1
|
Zhang Y, Zhu Q, Tian B, Duan C. New-Generation Ferroelectric AlScN Materials. NANO-MICRO LETTERS 2024; 16:227. [PMID: 38918252 PMCID: PMC11199478 DOI: 10.1007/s40820-024-01441-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 05/06/2024] [Indexed: 06/27/2024]
Abstract
Ferroelectrics have great potential in the field of nonvolatile memory due to programmable polarization states by external electric field in nonvolatile manner. However, complementary metal oxide semiconductor compatibility and uniformity of ferroelectric performance after size scaling have always been two thorny issues hindering practical application of ferroelectric memory devices. The emerging ferroelectricity of wurtzite structure nitride offers opportunities to circumvent the dilemma. This review covers the mechanism of ferroelectricity and domain dynamics in ferroelectric AlScN films. The performance optimization of AlScN films grown by different techniques is summarized and their applications for memories and emerging in-memory computing are illustrated. Finally, the challenges and perspectives regarding the commercial avenue of ferroelectric AlScN are discussed.
Collapse
Affiliation(s)
- Yalong Zhang
- Key Laboratory of Polar Materials and Devices, Ministry of Education, Shanghai Center of Brain-Inspired Intelligent Materials and Devices, Department of Electronics, East China Normal University, Shanghai, 200241, People's Republic of China
| | - Qiuxiang Zhu
- Key Laboratory of Polar Materials and Devices, Ministry of Education, Shanghai Center of Brain-Inspired Intelligent Materials and Devices, Department of Electronics, East China Normal University, Shanghai, 200241, People's Republic of China.
| | - Bobo Tian
- Key Laboratory of Polar Materials and Devices, Ministry of Education, Shanghai Center of Brain-Inspired Intelligent Materials and Devices, Department of Electronics, East China Normal University, Shanghai, 200241, People's Republic of China.
| | - Chungang Duan
- Key Laboratory of Polar Materials and Devices, Ministry of Education, Shanghai Center of Brain-Inspired Intelligent Materials and Devices, Department of Electronics, East China Normal University, Shanghai, 200241, People's Republic of China
- Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, 030006, Shanxi, People's Republic of China
| |
Collapse
|
2
|
Gaggio B, Jan A, Muller M, Salonikidou B, Bakhit B, Hellenbrand M, Di Martino G, Yildiz B, MacManus-Driscoll JL. Sodium-Controlled Interfacial Resistive Switching in Thin Film Niobium Oxide for Neuromorphic Applications. CHEMISTRY OF MATERIALS : A PUBLICATION OF THE AMERICAN CHEMICAL SOCIETY 2024; 36:5764-5774. [PMID: 38883429 PMCID: PMC11170940 DOI: 10.1021/acs.chemmater.4c00965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 05/24/2024] [Accepted: 05/24/2024] [Indexed: 06/18/2024]
Abstract
A double layer 2-terminal device is employed to show Na-controlled interfacial resistive switching and neuromorphic behavior. The bilayer is based on interfacing biocompatible NaNbO3 and Nb2O5, which allows the reversible uptake of Na+ in the Nb2O5 layer. We demonstrate voltage-controlled interfacial barrier tuning via Na+ transfer, enabling conductivity modulation and spike-amplitude- and spike-timing-dependent plasticity. The neuromorphic behavior controlled by Na+ ion dynamics in biocompatible materials shows potential for future low-power sensing electronics and smart wearables with local processing.
Collapse
Affiliation(s)
- Benedetta Gaggio
- Department of Materials Science and Metallurgy, University of Cambridge, 27 Charles Babbage Road, Cambridge CB3 0FS, U.K
| | - Atif Jan
- Department of Materials Science and Metallurgy, University of Cambridge, 27 Charles Babbage Road, Cambridge CB3 0FS, U.K
| | - Moritz Muller
- Department of Materials Science and Metallurgy, University of Cambridge, 27 Charles Babbage Road, Cambridge CB3 0FS, U.K
| | - Barbara Salonikidou
- Department of Materials Science and Metallurgy, University of Cambridge, 27 Charles Babbage Road, Cambridge CB3 0FS, U.K
| | - Babak Bakhit
- Department of Materials Science and Metallurgy, University of Cambridge, 27 Charles Babbage Road, Cambridge CB3 0FS, U.K
- Electrical Engineering Division, Department of Engineering, University of Cambridge, JJ Thomson Avenue, Cambridge CB3 0FA, U.K
- Thin Film Physics Division, Department of Physics, Chemistry and Biology (IFM), Linköping University, Linköping SE-581 83, Sweden
| | - Markus Hellenbrand
- Department of Materials Science and Metallurgy, University of Cambridge, 27 Charles Babbage Road, Cambridge CB3 0FS, U.K
| | - Giuliana Di Martino
- Department of Materials Science and Metallurgy, University of Cambridge, 27 Charles Babbage Road, Cambridge CB3 0FS, U.K
| | - Bilge Yildiz
- Department of Nuclear Science and Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Judith L MacManus-Driscoll
- Department of Materials Science and Metallurgy, University of Cambridge, 27 Charles Babbage Road, Cambridge CB3 0FS, U.K
| |
Collapse
|
3
|
Lee K, Park K, Choi IH, Cho JW, Song MS, Kim CH, Lee JH, Lee JS, Park J, Chae SC. Deterministic Orientation Control of Ferroelectric HfO 2 Thin Film Growth by a Topotactic Phase Transition of an Oxide Electrode. ACS NANO 2024; 18:12707-12715. [PMID: 38733336 DOI: 10.1021/acsnano.3c07410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2024]
Abstract
The scale-free ferroelectricity with superior Si compatibility of HfO2 has reawakened the feasibility of scaled-down nonvolatile devices and beyond the complementary metal-oxide-semiconductor (CMOS) architecture based on ferroelectric materials. However, despite the rapid development, fundamental understanding, and control of the metastable ferroelectric phase in terms of oxygen ion movement of HfO2 remain ambiguous. In this study, we have deterministically controlled the orientation of a single-crystalline ferroelectric phase HfO2 thin film via oxygen ion movement. We induced a topotactic phase transition of the metal electrode accompanied by the stabilization of the differently oriented ferroelectric phase HfO2 through the migration of oxygen ions between the oxygen-reactive metal electrode and the HfO2 layer. By stabilizing different polarization directions of HfO2 through oxygen ion migration, we can gain a profound understanding of the oxygen ion-relevant unclear phenomena of ferroelectric HfO2.
