1
|
Zia G, Lintz A, Hardin C, Bottiglieri A, Sebek J, Prakash P. Assessment of thermochromic phantoms for characterizing microwave ablation devices. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.23.584886. [PMID: 38617290 PMCID: PMC11014477 DOI: 10.1101/2024.03.23.584886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/16/2024]
Abstract
Background and Purpose Thermochromic gel phantoms provide a controlled medium for visual assessment of thermal ablation device performance. However, there are limited studies reporting on the comparative assessment of ablation profiles assessed in thermochromic gel phantoms against those in ex vivo tissue. The objective of this study was to compare microwave ablation zones in a thermochromic tissue mimicking gel phantom and ex vivo bovine liver, and to report on measurements of the temperature dependent dielectric and thermal properties of the phantom. Methods Thermochromic polyacrylamide phantoms were fabricated following a previously reported protocol. Phantom samples were heated to temperatures in the range of 20 - 90 °C in a temperature-controlled water bath, and colorimetric analysis of images of the phantom taken after heating were used to develop a calibration between color changes and temperature to which the phantom was heated. Using a custom, 2.45 GHz water-cooled microwave ablation antenna, ablations were performed in fresh ex vivo liver and phantoms using 65 W applied for 5 min or 10 min ( n = 3 samples in each medium for each power/time combination). Broadband (500 MHz - 6 GHz) temperature-dependent dielectric and thermal properties of the phantom were measured over the temperature range 22 - 100 °C. Results Colorimetric analysis showed that the sharp change in gel phantom color commences at a temperature of 57 °C. Short and long axes of the ablation zone in the phantom (as assessed by the 57 °C isotherm) for 65 W, 5 min ablations were aligned with extents of the ablation zone observed in ex vivo bovine liver. However, for the 65 W, 10 min setting, ablations in the phantom were on average 23.7% smaller in short axis and 7.4 % smaller in long axis than those observed in ex vivo liver. Measurements of the temperature dependent relative permittivity, thermal conductivity, and volumetric heat capacity of the phantom largely followed similar trends to published values for ex vivo liver tissue. Conclusion Thermochromic tissue mimicking phantoms provide a controlled, and reproducible medium for comparative assessment of microwave ablation devices and energy delivery settings, though ablation zone size and shapes may not accurately represent ablation sizes and shapes observed in ex vivo liver tissue under similar conditions.
Collapse
|
2
|
Liu LP, Pua R, Rosario-Berrios DN, Sandvold OF, Perkins AE, Cormode DP, Shapira N, Soulen MC, Noël PB. Reproducible spectral CT thermometry with liver-mimicking phantoms for image-guided thermal ablation. Phys Med Biol 2024; 69:045009. [PMID: 38252974 PMCID: PMC10839467 DOI: 10.1088/1361-6560/ad2124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 01/02/2024] [Accepted: 01/22/2024] [Indexed: 01/24/2024]
Abstract
Objectives. Evaluate the reproducibility, temperature tolerance, and radiation dose requirements of spectral CT thermometry in tissue-mimicking phantoms to establish its utility for non-invasive temperature monitoring of thermal ablations.Methods. Three liver mimicking phantoms embedded with temperature sensors were individually scanned with a dual-layer spectral CT at different radiation dose levels during heating (35 °C-80 °C). Physical density maps were reconstructed from spectral results using varying reconstruction parameters. Thermal volumetric expansion was then measured at each temperature sensor every 5 °C in order to establish a correlation between physical density and temperature. Linear regressions were applied based on thermal volumetric expansion for each phantom, and coefficient of variation for fit parameters was calculated to characterize reproducibility of spectral CT thermometry. Additionally, temperature tolerance was determined to evaluate effects of acquisition and reconstruction parameters. The resulting minimum radiation dose to meet the clinical temperature accuracy requirement was determined for each slice thickness with and without additional denoising.Results. Thermal volumetric expansion was robustly replicated in all three phantoms, with a correlation coefficient variation of only 0.43%. Similarly, the coefficient of variation for the slope and intercept were 9.6% and 0.08%, respectively, indicating reproducibility of the spectral CT thermometry. Temperature tolerance ranged from 2 °C to 23 °C, decreasing with increased radiation dose, slice thickness, and iterative reconstruction level. To meet the clinical requirement for temperature tolerance, the minimum required radiation dose ranged from 20, 30, and 57 mGy for slice thickness of 2, 3, and 5 mm, respectively, but was reduced to 2 mGy with additional denoising.Conclusions. Spectral CT thermometry demonstrated reproducibility across three liver-mimicking phantoms and illustrated the clinical requirement for temperature tolerance can be met for different slice thicknesses. The reproducibility and temperature accuracy of spectral CT thermometry enable its clinical application for non-invasive temperature monitoring of thermal ablation.
Collapse
Affiliation(s)
- Leening P Liu
- Department of Radiology, University of Pennsylvania, Philadelphia, PA, United States of America
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, United States of America
| | - Rizza Pua
- Department of Radiology, University of Pennsylvania, Philadelphia, PA, United States of America
| | - Derick N Rosario-Berrios
- Department of Radiology, University of Pennsylvania, Philadelphia, PA, United States of America
- Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, PA, United States of America
| | - Olivia F Sandvold
- Department of Radiology, University of Pennsylvania, Philadelphia, PA, United States of America
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, United States of America
| | - Amy E Perkins
- Philips Healthcare, Orange Village, OH, United States of America
| | - David P Cormode
- Department of Radiology, University of Pennsylvania, Philadelphia, PA, United States of America
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, United States of America
| | - Nadav Shapira
- Department of Radiology, University of Pennsylvania, Philadelphia, PA, United States of America
| | - Michael C Soulen
- Department of Radiology, University of Pennsylvania, Philadelphia, PA, United States of America
| | - Peter B Noël
- Department of Radiology, University of Pennsylvania, Philadelphia, PA, United States of America
| |
Collapse
|
3
|
Servin F, Collins JA, Heiselman JS, Frederick-Dyer KC, Planz VB, Geevarghese SK, Brown DB, Jarnagin WR, Miga MI. Simulation of Image-Guided Microwave Ablation Therapy Using a Digital Twin Computational Model. IEEE OPEN JOURNAL OF ENGINEERING IN MEDICINE AND BIOLOGY 2023; 5:107-124. [PMID: 38445239 PMCID: PMC10914207 DOI: 10.1109/ojemb.2023.3345733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 08/14/2023] [Accepted: 12/04/2023] [Indexed: 03/07/2024] Open
Abstract
Emerging computational tools such as healthcare digital twin modeling are enabling the creation of patient-specific surgical planning, including microwave ablation to treat primary and secondary liver cancers. Healthcare digital twins (DTs) are anatomically one-to-one biophysical models constructed from structural, functional, and biomarker-based imaging data to simulate patient-specific therapies and guide clinical decision-making. In microwave ablation (MWA), tissue-specific factors including tissue perfusion, hepatic steatosis, and fibrosis affect therapeutic extent, but current thermal dosing guidelines do not account for these parameters. This study establishes an MR imaging framework to construct three-dimensional biophysical digital twins to predict ablation delivery in livers with 5 levels of fat content in the presence of a tumor. Four microwave antenna placement strategies were considered, and simulated microwave ablations were then performed using 915 MHz and 2450 MHz antennae in Tumor Naïve DTs (control), and Tumor Informed DTs at five grades of steatosis. Across the range of fatty liver steatosis grades, fat content was found to significantly increase ablation volumes by approximately 29-l42% in the Tumor Naïve and 55-60% in the Tumor Informed DTs in 915 MHz and 2450 MHz antenna simulations. The presence of tumor did not significantly affect ablation volumes within the same steatosis grade in 915 MHz simulations, but did significantly increase ablation volumes within mild-, moderate-, and high-fat steatosis grades in 2450 MHz simulations. An analysis of signed distance to agreement for placement strategies suggests that accounting for patient-specific tumor tissue properties significantly impacts ablation forecasting for the preoperative evaluation of ablation zone coverage.
