1
|
Marciuš T, Deftu AF, Vuka I, Braeken D, Sapunar D. Electrophysiological properties of dorsal root ganglion neurons cultured on 3D silicon micro-pillar substrates. J Neurosci Methods 2024; 407:110143. [PMID: 38670536 DOI: 10.1016/j.jneumeth.2024.110143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 02/27/2024] [Accepted: 04/20/2024] [Indexed: 04/28/2024]
Abstract
BACKGROUND Silicon-based micro-pillar substrates (MPS), as three-dimensional cell culture platforms with vertically aligned micro-patterned scaffolding structures, are known to facilitate high-quality growth and morphology of dorsal root ganglion (DRG) sensory neurons, promote neurite outgrowth and enhance neurite alignment. However, the electrophysiological aspects of DRG neurons cultured on silicon MPSs have not been thoroughly investigated, which is of greatest importance to ensure that such substrates do not disrupt neuronal homeostasis and function before their widespread adoption in diverse biomedical applications. NEW METHOD We conducted whole-cell patch-clamp recordings to explore the electrophysiological properties of DRG neurons cultured on MPS arrays, utilizing a custom-made upright patch-clamp setup. RESULTS Our findings revealed that DRG neurons exhibited similar electrophysiological responses on patterned MPS samples when compared to the control planar glass surfaces. Notably, there were no significant differences observed in the action potential parameters or firing patterns of action potentials between neurons grown on either substrate. COMPARISON WITH EXISTING METHODS In the current study we for the first time confirmed that successful electrophysiological recordings can be obtained from the cells grown on MPS. CONCLUSION Our results imply that, despite the potential alterations caused by the cumulative trauma of tissue harvest and cell dissociation, essential functional cell properties of DRG neurons appear to be relatively maintained on MPS surfaces. Therefore, vertically aligned silicon MPSs could be considered as a potentially effective three-dimensional system for supporting a controlled cellular environment in culture.
Collapse
Affiliation(s)
- Tihana Marciuš
- Laboratory for Pain Research, University of Split School of Medicine, Split 21000, Croatia
| | - Alexandru-Florian Deftu
- Pain Center, Department of Anesthesiology, Lausanne University Hospital and Department of Fundamental Neurosciences, University of Lausanne, Lausanne 1011, Switzerland
| | - Ivana Vuka
- Technology Transfer Office, Department of Science and Innovation, University of Split, Split 21000, Croatia
| | - Dries Braeken
- Life Sciences Technologies, Imec, Leuven 3001, Belgium
| | - Damir Sapunar
- Laboratory for Pain Research, University of Split School of Medicine, Split 21000, Croatia.
| |
Collapse
|
2
|
Lu J, Wang M, Meng Y, An W, Wang X, Sun G, Wang H, Liu W. Current advances in biomaterials for inner ear cell regeneration. Front Neurosci 2024; 17:1334162. [PMID: 38282621 PMCID: PMC10811200 DOI: 10.3389/fnins.2023.1334162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 12/28/2023] [Indexed: 01/30/2024] Open
Abstract
Inner ear cell regeneration from stem/progenitor cells provides potential therapeutic strategies for the restoration of sensorineural hearing loss (SNHL), however, the efficiency of regeneration is low and the functions of differentiated cells are not yet mature. Biomaterials have been used in inner ear cell regeneration to construct a more physiologically relevant 3D culture system which mimics the stem cell microenvironment and facilitates cellular interactions. Currently, these biomaterials include hydrogel, conductive materials, magneto-responsive materials, photo-responsive materials, etc. We analyzed the characteristics and described the advantages and limitations of these materials. Furthermore, we reviewed the mechanisms by which biomaterials with different physicochemical properties act on the inner ear cell regeneration and depicted the current status of the material selection based on their characteristics to achieve the reconstruction of the auditory circuits. The application of biomaterials in inner ear cell regeneration offers promising opportunities for the reconstruction of the auditory circuits and the restoration of hearing, yet biomaterials should be strategically explored and combined according to the obstacles to be solved in the inner ear cell regeneration research.
Collapse
Affiliation(s)
- Junze Lu
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Shandong University, Jinan, China
- Shandong Institute of Otorhinolaryngology, Jinan, China
| | - Man Wang
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Shandong University, Jinan, China
- Shandong Institute of Otorhinolaryngology, Jinan, China
| | - Yu Meng
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Shandong University, Jinan, China
- Shandong Institute of Otorhinolaryngology, Jinan, China
| | - Weibin An
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Shandong University, Jinan, China
- Shandong Institute of Otorhinolaryngology, Jinan, China
| | - Xue Wang
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Shandong University, Jinan, China
- Shandong Institute of Otorhinolaryngology, Jinan, China
| | - Gaoying Sun
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Shandong University, Jinan, China
- Shandong Institute of Otorhinolaryngology, Jinan, China
| | - Haibo Wang
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Shandong University, Jinan, China
- Shandong Institute of Otorhinolaryngology, Jinan, China
| | - Wenwen Liu
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Shandong University, Jinan, China
- Shandong Institute of Otorhinolaryngology, Jinan, China
| |
Collapse
|
3
|
Sun P, Guan Y, Yang C, Hou H, Liu S, Yang B, Li X, Chen S, Wang L, Wang H, Huang Y, Sheng X, Peng J, Xiong W, Wang Y, Yin L. A Bioresorbable and Conductive Scaffold Integrating Silicon Membranes for Peripheral Nerve Regeneration. Adv Healthc Mater 2023; 12:e2301859. [PMID: 37750601 DOI: 10.1002/adhm.202301859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 09/03/2023] [Indexed: 09/27/2023]
Abstract
Peripheral nerve injury represents one of the most common types of traumatic damage, severely impairing motor and sensory functions, and posttraumatic nerve regeneration remains a major challenge. Electrical cues are critical bioactive factors that promote nerve regrowth, and bioartificial scaffolds incorporating conductive materials to enhance the endogenous electrical field have been demonstrated to be effective. The utilization of fully biodegradable scaffolds can eliminate material residues, and circumvent the need for secondary retrieval procedures. Here, a fully bioresorbable and conductive nerve scaffold integrating N-type silicon (Si) membranes is proposed, which can deliver both structural guidance and electrical cues for the repair of nerve defects. The entire scaffold is fully biodegradable, and the introduction of N-type Si can significantly promote the proliferation and production of neurotrophic factors of Schwann cells and enhance the calcium activity of dorsal root ganglion (DRG) neurons. The conductive scaffolds enable accelerated nerve regeneration and motor functional recovery in rodents with sciatic nerve transection injuries. This work sheds light on the advancement of bioresorbable and electrically active materials to achieve desirable neural interfaces and improved therapeutic outcomes, offering essential strategies for regenerative medicine.
