1
|
Wang B, Shen B, Xiao S, Zhou J, Fu W. Effects of four weeks intervention combining high-definition transcranial direct current stimulation and foot core exercise on dynamic postural stability. J Biomech 2024; 177:112418. [PMID: 39531979 DOI: 10.1016/j.jbiomech.2024.112418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 10/15/2024] [Accepted: 11/05/2024] [Indexed: 11/16/2024]
Abstract
This study aimed to evaluate the effect of combining high-definition transcranial direct current stimulation (HD-tDCS) with foot core exercise (FCE) on dynamic postural stability and to determine whether the improvement achieved through this mix-type intervention outperforms the intervention of HD-tDCS and FCE alone. Sixty healthy males were recruited and randomly divided into four groups: (1) HD-tDCS + FCE group (HD-tDCS combined with FCE intervention); (2) s-tDCS + FCE (sham tDCS combined with FCE intervention); (3) HD-tDCS group which only received HD-tDCS; (4) FCE group which only performed FCE. All participants received a four-week intervention (3 times a week, 20 min each time). The Y-balance task was completed before and after the intervention. The maximum reaching distance was recorded, and the data of the center of pressure (COP) were collected by a three-dimensional force plate to calculate COP displacement and velocity. No significant change in COP displacement was found among the four groups. However, the COP velocity decreased significantly in the posteromedial direction after HD-tDCS + FCE intervention compared with the baseline. The maximum reach distance was significantly increased after HD-tDCS + FCE intervention in the posteromedial (p < 0.001) and posterolateral (p < 0.001) directions of the Y balance task compared with the baseline, and the extent of increase was greater than that in the three other groups. The intervention of HD-tDCS combined with FCE may exert a synergistic effect and more effectively improve dynamic postural stability.
Collapse
Affiliation(s)
- Baofeng Wang
- Key Laboratory of Exercise and Health Sciences of Ministry of Education, Shanghai University of Sport, Shanghai, China
| | - Bin Shen
- Key Laboratory of Exercise and Health Sciences of Ministry of Education, Shanghai University of Sport, Shanghai, China
| | - Songlin Xiao
- Key Laboratory of Exercise and Health Sciences of Ministry of Education, Shanghai University of Sport, Shanghai, China
| | - Junhong Zhou
- The Hinda and Arthur Marcus Institute for Aging Research, Hebrew SeniorLife, Boston, MA, United States; Harvard Medical School, Boston, MA, United States.
| | - Weijie Fu
- Key Laboratory of Exercise and Health Sciences of Ministry of Education, Shanghai University of Sport, Shanghai, China.
| |
Collapse
|
2
|
Pileckyte I, Soto-Faraco S. Sensory stimulation enhances visual working memory capacity. COMMUNICATIONS PSYCHOLOGY 2024; 2:109. [PMID: 39558084 PMCID: PMC11574275 DOI: 10.1038/s44271-024-00158-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 11/06/2024] [Indexed: 11/20/2024]
Abstract
Visual working memory (vWM) plays a crucial role in visual information processing and higher cognitive functions; however, it has a very limited capacity. Recently, several studies have successfully modulated vWM capacity in humans using entrainment with transcranial alternate current stimulation (tACS) by targeting parietal theta in a frequency-specific manner. In the current study, we aim to expand upon these findings by utilizing sensory instead of electrical stimulation. Across six behavioral experiments (combined N = 209), we applied rhythmic visual and auditory sensory stimulation at 4 Hz and 7 Hz, aiming to modulate vWM capacity. Collectively, the results showed an overall robust improvement with sensory stimulation at either frequency, compared to baseline. However, contrary to our prediction, 7 Hz stimulation tended to slightly outperform 4 Hz stimulation. Importantly, the observed facilitatory effect was mainly driven by the low-capacity sub-group of participants. Follow-up experiments using the Attention Network Test (ANT) and pupillometry measures did not find evidence that this effect could be directly attributed to modulation of phasic or tonic arousal. We speculate that our results differed from those obtained with tACS due to targeting functionally different theta oscillations, or the modulation of participants' temporal expectations.
Collapse
Affiliation(s)
- Indre Pileckyte
- Departament d'Enginyeria, Center for Brain & Cognition, Universitat Pompeu Fabra, Barcelona, Spain.
| | - Salvador Soto-Faraco
- Departament d'Enginyeria, Center for Brain & Cognition, Universitat Pompeu Fabra, Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| |
Collapse
|
3
|
Im C, Lee J, Kim D, Jun SC, Seo H. Seeking Optimal Montage for Single-Pair Transcranial Direct Current Stimulation Using Bayesian Optimization and Hyperband-A Feasibility Study. Neuromodulation 2024:S1094-7159(24)01188-7. [PMID: 39520458 DOI: 10.1016/j.neurom.2024.09.475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 09/26/2024] [Accepted: 09/30/2024] [Indexed: 11/16/2024]
Abstract
OBJECTIVES Transcranial direct current stimulation (tDCS) is an emerging neuromodulation technique. The effect of tDCS can vary significantly depending on electrode position and current intensity, making it crucial to find an optimized tDCS montage. However, because of the high computational load, most tDCS optimization approaches have been performed with a limited number of candidates for electrode positions, such as 10-10 or 10-20 international channel configurations. This study introduced the Bayesian optimization and hyperband (BOHB) method to seek optimal tDCS montage for the entire human scalp without conventional constraints. MATERIALS AND METHODS The BOHB method is a probabilistic approach that iteratively refines the selection of the optimal montage on the basis of previous results. To determine the suitability of this approach for tDCS simulation, we compared it with random search, which randomly selects montages, and greedy search, which, considers all candidates. Next, the conditions in the greedy search were used as the initial conditions for BOHB for fast learning. The objective function of tDCS optimization was set to maximize the average electric field norm (|E|) in the region of interest (ROI), which is the motor area (M1) and left dorsal lateral prefrontal cortex. RESULTS The BOHB method performed better than the conventional random search for the same number of iterations in both ROIs. For M1, the iteration index yielding the maximum evaluation metric in each trial was statistically smaller in the BOHB method than in the random search (p < 0.0001). Regarding the normalized |E|, the BOHB method showed a higher normalized |E| than did the random search for the M1 region. CONCLUSIONS The BOHB method performed better than did the random search approach. Thus, the BOHB method is feasible for tDCS optimization and can be used as an optimal stimulation montage seeker by fine-tuning some control parameters.
Collapse
Affiliation(s)
- Cheolki Im
- School of Electrical Engineering and Computer Science, Gwangju Institute of Science and Technology, Gwangju, South Korea
| | - Jongseung Lee
- Research Institute, Neurophet Inc, Seoul, South Korea
| | - Donghyeon Kim
- Research Institute, Neurophet Inc, Seoul, South Korea
| | - Sung Chan Jun
- School of Electrical Engineering and Computer Science, Gwangju Institute of Science and Technology, Gwangju, South Korea; Artificial Intelligence Graduate School, Gwangju Institute of Science and Technology, Gwangju, South Korea
| | - Hyeon Seo
- Department of Computer Science and Engineering, Gyeongsang National University, Jinju, South Korea.
| |
Collapse
|
4
|
Wansbrough K, Marinovic W, Fujiyama H, Vallence AM. Beta tACS of varying intensities differentially affect resting-state and movement-related M1-M1 connectivity. Front Neurosci 2024; 18:1425527. [PMID: 39371612 PMCID: PMC11450697 DOI: 10.3389/fnins.2024.1425527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 08/29/2024] [Indexed: 10/08/2024] Open
Abstract
Due to the interconnected nature of the brain, changes in one region are likely to affect other structurally and functionally connected regions. Emerging evidence indicates that single-site transcranial alternating current stimulation (tACS) can modulate functional connectivity between stimulated and interconnected unstimulated brain regions. However, our understanding of the network response to tACS is incomplete. Here, we investigated the effect of beta tACS of different intensities on phase-based connectivity between the left and right primary motor cortices in 21 healthy young adults (13 female; mean age 24.30 ± 4.84 years). Participants underwent four sessions of 20 min of 20 Hz tACS of varying intensities (sham, 0.5 mA, 1.0 mA, or 1.5 mA) applied to the left primary motor cortex at rest. We recorded resting-state and event-related electroencephalography (EEG) before and after tACS, analyzing changes in sensorimotor beta (13-30 Hz) imaginary coherence (ImCoh), an index of functional connectivity. Event-related EEG captured movement-related beta activity as participants performed self-paced button presses using their right index finger. For resting-state connectivity, we observed intensity-dependent changes in beta ImCoh: sham and 0.5 mA stimulation resulted in an increase in beta ImCoh, while 1.0 mA and 1.5 mA stimulation decreased beta ImCoh. For event-related connectivity, 1.5 mA stimulation decreased broadband ImCoh (4-90 Hz) during movement execution. None of the other stimulation intensities significantly modulated event-related ImCoh during movement preparation, execution, or termination. Interestingly, changes in ImCoh during movement preparation following 1.0 mA and 1.5 mA stimulation were significantly associated with participants' pre-tACS peak beta frequency, suggesting that the alignment of stimulation frequency and peak beta frequency affected the extent of neuromodulation. Collectively, these results suggest that beta tACS applied to a single site influences connectivity within the motor network in a manner that depends on the intensity and frequency of stimulation. These findings have significant implications for both research and clinical applications.