Collapse
Affiliation(s)
- Frankangel Servin
- Department of Biomedical EngineeringVanderbilt UniversityNashvilleTN37235USA
- Vanderbilt Institute for Surgery and EngineeringVanderbilt UniversityNashvilleTN37235USA
| | - Jarrod A. Collins
- Department of Biomedical EngineeringVanderbilt UniversityNashvilleTN37235USA
| | - Jon S. Heiselman
- Department of Biomedical EngineeringVanderbilt UniversityNashvilleTN37235USA
- Vanderbilt Institute for Surgery and EngineeringVanderbilt UniversityNashvilleTN37235USA
- Department of Surgery, Hepatopancreatobiliary ServiceMemorial Sloan Kettering Cancer CenterNew YorkNY10065USA
| | | | - Virginia B. Planz
- Department of RadiologyVanderbilt University Medical CenterNashvilleTN37235USA
| | | | - Daniel B. Brown
- Department of RadiologyVanderbilt University Medical CenterNashvilleTN37235USA
| | - William R. Jarnagin
- Department of Surgery, Hepatopancreatobiliary ServiceMemorial Sloan Kettering Cancer CenterNew YorkNY10065USA
| | - Michael I. Miga
- Department of Biomedical EngineeringVanderbilt UniversityNashvilleTN37235USA
- Vanderbilt Institute for Surgery and EngineeringVanderbilt UniversityNashvilleTN37235USA
- Department of RadiologyVanderbilt University Medical CenterNashvilleTN37235USA
- Department of Neurological SurgeryVanderbilt University Medical CenterNashvilleTN37235USA
- Department of OtolaryngologyVanderbilt University Medical CenterNashvilleTN37235USA
| |
Collapse
|
4
|
Cafarchio A, Iasiello M, Vanoli GP, Andreozzi A. Microwave ablation modeling with AMICA antenna: Validation by means a numerical analysis. Comput Biol Med 2023; 167:107669. [PMID: 37948968 DOI: 10.1016/j.compbiomed.2023.107669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 10/16/2023] [Accepted: 10/31/2023] [Indexed: 11/12/2023]
Abstract
BACKGROUND AND OBJECTIVES Percutaneous microwave thermal ablation is based on electromagnetic waves that generate dielectric heating, and it is widely recognized as one of the mostly used techniques for tumor treatment. The aim of this work is to validate a predictive model capable of providing physicians with guidelines to be used during thermal ablation procedures avoiding collateral damage. METHODS A finite element commercial software, COMSOL Multiphysics, is employed to implement a tuning-parameter approach. Governing equations are written with reference to variable-porosity and Local Thermal Non-Equilibrium (LTNE) equations are employed. The simulations results are compared with available ex-vivo and in-vivo data with the help of regression analysis. For in-vivo data simulations, velocity vector modulus and direction are varied between 0.0007 and 0.0009 m/s and 90-270°, respectively, in order to use this parameter as a tuning one to simulate - and lately optimize with respect to the differences from experimental outcomes - all the possible directions of the blood flow with respect to the antenna, whose insertion angle is not registered in the dataset. RESULTS The model is validated using reference data provided by the manufacturer (AMICA), which is obtained from ex-vivo bovine liver. The model accurately predicts the size and shape of the ablated area, resulting in an overestimation lesser than 10 %. Additionally, predictive data are compared to an in-vivo dataset. The ablated volume is accurately predicted with a mean underestimation of 6 %. The sphericity index is calculated as 0.75 and 0.62 for the predictions and in-vivo data, respectively. CONCLUSION This study developed a predictive model for microwave ablation of liver tumors that showed good performance in predicting ablation dimensions and sphericity index for ex-vivo bovine liver and for in-vivo human liver data with the tuning technique. The study emphasizes the necessity for additional development and validation to enhance the accuracy and reliability of in-vivo application.
Collapse
Affiliation(s)
- A Cafarchio
- Dipartimento di Medicina e Scienze della Salute DIMES, Università degli Studi del Molise, Campobasso, Italy.