Collapse
Affiliation(s)
- Pengcheng Sun
- School of Materials Science and Engineering, The Key Laboratory of Advanced Materials of Ministry of Education, State Key Laboratory of New Ceramics and Fine Processing, Center for Flexible Electronics Technology, Tsinghua University, Beijing, 100084, P. R. China
| | - Yanjun Guan
- Institute of Orthopedics, The Fourth Medical Center of Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, No. 51 Fucheng Road, Beijing, 100048, P. R. China
- Co-innovation Center of Neuroregeneration, Nantong University Nantong, Nantong, Jiangsu Province, 226007, P. R. China
- Graduate School of Chinese PLA General Hospital, No. 28 Fuxing Road, Beijing, 100853, P. R. China
| | - Can Yang
- School of Materials Science and Engineering, The Key Laboratory of Advanced Materials of Ministry of Education, State Key Laboratory of New Ceramics and Fine Processing, Center for Flexible Electronics Technology, Tsinghua University, Beijing, 100084, P. R. China
| | - Hanqing Hou
- School of Life Sciences, IDG/McGovern Institute for Brain Research at Tsinghua University, Tsinghua University, Beijing, 100084, P. R. China
| | - Shuang Liu
- School of Life Sciences, IDG/McGovern Institute for Brain Research at Tsinghua University, Tsinghua University, Beijing, 100084, P. R. China
| | - Boyao Yang
- Institute of Orthopedics, The Fourth Medical Center of Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, No. 51 Fucheng Road, Beijing, 100048, P. R. China
- Graduate School of Chinese PLA General Hospital, No. 28 Fuxing Road, Beijing, 100853, P. R. China
| | - Xiangling Li
- Institute of Orthopedics, The Fourth Medical Center of Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, No. 51 Fucheng Road, Beijing, 100048, P. R. China
| | - Shengfeng Chen
- Institute of Orthopedics, The Fourth Medical Center of Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, No. 51 Fucheng Road, Beijing, 100048, P. R. China
| | - Liu Wang
- Key Laboratory of Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, and with the School of Engineering Medicine, Beihang University, Beijing, 100083, P. R. China
| | - Huachun Wang
- Department of Electronic Engineering, Beijing National Research Center for Information Science and Technology, Institute for Precision Medicine, Center for Flexible Electronics Technology, and IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing, 100084, China
| | - Yunxiang Huang
- Department of Electronic Engineering, Beijing National Research Center for Information Science and Technology, Institute for Precision Medicine, Center for Flexible Electronics Technology, and IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing, 100084, China
| | - Xing Sheng
- Department of Electronic Engineering, Beijing National Research Center for Information Science and Technology, Institute for Precision Medicine, Center for Flexible Electronics Technology, and IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing, 100084, China
| | - Jiang Peng
- Institute of Orthopedics, The Fourth Medical Center of Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, No. 51 Fucheng Road, Beijing, 100048, P. R. China
| | - Wei Xiong
- School of Life Sciences, IDG/McGovern Institute for Brain Research at Tsinghua University, Tsinghua University, Beijing, 100084, P. R. China
| | - Yu Wang
- Institute of Orthopedics, The Fourth Medical Center of Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, No. 51 Fucheng Road, Beijing, 100048, P. R. China
| | - Lan Yin
- School of Materials Science and Engineering, The Key Laboratory of Advanced Materials of Ministry of Education, State Key Laboratory of New Ceramics and Fine Processing, Center for Flexible Electronics Technology, Tsinghua University, Beijing, 100084, P. R. China
| |
Collapse
|
4
|
Li M, Mu Y, Cai H, Wu H, Ding Y. Application of New Materials in Auditory Disease Treatment. Front Cell Neurosci 2022; 15:831591. [PMID: 35173583 PMCID: PMC8841849 DOI: 10.3389/fncel.2021.831591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 12/22/2021] [Indexed: 11/16/2022] Open
Abstract
Auditory diseases are disabling public health problems that afflict a significant number of people worldwide, and they remain largely incurable until now. Driven by continuous innovation in the fields of chemistry, physics, and materials science, novel materials that can be applied to hearing diseases are constantly emerging. In contrast to conventional materials, new materials are easily accessible, inexpensive, non-invasive, with better acoustic therapy effects and weaker immune rejection after implantation. When new materials are used to treat auditory diseases, the wound healing, infection prevention, disease recurrence, hair cell regeneration, functional recovery, and other aspects have been significantly improved. Despite these advances, clinical success has been limited, largely due to issues regarding a lack of effectiveness and safety. With ever-developing scientific research, more novel materials will be facilitated into clinical use in the future.
Collapse
|
5
|
Xue W, Shi W, Kong Y, Kuss M, Duan B. Anisotropic scaffolds for peripheral nerve and spinal cord regeneration. Bioact Mater 2021; 6:4141-4160. [PMID: 33997498 PMCID: PMC8099454 DOI: 10.1016/j.bioactmat.2021.04.019] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 04/05/2021] [Accepted: 04/13/2021] [Indexed: 12/12/2022] Open
Abstract
The treatment of long-gap (>10 mm) peripheral nerve injury (PNI) and spinal cord injury (SCI) remains a continuous challenge due to limited native tissue regeneration capabilities. The current clinical strategy of using autografts for PNI suffers from a source shortage, while the pharmacological treatment for SCI presents dissatisfactory results. Tissue engineering, as an alternative, is a promising approach for regenerating peripheral nerves and spinal cords. Through providing a beneficial environment, a scaffold is the primary element in tissue engineering. In particular, scaffolds with anisotropic structures resembling the native extracellular matrix (ECM) can effectively guide neural outgrowth and reconnection. In this review, the anatomy of peripheral nerves and spinal cords, as well as current clinical treatments for PNI and SCI, is first summarized. An overview of the critical components in peripheral nerve and spinal cord tissue engineering and the current status of regeneration approaches are also discussed. Recent advances in the fabrication of anisotropic surface patterns, aligned fibrous substrates, and 3D hydrogel scaffolds, as well as their in vitro and in vivo effects are highlighted. Finally, we summarize potential mechanisms underlying the anisotropic architectures in orienting axonal and glial cell growth, along with their challenges and prospects.