Collapse
Affiliation(s)
- Kyoungjun Lee
- Department of Physics Education, Seoul National University, Seoul 08826, Korea
| | - Kunwoo Park
- School of Chemical and Biological Engineering, Institute of Chemical Process, Seoul National University, Seoul 08826, Korea
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Korea
| | - In Hyeok Choi
- Department of Physics and Photon Science, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Korea
| | - Jung Woo Cho
- Department of Physics Education, Seoul National University, Seoul 08826, Korea
| | - Myeong Seop Song
- Department of Physics Education, Seoul National University, Seoul 08826, Korea
| | - Chang Hoon Kim
- Department of Energy Engineering, School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Korea
| | - Jun Hee Lee
- Department of Energy Engineering, School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Korea
- Graduate School of Semiconductor Materials and Devices Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Korea
| | - Jong Seok Lee
- Department of Physics and Photon Science, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Korea
| | - Jungwon Park
- School of Chemical and Biological Engineering, Institute of Chemical Process, Seoul National University, Seoul 08826, Korea
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Korea
| | - Seung Chul Chae
- Department of Physics Education, Seoul National University, Seoul 08826, Korea
| |
Collapse
|
4
|
Zakusylo T, Quintana A, Lenzi V, Silva JPB, Marques L, Yano JLO, Lyu J, Sort J, Sánchez F, Fina I. Robust multiferroicity and magnetic modulation of the ferroelectric imprint field in heterostructures comprising epitaxial Hf 0.5Zr 0.5O 2 and Co. MATERIALS HORIZONS 2024; 11:2388-2396. [PMID: 38441222 PMCID: PMC11104484 DOI: 10.1039/d3mh01966g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 02/27/2024] [Indexed: 05/21/2024]
Abstract
Magnetoelectric multiferroics, either single-phase or composites comprising ferroelectric/ferromagnetic coupled films, are promising candidates for energy efficient memory computing. However, most of the multiferroic magnetoelectric systems studied so far are based on materials that are not compatible with industrial processes. Doped hafnia is emerging as one of the few CMOS-compatible ferroelectric materials. Thus, it is highly relevant to study the integration of ferroelectric hafnia into multiferroic systems. In particular, ferroelectricity in hafnia, and the eventual magnetoelectric coupling when ferromagnetic layers are grown atop of it, are very much dependent on quality of interfaces. Since magnetic metals frequently exhibit noticeable reactivity when grown onto oxides, it is expected that ferroelectricity and magnetoelectricity might be reduced in multiferroic hafnia-based structures. In this article, we present excellent ferroelectric endurance and retention in epitaxial Hf0.5Zr0.5O2 films grown on buffered silicon using Co as the top electrode. The crucial influence of a thin Pt capping layer grown on top of Co on the ferroelectric functional characteristics is revealed by contrasting the utilization of Pt-capped Co, non-capped Co and Pt. Magnetic control of the imprint electric field (up to 40% modulation) is achieved in Pt-capped Co/Hf0.5Zr0.5O2 structures, although this does not lead to appreciable tuning of the ferroelectric polarization, as a result of its high stability. Computation of piezoelectric and flexoelectric strain-mediated mechanisms of the observed magnetoelectric coupling reveal that flexoelectric contributions are likely to be at the origin of the large imprint electric field variation.
Collapse
Affiliation(s)
- Tetiana Zakusylo
- Institut de Ciència de Materials de Barcelona (ICMAB-CSIC), Campus UAB, Bellaterra 08193, Barcelona, Spain.
| | - Alberto Quintana
- Institut de Ciència de Materials de Barcelona (ICMAB-CSIC), Campus UAB, Bellaterra 08193, Barcelona, Spain.
| | - Veniero Lenzi
- CICECO - Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Aveiro 3810-193, Portugal
| | - José P B Silva
- Physics Center of Minho and Porto Universities (CF-UM-UP), University of Minho, Campus de Gualtar, Braga 4710-057, Portugal
- Laboratory of Physics for Materials and Emergent Technologies, LapMET, University of Minho, Braga 4710-057, Portugal
| | - Luís Marques
- Physics Center of Minho and Porto Universities (CF-UM-UP), University of Minho, Campus de Gualtar, Braga 4710-057, Portugal
- Laboratory of Physics for Materials and Emergent Technologies, LapMET, University of Minho, Braga 4710-057, Portugal
| | - José Luís Ortolá Yano
- Institut de Ciència de Materials de Barcelona (ICMAB-CSIC), Campus UAB, Bellaterra 08193, Barcelona, Spain.
| | - Jike Lyu
- Institut de Ciència de Materials de Barcelona (ICMAB-CSIC), Campus UAB, Bellaterra 08193, Barcelona, Spain.
| | - Jordi Sort
- Departament de Física, Universitat Autònoma de Barcelona, Bellaterra 08193, Spain
- ICREA, Pg. Lluís Companys 23, Barcelona 08010, Spain
| | - Florencio Sánchez
- Institut de Ciència de Materials de Barcelona (ICMAB-CSIC), Campus UAB, Bellaterra 08193, Barcelona, Spain.
| | - Ignasi Fina
- Institut de Ciència de Materials de Barcelona (ICMAB-CSIC), Campus UAB, Bellaterra 08193, Barcelona, Spain.
| |
Collapse
|
5
|
Guido R, Lu H, Lomenzo PD, Mikolajick T, Gruverman A, Schroeder U. Kinetics of N- to M-Polar Switching in Ferroelectric Al 1-xSc xN Capacitors. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2308797. [PMID: 38355302 DOI: 10.1002/advs.202308797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Indexed: 02/16/2024]
Abstract
Ferroelectric wurtzite-type aluminum scandium nitride (Al1-xScxN) presents unique properties that can enhance the performance of non-volatile memory technologies. The realization of the full potential of Al1-xScxN requires a comprehensive understanding of the mechanism of polarization reversal and domain structure dynamics involved in the ferroelectric switching process. In this work, transient current integration measurements performed by a pulse switching method are combined with domain imaging by piezoresponse force microscopy (PFM) to investigate the kinetics of domain nucleation and wall motion during polarization reversal in Al0.85Sc0.15N capacitors. In the studied electric field range (from 4.4 to 5.6 MV cm-1), ferroelectric switching proceeds via domain nucleation and wall movement. The currently available phenomenological models are shown to not fully capture all the details of the complex dynamics of polarization reversal in Al0.85Sc0.15N. PFM reveals a non-linear increase of both domain nucleation rate and lateral wall velocity during the switching process, as well as the dependency of the domain pattern on the polarization reversal direction. A continuously faster N- to M-polar switching upon cycling is reported and ascribed to an increasing number of M-polar nucleation sites and density of domain walls.