| | - M Iasiello
- Dipartimento di Ingegneria Industriale DII, Università degli Studi di Napoli "Federico II", Napoli, Italy
| | - G P Vanoli
- Dipartimento di Medicina e Scienze della Salute DIMES, Università degli Studi del Molise, Campobasso, Italy
| | - A Andreozzi
- Dipartimento di Ingegneria Industriale DII, Università degli Studi di Napoli "Federico II", Napoli, Italy
| |
Collapse
|
5
|
Liu LP, Pua R, Rosario-Berrios DN, Sandvold OF, Perkins AE, Cormode DP, Shapira N, Soulen MC, Noël PB. Reproducible spectral CT thermometry with liver-mimicking phantoms for image-guided thermal ablation. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.10.04.23296423. [PMID: 37873236 PMCID: PMC10593007 DOI: 10.1101/2023.10.04.23296423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Objectives Evaluate the reproducibility, temperature sensitivity, and radiation dose requirements of spectral CT thermometry in tissue-mimicking phantoms to establish its utility for non-invasive temperature monitoring of thermal ablations. Materials and Methods Three liver mimicking phantoms embedded with temperature sensors were individually scanned with a dual-layer spectral CT at different radiation dose levels during heating and cooling (35 to 80 °C). Physical density maps were reconstructed from spectral results using a range of reconstruction parameters. Thermal volumetric expansion was then measured at each temperature sensor every 5°C in order to establish a correlation between physical density and temperature. Linear regressions were applied based on thermal volumetric expansion for each phantom, and coefficient of variation for fit parameters was calculated to characterize reproducibility of spectral CT thermometry. Additionally, temperature sensitivity was determined to evaluate the effect of acquisition parameters, reconstruction parameters, and image denoising. The resulting minimum radiation dose to meet the clinical temperature sensitivity requirement was determined for each slice thickness, both with and without additional denoising. Results Thermal volumetric expansion was robustly replicated in all three phantoms, with a correlation coefficient variation of only 0.43%. Similarly, the coefficient of variation for the slope and intercept were 9.6% and 0.08%, respectively, indicating reproducibility of the spectral CT thermometry. Temperature sensitivity ranged from 2 to 23 °C, decreasing with increased radiation dose, slice thickness, and iterative reconstruction level. To meet the clinical requirement for temperature sensitivity, the minimum required radiation dose ranged from 20, 30, and 57 mGy for slice thickness of 2, 3, and 5 mm, respectively, but was reduced to 2 mGy with additional denoising. Conclusions Spectral CT thermometry demonstrated reproducibility across three liver-mimicking phantoms and illustrated the clinical requirement for temperature sensitivity can be met for different slice thicknesses. Moreover, additional denoising enables the use of more clinically relevant radiation doses, facilitating the clinical translation of spectral CT thermometry. The reproducibility and temperature accuracy of spectral CT thermometry enable its clinical application for non-invasive temperature monitoring of thermal ablation.
Collapse
|
6
|
Bianchi L, Fiorentini S, Gianella S, Gianotti S, Iadanza C, Asadi S, Saccomandi P. Measurement of Thermal Conductivity and Thermal Diffusivity of Porcine and Bovine Kidney Tissues at Supraphysiological Temperatures up to 93 °C. SENSORS (BASEL, SWITZERLAND) 2023; 23:6865. [PMID: 37571648 PMCID: PMC10422510 DOI: 10.3390/s23156865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 07/14/2023] [Accepted: 07/27/2023] [Indexed: 08/13/2023]
Abstract
This experimental study aimed to characterize the thermal properties of ex vivo porcine and bovine kidney tissues in steady-state heat transfer conditions in a wider thermal interval (23.2-92.8 °C) compared to previous investigations limited to 45 °C. Thermal properties, namely thermal conductivity (k) and thermal diffusivity (α), were measured in a temperature-controlled environment using a dual-needle probe connected to a commercial thermal property analyzer, using the transient hot-wire technique. The estimation of measurement uncertainty was performed along with the assessment of regression models describing the trend of measured quantities as a function of temperature to be used in simulations involving heat transfer in kidney tissue. A direct comparison of the thermal properties of the same tissue from two different species, i.e., porcine and bovine kidney tissues, with the same experimental transient hot-wire technique, was conducted to provide indications on the possible inter-species variabilities of k and α at different selected temperatures. Exponential fitting curves were selected to interpolate the measured values for both porcine and bovine kidney tissues, for both k and α. The results show that the k and α values of the tissues remained rather constant from room temperature up to the onset of water evaporation, and a more marked increase was observed afterward. Indeed, at the highest investigated temperatures, i.e., 90.0-92.8 °C, the average k values were subject to 1.2- and 1.3-fold increases, compared to their nominal values at room temperature, in porcine and bovine kidney tissue, respectively. Moreover, at 90.0-92.8 °C, 1.4- and 1.2-fold increases in the average values of α, compared to baseline values, were observed for porcine and bovine kidney tissue, respectively. No statistically significant differences were found between the thermal properties of porcine and bovine kidney tissues at the same selected tissue temperatures despite their anatomical and structural differences. The provided quantitative values and best-fit regression models can be used to enhance the accuracy of the prediction capability of numerical models of thermal therapies. Furthermore, this study may provide insights into the refinement of protocols for the realization of tissue-mimicking phantoms and the choice of tissue models for bioheat transfer studies in experimental laboratories.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Paola Saccomandi
- Department of Mechanical Engineering, Politecnico di Milano, 20156 Milan, Italy; (L.B.); (S.F.); (S.G.); (S.G.); (C.I.); (S.A.)
| |
Collapse
|
7
|
Namakshenas P, Di Matteo FM, Bianchi L, Faiella E, Stigliano S, Quero G, Saccomandi P. Optimization of laser dosimetry based on patient-specific anatomical models for the ablation of pancreatic ductal adenocarcinoma tumor. Sci Rep 2023; 13:11053. [PMID: 37422486 PMCID: PMC10329695 DOI: 10.1038/s41598-023-37859-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 06/28/2023] [Indexed: 07/10/2023] Open
Abstract
Laser-induced thermotherapy has shown promising potential for the treatment of unresectable primary pancreatic ductal adenocarcinoma tumors. Nevertheless, heterogeneous tumor environment and complex thermal interaction phenomena that are established under hyperthermic conditions can lead to under/over estimation of laser thermotherapy efficacy. Using numerical modeling, this paper presents an optimized laser setting for Nd:YAG laser delivered by a bare optical fiber (300 µm in diameter) at 1064 nm working in continuous mode within a power range of 2-10 W. For the thermal analysis, patient-specific 3D models were used, consisting of tumors in different portions of the pancreas. The optimized laser power and time for ablating the tumor completely and producing thermal toxic effects on the possible residual tumor cells beyond the tumor margins were found to be 5 W for 550 s, 7 W for 550 s, and 8 W for 550 s for the pancreatic tail, body, and head tumors, respectively. Based on the results, during the laser irradiation at the optimized doses, thermal injury was not evident either in the 15 mm lateral distances from the optical fiber or in the nearby healthy organs. The present computational-based predictions are also in line with the previous ex vivo and in vivo studies, hence, they can assist in the estimation of the therapeutic outcome of laser ablation for pancreatic neoplasms prior to clinical trials.
