1
|
Patil PD, Gargate N, Dongarsane K, Jagtap H, Phirke AN, Tiwari MS, Nadar SS. Revolutionizing biocatalysis: A review on innovative design and applications of enzyme-immobilized microfluidic devices. Int J Biol Macromol 2024; 281:136193. [PMID: 39362440 DOI: 10.1016/j.ijbiomac.2024.136193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 09/01/2024] [Accepted: 09/29/2024] [Indexed: 10/05/2024]
Abstract
Integrating microfluidic devices and enzymatic processes in biocatalysis is a rapidly advancing field with promising applications. This review explores various facets, including applications, scalability, techno-commercial implications, and environmental consequences. Enzyme-embedded microfluidic devices offer advantages such as compact dimensions, rapid heat transfer, and minimal reagent consumption, especially in pharmaceutical optically pure compound synthesis. Addressing scalability challenges involves strategies for uniform flow distribution and consistent residence time. Incorporation with downstream processing and biocatalytic reactions makes the overall process environmentally friendly. The review navigates challenges related to reaction kinetics, cofactor recycling, and techno-commercial aspects, highlighting cost-effectiveness, safety enhancements, and reduced energy consumption. The potential for automation and commercial-grade infrastructure is discussed, considering initial investments and long-term savings. The incorporation of machine learning in enzyme-embedded microfluidic devices advocates a blend of experimental and in-silico methods for optimization. This comprehensive review examines the advancements and challenges associated with these devices, focusing on their integration with enzyme immobilization techniques, the optimization of process parameters, and the techno-commercial considerations crucial for their widespread implementation. Furthermore, this review offers novel insights into strategies for overcoming limitations such as design complexities, laminar flow challenges, enzyme loading optimization, catalyst fouling, and multi-enzyme immobilization, highlighting the potential for sustainable and efficient enzymatic processes in various industries.
Collapse
Affiliation(s)
- Pravin D Patil
- Department of Basic Science & Humanities, Mukesh Patel School of Technology Management & Engineering, SVKM's NMIMS, Mumbai, Maharashtra 400056, India
| | - Niharika Gargate
- Department of Biotechnology Engineering, Kolhapur Institute of Technology's College of Engineering, Kolhapur 416 234, India
| | - Khushi Dongarsane
- Department of Biotechnology Engineering, Kolhapur Institute of Technology's College of Engineering, Kolhapur 416 234, India
| | - Hrishikesh Jagtap
- Department of Biotechnology Engineering, Kolhapur Institute of Technology's College of Engineering, Kolhapur 416 234, India
| | - Ajay N Phirke
- Department of Basic Science & Humanities, Mukesh Patel School of Technology Management & Engineering, SVKM's NMIMS, Mumbai, Maharashtra 400056, India
| | - Manishkumar S Tiwari
- Department of Data Science, Mukesh Patel School of Technology Management & Engineering, SVKM's NMIMS, Mumbai, Maharashtra 400056, India
| | - Shamraja S Nadar
- Department of Chemical Engineering, Institute of Chemical Technology, Matunga (E), Mumbai 400019, India.
| |
Collapse
|
2
|
de Haan P, Natsuhara D, Triantis V, Shibata T, Verpoorte E. A microfluidic model for infantile in vitro digestions: Characterization of lactoferrin digestion. SLAS Technol 2024; 29:100175. [PMID: 39151751 DOI: 10.1016/j.slast.2024.100175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 07/05/2024] [Accepted: 08/13/2024] [Indexed: 08/19/2024]
Abstract
We present a miniaturized, flow-through model for infantile in vitro digestions, following up on our previously published in vitro digestive system for adults. Microfluidic 'chaotic' mixers were employed as microreactors to help emulate the biochemical processing going on in the infantile stomach and intestine. Simulated digestive fluids were introduced into these micromixers, and the mixtures were incubated for 60 min after both the gastric phase and the intestinal phase. The pH of the infantile stomach was set at 5.3, which is higher than that of adults. This leads to entirely different patterns of digestion for the milk protein, lactoferrin, used in our study as a model compound. It was found that lactoferrin remained undigested as it passed through the gastric phase and reached the intestinal phase intact, unlike in adult digestions. In the intestinal phase, lactoferrin was rapidly digested. Our miniaturized, infantile, in vitro digestive system requires much less labor and chemicals than standard approaches, and shows great potential for future automation.
Collapse
Affiliation(s)
- Pim de Haan
- University of Groningen, Groningen Research Institute of Pharmacy, Pharmaceutical Analysis (XB20), Antonius Deusinglaan 1, 9713 AV Groningen, the Netherlands; TI-COAST, Science Park 904, 1098 XH Amsterdam, the Netherlands.
| | - Daigo Natsuhara
- Toyohashi University of Technology, Department of Mechanical Engineering, 1-1 Hibarigaoka, Tempaku-cho, Toyohashi, Aichi, 441-8580, Japan.
| | - Vassilis Triantis
- FrieslandCampina, Stationsplein 4, 3818 LE Amersfoort, the Netherlands.
| | - Takayuki Shibata
- Toyohashi University of Technology, Department of Mechanical Engineering, 1-1 Hibarigaoka, Tempaku-cho, Toyohashi, Aichi, 441-8580, Japan.
| | - Elisabeth Verpoorte
- University of Groningen, Groningen Research Institute of Pharmacy, Pharmaceutical Analysis (XB20), Antonius Deusinglaan 1, 9713 AV Groningen, the Netherlands.
| |
Collapse
|
3
|
Tokihiro JC, Robertson IH, Shin A, Gregucci D, Michelini E, Nicholson TM, Olanrewaju A, Theberge AB, Berthier J, Berthier E. The dynamics of capillary flow in an open-channel system featuring trigger valves. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.17.613325. [PMID: 39345588 PMCID: PMC11429806 DOI: 10.1101/2024.09.17.613325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Trigger valves are fundamental features in capillary-driven microfluidic systems that stop fluid at an abrupt geometric expansion and release fluid when there is flow in an orthogonal channel connected to the valve. The concept was originally demonstrated in closed-channel capillary circuits. We show here that trigger valves can be successfully implemented in open channels. We also show that a series of open-channel trigger valves can be placed alongside or opposite a main channel resulting in a layered capillary flow. We developed a closed form model for the dynamics of the flow at trigger valves based on the concept of average friction length and successfully validated the model against experiments. For the main channel, we discuss layered flow behavior in the light of the Taylor-Aris dispersion theory and in the channel turns by considering Dean theory of mixing. This work has potential applications in autonomous microfluidics systems for biosensing, at-home or point-of-care sample preparation devices, hydrogel patterning for 3D cell culture and organ-on-a-chip models.
Collapse
Affiliation(s)
- Jodie C Tokihiro
- Department of Chemistry, University of Washington, Box 351700, Seattle, Washington 98195, United States
| | - Ingrid H Robertson
- Department of Chemistry, University of Washington, Box 351700, Seattle, Washington 98195, United States
| | - Albert Shin
- Department of Chemistry, University of Washington, Box 351700, Seattle, Washington 98195, United States
| | - Denise Gregucci
- Department of Chemistry, University of Washington, Box 351700, Seattle, Washington 98195, United States
- G. Ciamician Department of Chemistry, University of Bologna, Italy
| | - Elisa Michelini
- G. Ciamician Department of Chemistry, University of Bologna, Italy
| | - Tristan M Nicholson
- Department of Urology, University of Washington, 1959 NE Pacific Street, Box 356510, Seattle, Washington 98195, United States
| | - Ayokunle Olanrewaju
- Department of Bioengineering, University of Washington, Box 355061, Seattle, Washington 98195, United States
- Department of Mechanical Engineering, University of Washington, Box 352600, Seattle, Washington, 98195
| | - Ashleigh B Theberge
- Department of Chemistry, University of Washington, Box 351700, Seattle, Washington 98195, United States
- Department of Urology, University of Washington, 1959 NE Pacific Street, Box 356510, Seattle, Washington 98195, United States
| | - Jean Berthier
- Department of Chemistry, University of Washington, Box 351700, Seattle, Washington 98195, United States
| | - Erwin Berthier
- Department of Chemistry, University of Washington, Box 351700, Seattle, Washington 98195, United States
| |
Collapse
|
4
|
Sarıyer RM, Gill KK, Needs SH, Reis NM, Jones CI, Edwards AD. Looping Flexible Fluoropolymer Microcapillary Film Extends Analysis Times for Vertical Microfluidic Blood Testing. SENSORS (BASEL, SWITZERLAND) 2024; 24:5870. [PMID: 39338614 PMCID: PMC11436048 DOI: 10.3390/s24185870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 08/24/2024] [Accepted: 09/06/2024] [Indexed: 09/30/2024]
Abstract
The microfluidic measurement of capillary flow can be used to evaluate the response of biological samples to stimulation, where distance and velocity are altered. Melt-extruded multi-bored microfluidic capillaries allow for high-throughput testing with low device cost, but simple devices may limit control over sample flow when compared to the more complex "lab-on-a-chip" devices produced using advanced microfluidic fabrication methods. Previously, we measured the dynamics of global haemostasis stimulated by thrombin by dipping straight vertical microcapillaries into blood, but only the most rapid response could be monitored, as flow slowed significantly within 30 s. Here, we show an innovative method to extend both the stimulation process and flow measurement time without increasing the cost of the device by adding simple loops to the flexible extruded device. The loops enable longer time-scale measurements by increasing resistance to flow, thereby reducing the dependence on high stimulus concentrations for rapid reactions. The instantaneous velocity and equilibrium heights of straight and looped vertical microcapillary films were assessed with water, plasma and whole blood, showing that the loops create additional frictional resistances, reduce flow velocity and prolong residence times for increased time scales of the stimulation process. A modified pressure balance model was used to capture flow dynamics with the added loop. Looped devices loaded with thrombin and collagen showed an improved detection of blood stimulation responses even with lower stimulus concentrations, compared to straight vertical capillaries. Thrombin-activated blood samples in straight capillaries provided a maximum measurement zone of only 4 mm, while the looped design significantly increased this to 11 mm for much longer time scale measurements. Our results suggest that extending stimulation times can be achieved without complex microfluidic fabrication methods, potentially improving concentration-response blood stimulation assays, and may enhance the accuracy and reliability. We conclude adding a loop to low-cost extruded microfluidic devices may bring microfluidic devices closer to delivering on their promise of widespread, decentralized low-cost evaluation of blood response to stimulation in both research and clinical settings.
Collapse
Affiliation(s)
- Rüya Meltem Sarıyer
- Reading School of Pharmacy, University of Reading, Whiteknights, Reading RG6 6UB, UK
| | - Kirandeep K Gill
- Department of Surgery, Center for Engineering in Medicine and Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02129, USA
| | - Sarah H Needs
- Reading School of Pharmacy, University of Reading, Whiteknights, Reading RG6 6UB, UK
| | - Nuno M Reis
- Department of Chemical Engineering and Centre for Bioengineering and Biomedical Technologies (CBio), University of Bath, Bath BA2 7AY, UK
| | - Chris I Jones
- Reading School of Biological Sciences, University of Reading, Whiteknights, Reading RG6 6AH, UK
| | - Alexander Daniel Edwards
- School of Electronics and Computer Science, University of Southampton, Highfield, Southampton SO17 1BJ, UK
- Institute for Life Sciences, University of Southampton, Highfield, Southampton SO17 1BJ, UK
| |
Collapse
|
5
|
Mudugamuwa A, Roshan U, Hettiarachchi S, Cha H, Musharaf H, Kang X, Trinh QT, Xia HM, Nguyen NT, Zhang J. Periodic Flows in Microfluidics. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024:e2404685. [PMID: 39246195 DOI: 10.1002/smll.202404685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 08/24/2024] [Indexed: 09/10/2024]
Abstract
Microfluidics, the science and technology of manipulating fluids in microscale channels, offers numerous advantages, such as low energy consumption, compact device size, precise control, fast reaction, and enhanced portability. These benefits have led to applications in biomedical assays, disease diagnostics, drug discovery, neuroscience, and so on. Fluid flow within microfluidic channels is typically in the laminar flow region, which is characterized by low Reynolds numbers but brings the challenge of efficient mixing of fluids. Periodic flows are time-dependent fluid flows, featuring repetitive patterns that can significantly improve fluid mixing and extend the effective length of microchannels for submicron and nanoparticle manipulation. Besides, periodic flow is crucial in organ-on-a-chip (OoC) for accurately modeling physiological processes, advancing disease understanding, drug development, and personalized medicine. Various techniques for generating periodic flows have been reported, including syringe pumps, peristalsis, and actuation based on electric, magnetic, acoustic, mechanical, pneumatic, and fluidic forces, yet comprehensive reviews on this topic remain limited. This paper aims to provide a comprehensive review of periodic flows in microfluidics, from fundamental mechanisms to generation techniques and applications. The challenges and future perspectives are also discussed to exploit the potential of periodic flows in microfluidics.