Collapse
Affiliation(s)
- Roberto Guido
- NaMLab gGmbH, Noethnizer Strasse 64a, 01187, Dresden, Germany
- Chair of Nanoelectronics, Technische Universität Dresden, Noethnizer Strasse 64, 01187, Dresden, Germany
| | - Haidong Lu
- Department of Physics and Astronomy, University of Nebraska, Lincoln, NE, 68588, USA
| | | | - Thomas Mikolajick
- NaMLab gGmbH, Noethnizer Strasse 64a, 01187, Dresden, Germany
- Chair of Nanoelectronics, Technische Universität Dresden, Noethnizer Strasse 64, 01187, Dresden, Germany
| | - Alexei Gruverman
- Department of Physics and Astronomy, University of Nebraska, Lincoln, NE, 68588, USA
| | - Uwe Schroeder
- NaMLab gGmbH, Noethnizer Strasse 64a, 01187, Dresden, Germany
| |
Collapse
|
6
|
Park JY, Choe DH, Lee DH, Yu GT, Yang K, Kim SH, Park GH, Nam SG, Lee HJ, Jo S, Kuh BJ, Ha D, Kim Y, Heo J, Park MH. Revival of Ferroelectric Memories Based on Emerging Fluorite-Structured Ferroelectrics. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2204904. [PMID: 35952355 DOI: 10.1002/adma.202204904] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/25/2022] [Indexed: 06/15/2023]
Abstract
Over the last few decades, the research on ferroelectric memories has been limited due to their dimensional scalability and incompatibility with complementary metal-oxide-semiconductor (CMOS) technology. The discovery of ferroelectricity in fluorite-structured oxides revived interest in the research on ferroelectric memories, by inducing nanoscale nonvolatility in state-of-the-art gate insulators by minute doping and thermal treatment. The potential of this approach has been demonstrated by the fabrication of sub-30 nm electronic devices. Nonetheless, to realize practical applications, various technical limitations, such as insufficient reliability including endurance, retention, and imprint, as well as large device-to-device-variation, require urgent solutions. Furthermore, such limitations should be considered based on targeting devices as well as applications. Various types of ferroelectric memories including ferroelectric random-access-memory, ferroelectric field-effect-transistor, and ferroelectric tunnel junction should be considered for classical nonvolatile memories as well as emerging neuromorphic computing and processing-in-memory. Therefore, from the viewpoint of materials science, this review covers the recent research focusing on ferroelectric memories from the history of conventional approaches to future prospects.
Collapse
Affiliation(s)
- Ju Yong Park
- Research Institute of Advanced Materials, Seoul National University, Seoul, 08826, Republic of Korea
| | - Duk-Hyun Choe
- Beyond Silicon Lab, Samsung Advanced Institute of Technology (SAIT), Suwon, 16678, Republic of Korea
| | - Dong Hyun Lee
- Department of Materials Science and Engineering and Inter-University Semiconductor Research Center, College of Engineering, Seoul National University, Seoul, 08826, Republic of Korea
| | - Geun Taek Yu
- School of Materials Science and Engineering, Pusan National University, Busan, 46241, Republic of Korea
| | - Kun Yang
- Department of Materials Science and Engineering and Inter-University Semiconductor Research Center, College of Engineering, Seoul National University, Seoul, 08826, Republic of Korea
| | - Se Hyun Kim
- Department of Materials Science and Engineering and Inter-University Semiconductor Research Center, College of Engineering, Seoul National University, Seoul, 08826, Republic of Korea
| | - Geun Hyeong Park
- Department of Materials Science and Engineering and Inter-University Semiconductor Research Center, College of Engineering, Seoul National University, Seoul, 08826, Republic of Korea
| | - Seung-Geol Nam
- Beyond Silicon Lab, Samsung Advanced Institute of Technology (SAIT), Suwon, 16678, Republic of Korea
| | - Hyun Jae Lee
- Beyond Silicon Lab, Samsung Advanced Institute of Technology (SAIT), Suwon, 16678, Republic of Korea
| | - Sanghyun Jo
- Beyond Silicon Lab, Samsung Advanced Institute of Technology (SAIT), Suwon, 16678, Republic of Korea
| | - Bong Jin Kuh
- Semiconductor Research and Development Center, Samsung Electronics, Hwaseong, 18448, Republic of Korea
| | - Daewon Ha
- Semiconductor Research and Development Center, Samsung Electronics, Hwaseong, 18448, Republic of Korea
| | - Yongsung Kim
- Beyond Silicon Lab, Samsung Advanced Institute of Technology (SAIT), Suwon, 16678, Republic of Korea
| | - Jinseong Heo
- Beyond Silicon Lab, Samsung Advanced Institute of Technology (SAIT), Suwon, 16678, Republic of Korea
| | - Min Hyuk Park
- Research Institute of Advanced Materials, Seoul National University, Seoul, 08826, Republic of Korea
- Department of Materials Science and Engineering and Inter-University Semiconductor Research Center, College of Engineering, Seoul National University, Seoul, 08826, Republic of Korea
| |
Collapse
|
7
|
Mikolajick T, Park MH, Begon-Lours L, Slesazeck S. From Ferroelectric Material Optimization to Neuromorphic Devices. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2206042. [PMID: 36017895 DOI: 10.1002/adma.202206042] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 08/11/2022] [Indexed: 06/15/2023]
Abstract
Due to the voltage driven switching at low voltages combined with nonvolatility of the achieved polarization state, ferroelectric materials have a unique potential for low power nonvolatile electronic devices. The competitivity of such devices is hindered by compatibility issues of well-known ferroelectrics with established semiconductor technology. The discovery of ferroelectricity in hafnium oxide changed this situation. The natural application of nonvolatile devices is as a memory cell. Nonvolatile memory devices also built the basis for other applications like in-memory or neuromorphic computing. Three different basic ferroelectric devices can be constructed: ferroelectric capacitors, ferroelectric field effect transistors and ferroelectric tunneling junctions. In this article first the material science of the ferroelectricity in hafnium oxide will be summarized with a special focus on tailoring the switching characteristics towards different applications.The current status of nonvolatile ferroelectric memories then lays the ground for looking into applications like in-memory computing. Finally, a special focus will be given to showcase how the basic building blocks of spiking neural networks, the neuron and the synapse, can be realized and how they can be combined to realize neuromorphic computing systems. A summary, comparison with other technologies like resistive switching devices and an outlook completes the paper.