Collapse
Affiliation(s)
- Kym Wansbrough
- School of Psychology, College of Health and Education, Murdoch University, Perth, WA, Australia
- Centre for Healthy Ageing, Health Futures Institute, Murdoch University, Perth, WA, Australia
- Centre for Molecular Medicine and Innovative Therapeutics, Health Futures Institute, Murdoch University, Perth, WA, Australia
| | - Welber Marinovic
- School of Population Health, Curtin University, Perth, WA, Australia
| | - Hakuei Fujiyama
- School of Psychology, College of Health and Education, Murdoch University, Perth, WA, Australia
- Centre for Healthy Ageing, Health Futures Institute, Murdoch University, Perth, WA, Australia
- Centre for Molecular Medicine and Innovative Therapeutics, Health Futures Institute, Murdoch University, Perth, WA, Australia
| | - Ann-Maree Vallence
- School of Psychology, College of Health and Education, Murdoch University, Perth, WA, Australia
- Centre for Healthy Ageing, Health Futures Institute, Murdoch University, Perth, WA, Australia
- Centre for Molecular Medicine and Innovative Therapeutics, Health Futures Institute, Murdoch University, Perth, WA, Australia
| |
Collapse
|
5
|
Kim E, Yun SJ, Oh BM, Seo HG. Impact of Electric Field Magnitude in the Left Dorsolateral Prefrontal Cortex on Changes in Intrinsic Functional Connectivity Using Transcranial Direct Current Stimulation: A Randomized Crossover Study. J Neurosci Res 2024; 102:e25378. [PMID: 39225477 DOI: 10.1002/jnr.25378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 08/06/2024] [Accepted: 08/10/2024] [Indexed: 09/04/2024]
Abstract
This study investigated whether the electric field magnitude (E-field) delivered to the left dorsolateral prefrontal cortex (L-DLPFC) changes resting-state brain activity and the L-DLPFC resting-state functional connectivity (rsFC), given the variability in tDCS response and lack of understanding of how rsFC changes. Twenty-one healthy participants received either 2 mA anodal or sham tDCS targeting the L-DLPFC for 10 min. Brain imaging was conducted before and after stimulation. The fractional amplitude of low-frequency fluctuation (fALFF), reflecting resting brain activity, and the L-DLPFC rsFC were analyzed to investigate the main effect of tDCS, main effect of time, and interaction effects. The E-field was estimated by modeling tDCS-induced individual electric fields and correlated with fALFF and L-DLPFC rsFC. Anodal tDCS increased fALFF in the left rostral middle frontal area and decreased fALFF in the midline frontal area (FWE p < 0.050), whereas sham induced no changes. Overall rsFC decreased after sham (positive and negative connectivity, p = 0.001 and 0.020, respectively), with modest and nonsignificant changes after anodal tDCS (p = 0.063 and 0.069, respectively). No significant differences in local rsFC were observed among the conditions. Correlations were observed between the E-field and rsFC changes in the L-DLPFC (r = 0.385, p = 0.115), left inferior parietal area (r = 0.495, p = 0.037), and right lateral visual area (r = 0.683, p = 0.002). Single-session tDCS induced resting brain activity changes and may help maintain overall rsFC. The E-field in the L-DLPFC is associated with rsFC changes in both proximal and distally connected brain regions to the L-DLPFC.
Collapse
Affiliation(s)
- Eunkyung Kim
- Department of Rehabilitation Medicine, Seoul National University Hospital, Seoul, Republic of Korea
- Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea
| | - Seo Jung Yun
- Department of Rehabilitation Medicine, Seoul National University Hospital, Seoul, Republic of Korea
- Department of Rehabilitation Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
- Department of Human Systems Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Byung-Mo Oh
- Department of Rehabilitation Medicine, Seoul National University Hospital, Seoul, Republic of Korea
- Department of Rehabilitation Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
- Institute on Aging, Seoul National University, Seoul, Korea
| | - Han Gil Seo
- Department of Rehabilitation Medicine, Seoul National University Hospital, Seoul, Republic of Korea
- Department of Rehabilitation Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
6
|
Truong DQ, Thomas C, Ira S, Valter Y, Clark TK, Datta A. Unpacking Galvanic Vestibular Stimulation using simulations and relating current flow to reported motions: Comparison across common and specialized electrode placements. PLoS One 2024; 19:e0309007. [PMID: 39186497 PMCID: PMC11346646 DOI: 10.1371/journal.pone.0309007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 08/04/2024] [Indexed: 08/28/2024] Open
Abstract
BACKGROUND Galvanic Vestibular Stimulation (GVS) is a non-invasive electrical stimulation technique that is typically used to probe the vestibular system. When using direct current or very low frequency sine, GVS causes postural sway or perception of illusory (virtual) motions. GVS is commonly delivered using two electrodes placed at the mastoids, however, placements involving additional electrodes / locations have been employed. Our objective was to systematically evaluate all known GVS electrode placements, compare induced current flow, and how it relates to the archetypal sway and virtual motions. The ultimate goal is to help users in having a better understanding of the effects of different placements. METHODS We simulated seven GVS electrode placements with same total injected current using an ultra-high resolution model. Induced electric field (EF) patterns at the cortical and the level of vestibular organs (left and right) were determined. A range of current flow metrics including potential factors such as inter-electrode separation, percentage of current entering the cranial cavity, and symmetricity were calculated. Finally, we relate current flow to reported GVS motions. RESULTS As expected, current flow patterns are electrode placement specific. Placements with two electrodes generally result in higher EF magnitude. Placements with four electrodes result in lower percentage of current entering the cranial cavity. Symmetric placements do not result in similar EF values in the left and the right organs respectively- highlighting inherent anatomical asymmetry of the human head. Asymmetric placements were found to induce as much as ~3-fold higher EF in one organ over the other. The percentage of current entering the cranial cavity varies between ~15% and ~40% depending on the placement. CONCLUSIONS We expect our study to advance understanding of GVS and provide insight on probable mechanism of action of a certain electrode placement choice. The dataset generated across several metrics will support hypothesis testing relating empirical outcomes to current flow patterns. Further, the differences in current flow will guide stimulation strategy (what placement and how much scalp current to use) and facilitate a quantitatively informed rational / optimal decision.
Collapse
Affiliation(s)
- Dennis Q. Truong
- Research and Development, Soterix Medical, Woodbridge, New Jersey, United States of America
| | - Chris Thomas
- Research and Development, Soterix Medical, Woodbridge, New Jersey, United States of America
| | - Sanjidah Ira
- Research and Development, Soterix Medical, Woodbridge, New Jersey, United States of America
| | - Yishai Valter
- Research and Development, Soterix Medical, Woodbridge, New Jersey, United States of America
| | - Torin K. Clark
- Smead Aerospace Engineering Sciences Department, College of Engineering and Applied Science, University of Colorado, Boulder, Colorado, United States of America
| | - Abhishek Datta
- Research and Development, Soterix Medical, Woodbridge, New Jersey, United States of America
- Biomedical Engineering, City College of New York, New York, New York, United States of America
| |
Collapse
|
7
|
Gomez-Tames J, Fernández-Corazza M. Perspectives on Optimized Transcranial Electrical Stimulation Based on Spatial Electric Field Modeling in Humans. J Clin Med 2024; 13:3084. [PMID: 38892794 PMCID: PMC11172989 DOI: 10.3390/jcm13113084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 05/20/2024] [Accepted: 05/22/2024] [Indexed: 06/21/2024] Open
Abstract
Background: Transcranial electrical stimulation (tES) generates an electric field (or current density) in the brain through surface electrodes attached to the scalp. Clinical significance has been demonstrated, although with moderate and heterogeneous results partly due to a lack of control of the delivered electric currents. In the last decade, computational electric field analysis has allowed the estimation and optimization of the electric field using accurate anatomical head models. This review examines recent tES computational studies, providing a comprehensive background on the technical aspects of adopting computational electric field analysis as a standardized procedure in medical applications. Methods: Specific search strategies were designed to retrieve papers from the Web of Science database. The papers were initially screened based on the soundness of the title and abstract and then on their full contents, resulting in a total of 57 studies. Results: Recent trends were identified in individual- and population-level analysis of the electric field, including head models from non-neurotypical individuals. Advanced optimization techniques that allow a high degree of control with the required focality and direction of the electric field were also summarized. There is also growing evidence of a correlation between the computationally estimated electric field and the observed responses in real experiments. Conclusions: Computational pipelines and optimization algorithms have reached a degree of maturity that provides a rationale to improve tES experimental design and a posteriori analysis of the responses for supporting clinical studies.
