1
|
Kumar C, Bhattacharjee S, Srivastava S. Shape anisotropy induced jamming of nanoparticles at liquid interfaces: a tensiometric study. NANOSCALE ADVANCES 2024; 6:4683-4692. [PMID: 39263396 PMCID: PMC11386127 DOI: 10.1039/d4na00280f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 08/14/2024] [Accepted: 07/15/2024] [Indexed: 09/13/2024]
Abstract
The intersection of nanotechnology and interfacial science has opened up new avenues for understanding complex phenomena occurring at liquid interfaces. The assembly of nanoparticles at liquid/liquid interfaces provides valuable insights into their interactions with fluid interfaces, essential for various applications, including drug delivery. In this study, we focus on the shape and concentration effects of nanoscale particles on interfacial affinity. Using pendant drop tensiometry, we monitor the real-time interfacial tension between an oil droplet and an aqueous solution containing nanoparticles. We measure two different types of nanoparticles: spherical gold nanoparticles (AuNPs) and anisotropic gold nanorods (AuNRs), each functionalized with surfactants to facilitate interaction at the interface. We observe that the interface equilibrium behaviour is mediated by kinetic processes, namely, diffusion, adsorption and rearrangement of particles. For anisotropic AuNRs, we observe shape-induced jamming of particles at the interface, as evidenced by their slower diffusivity and invariant rearrangement rate. In contrast, the adsorption of spherical AuNPs is dynamic and requires more time to reach equilibrium, indicating weaker interface affinity. By detailed analysis of the interfacial tension data and interaction energy calculations, we show that the anisotropic particle shape achieves stable equilibrium inter-particle separation compared to the isotropic particles. Our findings demonstrate that anisotropic particles are a better design choice for drug delivery applications as they provide better affinity for fluid interface attachment, a crucial requirement for efficient drug transport across cell membranes. Additionally, anisotropic shapes can stabilize interfaces at low particle concentrations compared to isotropic particles, thus minimizing side effects associated with biocompatibility and toxicity.
Collapse
Affiliation(s)
- Chandan Kumar
- Soft Matter and Nanomaterials Laboratory, Department of Physics, Indian Institute of Technology Bombay Mumbai 400 076 India +91-22-2576-7572
| | - Suman Bhattacharjee
- Centre for Research in Nanotechnology & Science (CRNTS), Indian Institute of Technology Bombay Mumbai 400 076 India
| | - Sunita Srivastava
- Soft Matter and Nanomaterials Laboratory, Department of Physics, Indian Institute of Technology Bombay Mumbai 400 076 India +91-22-2576-7572
| |
Collapse
|
2
|
Wen Y, Li K, Luo J, Feng W, Shi S. Thermal Welding of Liquids. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2403015. [PMID: 38655760 DOI: 10.1002/adma.202403015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/09/2024] [Indexed: 04/26/2024]
Abstract
Welding of thermoplastics is a common practice in many industrial sectors, but it has yet to be realized with fluids. Here, the thermal welding of liquids by using the assembly and jamming of nanoparticle surfactants (NPSs) at liquid-liquid interfaces is reported. By fine-tuning the dynamic interaction strength within NPSs, the interfacial activity of NPSs, as well as the binding energy of NPSs to the interface can be precisely controlled, leading to a dynamic exchange of NPSs, maximizing the reduction in the interfacial energy. With NPSs jammed at the interface, the structures of liquids can be manipulated to complex geometries by applying an external force and, due to the temperature responsiveness of NPSs, when bringing liquids into contact and heating the system, welding of liquids can be achieved. This work provides a straightforward strategy for the construction of modular all-liquid fluidics, opening up numerous opportunities in fields like biotechnology, healthcare, and materials science.
Collapse
Affiliation(s)
- Yunhui Wen
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Kaijuan Li
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Jiaqiu Luo
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Weixiao Feng
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Shaowei Shi
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| |
Collapse
|
3
|
Yao M, Cao G, Liu S, Ding X, Liu J. Axisymmetric Compression of a Circular Particle Raft Driven by the Diffusion of Surfactant. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:8911-8920. [PMID: 38624033 DOI: 10.1021/acs.langmuir.4c00069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/17/2024]
Abstract
Particle rafts are a new kind of soft matter formed by self-organization on the interface, which possesses mechanical properties between fluid and solid, and they have been widely used in many industrial fields. In the present study, the compression experiment of a circular particle raft is first performed, where an SDS (sodium dodecyl sulfate)-coated metal ring is placed around its periphery. When the surfactant diffuses, the particle raft shrinks, and its shrinkage ratio increases with the increase in the surfactant concentration, where the experimental results are consistent with the numerical simulation. Next, the relationship between the initial surface tension difference of SDS and the radius shrinkage of the particle raft is obtained by dimensional analysis. In what follows, the diffusion model is built to quantify the diffusion process of SDS at the liquid-gas interface, and then the analytical concentration solution of the concentration of SDS at the periphery of particle raft is given. The particle raft is viewed as an elastic circular plate under the action of the radial pressure, which originates from the surface tension difference, which has been verified by the experimental result. These explorations cast a new light on how to apply loads to measure mechanical properties of soft matter, which also provide some inspirations on the design of microsensors and microfluidics.