Collapse
Affiliation(s)
- Wen Xue
- Mary & Dick Holland Regenerative Medicine Program, University of Nebraska Medical Center, Omaha, NE, USA
- Division of Cardiology, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, USA
| | - Wen Shi
- Mary & Dick Holland Regenerative Medicine Program, University of Nebraska Medical Center, Omaha, NE, USA
- Division of Cardiology, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, USA
| | - Yunfan Kong
- Mary & Dick Holland Regenerative Medicine Program, University of Nebraska Medical Center, Omaha, NE, USA
- Division of Cardiology, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, USA
| | - Mitchell Kuss
- Mary & Dick Holland Regenerative Medicine Program, University of Nebraska Medical Center, Omaha, NE, USA
- Division of Cardiology, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, USA
| | - Bin Duan
- Mary & Dick Holland Regenerative Medicine Program, University of Nebraska Medical Center, Omaha, NE, USA
- Division of Cardiology, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, USA
- Department of Surgery, University of Nebraska Medical Center, Omaha, NE, USA
- Department of Mechanical Engineering, University of Nebraska-Lincoln, Lincoln, NE, USA
| |
Collapse
|
6
|
Lomboni DJ, Steeves A, Schock S, Bonetti L, De Nardo L, Variola F. Compounded topographical and physicochemical cueing by micro-engineered chitosan substrates on rat dorsal root ganglion neurons and human mesenchymal stem cells. SOFT MATTER 2021; 17:5284-5302. [PMID: 34075927 DOI: 10.1039/d0sm02170a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Given the intertwined physicochemical effects exerted in vivo by both natural and synthetic (e.g., biomaterial) interfaces on adhering cells, the evaluation of structure-function relationships governing cellular response to micro-engineered surfaces for applications in neuronal tissue engineering requires the use of in vitro testing platforms which consist of a clinically translatable material with tunable physiochemical properties. In this work, we micro-engineered chitosan substrates with arrays of parallel channels with variable width (20 and 60 μm). A citric acid (CA)-based crosslinking approach was used to provide an additional level of synergistic cueing on adhering cells by regulating the chitosan substrate's stiffness. Morphological and physicochemical characterization was conducted to unveil the structure-function relationships which govern the activity of rat dorsal root ganglion neurons (DRGs) and human mesenchymal stem cells (hMSCs), ultimately singling out the key role of microtopography, roughness and substrate's stiffness. While substrate's stiffness predominantly affected hMSC spreading, the modulation of the channels' design affected the neuronal architecture's complexity and guided the morphological transition of hMSCs. Finally, the combined analysis of tubulin expression and cell morphology allowed us to cast new light on the predominant role of the microtopography over substrate's stiffness in the process of hMSCs neurogenic differentiation.
Collapse
Affiliation(s)
- David J Lomboni
- Department of Mechanical Engineering, University of Ottawa, K1N 6N5 Canada. and Ottawa-Carleton Institute for Biomedical Engineering (OCIBME), Ottawa, Canada
| | - Alexander Steeves
- Department of Mechanical Engineering, University of Ottawa, K1N 6N5 Canada. and Ottawa-Carleton Institute for Biomedical Engineering (OCIBME), Ottawa, Canada
| | - Sarah Schock
- Department of Cellular and Molecular Medicine, University of Ottawa, Canada and The Children's Hospital of Eastern Ontario (CHEO) Research Institute, Canada
| | - Lorenzo Bonetti
- Department of Chemistry, Materials and Chemical Engineering, "G. Natta", Politecnico di Milano, Italy
| | - Luigi De Nardo
- Department of Chemistry, Materials and Chemical Engineering, "G. Natta", Politecnico di Milano, Italy
| | - Fabio Variola
- Department of Mechanical Engineering, University of Ottawa, K1N 6N5 Canada. and Ottawa-Carleton Institute for Biomedical Engineering (OCIBME), Ottawa, Canada and Department of Cellular and Molecular Medicine, University of Ottawa, Canada and The Children's Hospital of Eastern Ontario (CHEO) Research Institute, Canada
| |
Collapse
|
7
|
Milos F, Tullii G, Gobbo F, Lodola F, Galeotti F, Verpelli C, Mayer D, Maybeck V, Offenhäusser A, Antognazza MR. High Aspect Ratio and Light-Sensitive Micropillars Based on a Semiconducting Polymer Optically Regulate Neuronal Growth. ACS APPLIED MATERIALS & INTERFACES 2021; 13:23438-23451. [PMID: 33983012 PMCID: PMC8161421 DOI: 10.1021/acsami.1c03537] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Many nano- and microstructured devices capable of promoting neuronal growth and network formation have been previously investigated. In certain cases, topographical cues have been successfully complemented with external bias, by employing electrically conducting scaffolds. However, the use of optical stimulation with topographical cues was rarely addressed in this context, and the development of light-addressable platforms for modulating and guiding cellular growth and proliferation remains almost completely unexplored. Here, we develop high aspect ratio micropillars based on a prototype semiconducting polymer, regioregular poly(3-hexylthiophene-2,5-diyl) (P3HT), as an optically active, three-dimensional platform for embryonic cortical neurons. P3HT micropillars provide a mechanically compliant environment and allow a close contact with neuronal cells. The combined action of nano/microtopography and visible light excitation leads to effective optical modulation of neuronal growth and orientation. Embryonic neurons cultured on polymer pillars show a clear polarization effect and, upon exposure to optical excitation, a significant increase in both neurite and axon length. The biocompatible, microstructured, and light-sensitive platform developed here opens up the opportunity to optically regulate neuronal growth in a wireless, repeatable, and spatio-temporally controlled manner without genetic modification. This approach may be extended to other cell models, thus uncovering interesting applications of photonic devices in regenerative medicine.