Collapse
Affiliation(s)
- Amith Mudugamuwa
- Queensland Micro and Nanotechnology Centre, Griffith University, Brisbane, QLD, 4111, Australia
| | - Uditha Roshan
- Queensland Micro and Nanotechnology Centre, Griffith University, Brisbane, QLD, 4111, Australia
| | - Samith Hettiarachchi
- Queensland Micro and Nanotechnology Centre, Griffith University, Brisbane, QLD, 4111, Australia
| | - Haotian Cha
- Queensland Micro and Nanotechnology Centre, Griffith University, Brisbane, QLD, 4111, Australia
| | - Hafiz Musharaf
- Queensland Micro and Nanotechnology Centre, Griffith University, Brisbane, QLD, 4111, Australia
| | - Xiaoyue Kang
- Queensland Micro and Nanotechnology Centre, Griffith University, Brisbane, QLD, 4111, Australia
| | - Quang Thang Trinh
- Queensland Micro and Nanotechnology Centre, Griffith University, Brisbane, QLD, 4111, Australia
| | - Huan Ming Xia
- School of Mechanical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, P. R. China
| | - Nam-Trung Nguyen
- Queensland Micro and Nanotechnology Centre, Griffith University, Brisbane, QLD, 4111, Australia
| | - Jun Zhang
- Queensland Micro and Nanotechnology Centre, Griffith University, Brisbane, QLD, 4111, Australia
- School of Engineering and Built Environment, Griffith University, Brisbane, QLD, 4111, Australia
| |
Collapse
|
6
|
Lambert CJ, Clarke E, Patel D, Laurentius LB, Gale BK, Sant HJ, Porter MD. Microfluidic platform for the enzymatic pretreatment of human serum for the detection of the tuberculosis biomarker mannose-capped lipoarabinomannan. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024. [PMID: 39037397 DOI: 10.1039/d4ay00772g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/23/2024]
Abstract
Tuberculosis (TB) represents a major public health threat, with millions of new cases reported worldwide each year. A major hurdle to curtailing the spread of this disease is the need for low-cost, point-of-care (PoC) diagnostics. Mannose-capped lipoarabinomannan, a significant component of the Mycobacterium tuberculosis bacillus, has been heavily studied as a biomarker for TB, but with little success due to its complexation with endogenous components of body fluids in a manner that sterically interferes with its detection by ELISA and other immunoassays. Recent work by our group and others has shown that complexation can be disrupted with protein-denaturing protocols. By way of followup, we recently described an enzymatic digestion (Proteinase K) sample pretreatment that enables quantitative recovery of ManLAM spiked into healthy human control serum. Herein, we report on the transfer of our benchtop sample pretreatment methodology to an automated microfluidic platform. We show that this platform can be configured to: (1) carry out the pretreatment process with very little user interaction and, (2) yield recoveries for ManLAm spiked into control serum which are statistically indistinguishable from those achieved by the benchtop process. Plans to integrate this device with a portable sample reader as a possible basis for a PoC TB diagnostic system and analyze patient samples are briefly discussed.
Collapse
Affiliation(s)
- Christopher J Lambert
- Departments of Mechanical Engineering, University of Utah, Salt Lake City, UT, 84112, USA
| | - Eamonn Clarke
- Chemistry, University of Utah, Salt Lake City, UT, 84112, USA.
| | - Dhruv Patel
- Departments of Mechanical Engineering, University of Utah, Salt Lake City, UT, 84112, USA
| | - Lars B Laurentius
- Electrical and Computer Engineering, University of Utah, Salt Lake City, UT, 84112, USA
| | - Bruce K Gale
- Departments of Mechanical Engineering, University of Utah, Salt Lake City, UT, 84112, USA
| | - Himanshu J Sant
- Departments of Mechanical Engineering, University of Utah, Salt Lake City, UT, 84112, USA
| | - Marc D Porter
- Chemistry, University of Utah, Salt Lake City, UT, 84112, USA.
- Chemical Engineering, University of Utah, Salt Lake City, UT, 84112, USA
| |
Collapse
|
7
|
Awawdeh K, Buttkewitz MA, Bahnemann J, Segal E. Enhancing the performance of porous silicon biosensors: the interplay of nanostructure design and microfluidic integration. MICROSYSTEMS & NANOENGINEERING 2024; 10:100. [PMID: 39021530 PMCID: PMC11252414 DOI: 10.1038/s41378-024-00738-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 06/08/2024] [Accepted: 06/12/2024] [Indexed: 07/20/2024]
Abstract
This work presents the development and design of aptasensor employing porous silicon (PSi) Fabry‒Pérot thin films that are suitable for use as optical transducers for the detection of lactoferrin (LF), which is a protein biomarker secreted at elevated levels during gastrointestinal (GI) inflammatory disorders such as inflammatory bowel disease and chronic pancreatitis. To overcome the primary limitation associated with PSi biosensors-namely, their relatively poor sensitivity due to issues related to complex mass transfer phenomena and reaction kinetics-we employed two strategic approaches: First, we sought to optimize the porous nanostructure with respect to factors including layer thickness, pore diameter, and capture probe density. Second, we leveraged convection properties by integrating the resulting biosensor into a 3D-printed microfluidic system that also had one of two different micromixer architectures (i.e., staggered herringbone micromixers or microimpellers) embedded. We demonstrated that tailoring the PSi aptasensor significantly improved its performance, achieving a limit of detection (LOD) of 50 nM-which is >1 order of magnitude lower than that achieved using previously-developed biosensors of this type. Moreover, integration into microfluidic systems that incorporated passive and active micromixers further enhanced the aptasensor's sensitivity, achieving an additional reduction in the LOD by yet another order of magnitude. These advancements demonstrate the potential of combining PSi-based optical transducers with microfluidic technology to create sensitive label-free biosensing platforms for the detection of GI inflammatory biomarkers.
Collapse
Affiliation(s)
- Kayan Awawdeh
- Faculty of Biotechnology and Food Engineering, Technion—Israel Institute of Technology, 320003 Haifa, Israel
| | - Marc A. Buttkewitz
- Institute of Technical Chemistry, Leibniz Universität Hannover, 30167 Hannover, Germany
| | - Janina Bahnemann
- Institute of Physics, University of Augsburg, 86159 Augsburg, Germany
- Centre for Advanced Analytics and Predictive Sciences (CAAPS), University of Augsburg, 86159 Augsburg, Germany
| | - Ester Segal
- Faculty of Biotechnology and Food Engineering, Technion—Israel Institute of Technology, 320003 Haifa, Israel
| |
Collapse
|
8
|
Kheirkhah Barzoki A. Optimization of passive micromixers: effects of pillar configuration and gaps on mixing efficiency. Sci Rep 2024; 14:16245. [PMID: 39009602 PMCID: PMC11251160 DOI: 10.1038/s41598-024-66664-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 07/03/2024] [Indexed: 07/17/2024] Open
Abstract
Chemical bioreactions play a significant role in many of the microfluidic devices, and their applications in biomedical science have seen substantial growth. Given that effective mixing is vital for initiating biochemical reactions in many applications, micromixers have become increasingly prevalent for high-throughput assays. In this research, a numerical study using the finite element method was conducted to examine the fluid flow and mass transfer characteristics in novel micromixers featuring an array of pillars. The study utilized two-dimensional geometries. The impact of pillar configuration on mixing performance was evaluated using concentration distribution and mixing index as key metrics. The study explores the effects of pillar array design on mixing performance and pressure drop, drawing from principles such as contraction-expansion and split-recombine. Two configurations of pillar arrays, slanted and arrowhead, are introduced, each undergoing investigation regarding parameters such as pillar diameter, gap size between pillar groups, distance between pillars, and vertical shift in pillar groups. Subsequently, optimal micromixers are identified, exhibiting mixing efficiency exceeding 99.7% at moderate Reynolds number (Re = 1), a level typically challenging for micromixers to attain high mixing efficiency. Notably, the pressure drop remains low at 1102 Pa. Furthermore, the variations in mixing index over time and across different positions along the channel are examined. Both configurations demonstrate short mixing lengths and times. At a distance of 4300 μm from the inlet, the slanted and arrowhead configurations yielded mixing indices of 97.2% and 98.9%, respectively. The micromixers could provide a mixing index of 99.5% at the channel's end within 8 s. Additionally, both configurations exceeded 90% mixing indices by the 3 s. The combination of rapid mixing, low pressure drop, and short mixing length positions the novel micromixers as highly promising for microfluidic applications.
Collapse
Affiliation(s)
- Ali Kheirkhah Barzoki
- Department of Mechanical Engineering, Sharif University of Technology, Tehran, Iran.
| |
Collapse
|
9
|
Racaniello GF, Silvestri T, Pistone M, D'Amico V, Arduino I, Denora N, Lopedota AA. Innovative Pharmaceutical Techniques for Paediatric Dosage Forms: A Systematic Review on 3D Printing, Prilling/Vibration and Microfluidic Platform. J Pharm Sci 2024; 113:1726-1748. [PMID: 38582283 DOI: 10.1016/j.xphs.2024.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 04/01/2024] [Accepted: 04/01/2024] [Indexed: 04/08/2024]
Abstract
The production of paediatric pharmaceutical forms represents a unique challenge within the pharmaceutical industry. The primary goal of these formulations is to ensure therapeutic efficacy, safety, and tolerability in paediatric patients, who have specific physiological needs and characteristics. In recent years, there has been a significant increase in attention towards this area, driven by the need to improve drug administration to children and ensure optimal and specific treatments. Technological innovation has played a crucial role in meeting these requirements, opening new frontiers in the design and production of paediatric pharmaceutical forms. In particular, three emerging technologies have garnered considerable interest and attention within the scientific and industrial community: 3D printing, prilling/vibration, and microfluidics. These technologies offer advanced approaches for the design, production, and customization of paediatric pharmaceutical forms, allowing for more precise dosage modulation, improved solubility, and greater drug acceptability. In this review, we delve into these cutting-edge technologies and their impact on the production of paediatric pharmaceutical forms. We analyse their potential, associated challenges, and recent developments, providing a comprehensive overview of the opportunities that these innovative methodologies offer to the pharmaceutical sector. We examine different pharmaceutical forms generated using these techniques, evaluating their advantages and disadvantages.
Collapse
Affiliation(s)
| | - Teresa Silvestri
- Department of Pharmacy, University of Naples Federico II, D. Montesano St. 49, 80131 Naples, Italy
| | - Monica Pistone
- Department of Pharmacy - Pharmaceutical Sciences, University of Bari, Via E. Orabona, 4, 70125, Bari, Italy
| | - Vita D'Amico
- Department of Pharmacy - Pharmaceutical Sciences, University of Bari, Via E. Orabona, 4, 70125, Bari, Italy
| | - Ilaria Arduino
- Department of Pharmacy - Pharmaceutical Sciences, University of Bari, Via E. Orabona, 4, 70125, Bari, Italy
| | - Nunzio Denora
- Department of Pharmacy - Pharmaceutical Sciences, University of Bari, Via E. Orabona, 4, 70125, Bari, Italy.
| | - Angela Assunta Lopedota
- Department of Pharmacy - Pharmaceutical Sciences, University of Bari, Via E. Orabona, 4, 70125, Bari, Italy
| |
Collapse
|
10
|
Das S, Vanarse VB, Bandyopadhyay D. Tailored micromixing in chemically patterned microchannels undergoing electromagnetohydrodynamic flow. BIOMICROFLUIDICS 2024; 18:044108. [PMID: 39184284 PMCID: PMC11344636 DOI: 10.1063/5.0209606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 08/07/2024] [Indexed: 08/27/2024]
Abstract
The study unveils a simple, non-invasive method to perform micromixing with the help of spatiotemporal variation in the Lorentz force inside a microchannel decorated with chemically heterogeneous walls. Computational fluid dynamics simulations have been utilized to investigate micromixing under the coupled influence of electric and magnetic fields, namely, electromagnetohydrodynamics, to alter the direction of the Lorentz force at the specific locations by creating the reverse flow zones where the pressure gradient, ∇ p = 0 . The study explores the impact of periodicity, distribution, and size of electrodes alongside the magnitude of applied field intensity, the flow rate of the fluid, and the nature of the electric field on the generation of the mixing vortices and their strength inside the microchannels. The results illustrate that the wall heterogeneities can indeed enforce the formation of localized on-demand vortices when the strength of the localized reverse flow overcomes the inertia of the mainstream flow. In such a scenario, while the vortex size and strength are found to increase with the size of the heterogeneous electrodes and field intensities, the number of vortices increases with the number of heterogeneous electrodes decorated on the channel wall. The presence of a non-zero pressure-driven inflow velocity is found to subdue the strength of the vortices to restrict the mixing facilitated by the localized variation of the Lorentz force. Interestingly, the usage of an alternating current (AC) electric field is found to provide an additional non-invasive control on the mixing vortices by enabling periodic changes in their direction of rotation. A case study in this regard discloses the possibility of rapid mixing with the usage of an AC electric field for a pair of miscible fluids inside a microchannel.
Collapse
Affiliation(s)
- Soumadip Das
- Department of Chemical Engineering, Indian Institute of Technology Guwahati, Assam 781039, India
| | - Vinod B. Vanarse
- Department of Chemical Engineering, Indian Institute of Technology Guwahati, Assam 781039, India
| | | |
Collapse
|
11
|
Misra I, Kumaran V. Microfluidic mixing by magnetic particles: Progress and prospects. BIOMICROFLUIDICS 2024; 18:041501. [PMID: 39206143 PMCID: PMC11349378 DOI: 10.1063/5.0211204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 07/30/2024] [Indexed: 09/04/2024]
Abstract
Microfluidic systems have enormous potential for enabling point-of-care diagnostics due to a number of advantages, such as low sample volumes, small footprint, low energy requirements, uncomplicated setup, high surface-to-volume ratios, cost-effectiveness, etc. However, fluid mixing operations are constrained by molecular diffusion since the flow is usually in the laminar regime. The slow nature of molecular diffusion is a technological barrier to implementing fluid transformations in a reasonable time. In this context, magnetically actuated micro-mixers of different sizes, shapes, materials, and actuation techniques provide a way to enhance fluid mixing in microfluidic devices. In this paper, we review the currently existing micro-mixing technologies. From a fundamental perspective, the different magnetization models for permanent and induced dipoles are discussed. The single-particle dynamics in steady and oscillating magnetic fields is studied in order to determine the flow generated and the torque exerted on the fluid due to the magnetic particles. The effect of particle interactions, both magnetic and hydrodynamic, is examined.