Collapse
Affiliation(s)
- Mei Yao
- College of Pipeline and Civil Engineering, China University of Petroleum (East China), Qingdao 266580, China
| | - Gongqi Cao
- College of Pipeline and Civil Engineering, China University of Petroleum (East China), Qingdao 266580, China
| | - Shiyang Liu
- College of Pipeline and Civil Engineering, China University of Petroleum (East China), Qingdao 266580, China
| | - Xiaoxuan Ding
- College of Pipeline and Civil Engineering, China University of Petroleum (East China), Qingdao 266580, China
| | - Jianlin Liu
- College of Pipeline and Civil Engineering, China University of Petroleum (East China), Qingdao 266580, China
| |
Collapse
|
4
|
Hou J, Xu HN. Ejected microcrystals probe jammed states of droplets in cyclodextrin-based emulsions. Carbohydr Polym 2024; 324:121455. [PMID: 37985074 DOI: 10.1016/j.carbpol.2023.121455] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 09/16/2023] [Accepted: 10/01/2023] [Indexed: 11/22/2023]
Abstract
The cyclodextrin (CD)-based emulsions exhibit complex instability behaviors such as rapid flocculation and creaming, and how to capture droplet dispersion states of the emulsions remains a great challenge. Here we prepare the CD-based emulsions with different oil-water volume ratios and CD concentrations by using high-pressure homogenization, and characterize the emulsion droplets by using optical microscopy and confocal laser scanning microscopy. We evaluate the effects of homogenization pressure on the stability of the emulsions, identify armored droplets with different surface features, measure interfacial concentrations of adsorbed ICs microcrystals, and observe ejection of the oil/CD inclusion complexes (ICs) microcrystals from the droplet surface. The droplet dispersion states are sensitive to the dynamic buildup and evolving morphologies of the interfacial microcrystals, and there are clear correlations between the properties of the ejected microcrystals and the characteristics of the emulsions. We ascribe the subsequent ejection of ICs microcrystals from the droplet surface to consolidation and deformation of the films formed between neighboring droplets. The ejection of the ICs microcrystals affords a simple method to detect the droplet-droplet interactions and phase transitions in the CD-based emulsions, which might be a generic feature in the broader context of the creaming processes of emulsions.
Collapse
Affiliation(s)
- Jie Hou
- State Key Laboratory of Food Science and Resources, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, People's Republic of China; School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, People's Republic of China; International Joint Laboratory on Food Safety, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, People's Republic of China
| | - Hua-Neng Xu
- State Key Laboratory of Food Science and Resources, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, People's Republic of China; School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, People's Republic of China; International Joint Laboratory on Food Safety, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, People's Republic of China.
| |
Collapse
|
5
|
Kou Y, Guo R, Li X, Sun X, Song H, Song L, Guo Y, Song Z, Yuan C, Wu Y. Synthesis, physicochemical and emulsifying properties of OSA-modified tamarind seed polysaccharides with different degrees of substitution. Int J Biol Macromol 2023; 253:127102. [PMID: 37769765 DOI: 10.1016/j.ijbiomac.2023.127102] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 09/14/2023] [Accepted: 09/25/2023] [Indexed: 10/03/2023]
Abstract
Octenyl succinic anhydride modified tamarind seed polysaccharides (OTSPs) with various degrees of substitution were first synthesized and characterized in this work. The structural, solid-state, solution and emulsifying properties of the OTSPs and the effect of the degree of substitution (DS) were investigated. The structural characterization confirmed the successful grafting of the OSA moiety into TSP and the chain extension of the OTSPs. The hydrophobicity of the modified polysaccharide molecules increased, the absolute value of the zeta potential increased, and the thermal stability decreased, which were positively or negatively correlated with the changes in DS. In contrast, the hydrolysis of polysaccharides in alkaline aqueous solution led to a decrease in molar mass and the rigidity of the molecules, which were not significantly related to DS. Particle size analysis showed that OTSPs tended to aggregate into relatively small agglomerates, which was confirmed by the results of morphological analysis. Most importantly, the instability indices of emulsions stabilized by TSP, arabic gum and OSA-starch were 0.521, 0.715, and 0.804, respectively, while for OTSPs this parameter was between 0.04 and 0.19 under the same conditions, indicating better physical stability of the OTSP-stabilized emulsions, especially for OTSP-30. Overall, OTSP has great potential as an emulsifier for oil-in-water emulsions, especially for emulsification and stabilization in food processing.
Collapse
Affiliation(s)
- Yuxing Kou
- Department of Food Science and Engineering, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Rui Guo
- Department of Food Science and Engineering, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xujiao Li
- Department of Food Science and Engineering, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China; Institute for Agro-food Standards and Testing Technology, Laboratory of Quality and Safety Risk Assessment for Agro-products (Shanghai), Ministry of Agriculture and Rural Affairs, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
| | - Xianbao Sun
- Department of Food Science and Engineering, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Hong Song
- Department of Food Science and Engineering, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Lihua Song
- Department of Food Science and Engineering, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yalong Guo
- Advanced Rheology Institute, Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Zibo Song
- Yunnan Maoduoli Group Food Co., Ltd., Yuxi 653100, China
| | - Chunmei Yuan
- Yunnan Maoduoli Group Food Co., Ltd., Yuxi 653100, China
| | - Yan Wu
- Department of Food Science and Engineering, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
6
|
Ji X, Jiang P, Jiang Y, Chen H, Wang W, Zhong W, Zhang X, Zhao W, Zang D. Toward Enhanced Aerosol Particle Adsorption in Never-Bursting Bubble via Acoustic Levitation and Controlled Liquid Compensation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2300049. [PMID: 36967571 PMCID: PMC10323653 DOI: 10.1002/advs.202300049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 02/20/2023] [Indexed: 06/18/2023]
Abstract
Bubbles in air are ephemeral because of gravity-induced drainage and liquid evaporation, which severely limits their applications, especially as intriguing bio/chemical reactors. In this work, a new approach using acoustic levitation combined with controlled liquid compensation to stabilize bubbles is proposed. Due to the suppression of drainage by sound field and prevention of capillary waves by liquid compensation, the bubbles can remain stable and intact permanently. It has been found that the acoustically levitated bubble shows a significantly enhanced particle adsorption ability because of the oscillation of the bubble and the presence of internal acoustic streaming. The results shed light on the development of novel air-purification techniques without consuming any solid filters.
