1
|
Yang M, Wang L, Liu W, Li W, Huang Y, Jin Q, Zhang L, Jiang Y, Luo Z. Highly-stable, injectable, conductive hydrogel for chronic neuromodulation. Nat Commun 2024; 15:7993. [PMID: 39266583 PMCID: PMC11393409 DOI: 10.1038/s41467-024-52418-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 09/05/2024] [Indexed: 09/14/2024] Open
Abstract
Electroceuticals, through the selective modulation of peripheral nerves near target organs, are promising for treating refractory diseases. However, the small sizes and the delicate nature of these nerves present challenges in simplifying the fixation and stabilizing the electrical-coupling interface for neural electrodes. Herein, we construct a robust neural interface for fine peripheral nerves using an injectable bio-adhesive hydrogel bioelectronics. By incorporating a multifunctional molecular regulator during network formation, we optimize the injectability and conductivity of the hydrogel through fine-tuning reaction kinetics and multi-scale interactions within the conductive network. Meanwhile, the mechanical and electrical stability of the hydrogel is achieved without compromising its injectability. Minimal tissue damage along with low and stable impedance of the injectable neural interface enables chronic vagus neuromodulation for myocardial infarction therapy in the male rat model. Our highly-stable, injectable, conductive hydrogel bioelectronics are readily available to target challenging anatomical locations, paving the way for future precision bioelectronic medicine.
Collapse
Affiliation(s)
- Ming Yang
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Lufang Wang
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Wenliang Liu
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Wenlong Li
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Yewei Huang
- Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Qiaofeng Jin
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Li Zhang
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| | - Yuanwen Jiang
- Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| | - Zhiqiang Luo
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China.
| |
Collapse
|
2
|
Malley KM, Ruiz AD, Darrow MJ, Danaphongse T, Shiers S, Ahmad FN, Mota-Beltran C, Stanislav BT, Price TJ, Rennaker RL, Kilgard MP, Hays SA. Neural mechanisms responsible for vagus nerve stimulation-dependent enhancement of somatosensory recovery. Sci Rep 2024; 14:19448. [PMID: 39169080 PMCID: PMC11339300 DOI: 10.1038/s41598-024-70091-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 08/13/2024] [Indexed: 08/23/2024] Open
Abstract
Impairments in somatosensory function are a common and often debilitating consequence of neurological injury, with few effective interventions. Building on success in rehabilitation for motor dysfunction, the delivery of vagus nerve stimulation (VNS) combined with tactile rehabilitation has emerged as a potential approach to enhance recovery of somatosensation. In order to maximize the effectiveness of VNS therapy and promote translation to clinical implementation, we sought to optimize the stimulation paradigm and identify neural mechanisms that underlie VNS-dependent recovery. To do so, we characterized the effect of tactile rehabilitation combined with VNS across a range of stimulation intensities on recovery of somatosensory function in a rat model of chronic sensory loss in the forelimb. Consistent with previous studies in other applications, we find that moderate intensity VNS yields the most effective restoration of somatosensation, and both lower and higher VNS intensities fail to enhance recovery compared to rehabilitation without VNS. We next used the optimized, moderate intensity to evaluate the mechanisms that underlie recovery. We find that moderate intensity VNS enhances transcription of Arc, a canonical mediator of synaptic plasticity, in the cortex, and that transcript levels were correlated with the degree of somatosensory recovery. Moreover, we observe that blocking plasticity by depleting acetylcholine in the cortex prevents the VNS-dependent enhancement of somatosensory recovery. Collectively, these findings identify neural mechanisms that subserve VNS-dependent somatosensation recovery and provide a basis for selecting optimal stimulation parameters in order to facilitate translation of this potential intervention.
Collapse
Affiliation(s)
- Kaitlyn M Malley
- Texas Biomedical Device Center, Richardson, USA
- School of Behavioral and Brain Sciences, Richardson, USA
| | | | | | | | - Stephanie Shiers
- School of Behavioral and Brain Sciences, Richardson, USA
- Center for Advanced Pain Studies, The University of Texas at Dallas, Richardson, TX, USA
| | - Fatima N Ahmad
- Texas Biomedical Device Center, Richardson, USA
- School of Behavioral and Brain Sciences, Richardson, USA
| | - Clareth Mota-Beltran
- Texas Biomedical Device Center, Richardson, USA
- School of Behavioral and Brain Sciences, Richardson, USA
| | - Benjamin T Stanislav
- Texas Biomedical Device Center, Richardson, USA
- School of Behavioral and Brain Sciences, Richardson, USA
| | - Theodore J Price
- School of Behavioral and Brain Sciences, Richardson, USA
- Center for Advanced Pain Studies, The University of Texas at Dallas, Richardson, TX, USA
| | - Robert L Rennaker
- Texas Biomedical Device Center, Richardson, USA
- School of Behavioral and Brain Sciences, Richardson, USA
| | - Michael P Kilgard
- Texas Biomedical Device Center, Richardson, USA
- School of Behavioral and Brain Sciences, Richardson, USA
| | - Seth A Hays
- Texas Biomedical Device Center, Richardson, USA.
- School of Behavioral and Brain Sciences, Richardson, USA.
- Department of Bioengineering, Erik Jonsson School of Engineering and Computer Science, University of Texas at Dallas, 800 W Campbell Rd, Richardson, TX, 75080, USA.
| |
Collapse
|
3
|
Xu Q, Xiao Z, Yang Q, Yu T, Deng X, Chen N, Huang Y, Wang L, Guo J, Wang J. Hydrogel-based cardiac repair and regeneration function in the treatment of myocardial infarction. Mater Today Bio 2024; 25:100978. [PMID: 38434571 PMCID: PMC10907859 DOI: 10.1016/j.mtbio.2024.100978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 12/22/2023] [Accepted: 01/24/2024] [Indexed: 03/05/2024] Open
Abstract
A life-threatening illness that poses a serious threat to human health is myocardial infarction. It may result in a significant number of myocardial cells dying, dilated left ventricles, dysfunctional heart function, and ultimately cardiac failure. Based on the development of emerging biomaterials and the lack of clinical treatment methods and cardiac donors for myocardial infarction, hydrogels with good compatibility have been gradually applied to the treatment of myocardial infarction. Specifically, based on the three processes of pathophysiology of myocardial infarction, we summarized various types of hydrogels designed for myocardial tissue engineering in recent years, including natural hydrogels, intelligent hydrogels, growth factors, stem cells, and microRNA-loaded hydrogels. In addition, we also describe the heart patch and preparation techniques that promote the repair of MI heart function. Although most of these hydrogels are still in the preclinical research stage and lack of clinical trials, they have great potential for further application in the future. It is expected that this review will improve our knowledge of and offer fresh approaches to treating myocardial infarction.