Collapse
Affiliation(s)
- Frano Milos
- Institute
of Biological Information Processing IBI-3, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
- RWTH
University Aachen, 52062 Aachen, Germany
| | - Gabriele Tullii
- Center
for Nano Science and Technology@PoliMi, Istituto Italiano di Tecnologia, 20133 Milano, Italy
| | - Federico Gobbo
- Center
for Nano Science and Technology@PoliMi, Istituto Italiano di Tecnologia, 20133 Milano, Italy
- Physics
Department, Politecnico di Milano, Piazza L. Da Vinci 32, 20133 Milano, Italy
| | - Francesco Lodola
- Center
for Nano Science and Technology@PoliMi, Istituto Italiano di Tecnologia, 20133 Milano, Italy
| | - Francesco Galeotti
- Istituto
di Scienze e Tecnologie Chimiche G. Natta (SCITEC), Consiglio Nazionale delle Ricerche, 20133 Milano, Italy
| | - Chiara Verpelli
- Istituto
di Neuroscienze, Consiglio Nazionale delle
Ricerche, 20133 Milano, Italy
| | - Dirk Mayer
- Institute
of Biological Information Processing IBI-3, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
| | - Vanessa Maybeck
- Institute
of Biological Information Processing IBI-3, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
| | - Andreas Offenhäusser
- Institute
of Biological Information Processing IBI-3, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
- RWTH
University Aachen, 52062 Aachen, Germany
| | - Maria Rosa Antognazza
- Center
for Nano Science and Technology@PoliMi, Istituto Italiano di Tecnologia, 20133 Milano, Italy
| |
Collapse
|
8
|
Cutarelli A, Ghio S, Zasso J, Speccher A, Scarduelli G, Roccuzzo M, Crivellari M, Maria Pugno N, Casarosa S, Boscardin M, Conti L. Vertically-Aligned Functionalized Silicon Micropillars for 3D Culture of Human Pluripotent Stem Cell-Derived Cortical Progenitors. Cells 2019; 9:E88. [PMID: 31905823 PMCID: PMC7017050 DOI: 10.3390/cells9010088] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 12/18/2019] [Accepted: 12/23/2019] [Indexed: 02/06/2023] Open
Abstract
Silicon is a promising material for tissue engineering since it allows to produce micropatterned scaffolding structures resembling biological tissues. Using specific fabrication methods, it is possible to build aligned 3D network-like structures. In the present study, we exploited vertically-aligned silicon micropillar arrays as culture systems for human iPSC-derived cortical progenitors. In particular, our aim was to mimic the radially-oriented cortical radial glia fibres that during embryonic development play key roles in controlling the expansion, radial migration and differentiation of cortical progenitors, which are, in turn, pivotal to the establishment of the correct multilayered cerebral cortex structure. Here we show that silicon vertical micropillar arrays efficiently promote expansion and stemness preservation of human cortical progenitors when compared to standard monolayer growth conditions. Furthermore, the vertically-oriented micropillars allow the radial migration distinctive of cortical progenitors in vivo. These results indicate that vertical silicon micropillar arrays can offer an optimal system for human cortical progenitors' growth and migration. Furthermore, similar structures present an attractive platform for cortical tissue engineering.
Collapse
Affiliation(s)
- Alessandro Cutarelli
- Laboratory of Stem Cell Biology, Department of Cellular, Computational and Integrative Biology-CIBIO, University of Trento, 38123 Trento, Italy; (A.C.); (J.Z.)
| | - Simone Ghio
- Fondazione Bruno Kessler-Center for Material and Microsystem, 38123 Trento, Italy; (S.G.); (M.C.)
| | - Jacopo Zasso
- Laboratory of Stem Cell Biology, Department of Cellular, Computational and Integrative Biology-CIBIO, University of Trento, 38123 Trento, Italy; (A.C.); (J.Z.)
| | - Alessandra Speccher
- Laboratory of Neural Development and Regeneration, Department of Cellular, Computational and Integrative Biology-CIBIO, University of Trento, 38123 Trento, Italy; (A.S.); (S.C.)
| | - Giorgina Scarduelli
- Advanced Imaging Facility, Department of Cellular, Computational and Integrative Biology-CIBIO, University of Trento, 38123 Trento, Italy; (G.S.); (M.R.)
| | - Michela Roccuzzo
- Advanced Imaging Facility, Department of Cellular, Computational and Integrative Biology-CIBIO, University of Trento, 38123 Trento, Italy; (G.S.); (M.R.)
| | - Michele Crivellari
- Fondazione Bruno Kessler-Center for Material and Microsystem, 38123 Trento, Italy; (S.G.); (M.C.)
| | - Nicola Maria Pugno
- Laboratory of Bio-Inspired and Graphene Nanomechanics, Department of Civil, Environmental and Mechanical Engineering, University of Trento, 38123 Trento, Italy;
- School of Engineering and Materials Science, Queen Mary University of London, London E1 4NS, UK
- Ket-Lab, Edoardo Amaldi Foundation, via del Politecnico snc, I-00133 Roma, Italy
| | - Simona Casarosa
- Laboratory of Neural Development and Regeneration, Department of Cellular, Computational and Integrative Biology-CIBIO, University of Trento, 38123 Trento, Italy; (A.S.); (S.C.)
| | - Maurizio Boscardin
- Fondazione Bruno Kessler-Center for Material and Microsystem, 38123 Trento, Italy; (S.G.); (M.C.)
| | - Luciano Conti
- Laboratory of Stem Cell Biology, Department of Cellular, Computational and Integrative Biology-CIBIO, University of Trento, 38123 Trento, Italy; (A.C.); (J.Z.)
| |
Collapse
|
9
|
Radotić V, Bedalov A, Drviš P, Braeken D, Kovačić D. Guided growth with aligned neurites in adult spiral ganglion neurons cultured in vitro on silicon micro-pillar substrates. J Neural Eng 2019; 16:066037. [PMID: 31189144 DOI: 10.1088/1741-2552/ab2968] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
OBJECTIVE Assessment of the relationship between the topographical organization of silicon micro-pillar surfaces (MPS) on guidance and neural alignment of adult spiral ganglion neurons (SGN) and use of the otosurgical approach as an alternative for the extraction and isolation of SGNs from adult guinea pigs. APPROACH SGNs from adult guinea pigs were isolated using conventional and otosurgical approach for in vitro cell culturing on MPS of various micro-pillar widths (1-5.6 µm) and spacing (0.6-15 µm). Cell cultures were compared morphologically with neuronal cultures on control glass coverslips. MAIN RESULTS We found enhanced SGN in vitro cultures in MPS areas with small and intermediate inter-pillar spacing (from 0.6 µm to 3.2 µm) as well as in MPS areas with wider pillars (from 1.8 µm to 4 µm) compared to MPS flat zones and control glass coverslips. Scanning electron microscopy (SEM) images highlighted how neurites of SGNs follow straight lines by growing on top and between micro-pillars. Only micro-pillars with small and intermediate pillar spacings favor neurite alignment along preferred angles (30°, 90°, and 150°), while pillars with wider spacing produced less aligned neurites. We found propensity of adult SGNs grown on MPSs to attain more bipolar and multipolar morphologies. Additionally, we observed reduced interaction between neuronal and glial cells compared to control glass coverslips. Finally, we found that the otosurgical approach was more beneficial for SGN survival on glass coverslips and MPS flat surfaces than the conventional method. SIGNIFICANCE MPS with specific architecture supports the guided growth of adult SGNs in vitro and controls adult SGN development and behavior.