Collapse
Affiliation(s)
- Pouya Namakshenas
- Department of Mechanical Engineering, Politecnico di Milano, 20156, Milan, Italy
| | | | - Leonardo Bianchi
- Department of Mechanical Engineering, Politecnico di Milano, 20156, Milan, Italy
| | - Eliodoro Faiella
- Radiology Unit, Fondazione Policlinico Universitario Campus Biomedico, Rome, Italy
| | - Serena Stigliano
- Operative Endoscopy Department, Fondazione Policlinico Universitario Campus Biomedico, Rome, Italy
| | - Giuseppe Quero
- Pancreatic Surgery Unit, Gemelli Pancreatic Advanced Research Center (CRMPG), Fondazione Policlinico Universitario Agostino Gemelli IRCCS di Roma, Rome, Italy
- Università Cattolica del Sacro Cuore di Roma, 00168, Rome, Italy
| | - Paola Saccomandi
- Department of Mechanical Engineering, Politecnico di Milano, 20156, Milan, Italy.
| |
Collapse
|
8
|
Temperature Dependence of Thermal Properties of Ex Vivo Porcine Heart and Lung in Hyperthermia and Ablative Temperature Ranges. Ann Biomed Eng 2023; 51:1181-1198. [PMID: 36656452 PMCID: PMC10172290 DOI: 10.1007/s10439-022-03122-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Accepted: 12/25/2022] [Indexed: 01/20/2023]
Abstract
This work proposes the characterization of the temperature dependence of the thermal properties of heart and lung tissues from room temperature up to > 90 °C. The thermal diffusivity (α), thermal conductivity (k), and volumetric heat capacity (Cv) of ex vivo porcine hearts and deflated lungs were measured with a dual-needle sensor technique. α and k associated with heart tissue remained almost constant until ~ 70 and ~ 80 °C, accordingly. Above ~ 80 °C, a more substantial variation in these thermal properties was registered: at 94 °C, α and k respectively experienced a 2.3- and 1.5- fold increase compared to their nominal values, showing average values of 0.346 mm2/s and 0.828 W/(m·K), accordingly. Conversely, Cv was almost constant until 55 °C and decreased afterward (e.g., Cv = 2.42 MJ/(m3·K) at 94 °C). Concerning the lung tissue, both its α and k were characterized by an exponential increase with temperature, showing a marked increment at supraphysiological and ablative temperatures (at 91 °C, α and k were equal to 2.120 mm2/s and 2.721 W/(m·K), respectively, i.e., 13.7- and 13.1-fold higher compared to their baseline values). Regression analysis was performed to attain the best-fit curves interpolating the measured data, thus providing models of the temperature dependence of the investigated properties. These models can be useful for increasing the accuracy of simulation-based preplanning frameworks of interventional thermal procedures, and the realization of tissue-mimicking materials.
Collapse
|
9
|
Sebek J, Park WKC, Geimer S, Van Citters DW, Farah A, Dupuy DE, Meaney PM, Prakash P. Computational modeling of microwave ablation with thermal accelerants. Int J Hyperthermia 2023; 40:2255755. [PMID: 37710404 DOI: 10.1080/02656736.2023.2255755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 08/30/2023] [Accepted: 08/31/2023] [Indexed: 09/16/2023] Open
Abstract
PURPOSE To develop a computational model of microwave ablation (MWA) with a thermal accelerant gel and apply the model toward interpreting experimental observations in ex vivo bovine and in vivo porcine liver. METHODS A 3D coupled electromagnetic-heat transfer model was implemented to characterize thermal profiles within ex vivo bovine and in vivo porcine liver tissue during MWA with the HeatSYNC thermal accelerant. Measured temperature dependent dielectric and thermal properties of the HeatSYNC gel were applied within the model. Simulated extents of MWA zones and transient temperature profiles were compared against experimental measurements in ex vivo bovine liver. Model predictions of thermal profiles under in vivo conditions in porcine liver were used to analyze thermal ablations observed in prior experiments in porcine liver in vivo. RESULTS Measured electrical conductivity of the HeatSYNC gel was ∼83% higher compared to liver at room temperature, with positive linear temperature dependency, indicating increased microwave absorption within HeatSYNC gel compared to tissue. In ex vivo bovine liver, model predicted ablation zone extents of (31.5 × 36) mm with the HeatSYNC, compared to (32.9 ± 2.6 × 40.2 ± 2.3) mm in experiments (volume differences 4 ± 4.1 cm3). Computational models under in vivo conditions in porcine liver suggest approximating the HeatSYNC gel spreading within liver tissue during ablations as a plausible explanation for larger ablation zones observed in prior in vivo studies. CONCLUSION Computational models of MWA with thermal accelerants provide insight into the impact of accelerant on MWA, and with further development, could predict ablations with a variety of gel injection sites.
Collapse
Affiliation(s)
- Jan Sebek
- Department of Electrical and Computer Engineering, Kansas State University, Manhattan, Kansas, USA
| | | | - Shireen Geimer
- Expeditionary School at Black River, Ludlow, Vermont, USA
- Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire, USA
| | | | | | | | - Paul M Meaney
- Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire, USA
| | - Punit Prakash
- Department of Electrical and Computer Engineering, Kansas State University, Manhattan, Kansas, USA
| |
Collapse
|
10
|
Jin X, Liu W, Li Y, Qian L, Zhu Q, Li W, Qian Z. Evaluation method of ex vivo porcine liver reduced scattering coefficient during microwave ablation based on temperature. BIOMED ENG-BIOMED TE 2022; 67:491-501. [DOI: 10.1515/bmt-2022-0189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Accepted: 08/01/2022] [Indexed: 11/15/2022]
Abstract
Abstract
The principle of microwave ablation (MWA) is to cause irreversible damage (protein coagulation, necrosis, etc.) to tumor cells at a certain temperature by heating, thereby destroying the tumor. We have long used functional near-infrared spectroscopy (fNIRs) to monitor clinical thermal ablation efficacy. After a lot of experimental verification, it can be found that there is a clear correlation between the reduced scattering coefficient and the degree of tissue damage. During the MWA process, the reduced scattering coefficient has a stable change. Therefore, both temperature (T) and reduced scattering coefficient (
μ
s
′
${\mu }_{s}^{\prime }$
) are related to the thermal damage of the tissue. This paper mainly studies the changing law of T and
μ
s
′
${\mu }_{s}^{\prime }$
during MWA and establishes a relationship model. The two-parameter simultaneous acquisition system was designed and used to obtain the T and
μ
s
′
${\mu }_{s}^{\prime }$
of the ex vivo porcine liver during MWA. The correlation model between T and
μ
s
′
${\mu }_{s}^{\prime }$
is established, enabling the quantitative estimation of
μ
s
′
${\mu }_{s}^{\prime }$
of porcine liver based on T. The maximum and the minimum relative errors of
μ
s
′
${\mu }_{s}^{\prime }$
are 79.01 and 0.39%, respectively. Through the electromagnetic simulation of the temperature field during MWA, 2D and 3D fields of reduced scattering coefficient can also be obtained using this correlation model. This study contributes to realize the preoperative simulation of the optical parameter field of microwave ablation and provide 2D/3D therapeutic effect for clinic.