Collapse
Affiliation(s)
- Qiaxin Xu
- Department of Pharmacy, The First Affiliated Hospital of Jinan University, Guangzhou, 510630, China
- The Guangzhou Key Laboratory of Basic and Translational Research on Chronic Diseases, Jinan University, Guangzhou, 510630, China
| | - Zeyu Xiao
- The Guangzhou Key Laboratory of Basic and Translational Research on Chronic Diseases, Jinan University, Guangzhou, 510630, China
- The Guangzhou Key Laboratory of Molecular and Functional Imaging for Clinical Translation, Jinan University, Guangzhou, 510630, China
| | - Qianzhi Yang
- Department of Pharmacy, The First Affiliated Hospital of Jinan University, Guangzhou, 510630, China
- The Guangzhou Key Laboratory of Basic and Translational Research on Chronic Diseases, Jinan University, Guangzhou, 510630, China
| | - Tingting Yu
- Department of Pharmacy, The First Affiliated Hospital of Jinan University, Guangzhou, 510630, China
- The Guangzhou Key Laboratory of Basic and Translational Research on Chronic Diseases, Jinan University, Guangzhou, 510630, China
| | - Xiujiao Deng
- Department of Pharmacy, The First Affiliated Hospital of Jinan University, Guangzhou, 510630, China
- The Guangzhou Key Laboratory of Basic and Translational Research on Chronic Diseases, Jinan University, Guangzhou, 510630, China
| | - Nenghua Chen
- Department of Pharmacy, The First Affiliated Hospital of Jinan University, Guangzhou, 510630, China
- The Guangzhou Key Laboratory of Basic and Translational Research on Chronic Diseases, Jinan University, Guangzhou, 510630, China
| | - Yanyu Huang
- Department of Biochemistry and Molecular Medicine, University of California Davis, Sacramento, CA, 95817, USA
| | - Lihong Wang
- The Guangzhou Key Laboratory of Basic and Translational Research on Chronic Diseases, Jinan University, Guangzhou, 510630, China
- Department of Endocrinology, The First Affiliated Hospital of Jinan University, Guangzhou, 510630, China
| | - Jun Guo
- The Guangzhou Key Laboratory of Basic and Translational Research on Chronic Diseases, Jinan University, Guangzhou, 510630, China
- Department of Cardiology, The First Affiliated Hospital of Jinan University, Guangzhou, 510630, China
| | - Jinghao Wang
- Department of Pharmacy, The First Affiliated Hospital of Jinan University, Guangzhou, 510630, China
- The Guangzhou Key Laboratory of Basic and Translational Research on Chronic Diseases, Jinan University, Guangzhou, 510630, China
| |
Collapse
|
4
|
Payne SC, Osborne PB, Thompson A, Eiber CD, Keast JR, Fallon JB. Selective recording of physiologically evoked neural activity in a mixed autonomic nerve using a minimally invasive array. APL Bioeng 2023; 7:046110. [PMID: 37928642 PMCID: PMC10625482 DOI: 10.1063/5.0164951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Accepted: 10/16/2023] [Indexed: 11/07/2023] Open
Abstract
Real-time closed-loop control of neuromodulation devices requires long-term monitoring of neural activity in the peripheral nervous system. Although many signal extraction methods exist, few are both clinically viable and designed for extracting small signals from fragile peripheral visceral nerves. Here, we report that our minimally invasive recording and analysis technology extracts low to negative signal to noise ratio (SNR) neural activity from a visceral nerve with a high degree of specificity for fiber type and class. Complex activity was recorded from the rat pelvic nerve that was physiologically evoked during controlled bladder filling and voiding, in an extensively characterized in vivo model that provided an excellent test bed to validate our technology. Urethane-anesthetized male rats (n = 12) were implanted with a four-electrode planar array and the bladder instrumented for continuous-flow cystometry, which measures urodynamic function by recording bladder pressure changes during constant infusion of saline. We demonstrated that differential bipolar recordings and cross-correlation analyses extracts afferent and efferent activity, and discriminated between subpopulations of fibers based on conduction velocity. Integrated Aδ afferent fiber activity correlated with bladder pressure during voiding (r2: 0.66 ± 0.06) and was not affected by activating nociceptive afferents with intravesical capsaicin (r2: 0.59 ± 0.14, P = 0.54, and n = 3). Collectively, these results demonstrate our minimally invasive recording and analysis technology is selective in extracting mixed neural activity with low/negative SNR. Furthermore, integrated afferent activity reliably correlates with bladder pressure and is a promising first step in developing closed-loop technology for bladder control.
Collapse
Affiliation(s)
| | - Peregrine B. Osborne
- Department of Anatomy and Physiology, University of Melbourne, Victoria 3010, Australia
| | | | - Calvin D. Eiber
- Department of Anatomy and Physiology, University of Melbourne, Victoria 3010, Australia
| | - Janet R. Keast
- Department of Anatomy and Physiology, University of Melbourne, Victoria 3010, Australia
| | | |
Collapse
|
5
|
Leon‐Mercado L, Tinajero A, Gautron L. Evidence of extraganglionic vagal mechanoreceptors in the mouse vagus nerve. J Anat 2023; 243:936-950. [PMID: 37403978 PMCID: PMC10641042 DOI: 10.1111/joa.13925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 06/20/2023] [Accepted: 06/21/2023] [Indexed: 07/06/2023] Open
Abstract
Vagal afferent neuronal somas are in the nodose and jugular ganglia. In this study, we identified extraganglionic neurons in whole-mount preparations of the vagus nerves from Phox2b-Cre-ZsGreen transgenic mice. These neurons are typically arranged in small clusters and monolayers along the cervical vagus nerve. Although infrequent, these neurons were sometimes observed along the thoracic and esophageal vagus. We performed RNAscope in situ hybridization and confirmed that the extraganglionic neurons detected in this transgenic mouse strain expressed vagal afferent markers (i.e., Phox2b and Slc17a6) as well as markers that identify them as potential gastrointestinal mechanoreceptors (i.e., Tmc3 and Glp1r). We also identified extraganglionic neurons in the vagus nerves of wild-type mice that were injected intraperitoneally with Fluoro-Gold, thereby ruling out possible anatomical discrepancies specific for transgenic mice. In wild-type mice, extraganglionic cells were positive for peripherin, confirming their neuronal nature. Taken together, our findings revealed a previously undiscovered population of extraganglionic neurons associated with the vagus nerve. Going forward, it is important to consider the possible existence of extraganglionic mechanoreceptors that transmit signals from the abdominal viscera in future studies related to vagal structure and function.
Collapse
Affiliation(s)
- Luis Leon‐Mercado
- Department of Internal MedicineCenter for Hypothalamic Research, UT Southwestern Medical CenterDallasTexasUSA
| | - Arely Tinajero
- Department of Internal MedicineCenter for Hypothalamic Research, UT Southwestern Medical CenterDallasTexasUSA
| | - Laurent Gautron
- Department of Internal MedicineCenter for Hypothalamic Research, UT Southwestern Medical CenterDallasTexasUSA
| |
Collapse
|
6
|
Bao S, Lu Y, Zhang J, Xue L, Zhang Y, Wang P, Zhang F, Gu N, Sun J. Rapid improvement of heart repair in rats after myocardial infarction by precise magnetic stimulation on the vagus nerve with an injectable magnetic hydrogel. NANOSCALE 2023; 15:3532-3541. [PMID: 36723151 DOI: 10.1039/d2nr05073k] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The imbalance between the sympathetic and the parasympathetic nervous system is one of the main pathogeneses of myocardial infarction (MI). Vagus nerve stimulation (VNS), which restores autonomic nervous balance by enhancing the parasympathetic drive, is shown to have benefits for patients with MI. As a clinically safe and effective remote neuromodulation method, magnetic stimulation is expected to overcome the problems of infection and nerve injury caused by electrode implantation. However, it is difficult to achieve precise stimulation on a single vagus nerve due to the poor focus of the magnetic field. Here, we described a novel magnetic vagus nerve stimulation (mVNS) system, which consisted of an injectable chitosan/β-glycerophosphate (CS/GP) hydrogel loaded with superparamagnetic iron oxide (SPIO) nanoparticles and a mild magnetic pulse sequence. The injectable hydrogel prepared from clinically safe materials ensured minimally invasive implantation, and the SPIO nanoparticles in the hydrogel mediated the precise magnetic stimulation of a single vagus nerve. Under a mild magnetic field (∼100 mT), a decrease in heart rate and a change in vagus nerve potential were found in rats under in situ injection of a magnetic CS/GP hydrogel. Magnetic stimulation on the vagus nerve for 4 weeks (20 Hz, three times daily, 5 minutes each time) significantly improved the cardiac function and reduced the infarct size of the rats subjected to myocardial infarction, accompanied by suppression of inflammatory cell infiltration and inflammation factor expression. Taken together, these results demonstrated that the mVNS exhibited promising potential for treating myocardial infarction in the clinic.