Collapse
Affiliation(s)
- Xiaoliang Ji
- School of Physical Science and TechnologyNorthwestern Polytechnical UniversityXi'an710129P. R. China
| | - Pingsong Jiang
- School of Physical Science and TechnologyNorthwestern Polytechnical UniversityXi'an710129P. R. China
| | - Yichen Jiang
- School of Marine Science and TechnologyNorthwestern Polytechnical UniversityXi'an710129P. R. China
| | - Hongyue Chen
- School of Physical Science and TechnologyNorthwestern Polytechnical UniversityXi'an710129P. R. China
| | - Weiming Wang
- Xiong'an Institute of InnovationXiong'an071899P. R. China
| | - Wenxuan Zhong
- School of Physical Science and TechnologyNorthwestern Polytechnical UniversityXi'an710129P. R. China
| | - Xiaoqiang Zhang
- School of Physical Science and TechnologyNorthwestern Polytechnical UniversityXi'an710129P. R. China
| | - Wei Zhao
- State Key Laboratory of Photon‐Technology in Western China EnergyInternational Scientific and Technological Cooperation Base of Photoelectric Technology and Functional Materials and ApplicationInstitute of Photonics and Photon‐technologyNorthwest UniversityXi'an710127P. R. China
| | - Duyang Zang
- School of Physical Science and TechnologyNorthwestern Polytechnical UniversityXi'an710129P. R. China
| |
Collapse
|
7
|
Kato AN, Jiang Y, Chen W, Seto R, Li T. How surface roughness affects the interparticle interactions at a liquid interface. J Colloid Interface Sci 2023; 641:492-498. [PMID: 36948104 DOI: 10.1016/j.jcis.2023.03.041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 02/28/2023] [Accepted: 03/05/2023] [Indexed: 03/18/2023]
Abstract
HYPOTHESIS Colloidal particles can be trapped at a liquid interface, which reduces the energetically costly interfacial area. Once at an interface, colloids undergo various self-assemblies and structural transitions due to shape-dependent interparticle interactions. Particles with rough surfaces receive increasing attention and have been applied in material design, such as Pickering emulsions and shear-thickening materials. However, the roughness effects on the interactions at a liquid interface remain less understood. EXPERIMENTS Experimentally, particles with four surface roughnesses were designed and compared via isotherm measurements upon a uniaxial compression. At each stage of the compression, micrographic observations were conducted via the Blodgett method. Numerically, the compression of monolayer was simulated by using Langevin dynamics. Rough colloids were modelled as particles with capillary attraction and tangential constraints. FINDINGS Sufficiently rough systems exhibit a non-trivial intermediate state between a gas-like state and a close-packed jamming state. This state is understood as a gel state due to roughness-induced capillary attraction. Roughness-induced friction lowers the jamming point. Furthermore, the tangential contact force owing to surface asperities can cause a gradual off-plane collapse of the compressed monolayer.
Collapse
Affiliation(s)
- Airi N Kato
- Wenzhou Key Laboratory of Biophysics, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325001, Zhejiang, China; Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou 325001, Zhejiang, China
| | - Yujie Jiang
- Wenzhou Key Laboratory of Biomaterials and Engineering, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325001, Zhejiang, China; Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou 325001, Zhejiang, China
| | - Wei Chen
- Wenzhou Key Laboratory of Biophysics, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325001, Zhejiang, China; Department of Physics, The City University of Hong Kong, Kowloon, Hong Kong SAR 999077, China
| | - Ryohei Seto
- Wenzhou Key Laboratory of Biomaterials and Engineering, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325001, Zhejiang, China; Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou 325001, Zhejiang, China; Graduate School of Information Science, University of Hyogo, Kobe 650-0047, Hyogo, Japan.
| | - Tao Li
- Wenzhou Key Laboratory of Biophysics, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325001, Zhejiang, China; Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou 325001, Zhejiang, China.
| |
Collapse
|
8
|
Choi J, Kim H, Lee H, Yi S, Hyun Lee J, Woong Kim J. Hydrophobically modified silica nanolaces-armored water-in-oil pickering emulsions with enhanced interfacial attachment energy. J Colloid Interface Sci 2023; 641:376-385. [PMID: 36940594 DOI: 10.1016/j.jcis.2023.03.075] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 03/05/2023] [Accepted: 03/10/2023] [Indexed: 03/16/2023]
Abstract
HYPOTHESIS Anisotropic particles with a high aspect ratio led to favorable interfacial adhesion, thus enabling Pickering emulsion stabilization. Herein, we hypothesized that pearl necklace-shaped colloid particles would play a key role in stabilizing water-in-silicone oil (W/S) emulsions by taking advantage of their enhanced interfacial attachment energy. EXPERIMENTS We fabricated hydrophobically modified silica nanolaces (SiNLs) by depositing silica onto bacterial cellulose nanofibril templates and subsequently grafting alkyl chains with tuned amounts and chain lengths onto the nanograins comprising the SiNLs. FINDINGS The SiNLs, of which nanograin has the same dimension and surface chemistry as the silica nanospheres (SiNSs), showed more favorable wettability than SiNSs at the W/S interface, which was supported by the approximately 50 times higher attachment energy theoretically calculated using the hit-and-miss Monte Carlo method. The SiNLs with longer alkyl chains from C6 to C18 more effectively assembled at the W/S interface to produce a fibrillary interfacial membrane with a 10 times higher interfacial modulus, preventing water droplets from coalescing and improving the sedimentation stability and bulk viscoelasticity. These results demonstrate that the SiNLs acted as a promising colloidal surfactant for W/S Pickering emulsion stabilization, thereby allowing the exploration of diverse pharmaceutical and cosmetic formulations.