Collapse
Affiliation(s)
- Jose Gomez-Tames
- Department of Medical Engineering, Graduate School of Engineering, Chiba University, Chiba 263-8522, Japan
- Center for Frontier Medical Engineering, Chiba University, Chiba 263-8522, Japan
| | - Mariano Fernández-Corazza
- LEICI Institute of Research in Electronics, Control and Signal Processing, National University of La Plata, La Plata 1900, Argentina
| |
Collapse
|
8
|
Zeng Y, Cheng R, Zhang L, Fang S, Zhang S, Wang M, Lv Q, Dai Y, Gong X, Liang F. Clinical Comparison between HD-tDCS and tDCS for Improving Upper Limb Motor Function: A Randomized, Double-Blinded, Sham-Controlled Trial. Neural Plast 2024; 2024:2512796. [PMID: 38585306 PMCID: PMC10999289 DOI: 10.1155/2024/2512796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 12/15/2023] [Accepted: 03/06/2024] [Indexed: 04/09/2024] Open
Abstract
Background Stroke is a common and frequently occurring disease among middle-aged and elderly people, with approximately 55%-75% of patients remaining with upper limb dysfunction. How to promote the recovery of motor function at an early stage is crucial to the life of the patient. Objectives This study aimed to investigate whether high-definition transcranial direct current stimulation (HD-tDCS) of the primary motor cortex (M1) functional area in poststroke patients in the subacute phase is more effective in improving upper limb function than conventional tDCS. Methods This randomized, sham-controlled clinical trial included 69 patients with subcortical stroke. They were randomly divided into the HD-tDCS, anodal tDCS (a-tDCS), and sham groups. Each group received 20 sessions of stimulation. The patients were assessed using the Action Research Arm Test, Fugl-Meyer score for upper extremities, Motor Function Assessment Scale, and modified Barthel index (MBI) pretreatment and posttreatment. Results The intragroup comparison scores improved after 4 weeks of treatment. The HD-tDCS group showed a slightly greater, but nonsignificant improvement as compared to a-tDCS group in terms of mean change observed in function of trained items. The MBI score of the HD-tDCS group was maintained up to 8 weeks of follow-up and was higher than that in the a-tDCS group. Conclusion Both HD-tDCS and a-tDCS can improve upper limb motor function and daily activities of poststroke patients in the subacute stage. This trial is registered with ChiCTR2000031314.
Collapse
Affiliation(s)
- Yaqin Zeng
- Center for Rehabilitation Medicine, Rehabilitation & Sports Medicine Research Institute of Zhejiang Province, Department of Rehabilitation Medicine, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Ruidong Cheng
- Center for Rehabilitation Medicine, Rehabilitation & Sports Medicine Research Institute of Zhejiang Province, Department of Rehabilitation Medicine, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Li Zhang
- Center for Rehabilitation Medicine, Rehabilitation & Sports Medicine Research Institute of Zhejiang Province, Department of Rehabilitation Medicine, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Shan Fang
- Center for Rehabilitation Medicine, Rehabilitation & Sports Medicine Research Institute of Zhejiang Province, Department of Rehabilitation Medicine, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Shaomin Zhang
- Qiushi Academy for Advanced Studies, Zhejiang University, Hangzhou, Zhejiang, China
| | - Minmin Wang
- Qiushi Academy for Advanced Studies, Zhejiang University, Hangzhou, Zhejiang, China
| | - Qian Lv
- Center for Rehabilitation Medicine, Rehabilitation & Sports Medicine Research Institute of Zhejiang Province, Department of Rehabilitation Medicine, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Yunlan Dai
- Center for Rehabilitation Medicine, Rehabilitation & Sports Medicine Research Institute of Zhejiang Province, Department of Rehabilitation Medicine, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Xinyi Gong
- Center for Rehabilitation Medicine, Rehabilitation & Sports Medicine Research Institute of Zhejiang Province, Department of Rehabilitation Medicine, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Feng Liang
- Center for Rehabilitation Medicine, Rehabilitation & Sports Medicine Research Institute of Zhejiang Province, Department of Rehabilitation Medicine, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| |
Collapse
|
9
|
Deng ZD, Robins PL, Regenold W, Rohde P, Dannhauer M, Lisanby SH. How electroconvulsive therapy works in the treatment of depression: is it the seizure, the electricity, or both? Neuropsychopharmacology 2024; 49:150-162. [PMID: 37488281 PMCID: PMC10700353 DOI: 10.1038/s41386-023-01677-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 06/27/2023] [Accepted: 07/14/2023] [Indexed: 07/26/2023]
Abstract
We have known for nearly a century that triggering seizures can treat serious mental illness, but what we do not know is why. Electroconvulsive Therapy (ECT) works faster and better than conventional pharmacological interventions; however, those benefits come with a burden of side effects, most notably memory loss. Disentangling the mechanisms by which ECT exerts rapid therapeutic benefit from the mechanisms driving adverse effects could enable the development of the next generation of seizure therapies that lack the downside of ECT. The latest research suggests that this goal may be attainable because modifications of ECT technique have already yielded improvements in cognitive outcomes without sacrificing efficacy. These modifications involve changes in how the electricity is administered (both where in the brain, and how much), which in turn impacts the characteristics of the resulting seizure. What we do not completely understand is whether it is the changes in the applied electricity, or in the resulting seizure, or both, that are responsible for improved safety. Answering this question may be key to developing the next generation of seizure therapies that lack these adverse side effects, and ushering in novel interventions that are better, faster, and safer than ECT.
Collapse
Affiliation(s)
- Zhi-De Deng
- Noninvasive Neuromodulation Unit, Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, Bethesda, MD, USA
| | - Pei L Robins
- Noninvasive Neuromodulation Unit, Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, Bethesda, MD, USA
| | - William Regenold
- Noninvasive Neuromodulation Unit, Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, Bethesda, MD, USA
| | - Paul Rohde
- Noninvasive Neuromodulation Unit, Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, Bethesda, MD, USA
| | - Moritz Dannhauer
- Noninvasive Neuromodulation Unit, Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, Bethesda, MD, USA
| | - Sarah H Lisanby
- Noninvasive Neuromodulation Unit, Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, Bethesda, MD, USA.
| |
Collapse
|
10
|
Sehatpour P, Javitt DC. Advanced Methodology for Neurophysiological Analysis and Biomarker Development: Time-Frequency and Source-Localization Approaches. ADVANCES IN NEUROBIOLOGY 2024; 40:119-141. [PMID: 39562443 DOI: 10.1007/978-3-031-69491-2_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2024]
Abstract
The development of new treatments for neuropsychiatric disorders requires the development of physiological measures that can accurately translate between preclinical animal models and clinical human studies. Neurophysiological measures, especially event-related potentials (ERP), provide effective physiological read-outs of the flow of information from primary sensory through higher-order associative brain regions and thus can be used to investigate mechanisms underlying cognitive impairments across neuropsychiatric disorders. Traditional "time-domain" event-related potentials (ERP) such as auditory P300 and mismatch negativity or visual P1 and face N170 are increasingly being used in clinical studies for patient stratification, outcome prediction, or target engagement. Nevertheless, time-domain approaches use only a small portion of the information inherent within the event-related EEG signal. Newer, time-frequency (TF-ERP) approaches provide additional information along with improved translational utility and may be especially useful in differentiating activity related to thalamocortical driver versus modulatory inputs, as well as detecting event-related modulations of ongoing EEG power. The utility of the TF-ERP approach may be further enhanced by using source-space analytic approaches, including newer Beamformer approaches which are sensitive to both power within identified brain regions and coherence between brain regions. In addition to supporting the development of novel pharmacological agents, such methods may be guiding personalized, high-definition neuro-modulatory intervention approaches.
Collapse
Affiliation(s)
- Pejman Sehatpour
- Department of Psychiatry, Columbia University Medical Center, New York, NY, USA.
- Schizophrenia Research Division, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY, USA.