Collapse
Affiliation(s)
- Siyuan Bao
- The State Key Laboratory of Bioelectronics, Jiangsu Key Laboratory of Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210009, P. R. China.
| | - Yao Lu
- Section of Pacing and Electrophysiology, Division of Cardiology, The First Affiliated Hospital with Nanjing Medical University, Nanjing, 210009, P. R. China.
- Department of Cardiology, Xuzhou Central Hospital, The Affiliated XuZhou Hospital of Nanjing Medical University, No. 199 Jiefang South Road, Xuzhou, 221009, P. R. China
| | - Jian Zhang
- Section of Pacing and Electrophysiology, Division of Cardiology, The First Affiliated Hospital with Nanjing Medical University, Nanjing, 210009, P. R. China.
| | - Le Xue
- The State Key Laboratory of Bioelectronics, Jiangsu Key Laboratory of Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210009, P. R. China.
| | - Yewei Zhang
- Hepatopancreatobiliary Center, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, 210011, P. R. China
| | - Peng Wang
- The State Key Laboratory of Bioelectronics, Jiangsu Key Laboratory of Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210009, P. R. China.
- State Key Laboratory of Pharmaceutical Biotechnology, Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Branch of National Clinical Research Center for Orthopedics, Sports Medicine and Rehabilitation, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, 321 Zhongshan Road, Nanjing 210008, China
| | - Fengxiang Zhang
- Section of Pacing and Electrophysiology, Division of Cardiology, The First Affiliated Hospital with Nanjing Medical University, Nanjing, 210009, P. R. China.
| | - Ning Gu
- School of Medicine, Nanjing University, Nanjing, 210009, P. R. China.
| | - Jianfei Sun
- The State Key Laboratory of Bioelectronics, Jiangsu Key Laboratory of Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210009, P. R. China.
| |
Collapse
|
7
|
Vatsyayan R, Dayeh SA. A universal model of electrochemical safety limits in vivo for electrophysiological stimulation. Front Neurosci 2022; 16:972252. [PMID: 36277998 PMCID: PMC9582612 DOI: 10.3389/fnins.2022.972252] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Accepted: 09/12/2022] [Indexed: 11/26/2022] Open
Abstract
Electrophysiological stimulation has been widely adopted for clinical diagnostic and therapeutic treatments for modulation of neuronal activity. Safety is a primary concern in an interventional design leveraging the effects of electrical charge injection into tissue in the proximity of target neurons. While modalities of tissue damage during stimulation have been extensively investigated for specific electrode geometries and stimulation paradigms, a comprehensive model that can predict the electrochemical safety limits in vivo doesn’t yet exist. Here we develop a model that accounts for the electrode geometry, inter-electrode separation, material, and stimulation paradigm in predicting safe current injection limits. We performed a parametric investigation of the stimulation limits in both benchtop and in vivo setups for flexible microelectrode arrays with low impedance, high geometric surface area platinum nanorods and PEDOT:PSS, and higher impedance, planar platinum contacts. We benchmark our findings against standard clinical electrocorticography and depth electrodes. Using four, three and two contact electrochemical impedance measurements and comprehensive circuit models derived from these measurements, we developed a more accurate, clinically relevant and predictive model for the electrochemical interface potential. For each electrode configuration, we experimentally determined the geometric correction factors that dictate geometry-enforced current spreading effects. We also determined the electrolysis window from cyclic-voltammetry measurements which allowed us to calculate stimulation current safety limits from voltage transient measurements. From parametric benchtop electrochemical measurements and analyses for different electrode types, we created a predictive equation for the cathodal excitation measured at the electrode interface as a function of the electrode dimensions, geometric factor, material and stimulation paradigm. We validated the accuracy of our equation in vivo and compared the experimentally determined safety limits to clinically used stimulation protocols. Our new model overcomes the design limitations of Shannon’s equation and applies to macro- and micro-electrodes at different density or separation of contacts, captures the breakdown of charge-density based approaches at long stimulation pulse widths, and invokes appropriate power exponents to current, pulse width, and material/electrode-dependent impedance.
Collapse
|
8
|
Shah J, Quinkert C, Collar B, Williams M, Biggs E, Irazoqui P. A Highly Miniaturized, Chronically Implanted ASIC for Electrical Nerve Stimulation. IEEE TRANSACTIONS ON BIOMEDICAL CIRCUITS AND SYSTEMS 2022; 16:233-243. [PMID: 35201991 PMCID: PMC9195150 DOI: 10.1109/tbcas.2022.3153282] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
We present a wireless, fully implantable device for electrical stimulation of peripheral nerves consisting of a powering coil, a tuning network, a Zener diode, selectable stimulation parameters, and a stimulator IC, all encapsulated in biocompatible silicone. A wireless RF signal at 13.56 MHz powers the implant through the on-chip rectifier. The ASIC, designed in TSMC's 180 nm MS RF G process, occupies an area of less than 1.2 mm2. The IC enables externally selectable current-controlled stimulation through an on-chip read-only memory with a wide range of 32 stimulation parameters (90-750 µA amplitude, 100 µs or 1 ms pulse width, 15 or 50 Hz frequency). The IC generates the constant current waveform using an 8-bit binary weighted DAC and an H-Bridge. At the most power-hungry stimulation parameter, the average power consumption during a stimulus pulse is 2.6 mW with a power transfer efficiency of ∼5.2%. In addition to benchtop and acute testing, we chronically implanted two versions of the device (a design with leads and a leadless design) on two rats' sciatic nerves to verify the long-term efficacy of the IC and the full system. The leadless device had the following dimensions: height of 0.45 cm, major axis of 1.85 cm, and minor axis of 1.34 cm, with similar dimensions for the device with leads. Both devices were implanted and worked for experiments lasting from 21-90 days. To the best of our knowledge, the fabricated IC is the smallest constant-current stimulator that has been tested chronically.
Collapse
|
9
|
Vatsyayan R, Cleary D, Martin JR, Halgren E, Dayeh SA. Electrochemical safety limits for clinical stimulation investigated using depth and strip electrodes in the pig brain. J Neural Eng 2021; 18. [PMID: 34015769 DOI: 10.1088/1741-2552/ac038b] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 05/20/2021] [Indexed: 11/12/2022]
Abstract
Objective. Diagnostic and therapeutic electrical stimulation are increasingly utilized with the rise of neuromodulation devices. However, systematic investigations that depict the practical clinical stimulation paradigms (bipolar, two-electrode configuration) to determine the safety limits are currently lacking. Further, safe charge densities that were classically determined from conical sharp electrodes are generalized for cylindrical (depth) and flat (surface grid) electrodes completely ignoring geometric factors that govern current spreading and trajectories in tissue.Approach. This work reports the first investigations comparing stimulation limits for clinically used electrodes in two mediums: in benchtop experiments in saline andin vivoin a single acute experiment in the pig brain. We experimentally determine the geometric factors, the water electrolysis windows, and the current safety limits from voltage transients, for the sEEG, depth and surface strip electrodes in both mediums. Using four-electrode and three-electrode configuration measurements and comprehensive circuit models that accurately depict our measurements, we delineate the various elements of the stimulation medium, including the tissue-electrode interface impedance spectra, the medium impedance and the bias-dependent change in the interface impedance as a function of stimulation parameters.Main results. The results of our systematics studies suggest that safe currents in clinical bipolar stimulation determinedin vivocan be as much as 24 times smaller than those determined from benchtop experiments (for depth electrodes at a 1 ms pulse duration). Our detailed circuit modeling attributes this drastic difference in safe limits to the greatly dissimilar electrode/tissue and electrode/saline impedances.Significance. We established the electrochemical safety limits for commonly used clinical electrodesin vivoand revealed by detailied electrochemical modeling how they differ from benchtop evaluation. We argue that electrochemical limits and currents are unique for each electrode, should be measuredin vivoaccording to the protocols established in this work, and should be accounted for while setting the stimulation parameters for clinical applications including for chronic applications.