Collapse
Affiliation(s)
- I. Misra
- Chemical Engineering Department, Indian Institute of Science, Bengaluru, India
| | - V. Kumaran
- Chemical Engineering Department, Indian Institute of Science, Bengaluru, India
| |
Collapse
|
12
|
Ferreira M, Carvalho V, Ribeiro J, Lima RA, Teixeira S, Pinho D. Advances in Microfluidic Systems and Numerical Modeling in Biomedical Applications: A Review. MICROMACHINES 2024; 15:873. [PMID: 39064385 PMCID: PMC11279158 DOI: 10.3390/mi15070873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 06/29/2024] [Accepted: 06/29/2024] [Indexed: 07/28/2024]
Abstract
The evolution in the biomedical engineering field boosts innovative technologies, with microfluidic systems standing out as transformative tools in disease diagnosis, treatment, and monitoring. Numerical simulation has emerged as a tool of increasing importance for better understanding and predicting fluid-flow behavior in microscale devices. This review explores fabrication techniques and common materials of microfluidic devices, focusing on soft lithography and additive manufacturing. Microfluidic systems applications, including nucleic acid amplification and protein synthesis, as well as point-of-care diagnostics, DNA analysis, cell cultures, and organ-on-a-chip models (e.g., lung-, brain-, liver-, and tumor-on-a-chip), are discussed. Recent studies have applied computational tools such as ANSYS Fluent 2024 software to numerically simulate the flow behavior. Outside of the study cases, this work reports fundamental aspects of microfluidic simulations, including fluid flow, mass transport, mixing, and diffusion, and highlights the emergent field of organ-on-a-chip simulations. Additionally, it takes into account the application of geometries to improve the mixing of samples, as well as surface wettability modification. In conclusion, the present review summarizes the most relevant contributions of microfluidic systems and their numerical modeling to biomedical engineering.
Collapse
Affiliation(s)
- Mariana Ferreira
- Center for Microelectromechanical Systems (CMEMS-UMinho), University of Minho, Campus de Azurém, 4800-058 Guimaraes, Portugal; (M.F.); (D.P.)
| | - Violeta Carvalho
- Center for Microelectromechanical Systems (CMEMS-UMinho), University of Minho, Campus de Azurém, 4800-058 Guimaraes, Portugal; (M.F.); (D.P.)
- LABBELS—Associate Laboratory, 4800-058 Guimaraes, Portugal;
- MEtRICs, Mechanical Engineering Department, University of Minho, Campus de Azurém, 4800-058 Guimaraes, Portugal;
- ALGORITMI Center/LASI, University of Minho, Campus de Azurém, 4800-058 Guimaraes, Portugal
| | - João Ribeiro
- Instituto Politécnico de Bragança, 5300-052 Bragança, Portugal;
- Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Campus Santa Apolónia, 5300-253 Bragança, Portugal
- CIMO—Mountain Research Center, Campus Santa Apolónia, 5300-253 Bragança, Portugal
| | - Rui A. Lima
- MEtRICs, Mechanical Engineering Department, University of Minho, Campus de Azurém, 4800-058 Guimaraes, Portugal;
- CEFT—Transport Phenomena Research Center, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
- ALiCE—Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | | | - Diana Pinho
- Center for Microelectromechanical Systems (CMEMS-UMinho), University of Minho, Campus de Azurém, 4800-058 Guimaraes, Portugal; (M.F.); (D.P.)
- LABBELS—Associate Laboratory, 4800-058 Guimaraes, Portugal;
| |
Collapse
|
13
|
Vloemans D, Pieters A, Dal Dosso F, Lammertyn J. Revolutionizing sample preparation: a novel autonomous microfluidic platform for serial dilution. LAB ON A CHIP 2024; 24:2791-2801. [PMID: 38691394 DOI: 10.1039/d4lc00195h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2024]
Abstract
Dilution is a standard fluid operation widely employed in the sample preparation process of many bio(chemical) assays. It serves multiple essential functions such as sample mixing with certain reagents at specific dilution ratios, reducing sample matrix effects, bringing target analytes within the linear assay detection range, among many others. Traditionally, sample processing is performed in laboratory settings through manual or automated pipetting. When working in resource-limited settings, however, neither trained personnel nor proper laboratory equipment are available limiting the accessibility to high-quality diagnostic tests. In this work, we present a novel standalone and fully automated microfluidic platform for the stepwise preparation of serial dilutions without the need for any active elements. Stepwise dilution is achieved using the coordinated burst action of hydrophobic burst valves to first isolate a precisely metered volume from an applied sample drop and subsequently merge it with a prefilled diluent liquid. Downstream, expansion chambers are used to mix both reagents into a homogeneous solution. The dilution module was characterized to generate accurate and reproducible (CV < 7%) dilutions for targeted dilution factors of 2, 5 and 10×, respectively. Three dilution modules were coupled in series to generate three-fold logarithmic (log5 or log10) dilutions, with excellent linearity (R2 > 0.99). Its compatibility with whole blood was furthermore illustrated, proving its applicability for automating and downscaling bioassays with complex biological matrices. Finally, autonomous on-chip serial dilution was demonstrated by incorporating the self-powered (i)SIMPLE technology as a passive driving source for liquid manipulation. We believe that the simplicity and modularity of the presented autonomous dilution platform are of interest to many point-of-care applications in which sample dilution and reagent mixing are of importance.
Collapse
Affiliation(s)
- Dries Vloemans
- KU Leuven, Department of Biosystems, Biosensors Group, Willem de Croylaan 42, box 2428, 3001 Leuven, Belgium.
| | - Alexander Pieters
- KU Leuven, Department of Biosystems, Biosensors Group, Willem de Croylaan 42, box 2428, 3001 Leuven, Belgium.
| | - Francesco Dal Dosso
- KU Leuven, Department of Biosystems, Biosensors Group, Willem de Croylaan 42, box 2428, 3001 Leuven, Belgium.
| | - Jeroen Lammertyn
- KU Leuven, Department of Biosystems, Biosensors Group, Willem de Croylaan 42, box 2428, 3001 Leuven, Belgium.
| |
Collapse
|
14
|
Esposito E, Pozza E, Contado C, Pula W, Bortolini O, Ragno D, Toldo S, Casciano F, Bondi A, Zauli E, Secchiero P, Zauli G, Melloni E. Microfluidic Fabricated Liposomes for Nutlin-3a Ocular Delivery as Potential Candidate for Proliferative Vitreoretinal Diseases Treatment. Int J Nanomedicine 2024; 19:3513-3536. [PMID: 38623081 PMCID: PMC11018138 DOI: 10.2147/ijn.s452134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 03/09/2024] [Indexed: 04/17/2024] Open
Abstract
Purpose Proliferative vitreoretinal diseases (PVDs) represent a heterogeneous group of pathologies characterized by the presence of retinal proliferative membranes, in whose development retinal pigment epithelium (RPE) is deeply involved. As the only effective treatment for PVDs at present is surgery, we aimed to investigate the potential therapeutic activity of Nutlin-3a, a small non-genotoxic inhibitor of the MDM2/p53 interaction, on ARPE-19 cell line and on human RPE primary cells, as in vitro models of RPE and, more importantly, to formulate and evaluate Nutlin-3a loaded liposomes designed for ophthalmic administration. Methods Liposomes were produced using an innovative approach by a microfluidic device under selection of different conditions. Liposome size distribution was evaluated by photon correlation spectroscopy and centrifugal field flow fractionation, while the liposome structure was studied by transmission electron microscopy and Fourier-transform infrared spectroscopy. The Nutlin-3a entrapment capacity was evaluated by ultrafiltration and HPLC. Nutlin-3a biological effectiveness as a solution or loaded in liposomes was evaluated by viability, proliferation, apoptosis and migration assays and by morphological analysis. Results The microfluidic formulative study enabled the selection of liposomes composed of phosphatidylcholine (PC) 5.4 or 8.2 mg/mL and 10% ethanol, characterized by roundish vesicular structures with 150-250 nm mean diameters. Particularly, liposomes based on the lower PC concentration were characterized by higher stability. Nutlin-3a was effectively encapsulated in liposomes and was able to induce a significant reduction of viability and migration in RPE cell models. Conclusion Our results lay the basis for a possible use of liposomes for the ocular delivery of Nutlin-3a.
Collapse
Affiliation(s)
- Elisabetta Esposito
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, Ferrara, I-44121, Italy
| | - Elena Pozza
- Department of Translational Medicine, University of Ferrara, Ferrara, I-44121, Italy
| | - Catia Contado
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, Ferrara, I-44121, Italy
| | - Walter Pula
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, Ferrara, I-44121, Italy
| | - Olga Bortolini
- Department of Environmental Sciences and Prevention, University of Ferrara, Ferrara, I-44121, Italy
| | - Daniele Ragno
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, Ferrara, I-44121, Italy
| | - Sofia Toldo
- Department of Environmental Sciences and Prevention, University of Ferrara, Ferrara, I-44121, Italy
| | - Fabio Casciano
- Department of Translational Medicine and LTTA Centre, University of Ferrara, Ferrara, I-44121, Italy
| | - Agnese Bondi
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, Ferrara, I-44121, Italy
| | - Enrico Zauli
- Department of Translational Medicine, University of Ferrara, Ferrara, I-44121, Italy
| | - Paola Secchiero
- Department of Translational Medicine and LTTA Centre, University of Ferrara, Ferrara, I-44121, Italy
| | - Giorgio Zauli
- Department of Environmental Sciences and Prevention, University of Ferrara, Ferrara, I-44121, Italy
| | - Elisabetta Melloni
- Department of Translational Medicine and LTTA Centre, University of Ferrara, Ferrara, I-44121, Italy
| |
Collapse
|
15
|
Wong YC, Yang S, Wen W. Prednisolone Nanoprecipitation with Dean Instability Microfluidics Mixer. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:652. [PMID: 38668146 PMCID: PMC11054107 DOI: 10.3390/nano14080652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 04/05/2024] [Accepted: 04/08/2024] [Indexed: 04/29/2024]
Abstract
Dean flow and Dean instability play an important role in inertial microfluidics, with a wide application in mixing and sorting. However, most studies are limited to Dean flow in the microscale. This work first reports the application of Dean instability on organic nanoparticles synthesis at De up to 198. The channel geometry (the tortuous channel) is optimized by simulation, in which the mixing efficiency is considered. With the optimized design, prednisolone nanoparticles are synthesized, and the size of the most abundant prednisolone nanoparticles is down to 100 nm with an increase in the Re and De and smallest size down to 46 nm. This work serves as an ice-breaker to the real application of Dean instability by demonstrating its ability in mixing and nanomaterials like nanoparticle synthesis.
Collapse
Affiliation(s)
- Yu Ching Wong
- Department of Physics, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong 999077, China; (Y.C.W.); (S.Y.)
| | - Siyu Yang
- Department of Physics, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong 999077, China; (Y.C.W.); (S.Y.)
| | - Weijia Wen
- Department of Physics, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong 999077, China; (Y.C.W.); (S.Y.)
- Thrust of Advanced Materials, The Hong Kong University of Science and Technology (Guangzhou), Guangzhou 510630, China
- HKUST Shenzhen-Hong Kong Collaborative Innovation Research Institute, Futian, Shenzhen 518000, China
| |
Collapse
|
16
|
Đoćoš M, Thiha A, Vejin M, Movrin D, Jamaluddin NF, Kojić S, Petrović B, Ibrahim F, Stojanović G. Analysis of Covarine Particle in Toothpaste Through Microfluidic Simulation, Experimental Validation, and Electrical Impedance Spectroscopy. ACS OMEGA 2024; 9:10539-10555. [PMID: 38463280 PMCID: PMC10918793 DOI: 10.1021/acsomega.3c08799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 01/17/2024] [Accepted: 01/30/2024] [Indexed: 03/12/2024]
Abstract
Covarine, copper phthalocyanine, a novel tooth whitening ingredient, has been incorporated into various toothpaste formulations using diverse technologies such as larger flakes, two-phase pastes, and microbeads. In this study, we investigated the behavior of covarine microbeads (200 μm) in Colgate advanced white toothpaste when mixed with artificial and real saliva. Our analysis utilized a custom-designed microfluidic mixer with 400 μm wide channels arranged in serpentine patterns, featuring a Y-shaped design for saliva and toothpaste flow. The mixer, fabricated using stereolithography 3D printing technology, incorporated a flexible transparent resin (Formlabs' Flexible 80A resin) and PMMA layers. COMSOL simulations were performed by utilizing parameters extracted from toothpaste and saliva datasheets, supplemented by laboratory measurements, to enhance simulation accuracy. Experimental assessments encompassing the behavior of covarine particles were conducted using an optical profilometer. Viscosity tests and electrical impedance spectroscopy employing recently developed all-carbon electrodes were employed to analyze different toothpaste dilutions. The integration of experimental data from microfluidic chips with computational simulations offers thorough insights into the interactions of covarine particles with saliva and the formation of microfilms on enamel surfaces.
Collapse
Affiliation(s)
- Miroslav Đoćoš
- Faculty
of Technical Sciences, University of Novi
Sad, Trg Dositeja Obradovića 6, Novi Sad 21000, Serbia
| | - Aung Thiha
- Centre
for Innovation in Medical Engineering (CIME), Faculty of Engineering, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | - Marija Vejin
- Faculty
of Technical Sciences, University of Novi
Sad, Trg Dositeja Obradovića 6, Novi Sad 21000, Serbia
| | - Dejan Movrin
- Faculty
of Technical Sciences, University of Novi
Sad, Trg Dositeja Obradovića 6, Novi Sad 21000, Serbia
| | - Nurul Fauzani Jamaluddin
- Centre
for Innovation in Medical Engineering (CIME), Faculty of Engineering, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | - Sanja Kojić
- Faculty
of Technical Sciences, University of Novi
Sad, Trg Dositeja Obradovića 6, Novi Sad 21000, Serbia
| | - Bojan Petrović
- Faculty
of Medicine, University of Novi Sad, Hajduk Veljkova 3, Novi Sad 21000, Serbia
| | - Fatimah Ibrahim
- Centre
for Innovation in Medical Engineering (CIME), Faculty of Engineering, Universiti Malaya, Kuala Lumpur 50603, Malaysia
- Department
of Biomedical Engineering, Faculty of Engineering, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | - Goran Stojanović
- Faculty
of Technical Sciences, University of Novi
Sad, Trg Dositeja Obradovića 6, Novi Sad 21000, Serbia
| |
Collapse
|
17
|
Bai C, Tang X, Li Y, Arai T, Huang Q, Liu X. Acoustohydrodynamic micromixers: Basic mixing principles, programmable mixing prospectives, and biomedical applications. BIOMICROFLUIDICS 2024; 18:021505. [PMID: 38659428 PMCID: PMC11037935 DOI: 10.1063/5.0179750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 02/28/2024] [Indexed: 04/26/2024]
Abstract
Acoustohydrodynamic micromixers offer excellent mixing efficiency, cost-effectiveness, and flexible controllability compared with conventional micromixers. There are two mechanisms in acoustic micromixers: indirect influence by induced streamlines, exemplified by sharp-edge micromixers, and direct influence by acoustic waves, represented by surface acoustic wave micromixers. The former utilizes sharp-edge structures, while the latter employs acoustic wave action to affect both the fluid and its particles. However, traditional micromixers with acoustic bubbles achieve significant mixing performance and numerous programmable mixing platforms provide excellent solutions with wide applicability. This review offers a comprehensive overview of various micromixers, elucidates their underlying principles, and explores their biomedical applications. In addition, advanced programmable micromixing with impressive versatility, convenience, and ability of cross-scale operations is introduced in detail. We believe this review will benefit the researchers in the biomedical field to know the micromixers and find a suitable micromixing method for their various applications.