Collapse
Affiliation(s)
- Thomas Mikolajick
- NaMLab gGmbH, Noethnitzer Strasse 64 a, 01187, Dresden, Germany
- Institute of Semiconductors and Microsystems, TU Dresden, 01069, Dresden, Germany
| | - Min Hyuk Park
- Department of Materials Science and Engineering and Inter-University Semiconductor Research Center, College of Engineering, Seoul National University, Gwanak-ro 1, Gwanak-gu, Seoul, 08826, Republic of Korea
| | | | | |
Collapse
|
8
|
Guido R, Mikolajick T, Schroeder U, Lomenzo PD. Role of Defects in the Breakdown Phenomenon of Al 1-xSc xN: From Ferroelectric to Filamentary Resistive Switching. NANO LETTERS 2023; 23:7213-7220. [PMID: 37523481 DOI: 10.1021/acs.nanolett.3c02351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/02/2023]
Abstract
Aluminum scandium nitride (Al1-xScxN), with its large remanent polarization, is an attractive material for high-density ferroelectric random-access memories. However, the cycling endurance of Al1-xScxN ferroelectric capacitors is far below what can be achieved in other ferroelectric materials. Understanding the nature and dynamics of the breakdown mechanism is of the utmost importance for improving memory reliability. The breakdown phenomenon in ferroelectric Al1-xScxN is proposed to be an impulse thermal filamentary-driven process along preferential defective pathways. For the first time, stable and robust bipolar filamentary resistive switching in ferroelectric Al1-xScxN is reported. A hot atom damage defect generation model illustrates how filament formation and ferroelectric switching are connected. The model reveals the tendency of the ferroelectric wurtzite-type Al1-xScxN system to reach internal symmetry with bipolar electric field cycling. Defects generated from bipolar electric field cycling influence both the energy barrier between the polarization states and that required for the filament formation.
Collapse
Affiliation(s)
- Roberto Guido
- Namlab gGmbH, Nöthnitzer Strasse 64a, 01187 Dresden, Germany
| | - Thomas Mikolajick
- Namlab gGmbH, Nöthnitzer Strasse 64a, 01187 Dresden, Germany
- Chair of Nanoelectronics, TU Dresden, 01187 Dresden, Germany
| | - Uwe Schroeder
- Namlab gGmbH, Nöthnitzer Strasse 64a, 01187 Dresden, Germany
| | | |
Collapse
|
9
|
Kim KH, Karpov I, Olsson RH, Jariwala D. Wurtzite and fluorite ferroelectric materials for electronic memory. NATURE NANOTECHNOLOGY 2023; 18:422-441. [PMID: 37106053 DOI: 10.1038/s41565-023-01361-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 02/24/2023] [Indexed: 05/21/2023]
Abstract
Ferroelectric materials, the charge equivalent of magnets, have been the subject of continued research interest since their discovery more than 100 years ago. The spontaneous electric polarization in these crystals, which is non-volatile and programmable, is appealing for a range of information technologies. However, while magnets have found their way into various types of modern information technology hardware, applications of ferroelectric materials that use their ferroelectric properties are still limited. Recent advances in ferroelectric materials with wurtzite and fluorite structure have renewed enthusiasm and offered new opportunities for their deployment in commercial-scale devices in microelectronics hardware. This Review focuses on the most recent and emerging wurtzite-structured ferroelectric materials and emphasizes their applications in memory and storage-based microelectronic hardware. Relevant comparisons with existing fluorite-structured ferroelectric materials are made and a detailed outlook on ferroelectric materials and devices applications is provided.
Collapse
Affiliation(s)
- Kwan-Ho Kim
- Department of Electrical and Systems Engineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Ilya Karpov
- Components Research, Intel Corporation, Hillsboro, OR, USA
| | - Roy H Olsson
- Department of Electrical and Systems Engineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Deep Jariwala
- Department of Electrical and Systems Engineering, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
10
|
Zhang ZC, Chen XD, Lu TB. Recent progress in neuromorphic and memory devices based on graphdiyne. SCIENCE AND TECHNOLOGY OF ADVANCED MATERIALS 2023; 24:2196240. [PMID: 37090847 PMCID: PMC10116926 DOI: 10.1080/14686996.2023.2196240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 03/20/2023] [Accepted: 03/24/2023] [Indexed: 05/03/2023]
Abstract
Graphdiyne (GDY) is an emerging two-dimensional carbon allotrope featuring a direct bandgap and fascinating physical and chemical properties, and it has demonstrated its promising potential in applications of catalysis, energy conversion and storage, electrical/optoelectronic devices, etc. In particular, the recent breakthrough in the synthesis of large-area, high-quality and ultrathin GDY films provides a feasible approach to developing high-performance electrical devices based on GDY. Recently, various GDY-based electrical and optoelectronic devices including multibit optoelectronic memories, ultrafast nonvolatile memories, artificial synapses and memristors have been proposed, in which GDY plays a crucial role. It is essential to summarize the recent breakthrough of GDY in device applications as a guidance, especially considering that the existing GDY-related reviews mainly focus on the applications in catalysis and energy-related fields. Herein, we review GDY-based novel memory and neuromorphic devices and their applications in neuromorphic computing and artificial visual systems. This review will provide an insight into the design and preparation of GDY-based devices and broaden the application fields of GDY.