Collapse
Affiliation(s)
- Ritwik Vatsyayan
- Integrated Electronics and Biointerfaces Laboratory, Department of Electrical and Computer Engineering, University of California, San Diego, CA 92093, United States of America
| | - Daniel Cleary
- Integrated Electronics and Biointerfaces Laboratory, Department of Electrical and Computer Engineering, University of California, San Diego, CA 92093, United States of America.,Department of Neurological Surgery, University of California, San Diego, CA 92097, United States of America
| | - Joel R Martin
- Integrated Electronics and Biointerfaces Laboratory, Department of Electrical and Computer Engineering, University of California, San Diego, CA 92093, United States of America.,Department of Neurological Surgery, University of California, San Diego, CA 92097, United States of America
| | - Eric Halgren
- Department of Radiology, University of California, San Diego, CA 92097, United States of America
| | - Shadi A Dayeh
- Integrated Electronics and Biointerfaces Laboratory, Department of Electrical and Computer Engineering, University of California, San Diego, CA 92093, United States of America
| |
Collapse
|
10
|
Mughrabi IT, Hickman J, Jayaprakash N, Thompson D, Ahmed U, Papadoyannis ES, Chang YC, Abbas A, Datta-Chaudhuri T, Chang EH, Zanos TP, Lee SC, Froemke RC, Tracey KJ, Welle C, Al-Abed Y, Zanos S. Development and characterization of a chronic implant mouse model for vagus nerve stimulation. eLife 2021; 10:e61270. [PMID: 33821789 PMCID: PMC8051950 DOI: 10.7554/elife.61270] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 04/02/2021] [Indexed: 12/17/2022] Open
Abstract
Vagus nerve stimulation (VNS) suppresses inflammation and autoimmune diseases in preclinical and clinical studies. The underlying molecular, neurological, and anatomical mechanisms have been well characterized using acute electrophysiological stimulation of the vagus. However, there are several unanswered mechanistic questions about the effects of chronic VNS, which require solving numerous technical challenges for a long-term interface with the vagus in mice. Here, we describe a scalable model for long-term VNS in mice developed and validated in four research laboratories. We observed significant heart rate responses for at least 4 weeks in 60-90% of animals. Device implantation did not impair vagus-mediated reflexes. VNS using this implant significantly suppressed TNF levels in endotoxemia. Histological examination of implanted nerves revealed fibrotic encapsulation without axonal pathology. This model may be useful to study the physiology of the vagus and provides a tool to systematically investigate long-term VNS as therapy for chronic diseases modeled in mice.
Collapse
Affiliation(s)
- Ibrahim T Mughrabi
- Institute of Bioelectronic Medicine, The Feinstein Institutes for Medical Research, Northwell HealthManhassetUnited States
| | - Jordan Hickman
- Departments of Neurosurgery, University of Colorado Anschutz Medical CampusAuroraUnited States
- Department of Physiology and Biophysics, University of Colorado Anschutz Medical CampusAuroraUnited States
| | - Naveen Jayaprakash
- Institute of Bioelectronic Medicine, The Feinstein Institutes for Medical Research, Northwell HealthManhassetUnited States
| | - Dane Thompson
- Institute of Bioelectronic Medicine, The Feinstein Institutes for Medical Research, Northwell HealthManhassetUnited States
- The Elmezzi Graduate School of Molecular MedicineManhassetUnited States
| | - Umair Ahmed
- Institute of Bioelectronic Medicine, The Feinstein Institutes for Medical Research, Northwell HealthManhassetUnited States
| | - Eleni S Papadoyannis
- Skirball Institute for Biomolecular Medicine, New York University School of Medicine, New York UniversityNew YorkUnited States
- Department of Neuroscience and Physiology, Neuroscience Institute, Center for Neural Science, New York University School of Medicine, New York UniversityNew YorkUnited States
- Department of Otolaryngology, New York University School of Medicine, New York UniversityNew YorkUnited States
- Howard Hughes Medical Institute Faculty Scholar, New York University School of Medicine, New York UniversityNew YorkUnited States
| | - Yao-Chuan Chang
- Institute of Bioelectronic Medicine, The Feinstein Institutes for Medical Research, Northwell HealthManhassetUnited States
| | - Adam Abbas
- Institute of Bioelectronic Medicine, The Feinstein Institutes for Medical Research, Northwell HealthManhassetUnited States
| | - Timir Datta-Chaudhuri
- Institute of Bioelectronic Medicine, The Feinstein Institutes for Medical Research, Northwell HealthManhassetUnited States
| | - Eric H Chang
- Institute of Bioelectronic Medicine, The Feinstein Institutes for Medical Research, Northwell HealthManhassetUnited States
| | - Theodoros P Zanos
- Institute of Bioelectronic Medicine, The Feinstein Institutes for Medical Research, Northwell HealthManhassetUnited States
| | - Sunhee C Lee
- Institute of Molecular Medicine, The Feinstein Institutes for Medical Research, Northwell HealthManhassetUnited States
| | - Robert C Froemke
- Skirball Institute for Biomolecular Medicine, New York University School of Medicine, New York UniversityNew YorkUnited States
- Department of Neuroscience and Physiology, Neuroscience Institute, Center for Neural Science, New York University School of Medicine, New York UniversityNew YorkUnited States
- Department of Otolaryngology, New York University School of Medicine, New York UniversityNew YorkUnited States
- Howard Hughes Medical Institute Faculty Scholar, New York University School of Medicine, New York UniversityNew YorkUnited States
| | - Kevin J Tracey
- Institute of Bioelectronic Medicine, The Feinstein Institutes for Medical Research, Northwell HealthManhassetUnited States
| | - Cristin Welle
- Departments of Neurosurgery, University of Colorado Anschutz Medical CampusAuroraUnited States
- Department of Physiology and Biophysics, University of Colorado Anschutz Medical CampusAuroraUnited States
| | - Yousef Al-Abed
- Institute of Bioelectronic Medicine, The Feinstein Institutes for Medical Research, Northwell HealthManhassetUnited States
| | - Stavros Zanos
- Institute of Bioelectronic Medicine, The Feinstein Institutes for Medical Research, Northwell HealthManhassetUnited States
| |
Collapse
|
11
|
Gautron L. The Phantom Satiation Hypothesis of Bariatric Surgery. Front Neurosci 2021; 15:626085. [PMID: 33597843 PMCID: PMC7882491 DOI: 10.3389/fnins.2021.626085] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 01/06/2021] [Indexed: 01/26/2023] Open
Abstract
The excitation of vagal mechanoreceptors located in the stomach wall directly contributes to satiation. Thus, a loss of gastric innervation would normally be expected to result in abrogated satiation, hyperphagia, and unwanted weight gain. While Roux-en-Y-gastric bypass (RYGB) inevitably results in gastric denervation, paradoxically, bypassed subjects continue to experience satiation. Inspired by the literature in neurology on phantom limbs, I propose a new hypothesis in which damage to the stomach innervation during RYGB, including its vagal supply, leads to large-scale maladaptive changes in viscerosensory nerves and connected brain circuits. As a result, satiation may continue to arise, sometimes at exaggerated levels, even in subjects with a denervated or truncated stomach. The same maladaptive changes may also contribute to dysautonomia, unexplained pain, and new emotional responses to eating. I further revisit the metabolic benefits of bariatric surgery, with an emphasis on RYGB, in the light of this phantom satiation hypothesis.