- Division of Experimental Therapeutics, Columbia University Medical Center, New York, NY, USA.
| | - Daniel C Javitt
- Department of Psychiatry, Columbia University Medical Center, New York, NY, USA
- Schizophrenia Research Division, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY, USA
| |
Collapse
|
11
|
De Koninck BP, Brazeau D, Guay S, Herrero Babiloni A, De Beaumont L. Transcranial Alternating Current Stimulation to Modulate Alpha Activity: A Systematic Review. Neuromodulation 2023; 26:1549-1584. [PMID: 36725385 DOI: 10.1016/j.neurom.2022.12.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 12/05/2022] [Accepted: 12/08/2022] [Indexed: 02/01/2023]
Abstract
BACKGROUND Transcranial alternating current stimulation (tACS) has been one of numerous investigation methods used for their potential to modulate brain oscillations; however, such investigations have given contradictory results and a lack of standardization. OBJECTIVES In this systematic review, we aimed to assess the potential of tACS to modulate alpha spectral power. The secondary outcome was the identification of tACS methodologic key parameters, adverse effects, and sensations. MATERIALS AND METHODS Studies in healthy adults who were receiving active and sham tACS intervention or any differential condition were included. The main outcome assessed was the increase/decrease of alpha spectral power through either electroencephalography or magnetoencephalography. Secondary outcomes were methodologic parameters, sensation reporting, and adverse effects. Risks of bias and the study quality were assessed with the Cochrane assessment tool. RESULTS We obtained 1429 references, and 20 met the selection criteria. A statistically significant alpha-power increase was observed in nine studies using continuous tACS stimulation and two using intermittent tACS stimulation set at a frequency within the alpha range. A statistically significant alpha-power increase was observed in three more studies using a stimulation frequency outside the alpha range. Heterogeneity among stimulation parameters was recognized. Reported adverse effects were mild. The implementation of double blind was identified as challenging using tACS, in part owing to electrical artifacts generated by stimulation on the recorded signal. CONCLUSIONS Most assessed studies reported that tACS has the potential to modulate brain alpha power. The optimization of this noninvasive brain stimulation method is of interest mostly for its potential clinical applications with neurological conditions associated with perturbations in alpha brain activity. However, more research efforts are needed to standardize optimal parameters to achieve lasting modulation effects, develop methodologic alternatives to reduce experimental bias, and improve the quality of studies using tACS to modulate brain activity.
Collapse
Affiliation(s)
- Beatrice P De Koninck
- Sports and Trauma Applied Research Lab, Montreal Sacred Heart Hospital, CIUSSS North-Montreal-Island, Montreal, Quebec, Canada; University of Montreal, Montréal, Quebec, Canada.
| | - Daphnée Brazeau
- Sports and Trauma Applied Research Lab, Montreal Sacred Heart Hospital, CIUSSS North-Montreal-Island, Montreal, Quebec, Canada; University of Montreal, Montréal, Quebec, Canada
| | - Samuel Guay
- Sports and Trauma Applied Research Lab, Montreal Sacred Heart Hospital, CIUSSS North-Montreal-Island, Montreal, Quebec, Canada; University of Montreal, Montréal, Quebec, Canada
| | - Alberto Herrero Babiloni
- Sports and Trauma Applied Research Lab, Montreal Sacred Heart Hospital, CIUSSS North-Montreal-Island, Montreal, Quebec, Canada; University of Montreal, Montréal, Quebec, Canada; McGill University, Montreal, Quebec, Canada
| | - Louis De Beaumont
- Sports and Trauma Applied Research Lab, Montreal Sacred Heart Hospital, CIUSSS North-Montreal-Island, Montreal, Quebec, Canada; University of Montreal, Montréal, Quebec, Canada
| |
Collapse
|
12
|
Khadka N, Poon C, Cancel LM, Tarbell JM, Bikson M. Multi-scale multi-physics model of brain interstitial water flux by transcranial Direct Current Stimulation. J Neural Eng 2023; 20:10.1088/1741-2552/ace4f4. [PMID: 37413982 PMCID: PMC10996349 DOI: 10.1088/1741-2552/ace4f4] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 07/06/2023] [Indexed: 07/08/2023]
Abstract
Objective. Transcranial direct current stimulation (tDCS) generates sustained electric fields in the brain, that may be amplified when crossing capillary walls (across blood-brain barrier, BBB). Electric fields across the BBB may generate fluid flow by electroosmosis. We consider that tDCS may thus enhance interstitial fluid flow.Approach. We developed a modeling pipeline novel in both (1) spanning the mm (head),μm (capillary network), and then nm (down to BBB tight junction (TJ)) scales; and (2) coupling electric current flow to fluid current flow across these scales. Electroosmotic coupling was parametrized based on prior measures of fluid flow across isolated BBB layers. Electric field amplification across the BBB in a realistic capillary network was converted to volumetric fluid exchange.Main results. The ultrastructure of the BBB results in peak electric fields (per mA of applied current) of 32-63Vm-1across capillary wall and >1150Vm-1in TJs (contrasted with 0.3Vm-1in parenchyma). Based on an electroosmotic coupling of 1.0 × 10-9- 5.6 × 10-10m3s-1m2perVm-1, peak water fluxes across the BBB are 2.44 × 10-10- 6.94 × 10-10m3s-1m2, with a peak 1.5 × 10-4- 5.6 × 10-4m3min-1m3interstitial water exchange (per mA).Significance. Using this pipeline, the fluid exchange rate per each brain voxel can be predicted for any tDCS dose (electrode montage, current) or anatomy. Under experimentally constrained tissue properties, we predicted tDCS produces a fluid exchange rate comparable to endogenous flow, so doubling fluid exchange with further local flow rate hot spots ('jets'). The validation and implication of such tDCS brain 'flushing' is important to establish.
Collapse
Affiliation(s)
| | - Cynthia Poon
- Department of Biomedical Engineering, The City College of New York, CUNY, New York, United States of America
| | - Limary M Cancel
- Department of Biomedical Engineering, The City College of New York, CUNY, New York, United States of America
| | - John M Tarbell
- Department of Biomedical Engineering, The City College of New York, CUNY, New York, United States of America
| | - Marom Bikson
- Department of Biomedical Engineering, The City College of New York, CUNY, New York, United States of America
| |
Collapse
|
13
|
D'Urso G, Toscano E, Barone A, Palermo M, Dell'Osso B, Di Lorenzo G, Mantovani A, Martinotti G, Fornaro M, Iasevoli F, de Bartolomeis A. Transcranial direct current stimulation for bipolar depression: systematic reviews of clinical evidence and biological underpinnings. Prog Neuropsychopharmacol Biol Psychiatry 2023; 121:110672. [PMID: 36332699 DOI: 10.1016/j.pnpbp.2022.110672] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 10/09/2022] [Accepted: 10/26/2022] [Indexed: 11/08/2022]
Abstract
Despite multiple available treatments for bipolar depression (BD), many patients face sub-optimal responses. Transcranial direct current stimulation (tDCS) has been advocated in the management of different conditions, including BD, especially in treatment-resistant cases. The optimal dose and timing of tDCS, the mutual influence with other concurrently administered interventions, long-term efficacy, overall safety, and biological underpinnings nonetheless deserve additional assessment. The present study appraised the existing clinical evidence about tDCS for bipolar depression, delving into the putative biological underpinnings with a special emphasis on cellular and molecular levels, with the ultimate goal of providing a translational perspective on the matter. Two separate systematic reviews across the PubMed database since inception up to August 8th 2022 were performed, with fourteen clinical and nineteen neurobiological eligible studies. The included clinical studies encompass 207 bipolar depression patients overall and consistently document the efficacy of tDCS, with a reduction in depression scores after treatment ranging from 18% to 92%. The RCT with the largest sample clearly showed a significant superiority of active stimulation over sham. Mild-to-moderate and transient adverse effects are attributed to tDCS across these studies. The review of neurobiological literature indicates that several molecular mechanisms may account for the antidepressant effect of tDCS in BD patients, including the action on calcium homeostasis in glial cells, the enhancement of LTP, the regulation of neurotrophic factors and inflammatory mediators, and the modulation of the expression of plasticity-related genes. To the best of our knowledge, this is the first study on the matter to concurrently provide a synthesis of the clinical evidence and an in-depth appraisal of the putative biological underpinnings, providing consistent support for the efficacy, safety, and tolerability of tDCS.
Collapse
Affiliation(s)
- Giordano D'Urso
- Section of Psychiatry, Clinical Unit of Psychiatry and Psychology, Unit of Treatment Resistance in Psychiatry, Laboratory of Neuromodulation, Laboratory of Molecular and Translational Psychiatry, Department of Neurosciences, Reproductive and Odontostomatological Sciences, Clinical Department of Head and Neck, University of Naples Federico II, Napoli, Italy.