Collapse
Affiliation(s)
- Viktorija Radotić
- Faculty of Science, Department of Physics, Laboratory for Biophysics and Medical Neuroelectronics, University of Split, R.Boškovića 33, HR-21000 Split, Croatia. The Center of Research Excellence for Science and Technology Integrating Mediterranean region (STIM), University of Split, Poljička 35, HR-21000 Split, Croatia
| | | | | | | | | |
Collapse
|
10
|
Tullii G, Giona F, Lodola F, Bonfadini S, Bossio C, Varo S, Desii A, Criante L, Sala C, Pasini M, Verpelli C, Galeotti F, Antognazza MR. High-Aspect-Ratio Semiconducting Polymer Pillars for 3D Cell Cultures. ACS APPLIED MATERIALS & INTERFACES 2019; 11:28125-28137. [PMID: 31356041 PMCID: PMC6943816 DOI: 10.1021/acsami.9b08822] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Accepted: 07/16/2019] [Indexed: 05/20/2023]
Abstract
Hybrid interfaces between living cells and nano/microstructured scaffolds have huge application potential in biotechnology, spanning from regenerative medicine and stem cell therapies to localized drug delivery and from biosensing and tissue engineering to neural computing. However, 3D architectures based on semiconducting polymers, endowed with responsivity to visible light, have never been considered. Here, we apply for the first time a push-coating technique to realize high aspect ratio polymeric pillars, based on polythiophene, showing optimal biocompatibility and allowing for the realization of soft, 3D cell cultures of both primary neurons and cell line models. HEK-293 cells cultured on top of polymer pillars display a remarkable change in the cell morphology and a sizable enhancement of the membrane capacitance due to the cell membrane thinning in correspondence to the pillars' top surface, without negatively affecting cell proliferation. Electrophysiology properties and synapse number of primary neurons are also very well preserved. In perspective, high aspect ratio semiconducting polymer pillars may find interesting applications as soft, photoactive elements for cell activity sensing and modulation.
Collapse
Affiliation(s)
- Gabriele Tullii
- Center
for Nano Science and Technology@PoliMi, Istituto Italiano di Tecnologia, via Pascoli 70/3, 20133 Milano, Italy
- Department
of Physics, Politecnico di Milano, Piazza L. Da Vinci 32, 20133 Milano, Italy
| | | | - Francesco Lodola
- Center
for Nano Science and Technology@PoliMi, Istituto Italiano di Tecnologia, via Pascoli 70/3, 20133 Milano, Italy
| | - Silvio Bonfadini
- Center
for Nano Science and Technology@PoliMi, Istituto Italiano di Tecnologia, via Pascoli 70/3, 20133 Milano, Italy
- Department
of Physics, Politecnico di Milano, Piazza L. Da Vinci 32, 20133 Milano, Italy
| | - Caterina Bossio
- Center
for Nano Science and Technology@PoliMi, Istituto Italiano di Tecnologia, via Pascoli 70/3, 20133 Milano, Italy
| | - Simone Varo
- Center
for Nano Science and Technology@PoliMi, Istituto Italiano di Tecnologia, via Pascoli 70/3, 20133 Milano, Italy
| | - Andrea Desii
- Center
for Nano Science and Technology@PoliMi, Istituto Italiano di Tecnologia, via Pascoli 70/3, 20133 Milano, Italy
| | - Luigino Criante
- Center
for Nano Science and Technology@PoliMi, Istituto Italiano di Tecnologia, via Pascoli 70/3, 20133 Milano, Italy
| | - Carlo Sala
- CNR Neuroscience
Institute, Milan 20129, Italy
| | - Mariacecilia Pasini
- Istituto
per lo Studio delle Macromolecole, Consiglio
Nazionale delle Ricerche (ISMAC-CNR), Via Bassini 15, 20133 Milano, Italy
| | | | - Francesco Galeotti
- Istituto
per lo Studio delle Macromolecole, Consiglio
Nazionale delle Ricerche (ISMAC-CNR), Via Bassini 15, 20133 Milano, Italy
| | - Maria Rosa Antognazza
- Center
for Nano Science and Technology@PoliMi, Istituto Italiano di Tecnologia, via Pascoli 70/3, 20133 Milano, Italy
| |
Collapse
|
11
|
Bas E, Anwar MR, Goncalves S, Dinh CT, Bracho OR, Chiossone JA, Van De Water TR. Laminin-coated electrodes improve cochlear implant function and post-insertion neuronal survival. Neuroscience 2019; 410:97-107. [PMID: 31059743 DOI: 10.1016/j.neuroscience.2019.04.048] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 04/17/2019] [Accepted: 04/24/2019] [Indexed: 12/20/2022]
Abstract
The benefits of Cochlear implant (CI) technology depend among other factors on the proximity of the electrode array to the spiral ganglion neurons. Laminin, a component of the extracellular matrix, regulates Schwann cell proliferation and survival as well as reorganization of actin fibers within their cytoskeleton, which is necessary for myelination of peripheral axons. In this study we explore the effectiveness of laminin-coated electrodes in promoting neuritic outgrowth from auditory neurons towards the electrode array and the ability to reduce acoustic and electric auditory brainstem response (i.e. aABR and eABR) thresholds. In vitro: Schwann cells and neurites are attracted towards laminin-coated surfaces with longer neuritic processes in laminin-coated dishes compared to uncoated dishes. In vivo: Animals implanted with laminin-coated electrodes experience significant decreases in eABR and aABR thresholds at selected frequencies compared to the results from the uncoated electrodes group. At 1 month post implantation there were a greater number of spiral ganglion neurons and neuritic processes projecting into the scala tympani of animals implanted with laminin-coated electrodes compared to animals with uncoated electrodes. These data suggest that Schwann cells are attracted towards laminin-coated electrodes and promote neuritic outgrowth/ guidance and promote the survival of spiral ganglion neurons following electrode insertion trauma.
Collapse
Affiliation(s)
- Esperanza Bas
- Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, FL, United States of America.
| | - Mir R Anwar
- Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, FL, United States of America
| | - Stefania Goncalves
- Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, FL, United States of America
| | - Christine T Dinh
- Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, FL, United States of America
| | - Olena R Bracho
- Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, FL, United States of America
| | - Juan A Chiossone
- Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, FL, United States of America
| | - Thomas R Van De Water
- Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, FL, United States of America
| |
Collapse
|
12
|
Photopolymerized Microfeatures Guide Adult Spiral Ganglion and Dorsal Root Ganglion Neurite Growth. Otol Neurotol 2018; 39:119-126. [PMID: 29227456 DOI: 10.1097/mao.0000000000001622] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
HYPOTHESIS Microtopographical patterns generated by photopolymerization of methacrylate polymer systems will direct growth of neurites from adult neurons, including spiral ganglion neurons (SGNs). BACKGROUND Cochlear implants (CIs) provide hearing perception to patients with severe to profound hearing loss. However, their ability to encode complex auditory stimuli is limited due, in part, to poor spatial resolution caused by spread of the electrical currents in the inner ear. Directing the regrowth of SGN peripheral processes towards stimulating electrodes could help reduce current spread and improve spatial resolution provided by the CI. Previous work has demonstrated that micro- and nano-scale patterned surfaces precisely guide the growth of neurites from a variety of neonatal neurons including SGNs. Here, we sought to determine the extent to which adult neurons likewise respond to these topographical surface features. METHODS Photopolymerization was used to fabricate methacrylate polymer substrates with micropatterned surfaces of varying amplitudes and periodicities. Dissociated adult dorsal root ganglion neurons (DRGNs) and SGNs were cultured on these surfaces and the alignment of the neurite processes to the micropatterns was determined. RESULTS Neurites from both adult DRGNs and SGNs significantly aligned to the patterned surfaces similar to their neonatal counterparts. Further DRGN and SGN neurite alignment increased as the amplitude of the microfeatures increased. Decreased pattern periodicity also improved neurite alignment. CONCLUSION Microscale surface topographic features direct the growth of adult SGN neurites. Topographical features could prove useful for guiding growth of SGN peripheral axons towards a CI electrode array.