Collapse
Affiliation(s)
- Laurent Gautron
- Department of Internal Medicine, Center for Hypothalamic Research, The University of Texas Southwestern Medical Center, Dallas, TX, United States
| |
Collapse
|
12
|
Chang YC, Cracchiolo M, Ahmed U, Mughrabi I, Gabalski A, Daytz A, Rieth L, Becker L, Datta-Chaudhuri T, Al-Abed Y, Zanos TP, Zanos S. Quantitative estimation of nerve fiber engagement by vagus nerve stimulation using physiological markers. Brain Stimul 2020; 13:1617-1630. [PMID: 32956868 DOI: 10.1016/j.brs.2020.09.002] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 07/31/2020] [Accepted: 09/04/2020] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND Cervical vagus nerve stimulation (VNS) is an emerging bioelectronic treatment for brain, metabolic, cardiovascular and immune disorders. Its desired and off-target effects are mediated by different nerve fiber populations and knowledge of their engagement could guide calibration and monitoring of VNS therapies. OBJECTIVE Stimulus-evoked compound action potentials (eCAPs) directly provide fiber engagement information but are currently not feasible in humans. A method to estimate fiber engagement through common, noninvasive physiological readouts could be used in place of eCAP measurements. METHODS In anesthetized rats, we recorded eCAPs while registering acute physiological response markers to VNS: cervical electromyography (EMG), changes in heart rate (ΔHR) and breathing interval (ΔBI). Quantitative models were established to capture the relationship between A-, B- and C-fiber type activation and those markers, and to quantitatively estimate fiber activation from physiological markers and stimulation parameters. RESULTS In bivariate analyses, we found that EMG correlates with A-fiber, ΔHR with B-fiber and ΔBI with C-fiber activation, in agreement with known physiological functions of the vagus. We compiled multivariate models for quantitative estimation of fiber engagement from these markers and stimulation parameters. Finally, we compiled frequency gain models that allow estimation of fiber engagement at a wide range of VNS frequencies. Our models, after calibration in humans, could provide noninvasive estimation of fiber engagement in current and future therapeutic applications of VNS.
Collapse
Affiliation(s)
- Yao-Chuan Chang
- Institute of Bioelectronic Medicine, Feinstein Institutes for Medical Research, Manhasset, NY, 11030, USA
| | - Marina Cracchiolo
- Institute of Bioelectronic Medicine, Feinstein Institutes for Medical Research, Manhasset, NY, 11030, USA; The BioRobotics Institute and Department of Excellence in Robotics and AI, Scuola Superiore Sant'Anna, Pisa, 56127, Italy
| | - Umair Ahmed
- Institute of Bioelectronic Medicine, Feinstein Institutes for Medical Research, Manhasset, NY, 11030, USA
| | - Ibrahim Mughrabi
- Institute of Bioelectronic Medicine, Feinstein Institutes for Medical Research, Manhasset, NY, 11030, USA
| | - Arielle Gabalski
- Institute of Bioelectronic Medicine, Feinstein Institutes for Medical Research, Manhasset, NY, 11030, USA
| | - Anna Daytz
- Institute of Bioelectronic Medicine, Feinstein Institutes for Medical Research, Manhasset, NY, 11030, USA
| | - Loren Rieth
- Institute of Bioelectronic Medicine, Feinstein Institutes for Medical Research, Manhasset, NY, 11030, USA
| | - Lance Becker
- Institute of Bioelectronic Medicine, Feinstein Institutes for Medical Research, Manhasset, NY, 11030, USA
| | - Timir Datta-Chaudhuri
- Institute of Bioelectronic Medicine, Feinstein Institutes for Medical Research, Manhasset, NY, 11030, USA
| | - Yousef Al-Abed
- Institute of Bioelectronic Medicine, Feinstein Institutes for Medical Research, Manhasset, NY, 11030, USA
| | - Theodoros P Zanos
- Institute of Bioelectronic Medicine, Feinstein Institutes for Medical Research, Manhasset, NY, 11030, USA
| | - Stavros Zanos
- Institute of Bioelectronic Medicine, Feinstein Institutes for Medical Research, Manhasset, NY, 11030, USA.
| |
Collapse
|
13
|
Otchy TM, Michas C, Lee B, Gopalan K, Nerurkar V, Gleick J, Semu D, Darkwa L, Holinski BJ, Chew DJ, White AE, Gardner TJ. Printable microscale interfaces for long-term peripheral nerve mapping and precision control. Nat Commun 2020; 11:4191. [PMID: 32826892 PMCID: PMC7442820 DOI: 10.1038/s41467-020-18032-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Accepted: 07/29/2020] [Indexed: 12/28/2022] Open
Abstract
The nascent field of bioelectronic medicine seeks to decode and modulate peripheral nervous system signals to obtain therapeutic control of targeted end organs and effectors. Current approaches rely heavily on electrode-based devices, but size scalability, material and microfabrication challenges, limited surgical accessibility, and the biomechanically dynamic implantation environment are significant impediments to developing and deploying peripheral interfacing technologies. Here, we present a microscale implantable device - the nanoclip - for chronic interfacing with fine peripheral nerves in small animal models that begins to meet these constraints. We demonstrate the capability to make stable, high signal-to-noise ratio recordings of behaviorally-linked nerve activity over multi-week timescales. In addition, we show that multi-channel, current-steering-based stimulation within the confines of the small device can achieve multi-dimensional control of a small nerve. These results highlight the potential of new microscale design and fabrication techniques for realizing viable devices for long-term peripheral interfacing.
Collapse
Affiliation(s)
- Timothy M Otchy
- Department of Biology, Boston University, Boston, MA, 02215, USA.
- Neurophotonics Center, Boston University, Boston, MA, 02215, USA.
- Center for Systems Neuroscience, Boston University, Boston, MA, 02215, USA.
| | - Christos Michas
- Department of Biomedical Engineering, Boston University, Boston, MA, 02215, USA
| | - Blaire Lee
- Department of Biology, Boston University, Boston, MA, 02215, USA
| | - Krithi Gopalan
- Department of Biomedical Engineering, Boston University, Boston, MA, 02215, USA
| | - Vidisha Nerurkar
- Department of Biology, Boston University, Boston, MA, 02215, USA
| | - Jeremy Gleick
- Department of Biomedical Engineering, Boston University, Boston, MA, 02215, USA
| | - Dawit Semu
- Department of Biology, Boston University, Boston, MA, 02215, USA
| | - Louis Darkwa
- Department of Biology, Boston University, Boston, MA, 02215, USA
| | - Bradley J Holinski
- Bioelectronics Division, GlaxoSmithKline, Stevenage, Hertfordshire, SG1 2NY, UK
| | - Daniel J Chew
- Bioelectronics Division, GlaxoSmithKline, Stevenage, Hertfordshire, SG1 2NY, UK
| | - Alice E White
- Department of Biomedical Engineering, Boston University, Boston, MA, 02215, USA
- Department of Mechanical Engineering, Boston University, Boston, MA, 02215, USA
| | - Timothy J Gardner
- Department of Biology, Boston University, Boston, MA, 02215, USA.
- Neurophotonics Center, Boston University, Boston, MA, 02215, USA.
- Center for Systems Neuroscience, Boston University, Boston, MA, 02215, USA.
- Department of Biomedical Engineering, Boston University, Boston, MA, 02215, USA.