Collapse
Affiliation(s)
- Chenhao Bai
- The Key Laboratory of Biomimetic Robots and Systems, Ministry of Education, State Key Laboratory of Intelligent Control and Decision of Complex System, Beijing Advanced Innovation Center for Intelligent Robots and Systems, and School of Mechatronical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Xiaoqing Tang
- The Key Laboratory of Biomimetic Robots and Systems, Ministry of Education, State Key Laboratory of Intelligent Control and Decision of Complex System, Beijing Advanced Innovation Center for Intelligent Robots and Systems, and School of Mechatronical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Yuyang Li
- Institute of Intelligent Flexible Mechatronics, Jiangsu University, Zhenjiang 212013, China
| | - Tatsuo Arai
- The Key Laboratory of Biomimetic Robots and Systems, Ministry of Education, State Key Laboratory of Intelligent Control and Decision of Complex System, Beijing Advanced Innovation Center for Intelligent Robots and Systems, and School of Mechatronical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Qiang Huang
- The Key Laboratory of Biomimetic Robots and Systems, Ministry of Education, State Key Laboratory of Intelligent Control and Decision of Complex System, Beijing Advanced Innovation Center for Intelligent Robots and Systems, and School of Mechatronical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Xiaoming Liu
- The Key Laboratory of Biomimetic Robots and Systems, Ministry of Education, State Key Laboratory of Intelligent Control and Decision of Complex System, Beijing Advanced Innovation Center for Intelligent Robots and Systems, and School of Mechatronical Engineering, Beijing Institute of Technology, Beijing 100081, China
| |
Collapse
|
18
|
Mehraji S, DeVoe DL. Microfluidic synthesis of lipid-based nanoparticles for drug delivery: recent advances and opportunities. LAB ON A CHIP 2024; 24:1154-1174. [PMID: 38165786 DOI: 10.1039/d3lc00821e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2024]
Abstract
Microfluidic technologies are revolutionizing the synthesis of nanoscale lipid particles and enabling new opportunities for the production of lipid-based nanomedicines. By harnessing the benefits of microfluidics for controlling diffusive and advective transport within microfabricated flow cells, microfluidic platforms enable unique capabilities for lipid nanoparticle synthesis with precise and tunable control over nanoparticle properties. Here we present an assessment of the current state of microfluidic technologies for lipid-based nanoparticle and nanomedicine production. Microfluidic techniques are discussed in the context of conventional production methods, with an emphasis on the capabilities of microfluidic systems for controlling nanoparticle size and size distribution. Challenges and opportunities associated with the scaling of manufacturing throughput are discussed, together with an overview of emerging microfluidic methods for lipid nanomedicine post-processing. The impact of additive manufacturing on current and future microfluidic platforms is also considered.
Collapse
Affiliation(s)
- Sima Mehraji
- Department of Mechanical Engineering, University of Maryland, College Park, MD 20742, USA.
- Fischell Institute for Biomedical Devices, University of Maryland, College Park, MD 20742, USA
| | - Don L DeVoe
- Department of Mechanical Engineering, University of Maryland, College Park, MD 20742, USA.
- Fischell Institute for Biomedical Devices, University of Maryland, College Park, MD 20742, USA
| |
Collapse
|
19
|
Kheirkhah Barzoki A. Enhanced mixing efficiency and reduced droplet size with novel droplet generators. Sci Rep 2024; 14:4711. [PMID: 38409482 PMCID: PMC10897375 DOI: 10.1038/s41598-024-55514-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Accepted: 02/24/2024] [Indexed: 02/28/2024] Open
Abstract
Nowadays, droplet microfluidics has become widely utilized for high-throughput assays. Efficient mixing is crucial for initiating biochemical reactions in many applications. Rapid mixing during droplet formation eliminates the need for incorporating micromixers, which can complicate the chip design. Furthermore, immediate mixing of substances upon contact can significantly improve the consistency of chemical reactions and resulting products. This study introduces three innovative designs for droplet generators that achieve efficient mixing and produce small droplets. The T-cross and cross-T geometries combine cross and T junction mixing mechanisms, resulting in improved mixing efficiency. Numerical simulations were conducted to compare these novel geometries with traditional T and cross junctions in terms of mixing index, droplet diameter, and eccentricity. The cross-T geometry exhibited the highest mixing index and produced the smallest droplets. For the flow rate ratio of 0.5, this geometry offered a 10% increase in the mixing index and a decrease in the droplet diameter by 10% compared to the T junction. While the T junction has the best mixing efficiency among traditional droplet generators, it produces larger droplets, which can increase the risk of contamination due to contact with the microchannel walls. Therefore, the cross-T geometry is highly desirable in most applications due to its production of considerably smaller droplets. The asymmetric cross junction offered a 8% increase in mixing index and around 2% decrease in droplet diameter compared to the conventional cross junction in flow rate ratio of 0.5. All novel geometries demonstrated comparable mixing efficiency to the T junction. The cross junction exhibited the lowest mixing efficiency and produced larger droplets compared to the cross-T geometry (around 1%). Thus, the novel geometries, particularly the cross-T geometry, are a favorable choice for applications where both high mixing efficiency and small droplet sizes are important.
Collapse
Affiliation(s)
- Ali Kheirkhah Barzoki
- Department of Mechanical Engineering, Sharif University of Technology, Tehran, Iran.
| |
Collapse
|
20
|
Imran JH, Shourav MK, Kim JK. Integrated Point-of-Care Immune Cell Analyzer with Rapid Blood Sample Reaction and Wide Field-of-View Detection. Anal Chem 2024; 96:1640-1650. [PMID: 38247122 DOI: 10.1021/acs.analchem.3c04503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2024]
Abstract
The development of affordable, reliable, and rapid diagnostic devices is crucial for monitoring immunological responses using a drop of blood. However, conventional automated diagnostic devices typically involve expensive and impractical robotic fluid-handling approaches. Herein, we developed an integrated cell analyzer comprising a cylindrical sample cartridge connected to a direct current motor and a compact fluorescence imaging module. Sample mixing and loading are performed automatically by a programmable sequence of single motor rotation controlled by an Android application. Two distinct stained immune cell samples can be identified by using two types of fluorescence imaging modes. The effectiveness of mixing performance in antigen-antibody (Ag-Ab) reactions was assessed through a compound objective lens that collects weak fluorescence emitted by the cell membrane. Active mixing with bidirectional rotation of the cartridge in a confined space shortened the Ag-Ab reaction time by a factor of 3.3 and achieved cell counting with higher accuracy while reducing reagent consumption by 4 times compared to the conventional incubation method. High-intensity fluorescence images of cells labeled with a nucleic acid stain were acquired through a single-lens-based fluorescence imaging module with a large field of view (FOV) in an unconventional detection chamber with a curved substrate. Compared with a flat chamber, the curved detection chamber reduces the effects of field curvature and provides aberration-free wide-FOV images, even with a simple lens. Our integrated cell analyzer thus offers a practical and cost-effective solution for monitoring patient immune responses in point-of-care settings.
Collapse
Affiliation(s)
- Jakir Hossain Imran
- Department of Mechanical Engineering, Graduate School, Kookmin University, Seoul 02707, Republic of Korea
| | - Mohiuddin Khan Shourav
- Wilmer Eye Institute, Department of Ophthalmology, Johns Hopkins University, Baltimore, Maryland 21231, United States
| | - Jung Kyung Kim
- School of Mechanical Engineering, Kookmin University, Seoul 02707, Republic of Korea
| |
Collapse
|
21
|
Kato S, Carlson DW, Shen AQ, Guo Y. Twisted fiber microfluidics: a cutting-edge approach to 3D spiral devices. MICROSYSTEMS & NANOENGINEERING 2024; 10:14. [PMID: 38259519 PMCID: PMC10800335 DOI: 10.1038/s41378-023-00642-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 10/24/2023] [Accepted: 11/14/2023] [Indexed: 01/24/2024]
Abstract
The development of 3D spiral microfluidics has opened new avenues for leveraging inertial focusing to analyze small fluid volumes, thereby advancing research across chemical, physical, and biological disciplines. While traditional straight microchannels rely solely on inertial lift forces, the novel spiral geometry generates Dean drag forces, eliminating the necessity for external fields in fluid manipulation. Nevertheless, fabricating 3D spiral microfluidics remains a labor-intensive and costly endeavor, hindering its widespread adoption. Moreover, conventional lithographic methods primarily yield 2D planar devices, thereby limiting the selection of materials and geometrical configurations. To address these challenges, this work introduces a streamlined fabrication method for 3D spiral microfluidic devices, employing rotational force within a miniaturized thermal drawing process, termed as mini-rTDP. This innovation allows for rapid prototyping of twisted fiber-based microfluidics featuring versatility in material selection and heightened geometric intricacy. To validate the performance of these devices, we combined computational modeling with microtomographic particle image velocimetry (μTPIV) to comprehensively characterize the 3D flow dynamics. Our results corroborate the presence of a steady secondary flow, underscoring the effectiveness of our approach. Our 3D spiral microfluidics platform paves the way for exploring intricate microflow dynamics, with promising applications in areas such as drug delivery, diagnostics, and lab-on-a-chip systems.
Collapse
Affiliation(s)
- Shunsuke Kato
- Department of Electrical, Information and Physics Engineering, School of Engineering, Tohoku University, Aoba-ku, Sendai, 980-8579 Miyagi Japan
| | - Daniel W. Carlson
- Micro/Bio/Nanofluidics Unit, Okinawa Institute of Science and Technology, Onna, Kunigami-gun, 904-0495 Okinawa Japan
| | - Amy Q. Shen
- Micro/Bio/Nanofluidics Unit, Okinawa Institute of Science and Technology, Onna, Kunigami-gun, 904-0495 Okinawa Japan
| | - Yuanyuan Guo
- Frontier Research Institute for Interdisciplinary Sciences (FRIS), Tohoku University, Aoba-ku, Sendai, 980-0845 Miyagi Japan
- Graduate School of Biomedical Engineering, Tohoku University, Aoba-ku, Sendai, 980-8579 Miyagi Japan
- Department of Physiology, Graduate School of Medicine, Tohoku University, Aoba-ku, Sendai, 980-8575 Miyagi Japan
| |
Collapse
|
22
|
Gande VV, Podupu PKR, Berry B, Nere NK, Pushpavanam S, Singh MR. Engineering advancements in microfluidic systems for enhanced mixing at low Reynolds numbers. BIOMICROFLUIDICS 2024; 18:011502. [PMID: 38298373 PMCID: PMC10827338 DOI: 10.1063/5.0178939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 01/04/2024] [Indexed: 02/02/2024]
Abstract
Mixing within micro- and millichannels is a pivotal element across various applications, ranging from chemical synthesis to biomedical diagnostics and environmental monitoring. The inherent low Reynolds number flow in these channels often results in a parabolic velocity profile, leading to a broad residence time distribution. Achieving efficient mixing at such small scales presents unique challenges and opportunities. This review encompasses various techniques and strategies to evaluate and enhance mixing efficiency in these confined environments. It explores the significance of mixing in micro- and millichannels, highlighting its relevance for enhanced reaction kinetics, homogeneity in mixed fluids, and analytical accuracy. We discuss various mixing methodologies that have been employed to get a narrower residence time distribution. The role of channel geometry, flow conditions, and mixing mechanisms in influencing the mixing performance are also discussed. Various emerging technologies and advancements in microfluidic devices and tools specifically designed to enhance mixing efficiency are highlighted. We emphasize the potential applications of micro- and millichannels in fields of nanoparticle synthesis, which can be utilized for biological applications. Additionally, the prospects of machine learning and artificial intelligence are offered toward incorporating better mixing to achieve precise control over nanoparticle synthesis, ultimately enhancing the potential for applications in these miniature fluidic systems.