Collapse
Affiliation(s)
- Xiaofei Jin
- Department of Biomedical Engineering , College of Automation Engineering, Nanjing University of Aeronautics and Astronautics , Nanjing , China
| | - Wenwen Liu
- Department of Biomedical Engineering , College of Automation Engineering, Nanjing University of Aeronautics and Astronautics , Nanjing , China
| | - Yiran Li
- Department of Biomedical Engineering , College of Automation Engineering, Nanjing University of Aeronautics and Astronautics , Nanjing , China
| | - Lu Qian
- Department of Biomedical Engineering , College of Automation Engineering, Nanjing University of Aeronautics and Astronautics , Nanjing , China
| | - Qiaoqiao Zhu
- Department of Biomedical Engineering , College of Automation Engineering, Nanjing University of Aeronautics and Astronautics , Nanjing , China
| | - Weitao Li
- Department of Biomedical Engineering , College of Automation Engineering, Nanjing University of Aeronautics and Astronautics , Nanjing , China
| | - Zhiyu Qian
- Department of Biomedical Engineering , College of Automation Engineering, Nanjing University of Aeronautics and Astronautics , Nanjing , China
| |
Collapse
|
11
|
Ren Y, Yan Y, Qi H. Photothermal conversion and transfer in photothermal therapy: From macroscale to nanoscale. Adv Colloid Interface Sci 2022; 308:102753. [PMID: 36007283 DOI: 10.1016/j.cis.2022.102753] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 08/08/2022] [Accepted: 08/10/2022] [Indexed: 12/17/2022]
Abstract
Photothermal therapy (PTT) is a promising alternative therapy for benign or even malignant tumors. To improve the selective heating of tumor cells, target-specific photothermal conversion agents are often included, especially nanoparticles. Meanwhile, some indirect methods by manipulating the radiation and heat delivery are also adopted. Therefore, to gain a clear understanding of the mechanism, and to improve the controllability of PTT, a few issues need to be clarified, including bioheat and radiation transfer, localized and collective heating of nanoparticles, etc. In this review, we provide an introduction to the typical bioheat transfer and radiation transfer models along with the dynamic thermophysical properties of biological tissue. On this basis, we reviewed the most recent advances in the temperature control methods in PTT from macroscale to nanoscale. Most importantly, a comprehensive introduction of the localized and collective heating effects of nanoparticle clusters is provided to give a clear insight into the mechanism for PPT from the microscale and nanoscale point of view.
Collapse
Affiliation(s)
- Yatao Ren
- Faculty of Engineering, University of Nottingham, University Park, Nottingham NG7 2RD, United Kingdom; School of Energy Science and Engineering, Harbin Institute of Technology, Harbin 150001, PR China
| | - Yuying Yan
- Faculty of Engineering, University of Nottingham, University Park, Nottingham NG7 2RD, United Kingdom.
| | - Hong Qi
- School of Energy Science and Engineering, Harbin Institute of Technology, Harbin 150001, PR China.
| |
Collapse
|
12
|
Jin X, Feng Y, Zhu R, Qian L, Yang Y, Yu Q, Zou Z, Li W, Liu Y, Qian Z. Temperature control and intermittent time-set protocol optimization for minimizing tissue carbonization in microwave ablation. Int J Hyperthermia 2022; 39:868-879. [PMID: 35858640 DOI: 10.1080/02656736.2022.2075041] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
PURPOSE The charring tissue formation in the ablated lesion during the microwave ablation (MWA) of tumors would induce various unwanted inflammatory responses. This paper aimed to deliver appropriate thermal dose for effective ablations while preventing tissue carbonization by optimizing the treatment protocol during MWA with the set combinations of temperature control and pulsed microwave energy delivery. MATERIAL AND METHODS The thermal phase transition of ex vivo porcine liver tissues were recorded by differential scanning calorimetry (DSC) to determine the temperature threshold during microwave output control. MWA was performed by an in-house built system with the ease of microwave output parameter adjustment and real-time temperature monitoring. The effects of continuous and pulsed microwave deliveries as well as various intermittent time-set of MWA were evaluated by measuring the dimensions of the coagulation zone and the carbonization zone. RESULTS The DSC scans demonstrated that the ex vivo porcine liver tissues have been in a state of endothermic heat during the heating process, where the maximum absorbed heat occurred at the temperature of 105 °C ± 5 °C. The temperature control during MWA resulted in effective coagulative necrosis while preventing tissue carbonization, after setting 100 °C as the upper threshold temperature and 60 °C as the lower threshold. Both the numerical simulation and ex vivo experiments have shown that, upon the optimization of the time-set parameters in the periodic intermittent pulsed microwave output, the tissue carbonization was significantly diminished. CONCLUSION This study developed a straight-forward anti-carbonization strategy in MWA by modulating the pulsing mode and intermittent time. The programmed protocols of intermittent pulsing MWA have demonstrated its potentials toward future expansion of MWA technology in clinical application.