- Knight Campus, University of Oregon, Eugene, OR, 97405, USA.
| |
Collapse
|
14
|
Falcone JD, Liu T, Goldman L, David D P, Rieth L, Bouton CE, Straka M, Sohal HS. A novel microwire interface for small diameter peripheral nerves in a chronic, awake murine model. J Neural Eng 2020; 17:046003. [DOI: 10.1088/1741-2552/ab9b6d] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
15
|
Clinically-derived vagus nerve stimulation enhances cerebrospinal fluid penetrance. Brain Stimul 2020; 13:1024-1030. [DOI: 10.1016/j.brs.2020.03.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 02/07/2020] [Accepted: 03/18/2020] [Indexed: 02/07/2023] Open
|
16
|
Coventry BS, Sick JT, Talavage TM, Stantz KM, Bartlett EL. Short-wave Infrared Neural Stimulation Drives Graded Sciatic Nerve Activation Across A Continuum of Wavelengths. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2020; 2020:3581-3585. [PMID: 33018777 DOI: 10.1109/embc44109.2020.9176177] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Infrared neural stimulation (INS) is an optical stimulation technique which uses coherent light to stimulate nerves and neurons and which shows increased spatial selectivity compared to electrical stimulation. This could improve deep brain, high channel count, or vagus nerve stimulation. In this study, we seek to understand the wavelength dependence of INS in the near-infrared optical window. Rat sciatic nerves were excised ex vivo and stimulated with wavelengths between 700 and 900 nm. Recorded compound nerve action potentials (CNAPs) showed that stimulation was maximized in the 700 nm window despite comparable laser power levels across wavelengths. Computational models demonstrated that wavelength-based activation dependencies were not a result of passive optical properties. This data demonstrates that INS is both wavelength and power level dependent, which inform stimulation systems to actively target neural microcircuits in humans.
Collapse
|
17
|
Bookout AL, Gautron L. Characterization of a cell bridge variant connecting the nodose and superior cervical ganglia in the mouse: Prevalence, anatomical features, and practical implications. J Comp Neurol 2020; 529:111-128. [PMID: 32356570 DOI: 10.1002/cne.24936] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 04/08/2020] [Accepted: 04/19/2020] [Indexed: 12/22/2022]
Abstract
While autonomic ganglia have been extensively studied in rats instead of mice, there is renewed interest in the anatomy of the mouse autonomic nervous system. This study examined the prevalence and anatomical features of a cell bridge linking two autonomic ganglia of the neck, namely, the nodose ganglion (NG) and the superior cervical ganglion (SCG) in a cohort of C57BL/6J mice. We identified a cell bridge between the NG and the cranial pole of the SCG. This cell bridge was tubular shaped with an average length and width of 700 and 240 μm, respectively. The cell bridge was frequently unilateral and significantly more prevalent in the ganglionic masses from males (38%) than females (21%). On each of its extremities, it contained a mixed of vagal afferents and postganglionic sympathetic neurons. The two populations of neurons abruptly replaced each other in the middle of the cell bridge. We examined the mRNA expression for selected autonomic markers in samples of the NG with or without cell bridge. Our results indicated that the cell bridge was enriched in both markers of postganglionic sympathetic and vagal afferents neurons. Lastly, using FluoroGold microinjection into the NG, we found that the existence of a cell bridge may occasionally lead to the inadvertent contamination of the SCG. In summary, this study describes the anatomy of a cell bridge variant consisting of the fusion of the mouse NG and SCG. The practical implications of our observations are discussed with respect to studies of the mouse vagal afferents, an area of research of increasing popularity.
Collapse
Affiliation(s)
- Angie L Bookout
- Division of Hypothalamic Research and Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Laurent Gautron
- Division of Hypothalamic Research and Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|
18
|
Bucksot JE, Morales Castelan K, Skipton SK, Hays SA. Parametric characterization of the rat Hering-Breuer reflex evoked with implanted and non-invasive vagus nerve stimulation. Exp Neurol 2020; 327:113220. [PMID: 32027928 PMCID: PMC7089831 DOI: 10.1016/j.expneurol.2020.113220] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 02/01/2020] [Indexed: 12/17/2022]
Abstract
Vagus nerve stimulation (VNS) has rapidly gained interest as a treatment for a variety of disorders. A number of methods have been employed to stimulate the vagus nerve, but the most common relies on a cuff electrode implanted around the cervical branch of the nerve. Recently, two non-invasive methods have increased in popularity: transcutaneous cervical VNS (tcVNS) and transcutaneous auricular VNS (taVNS). Despite promising clinical results, there has been little direct comparison of these methods to stimulation delivered via an implanted device. In this study, we directly compared both non-invasive strategies to stimulation with an implanted cuff electrode on activation of the Hering-Breuer (HB) reflex, a non-invasive biomarker of A-fiber activation in the vagus. Stimulation was delivered across a wide range of parameters using tcVNS, taVNS, and an implanted cuff electrode in female rats. Activation of the HB reflex, changes in heart rate, and neck muscle twitch force were recorded. Consistent with low thresholds reported in previous studies, we found that the threshold to activate the HB reflex using an implanted cuff electrode was 0.406 ± 0.066 mA. tcVNS was capable of activating the HB reflex, but the threshold was 34.18 ± 1.86 mA, over 15 fold higher than the stimulation intensity that caused twitching of the neck muscles (2.09 ± 0.16 mA). No activation of the HB reflex was observed with taVNS at any parameters. These results describe activation of the HB reflex with each strategy and provide initial evidence regarding differences in the activation of the vagus nerve with invasive and non-invasive methods.
Collapse
Affiliation(s)
- Jesse E Bucksot
- The University of Texas at Dallas, Erik Jonsson School of Engineering and Computer Science, Richardson, TX, United States of America.
| | - Karen Morales Castelan
- The University of Texas at Dallas, School of Behavioral Brain Sciences, Richardson, TX, United States of America
| | - Samantha K Skipton
- The University of Texas at Dallas, School of Behavioral Brain Sciences, Richardson, TX, United States of America
| | - Seth A Hays
- The University of Texas at Dallas, Erik Jonsson School of Engineering and Computer Science, Richardson, TX, United States of America; The University of Texas at Dallas, School of Behavioral Brain Sciences, Richardson, TX, United States of America; Texas Biomedical Device Center, Richardson, TX, United States of America
| |
Collapse
|
19
|
Bucksot JE, Wells AJ, Rahebi KC, Sivaji V, Romero-Ortega M, Kilgard MP, Rennaker RL, Hays SA. Flat electrode contacts for vagus nerve stimulation. PLoS One 2019; 14:e0215191. [PMID: 31738766 PMCID: PMC6862926 DOI: 10.1371/journal.pone.0215191] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Accepted: 10/30/2019] [Indexed: 02/01/2023] Open
Abstract
The majority of available systems for vagus nerve stimulation use helical stimulation electrodes, which cover the majority of the circumference of the nerve and produce largely uniform current density within the nerve. Flat stimulation electrodes that contact only one side of the nerve may provide advantages, including ease of fabrication. However, it is possible that the flat configuration will yield inefficient fiber recruitment due to a less uniform current distribution within the nerve. Here we tested the hypothesis that flat electrodes will require higher current amplitude to activate all large-diameter fibers throughout the whole cross-section of a nerve than circumferential designs. Computational modeling and in vivo experiments were performed to evaluate fiber recruitment in different nerves and different species using a variety of electrode designs. Initial results demonstrated similar fiber recruitment in the rat vagus and sciatic nerves with a standard circumferential cuff electrode and a cuff electrode modified to approximate a flat configuration. Follow up experiments comparing true flat electrodes to circumferential electrodes on the rabbit sciatic nerve confirmed that fiber recruitment was equivalent between the two designs. These findings demonstrate that flat electrodes represent a viable design for nerve stimulation that may provide advantages over the current circumferential designs for applications in which the goal is uniform activation of all fascicles within the nerve.