Collapse
Affiliation(s)
- Vamsi Vikram Gande
- Department of Chemical Engineering, University of Illinois Chicago, Chicago, Illinois 60607, USA
| | - Prem K. R. Podupu
- Department of Chemical Engineering, University of Illinois Chicago, Chicago, Illinois 60607, USA
| | - Bianca Berry
- LaGrange Highlands Middle School, LaGrange Highlands, Illinois 60525, USA
| | | | - S. Pushpavanam
- Department of Chemical Engineering, Indian Institute of Technology Madras, Chennai 600036, India
| | - Meenesh R. Singh
- Department of Chemical Engineering, University of Illinois Chicago, Chicago, Illinois 60607, USA
| |
Collapse
|
23
|
Yao G, Ji F, Chen J, Dai B, Jia L. Nanobody-functionalized conduit with built-in static mixer for specific elimination of cytokines in hemoperfusion. Acta Biomater 2023; 172:260-271. [PMID: 37806373 DOI: 10.1016/j.actbio.2023.09.050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 09/09/2023] [Accepted: 09/28/2023] [Indexed: 10/10/2023]
Abstract
Removing excessively produced cytokines is of paramount significance in blood purification therapy for hypercytokinemia-associated diseases. In this study, we devised a conduit that is modified with nanobodies (Nb) and incorporates static mixers (Nb-SMC) to eliminate surplus cytokines from the bloodstream. The low-pressure-drop (LPD) static mixer, with each unit featuring two 90°-crossed blades, was strategically arranged in a tessellated pattern on the inner wall of the conduit to induce turbulent mixing effects during the flow of blood. This arrangement enhances mass transfer and molecular diffusion, thereby assisting in the identification and elimination of cytokines. By utilizing computational fluid dynamics (CFD) studies, the Nb-SMC was rationally designed and prepared, ensuring an optimal interval between two mixer units (H/G = 2.5). The resulting Nb-SMC exhibited a remarkable selective clearance of IL-17A, reaching up to 85 %. Additionally, the process of Nb immobilization could be adjusted to achieve the simultaneous removal of multiple cytokines from the bloodstream. Notably, our Nb-SMC displayed good blood compatibility without potential adverse effects on the composition of human blood. As the sole documented static mixer-integrated conduit capable of selectively eliminating cytokines at their physiological concentrations, it holds promise in the clinical potential for hypercytokinemia in high-risk patients. STATEMENT OF SIGNIFICANCE: High-efficient cytokines removal in critical care still remains a challenge. The conduit technique we proposed here is a brand-new strategy for cytokines removal in blood purification therapy. On the one hand, nanobody endows the conduit with specific recognition of cytokine, on the other hand, the build-in static mixer enhances the diffusion of antigenic cytokine to the ligand. The combination of these two has jointly achieved the efficient and specific removal of cytokine. This innovative material is the only reported artificial biomaterial capable of selectively eliminating multiple cytokines under conditions close to clinical practice. It has the potential to improve outcomes for patients with hypercytokinemia and reduce the risk of adverse events associated with current treatment modalities.
Collapse
Affiliation(s)
- Guangshuai Yao
- Liaoning Key Laboratory of Molecular Recognition and imaging, School of Bioengineering, Dalian University of Technology, No.2 Linggong Road, Dalian, Liaoning 116023, PR China
| | - Fangling Ji
- Liaoning Key Laboratory of Molecular Recognition and imaging, School of Bioengineering, Dalian University of Technology, No.2 Linggong Road, Dalian, Liaoning 116023, PR China
| | - Jiewen Chen
- Liaoning Key Laboratory of Molecular Recognition and imaging, School of Bioengineering, Dalian University of Technology, No.2 Linggong Road, Dalian, Liaoning 116023, PR China
| | - Bingbing Dai
- Department of Rheumatology and Immunology, Dalian Municipal Central Hospital affiliated with Dalian University of Technology, No.826, Xinan Road Dalian, 116033 Liaoning, PR China
| | - Lingyun Jia
- Liaoning Key Laboratory of Molecular Recognition and imaging, School of Bioengineering, Dalian University of Technology, No.2 Linggong Road, Dalian, Liaoning 116023, PR China.
| |
Collapse
|
24
|
Ncongwane TB, Ndinteh DT, Smit E. Automated silylation of flavonoids using 3D printed microfluidics prior to chromatographic analysis: system development. Anal Bioanal Chem 2023; 415:7151-7160. [PMID: 37804326 PMCID: PMC10684624 DOI: 10.1007/s00216-023-04981-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 08/30/2023] [Accepted: 09/22/2023] [Indexed: 10/09/2023]
Abstract
Flavonoids are a class of secondary plant metabolites with low molecular weights. Most flavonoids are highly polar and unsuitable for gas chromatographic analyses. Derivatization is commonly used to make them amenable to gas chromatography by altering their physicochemical properties. Although highly effective, derivatization techniques introduce extra preparation steps and often use hazardous chemicals. The aim of this study was to automate derivatization (specifically, silylation) by developing 3D printed microfluidic devices in which derivatization of flavonoids can occur. A microfluidic device was designed and 3D printed using clear polypropylene. Quercetin and other flavonoids (TED 13 and ZTF 1016) isolated from plant extracts were silylated with N-tert-butyldimethylsilyl-N-methyltrifluoroacetamide (MTBSTFA) at room temperature both in batch and in continuous flow. All the samples were analyzed using Fourier transform infrared (FTIR) spectroscopy, gas chromatography combined with mass spectrometry (GC-MS), and high-resolution accurate mass spectrometry (HR-MS). Interestingly, the HR-MS results showed that the flow method was about 25 times more efficient than the batch method for quercetin samples. The TED 13 flavonoid was completely derivatized in the flow method compared to the batch method where the reaction was incomplete. Similar results were observed for ZTF 1016, where the flow method resulted in a four times derivatized compound, while the compound was only derivatized once in batch. In conclusion, 3D printed microfluidic devices have been developed and used to demonstrate a semi-automated, inexpensive, and more efficient natural product derivatization method based on continuous flow chemistry as an alternative to the traditional batch method.
Collapse
Affiliation(s)
- Thabang Bernette Ncongwane
- Center for Natural Products Research, Department of Chemical Sciences, University of Johannesburg, Auckland Park, PO Box 524, Johannesburg, South Africa
| | - Derek Tantoh Ndinteh
- Center for Natural Products Research, Department of Chemical Sciences, University of Johannesburg, Auckland Park, PO Box 524, Johannesburg, South Africa
| | - Elize Smit
- Center for Natural Products Research, Department of Chemical Sciences, University of Johannesburg, Auckland Park, PO Box 524, Johannesburg, South Africa.
| |
Collapse
|
25
|
Leggio L, Paternò G, Vivarelli S, Bonasera A, Pignataro B, Iraci N, Arrabito G. Label-free approaches for extracellular vesicle detection. iScience 2023; 26:108105. [PMID: 37867957 PMCID: PMC10589885 DOI: 10.1016/j.isci.2023.108105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2023] Open
Abstract
Extracellular vesicles (EVs) represent pivotal mediators in cell-to-cell communication. They are lipid-membranous carriers of several biomolecules, which can be produced by almost all cells. In the current Era of precision medicine, EVs gained growing attention thanks to their potential in both biomarker discovery and nanotherapeutics applications. However, current technical limitations in isolating and/or detecting EVs restrain their standard use in clinics. This review explores all the state-of-the-art analytical technologies which are currently overcoming these issues. On one end, several innovative optical-, electrical-, and spectroscopy-based detection methods represent advantageous label-free methodologies for faster EV detection. On the other end, microfluidics-based lab-on-a-chip tools support EV purification from low-concentrated samples. Altogether, these technologies will strengthen the routine application of EVs in clinics.
Collapse
Affiliation(s)
- Loredana Leggio
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Greta Paternò
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Silvia Vivarelli
- Department of Biomedical and Dental Sciences, Morphological and Functional Imaging, Section of Occupational Medicine, University of Messina, Messina, Italy
| | - Aurelio Bonasera
- Department of Physics and Chemistry - Emilio Segrè, University of Palermo, Viale delle Scienze, building 17, 90128 Palermo, Italy
| | - Bruno Pignataro
- Department of Physics and Chemistry - Emilio Segrè, University of Palermo, Viale delle Scienze, building 17, 90128 Palermo, Italy
| | - Nunzio Iraci
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Giuseppe Arrabito
- Department of Physics and Chemistry - Emilio Segrè, University of Palermo, Viale delle Scienze, building 17, 90128 Palermo, Italy
| |
Collapse
|
26
|
Honda K, Fujiwara K, Hasegawa K, Kaneko A, Abe Y. Coalescence and mixing dynamics of droplets in acoustic levitation by selective colour imaging and measurement. Sci Rep 2023; 13:19590. [PMID: 37949912 PMCID: PMC10638323 DOI: 10.1038/s41598-023-46008-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 10/26/2023] [Indexed: 11/12/2023] Open
Abstract
Acoustic levitation is well-suited to 'lab-on-a-drop' contactless chemical analysis of droplets. Rapid mixing is of fundamental importance in lab-on-a-drop platforms and many other applications involving droplet manipulation. Small droplets, however, have low Reynolds numbers; thus, mixing via turbulence is not possible. Inducing surface oscillation is effective in this regard, however, the relationship between internal flow and mixing dynamics of droplets remains unclear. In this study, we conducted a set of simultaneous optical measurements to assess both the flow field and the distribution of fluid components within acoustically levitated droplets. To achieve this, we developed a technique to selectively separate fluorescent particles within each fluid, permitting the measurement of the concentration field based on the data from the discrete particle distribution. This approach revealed a relationship between the mixing process and the internal flow caused by surface oscillation. Thus, the internal flow induced by surface oscillation could enhance droplet mixing. Our findings will be conducive to the application and further development of lab-on-a-drop devices.
Collapse
Affiliation(s)
- Kota Honda
- Graduate School of Science and Technology, University of Tsukuba, Tsukuba, 305-8573, Japan
| | - Kota Fujiwara
- Graduate School of Science and Technology, University of Tsukuba, Tsukuba, 305-8573, Japan
| | - Koji Hasegawa
- Department of Mechanical Engineering, Kogakuin University, Tokyo, 163-8677, Japan
| | - Akiko Kaneko
- Institute of Systems and Information Engineering, University of Tsukuba, Tsukuba, 305-8573, Japan.
| | - Yutaka Abe
- Professor Emeritus, University of Tsukuba, Tsukuba, 305-8573, Japan
| |
Collapse
|
27
|
Cha B, Lee SH, Iqrar SA, Yi HG, Kim J, Park J. Rapid acoustofluidic mixing by ultrasonic surface acoustic wave-induced acoustic streaming flow. ULTRASONICS SONOCHEMISTRY 2023; 99:106575. [PMID: 37683414 PMCID: PMC10495656 DOI: 10.1016/j.ultsonch.2023.106575] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 08/18/2023] [Accepted: 08/29/2023] [Indexed: 09/10/2023]
Abstract
Ultrasonic surface acoustic wave (SAW)-induced acoustic streaming flow (ASF) has been utilized for microfluidic flow control, patterning, and mixing. Most previous research employed cross-type SAW acousto-microfluidic mixers, in which the SAWs propagated perpendicular to the flow direction. In this configuration, the flow mixing was induced predominantly by the horizontal component of the acoustic force, which was usually much smaller than the vertical component, leading to energy inefficiency and limited controllability. Here, we propose a vertical-type ultrasonic SAW acousto-microfluidic mixer to achieve rapid flow mixing with improved efficiency and controllability. We conducted in-depth numerical and experimental investigations of the vertical-type SAW-induced ASF to elucidate the acousto-hydrodynamic phenomenon under varying conditions of total flow rate, acoustic wave amplitude, and fluid viscosity conditions. We conducted computational fluid dynamics simulations for numerical flow visualization and utilized micro-prism-embedded microchannels for experimental flow visualization for the vertical SAW-induced ASF. We found that the SAW-induced vortices served as a hydrodynamic barrier for the co-flow streams for controlled flow mixing in the proposed device. For proof-of-concept application, we performed chemical additive-free rapid red blood cell lysis and achieved rapid cell lysis with high lysis efficiency based on the physical interactions of the suspended cells with the SAW-induced acoustic vortical flows. We believe that the proposed vertical-type ultrasonic SAW-based mixer can be broadly utilized for various microfluidic applications that require rapid, controlled flow mixing.
Collapse
Affiliation(s)
- Beomseok Cha
- Department of Mechanical Engineering, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Song Ha Lee
- Department of Mechanical Engineering, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Syed Atif Iqrar
- College of Engineering and Physical Sciences, Aston Institute of Photonic Technologies, Aston University, Birmingham B4 7ET, United Kingdom
| | - Hee-Gyeong Yi
- Department of Convergence Biosystems Engineering, College of Agriculture and Life Sciences, Chonnam National University, Gwangju 61186, Republic of Korea; Interdisciplinary Program in IT-Bio Convergence System, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Jangho Kim
- Department of Convergence Biosystems Engineering, College of Agriculture and Life Sciences, Chonnam National University, Gwangju 61186, Republic of Korea; Interdisciplinary Program in IT-Bio Convergence System, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Jinsoo Park
- Department of Mechanical Engineering, Chonnam National University, Gwangju 61186, Republic of Korea.
| |
Collapse
|
28
|
Gupta P, Alheib O, Shin JW. Towards single cell encapsulation for precision biology and medicine. Adv Drug Deliv Rev 2023; 201:115010. [PMID: 37454931 PMCID: PMC10798218 DOI: 10.1016/j.addr.2023.115010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 07/11/2023] [Accepted: 07/13/2023] [Indexed: 07/18/2023]
Abstract
The primary impetus of therapeutic cell encapsulation in the past several decades has been to broaden the options for donor cell sources by countering against immune-mediated rejection. However, another significant advantage of encapsulation is to provide donor cells with physiologically relevant cues that become compromised in disease. The advances in biomaterial design have led to the fundamental insight that cells sense and respond to various signals encoded in materials, ranging from biochemical to mechanical cues. The biomaterial design for cell encapsulation is becoming more sophisticated in controlling specific aspects of cellular phenotypes and more precise down to the single cell level. This recent progress offers a paradigm shift by designing single cell-encapsulating materials with predefined cues to precisely control donor cells after transplantation.