| | - Elena Toscano
- Section of Psychiatry, Clinical Unit of Psychiatry and Psychology, Unit of Treatment Resistance in Psychiatry, Laboratory of Neuromodulation, Laboratory of Molecular and Translational Psychiatry, Department of Neurosciences, Reproductive and Odontostomatological Sciences, Clinical Department of Head and Neck, University of Naples Federico II, Napoli, Italy
| | - Annarita Barone
- Section of Psychiatry, Clinical Unit of Psychiatry and Psychology, Unit of Treatment Resistance in Psychiatry, Laboratory of Neuromodulation, Laboratory of Molecular and Translational Psychiatry, Department of Neurosciences, Reproductive and Odontostomatological Sciences, Clinical Department of Head and Neck, University of Naples Federico II, Napoli, Italy
| | - Mario Palermo
- Section of Psychiatry, Clinical Unit of Psychiatry and Psychology, Unit of Treatment Resistance in Psychiatry, Laboratory of Neuromodulation, Laboratory of Molecular and Translational Psychiatry, Department of Neurosciences, Reproductive and Odontostomatological Sciences, Clinical Department of Head and Neck, University of Naples Federico II, Napoli, Italy
| | - Bernardo Dell'Osso
- Department of Biomedical and Clinical Sciences Luigi Sacco, Ospedale Luigi Sacco Polo Universitario, ASST Fatebenefratelli Sacco, Milan, Italy; Department of Psychiatry and Behavioural Sciences, Bipolar Disorders Clinic, Stanford University, CA, USA; CRC "Aldo Ravelli" for Neuro-technology & Experimental Brain Therapeutics, University of Milan, Italy
| | - Giorgio Di Lorenzo
- Laboratory of Psychophysiology and Cognitive Neuroscience, Department of Systems Medicine, Tor Vergata University of Rome, Italy; Psychiatric and Clinical Psychology Unit, Fondazione Policlinico Tor Vergata, Rome, Italy; IRCCS Fondazione Santa Lucia, Rome, Italy
| | - Antonio Mantovani
- Dipartimento di Medicina e Scienze della Salute "V. Tiberio" Università degli Studi del Molise, Campobasso, Italy; Dipartimento di Salute Mentale e delle Dipendenze, Azienda Sanitaria Regionale del Molise (ASReM), Campobasso, Italy
| | - Giovanni Martinotti
- Department of Neuroscience, Imaging, Clinical Sciences, University Gabriele d'Annunzio, Chieti-Pescara, Italy; Department of Pharmacy, Pharmacology, Clinical Sciences, University of Hertfordshire, Herts, UK
| | - Michele Fornaro
- Section of Psychiatry, Clinical Unit of Psychiatry and Psychology, Unit of Treatment Resistance in Psychiatry, Laboratory of Neuromodulation, Laboratory of Molecular and Translational Psychiatry, Department of Neurosciences, Reproductive and Odontostomatological Sciences, Clinical Department of Head and Neck, University of Naples Federico II, Napoli, Italy
| | - Felice Iasevoli
- Section of Psychiatry, Clinical Unit of Psychiatry and Psychology, Unit of Treatment Resistance in Psychiatry, Laboratory of Neuromodulation, Laboratory of Molecular and Translational Psychiatry, Department of Neurosciences, Reproductive and Odontostomatological Sciences, Clinical Department of Head and Neck, University of Naples Federico II, Napoli, Italy
| | - Andrea de Bartolomeis
- Section of Psychiatry, Clinical Unit of Psychiatry and Psychology, Unit of Treatment Resistance in Psychiatry, Laboratory of Neuromodulation, Laboratory of Molecular and Translational Psychiatry, Department of Neurosciences, Reproductive and Odontostomatological Sciences, Clinical Department of Head and Neck, University of Naples Federico II, Napoli, Italy
| |
Collapse
|
14
|
Truong DQ, Guillen A, Nooristani M, Maheu M, Champoux F, Datta A. Impact of galvanic vestibular stimulation electrode current density on brain current flow patterns: Does electrode size matter? PLoS One 2023; 18:e0273883. [PMID: 36735686 PMCID: PMC9897567 DOI: 10.1371/journal.pone.0273883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 01/10/2023] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND Galvanic vestibular stimulation (GVS) uses at least one electrode placed on the mastoid process with one or multiple placed over other head areas to stimulate the vestibular system. The exact electrode size used is not given much importance in the literature and has not been reported in several studies. In a previous study, we compared the clinical effects of using different electrode sizes (3 cm2 and 35 cm2) with placebo but with the same injected current, on postural control. We observed significant improvement using the smaller size electrode but not with the bigger size electrode. The goal of this study was to simulate the current flow patterns with the intent to shed light and potentially explain the experimental outcome. METHODS We used an ultra-high-resolution structural dataset and developed a model to simulate the application of different electrode sizes. We considered current flow in the brain and in the vestibular labyrinth. RESULTS Our simulation results verified the focality increase using smaller electrodes that we postulated as the main reason for our clinical effect. The use of smaller size electrodes in combination with the montage employed also result in higher induced electric field (E-field) in the brain. CONCLUSIONS Electrode size and related current density is a critical parameter to characterize any GVS administration as the choice impacts the induced E-field. It is evident that the higher induced E-field likely contributed to the clinical outcome reported in our prior study.
Collapse
Affiliation(s)
- Dennis Q. Truong
- Research and Development, Soterix Medical, Woodbridge, NJ, United States of America
- * E-mail:
| | - Alexander Guillen
- Research and Development, Soterix Medical, Woodbridge, NJ, United States of America
| | - Mujda Nooristani
- Faculty of Medicine, School of Speech-Language and Audiology, University of Montreal, Montreal, QC, Canada
- Institut Universitaire sur la Réadaptation en Déficience Physique de Montréal (IURDPM), Pavillon Laurier, CIUSSS du Centre-Sud-de-L’Île-de-Montréal, Montréal, QC, Canada
- Centre de Recherche de l’Institut Universitaire de Gériatrie de Montréal, Montréal, Québec, Canada
| | - Maxime Maheu
- Faculty of Medicine, School of Speech-Language and Audiology, University of Montreal, Montreal, QC, Canada
- Institut Universitaire sur la Réadaptation en Déficience Physique de Montréal (IURDPM), Pavillon Laurier, CIUSSS du Centre-Sud-de-L’Île-de-Montréal, Montréal, QC, Canada
| | - Francois Champoux
- Faculty of Medicine, School of Speech-Language and Audiology, University of Montreal, Montreal, QC, Canada
- Institut Universitaire sur la Réadaptation en Déficience Physique de Montréal (IURDPM), Pavillon Laurier, CIUSSS du Centre-Sud-de-L’Île-de-Montréal, Montréal, QC, Canada
- Centre de Recherche de l’Institut Universitaire de Gériatrie de Montréal, Montréal, Québec, Canada
| | - Abhishek Datta
- Research and Development, Soterix Medical, Woodbridge, NJ, United States of America
- City College of New York, New York, NY, United States of America
| |
Collapse
|
15
|
Gaugain G, Quéguiner L, Bikson M, Sauleau R, Zhadobov M, Modolo J, Nikolayev D. Quasi-static approximation error of electric field analysis for transcranial current stimulation. J Neural Eng 2023; 20. [PMID: 36621858 DOI: 10.1088/1741-2552/acb14d] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 01/06/2023] [Indexed: 01/10/2023]
Abstract
Objective.Numerical modeling of electric fields induced by transcranial alternating current stimulation (tACS) is currently a part of the standard procedure to predict and understand neural response. Quasi-static approximation (QSA) for electric field calculations is generally applied to reduce the computational cost. Here, we aimed to analyze and quantify the validity of the approximation over a broad frequency range.Approach.We performed electromagnetic modeling studies using an anatomical head model and considered approximations assuming either a purely ohmic medium (i.e. static formulation) or a lossy dielectric medium (QS formulation). The results were compared with the solution of Maxwell's equations in the cases of harmonic and pulsed signals. Finally, we analyzed the effect of electrode positioning on these errors.Main results.Our findings demonstrate that the QSA is valid and produces a relative error below 1% up to 1.43 MHz. The largest error is introduced in the static case, where the error is over 1% across the entire considered spectrum and as high as 20% in the brain at 10 Hz. We also highlight the special importance of considering the capacitive effect of tissues for pulsed waveforms, which prevents signal distortion induced by the purely ohmic approximation. At the neuron level, the results point a difference of sense electric field as high as 22% at focusing point, impacting pyramidal cells firing times.Significance.QSA remains valid in the frequency range currently used for tACS. However, neglecting permittivity (static formulation) introduces significant error for both harmonic and non-harmonic signals. It points out that reliable low frequency dielectric data are needed for accurate transcranial current stimulation numerical modeling.
Collapse
Affiliation(s)
- Gabriel Gaugain
- Univ Rennes, CNRS, IETR (Institut d'électronique et des technologies du numérique) - UMR 6164, 35000 Rennes, France
| | - Lorette Quéguiner
- Univ Rennes, CNRS, IETR (Institut d'électronique et des technologies du numérique) - UMR 6164, 35000 Rennes, France
| | - Marom Bikson
- Department of Biomedical Engineering, The City College of New York, CUNY, New York, NY, United States of America
| | - Ronan Sauleau
- Univ Rennes, CNRS, IETR (Institut d'électronique et des technologies du numérique) - UMR 6164, 35000 Rennes, France
| | - Maxim Zhadobov
- Univ Rennes, CNRS, IETR (Institut d'électronique et des technologies du numérique) - UMR 6164, 35000 Rennes, France
| | - Julien Modolo
- Univ Rennes, INSERM, LTSI (Laboratoire traitement du signal et de l'image) - U1099, 35000 Rennes, France
| | - Denys Nikolayev
- Univ Rennes, CNRS, IETR (Institut d'électronique et des technologies du numérique) - UMR 6164, 35000 Rennes, France
| |
Collapse
|
16
|
Chen S, Du M, Wang Y, Li Y, Tong B, Qiu J, Wu F, Liu Y. State of the art: non-invasive electrical stimulation for the treatment of chronic tinnitus. Ther Adv Chronic Dis 2023; 14:20406223221148061. [PMID: 36860934 PMCID: PMC9969452 DOI: 10.1177/20406223221148061] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 12/13/2022] [Indexed: 01/19/2023] Open
Abstract
Subjective tinnitus is the perception of sound in the absence of external stimulation. Neuromodulation is a novel method with promising properties for application in tinnitus management. This study sought to review the types of non-invasive electrical stimulation in tinnitus to provide the foothold for further research. PubMed, EMBASE, and Cochrane databases were searched for studies on the modulation of tinnitus by non-invasive electrical stimulation. Among the four forms of non-invasive electrical modulation, transcranial direct current stimulation, transcranial random noise stimulation, and transauricular vagus nerve stimulation yielded promising results, whereas the effect of transcranial alternating current stimulation in the treatment of tinnitus has not been confirmed. Non-invasive electrical stimulation can effectively suppress tinnitus perception in some patients. However, the heterogeneity in parameter settings leads to scattered and poorly replicated findings. Further high-quality studies are needed to identify optimal parameters to develop more acceptable protocols for tinnitus modulation.