Collapse
Affiliation(s)
- Jesse E. Bucksot
- The University of Texas at Dallas, Erik Jonsson School of Engineering and
Computer Science, Richardson, Texas, United States of America
| | - Andrew J. Wells
- The University of Texas at Dallas, Erik Jonsson School of Engineering and
Computer Science, Richardson, Texas, United States of America
| | - Kimiya C. Rahebi
- Texas Biomedical Device Center, Richardson, Texas, United States of
America
| | - Vishnoukumaar Sivaji
- The University of Texas at Dallas, Erik Jonsson School of Engineering and
Computer Science, Richardson, Texas, United States of America
| | - Mario Romero-Ortega
- The University of Texas at Dallas, Erik Jonsson School of Engineering and
Computer Science, Richardson, Texas, United States of America
- Texas Biomedical Device Center, Richardson, Texas, United States of
America
| | - Michael P. Kilgard
- The University of Texas at Dallas, Erik Jonsson School of Engineering and
Computer Science, Richardson, Texas, United States of America
- Texas Biomedical Device Center, Richardson, Texas, United States of
America
- The University of Texas at Dallas, School of Behavioral Brain Sciences,
Richardson, Texas, United States of America
| | - Robert L. Rennaker
- The University of Texas at Dallas, Erik Jonsson School of Engineering and
Computer Science, Richardson, Texas, United States of America
- Texas Biomedical Device Center, Richardson, Texas, United States of
America
- The University of Texas at Dallas, School of Behavioral Brain Sciences,
Richardson, Texas, United States of America
| | - Seth A. Hays
- The University of Texas at Dallas, Erik Jonsson School of Engineering and
Computer Science, Richardson, Texas, United States of America
- Texas Biomedical Device Center, Richardson, Texas, United States of
America
- The University of Texas at Dallas, School of Behavioral Brain Sciences,
Richardson, Texas, United States of America
| |
Collapse
|
20
|
A review for the peripheral nerve interface designer. J Neurosci Methods 2019; 332:108523. [PMID: 31743684 DOI: 10.1016/j.jneumeth.2019.108523] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 11/14/2019] [Accepted: 11/15/2019] [Indexed: 12/11/2022]
Abstract
Informational density and relative accessibility of the peripheral nervous system make it an attractive site for therapeutic intervention. Electrode-based electrophysiological interfaces with peripheral nerves have been under development since the 1960s and, for several applications, have seen widespread clinical implementation. However, many applications require a combination of neural target resolution and stability which has thus far eluded existing peripheral nerve interfaces (PNIs). With the goal of aiding PNI designers in development of devices that meet the demands of next-generation applications, this review seeks to collect and present practical considerations and best practices which emerge from the literature, including both lessons learned during early PNI development and recent ideas. Fundamental and practical principles guiding PNI design are reviewed, followed by an updated and critical account of existing PNI designs and strategies. Finally, a brief survey of in vitro and in vivo PNI characterization methods is presented.
Collapse
|
21
|
Noller CM, Levine YA, Urakov TM, Aronson JP, Nash MS. Vagus Nerve Stimulation in Rodent Models: An Overview of Technical Considerations. Front Neurosci 2019; 13:911. [PMID: 31551679 PMCID: PMC6738225 DOI: 10.3389/fnins.2019.00911] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Accepted: 08/16/2019] [Indexed: 12/15/2022] Open
Abstract
Over the last several decades, vagus nerve stimulation (VNS) has evolved from a treatment for select neuropsychiatric disorders to one that holds promise in treating numerous inflammatory conditions. Growing interest has focused on the use of VNS for other indications, such as heart failure, rheumatoid arthritis, inflammatory bowel disease, ischemic stroke, and traumatic brain injury. As pre-clinical research often guides expansion into new clinical avenues, animal models of VNS have also increased in recent years. To advance this promising treatment, however, there are a number of experimental parameters that must be considered when planning a study, such as physiology of the vagus nerve, electrical stimulation parameters, electrode design, stimulation equipment, and microsurgical technique. In this review, we discuss these important considerations and how a combination of clinically relevant stimulation parameters can be used to achieve beneficial therapeutic results in pre-clinical studies of sub-acute to chronic VNS, and provide a practical guide for performing this work in rodent models. Finally, by integrating clinical and pre-clinical research, we present indeterminate issues as opportunities for future research.
Collapse
Affiliation(s)
- Crystal M. Noller
- The Miami Project to Cure Paralysis, Miller School of Medicine, University of Miami, Miami, FL, United States
- Section of Neurosurgery, Department of Surgery, Dartmouth-Hitchcock Medical Center, Lebanon, NH, United States
- Geisel School of Medicine, Dartmouth College, Hanover, NH, United States
| | | | - Timur M. Urakov
- Department of Neurological Surgery, Miller School of Medicine, University of Miami, Miami, FL, United States
- Jackson Memorial Hospital, Miami, FL, United States
| | - Joshua P. Aronson
- Section of Neurosurgery, Department of Surgery, Dartmouth-Hitchcock Medical Center, Lebanon, NH, United States
- Geisel School of Medicine, Dartmouth College, Hanover, NH, United States
| | - Mark S. Nash
- The Miami Project to Cure Paralysis, Miller School of Medicine, University of Miami, Miami, FL, United States
- Department of Neurological Surgery, Miller School of Medicine, University of Miami, Miami, FL, United States
- Department of Physical Medicine and Rehabilitation, Miller School of Medicine, University of Miami, Miami, FL, United States
| |
Collapse
|
22
|
Berthoud HR, Neuhuber WL. Vagal mechanisms as neuromodulatory targets for the treatment of metabolic disease. Ann N Y Acad Sci 2019; 1454:42-55. [PMID: 31268181 PMCID: PMC6810744 DOI: 10.1111/nyas.14182] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 05/23/2019] [Accepted: 06/05/2019] [Indexed: 12/30/2022]
Abstract
With few effective treatments available, the global rise of metabolic diseases, including obesity, type 2 diabetes mellitus, and cardiovascular disease, seems unstoppable. Likely caused by an obesogenic environment interacting with genetic susceptibility, the pathophysiology of obesity and metabolic diseases is highly complex and involves crosstalk between many organs and systems, including the brain. The vagus nerve is in a key position to bidirectionally link several peripheral metabolic organs with the brain and is increasingly targeted for neuromodulation therapy to treat metabolic disease. Here, we review the basics of vagal functional anatomy and its implications for vagal neuromodulation therapies. We find that most existing vagal neuromodulation techniques either ignore or misinterpret the rich functional specificity of both vagal efferents and afferents as demonstrated by a large body of literature. This lack of specificity of manipulating vagal fibers is likely the reason for the relatively poor beneficial long‐term effects of such therapies. For these therapies to become more effective, rigorous validation of all physiological endpoints and optimization of stimulation parameters as well as electrode placements will be necessary. However, given the large number of function‐specific fibers in any vagal branch, genetically guided neuromodulation techniques are more likely to succeed.
Collapse
Affiliation(s)
- Hans-Rudolf Berthoud
- Neurobiology of Nutrition and Metabolism Department, Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, Louisiana
| | - Winfried L Neuhuber
- Institut fur Anatomie und Zellbiologie, Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
23
|
Characterization of plasma cytokine response to intraperitoneally administered LPS & subdiaphragmatic branch vagus nerve stimulation in rat model. PLoS One 2019; 14:e0214317. [PMID: 30921373 PMCID: PMC6438475 DOI: 10.1371/journal.pone.0214317] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2018] [Accepted: 03/11/2019] [Indexed: 01/17/2023] Open
Abstract
Vagus nerve stimulation (VNS) has been on the forefront of inflammatory disorder research and has yielded many promising results. Questions remain, however, about the biological mechanisms of such treatments and the inconsistencies in the methods used in research efforts. Here, we aimed to clarify the inflammatory response to intraperitoneal (IP) injections of lipopolysaccharide (LPS) in rats, while analyzing corresponding effects of electrical stimulation to subdiaphragmatic branches (anterior gastric, accessory celiac, and hepatic) of the left vagus nerve. We accomplished an in-depth characterization of the time-varying cytokine cascade response in the serum of 58 rats to an acute IP LPS challenge over a 330-minute period by utilizing curve-fitting and starting point-alignment methods. We then explored the post-LPS neuromodulation effects of electrically stimulating individually cuffed subdiaphragmatic branches. Through our analysis, we found there to be a consistent order of IP LPS cytokine response (IL-10, TNF-α, GM-CSF, IL-17F, IL-6, IL-22, INF-γ). Apart from IL-10, the IP cytokine cascade was more variable in starting time and occurred later than in previously recorded intravenous (IV) challenges. We also found distinct regulatory effects on multiple cytokine levels by each of the three subdiaphragmatic stimulation subsets. While the time-variability of IP LPS use in rats complicates its utility, we have shown it to be a practical, arguably more physiologically relevant method than IV in rats when our methods are used. More importantly, we have shown that selective subdiaphragmatic neurostimulation can be utilized to selectively induce specific effects on inflammation in the body.