Collapse
Affiliation(s)
- Xiaofei Jin
- Department of Biomedical Engineering, College of Automation Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, China
| | - Yu Feng
- Department of Biomedical Engineering, College of Automation Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, China
| | - Roujun Zhu
- Department of Biomedical Engineering, College of Automation Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, China
| | - Lu Qian
- Department of Biomedical Engineering, College of Automation Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, China
| | - Yamin Yang
- Department of Biomedical Engineering, College of Automation Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, China
| | - Qindong Yu
- Department of Biomedical Engineering, College of Automation Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, China
| | - Zhihan Zou
- Department of Biomedical Engineering, College of Automation Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, China
| | - Weitao Li
- Department of Biomedical Engineering, College of Automation Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, China
| | - Yangyang Liu
- Department of Biomedical Engineering, College of Automation Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, China
| | - Zhiyu Qian
- Department of Biomedical Engineering, College of Automation Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, China
| |
Collapse
|
13
|
Asadi S, Korganbayev S, Xu W, Mapanao AK, Voliani V, Lehto VP, Saccomandi P. Experimental Evaluation of Radiation Response and Thermal Properties of NPs-Loaded Tissues-Mimicking Phantoms. NANOMATERIALS 2022; 12:nano12060945. [PMID: 35335758 PMCID: PMC8950154 DOI: 10.3390/nano12060945] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 03/06/2022] [Accepted: 03/09/2022] [Indexed: 02/04/2023]
Abstract
Many efforts have recently concentrated on constructing and developing nanoparticles (NPs) as promising thermal agent for optical hyperthermia and photothermal therapy. However, thermal energy transfer in biological tissue is a complex process involving different mechanisms such as conduction, convection, radiation. Therefore, having information about thermal properties of tissue especially when NPs are embedded in is a necessity for predicting the heat transfer during hyperthermia. In this work, the thermal properties of solid phantom based on agar in the presence of three different nanoparticles (BPSi, tNAs, GNRs) and alone were measured and reported as a function of temperature (ranging from 22 to 62 °C). The thermal response of these NPs to an 808 nm laser beam with three different powers were studied in the water comparatively. Agar and tNAs have almost constant thermal properties in the considered range. Among the three NPs, gold has the highest conductivity and diffusivity. At 62 °C BPSi NPs have the similar amount of increase for the diffusivity. The thermal parameters reported in this paper can be useful for the mathematical modeling. Irradiation of the NPs-loaded water phantom displayed the highest radiosensitivity of gold among the three mentioned NPs. However, for the higher power of irradiation, BPSi and tNAs NPs showed the increased absorption of heat during shorter time and the increased temperature gradient slope for the initial 15 s after the irradiation started. The three NPs showed different thermal and irradiation response behavior; however, this comparison study notes the worth of having information about thermal parameters of NPs-loaded tissue for pre-clinical planning.
Collapse
Affiliation(s)
- Somayeh Asadi
- Department of Mechanical Engineering, Politecnico di Milano, 20156 Milan, Italy; (S.K.); (P.S.)
- Correspondence: ; Tel.: +39-022-399-8572
| | - Sanzhar Korganbayev
- Department of Mechanical Engineering, Politecnico di Milano, 20156 Milan, Italy; (S.K.); (P.S.)
| | - Wujun Xu
- Department of Applied Physics, University of Eastern Finland, 70211 Kuopio, Finland; (W.X.); (V.-P.L.)
| | - Ana Katrina Mapanao
- Center for Nanotechnology Innovation, Istituto Italiano di Tecnologia, 56127 Pisa, Italy; (A.K.M.); (V.V.)
| | - Valerio Voliani
- Center for Nanotechnology Innovation, Istituto Italiano di Tecnologia, 56127 Pisa, Italy; (A.K.M.); (V.V.)
| | - Vesa-Pekka Lehto
- Department of Applied Physics, University of Eastern Finland, 70211 Kuopio, Finland; (W.X.); (V.-P.L.)
| | - Paola Saccomandi
- Department of Mechanical Engineering, Politecnico di Milano, 20156 Milan, Italy; (S.K.); (P.S.)
| |
Collapse
|
14
|
Bianchi L, Cavarzan F, Ciampitti L, Cremonesi M, Grilli F, Saccomandi P. Thermophysical and mechanical properties of biological tissues as a function of temperature: a systematic literature review. Int J Hyperthermia 2022; 39:297-340. [DOI: 10.1080/02656736.2022.2028908] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Affiliation(s)
- Leonardo Bianchi
- Department of Mechanical Engineering, Politecnico di Milano, Milan, Italy
| | - Fabiana Cavarzan
- Department of Mechanical Engineering, Politecnico di Milano, Milan, Italy
| | - Lucia Ciampitti
- Department of Mechanical Engineering, Politecnico di Milano, Milan, Italy
| | - Matteo Cremonesi
- Department of Mechanical Engineering, Politecnico di Milano, Milan, Italy
| | - Francesca Grilli
- Department of Mechanical Engineering, Politecnico di Milano, Milan, Italy
| | - Paola Saccomandi
- Department of Mechanical Engineering, Politecnico di Milano, Milan, Italy
| |
Collapse
|
15
|
Pérez JJ, Nadal E, Berjano E, González-Suárez A. Computer modeling of radiofrequency cardiac ablation including heartbeat-induced electrode displacement. Comput Biol Med 2022; 144:105346. [DOI: 10.1016/j.compbiomed.2022.105346] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 02/13/2022] [Accepted: 02/21/2022] [Indexed: 12/12/2022]
|
16
|
Theoretical Evaluation of Microwave Ablation Applied on Muscle, Fat and Bone: A Numerical Study. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11178271] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
(1) Background: Microwave ablation (MWA) is a common tumor ablation surgery. Because of the high temperature of the ablation antenna, it is strongly destructive to surrounding vital tissues, resulting in high professional requirements for clinicians. The method used to carry out temperature observation and damage prediction in MWA is significant; (2) Methods: This work employs numerical study to explore temperature distribution of typical tissues in MWA. Firstly, clinical MWA based on isolated biological tissue is implemented. Then, the Pennes models and microwave radiation physics are established based on experimental parameters and existing related research. Initial values and boundary conditions are adjusted to better meet the real clinical materials and experimental conditions. Finally, clinical MWA data test this model. On the premise that the model is matched with clinical MWA, fat and bone are deduced for further heat transfer analysis. (3) Results: Numerical study obtains the temperature distribution of biological tissue in MWA. It observes the heat transfer law of ablation antenna in biological tissue. Additionally, combined with temperature threshold, it generates thermal damage of biological tissues and predicts the possible risks in MWA; (4) Conclusions: This work proposes a numerical study of typical biological tissues. It provides a new theoretical basis for clinically thermal ablation surgery.
