, Switzerland.
| | - Kuan Yu Hsieh
- Institute of Biomedical Engineering, College of Electrical and Computer Engineering, National Chiao Tung University, Hsinchu 300, Taiwan.
- Department of Electrical and Computer Engineering, College of Electrical and Computer Engineering, National Chiao Tung University, Hsinchu 300, Taiwan.
| | - Priyank V Kumar
- School of Chemical Engineering, University of New South Wales, Sydney, NSW 2052, Australia.
| | - Guan-Yu Chen
- Institute of Biomedical Engineering, College of Electrical and Computer Engineering, National Chiao Tung University, Hsinchu 300, Taiwan.
- Department of Biological Science and Technology, College of Biological Science and Technology, National Chiao Tung University, Hsinchu 300, Taiwan.
| |
Collapse
|
15
|
Dhiman TK, Lakshmi GBVS, Roychoudhury A, Jha SK, Solanki PR. Ceria‐Nanoparticles‐Based Microfluidic Nanobiochip Electrochemical Sensor for the Detection of Ochratoxin‐A. ChemistrySelect 2019. [DOI: 10.1002/slct.201803752] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Tarun K. Dhiman
- Special Centre for NanoscienceJawaharlal Nehru University New Delhi- 110067
| | - GBVS Lakshmi
- Special Centre for NanoscienceJawaharlal Nehru University New Delhi- 110067
| | - Appan Roychoudhury
- Centre for Biomedical EngineeringIndian Institute of Technology Delhi, Hauz Khas New Delhi- 110016
| | - Sandeep K. Jha
- Centre for Biomedical EngineeringIndian Institute of Technology Delhi, Hauz Khas New Delhi- 110016
| | - Pratima R. Solanki
- Special Centre for NanoscienceJawaharlal Nehru University New Delhi- 110067
| |
Collapse
|
16
|
Krishnan SK, Singh E, Singh P, Meyyappan M, Nalwa HS. A review on graphene-based nanocomposites for electrochemical and fluorescent biosensors. RSC Adv 2019; 9:8778-8881. [PMID: 35517682 PMCID: PMC9062009 DOI: 10.1039/c8ra09577a] [Citation(s) in RCA: 278] [Impact Index Per Article: 46.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Accepted: 02/15/2019] [Indexed: 12/16/2022] Open
Abstract
Biosensors with high sensitivity, selectivity and a low limit of detection, reaching nano/picomolar concentrations of biomolecules, are important to the medical sciences and healthcare industry for evaluating physiological and metabolic parameters.
Collapse
Affiliation(s)
- Siva Kumar Krishnan
- CONACYT-Instituto de Física
- Benemérita Universidad Autónoma de Puebla
- Puebla 72570
- Mexico
| | - Eric Singh
- Department of Computer Science
- Stanford University
- Stanford
- USA
| | - Pragya Singh
- Department of Electrical Engineering and Computer Science
- National Chiao Tung University
- Hsinchu 30010
- Taiwan
| | - Meyya Meyyappan
- Center for Nanotechnology
- NASA Ames Research Center
- Moffett Field
- Mountain View
- USA
| | | |
Collapse
|
17
|
Thakur N, Kumar M, Das Adhikary S, Mandal D, Nagaiah TC. PVIM–Co5POM/MNC composite as a flexible electrode for the ultrasensitive and highly selective non-enzymatic electrochemical detection of cholesterol. Chem Commun (Camb) 2019; 55:5021-5024. [DOI: 10.1039/c9cc01534e] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A novel electrochemical sensor was developed based on poly(ionic liquid) [PVIM]–cobalt polyoxometalate (Co5POM) supported on carbonaceous materials for the highly selective and ultrasensitive non-enzymatic detection of cholesterol.
Collapse
Affiliation(s)
- Neha Thakur
- Department of Chemistry
- Indian Institute of Technology Ropar
- Rupnagar
- India
| | - Mukesh Kumar
- Department of Chemistry
- Indian Institute of Technology Ropar
- Rupnagar
- India
| | | | - Debaprasad Mandal
- Department of Chemistry
- Indian Institute of Technology Ropar
- Rupnagar
- India
| | | |
Collapse
|
18
|
Tyagi C, Lakshmi GBVS, Jaiswal V, Avasthi DK, Tripathi A. Gold –graphene oxide nanocomposites for enzyme-less glucose monitoring. Biomed Phys Eng Express 2018. [DOI: 10.1088/2057-1976/aadd5f] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
19
|
Polyaniline/MWCNTs/starch modified carbon paste electrode for non-enzymatic detection of cholesterol: application to real sample (cow milk). Anal Bioanal Chem 2018; 410:2173-2181. [DOI: 10.1007/s00216-018-0880-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2017] [Revised: 11/28/2017] [Accepted: 01/15/2018] [Indexed: 10/18/2022]
|
20
|
Lawal AT. Progress in utilisation of graphene for electrochemical biosensors. Biosens Bioelectron 2018; 106:149-178. [PMID: 29414083 DOI: 10.1016/j.bios.2018.01.030] [Citation(s) in RCA: 96] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2017] [Revised: 01/02/2018] [Accepted: 01/15/2018] [Indexed: 01/02/2023]
Abstract
This review discusses recent graphene (GR) electrochemical biosensor for accurate detection of biomolecules, including glucose, hydrogen peroxide, dopamine, ascorbic acid, uric acid, nicotinamide adenine dinucleotide, DNA, metals and immunosensor through effective immobilization of enzymes, including glucose oxidase, horseradish peroxidase, and haemoglobin. GR-based biosensors exhibited remarkable performance with high sensitivities, wide linear detection ranges, low detection limits, and long-term stabilities. Future challenges for the field include miniaturising biosensors and simplifying mass production are discussed.
Collapse
|