Collapse
Affiliation(s)
- Zhi-Cheng Zhang
- The Key Laboratory of Weak Light Nonlinear Photonics, Ministry of Education, School of Physics, Nankai University, Tianjin, China
| | - Xu-Dong Chen
- The Key Laboratory of Weak Light Nonlinear Photonics, Ministry of Education, School of Physics, Nankai University, Tianjin, China
- MOE International Joint Laboratory of Materials Microstructure, Institute for New Energy Materials and Low Carbon Technologies, School of Material Science and Engineering, Tianjin University of Technology, Tianjin, China
| | - Tong-Bu Lu
- MOE International Joint Laboratory of Materials Microstructure, Institute for New Energy Materials and Low Carbon Technologies, School of Material Science and Engineering, Tianjin University of Technology, Tianjin, China
| |
Collapse
|
11
|
Kumaar D, Can M, Portner K, Weigand H, Yarema O, Wintersteller S, Schenk F, Boskovic D, Pharizat N, Meinert R, Gilshtein E, Romanyuk Y, Karvounis A, Grange R, Emboras A, Wood V, Yarema M. Colloidal Ternary Telluride Quantum Dots for Tunable Phase Change Optics in the Visible and Near-Infrared. ACS NANO 2023; 17:6985-6997. [PMID: 36971128 PMCID: PMC10100560 DOI: 10.1021/acsnano.3c01187] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 03/23/2023] [Indexed: 06/18/2023]
Abstract
A structural change between amorphous and crystalline phase provides a basis for reliable and modular photonic and electronic devices, such as nonvolatile memory, beam steerers, solid-state reflective displays, or mid-IR antennas. In this paper, we leverage the benefits of liquid-based synthesis to access phase-change memory tellurides in the form of colloidally stable quantum dots. We report a library of ternary MxGe1-xTe colloids (where M is Sn, Bi, Pb, In, Co, Ag) and then showcase the phase, composition, and size tunability for Sn-Ge-Te quantum dots. Full chemical control of Sn-Ge-Te quantum dots permits a systematic study of structural and optical properties of this phase-change nanomaterial. Specifically, we report composition-dependent crystallization temperature for Sn-Ge-Te quantum dots, which is notably higher compared to bulk thin films. This gives the synergistic benefit of tailoring dopant and material dimension to combine the superior aging properties and ultrafast crystallization kinetics of bulk Sn-Ge-Te, while improving memory data retention due to nanoscale size effects. Furthermore, we discover a large reflectivity contrast between amorphous and crystalline Sn-Ge-Te thin films, exceeding 0.7 in the near-IR spectrum region. We utilize these excellent phase-change optical properties of Sn-Ge-Te quantum dots along with liquid-based processability for nonvolatile multicolor images and electro-optical phase-change devices. Our colloidal approach for phase-change applications offers higher customizability of materials, simpler fabrication, and further miniaturization to the sub-10 nm phase-change devices.
Collapse
Affiliation(s)
- Dhananjeya Kumaar
- Chemistry
and Materials Design, Institute for Electronics, Department of Information
Technology and Electrical Engineering, ETH
Zürich, 8092 Zürich, Switzerland
| | - Matthias Can
- Chemistry
and Materials Design, Institute for Electronics, Department of Information
Technology and Electrical Engineering, ETH
Zürich, 8092 Zürich, Switzerland
| | - Kevin Portner
- Integrated
Systems Laboratory, Department of Information Technology and Electrical
Engineering, ETH Zürich, 8092 Zürich, Switzerland
| | - Helena Weigand
- Optical
Nanomaterial Group, Institute for Quantum Electronics, Department
of Physics, ETH Zürich, 8093 Zürich, Switzerland
| | - Olesya Yarema
- Materials
and Device Engineering, Institute for Electronics, Department of Information
Technology and Electrical Engineering, ETH
Zürich, 8092 Zürich, Switzerland
| | - Simon Wintersteller
- Chemistry
and Materials Design, Institute for Electronics, Department of Information
Technology and Electrical Engineering, ETH
Zürich, 8092 Zürich, Switzerland
| | - Florian Schenk
- Chemistry
and Materials Design, Institute for Electronics, Department of Information
Technology and Electrical Engineering, ETH
Zürich, 8092 Zürich, Switzerland
| | - Darijan Boskovic
- Chemistry
and Materials Design, Institute for Electronics, Department of Information
Technology and Electrical Engineering, ETH
Zürich, 8092 Zürich, Switzerland
| | - Nathan Pharizat
- Chemistry
and Materials Design, Institute for Electronics, Department of Information
Technology and Electrical Engineering, ETH
Zürich, 8092 Zürich, Switzerland
| | - Robin Meinert
- Integrated
Systems Laboratory, Department of Information Technology and Electrical
Engineering, ETH Zürich, 8092 Zürich, Switzerland
| | - Evgeniia Gilshtein
- Laboratory
for Thin Films and Photovoltaics, Empa −
Swiss Federal Laboratories for Materials Science and Technology, 8600 Dübendorf, Switzerland
| | - Yaroslav Romanyuk
- Laboratory
for Thin Films and Photovoltaics, Empa −
Swiss Federal Laboratories for Materials Science and Technology, 8600 Dübendorf, Switzerland
| | - Artemios Karvounis
- Optical
Nanomaterial Group, Institute for Quantum Electronics, Department
of Physics, ETH Zürich, 8093 Zürich, Switzerland
| | - Rachel Grange
- Optical
Nanomaterial Group, Institute for Quantum Electronics, Department
of Physics, ETH Zürich, 8093 Zürich, Switzerland
| | - Alexandros Emboras
- Integrated
Systems Laboratory, Department of Information Technology and Electrical
Engineering, ETH Zürich, 8092 Zürich, Switzerland
| | - Vanessa Wood
- Materials
and Device Engineering, Institute for Electronics, Department of Information
Technology and Electrical Engineering, ETH
Zürich, 8092 Zürich, Switzerland
| | - Maksym Yarema
- Chemistry
and Materials Design, Institute for Electronics, Department of Information
Technology and Electrical Engineering, ETH
Zürich, 8092 Zürich, Switzerland
| |
Collapse
|
12
|
Long X, Tan H, Sánchez F, Fina I, Fontcuberta J. Ferroelectric Electroresistance after a Breakdown in Epitaxial Hf 0.5Zr 0.5O 2 Tunnel Junctions. ACS APPLIED ELECTRONIC MATERIALS 2023; 5:740-747. [PMID: 36873260 PMCID: PMC9979785 DOI: 10.1021/acsaelm.2c01186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 01/16/2023] [Indexed: 06/18/2023]
Abstract
The recent discovery of ferroelectricity in doped HfO2 has opened perspectives on the development of memristors based on ferroelectric switching, including ferroelectric tunnel junctions. In these devices, conductive channels are formed in a similar manner to junctions based on nonferroelectric oxides. The formation of the conductive channels does not preclude the presence of ferroelectric switching, but little is known about the device ferroelectric properties after conduction path formation or their impact on the electric modulation of the resistance state. Here, we show that ferroelectricity and related sizable electroresistance are observed in pristine 4.6 nm epitaxial Hf0.5Zr0.5O2 (HZO) tunnel junctions grown on Si. After a soft breakdown induced by the application of suitable voltage, the resistance decreases by about five orders of magnitude, but signatures of ferroelectricity and electroresistance are still observed. Impedance spectroscopy allows us to conclude that the effective ferroelectric device area after the breakdown is reduced, most likely by the formation of conducting paths at the edge.