Collapse
Affiliation(s)
- Jihyun Choi
- School of Chemical Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Hajeong Kim
- School of Chemical Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Hyunsuk Lee
- Research and Innovation Center, AMOREPACIFIC, Yongin 17074, Republic of Korea
| | - SeungHwan Yi
- Research and Innovation Center, AMOREPACIFIC, Yongin 17074, Republic of Korea
| | - Jin Hyun Lee
- School of Bio-Convergence Science, College of Biomedical & Health Science, Konkuk University, Chungju 27478, Republic of Korea.
| | - Jin Woong Kim
- School of Chemical Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea.
| |
Collapse
|
9
|
Hybrid Nanoparticles at Fluid-Fluid Interfaces: Insight from Theory and Simulation. Int J Mol Sci 2023; 24:ijms24054564. [PMID: 36901995 PMCID: PMC10003740 DOI: 10.3390/ijms24054564] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 02/22/2023] [Accepted: 02/23/2023] [Indexed: 03/02/2023] Open
Abstract
Hybrid nanoparticles that combine special properties of their different parts have numerous applications in electronics, optics, catalysis, medicine, and many others. Of the currently produced particles, Janus particles and ligand-tethered (hairy) particles are of particular interest both from a practical and purely cognitive point of view. Understanding their behavior at fluid interfaces is important to many fields because particle-laden interfaces are ubiquitous in nature and industry. We provide a review of the literature, focusing on theoretical studies of hybrid particles at fluid-fluid interfaces. Our goal is to give a link between simple phenomenological models and advanced molecular simulations. We analyze the adsorption of individual Janus particles and hairy particles at the interfaces. Then, their interfacial assembly is also discussed. The simple equations for the attachment energy of various Janus particles are presented. We discuss how such parameters as the particle size, the particle shape, the relative sizes of different patches, and the amphiphilicity affect particle adsorption. This is essential for taking advantage of the particle capacity to stabilize interfaces. Representative examples of molecular simulations were presented. We show that the simple models surprisingly well reproduce experimental and simulation data. In the case of hairy particles, we concentrate on the effects of reconfiguration of the polymer brushes at the interface. This review is expected to provide a general perspective on the subject and may be helpful to many researchers and technologists working with particle-laden layers.
Collapse
|
10
|
Zhao Y, Li R, Wang B, Huang Y, Lyu P, Wang F, Jiang Q, Han Y, Zhang S, Wu X, Zhao S, Zhu N, Zhang R. Scalable Structural Coloration of Carbon Nanotube Fibers via a Facile Silica Photonic Crystal Self-Assembly Strategy. ACS NANO 2023; 17:2893-2900. [PMID: 36715585 DOI: 10.1021/acsnano.2c11296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The coloration of carbon nanotube (CNT) fibers (CNTFs) is a long-lasting challenge because of the intrinsic black color and chemically inert surfaces of CNTs, which cannot satisfy the aesthetic and fashion requirements and thus significantly restrict their performance in many cutting-edge fields. Recently, a structural coloration method of CNTFs was developed by our group using atomic layer deposition (ALD) technology. However, the ALD-based structural coloration method of CNTFs is expensive, time-consuming, and not suitable for the large-scale production of colorful CNTFs. Herein, we developed a very simple and scalable liquid-phase method to realize the structural coloration of CNTFs. A SiO2/ethanol dispersion containing SiO2 nanospheres with controllable sizes was synthesized. The SiO2 nanospheres could self-assemble into photonic crystal layers on the surface of CNTFs and exhibited brilliant colors. The colors of SiO2 nanoparticle-coated CNTFs could be easily changed by tuning the sizes of SiO2 nanospheres. This method provides a simple, effective, and promising way for the large-scale production of colorful CNTFs.
Collapse
Affiliation(s)
- Yanlong Zhao
- Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing100084, China
| | - Run Li
- Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing100084, China
| | - Baoshun Wang
- Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing100084, China
| | - Ya Huang
- Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing100084, China
| | - Pei Lyu
- Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing100084, China
| | - Fei Wang
- Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing100084, China
| | - Qinyuan Jiang
- Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing100084, China
| | - Ying Han
- Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing100084, China
| | - Shiliang Zhang
- Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing100084, China
| | - Xueke Wu
- Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing100084, China
| | - Siming Zhao
- Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing100084, China
| | - Na Zhu
- Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing100084, China
| | - Rufan Zhang
- Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing100084, China
| |
Collapse
|
11
|
Guo S, Tao H, Gao G, Mhatre S, Lu Y, Takagi A, Li J, Mo L, Rojas OJ, Chu G. All-Aqueous Bicontinuous Structured Liquid Crystal Emulsion through Intraphase Trapping of Cellulose Nanoparticles. Biomacromolecules 2023; 24:367-376. [PMID: 36479984 PMCID: PMC9832472 DOI: 10.1021/acs.biomac.2c01177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Here, we describe the all-aqueous bicontinuous emulsions with cholesteric liquid crystal domains through hierarchical colloidal self-assembly of nanoparticles. This is achieved by homogenization of a rod-like cellulose nanocrystal (CNC) with two immiscible, phase separating polyethylene glycol (PEG) and dextran polymer solutions. The dispersed CNCs exhibit unequal affinity for the binary polymer mixtures that depends on the balance of osmotic and chemical potential between the two phases. Once at the critical concentration, CNC particles are constrained within one component of the polymer phases and self-assemble into a cholesteric organization. The obtained liquid crystal emulsion demonstrates a confined three-dimensional percolating bicontinuous network with cholesteric self-assembly of CNC within the PEG phase; meanwhile, the nanoparticles in the dextran phase remain isotropic instead. Our results provide an alternative way to arrest bicontinuous structures through intraphase trapping and assembling of nanoparticles, which is a viable and flexible route to extend for a wide range of colloidal systems.