Collapse
|
17
|
Mohammadi A, Bianchi L, Korganbayev S, De Landro M, Saccomandi P. Thermomechanical Modeling of Laser Ablation Therapy of Tumors: Sensitivity Analysis and Optimization of Influential Variables. IEEE Trans Biomed Eng 2021; 69:302-313. [PMID: 34181533 DOI: 10.1109/tbme.2021.3092889] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
In cancer treatment, laser ablation is a promising technique used to induce localized thermal damage. Different variables influence the temperature distribution in the tissue and the resulting therapy efficacy; thus, the optimal therapy settings are required for obtaining the desired clinical outcome. In this work, thermomechanical modeling of contactless laser ablation was implemented to analyze the sensitivity of independent variables on the optimal treatment conditions. The Finite Element Method was utilized to solve the governing equations, i.e., the bioheat, mechanical deformation, and the Navier-Stokes equations. Validation of the model was evaluated by comparing experimental and simulated temperatures, which indicated high accuracy for estimating temperature. In particular, the results showed that the model is capable of estimating temperature with a good correlation factor (R=0.98) and low Mean Absolute Error (3.9 C). A sensitivity analysis based on laser irradiation time, power, beam distribution, and the blood vessel depth on temperature distribution and fraction of necrotic tissue was performed. Based on the most significant variables i.e., laser irradiation time and power, an optimization process was performed. This resulted into an indication of the optimal therapy settings for achieving maximum procedure efficiency i.e., the required fraction of necrotic tissue within the target volume, constituted by tumor and safety margins around it.
Collapse
|
18
|
Barnat N, Grisey A, Gerold B, Yon S, Anquez J, Aubry JF. Vein wall shrinkage induced by thermal coagulation with high-intensity-focused ultrasound: numerical modeling and in vivo experiments in sheep. Int J Hyperthermia 2021; 37:1238-1247. [PMID: 33164625 DOI: 10.1080/02656736.2020.1834626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Abstract
BACKGROUND Varicose veins are a common disease that may significantly affect quality of life. Different approaches are currently used in clinical practice to treat this pathology. MATERIALS AND METHODS In thermal therapy (radiofrequency or laser therapy), the vein is directly heated to a high temperature to induce vein wall coagulation, and the heat induces denaturation of the intramural collagen, which results macroscopically in vein shrinkage. Thermal vein shrinkage is a physical indicator of the efficiency of endovenous treatment. High-intensity focused ultrasound (HIFU) is a noninvasive technique that can thermally coagulate vein walls and induce vein shrinkage. In this study, we evaluated the vein shrinkage induced in vivo by extracorporeal HIFU ablation of sheep veins: six lateral saphenous veins (3.4mm mean diameter) were sonicated for 8 s with 3MHz continuous waves. Ultrasound imaging was performed before and immediately post-HIFU to quantify the HIFU-induced shrinkage. RESULTS Luminal constriction was observed in 100% (6/6) of the treated veins. The immediate findings showed a mean diameter constriction of 53%. The experimental HIFU-induced shrinkage data were used to validate a numerical model developed to predict the thermally induced vein contraction during HIFU treatment. CONCLUSIONS This model is based on the use of the k-wave library and published contraction rates of vessels immersed in hot water baths. The simulation results agreed well with those of in vivo experiments, showing a mean percent difference of 5%. The numerical model could thus be a valuable tool for optimizing ultrasound parameters as functions of the vein diameter, and future clinical trials are anticipated.
Collapse
Affiliation(s)
- Nesrine Barnat
- Physics for Medicine Paris, Inserm, ESPCI Paris, CNRS, PSL Research University, Paris, France.,Theraclion, Malakoff, France
| | | | | | | | | | - Jean-François Aubry
- Physics for Medicine Paris, Inserm, ESPCI Paris, CNRS, PSL Research University, Paris, France
| |
Collapse
|
19
|
Mohammadi A, Bianchi L, Asadi S, Saccomandi P. Measurement of Ex Vivo Liver, Brain and Pancreas Thermal Properties as Function of Temperature. SENSORS (BASEL, SWITZERLAND) 2021; 21:4236. [PMID: 34205567 PMCID: PMC8235733 DOI: 10.3390/s21124236] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 06/04/2021] [Accepted: 06/17/2021] [Indexed: 12/11/2022]
Abstract
The ability to predict heat transfer during hyperthermal and ablative techniques for cancer treatment relies on understanding the thermal properties of biological tissue. In this work, the thermal properties of ex vivo liver, pancreas and brain tissues are reported as a function of temperature. The thermal diffusivity, thermal conductivity and volumetric heat capacity of these tissues were measured in the temperature range from 22 to around 97 °C. Concerning the pancreas, a phase change occurred around 45 °C; therefore, its thermal properties were investigated only until this temperature. Results indicate that the thermal properties of the liver and brain have a non-linear relationship with temperature in the investigated range. In these tissues, the thermal properties were almost constant until 60 to 70 °C and then gradually changed until 92 °C. In particular, the thermal conductivity increased by 100% for the brain and 60% for the liver up to 92 °C, while thermal diffusivity increased by 90% and 40%, respectively. However, the heat capacity did not significantly change in this temperature range. The thermal conductivity and thermal diffusivity were dramatically increased from 92 to 97 °C, which seems to be due to water vaporization and state transition in the tissues. Moreover, the measurement uncertainty, determined at each temperature, increased after 92 °C. In the temperature range of 22 to 45 °C, the thermal properties of pancreatic tissue did not change significantly, in accordance with the results for the brain and liver. For the three tissues, the best fit curves are provided with regression analysis based on measured data to predict the tissue thermal behavior. These curves describe the temperature dependency of tissue thermal properties in a temperature range relevant for hyperthermia and ablation treatments and may help in constructing more accurate models of bioheat transfer for optimization and pre-planning of thermal procedures.
Collapse
Affiliation(s)
| | | | | | - Paola Saccomandi
- Department of Mechanical Engineering, Politecnico di Milano, 20156 Milan, Italy; (A.M.); (L.B.); (S.A.)
| |
Collapse
|
20
|
Thermal Characterization of Phantoms Used for Quality Assurance of Deep Hyperthermia Systems. SENSORS 2020; 20:s20164549. [PMID: 32823788 PMCID: PMC7472229 DOI: 10.3390/s20164549] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 08/11/2020] [Accepted: 08/12/2020] [Indexed: 11/17/2022]
Abstract
Tissue mimicking phantoms are frequently used in hyperthermia applications for device and protocol optimization. Unfortunately, a commonly experienced limitation is that their precise thermal properties are not available. Therefore, in this study, the thermal properties of three currently used QA phantoms for deep hyperthermia are measured with an “off-shelf” commercial thermal property analyzer. We have measured averaged values of thermal conductivity (k = 0.59 ± 0.07 Wm−1K−1), volumetric heat capacity (C = 3.85 ± 0.45 MJm−3K−1) and thermal diffusivity (D = 0.16 ± 0.02 mm2s−1). These values are comparable with reported values of internal organs, such as liver, kidney and muscle. In addition, a sensitivity study of the performance of the commercial sensor is conducted. To ensure correct thermal measurements, the sample under test should entirely cover the length of the sensor, and a minimum of 4 mm of material parallel to the sensor in all directions should be guaranteed.