Collapse
|
13
|
Wei T, Han Z, Zhong X, Xiao Q, Liu T, Xiang D. Two dimensional semiconducting materials for ultimately scaled transistors. iScience 2022; 25:105160. [PMID: 36204270 PMCID: PMC9529977 DOI: 10.1016/j.isci.2022.105160] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Two dimensional (2D) semiconductors have been established as promising candidates to break through the short channel effect that existed in Si metal-oxide-semiconductor field-effect-transistor (MOSFET), owing to their unique atomically layered structure and dangling-bond-free surface. The last decade has witnessed the significant progress in the size scaling of 2D transistors by various approaches, in which the physical gate length of the transistors has shrank from micrometer to sub-one nanometer with superior performance, illustrating their potential as a replacement technology for Si MOSFETs. Here, we review state-of-the-art techniques to achieve ultra-scaled 2D transistors with novel configurations through the scaling of channel, gate, and contact length. We provide comprehensive views of the merits and drawbacks of the ultra-scaled 2D transistors by summarizing the relevant fabrication processes with the corresponding critical parameters achieved. Finally, we identify the key opportunities and challenges for integrating ultra-scaled 2D transistors in the next-generation heterogeneous circuitry.
Collapse
Affiliation(s)
- Tianyao Wei
- Institute of Optoelectronics, Fudan University, Shanghai 200438, People’s Republic of China
- Frontier Institute of Chip and System, Fudan University, Shanghai 200438, People’s Republic of China
| | - Zichao Han
- Institute of Optoelectronics, Fudan University, Shanghai 200438, People’s Republic of China
| | - Xinyi Zhong
- Department of Materials Science, Fudan University, Shanghai 200433, People’s Republic of China
| | - Qingyu Xiao
- Department of Materials Science, Fudan University, Shanghai 200433, People’s Republic of China
| | - Tao Liu
- Institute of Optoelectronics, Fudan University, Shanghai 200438, People’s Republic of China
- Zhangjiang Fudan International Innovation Centre, Fudan University, Shanghai 200438, People’s Republic of China
- Corresponding author
| | - Du Xiang
- Frontier Institute of Chip and System, Fudan University, Shanghai 200438, People’s Republic of China
- Zhangjiang Fudan International Innovation Centre, Fudan University, Shanghai 200438, People’s Republic of China
- Shanghai Qi Zhi Institute, Shanghai 200232, People’s Republic of China
- Corresponding author
| |
Collapse
|
14
|
Vogel T, Zintler A, Kaiser N, Guillaume N, Lefèvre G, Lederer M, Serra AL, Piros E, Kim T, Schreyer P, Winkler R, Nasiou D, Olivo RR, Ali T, Lehninger D, Arzumanov A, Charpin-Nicolle C, Bourgeois G, Grenouillet L, Cyrille MC, Navarro G, Seidel K, Kämpfe T, Petzold S, Trautmann C, Molina-Luna L, Alff L. Structural and Electrical Response of Emerging Memories Exposed to Heavy Ion Radiation. ACS NANO 2022; 16:14463-14478. [PMID: 36113861 PMCID: PMC9527794 DOI: 10.1021/acsnano.2c04841] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 08/09/2022] [Indexed: 05/10/2023]
Abstract
Hafnium oxide- and GeSbTe-based functional layers are promising candidates in material systems for emerging memory technologies. They are also discussed as contenders for radiation-harsh environment applications. Testing the resilience against ion radiation is of high importance to identify materials that are feasible for future applications of emerging memory technologies like oxide-based, ferroelectric, and phase-change random-access memory. Induced changes of the crystalline and microscopic structure have to be considered as they are directly related to the memory states and failure mechanisms of the emerging memory technologies. Therefore, we present heavy ion irradiation-induced effects in emerging memories based on different memory materials, in particular, HfO2-, HfZrO2-, as well as GeSbTe-based thin films. This study reveals that the initial crystallinity, composition, and microstructure of the memory materials have a fundamental influence on their interaction with Au swift heavy ions. With this, we provide a test protocol for irradiation experiments of hafnium oxide- and GeSbTe-based emerging memories, combining structural investigations by X-ray diffraction on a macroscopic, scanning transmission electron microscopy on a microscopic scale, and electrical characterization of real devices. Such fundamental studies can be also of importance for future applications, considering the transition of digital to analog memories with a multitude of resistance states.
Collapse
Affiliation(s)
- Tobias Vogel
- Advanced
Thin Film Technology Division, Institute of Materials Science, TU Darmstadt, Alarich-Weiss-Str. 2, 64287 Darmstadt, Germany
| | - Alexander Zintler
- Advanced
Electron Microscopy Division, Institute of Materials Science, TU Darmstadt, Alarich-Weiss-Str. 2, 64287 Darmstadt, Germany
| | - Nico Kaiser
- Advanced
Thin Film Technology Division, Institute of Materials Science, TU Darmstadt, Alarich-Weiss-Str. 2, 64287 Darmstadt, Germany
| | | | | | - Maximilian Lederer
- Fraunhofer
IMPS, Center Nanoelectronic Technologies
(CNT), 01109 Dresden, Germany
| | | | - Eszter Piros
- Advanced
Thin Film Technology Division, Institute of Materials Science, TU Darmstadt, Alarich-Weiss-Str. 2, 64287 Darmstadt, Germany
| | - Taewook Kim
- Advanced
Thin Film Technology Division, Institute of Materials Science, TU Darmstadt, Alarich-Weiss-Str. 2, 64287 Darmstadt, Germany
| | - Philipp Schreyer
- Advanced
Thin Film Technology Division, Institute of Materials Science, TU Darmstadt, Alarich-Weiss-Str. 2, 64287 Darmstadt, Germany
| | - Robert Winkler
- Advanced
Electron Microscopy Division, Institute of Materials Science, TU Darmstadt, Alarich-Weiss-Str. 2, 64287 Darmstadt, Germany
| | - Déspina Nasiou
- Advanced
Electron Microscopy Division, Institute of Materials Science, TU Darmstadt, Alarich-Weiss-Str. 2, 64287 Darmstadt, Germany
| | | | - Tarek Ali
- Fraunhofer
IMPS, Center Nanoelectronic Technologies
(CNT), 01109 Dresden, Germany
| | - David Lehninger
- Fraunhofer
IMPS, Center Nanoelectronic Technologies
(CNT), 01109 Dresden, Germany
| | - Alexey Arzumanov
- Advanced