Collapse
Affiliation(s)
- Shasha Guo
- School
of Chemistry and Chemical Engineering, State Key Laboratory of Pulp
and Paper Engineering, South China University
of Technology, Guangzhou 510640, China,Bioproducts
Institute, Department of Chemical & Biological Engineering, Department
of Chemistry and Department of Wood Science, The University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Han Tao
- Bio-based
Colloids and Materials, Department of Bioproducts and Biosystems,
School of Chemical Engineering, Aalto University, Vuorimiehentie 1, Espoo 02510, Finland
| | - Guang Gao
- Department
of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Sameer Mhatre
- Bioproducts
Institute, Department of Chemical & Biological Engineering, Department
of Chemistry and Department of Wood Science, The University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Yi Lu
- Bioproducts
Institute, Department of Chemical & Biological Engineering, Department
of Chemistry and Department of Wood Science, The University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Ayako Takagi
- Bioproducts
Institute, Department of Chemical & Biological Engineering, Department
of Chemistry and Department of Wood Science, The University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Jun Li
- School
of Chemistry and Chemical Engineering, State Key Laboratory of Pulp
and Paper Engineering, South China University
of Technology, Guangzhou 510640, China
| | - Lihuan Mo
- School
of Chemistry and Chemical Engineering, State Key Laboratory of Pulp
and Paper Engineering, South China University
of Technology, Guangzhou 510640, China
| | - Orlando J. Rojas
- Bioproducts
Institute, Department of Chemical & Biological Engineering, Department
of Chemistry and Department of Wood Science, The University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada,Bio-based
Colloids and Materials, Department of Bioproducts and Biosystems,
School of Chemical Engineering, Aalto University, Vuorimiehentie 1, Espoo 02510, Finland,, . Phone: +358503080661
| | - Guang Chu
- Bio-based
Colloids and Materials, Department of Bioproducts and Biosystems,
School of Chemical Engineering, Aalto University, Vuorimiehentie 1, Espoo 02510, Finland,. Phone: +1-604-822-3457
| |
Collapse
|
12
|
Chen X, Da C, Hatchell DC, Daigle H, Ordonez-Varela JR, Blondeau C, Johnston KP. Ultra-stable CO2-in-water foam by generating switchable Janus nanoparticles in-situ. J Colloid Interface Sci 2023; 630:828-843. [DOI: 10.1016/j.jcis.2022.10.102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 10/10/2022] [Accepted: 10/20/2022] [Indexed: 11/09/2022]
|
13
|
Guzmán E, Ortega F, Rubio RG. Forces Controlling the Assembly of Particles at Fluid Interfaces. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:13313-13321. [PMID: 36278952 PMCID: PMC9648339 DOI: 10.1021/acs.langmuir.2c02038] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Indexed: 06/04/2023]
Abstract
The interaction of particles with fluid interfaces is ubiquitous in synthetic and natural work, involving two types of interactions: particle-interface interactions (trapping energy) and interparticle interactions. Therefore, it is urgent to gain a deep understanding of the main forces controlling the trapping of particles at fluid interfaces, and their assembly to generate a broad range of structures characterized by different degrees of order. This Perspective tries to provide an overview of the main contributions to the energetic landscape controlling the assembly of particles at fluid interfaces, which is essential for exploiting this type of interfacial systems as platforms for the fabrication of interface-based soft materials with technological interest.
Collapse
Affiliation(s)
- Eduardo Guzmán
- Departamento
de Química Física, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Ciudad Universitaria s/n, 28040Madrid, Spain
- Instituto
Pluridisciplinar, Universidad Complutense
de Madrid, Paseo Juan XXIII 1, 28040Madrid, Spain
| | - Francisco Ortega
- Departamento
de Química Física, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Ciudad Universitaria s/n, 28040Madrid, Spain
- Instituto
Pluridisciplinar, Universidad Complutense
de Madrid, Paseo Juan XXIII 1, 28040Madrid, Spain
| | - Ramón G. Rubio
- Departamento
de Química Física, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Ciudad Universitaria s/n, 28040Madrid, Spain
| |
Collapse
|
14
|
Aqueous two-phase emulsions toward biologically relevant applications. TRENDS IN CHEMISTRY 2022. [DOI: 10.1016/j.trechm.2022.10.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
15
|
Chu Y, Wismer W, Zeng H, Chen L. Contribution of protein microgels, protein molecules, and polysaccharides to the emulsifying behaviors of core/shell whey protein-alginate microgel systems. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.107670] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
16
|
Feng Y, Wang L, Xu J, Liu G. Effect of particle size on the stripping dynamics during impact of liquid marbles onto a liquid film. SOFT MATTER 2022; 18:5230-5238. [PMID: 35771045 DOI: 10.1039/d2sm00506a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The robust attachment of particles at fluid interfaces is favorable for engineering new materials due to the large capillary energy, but it meets significant challenges when particle removal is a requirement. A previous study has shown that soap films can be utilized to achieve particle separation from liquid marbles. Here, we investigate the effects of particle size on the particle separation from liquid marbles using fast dynamics of drop impact on a soap film. Experimental observations disclose that the fast dynamics of the liquid marble involves coalescence, bouncing, stripping, or tunneling through the film by controlling the falling height and drop volume. More importantly, the active regime of the stripping mode can be selective-controlled by tuning the particle size, and the smaller stabilizing particles make a wider stripping regime. This is attributed to the smaller change of the surface energy resulting from the larger surface tension of LMs wrapped by smaller particles. Theoretical analysis reveals that the stripping thresholds are determined by the energy competition between kinetic energy, the increased surface energy and viscous dissipation, which offers important insights into particle separation by tuning the particle size. The present study provides guidelines for applications that involve phase separation.