Collapse
|
24
|
Horn CC, Ardell JL, Fisher LE. Electroceutical Targeting of the Autonomic Nervous System. Physiology (Bethesda) 2019; 34:150-162. [PMID: 30724129 PMCID: PMC6586833 DOI: 10.1152/physiol.00030.2018] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 10/16/2018] [Accepted: 11/05/2018] [Indexed: 12/20/2022] Open
Abstract
Autonomic nerves are attractive targets for medical therapies using electroceutical devices because of the potential for selective control and few side effects. These devices use novel materials, electrode configurations, stimulation patterns, and closed-loop control to treat heart failure, hypertension, gastrointestinal and bladder diseases, obesity/diabetes, and inflammatory disorders. Critical to progress is a mechanistic understanding of multi-level controls of target organs, disease adaptation, and impact of neuromodulation to restore organ function.
Collapse
Affiliation(s)
- Charles C Horn
- Biobehavioral Oncology Program, UPMC Hillman Cancer Center , Pittsburgh, Pennsylvania
- Department of Medicine, University of Pittsburgh School of Medicine , Pittsburgh, Pennsylvania
- Center for Neuroscience, University of Pittsburgh , Pittsburgh, Pennsylvania
| | - Jeffrey L Ardell
- University of California- Los Angeles (UCLA) Cardiac Arrhythmia Center, Los Angeles, California
- UCLA Neurocardiology Research Program of Excellence, David Geffen School of Medicine , Los Angeles, California
| | - Lee E Fisher
- Department of Physical Medicine and Rehabilitation, University of Pittsburgh School of Medicine , Pittsburgh, Pennsylvania
- Department of Bioengineering, University of Pittsburgh , Pittsburgh, Pennsylvania
| |
Collapse
|
25
|
Wasilczuk KM, Bayer KC, Somann JP, Albors GO, Sturgis J, Lyle LT, Robinson JP, Irazoqui PP. Modulating the Inflammatory Reflex in Rats Using Low-Intensity Focused Ultrasound Stimulation of the Vagus Nerve. ULTRASOUND IN MEDICINE & BIOLOGY 2019; 45:481-489. [PMID: 30396599 DOI: 10.1016/j.ultrasmedbio.2018.09.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Revised: 08/31/2018] [Accepted: 09/05/2018] [Indexed: 06/08/2023]
Abstract
Tumor necrosis factor α (TNF-α) is linked to several chronic inflammatory diseases. Electrical vagus nerve stimulation reduces serum TNF-α levels but may cause chronic nerve damage and requires surgery. Alternatively, we proposed focused ultrasound stimulation of the vagus nerve (uVNS), which can be applied non-invasively. In this study, we induced an inflammatory response in rats using lipopolysaccharides (LPS) and collected blood to analyze the effects of uVNS on cytokine concentrations. We applied one or three 5-min pulsed focused ultrasound stimulation treatments to the vagus nerve (250 kHz, ISPPA = 3 W/cm2). Animals receiving a single ultrasound application had an average reduction in TNF-α levels of 19%, similar to the 16% reduction observed in electrically stimulated animals. With multiple applications, uVNS therapy statistically reduced serum TNF-α levels by 73% compared with control animals without any observed damage to the nerve. These findings suggest that uVNS is a suitable way to attenuate TNF-α levels.
Collapse
Affiliation(s)
- Kelsey M Wasilczuk
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana, USA.
| | - Kelsey C Bayer
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana, USA
| | - Jesse P Somann
- Department of Electrical and Computer Engineering, Purdue University, West Lafayette, Indiana, USA
| | - Gabriel O Albors
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana, USA
| | - Jennifer Sturgis
- Purdue University Cytometry Laboratories, Purdue University, West Lafayette, Indiana, USA
| | - L Tiffany Lyle
- College of Veterinary Medicine, Purdue University, West Lafayette, Indiana, USA
| | - J Paul Robinson
- Purdue University Cytometry Laboratories, Purdue University, West Lafayette, Indiana, USA
| | - Pedro P Irazoqui
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana, USA; Department of Electrical and Computer Engineering, Purdue University, West Lafayette, Indiana, USA
| |
Collapse
|
26
|
Payne SC, Burns O, Stebbing M, Thomas R, Silva AD, Sedo A, Weissenborn F, Hyakumura T, Huynh M, May CN, Williams RA, Furness JB, Fallon JB, Shepherd RK. Vagus nerve stimulation to treat inflammatory bowel disease: a chronic, preclinical safety study in sheep. ACTA ACUST UNITED AC 2018. [DOI: 10.2217/bem-2018-0011] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Aim: Electrical stimulation of the left cervical vagus nerve is a feasible therapy for inflammatory bowel disease (IBD). However, due to the location of the electrode placement, stimulation is often associated with side effects. Methods: We developed a cuff electrode array, designed to be implanted onto the vagus nerve of the lower thorax or abdomen, below branches to vital organs, to minimize off-target effects to stimulation. Results: Following chronic implantation and electrical stimulation, electrodes remained functional and neural thresholds stable, while there were minimal off-target affects to stimulation. No nerve damage or corrosion of stimulated electrodes was observed. Conclusion: This novel electrode array, located on the vagus nerve below branches to vital organs, is a safe approach for the treatment of inflammatory bowel disease.
Collapse
Affiliation(s)
- Sophie C Payne
- Bionics Institute, Melbourne, Australia
- Department of Medical Bionics, The University of Melbourne, Melbourne, Australia
| | | | - Martin Stebbing
- Department of Medical Bionics, The University of Melbourne, Melbourne, Australia
- Florey Institute of Neuroscience & Mental Health, Melbourne, Australia
| | | | | | - Alicia Sedo
- Florey Institute of Neuroscience & Mental Health, Melbourne, Australia
| | - Frank Weissenborn
- Florey Institute of Neuroscience & Mental Health, Melbourne, Australia
| | | | | | - Clive N May
- Department of Medical Bionics, The University of Melbourne, Melbourne, Australia
- Florey Institute of Neuroscience & Mental Health, Melbourne, Australia
| | - Richard A Williams
- Department of Medical Bionics, The University of Melbourne, Melbourne, Australia
- Department of Anatomical Pathology, St. Vincent's Hospital, Melbourne, Australia
| | - John B Furness
- Department of Medical Bionics, The University of Melbourne, Melbourne, Australia
- Florey Institute of Neuroscience & Mental Health, Melbourne, Australia
| | - James B Fallon
- Bionics Institute, Melbourne, Australia
- Department of Medical Bionics, The University of Melbourne, Melbourne, Australia
| | - Robert K Shepherd
- Bionics Institute, Melbourne, Australia
- Department of Medical Bionics, The University of Melbourne, Melbourne, Australia
| |
Collapse
|