Collapse
Affiliation(s)
- Prerak Gupta
- Department of Pharmacology and Regenerative Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA; Department of Biomedical Engineering, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Omar Alheib
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães 4805-017, Portugal
| | - Jae-Won Shin
- Department of Pharmacology and Regenerative Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA; Department of Biomedical Engineering, University of Illinois at Chicago, Chicago, IL 60607, USA.
| |
Collapse
|
29
|
Patil V, Bohara R, Krishna Kanala V, McMahon S, Pandit A. Models and approaches to comprehend and address glial inflammation following spinal cord injury. Drug Discov Today 2023; 28:103722. [PMID: 37482236 DOI: 10.1016/j.drudis.2023.103722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 07/10/2023] [Accepted: 07/18/2023] [Indexed: 07/25/2023]
Abstract
Spinal cord injury (SCI) culminates in chronic inflammation and glial scar formation driven by the activation of microglia and astrocytes. Current anti-inflammatory strategies to treat glial activation associated with SCI have several limitations. Existing in vitro and ex vivo models studying molecular mechanisms associated with inflammation focus only on the acute phase. However, the progression of glial cell-derived inflammation over the acute-to-chronic phases has not been assessed. Understanding this progression will help establish a framework for evaluating therapeutic strategies. Additionally, new models could be useful as high-throughput screening (HTS) platforms. This review aims to highlight currently available models and future methods that could facilitate screening of novel therapeutics for SCI.
Collapse
Affiliation(s)
- Vaibhav Patil
- CÚRAM, SFI Research Centre for Medical Devices, University of Galway, Galway, Ireland
| | - Raghvendra Bohara
- CÚRAM, SFI Research Centre for Medical Devices, University of Galway, Galway, Ireland
| | - Vijaya Krishna Kanala
- CÚRAM, SFI Research Centre for Medical Devices, University of Galway, Galway, Ireland
| | - Siobhan McMahon
- Anatomy, School of Medicine, University of Galway, Galway, Ireland
| | - Abhay Pandit
- CÚRAM, SFI Research Centre for Medical Devices, University of Galway, Galway, Ireland.
| |
Collapse
|
30
|
Ali MS, Hooshmand N, El-Sayed M, Labouta HI. Microfluidics for Development of Lipid Nanoparticles: Paving the Way for Nucleic Acids to the Clinic. ACS APPLIED BIO MATERIALS 2023; 6:3566-3576. [PMID: 35014835 DOI: 10.1021/acsabm.1c00732] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Nucleic acid therapeutics hold an unprecedented promise toward treating many challenging diseases; however, their use is hampered by delivery issues. Microfluidics, dealing with fluids in the microscale dimensions, have provided a robust means to screening raw materials for development of nano delivery vectors, in addition to controlling their size and minimizing their polydispersity. In this mini-review, we are briefly highlighting the different types of nucleic acid therapies with emphasis on the delivery requirement for each type. We provide a thorough review of available methods for the development of nanoparticles, especially lipid nanoparticles (LNPs) that resulted in FDA approval of the first ever nucleic acid nanomedicine. We then focus on recent research attempts for how microfluidic synthesis of lipid nanoparticles and discuss the various parameters required for successful formulation of LPNs including chip design, flow regimes, and lipid composition. We then identify key areas of research in microfluidics and related fields that require attention for future success in clinical translation of nucleic acid nanomedicines.
Collapse
Affiliation(s)
- Moustafa S Ali
- College of Pharmacy, University of Manitoba, Winnipeg, Manitoba R3E 0T5, Canada
- Children Hospital's Research Institute of Manitoba, Winnipeg, Manitoba R3E 3P4, Canada
| | - Nasrin Hooshmand
- Laser Dynamics Laboratory, School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Mostafa El-Sayed
- Laser Dynamics Laboratory, School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Hagar I Labouta
- College of Pharmacy, University of Manitoba, Winnipeg, Manitoba R3E 0T5, Canada
- Children Hospital's Research Institute of Manitoba, Winnipeg, Manitoba R3E 3P4, Canada
- Biomedical Engineering, University of Manitoba, Winnipeg R3T 5V6, Canada
- Faculty of Pharmacy, Alexandria University, Alexandria 21521, Egypt
| |
Collapse
|
31
|
Macleod Briongos I, Call ZD, Henry CS, Bark DL. Maximizing flow rate in single paper layer, rapid flow microfluidic paper-based analytical devices. MICROFLUIDICS AND NANOFLUIDICS 2023; 27:70. [PMID: 37719231 PMCID: PMC10499984 DOI: 10.1007/s10404-023-02679-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 08/26/2023] [Indexed: 09/19/2023]
Abstract
Small, single-layer microfluidic paper-based analytical devices (µPADs) offer potential for a range of point-of-care applications; however, they have been limited to low flow rates. Here, we investigate the role of laser cutting paper channels in maximizing flow rate in small profile devices with limited fluid volumes. We demonstrate that branching, laser-cut grooves can provide a 59.23-73.98% improvement in flow rate over a single cut, and a 435% increase over paper alone. These design considerations can be applied to more complex microfluidic devices with the aim of increasing the flow rate, and could be used in stand-alone channels for self-pumping. Supplementary Information The online version contains supplementary material available at 10.1007/s10404-023-02679-8.
Collapse
Affiliation(s)
- Iain Macleod Briongos
- School of Biomedical Engineering, Colorado State University, Fort Collins, CO 80523 USA
| | - Zachary D. Call
- Department of Chemistry, Colorado State University, Fort Collins, CO 80523 USA
| | - Charles S. Henry
- Department of Chemistry, Colorado State University, Fort Collins, CO 80523 USA
| | - David L. Bark
- School of Biomedical Engineering, Colorado State University, Fort Collins, CO 80523 USA
- Division of Hematology and Oncology, Department of Pediatrics, Washington University in St. Louis, St. Louis, MO 63108 USA
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, USA
| |
Collapse
|
32
|
Belgodere JA, Alam M, Browning VE, Eades J, North J, Armand JA, Liu Y, Tiersch TR, Monroe WT. A Modified-Herringbone Micromixer for Assessing Zebrafish Sperm (MAGS). MICROMACHINES 2023; 14:1310. [PMID: 37512621 PMCID: PMC10386169 DOI: 10.3390/mi14071310] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 06/16/2023] [Accepted: 06/20/2023] [Indexed: 07/30/2023]
Abstract
Sperm motility analysis of aquatic model species is important yet challenging due to the small sample volume, the necessity to activate with water, and the short duration of motility. To achieve standardization of sperm activation, microfluidic mixers have shown improved reproducibility over activation by hand, but challenges remain in optimizing and simplifying the use of these microdevices for greater adoption. The device described herein incorporates a novel micromixer geometry that aligns two sperm inlet streams with modified herringbone structures that split and recombine the sample at a 1:6 dilution with water to achieve rapid and consistent initiation of motility. The polydimethylsiloxane (PDMS) chip can be operated in a positive or negative pressure configuration, allowing a simple micropipettor to draw samples into the chip and rapidly stop the flow. The device was optimized to not only activate zebrafish sperm but also enables practical use with standard computer-assisted sperm analysis (CASA) systems. The micromixer geometry could be modified for other aquatic species with differing cell sizes and adopted for an open hardware approach using 3D resin printing where users could revise, fabricate, and share designs to improve standardization and reproducibility across laboratories and repositories.
Collapse
Affiliation(s)
- Jorge A Belgodere
- Department of Biological and Agricultural Engineering, Louisiana State University and Agricultural Center, Baton Rouge, LA 70803, USA
| | - Mustafa Alam
- Department of Biological and Agricultural Engineering, Louisiana State University and Agricultural Center, Baton Rouge, LA 70803, USA
| | - Valentino E Browning
- Department of Biological and Agricultural Engineering, Louisiana State University and Agricultural Center, Baton Rouge, LA 70803, USA
| | - Jason Eades
- Department of Biological and Agricultural Engineering, Louisiana State University and Agricultural Center, Baton Rouge, LA 70803, USA
| | - Jack North
- Department of Biological and Agricultural Engineering, Louisiana State University and Agricultural Center, Baton Rouge, LA 70803, USA
| | - Julie A Armand
- Department of Biological and Agricultural Engineering, Louisiana State University and Agricultural Center, Baton Rouge, LA 70803, USA
| | - Yue Liu
- Department of Biological and Agricultural Engineering, Louisiana State University and Agricultural Center, Baton Rouge, LA 70803, USA
- Aquatic Germplasm and Genetic Resources Center, School of Renewable Natural Resources, Louisiana State University Agricultural Center, Baton Rouge, LA 70820, USA
| | - Terrence R Tiersch
- Aquatic Germplasm and Genetic Resources Center, School of Renewable Natural Resources, Louisiana State University Agricultural Center, Baton Rouge, LA 70820, USA
| | - W Todd Monroe
- Department of Biological and Agricultural Engineering, Louisiana State University and Agricultural Center, Baton Rouge, LA 70803, USA
| |
Collapse
|
33
|
Coelho BJ, Neto JP, Sieira B, Moura AT, Fortunato E, Martins R, Baptista PV, Igreja R, Águas H. Hybrid Digital-Droplet Microfluidic Chip for Applications in Droplet Digital Nucleic Acid Amplification: Design, Fabrication and Characterization. SENSORS (BASEL, SWITZERLAND) 2023; 23:4927. [PMID: 37430841 DOI: 10.3390/s23104927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 05/05/2023] [Accepted: 05/17/2023] [Indexed: 07/12/2023]
Abstract
Microfluidic-based platforms have become a hallmark for chemical and biological assays, empowering micro- and nano-reaction vessels. The fusion of microfluidic technologies (digital microfluidics, continuous-flow microfluidics, and droplet microfluidics, just to name a few) presents great potential for overcoming the inherent limitations of each approach, while also elevating their respective strengths. This work exploits the combination of digital microfluidics (DMF) and droplet microfluidics (DrMF) on a single substrate, where DMF enables droplet mixing and further acts as a controlled liquid supplier for a high-throughput nano-liter droplet generator. Droplet generation is performed at a flow-focusing region, operating on dual pressure: negative pressure applied to the aqueous phase and positive pressure applied to the oil phase. We evaluate the droplets produced with our hybrid DMF-DrMF devices in terms of droplet volume, speed, and production frequency and further compare them with standalone DrMF devices. Both types of devices enable customizable droplet production (various volumes and circulation speeds), yet hybrid DMF-DrMF devices yield more controlled droplet production while achieving throughputs that are similar to standalone DrMF devices. These hybrid devices enable the production of up to four droplets per second, which reach a maximum circulation speed close to 1540 µm/s and volumes as low as 0.5 nL.
Collapse
Affiliation(s)
- Beatriz J Coelho
- CENIMAT|i3N, Department of Materials Science, NOVA School of Science and Technology, Campus de Caparica, NOVA University of Lisbon and CEMOP/UNINOVA, 2829-516 Caparica, Portugal
- UCIBIO, I4HB, Department of Life Sciences, NOVA School of Science and Technology, Campus de Caparica, NOVA University of Lisbon, 2829-516 Caparica, Portugal
| | - Joana P Neto
- CENIMAT|i3N, Department of Materials Science, NOVA School of Science and Technology, Campus de Caparica, NOVA University of Lisbon and CEMOP/UNINOVA, 2829-516 Caparica, Portugal
| | - Bárbara Sieira
- CENIMAT|i3N, Department of Materials Science, NOVA School of Science and Technology, Campus de Caparica, NOVA University of Lisbon and CEMOP/UNINOVA, 2829-516 Caparica, Portugal
| | - André T Moura
- CENIMAT|i3N, Department of Materials Science, NOVA School of Science and Technology, Campus de Caparica, NOVA University of Lisbon and CEMOP/UNINOVA, 2829-516 Caparica, Portugal
| | - Elvira Fortunato
- CENIMAT|i3N, Department of Materials Science, NOVA School of Science and Technology, Campus de Caparica, NOVA University of Lisbon and CEMOP/UNINOVA, 2829-516 Caparica, Portugal
| | - Rodrigo Martins
- CENIMAT|i3N, Department of Materials Science, NOVA School of Science and Technology, Campus de Caparica, NOVA University of Lisbon and CEMOP/UNINOVA, 2829-516 Caparica, Portugal
| | - Pedro V Baptista
- UCIBIO, I4HB, Department of Life Sciences, NOVA School of Science and Technology, Campus de Caparica, NOVA University of Lisbon, 2829-516 Caparica, Portugal
| | - Rui Igreja
- CENIMAT|i3N, Department of Materials Science, NOVA School of Science and Technology, Campus de Caparica, NOVA University of Lisbon and CEMOP/UNINOVA, 2829-516 Caparica, Portugal
| | - Hugo Águas
- CENIMAT|i3N, Department of Materials Science, NOVA School of Science and Technology, Campus de Caparica, NOVA University of Lisbon and CEMOP/UNINOVA, 2829-516 Caparica, Portugal
| |
Collapse
|
34
|
Tiskratok W, Yamada M, Watanabe J, Pengyu Q, Kimura T, Egusa H. Mechanoregulation of Osteoclastogenesis-Inducing Potentials of Fibrosarcoma Cell Line by Substrate Stiffness. Int J Mol Sci 2023; 24:ijms24108959. [PMID: 37240303 DOI: 10.3390/ijms24108959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 05/09/2023] [Accepted: 05/15/2023] [Indexed: 05/28/2023] Open
Abstract
A micro-physiological system is generally fabricated using soft materials, such as polydimethylsiloxane silicone (PDMS), and seeks an inflammatory osteolysis model for osteoimmunological research as one of the development needs. Microenvironmental stiffness regulates various cellular functions via mechanotransduction. Controlling culture substrate stiffness may help spatially coordinate the supply of osteoclastogenesis-inducing factors from immortalized cell lines, such as mouse fibrosarcoma L929 cells, within the system. Herein, we aimed to determine the effects of substrate stiffness on the osteoclastogenesis-inducing potential of L929 cells via cellular mechanotransduction. L929 cells showed increased expression of osteoclastogenesis-inducing factors when cultured on type I collagen-coated PDMS substrates with soft stiffness, approximating that of soft tissue sarcomas, regardless of the addition of lipopolysaccharide to augment proinflammatory reactions. Supernatants of L929 cells cultured on soft PDMS substrates promoted osteoclast differentiation of the mouse osteoclast precursor RAW 264.7 by stimulating the expression of osteoclastogenesis-related gene markers and tartrate-resistant acid phosphatase activity. The soft PDMS substrate inhibited the nuclear translocation of YES-associated proteins in L929 cells without reducing cell attachment. However, the hard PDMS substrate hardly affected the cellular response of the L929 cells. Our results showed that PDMS substrate stiffness tuned the osteoclastogenesis-inducing potential of L929 cells via cellular mechanotransduction.