Collapse
Affiliation(s)
- Yijun Feng
- Beijing Key Laboratory of Multiphase Flow and Heat Transfer for Low Grade Energy Utilization, North China Electric Power University, Beijing, 102206, P. R. China.
| | - Lin Wang
- Beijing Key Laboratory of Multiphase Flow and Heat Transfer for Low Grade Energy Utilization, North China Electric Power University, Beijing, 102206, P. R. China.
| | - Jinliang Xu
- Beijing Key Laboratory of Multiphase Flow and Heat Transfer for Low Grade Energy Utilization, North China Electric Power University, Beijing, 102206, P. R. China.
| | - Guohua Liu
- Beijing Key Laboratory of Multiphase Flow and Heat Transfer for Low Grade Energy Utilization, North China Electric Power University, Beijing, 102206, P. R. China.
| |
Collapse
|
17
|
Ching H, Mohraz A. Bijel rheology reveals a 2D colloidal glass wrapped in 3D. SOFT MATTER 2022; 18:4227-4238. [PMID: 35607949 DOI: 10.1039/d2sm00407k] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
We present rheological evidence demonstrating the glass-like nature of bicontinuous interfacially jammed emulsion gels (bijels). Under small amplitude oscillatory shear, bijels exhibited rheological signatures akin to α and β relaxation that are also invariable to interfacial tension changes, behaviors which are reminiscent of caged particle dynamics found in colloidal glasses, and well described by a previously reported adaptation of mode-coupling theory for colloidal glass rheology. Guided by their rheological signatures and supported by particle detachment and attraction energy approximations, we rationalize that bijels can be represented as 2-dimensional (2D) colloidal glasses that percolate in 3-dimensional (3D) space, and attractive interactions are not required for their stability. To provide further support for this conjecture, we qualitatively compare the rheology of bijels and a capillary suspension that is stabilized by strong, rigid capillary bridges between the particles, beyond their limit of linear viscoelasticity. Our results demonstrate that the strong adsorption of particles to the continuous interface and the lack of strong attractive interparticle forces enable recovery by interfacial tension into new jammed configurations after shear deformation. These behaviors are qualitatively different from those in the capillary suspension, where the breaking of attractive interparticle bonds results in dramatic changes to the microstructure and rheology over a narrow range of shear amplitudes. Our findings unveil bijels as 2D colloidal glasses weaving in 3D space and establish that interparticle attractions are not required for stability in bijels, and interfacial jamming alone is sufficient to impart viscoelasticity and gel-like rheology to these materials.
Collapse
Affiliation(s)
- Herman Ching
- Department of Chemical and Biomolecular Engineering, University of California, Irvine, CA 92697-2580, USA.
| | - Ali Mohraz
- Department of Chemical and Biomolecular Engineering, University of California, Irvine, CA 92697-2580, USA.
| |
Collapse
|
18
|
Jose M, Lokesh M, Vaippully R, Satapathy DK, Roy B. Temporal evolution of viscoelasticity of soft colloid laden air-water interface: a multiple mode microrheology study. RSC Adv 2022; 12:12988-12996. [PMID: 35497011 PMCID: PMC9049755 DOI: 10.1039/d2ra00765g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Accepted: 04/19/2022] [Indexed: 12/17/2022] Open
Abstract
Mechanical properties of particle laden interfaces is crucial for various applications. For water droplets containing soft microgel particles, passive microrheology studies have revealed that the dynamically varying surface area of the evaporating drop results in a viscous to viscoelastic transition along the plane of the interface. However, the behaviour of the medium orthogonal to the interface has been elusive to study using passive microrheology techniques. In this work, we employ optical tweezers and birefringent probe particles to extract the direction-resolved viscoelastic properties of the particle-laden interface. By using special types of birefringent tracer particles, we detect not only the in-plane translational mode but also the out-of-plane translational (perpendicular to the interface) and rotational modes. We first compare different passive methods of probing the viscoelasticity of the microgel laden interface of sessile drop and then study the modes perpendicular to the interface and the out-of-plane rotational mode using optical tweezers based passive microrheology. The viscoelasticity of the interface using two different methods, i.e., multiple-particle tracking passive microrheology using video microscopy and by trapping birefringent tracer particles in optical tweezers, relying on different models are studied and found to exhibit comparable trends. Interestingly, the mode orthogonal to the interface and the rotational mode also show the viscous to viscoelastic transition as the droplet evaporates, but with lesser viscoelasticity during the same evaporation time than the in-plane mode.