Collapse
Affiliation(s)
- Shanwen Chen
- Department of Otorhinolaryngology–Head and Neck Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, P.R. China
| | - Maoshan Du
- Department of Otorhinolaryngology–Head and Neck Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, P.R. China
| | - Yang Wang
- Department of Otorhinolaryngology–Head and Neck Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, P.R. China
| | - Yifan Li
- Department of Otorhinolaryngology–Head and Neck Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, P.R. China
| | - Busheng Tong
- Department of Otorhinolaryngology–Head and Neck Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, P.R. China
| | - Jianxin Qiu
- Department of Otorhinolaryngology–Head and Neck Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, P.R. China
| | - Feihu Wu
- Department of Otorhinolaryngology–Head and Neck Surgery, The First Affiliated Hospital of Anhui University of Chinese Medicine, 117 Meishan Road, Hefei 230031, Anhui, P.R. China
| | | |
Collapse
|
17
|
Middag-van Spanje M, Schuhmann T, Nijboer T, van der Werf O, Sack AT, van Heugten C. Study protocol of transcranial electrical stimulation at alpha frequency applied during rehabilitation: A randomized controlled trial in chronic stroke patients with visuospatial neglect. BMC Neurol 2022; 22:402. [PMID: 36324088 PMCID: PMC9628038 DOI: 10.1186/s12883-022-02932-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 10/24/2022] [Indexed: 01/25/2023] Open
Abstract
BACKGROUND A frequent post stroke disorder in lateralized attention is visuospatial neglect (VSN). As VSN has a strong negative impact on recovery in general and independence during daily life, optimal treatment is deemed urgent. Next to traditional stroke treatment, non-invasive brain stimulation offers the potential to facilitate stroke recovery as a complementary approach. In the present study, visual scanning training (VST; the current conventional treatment) will be combined with transcranial alternating current stimulation (tACS) to evaluate the additive effects of repeated sessions of tACS in combination with six-weeks VST rehabilitation. METHODS In this double-blind randomized placebo-controlled intervention study (RCT), we will compare the effects of active tACS plus VST to sham (placebo) tACS plus VST, both encompassing 18 VST training sessions, 40 minutes each, during 6 weeks. Chronic stroke patients with VSN (> 6 months post-stroke onset) are considered eligible for study participation. In total 22 patients are needed for the study. The primary outcome is change in performance on a cancellation task. Secondary outcomes are changes in performance on a visual detection task, two line bisection tasks, and three measures to assess changes in activities of daily living. Assessment is at baseline, directly after the first and ninth training session, after the last training session (post training), and 1 week and 3 months after termination of the training (follow-up). DISCUSSION If effective, a tACS-VST rehabilitation program could be implemented as a treatment option for VSN. TRIAL REGISTRATION ClinicalTrials.gov ; registration number: NCT05466487; registration date: July 18, 2022 retrospectively registered; https://clinicaltrials.gov/ct2/show/NCT05466487.
Collapse
Affiliation(s)
- Marij Middag-van Spanje
- grid.5012.60000 0001 0481 6099Section Brain Stimulation and Cognition, Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, The Netherlands ,InteraktContour, Nunspeet, The Netherlands
| | - Teresa Schuhmann
- grid.5012.60000 0001 0481 6099Section Brain Stimulation and Cognition, Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, The Netherlands ,grid.5012.60000 0001 0481 6099Maastricht Brain Imaging Centre, Maastricht University, Maastricht, The Netherlands
| | - Tanja Nijboer
- grid.5477.10000000120346234Department of Experimental Psychology, Helmholtz Institute, Utrecht University, Utrecht, The Netherlands ,grid.7692.a0000000090126352Center of Excellence for Rehabilitation Medicine, UMC Utrecht Brain Center, University Medical Center Utrecht and De Hoogstraat Rehabilitation, Utrecht, The Netherlands
| | - Olof van der Werf
- grid.5012.60000 0001 0481 6099Section Brain Stimulation and Cognition, Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, The Netherlands ,grid.5012.60000 0001 0481 6099Maastricht Brain Imaging Centre, Maastricht University, Maastricht, The Netherlands
| | - Alexander T. Sack
- grid.5012.60000 0001 0481 6099Section Brain Stimulation and Cognition, Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, The Netherlands ,grid.5012.60000 0001 0481 6099Maastricht Brain Imaging Centre, Maastricht University, Maastricht, The Netherlands ,grid.5012.60000 0001 0481 6099Centre for Integrative Neuroscience, Faculty of Psychology and Neuroscience, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, The Netherlands
| | - Caroline van Heugten
- Limburg Brain Injury Center, Maastricht, The Netherlands ,grid.5012.60000 0001 0481 6099Department of Neuropsychology & Psychopharmacology, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, The Netherlands ,grid.412966.e0000 0004 0480 1382School for Mental Health and Neuroscience, Department of Psychiatry & Neuropsychology, Faculty of Health, Medicine and Life Sciences, Maastricht University Medical Center, Maastricht, The Netherlands
| |
Collapse
|
18
|
Guidetti M, Arlotti M, Bocci T, Bianchi AM, Parazzini M, Ferrucci R, Priori A. Electric Fields Induced in the Brain by Transcranial Electric Stimulation: A Review of In Vivo Recordings. Biomedicines 2022; 10:biomedicines10102333. [PMID: 36289595 PMCID: PMC9598743 DOI: 10.3390/biomedicines10102333] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 09/10/2022] [Accepted: 09/14/2022] [Indexed: 01/12/2023] Open
Abstract
Transcranial electrical stimulation (tES) techniques, such as direct current stimulation (tDCS) and transcranial alternating current stimulation (tACS), cause neurophysiological and behavioral modifications as responses to the electric field are induced in the brain. Estimations of such electric fields are based mainly on computational studies, and in vivo measurements have been used to expand the current knowledge. Here, we review the current tDCS- and tACS-induced electric fields estimations as they are recorded in humans and non-human primates using intracerebral electrodes. Direct currents and alternating currents were applied with heterogeneous protocols, and the recording procedures were characterized by a tentative methodology. However, for the clinical stimulation protocols, an injected current seems to reach the brain, even at deep structures. The stimulation parameters (e.g., intensity, frequency and phase), the electrodes’ positions and personal anatomy determine whether the intensities might be high enough to affect both neuronal and non-neuronal cell activity, also deep brain structures.