Collapse
|
13
|
Radotić V, Braeken D, Drviš P, Mattotti M, Kovačić D. Advantageous environment of micro-patterned, high-density complementary metal-oxide-semiconductor electrode array for spiral ganglion neurons cultured in vitro. Sci Rep 2018; 8:7446. [PMID: 29748613 PMCID: PMC5945660 DOI: 10.1038/s41598-018-25814-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Accepted: 04/20/2018] [Indexed: 12/24/2022] Open
Abstract
This study investigated micro-patterned, high-density complementary metal–oxide–semiconductor (CMOS) electrode array to be used as biologically permissive environment for organization, guidance and electrical stimulation of spiral ganglion neurons (SGN). SGNs extracted and isolated from cochleae of P5-P7 rat pups and adult guinea pigs were cultured 1, 4 and 7 days in vitro on glass coverslips (control) and CMOS electrode array. The cultures were analyzed visually and immunohistochemically for SGN presence, outgrowth, neurite alignment, neurite length, neurite asymmetry as well as the contact of a neuronal soma and neurites with the micro-electrodes. Our findings indicate that topographical environment of CMOS chip with micro-patterned pillars enhanced growth, survival, morphology, neural orientation and alignment of SGNs in vitro compared to control. Smaller spacing (0.8–1.6 µm) between protruding pillars on CMOS led SGNs to develop structured and guided neurites oriented along three topographical axes separated by 60°. We found morphological basis for positioning of the micro-electrodes on the chip that was appropriate for direct contact of SGNs with them. This configuration allowed CMOS electrode array to electrically stimulate the SGN whose responses were observed with live Fluo 4 calcium imaging.
Collapse
Affiliation(s)
- Viktorija Radotić
- Laboratory for Biophysics and Medical Neuroelectronics, Department of Physics, University of Split, Faculty of Science, R.Boškovića 33, HR-21000, Split, Croatia.,The Center of Research Excellence for Science and Technology Integrating Mediterranean region (STIM), University of Split, Poljička 35, HR-21000, Split, Croatia.,Speech and Hearing Research Laboratory, University of Split, School of Medicine, Šoltanska 2, HR-21000, Split, Croatia
| | - Dries Braeken
- Cell and Tissue Technologies group, Life Science Technologies department, Imec, Kapeldreef 75, B-3001, Leuven, Belgium
| | - Petar Drviš
- University Hospital Centre Split, Department of Otorhinolaryngology & Head and Neck Surgery, Spinčićeva 1, HR-21000, Split, Croatia
| | - Marta Mattotti
- Speech and Hearing Research Laboratory, University of Split, School of Medicine, Šoltanska 2, HR-21000, Split, Croatia
| | - Damir Kovačić
- Laboratory for Biophysics and Medical Neuroelectronics, Department of Physics, University of Split, Faculty of Science, R.Boškovića 33, HR-21000, Split, Croatia. .,The Center of Research Excellence for Science and Technology Integrating Mediterranean region (STIM), University of Split, Poljička 35, HR-21000, Split, Croatia. .,Speech and Hearing Research Laboratory, University of Split, School of Medicine, Šoltanska 2, HR-21000, Split, Croatia.
| |
Collapse
|
14
|
Schomann T, Mezzanotte L, De Groot JCMJ, Rivolta MN, Hendriks SH, Frijns JHM, Huisman MA. Neuronal differentiation of hair-follicle-bulge-derived stem cells co-cultured with mouse cochlear modiolus explants. PLoS One 2017; 12:e0187183. [PMID: 29084289 PMCID: PMC5662184 DOI: 10.1371/journal.pone.0187183] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Accepted: 10/16/2017] [Indexed: 11/18/2022] Open
Abstract
Stem-cell-based repair of auditory neurons may represent an attractive therapeutic option to restore sensorineural hearing loss. Hair-follicle-bulge-derived stem cells (HFBSCs) are promising candidates for this type of therapy, because they (1) have migratory properties, enabling migration after transplantation, (2) can differentiate into sensory neurons and glial cells, and (3) can easily be harvested in relatively high numbers. However, HFBSCs have never been used for this purpose. We hypothesized that HFBSCs can be used for cell-based repair of the auditory nerve and we have examined their migration and incorporation into cochlear modiolus explants and their subsequent differentiation. Modiolus explants obtained from adult wild-type mice were cultured in the presence of EF1α-copGFP-transduced HFBSCs, constitutively expressing copepod green fluorescent protein (copGFP). Also, modiolus explants without hair cells were co-cultured with DCX-copGFP-transduced HFBSCs, which demonstrate copGFP upon doublecortin expression during neuronal differentiation. Velocity of HFBSC migration towards modiolus explants was calculated, and after two weeks, co-cultures were fixed and processed for immunohistochemical staining. EF1α-copGFP HFBSC migration velocity was fast: 80.5 ± 6.1 μm/h. After arrival in the explant, the cells formed a fascicular pattern and changed their phenotype into an ATOH1-positive neuronal cell type. DCX-copGFP HFBSCs became green-fluorescent after integration into the explants, confirming neuronal differentiation of the cells. These results show that HFBSC-derived neuronal progenitors are migratory and can integrate into cochlear modiolus explants, while adapting their phenotype depending on this micro-environment. Thus, HFBSCs show potential to be employed in cell-based therapies for auditory nerve repair.