Thin Film Technology Division, Institute of Materials Science, TU Darmstadt, Alarich-Weiss-Str. 2, 64287 Darmstadt, Germany
| | | | | | | | | | | | - Konrad Seidel
- Fraunhofer
IMPS, Center Nanoelectronic Technologies
(CNT), 01109 Dresden, Germany
| | - Thomas Kämpfe
- Fraunhofer
IMPS, Center Nanoelectronic Technologies
(CNT), 01109 Dresden, Germany
| | - Stefan Petzold
- Advanced
Thin Film Technology Division, Institute of Materials Science, TU Darmstadt, Alarich-Weiss-Str. 2, 64287 Darmstadt, Germany
| | - Christina Trautmann
- GSI
Helmholtzzentrum
fuer Schwerionenforschung, 64291 Darmstadt, Germany
- Institute
of Materials Science, TU Darmstadt, 64287 Darmstadt, Germany
| | - Leopoldo Molina-Luna
- Advanced
Electron Microscopy Division, Institute of Materials Science, TU Darmstadt, Alarich-Weiss-Str. 2, 64287 Darmstadt, Germany
| | - Lambert Alff
- Advanced
Thin Film Technology Division, Institute of Materials Science, TU Darmstadt, Alarich-Weiss-Str. 2, 64287 Darmstadt, Germany
| |
Collapse
|
15
|
Vogel T, Zintler A, Kaiser N, Guillaume N, Lefèvre G, Lederer M, Serra AL, Piros E, Kim T, Schreyer P, Winkler R, Nasiou D, Olivo RR, Ali T, Lehninger D, Arzumanov A, Charpin-Nicolle C, Bourgeois G, Grenouillet L, Cyrille MC, Navarro G, Seidel K, Kämpfe T, Petzold S, Trautmann C, Molina-Luna L, Alff L. Structural and Electrical Response of Emerging Memories Exposed to Heavy Ion Radiation. ACS NANO 2022; 16:14463-14478. [PMID: 36113861 DOI: 10.48328/tudatalib-896] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Hafnium oxide- and GeSbTe-based functional layers are promising candidates in material systems for emerging memory technologies. They are also discussed as contenders for radiation-harsh environment applications. Testing the resilience against ion radiation is of high importance to identify materials that are feasible for future applications of emerging memory technologies like oxide-based, ferroelectric, and phase-change random-access memory. Induced changes of the crystalline and microscopic structure have to be considered as they are directly related to the memory states and failure mechanisms of the emerging memory technologies. Therefore, we present heavy ion irradiation-induced effects in emerging memories based on different memory materials, in particular, HfO2-, HfZrO2-, as well as GeSbTe-based thin films. This study reveals that the initial crystallinity, composition, and microstructure of the memory materials have a fundamental influence on their interaction with Au swift heavy ions. With this, we provide a test protocol for irradiation experiments of hafnium oxide- and GeSbTe-based emerging memories, combining structural investigations by X-ray diffraction on a macroscopic, scanning transmission electron microscopy on a microscopic scale, and electrical characterization of real devices. Such fundamental studies can be also of importance for future applications, considering the transition of digital to analog memories with a multitude of resistance states.
Collapse
Affiliation(s)
- Tobias Vogel
- Advanced Thin Film Technology Division, Institute of Materials Science, TU Darmstadt, Alarich-Weiss-Str. 2, 64287 Darmstadt, Germany
| | - Alexander Zintler
- Advanced Electron Microscopy Division, Institute of Materials Science, TU Darmstadt, Alarich-Weiss-Str. 2, 64287 Darmstadt, Germany
| | - Nico Kaiser
- Advanced Thin Film Technology Division, Institute of Materials Science, TU Darmstadt, Alarich-Weiss-Str. 2, 64287 Darmstadt, Germany
| | | | | | - Maximilian Lederer
- Fraunhofer IMPS, Center Nanoelectronic Technologies (CNT), 01109 Dresden, Germany
| | | | - Eszter Piros
- Advanced Thin Film Technology Division, Institute of Materials Science, TU Darmstadt, Alarich-Weiss-Str. 2, 64287 Darmstadt, Germany
| | - Taewook Kim
- Advanced Thin Film Technology Division, Institute of Materials Science, TU Darmstadt, Alarich-Weiss-Str. 2, 64287 Darmstadt, Germany
| | - Philipp Schreyer
- Advanced Thin Film Technology Division, Institute of Materials Science, TU Darmstadt, Alarich-Weiss-Str. 2, 64287 Darmstadt, Germany
| | - Robert Winkler
- Advanced Electron Microscopy Division, Institute of Materials Science, TU Darmstadt, Alarich-Weiss-Str. 2, 64287 Darmstadt, Germany
| | - Déspina Nasiou
- Advanced Electron Microscopy Division, Institute of Materials Science, TU Darmstadt, Alarich-Weiss-Str. 2, 64287 Darmstadt, Germany
| | | | - Tarek Ali
- Fraunhofer IMPS, Center Nanoelectronic Technologies (CNT), 01109 Dresden, Germany
| | - David Lehninger
- Fraunhofer IMPS, Center Nanoelectronic Technologies (CNT), 01109 Dresden, Germany
| | - Alexey Arzumanov
- Advanced Thin Film Technology Division, Institute of Materials Science, TU Darmstadt, Alarich-Weiss-Str. 2, 64287 Darmstadt, Germany
| | | | | | | | | | | | - Konrad Seidel
- Fraunhofer IMPS, Center Nanoelectronic Technologies (CNT), 01109 Dresden, Germany
| | - Thomas Kämpfe
- Fraunhofer IMPS, Center Nanoelectronic Technologies (CNT), 01109 Dresden, Germany
| | - Stefan Petzold
- Advanced Thin Film Technology Division, Institute of Materials Science, TU Darmstadt, Alarich-Weiss-Str. 2, 64287 Darmstadt, Germany
| | - Christina Trautmann
- GSI Helmholtzzentrum fuer Schwerionenforschung, 64291 Darmstadt, Germany
- Institute of Materials Science, TU Darmstadt, 64287 Darmstadt, Germany
| | - Leopoldo Molina-Luna
- Advanced Electron Microscopy Division, Institute of Materials Science, TU Darmstadt, Alarich-Weiss-Str. 2, 64287 Darmstadt, Germany
| | - Lambert Alff
- Advanced Thin Film Technology Division, Institute of Materials Science, TU Darmstadt, Alarich-Weiss-Str. 2, 64287 Darmstadt, Germany
| |
Collapse
|
16
|
Shekhawat A, Hsain HA, Lee Y, Jones JL, Moghaddam S. Effect of ferroelectric and interface films on the tunneling electroresistance of the Al 2O 3/Hf 0.5Zr 0.5O 2based ferroelectric tunnel junctions. NANOTECHNOLOGY 2021; 32:485204. [PMID: 34407525 DOI: 10.1088/1361-6528/ac1ebe] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 08/18/2021] [Indexed: 06/13/2023]
Abstract