Collapse
Affiliation(s)
- Merin Jose
- Department of Physics, Indian Institute of Technology Madras Chennai Tamil Nadu India 600036
| | - Muruga Lokesh
- Department of Physics, Indian Institute of Technology Madras Chennai Tamil Nadu India 600036
| | - Rahul Vaippully
- Department of Physics, Indian Institute of Technology Madras Chennai Tamil Nadu India 600036
| | - Dillip K Satapathy
- Department of Physics, Indian Institute of Technology Madras Chennai Tamil Nadu India 600036
| | - Basudev Roy
- Department of Physics, Indian Institute of Technology Madras Chennai Tamil Nadu India 600036
| |
Collapse
|
19
|
Guzmán E, Martínez-Pedrero F, Calero C, Maestro A, Ortega F, Rubio RG. A broad perspective to particle-laden fluid interfaces systems: from chemically homogeneous particles to active colloids. Adv Colloid Interface Sci 2022; 302:102620. [PMID: 35259565 DOI: 10.1016/j.cis.2022.102620] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Revised: 02/22/2022] [Accepted: 02/23/2022] [Indexed: 01/12/2023]
Abstract
Particles adsorbed to fluid interfaces are ubiquitous in industry, nature or life. The wide range of properties arising from the assembly of particles at fluid interface has stimulated an intense research activity on shed light to the most fundamental physico-chemical aspects of these systems. These include the mechanisms driving the equilibration of the interfacial layers, trapping energy, specific inter-particle interactions and the response of the particle-laden interface to mechanical perturbations and flows. The understanding of the physico-chemistry of particle-laden interfaces becomes essential for taking advantage of the particle capacity to stabilize interfaces for the preparation of different dispersed systems (emulsions, foams or colloidosomes) and the fabrication of new reconfigurable interface-dominated devices. This review presents a detailed overview of the physico-chemical aspects that determine the behavior of particles trapped at fluid interfaces. This has been combined with some examples of real and potential applications of these systems in technological and industrial fields. It is expected that this information can provide a general perspective of the topic that can be exploited for researchers and technologist non-specialized in the study of particle-laden interfaces, or for experienced researcher seeking new questions to solve.
Collapse
Affiliation(s)
- Eduardo Guzmán
- Departamento de Química Física, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Ciudad Universitaria s/n, 28040 Madrid, Spain; Unidad de Materia Condensada, Instituto Pluridisciplinar, Universidad Complutense de Madrid, Paseo Juan XXIII 1, 28040 Madrid, Spain.
| | - Fernando Martínez-Pedrero
- Departamento de Química Física, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Ciudad Universitaria s/n, 28040 Madrid, Spain.
| | - Carles Calero
- Departament de Física de la Matèria Condensada, Facultat de Física, Universitat de Barcelona, Avenida Diagonal 647, 08028 Barcelona, Spain; Institut de Nanociència i Nanotecnologia, IN2UB, Universitat de Barcelona, Avenida, Diagonal 647, 08028 Barcelona, Spain
| | - Armando Maestro
- Centro de Fı́sica de Materiales (CSIC, UPV/EHU)-Materials Physics Center MPC, Paseo Manuel de Lardizabal 5, 20018 San Sebastián, Spain; IKERBASQUE-Basque Foundation for Science, Plaza Euskadi 5, 48009 Bilbao, Spain
| | - Francisco Ortega
- Departamento de Química Física, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Ciudad Universitaria s/n, 28040 Madrid, Spain; Unidad de Materia Condensada, Instituto Pluridisciplinar, Universidad Complutense de Madrid, Paseo Juan XXIII 1, 28040 Madrid, Spain
| | - Ramón G Rubio
- Departamento de Química Física, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Ciudad Universitaria s/n, 28040 Madrid, Spain; Unidad de Materia Condensada, Instituto Pluridisciplinar, Universidad Complutense de Madrid, Paseo Juan XXIII 1, 28040 Madrid, Spain.
| |
Collapse
|
20
|
Ma J, Yao M, Yang Y, Zhang X. Comprehensive review on stability and demulsification of unconventional heavy oil-water emulsions. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.118510] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
21
|
Feng Y, Liu G, Xu J, Wang K, Mao W, Yao G. Particle Separation from Liquid Marbles by the Viscous Folding of Liquid Films. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:2055-2065. [PMID: 35120293 DOI: 10.1021/acs.langmuir.1c02994] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Particle separation from fluid interfaces is one of the major challenges due to the large capillary energy associated with particle adsorption. Previous approaches rely on physicochemical modification or tuning the electrostatic action. Here, we show experimentally that particle separation can be achieved by fast dynamics of drop impact on soap films. When a droplet wrapped with particles (liquid marble) collides with a soap film, it undergoes bouncing and coalescence, stripping and viscous separation, or tunneling through the film. Despite the violence of splashing events, the process robustly yields the stripping in a tunable range. This viscous separation is supported by the transfer front of dynamic contact among the film, particle crust, and drop and can be well controlled in a deterministic manner by selectable impact parameters. By extensive experiments, together with thermodynamic analysis, we disclose that the separation thresholds depend on the energy competition between the kinetic energy, the increased surface energy, and the viscous dissipation. The mechanical cracking of the particle crust arises from the complex coupling between interfacial stress and viscous forces. This study is of potential benefit in soft matter research and also permits the study of a drop with colloid and surface chemistry.