Collapse
Affiliation(s)
- Timo Schomann
- Department of Otorhinolaryngology and Head & Neck Surgery, Leiden University Medical Center, Leiden, South Holland, the Netherlands
| | - Laura Mezzanotte
- Optical Molecular Imaging Group, Department of Radiology, Erasmus Medical Center, Rotterdam, South Holland, the Netherlands
| | - John C. M. J. De Groot
- Department of Otorhinolaryngology and Head & Neck Surgery, Leiden University Medical Center, Leiden, South Holland, the Netherlands
| | - Marcelo N. Rivolta
- Centre for Stem Cell Biology, Department of Biomedical Science, University of Sheffield, Sheffield, England, United Kingdom
| | - Sanne H. Hendriks
- Department of Otorhinolaryngology and Head & Neck Surgery, Leiden University Medical Center, Leiden, South Holland, the Netherlands
| | - Johan H. M. Frijns
- Department of Otorhinolaryngology and Head & Neck Surgery, Leiden University Medical Center, Leiden, South Holland, the Netherlands
| | - Margriet A. Huisman
- Department of Otorhinolaryngology and Head & Neck Surgery, Leiden University Medical Center, Leiden, South Holland, the Netherlands
- * E-mail:
| |
Collapse
|
15
|
Microelectrode array-induced neuronal alignment directs neurite outgrowth: analysis using a fast Fourier transform (FFT). EUROPEAN BIOPHYSICS JOURNAL: EBJ 2017; 46:719-727. [PMID: 29075798 DOI: 10.1007/s00249-017-1263-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2017] [Revised: 09/24/2017] [Accepted: 10/09/2017] [Indexed: 12/16/2022]
Abstract
Many studies have shown that the topography of the substrate on which neurons are cultured can promote neuronal adhesion and guide neurite outgrowth in the same direction as the underlying topography. To investigate this effect, isotropic substrate-complementary metal-oxide-semiconductor (CMOS) chips were used as one example of microelectrode arrays (MEAs) for directing neurite growth of spiral ganglion neurons. Neurons were isolated from 5 to 7-day-old rat pups, cultured 1 day in vitro (DIV) and 4 DIV, and then fixed with 4% paraformaldehyde. For analysis of neurite alignment and orientation, fast Fourier transformation (FFT) was used. Results revealed that on the micro-patterned surface of a CMOS chip, neurons orient their neurites along three directional axes at 30, 90, and 150° and that neurites aligned in straight lines between adjacent pillars and mostly followed a single direction while occasionally branching perpendicularly. We conclude that the CMOS substrate guides neurites towards electrodes by means of their structured pillar organization and can produce electrical stimulation of aligned neurons as well as monitoring their neural activities once neurites are in the vicinity of electrodes. These findings are of particular interest for neural tissue engineering with the ultimate goal of developing a new generation of MEA essential for improved electrical stimulation of auditory neurons.
Collapse
|
16
|
Li H, Edin F, Hayashi H, Gudjonsson O, Danckwardt-Lillieström N, Engqvist H, Rask-Andersen H, Xia W. Guided growth of auditory neurons: Bioactive particles towards gapless neural - electrode interface. Biomaterials 2016; 122:1-9. [PMID: 28107660 DOI: 10.1016/j.biomaterials.2016.12.020] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Revised: 11/30/2016] [Accepted: 12/16/2016] [Indexed: 01/26/2023]
Abstract
Cochlear implant (CI) is a successful device to restore hearing. Despite continuous development, frequency discrimination is poor in CI users due to an anatomical gap between the auditory neurons and CI electrode causing current spread and unspecific neural stimulation. One strategy to close this anatomical gap is guiding the growth of neuron dendrites closer to CI electrodes through targeted slow release of neurotrophins. Biodegradable calcium phosphate hollow nanospheres (CPHSs) were produced and their capacity for uptake and release of neurotrophins investigated using 125I-conjugated glia cell line-derived neurotrophic factor (GDNF). The CPHSs were coated onto CI electrodes and loaded with neurotrophins. Axon guidance effect of slow-released neurotrophins from the CPHSs was studied in an in vitro 3D culture model. CPHS coating bound and released GDNF with an association rate constant 6.3 × 103 M-1s-1 and dissociation rate 2.6 × 10-5 s-1, respectively. Neurites from human vestibulocochlear ganglion explants found and established physical contact with the GDNF-loaded CPHS coating on the CI electrodes placed 0.7 mm away. Our results suggest that neurotrophin delivery through CPHS coating is a plausible way to close the anatomical gap between auditory neurons and electrodes. By overcoming this gap, selective neural activation and the fine hearing for CI users become possible.
Collapse
Affiliation(s)
- Hao Li
- Otolaryngology and Head & Neck Surgery, Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
| | - Fredrik Edin
- Otolaryngology and Head & Neck Surgery, Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
| | | | - Olafur Gudjonsson
- Neurosurgery, Department of Neuroscience, Uppsala University, Uppsala, Sweden
| | | | - Håkan Engqvist
- Applied Material Science, Department of Engineering Sciences, Uppsala University, Uppsala, Sweden
| | - Helge Rask-Andersen
- Otolaryngology and Head & Neck Surgery, Department of Surgical Sciences, Uppsala University, Uppsala, Sweden.
| | - Wei Xia
- Applied Material Science, Department of Engineering Sciences, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
17
|
Repić T, Madirazza K, Bektur E, Sapunar D. Characterization of dorsal root ganglion neurons cultured on silicon micro-pillar substrates. Sci Rep 2016; 6:39560. [PMID: 28008963 PMCID: PMC5180168 DOI: 10.1038/srep39560] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Accepted: 11/23/2016] [Indexed: 01/08/2023] Open
Abstract
Our study focuses on characterization of dorsal root ganglion (DRG) neurons cultured on silicon micro-pillar substrates (MPS) with the ultimate goal of designing micro-electrode arrays (MEAs) for successful electrophysiological recordings of DRG neurons. Adult and neonatal DRG neurons were cultured on MPS and glass coverslips for 7 days in vitro. DRG neuronal distribution and morphometric analysis, including neurite alignment and length, was performed on MPS areas with different pillar width and spacing. We showed that MPS provide an environment for growth of adult and neonatal DRG neurons as permissive as control glass surfaces. Neonatal DRG neurons were present on MPS areas with narrow pillar spacing, while adult neurons preferred wider pillar spacing. Compared to the control glass surfaces the neonatal and adult DRG neurons in regions with narrow pillar spacing range developed a smaller number of longer neurites. In the same area, neurites were preferentially oriented along three directional axes at 30°, 90° and 150°. MPS architecture influenced growth directionality of all main DRG neuronal subtypes. We can conclude that specific micro-pillar substrate topography affects the morphology of DRG neurons. This knowledge can enable development of MEAs with precisely defined physical features for various neuroscience applications.