Collapse
Affiliation(s)
- Matteo Guidetti
- Aldo Ravelli Research Center for Neurotechnology and Experimental Neurotherapeutics, Department of Health Sciences, University of Milan, Via Antonio di Rudinì 8, 20142 Milan, Italy
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milan, Italy
| | | | - Tommaso Bocci
- Aldo Ravelli Research Center for Neurotechnology and Experimental Neurotherapeutics, Department of Health Sciences, University of Milan, Via Antonio di Rudinì 8, 20142 Milan, Italy
- III Neurology Clinic, ASST-Santi Paolo e Carlo University Hospital, 20142 Milan, Italy
| | - Anna Maria Bianchi
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milan, Italy
| | - Marta Parazzini
- Istituto di Elettronica e di Ingegneria dell’Informazione e delle Telecomunicazioni (IEIIT), Consiglio Nazionale delle Ricerche (CNR), 20133 Milan, Italy
| | - Roberta Ferrucci
- Aldo Ravelli Research Center for Neurotechnology and Experimental Neurotherapeutics, Department of Health Sciences, University of Milan, Via Antonio di Rudinì 8, 20142 Milan, Italy
- III Neurology Clinic, ASST-Santi Paolo e Carlo University Hospital, 20142 Milan, Italy
| | - Alberto Priori
- Aldo Ravelli Research Center for Neurotechnology and Experimental Neurotherapeutics, Department of Health Sciences, University of Milan, Via Antonio di Rudinì 8, 20142 Milan, Italy
- III Neurology Clinic, ASST-Santi Paolo e Carlo University Hospital, 20142 Milan, Italy
- Correspondence:
| |
Collapse
|
19
|
Zhang Y, Li C, Chen D, Tian R, Yan X, Zhou Y, Song Y, Yang Y, Wang X, Zhou B, Gao Y, Jiang Y, Zhang X. Repeated High-Definition Transcranial Direct Current Stimulation Modulated Temporal Variability of Brain Regions in Core Neurocognitive Networks Over the Left Dorsolateral Prefrontal Cortex in Mild Cognitive Impairment Patients. J Alzheimers Dis 2022; 90:655-666. [DOI: 10.3233/jad-220539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Background: Early intervention of amnestic mild cognitive impairment (aMCI) may be the most promising way for delaying or even preventing the progression to Alzheimer’s disease. Transcranial direct current stimulation (tDCS) is a noninvasive brain stimulation technique that has been recognized as a promising approach for the treatment of aMCI. Objective: In this paper, we aimed to investigate the modulating mechanism of tDCS on the core neurocognitive networks of brain. Methods: We used repeated anodal high-definition transcranial direct current stimulation (HD-tDCS) over the left dorsolateral prefrontal cortex and assessed the effect on cognition and dynamic functional brain network in aMCI patients. We used a novel method called temporal variability to depict the characteristics of the dynamic brain functional networks. Results: We found that true anodal stimulation significantly improved cognitive performance as measured by the Montreal Cognitive Assessment after simulation. Meanwhile, the Mini-Mental State Examination scores showed a clear upward trend. More importantly, we found significantly altered temporal variability of dynamic functional connectivity of regions belonging to the default mode network, central executive network, and the salience network after true anodal stimulation, indicating anodal HD-tDCS may enhance brain function by modulating the temporal variability of the brain regions. Conclusion: These results imply that ten days of anodal repeated HD-tDCS over the LDLPFC exerts beneficial effects on the temporal variability of the functional architecture of the brain, which may be a potential neural mechanism by which HD-tDCS enhances brain functions. Repeated HD-tDCS may have clinical uses for the intervention of brain function decline in aMCI patients.
Collapse
Affiliation(s)
- Yanchun Zhang
- Department of Neurology, Second Medical Center, National Clinical Research Center for Geriatric Disease, Chinese PLA General Hospital, Beijing, China
- Department of Rehabilitation, Cangzhou Central Hospital, Cangzhoug, Hebei Province, China
| | - Chenxi Li
- Department of the Psychology of Military Medicine, Air Force Medical University, Xi’an, Shaanxi, P.R. China
| | - Deqiang Chen
- Department of CT, Cangzhou Central Hospital, Cangzhoug, Hebei Province, China
| | - Rui Tian
- Department of Rehabilitation, Cangzhou Central Hospital, Cangzhoug, Hebei Province, China
| | - Xinyue Yan
- Department of Rehabilitation, Cangzhou Central Hospital, Cangzhoug, Hebei Province, China
| | - Yingwen Zhou
- Department of MR, Cangzhou Central Hospital, Cangzhoug, Hebei Province, China
| | - Yancheng Song
- Department of MR, Cangzhou Central Hospital, Cangzhoug, Hebei Province, China
| | - Yanlong Yang
- Department of MR, Cangzhou Central Hospital, Cangzhoug, Hebei Province, China
| | - Xiaoxuan Wang
- Department of MR, Cangzhou Central Hospital, Cangzhoug, Hebei Province, China
| | - Bo Zhou
- Department of Neurology, Second Medical Center, National Clinical Research Center for Geriatric Disease, Chinese PLA General Hospital, Beijing, China
| | - Yuhong Gao
- Institute of Geriatrics, Second Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Yujuan Jiang
- Department of Rehabilitation, Cangzhou Central Hospital, Cangzhoug, Hebei Province, China
| | - Xi Zhang
- Department of Neurology, Second Medical Center, National Clinical Research Center for Geriatric Disease, Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
20
|
Novickij V, Rembiałkowska N, Szlasa W, Kulbacka J. Does the shape of the electric pulse matter in electroporation? Front Oncol 2022; 12:958128. [PMID: 36185267 PMCID: PMC9518825 DOI: 10.3389/fonc.2022.958128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 08/15/2022] [Indexed: 11/13/2022] Open
Abstract
Electric pulses are widely used in biology, medicine, industry, and food processing. Numerous studies indicate that electroporation (EP) is a pulse-dependent process, and the electric pulse shape and duration strongly determine permeabilization efficacy. EP protocols are precisely planned in terms of the size and charge of the molecules, which will be delivered to the cell. In reversible and irreversible EP applications, rectangular or sine, polar or bipolar pulses are commonly used. The usage of pulses of the asymmetric shape is still limited to high voltage and low voltage (HV/LV) sequences in the context of gene delivery, while EP-based applications of ultra-short asymmetric pulses are just starting to emerge. This review emphasizes the importance and role of the pulse shape for membrane permeabilization by EP.
Collapse
Affiliation(s)
- Vitalij Novickij
- Faculty of Electronics, Vilnius Gediminas Technical University (Vilnius TECH), Vilnius, Lithuania
- *Correspondence: Vitalij Novickij, ; Julita Kulbacka,
| | - Nina Rembiałkowska
- Department of Molecular and Cellular Biology, Faculty of Pharmacy, Wroclaw Medical University, Wroclaw, Poland
| | - Wojciech Szlasa
- Faculty of Medicine, Wroclaw Medical University, Wroclaw, Poland
| | - Julita Kulbacka
- Department of Molecular and Cellular Biology, Faculty of Pharmacy, Wroclaw Medical University, Wroclaw, Poland
- *Correspondence: Vitalij Novickij, ; Julita Kulbacka,
| |
Collapse
|
21
|
Moscaleski LA, Fonseca A, Brito R, Morya E, Morgans R, Moreira A, Okano AH. Does high-definition transcranial direct current stimulation change brain electrical activity in professional female basketball players during free-throw shooting? FRONTIERS IN NEUROERGONOMICS 2022; 3:932542. [PMID: 38235466 PMCID: PMC10790899 DOI: 10.3389/fnrgo.2022.932542] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 08/04/2022] [Indexed: 01/19/2024]
Abstract
Differentiated brain activation in high-performance athletes supports neuronal mechanisms relevant to sports performance. Preparation for the motor action involves cortical and sub-cortical regions that can be non-invasively modulated by electrical current stimulation. This study aimed to investigate the effect of high-definition transcranial direct current stimulation (HD-tDCS) on electrical brain activity in professional female basketball players during free-throw shooting. Successful free-throw shooting (n = 2,361) from seven professional female basketball players was analyzed during two experimental conditions (HD-tDCS cathodic and sham) separated by 72 h. Three spectral bio-markers, Power Ratio Index (PRI), Delta Alpha Ratio (DAR), and Theta Beta Ratio (TBR) were measured (electroencephalography [EEG] Brain Products). Multi-channel HD-tDCS was applied for 20 min, considering current location and intensity for cathodic stimulation: FCC1h, AFF5h, AFF1h (-0.5 mA each), and FCC5h (ground). The within EEG analyses (pre and post HD-tDCS) of frontal channels (Fp1, Fp2, F3, F4, FC1, FC3) for 1 second epoch pre-shooting, showed increases in PRI (p < 0.001) and DAR (p < 0.001) for HD-tDCS cathodic condition, and in TBR for both conditions (cathodic, p = 0.01; sham, p = 0.002). Sub-group analysis divided the sample into less (n = 3; LSG) and more (n = 4; MSG) stable free-throw-shooting performers and revealed that increases in pre to post HD-tDCS in PRI only occurred for the LSG. These results suggest that the effect of HD-tDCS may induce changes in slow frontal frequency brain activities and that this alteration seems to be greater for players demonstrating a less stable free-throw shooting performance.