Collapse
Affiliation(s)
- Watcharaphol Tiskratok
- Division of Molecular and Regenerative Prosthodontics, Tohoku University Graduate School of Dentistry, 4-1 Seiryo-machi, Sendai 980-8575, Miyagi, Japan
- School of Geriatric Oral Health, Institute of Dentistry, Suranaree University of Technology, 111 University Rd. Suranaree, Nakhon Ratchasima 30000, Mueang, Thailand
| | - Masahiro Yamada
- Division of Molecular and Regenerative Prosthodontics, Tohoku University Graduate School of Dentistry, 4-1 Seiryo-machi, Sendai 980-8575, Miyagi, Japan
| | - Jun Watanabe
- Division of Molecular and Regenerative Prosthodontics, Tohoku University Graduate School of Dentistry, 4-1 Seiryo-machi, Sendai 980-8575, Miyagi, Japan
| | - Qu Pengyu
- Division of Molecular and Regenerative Prosthodontics, Tohoku University Graduate School of Dentistry, 4-1 Seiryo-machi, Sendai 980-8575, Miyagi, Japan
| | - Tsuyoshi Kimura
- Department of Material-Based Medical Engineering, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, Tokyo 101-0062, Chiyoda-ku, Japan
| | - Hiroshi Egusa
- Division of Molecular and Regenerative Prosthodontics, Tohoku University Graduate School of Dentistry, 4-1 Seiryo-machi, Sendai 980-8575, Miyagi, Japan
- Center for Advanced Stem Cell and Regenerative Research, Tohoku University Graduate School of Dentistry, 4-1 Seiryo-machi, Sendai 980-8575, Miyagi, Japan
| |
Collapse
|
35
|
Kobayashi M, Akitsu T, Furuya M, Sekiguchi T, Shoji S, Tanii T, Tanaka D. Efficient Synthesis of a Schiff Base Copper(II) Complex Using a Microfluidic Device. MICROMACHINES 2023; 14:890. [PMID: 37421123 DOI: 10.3390/mi14040890] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 04/14/2023] [Accepted: 04/18/2023] [Indexed: 07/09/2023]
Abstract
The efficient synthesis of amino acid Schiff base copper(II) complexes using a microfluidic device was successfully achieved. Schiff bases and their complexes are remarkable compounds due to their high biological activity and catalytic function. Conventionally, products are synthesized under reaction conditions of 40 °C for 4 h using a beaker-based method. However, in this paper, we propose using a microfluidic channel to enable quasi-instantaneous synthesis at room temperature (23 °C). The products were characterized using UV-Vis, FT-IR, and MS spectroscopy. The efficient generation of compounds using microfluidic channels has the potential to significantly contribute to the efficiency of drug discovery and material development due to high reactivity.
Collapse
Affiliation(s)
- Masashi Kobayashi
- Faculty of Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, Japan
| | - Takashiro Akitsu
- Department of Chemistry, Faculty of Science, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan
| | - Masahiro Furuya
- Cooperative Major in Nuclear Energy, Graduate School of Advanced Science and Engineering, Waseda University, 3-4-1, Okubo, Shinjuku-ku, Tokyo 169-8555, Japan
| | - Tetsushi Sekiguchi
- Research Organization for Nano & Life Innovation, Waseda University, 513 Tsurumakicho, Shinjuku-ku, Tokyo 162-0041, Japan
| | - Shuichi Shoji
- Faculty of Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, Japan
| | - Takashi Tanii
- Faculty of Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, Japan
| | - Daiki Tanaka
- Research Organization for Nano & Life Innovation, Waseda University, 513 Tsurumakicho, Shinjuku-ku, Tokyo 162-0041, Japan
| |
Collapse
|
36
|
Cao X, Buryska T, Yang T, Wang J, Fischer P, Streets A, Stavrakis S, deMello A. Towards an active droplet-based microfluidic platform for programmable fluid handling. LAB ON A CHIP 2023; 23:2029-2038. [PMID: 37000567 PMCID: PMC10091362 DOI: 10.1039/d3lc00015j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Droplet-based microfluidic systems have emerged as powerful alternatives to conventional high throughput screening platforms, due to their operational flexibility, high-throughput nature and ability to efficiently process small fluid volumes. However, the challenges associated with performing bespoke operations on user-defined droplets often limit their utility in screening applications that involve complex workflows. To this end, the marriage of droplet- and valve-based microfluidic technologies offers the prospect of balancing the controllability of droplet manipulations and analytical throughput. In this spirit, we present a microfluidic platform that combines the capabilities of integrated microvalve technology with droplet-based sample compartmentalization to realize a highly adaptable programmable fluid handling functionality. The microfluidic device consists of a programmable formulator linked to an automated droplet generation device and storage array. The formulator leverages multiple inputs coupled to a mixing ring to produce combinatorial solution mixtures, with a peristaltic pump enabling titration of reagents into the ring with picoliter resolution. The platform allows for the execution of user-defined reaction protocols within an array of storage chambers by consecutively merging programmable sequences of pL-volume droplets containing specified reagents. The precision in formulating solutions with small differences in concentration is perfectly suited for the accurate estimation of kinetic parameters. The utility of our platform is showcased through the performance of enzymatic kinetic measurements of beta-galactosidase and horseradish peroxidase with fluorogenic substrates. The presented platform provides for a range of automated manipulations and paves the way for a more diverse range of droplet-based biological experiments.
Collapse
Affiliation(s)
- Xiaobao Cao
- Guangzhou Laboratory, Guangzhou International Bio Island, Guangzhou, Guangdong Province, China
- Institute for Chemical and Bioengineering, ETH Zürich, 8093 Zürich, Switzerland.
| | - Tomas Buryska
- Institute for Chemical and Bioengineering, ETH Zürich, 8093 Zürich, Switzerland.
| | - Tianjin Yang
- Institute for Chemical and Bioengineering, ETH Zürich, 8093 Zürich, Switzerland.
- Department of Biochemistry, University of Zurich, 8057 Zurich, Switzerland
| | - Jing Wang
- Institute of Environmental Engineering, ETH Zürich, 8093, Zürich, Switzerland
| | - Peter Fischer
- IFNH Food Process Engineering Group, ETH Zürich, 8092, Zürich, Switzerland
| | - Aaron Streets
- Department of Bioengineering, University of California, Berkeley, California, USA
| | - Stavros Stavrakis
- Institute for Chemical and Bioengineering, ETH Zürich, 8093 Zürich, Switzerland.
| | - Andrew deMello
- Institute for Chemical and Bioengineering, ETH Zürich, 8093 Zürich, Switzerland.
| |
Collapse
|
37
|
Nishu IZ, Samad MF. Modeling and simulation of a split and recombination-based passive micromixer with vortex-generating mixing units. Heliyon 2023; 9:e14745. [PMID: 37025873 PMCID: PMC10070643 DOI: 10.1016/j.heliyon.2023.e14745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 03/12/2023] [Accepted: 03/16/2023] [Indexed: 03/29/2023] Open
Abstract
As a state-of-the-art technology, micromixers are being used in various chemical and biological processes, including polymerization, extraction, crystallization, organic synthesis, biological screening, drug development, drug delivery, etc. The ability of a micromixer to perform efficient mixing while consuming little power is one of its basic needs. In this paper, a passive micromixer having vortex-generating mixing units is proposed which shows effective mixing with a small pressure drop. The micromixer works on the split and recombination (SAR) flow principle. In this study, four micromixers are designed with different arrangements of mixing units, and the effect of the placement of connecting channels is evaluated in terms of mixing index, pressure drop, and mixing performance. The channel width of 200 μm, height of 300 μm, and size of mixing units are maintained constant for all the micromixers throughout the evaluation process. The numerical simulation is performed for the Reynolds number (Re) range of 0.1-100 using Comsol Multiphysics software. By categorizing the flow patterns into three regimes based on the range of Re, the fluid flow throughout the length of the micromixer is visualized. The micromixer with dislocated connecting channels provides a satisfactory result with the mixing index of 0.96 and 0.94, and the pressure drop of 2.5 Pa and 7.8 kPa at Re = 0.1 and Re = 100 respectively. It also outperformed the other models in terms of the mixing performance. The proposed micromixer might very well be used in microfluidic devices for a variety of analytical procedures due to its straightforward construction and outstanding performance.
Collapse
|
38
|
Kordzadeh-Kermani V, Dartoomi H, Azizi M, Ashrafizadeh SN, Madadelahi M. Investigating the Performance of the Multi-Lobed Leaf-Shaped Oscillatory Obstacles in Micromixers Using Bulk Acoustic Waves (BAW): Mixing and Chemical Reaction. MICROMACHINES 2023; 14:795. [PMID: 37421028 DOI: 10.3390/mi14040795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 03/27/2023] [Accepted: 03/29/2023] [Indexed: 07/09/2023]
Abstract
Proper mixing in microfluidic devices has been a concern since the early development stages. Acoustic micromixers (active micromixers) attract significant attention due to their high efficiency and ease of implementation. Finding the optimal geometries, structures, and characteristics of acoustic micromixers is still a challenging issue. In this study, we considered leaf-shaped obstacle(s) having a multi-lobed structure as the oscillatory part(s) of acoustic micromixers in a Y-junction microchannel. Four different types of leaf-shaped oscillatory obstacles, including 1, 2, 3, and 4-lobed structures, were defined, and their mixing performance for two fluid streams was evaluated numerically. The geometrical parameters of the leaf-shaped obstacle(s), including the number of lobes, lobes' length, lobes' inside angle, and lobes' pitch angle, were analyzed, and their optimum operational values were discovered. Additionally, the effects of the placement of oscillatory obstacles in three configurations, i.e., at the junction center, on the side walls, and both, on the mixing performance were evaluated. It was found that by increasing the number and length of lobes, the mixing efficiency improved. Furthermore, the effect of the operational parameters, such as inlet velocity, frequency, and intensity of acoustic waves, was examined on mixing efficiency. Meanwhile, the occurrence of a bimolecular reaction in the microchannel was analyzed at different reaction rates. It was proven that the reaction rate has a prominent effect at higher inlet velocities.
Collapse
Affiliation(s)
- Vahid Kordzadeh-Kermani
- Research Lab for Advanced Separation Processes, Department of Chemical Engineering, Iran University of Science and Technology, Tehran 16846-13114, Iran
| | - Hossein Dartoomi
- Research Lab for Advanced Separation Processes, Department of Chemical Engineering, Iran University of Science and Technology, Tehran 16846-13114, Iran
| | - Mina Azizi
- Department of Electronics, South Tehran Branch Azad University, Tehran 15847-15414, Iran
| | - Seyed Nezameddin Ashrafizadeh
- Research Lab for Advanced Separation Processes, Department of Chemical Engineering, Iran University of Science and Technology, Tehran 16846-13114, Iran
| | - Masoud Madadelahi
- Department of Mechanical Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran
- School of Engineering and Sciences, Tecnologico de Monterrey, Monterrey 64849, NL, Mexico
| |
Collapse
|
39
|
Downs BM, Hoang TM, Cope L. Increasing the Capture Rate of Circulating Tumor DNA in Unaltered Plasma Using Passive Microfluidic Mixer Flow Cells. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:3225-3234. [PMID: 36811956 DOI: 10.1021/acs.langmuir.2c02919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
A limiting factor in using blood-based liquid biopsies for cancer detection is the volume of extracted blood required to capture a measurable number of circulating tumor DNA (ctDNA). To overcome this limitation, we developed a technology named the dCas9 capture system to capture ctDNA from unaltered flowing plasma, removing the need to extract the plasma from the body. This technology has provided the first opportunity to investigate whether microfluidic flow cell design can affect the capture of ctDNA in unaltered plasma. With inspiration from microfluidic mixer flow cells designed to capture circulating tumor cells and exosomes, we constructed four microfluidic mixer flow cells. Next, we investigated the effects of these flow cell designs and the flow rate on the rate of captured spiked-in BRAF T1799A (BRAFMut) ctDNA in unaltered flowing plasma using surface-immobilized dCas9. Once the optimal mass transfer rate of ctDNA, identified by the optimal ctDNA capture rate, was determined, we investigated whether the design of the microfluidic device, flow rate, flow time, and the number of spiked-in mutant DNA copies affected the rate of capture by the dCas9 capture system. We found that size modifications to the flow channel had no effect on the flow rate required to achieve the optimal capture rate of ctDNA. However, decreasing the size of the capture chamber decreased the flow rate required to achieve the optimal capture rate. Finally, we showed that, at the optimal capture rate, different microfluidic designs using different flow rates could capture DNA copies at a similar rate over time. In this study, the optimal capture rate of ctDNA in unaltered plasma was identified by adjusting the flow rate in each of the passive microfluidic mixer flow cells. However, further validation and optimization of the dCas9 capture system are required before it is ready to be used clinically.
Collapse
Affiliation(s)
- Bradley M Downs
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland 21231, United States
| | - Tra-My Hoang
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, Maryland 21201, United States
| | - Leslie Cope
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland 21231, United States
| |
Collapse
|
40
|
The Effect of Electro-Induced Multi-Gas Modification on Polymer Substrates’ Surface Structure for Additive Manufacturing. Processes (Basel) 2023. [DOI: 10.3390/pr11030774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2023] Open
Abstract
We investigated the effect of electro-induced multi-gas modification (EIMGM) duration on the adhesion and wear resistance of PET and LDPE polymer substrates used in the printing industry. It was found that EIMGM increases the polar component and the complete free surface energy from 26 to 57 mJ/m2 for LDPE and from 37 to 67 mJ/m2 for PET (due to the formation of oxygen-containing groups on the surface of the materials). Although the degree of textural and morphological heterogeneity of the modified LDPE increased more than twice compared to the initial state, it is not still suitable for application as a substrate in extrusion 3D printing. However, for PET, the plasma-chemical modification contributed to a significant increase (~5 times) in filament adhesion to its surface (due to chemical and morphological transformations of the surface layers) which allows for using the FFF technology for additive prototyping on the modified PET-substrates.