Collapse
Affiliation(s)
- Tihana Repić
- Laboratory for Pain Research, School of Medicine, University of Split, Croatia
| | - Katarina Madirazza
- Speech and Hearing Research Laboratory, School of Medicine, University of Split, Croatia
| | - Ezgi Bektur
- Histology and Embryology Department, School of Medicine, Eskisehir Osmangazi University, Turkey
| | - Damir Sapunar
- Laboratory for Pain Research, School of Medicine, University of Split, Croatia
| |
Collapse
|
18
|
Schwieger J, Esser KH, Lenarz T, Scheper V. Establishment of a long-term spiral ganglion neuron culture with reduced glial cell number: Effects of AraC on cell composition and neurons. J Neurosci Methods 2016; 268:106-16. [DOI: 10.1016/j.jneumeth.2016.05.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Revised: 04/29/2016] [Accepted: 05/02/2016] [Indexed: 01/13/2023]
|
19
|
Onesto V, Cosentino C, Di Fabrizio E, Cesarelli M, Amato F, Gentile F. Information in a Network of Neuronal Cells: Effect of Cell Density and Short-Term Depression. BIOMED RESEARCH INTERNATIONAL 2016; 2016:2769698. [PMID: 27403421 PMCID: PMC4923608 DOI: 10.1155/2016/2769698] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Accepted: 05/10/2016] [Indexed: 12/13/2022]
Abstract
Neurons are specialized, electrically excitable cells which use electrical to chemical signals to transmit and elaborate information. Understanding how the cooperation of a great many of neurons in a grid may modify and perhaps improve the information quality, in contrast to few neurons in isolation, is critical for the rational design of cell-materials interfaces for applications in regenerative medicine, tissue engineering, and personalized lab-on-a-chips. In the present paper, we couple an integrate-and-fire model with information theory variables to analyse the extent of information in a network of nerve cells. We provide an estimate of the information in the network in bits as a function of cell density and short-term depression time. In the model, neurons are connected through a Delaunay triangulation of not-intersecting edges; in doing so, the number of connecting synapses per neuron is approximately constant to reproduce the early time of network development in planar neural cell cultures. In simulations where the number of nodes is varied, we observe an optimal value of cell density for which information in the grid is maximized. In simulations in which the posttransmission latency time is varied, we observe that information increases as the latency time decreases and, for specific configurations of the grid, it is largely enhanced in a resonance effect.
Collapse
Affiliation(s)
- Valentina Onesto
- Department of Experimental and Clinical Medicine, University of Magna Graecia, 88100 Catanzaro, Italy
| | - Carlo Cosentino
- Department of Experimental and Clinical Medicine, University of Magna Graecia, 88100 Catanzaro, Italy
| | - Enzo Di Fabrizio
- King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| | - Mario Cesarelli
- Department of Electrical Engineering and Information Technology, University of Naples, 80125 Naples, Italy
| | - Francesco Amato
- Department of Experimental and Clinical Medicine, University of Magna Graecia, 88100 Catanzaro, Italy
| | - Francesco Gentile
- Department of Electrical Engineering and Information Technology, University of Naples, 80125 Naples, Italy
| |
Collapse
|
20
|
Cai Y, Edin F, Jin Z, Alexsson A, Gudjonsson O, Liu W, Rask-Andersen H, Karlsson M, Li H. Strategy towards independent electrical stimulation from cochlear implants: Guided auditory neuron growth on topographically modified nanocrystalline diamond. Acta Biomater 2016; 31:211-220. [PMID: 26593784 DOI: 10.1016/j.actbio.2015.11.021] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Revised: 11/10/2015] [Accepted: 11/14/2015] [Indexed: 12/14/2022]
Abstract
Cochlear implants (CI) have been used for several decades to treat patients with profound hearing loss. Nevertheless, results vary between individuals, and fine hearing is generally poor due to the lack of discrete neural stimulation from the individual receptor hair cells. A major problem is the deliverance of independent stimulation signals to individual auditory neurons. Fine hearing requires significantly more stimulation contacts with intimate neuron/electrode interphases from ordered axonal re-growth, something current CI technology cannot provide. Here, we demonstrate the potential application of micro-textured nanocrystalline diamond (NCD) surfaces on CI electrode arrays. Such textured NCD surfaces consist of micrometer-sized nail-head-shaped pillars (size 5×5μm(2)) made with sequences of micro/nano-fabrication processes, including sputtering, photolithography and plasma etching. The results show that human and murine inner-ear ganglion neurites and, potentially, neural progenitor cells can attach to patterned NCD surfaces without an extracellular matrix coating. Microscopic methods revealed adhesion and neural growth, specifically along the nail-head-shaped NCD pillars in an ordered manner, rather than in non-textured areas. This pattern was established when the inter-NCD pillar distance varied between 4 and 9μm. The findings demonstrate that regenerating auditory neurons show a strong affinity to the NCD pillars, and the technique could be used for neural guidance and the creation of new neural networks. Together with the NCD's unique anti-bacterial and electrical properties, patterned NCD surfaces could provide designed neural/electrode interfaces to create independent electrical stimulation signals in CI electrode arrays for the neural population. STATEMENT OF SIGNIFICANCE Cochlear implant is currently a successful way to treat sensorineural hearing loss and deafness especially in children. Although clinically successful, patients' fine hearing cannot be completely restored. One problem is the amount of the electrodes; 12-20 electrodes are used to replace the function of 3400 inner hair cells. Intense research is ongoing aiming to increase the number of electrodes. This study demonstrates the use of nanocrystalline diamond as a potential nerve-electrode interface. Micrometer-sized nanocrystalline diamond pillars showed high affinity to regenerated human neurons, which grew into a pre-defined network based on the pillar design. Our findings are of particular interest since they can be applied on any silicon-based implant to increase electrode count and to achieve individual neuron stimulation patterns.
Collapse
Affiliation(s)
- Yixiao Cai
- Department of Engineering Sciences, Ångström Laboratory, Uppsala University, Uppsala, Sweden
| | - Fredrik Edin
- Otolaryngology and Head & Neck Surgery, Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
| | - Zhe Jin
- Physiology; Molecular Physiology and Neuroscience, Department of Neuroscience, Uppsala University, Uppsala, Sweden
| | - Andrei Alexsson
- Rheumatology, Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Olafur Gudjonsson
- Neurosurgery, Department of Neuroscience, Uppsala University, Uppsala, Sweden
| | - Wei Liu
- Otolaryngology and Head & Neck Surgery, Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
| | - Helge Rask-Andersen
- Otolaryngology and Head & Neck Surgery, Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
| | - Mikael Karlsson
- Department of Engineering Sciences, Ångström Laboratory, Uppsala University, Uppsala, Sweden.
| | - Hao Li
- Otolaryngology and Head & Neck Surgery, Department of Surgical Sciences, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
21
|
KASAI N, LU R, FILIP R, GOTO T, TANAKA A, SUMITOMO K. Neuronal Growth on a-Si and Au Nanopillars. ELECTROCHEMISTRY 2016. [DOI: 10.5796/electrochemistry.84.296] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Affiliation(s)
- Nahoko KASAI
- NTT Basic Research Laboratories, NTT Corporation
| | - Rick LU
- NTT Basic Research Laboratories, NTT Corporation
| | - Roxana FILIP
- NTT Basic Research Laboratories, NTT Corporation
| | | | - Aya TANAKA
- NTT Basic Research Laboratories, NTT Corporation
| | | |
Collapse
|