Ferroelectric random-access memory (FRAM) based on conventional ferroelectric materials is a non-volatile memory with fast read/write operations, high endurance, and 10 years of data retention time. However, it suffers from destructive read-out operation and lack of CMOS compatibility. HfO2-based ferroelectric tunnel junctions (FTJ) may compensate for the shortcomings of FRAM by its CMOS compatibility, fast operation speed, and non-destructive readout operation. In this study, we investigate the effect of ferroelectric and interface film thickness on the tunneling electroresistance or ON/OFF current ratio of the Hf0.5Zr0.5O2/Al2O3based FTJ device. Integrating a thick ferroelectric layer (i.e. 12 nm Hf0.5Zr0.5O2) with a thin interface layer (i.e. 1 nm Al2O3) resulted in an ON/OFF current ratio of 78. Furthermore, to elucidate the relationship between ON/OFF current ratio and interfacial properties, the Hf0.5Zr0.5O2-Al2O3films and Ge-Al2O3interfaces are examined via time-of-flight secondary ion mass spectrometry depth profiling mode. A bilayer oxide heterostructure (Hf0.5Zr0.5O2/Al2O3) is deposited by atomic layer deposition (ALD) on the Ge substrate. The ON/OFF current ratio is enhanced by an order of magnitude when the Hf0.5Zr0.5O2film deposition mode is changed from exposure (H2O) ALD to sequential plasma (sequential O2-H2) ALD. Moreover, the interfacial engineering approach based on thein situALD H2-plasma surface pre-treatment of Ge increases the ON/OFF current ratio from 9 to 38 by reducing the interfacial trap density state at the Ge-Al2O3interface and producing Al2O3with fewer oxygen vacancies as compared to the wet etch (HF + H2O rinse) treatment of the Ge substrate. This study provides evidence of strong coupling between Hf0.5Zr0.5O2and Al2O3films in controlling the ON/OFF current ratio of the FTJ.
Collapse
Affiliation(s)
- Aniruddh Shekhawat
- Department of Mechanical and Aerospace Engineering, University of Florida, Gainesville, FL, 32611, United States of America
| | - H Alex Hsain
- Department of Materials Science and Engineering, North Carolina State University, Raleigh, NC, 27695, United States of America
| | - Younghwan Lee
- Department of Materials Science and Engineering, North Carolina State University, Raleigh, NC, 27695, United States of America
| | - Jacob L Jones
- Department of Materials Science and Engineering, North Carolina State University, Raleigh, NC, 27695, United States of America
| | - Saeed Moghaddam
- Department of Mechanical and Aerospace Engineering, University of Florida, Gainesville, FL, 32611, United States of America
| |
Collapse
|
17
|
Chouprik A, Negrov D, Tsymbal EY, Zenkevich A. Defects in ferroelectric HfO 2. NANOSCALE 2021; 13:11635-11678. [PMID: 34190282 DOI: 10.1039/d1nr01260f] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The discovery of ferroelectricity in polycrystalline thin films of doped HfO2 has reignited the expectations of developing competitive ferroelectric non-volatile memory devices. To date, it is widely accepted that the performance of HfO2-based ferroelectric devices during their life cycle is critically dependent on the presence of point defects as well as structural phase polymorphism, which mainly originates from defects either. The purpose of this review article is to overview the impact of defects in ferroelectric HfO2 on its functional properties and the resulting performance of memory devices. Starting from the brief summary of defects in classical perovskite ferroelectrics, we then introduce the known types of point defects in dielectric HfO2 thin films. Further, we discuss main analytical techniques used to characterize the concentration and distribution of defects in doped ferroelectric HfO2 thin films as well as at their interfaces with electrodes. The main part of the review is devoted to the recent experimental studies reporting the impact of defects in ferroelectric HfO2 structures on the performance of different memory devices. We end up with the summary and perspectives of HfO2-based ferroelectric competitive non-volatile memory devices.
Collapse
Affiliation(s)
- Anastasia Chouprik
- Moscow Institute of Physics and Technology, Dolgoprudny, Moscow region, Russia.
| | | | | | | |
Collapse
|
18
|
Diode-Like Current Leakage and Ferroelectric Switching in Silicon SIS Structures with Hafnia-Alumina Nanolaminates. NANOMATERIALS 2021; 11:nano11020291. [PMID: 33499413 PMCID: PMC7912112 DOI: 10.3390/nano11020291] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 12/26/2020] [Accepted: 01/18/2021] [Indexed: 11/17/2022]
Abstract
Silicon semiconductor-insulator-semiconductor (SIS) structures with high-k dielectrics are a promising new material for photonic and CMOS integrations. The "diode-like" currents through the symmetric atomic layer deposited (ALD) HfO2/Al2O3/HfO2… nanolayers with a highest rectification coefficient 103 are observed and explained by the asymmetry of the upper and lower heterointerfaces formed by bonding and ALD processes. As a result, different spatial charge regions (SCRs) are formed on both insulator sides. The lowest leakages are observed through the stacks, with total Al2O3 thickness values of 8-10 nm, which also provide a diffusive barrier for hydrogen. The dominant mechanism of electron transport through the built-in insulator at the weak field E < 1 MV/cm is thermionic emission. The Poole-Frenkel (PF) mechanism of emission from traps dominates at larger E values. The charge carriers mobility 100-120 cm2/(V s) and interface states (IFS) density 1.2 × 1011 cm-2 are obtained for the n-p SIS structures with insulator HfO2:Al2O3 (10:1) after rapid thermal annealing (RTA) at 800 °C. The drain current hysteresis of pseudo-metal-oxide-semiconductor field effect transistor (MOSFET) with the memory window 1.2-1.3 V at the gate voltage |Vg| < ±2.5 V is maintained in the RTA treatment at T = 800-900 °C for these transistors.
Collapse
|
19
|
Materano M, Lomenzo PD, Kersch A, Park MH, Mikolajick T, Schroeder U. Interplay between oxygen defects and dopants: effect on structure and performance of HfO 2-based ferroelectrics. Inorg Chem Front 2021. [DOI: 10.1039/d1qi00167a] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A review on ferroelectric phase formation and reliability in HfO2-based thin films and semiconductor devices.
Collapse
Affiliation(s)
| | | | | | - Min Hyuk Park
- School of Materials Science and Engineering
- Pusan National University
- 46241 Busan
- Republic of Korea
| | | | | |
Collapse
|