Collapse
|
21
|
Silva NP, Bottiglieri A, Conceição RC, O’Halloran M, Farina L. Characterisation of Ex Vivo Liver Thermal Properties for Electromagnetic-Based Hyperthermic Therapies. SENSORS (BASEL, SWITZERLAND) 2020; 20:E3004. [PMID: 32466323 PMCID: PMC7285484 DOI: 10.3390/s20103004] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 05/21/2020] [Accepted: 05/22/2020] [Indexed: 12/18/2022]
Abstract
Electromagnetic-based hyperthermic therapies induce a controlled increase of temperature in a specific tissue target in order to increase the tissue perfusion or metabolism, or even to induce cell necrosis. These therapies require accurate knowledge of dielectric and thermal properties to optimise treatment plans. While dielectric properties have been well investigated, only a few studies have been conducted with the aim of understanding the changes of thermal properties as a function of temperature; i.e., thermal conductivity, volumetric heat capacity and thermal diffusivity. In this study, we experimentally investigate the thermal properties of ex vivo ovine liver in the hyperthermic temperature range, from 25 °C to 97 °C. A significant increase in thermal properties is observed only above 90 °C. An analytical model is developed to model the thermal properties as a function of temperature. Thermal properties are also investigated during the natural cooling of the heated tissue. A reversible phenomenon of the thermal properties is observed; during the cooling, thermal properties followed the same behaviour observed in the heating process. Additionally, tissue density and water content are evaluated at different temperatures. Density does not change with temperature; mass and volume losses change proportionally due to water vaporisation. A 30% water loss was observed above 90 °C.
Collapse
Affiliation(s)
- Nuno P. Silva
- Translational Medical Device Lab, National University of Ireland Galway, H91 TK33 Galway, Ireland; (N.P.S.); (A.B.); (M.O.)
- Faculdade de Ciências da Universidade de Lisboa, 1749-016 Lisbon, Portugal
| | - Anna Bottiglieri
- Translational Medical Device Lab, National University of Ireland Galway, H91 TK33 Galway, Ireland; (N.P.S.); (A.B.); (M.O.)
| | - Raquel C. Conceição
- Instituto de Biofísica e Engenharia Biomédica, Faculdade de Ciências Universidade de Lisboa, 1749-016 Lisbon, Portugal;
| | - Martin O’Halloran
- Translational Medical Device Lab, National University of Ireland Galway, H91 TK33 Galway, Ireland; (N.P.S.); (A.B.); (M.O.)
| | - Laura Farina
- Translational Medical Device Lab, National University of Ireland Galway, H91 TK33 Galway, Ireland; (N.P.S.); (A.B.); (M.O.)
- CÚRAM, SFI Research Centre for Medical Devices, National University of Ireland Galway, H91 W2TY Galway, Ireland
| |
Collapse
|
22
|
Yang CH, Li W, Chen RK. Determination of Tissue Thermal Conductivity as a Function of Thermal Dose and Its Application in Finite Element Modeling of Electrosurgical Vessel Sealing. IEEE Trans Biomed Eng 2020; 67:2862-2869. [PMID: 32054566 DOI: 10.1109/tbme.2020.2972465] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
OBJECTIVE Electrosurgical vessel sealing is a process commonly used to control bleeding during surgical procedures. Finite element (FE) modeling is often performed to obtain a better understanding of thermal spread during this process. The accuracy of the FE model depends on the implemented material properties. Thermal conductivity is one of the most important properties that affect temperature distribution. The goal of this study is to determine the tissue thermal conductivity as a function of thermal dose. Methods: We developed an iterative approach to correlating tissue thermal conductivity to more accurately calculated thermal dose, which cannot be experimentally measured. The resulting regression model was then implemented into an electrosurgical vessel sealing FE model to examine the accuracy of this FE model. Results: The results show that with the regression model, more reasonable temperature and thermal dose prediction can be achieved at the center of the sealed vessel tissue. The resulting electrical current and impedance from the FE model match with the experimental results. Conclusion: The developed approach can be used to determine the correlation between thermal dose and thermal conductivity. Describing the thermal conductivity as a function of thermal dose allows modeling of irreversible changes in tissue properties. Significance: By having a more accurate temperature estimation at the center of the sealed vessel, more insight is provided into how the tissue reacts during the vessel sealing process.
Collapse
|
23
|
Singh S, Melnik R. Coupled thermo-electro-mechanical models for thermal ablation of biological tissues and heat relaxation time effects. Phys Med Biol 2019; 64:245008. [PMID: 31600740 DOI: 10.1088/1361-6560/ab4cc5] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Thermal ablation is a widely applied electrosurgical process in medical treatment of soft biological tissues. Numerical modeling and simulations play an important role in prediction of temperature distribution and damage volume during the treatment planning stage of associated therapies. In this contribution we report a coupled thermo-electro-mechanical model, accounting for heat relaxation time, for more accurate and precise prediction of the temperature distribution, tissue deformation and damage volume during the thermal ablation of biological tissues. Finite element solutions are obtained for most widely used percutaneous thermal ablative techniques, viz., radiofrequency ablation (RFA) and microwave ablation (MWA). Importantly, both tissue expansion and shrinkage have been considered for modeling the tissue deformation in the coupled model of high temperature thermal ablation. The coupled model takes into account the non-Fourier effects, considering both single-phase-lag (SPL) and dual-phase-lag (DPL) models of bio-heat transfer. The temperature-dependent electrical and thermal parameters, damage-dependent blood perfusion rate and phase change effect accounting for tissue vaporization have been accounted for obtaining more clinically relevant model. The proposed model predictions are found to be in good agreement against the temperature distribution and damage volume reported by previous experimental studies. The numerical simulation results revealed that the non-Fourier effects cause a decrease in the predicted temperature distribution, tissue deformation and damage volume during the high temperature thermal ablative procedures. Furthermore, the effects of different magnitudes of phase lags of the heat flux and temperature gradient on the predicted treatment outcomes of the considered thermal ablative modalities are also quantified and discussed in detail.
Collapse
Affiliation(s)
- Sundeep Singh
- MS2Discovery Interdisciplinary Research Institute, Wilfrid Laurier University, 75 University Avenue West, Waterloo, Ontario N2L 3C5, Canada. Author to whom any correspondence should be addressed
| | | |
Collapse
|