Collapse
Affiliation(s)
- Yijun Feng
- Beijing Key Laboratory of Multiphase Flow and Heat Transfer for Low Grade Energy Utilization, North China Electric Power University, Beijing 102206, P.R. China
| | - Guohua Liu
- Beijing Key Laboratory of Multiphase Flow and Heat Transfer for Low Grade Energy Utilization, North China Electric Power University, Beijing 102206, P.R. China
| | - Jinliang Xu
- Beijing Key Laboratory of Multiphase Flow and Heat Transfer for Low Grade Energy Utilization, North China Electric Power University, Beijing 102206, P.R. China
| | - Kaiying Wang
- Department of Microsystems, University of South-Eastern Norway, Horten 3184, Norway
| | - Wenbin Mao
- Department of Mechanical Engineering, University of South Florida, Tampa, Florida 33620, United States
| | - Guansheng Yao
- Beijing Key Laboratory of Multiphase Flow and Heat Transfer for Low Grade Energy Utilization, North China Electric Power University, Beijing 102206, P.R. China
| |
Collapse
|
22
|
Zhang Y, Cui H, Zhang R, Zhang H, Huang W. Nanoparticulation of Prodrug into Medicines for Cancer Therapy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2101454. [PMID: 34323373 PMCID: PMC8456229 DOI: 10.1002/advs.202101454] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 06/16/2021] [Indexed: 05/28/2023]
Abstract
This article provides a broad spectrum about the nanoprodrug fabrication advances co-driven by prodrug and nanotechnology development to potentiate cancer treatment. The nanoprodrug inherits the features of both prodrug concept and nanomedicine know-how, attempts to solve underexploited challenge in cancer treatment cooperatively. Prodrugs can release bioactive drugs on-demand at specific sites to reduce systemic toxicity, this is done by using the special properties of the tumor microenvironment, such as pH value, glutathione concentration, and specific overexpressed enzymes; or by using exogenous stimulation, such as light, heat, and ultrasound. The nanotechnology, manipulating the matter within nanoscale, has high relevance to certain biological conditions, and has been widely utilized in cancer therapy. Together, the marriage of prodrug strategy which shield the side effects of parent drug and nanotechnology with pinpoint delivery capability has conceived highly camouflaged Trojan horse to maneuver cancerous threats.
Collapse
Affiliation(s)
- Yuezhou Zhang
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering (IBME), Northwestern Polytechnical University, 127 West Youyi Road, Xi'an, 710072, China
- Ningbo Institute of Northwestern Polytechnical University, 218 Qingyi Road, Ningbo, 315103, China
| | - Huaguang Cui
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering (IBME), Northwestern Polytechnical University, 127 West Youyi Road, Xi'an, 710072, China
- Ningbo Institute of Northwestern Polytechnical University, 218 Qingyi Road, Ningbo, 315103, China
| | - Ruiqi Zhang
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering (IBME), Northwestern Polytechnical University, 127 West Youyi Road, Xi'an, 710072, China
- Ningbo Institute of Northwestern Polytechnical University, 218 Qingyi Road, Ningbo, 315103, China
| | - Hongbo Zhang
- Pharmaceutical Sciences Laboratory, Åbo Akademi University, Turku, FI-00520, Finland
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, FI-00520, Finland
| | - Wei Huang
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering (IBME), Northwestern Polytechnical University, 127 West Youyi Road, Xi'an, 710072, China
- Ningbo Institute of Northwestern Polytechnical University, 218 Qingyi Road, Ningbo, 315103, China
| |
Collapse
|
23
|
Guzmán E, Abelenda-Núñez I, Maestro A, Ortega F, Santamaria A, Rubio RG. Particle-laden fluid/fluid interfaces: physico-chemical foundations. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2021; 33:333001. [PMID: 34102618 DOI: 10.1088/1361-648x/ac0938] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 06/08/2021] [Indexed: 06/12/2023]
Abstract
Particle-laden fluid/fluid interfaces are ubiquitous in academia and industry, which has fostered extensive research efforts trying to disentangle the physico-chemical bases underlying the trapping of particles to fluid/fluid interfaces as well as the properties of the obtained layers. The understanding of such aspects is essential for exploiting the ability of particles on the stabilization of fluid/fluid interface for the fabrication of novel interface-dominated devices, ranging from traditional Pickering emulsions to more advanced reconfigurable devices. This review tries to provide a general perspective of the physico-chemical aspects associated with the stabilization of interfaces by colloidal particles, mainly chemical isotropic spherical colloids. Furthermore, some aspects related to the exploitation of particle-laden fluid/fluid interfaces on the stabilization of emulsions and foams will be also highlighted. It is expected that this review can be used for researchers and technologist as an initial approach to the study of particle-laden fluid layers.
Collapse
Affiliation(s)
- Eduardo Guzmán
- Departamento de Química Física, Universidad Complutense de Madrid, Madrid, Spain
- Instituto Pluridisciplinar, Universidad Complutense de Madrid, Madrid, Spain
| | - Irene Abelenda-Núñez
- Departamento de Química Física, Universidad Complutense de Madrid, Madrid, Spain
| | | | - Francisco Ortega
- Departamento de Química Física, Universidad Complutense de Madrid, Madrid, Spain
- Instituto Pluridisciplinar, Universidad Complutense de Madrid, Madrid, Spain
| | - Andreas Santamaria
- Instituto Pluridisciplinar, Universidad Complutense de Madrid, Madrid, Spain
- Institut Laue-Langevin, Grenoble, France
| | - Ramón G Rubio
- Departamento de Química Física, Universidad Complutense de Madrid, Madrid, Spain
- Instituto Pluridisciplinar, Universidad Complutense de Madrid, Madrid, Spain
| |
Collapse
|