Collapse
|
41
|
Ozawa K, Nakamura H, Shimamura K, Dietze G, Yoshikawa H, Zoueshtiagh F, Kurose K, Mu L, Ueno I. Capillary-driven horseshoe vortex forming around a micro-pillar. J Colloid Interface Sci 2023; 642:227-234. [PMID: 37004257 DOI: 10.1016/j.jcis.2023.03.039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 02/22/2023] [Accepted: 03/05/2023] [Indexed: 03/17/2023]
Abstract
HYPOTHESIS Horseshoe vortices are known to emerge around large-scale obstacles, such as bridge pillars, due to an inertia-driven adverse pressure gradient forming on the upstream-side of the obstacle. We contend that a similar flow structure can arise in thin-film Stokes flow around micro-obstacles, such as used in textured surfaces to improve wettability. This could be exploited to enhance mixing in microfluidic devices, typically limited to creeping-flow regimes. EXPERIMENTS Numerical simulations based on the Navier-Stokes equations are carried out to elucidate the flow structure associated with the wetting dynamics of a liquid film spreading around a 50 μm diameter micro-pillar. The employed multiphase solver, which is based on the volume of fluid method, accurately reproduces the wetting dynamics observed in current and previous (Mu et al., Langmuir, 2019) experiments. FINDINGS The flow structure within the liquid meniscus forming at the foot of the micro-pillar evinces a horseshoe vortex wrapping around the obstacle, notwithstanding that the Reynolds number in our system is extremely low. Here, the adverse pressure gradient driving flow reversal near the bounding wall is caused by capillarity instead of inertia. The horseshoe vortex is entangled with other vortical structures, leading to an intricate flow system with high-potential mixing capabilities.
Collapse
|
42
|
São Pedro MN, Santos MS, Eppink MHM, Ottens M. Design of a microfluidic mixer channel: First steps into creating a fluorescent dye-based biosensor for mAb aggregate detection. Biotechnol J 2023; 18:e2200332. [PMID: 36330557 DOI: 10.1002/biot.202200332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 08/29/2022] [Accepted: 09/06/2022] [Indexed: 11/06/2022]
Abstract
A major challenge in the transition to continuous biomanufacturing is the lack of process analytical technology (PAT) tools which are able to collect real-time information on the process and elicit a response to facilitate control. One of the critical quality attributes (CQAs) of interest during monoclonal antibodies production is aggregate formation. The development of a real-time PAT tool to monitor aggregate formation is then crucial to have immediate feedback and process control. Miniaturized sensors placed after each unit operation can be a powerful solution to speed up an analytical measurement due to their characteristic short reaction time. In this work, a micromixer structure capable of mixing two streams is presented, to be employed in the detection of mAb aggregates using fluorescent dyes. Computational fluid dynamics (CFD) simulations were used to compare the mixing performance of a series of the proposed designs. A final design of a zigzag microchannel with 45° angle was reached and this structure was subsequently fabricated and experimentally validated with colour dyes and, later, with a FITC-IgG molecule. The designed zigzag micromixer presents a mixing index of around 90%, obtained in less than 30 seconds. Therefore, a micromixer channel capable of a fast and efficient mixing is hereby demonstrated, to be used as a real-time PAT tool for a fluorescence based detection of protein aggregation.
Collapse
Affiliation(s)
- Mariana N São Pedro
- Department of Biotechnology, Delft University of Technology, Delft, the Netherlands
| | - Mafalda S Santos
- Department of Biotechnology, Delft University of Technology, Delft, the Netherlands
| | - Michel H M Eppink
- Byondis B.V., Nijmegen, the Netherlands.,Bioprocessing Engineering, Wageningen University, Wageningen, the Netherlands
| | - Marcel Ottens
- Department of Biotechnology, Delft University of Technology, Delft, the Netherlands
| |
Collapse
|
43
|
Tahir N, Sharifi F, Khan TA, Khan MM, Madni A, Rehman M. Microfluidics: A versatile tool for developing, optimizing, and delivering nanomedicines. Nanomedicine (Lond) 2023. [DOI: 10.1016/b978-0-12-818627-5.00017-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2023] Open
|
44
|
Nordin AN, Abd Manaf A. Design and fabrication technologies for microfluidic sensors. MICROFLUIDIC BIOSENSORS 2023:41-85. [DOI: 10.1016/b978-0-12-823846-2.00004-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
|
45
|
Ohol RM, Vasuki B. Piezoelectric Actuated Stirrer for Solid Drug Powder-Liquid Mixing. THEORETICAL FOUNDATIONS OF CHEMICAL ENGINEERING 2022. [DOI: 10.1134/s0040579522060148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
46
|
Emonds-Alt G, Malherbe C, Kasemiire A, Avohou HT, Hubert P, Ziemons E, Monbaliu JCM, Eppe G. Development and validation of an integrated microfluidic device with an in-line Surface Enhanced Raman Spectroscopy (SERS) detection of glyphosate in drinking water. Talanta 2022; 249:123640. [PMID: 35716473 DOI: 10.1016/j.talanta.2022.123640] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 05/25/2022] [Accepted: 05/30/2022] [Indexed: 12/26/2022]
Abstract
Glyphosate, also known as N-(phosphonomethyl)glycine, is one of the most widely used herbicides in the world. However, the controversy surrounding the toxicity of glyphosate and its main breakdown product, aminomethylphosphonic acid (AMPA), remains a serious public concern. Therefore, there is a clear need to develop a rapid, sensitive and automated alternative method for the quantification of glyphosate and AMPA. In this context, surface enhanced Raman spectroscopy (SERS) coupled with a microfluidic system for the determination of glyphosate in tap water was developed, optimized and validated. The design of the microfluidic configuration for this application was built constructed to integrate the synthesis of the SERS substrate through to the detection of the analyte. To optimize the microfluidic setup, a design of experiments approach was used to maximize the SERS signal of glyphosate. Subsequently, an approach based on the European guideline document SANTE/11312/2021 was used to validate the method in the range of 78-480 μg/L using the normalized band intensities. The limit of detection and quantification obtained for glyphosate were 40 and 78 μg/L, respectively. Recoveries were in the range 76-117%, while repeatability and intra-day reproducibility were ≤17%. Finally, the method was also tested for the determination of AMPA in tap water matrix and for the simultaneous detection of AMPA and glyphosate.
Collapse
Affiliation(s)
- Gauthier Emonds-Alt
- Mass Spectrometry Laboratory, MolSys Research Unit, University of Liège, B4000, Liège, Belgium; Center for Integrated Technology and Organic Synthesis, MolSys Research Unit, University of Liège, B4000, Liège, Belgium
| | - Cedric Malherbe
- Mass Spectrometry Laboratory, MolSys Research Unit, University of Liège, B4000, Liège, Belgium
| | - Alice Kasemiire
- University of Liege (ULiege), CIRM, ViBra-Sante Hub, Department of Pharmacy, Laboratory of Pharmaceutical Analytical Chemistry, Avenue Hippocrate 15, B4000, Liege, Belgium
| | - Hermane T Avohou
- University of Liege (ULiege), CIRM, ViBra-Sante Hub, Department of Pharmacy, Laboratory of Pharmaceutical Analytical Chemistry, Avenue Hippocrate 15, B4000, Liege, Belgium
| | - Philippe Hubert
- University of Liege (ULiege), CIRM, ViBra-Sante Hub, Department of Pharmacy, Laboratory of Pharmaceutical Analytical Chemistry, Avenue Hippocrate 15, B4000, Liege, Belgium
| | - Eric Ziemons
- University of Liege (ULiege), CIRM, ViBra-Sante Hub, Department of Pharmacy, Laboratory of Pharmaceutical Analytical Chemistry, Avenue Hippocrate 15, B4000, Liege, Belgium
| | - Jean-Christophe M Monbaliu
- Center for Integrated Technology and Organic Synthesis, MolSys Research Unit, University of Liège, B4000, Liège, Belgium
| | - Gauthier Eppe
- Mass Spectrometry Laboratory, MolSys Research Unit, University of Liège, B4000, Liège, Belgium.
| |
Collapse
|
47
|
Liu Y, Yang G, Hui Y, Ranaweera S, Zhao CX. Microfluidic Nanoparticles for Drug Delivery. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2106580. [PMID: 35396770 DOI: 10.1002/smll.202106580] [Citation(s) in RCA: 54] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 12/20/2021] [Indexed: 06/14/2023]
Abstract
Nanoparticles (NPs) have attracted tremendous interest in drug delivery in the past decades. Microfluidics offers a promising strategy for making NPs for drug delivery due to its capability in precisely controlling NP properties. The recent success of mRNA vaccines using microfluidics represents a big milestone for microfluidic NPs for pharmaceutical applications, and its rapid scaling up demonstrates the feasibility of using microfluidics for industrial-scale manufacturing. This article provides a critical review of recent progress in microfluidic NPs for drug delivery. First, the synthesis of organic NPs using microfluidics focusing on typical microfluidic methods and their applications in making popular and clinically relevant NPs, such as liposomes, lipid NPs, and polymer NPs, as well as their synthesis mechanisms are summarized. Then, the microfluidic synthesis of several representative inorganic NPs (e.g., silica, metal, metal oxide, and quantum dots), and hybrid NPs is discussed. Lastly, the applications of microfluidic NPs for various drug delivery applications are presented.
Collapse
Affiliation(s)
- Yun Liu
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Guangze Yang
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Yue Hui
- Institute of Advanced Technology, Westlake University, Hangzhou, Zhejiang, 310024, China
| | - Supun Ranaweera
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Chun-Xia Zhao
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, 4072, Australia
- School of Chemical Engineering and Advanced Materials, Faculty of Engineering, Computer and Mathematical Sciences, The University of Adelaide, Adelaide, SA, 5005, Australia
| |
Collapse
|
48
|
Hayter EA, Azibere S, Skrajewski LA, Soule LD, Spence DM, Martin RS. A 3D-printed, multi-modal microfluidic device for measuring nitric oxide and ATP release from flowing red blood cells. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2022; 14:3171-3179. [PMID: 35959771 PMCID: PMC10227723 DOI: 10.1039/d2ay00931e] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
In this paper, a 3D-printed multi-modal device was designed and fabricated to simultaneously detect nitric oxide (NO) and adenosine triphosphate (ATP) in red blood cell suspensions prepared from whole blood. Once a sample was injected into the device, NO was first detected (via amperometry) using a three-electrode, dual-opposed, electrode configuration with a platinum-black/Nafion coated gold working electrode. After in-line amperometric detection of NO, ATP was detected via a chemiluminescence reaction, with a luciferin/luciferase solution continuously pumped into an integrated mixing T and the resulting light being measured with a PMT underneath the channel. The device was optimized for mixing/reaction conditions, limits of detection (40 nM for NO and 30 nM for ATP), and sensitivity. This device was used to determine the basal (normoxic) levels of NO and ATP in red blood cells, as well as an increase in concentration of both analytes under hypoxic conditions. Finally, the effect of storing red blood cells in a commonly used storage solution was also investigated by monitoring the production of NO and ATP over a three-week storage time.
Collapse
Affiliation(s)
- Elizabeth A Hayter
- Department of Chemistry, Saint Louis University, 3501 Laclede Ave St. Louis, MO, USA, 63103.
| | - Samuel Azibere
- Department of Chemistry, Saint Louis University, 3501 Laclede Ave St. Louis, MO, USA, 63103.
| | - Lauren A Skrajewski
- Department of Biomedical Engineering, Institute for Quantitative Health Science & Engineering, Michigan State University, USA
| | - Logan D Soule
- Department of Biomedical Engineering, Institute for Quantitative Health Science & Engineering, Michigan State University, USA
| | - Dana M Spence
- Department of Biomedical Engineering, Institute for Quantitative Health Science & Engineering, Michigan State University, USA
| | - R Scott Martin
- Department of Chemistry, Saint Louis University, 3501 Laclede Ave St. Louis, MO, USA, 63103.
- Center for Additive Manufacturing, Saint Louis University, USA
| |
Collapse
|
49
|
A comparative study: conventional and modified serpentine micromixers. CHEMICAL PRODUCT AND PROCESS MODELING 2022. [DOI: 10.1515/cppm-2022-0022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
The study of flow and mixing dynamics for conventional micromixers as well as micromixers with split and recombine (SAR) units has been carried out using laminar and transport diluted physics modules. Initially, a pilot numerical analysis was done for the basic Y-shaped curved, rectangular and triangular serpentine micromixers. Later, SAR units have been added to these basic designs and the effect of SAR units on the performance characteristics viz., mixing index, pressure drop, performance index and pumping power has been studied. In-depth qualitative analysis was also carried out to visualize the flow and mixing dynamics for the Reynolds number in the range from 0.1–50. The study results revealed that the square shaped chambers and circular obstacle based rectangular serpentine micromixer (SCCO-RSM) demonstrated better performance as compared to the other designs. The proposed micromixer is the better candidate for microfluidics applications such as Lab-On-a-Chip (LOC), Micro-Total-Analysis-Systems (µTAS) and Point of Care Testing (POCT), etc.
Collapse
|
50
|
Bashir S, Ali A, Bashir M, Aftab A, Ghani T, Javed A, Rafique S, Shah A, Casadevall i Solvas X, Inayat MH. Droplet-based microfluidic synthesis of silver nanoparticles stabilized by PVA and PVP: applications in anticancer and antimicrobial activities. CHEMICAL PAPERS 2022. [DOI: 10.1007/s11696-022-02403-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|