Collapse
Affiliation(s)
- Luciane Aparecida Moscaleski
- Center of Mathematics, Computation, and Cognition, Federal University of ABC (UFABC), São Bernardo do Campo, Brazil
| | - André Fonseca
- Center of Mathematics, Computation, and Cognition, Federal University of ABC (UFABC), São Bernardo do Campo, Brazil
| | - Rodrigo Brito
- Neuroscience Applied Laboratory, Federal University of Pernambuco, Recife, Brazil
| | - Edgard Morya
- Edmond and Lily Safra International Institute of Neuroscience, Santos Dumont Institute, Macaíba, RN, Brazil
| | - Ryland Morgans
- Department of Sports Medicine and Medical Rehabilitation, Sechenov First State Medical University, Moscow, Russia
| | - Alexandre Moreira
- Department of Sport, School of Physical Education and Sport, University of São Paulo, São Paulo, Brazil
| | - Alexandre Hideki Okano
- Center of Mathematics, Computation, and Cognition, Federal University of ABC (UFABC), São Bernardo do Campo, Brazil
| |
Collapse
|
22
|
Schuhmann T, Duecker F, Middag-van Spanje M, Gallotto S, van Heugten C, Schrijnemaekers AC, van Oostenbrugge R, Sack AT. Transcranial alternating brain stimulation at alpha frequency reduces hemispatial neglect symptoms in stroke patients. Int J Clin Health Psychol 2022; 22:100326. [PMID: 35990733 PMCID: PMC9364103 DOI: 10.1016/j.ijchp.2022.100326] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 07/18/2022] [Indexed: 12/03/2022] Open
Abstract
Background/Objective Non-invasive brain stimulation techniques such as transcranial alternating current stimulation (tACS) may help alleviate attention deficits in stroke patients with hemispatial neglect by modulating oscillatory brain activity. We applied high-definition (HD)-tACS at alpha frequency over the contralesional hemisphere to support unilateral oscillatory alpha activity and correct for the pathologically altered attention bias in neglect patients. Methods We performed a within-subject, placebo-controlled study in which sixteen stroke patients with hemispatial neglect underwent 10 Hz (alpha) as well as sham (placebo) stimulation targeting the contralesional posterior parietal cortex. Attentional bias was measured with a computerized visual detection paradigm and two standard paper-and-pencil neglect tests. Results We revealed a significant shift of attentional resources after alpha-HD-tACS, but not sham tACS, toward the ipsilateral and thus contralesional hemifield leading to a reduction in neglect symptoms, measured with a computerized visual detection paradigm and a widely used standard paper and pencil neglect tests. Conclusions We showed a significant alpha-HD-tACS-induced shift of attentional resources toward the contralesional hemifield, thus leading to a reduction in neglect symptoms. Importantly, HD-tACS effects persisted after the stimulation itself had ended. This tACS protocol, based on intrinsic oscillatory processes, may be an effective and well-tolerated treatment option for neglect.
Collapse
Affiliation(s)
- Teresa Schuhmann
- Section Brain Stimulation and Cognition, Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, the Netherlands.,Maastricht Brain Imaging Centre (MBIC), Maastricht University, Maastricht, the Netherlands
| | - Felix Duecker
- Section Brain Stimulation and Cognition, Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, the Netherlands.,Maastricht Brain Imaging Centre (MBIC), Maastricht University, Maastricht, the Netherlands
| | - Marij Middag-van Spanje
- Section Brain Stimulation and Cognition, Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, the Netherlands.,Maastricht Brain Imaging Centre (MBIC), Maastricht University, Maastricht, the Netherlands.,InteraktContour, Nunspeet, the Netherlands
| | - Stefano Gallotto
- Section Brain Stimulation and Cognition, Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, the Netherlands.,Maastricht Brain Imaging Centre (MBIC), Maastricht University, Maastricht, the Netherlands.,EEG and Epilepsy Unit, University Hospitals and Faculty of Medicine of Geneva, University of Geneva, Geneva, Switzerland
| | - Caroline van Heugten
- Limburg Brain Injury Center, the Netherlands.,Department of Neuropsychology & Psychopharmacology, Faculty of Psychology and Neuroscience (FPN), Maastricht University, the Netherlands.,School for Mental Health and Neuroscience, Department of Psychiatry & Neuropsychology, Faculty of Health, Medicine and Life Sciences (FHML), Maastricht University Medical Center, the Netherlands
| | - Anne-Claire Schrijnemaekers
- Adelante Rehabilitation Centre, Department of Brain Injury, Hoensbroek, the Netherlands.,Mondriaan Mental Health Centre, Department of Adult Psychiatry, Heerlen, the Netherlands
| | - Robert van Oostenbrugge
- Department of Neurology, School for Mental Health and Neuroscience, Maastricht University Medical Center, Maastricht, the Netherlands
| | - Alexander T Sack
- Section Brain Stimulation and Cognition, Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, the Netherlands.,Maastricht Brain Imaging Centre (MBIC), Maastricht University, Maastricht, the Netherlands.,Centre for Integrative Neuroscience, Faculty of Psychology and Neuroscience, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, the Netherlands
| |
Collapse
|
23
|
Ester T, Kullmann S. Neurobiological regulation of eating behavior: Evidence based on non-invasive brain stimulation. Rev Endocr Metab Disord 2022; 23:753-772. [PMID: 34862944 PMCID: PMC9307556 DOI: 10.1007/s11154-021-09697-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/15/2021] [Indexed: 12/28/2022]
Abstract
The prefrontal cortex is appreciated as a key neurobiological player in human eating behavior. A special focus is herein dedicated to the dorsolateral prefrontal cortex (DLPFC), which is critically involved in executive function such as cognitive control over eating. Persons with obesity display hypoactivity in this brain area, which is linked to overconsumption and food craving. Contrary to that, higher activity in the DLPFC is associated with successful weight-loss and weight-maintenance. Transcranial direct current stimulation (tDCS) is a non-invasive neurostimulation tool used to enhance self-control and inhibitory control. The number of studies using tDCS to influence eating behavior rapidly increased in the last years. However, the effectiveness of tDCS is still unclear, as studies show mixed results and individual differences were shown to be an important factor in the effectiveness of non-invasive brain stimulation. Here, we describe the current state of research of human studies using tDCS to influence food intake, food craving, subjective feeling of hunger and body weight. Excitatory stimulation of the right DLPFC seems most promising to reduce food cravings to highly palatable food, while other studies provide evidence that stimulating the left DLPFC shows promising effects on weight loss and weight maintenance, especially in multisession approaches. Overall, the reported findings are heterogeneous pointing to large interindividual differences in tDCS responsiveness.
Collapse
Affiliation(s)
- Theresa Ester
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at the University of Tübingen, Tübingen, Germany.
- German Center of Diabetes Research (DZD), Tübingen, Germany.
| | - Stephanie Kullmann
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at the University of Tübingen, Tübingen, Germany.
- German Center of Diabetes Research (DZD), Tübingen, Germany.
- Department of Internal Medicine, Division of Endocrinology, Diabetology and Nephrology, Ebehard Karls University Tübingen, Tübingen, Germany.
| |
Collapse
|
24
|
Thams F, Külzow N, Flöel A, Antonenko D. Modulation of network centrality and gray matter microstructure using multi-session brain stimulation and memory training. Hum Brain Mapp 2022; 43:3416-3426. [PMID: 35373873 PMCID: PMC9248322 DOI: 10.1002/hbm.25857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 02/15/2022] [Accepted: 03/24/2022] [Indexed: 11/07/2022] Open
Abstract
Neural mechanisms of behavioral improvement induced by repeated transcranial direct current stimulation (tDCS) combined with cognitive training are yet unclear. Previously, we reported behavioral effects of a 3-day visuospatial memory training with concurrent anodal tDCS over the right temporoparietal cortex in older adults. To investigate intervention-induced neural alterations we here used functional magnetic resonance imaging (fMRI) and diffusion tensor imaging (DTI) datasets available from 35 participants of this previous study, acquired before and after the intervention. To delineate changes in whole-brain functional network architecture, we employed eigenvector centrality mapping. Gray matter alterations were analyzed using DTI-derived mean diffusivity (MD). Network centrality in the bilateral posterior temporooccipital cortex was reduced after anodal compared to sham stimulation. This focal effect is indicative of decreased functional connectivity of the brain region underneath the anodal electrode and its left-hemispheric homolog with other "relevant" (i.e., highly connected) brain regions, thereby providing evidence for reorganizational processes within the brain's network architecture. Examining local MD changes in these clusters, an interaction between stimulation condition and training success indicated a decrease of MD in the right (stimulated) temporooccipital cluster in individuals who showed superior behavioral training benefits. Using a data-driven whole-brain network approach, we provide evidence for targeted neuromodulatory effects of a combined tDCS-and-training intervention. We show for the first time that gray matter alterations of microstructure (assessed by DTI-derived MD) may be involved in tDCS-enhanced cognitive training. Increased knowledge on how combined interventions modulate neural networks in older adults, will help the development of specific therapeutic interventions against age-associated cognitive decline.
Collapse
Affiliation(s)
- Friederike Thams
- Department of Neurology, Universitätsmedizin Greifswald, Greifswald, Germany
| | - Nadine Külzow
- Charité - Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Neurocure Cluster of Excellence, Berlin, Germany.,Neurological Rehabilitation Clinic, Kliniken Beelitz GmbH, Beelitz, Germany
| | - Agnes Flöel
- Department of Neurology, Universitätsmedizin Greifswald, Greifswald, Germany.,German Centre for Neurodegenerative Diseases (DZNE) Standort Greifswald, Greifswald, Germany
| | - Daria Antonenko
- Department of Neurology, Universitätsmedizin Greifswald, Greifswald, Germany
| |
Collapse
|
25
|
Videira AS, Canadas D, De O Pires L, Andrade A, Ferreira HA, Miranda PC, Fernandes SR. How the Number and Distance of Electrodes Change the Induced Electric Field in the Cortex during Multichannel tDCS. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2022; 2022:2357-2360. [PMID: 36086582 DOI: 10.1109/embc48229.2022.9871114] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Multichannel transcranial direct current stimulation (tDCS) is a promising approach to target neuromodulation of neural networks by making use of variable number of electrodes and distances to facilitate/inhibit specific connectivity patterns. Optimization of the electric field (EF) spatial distribution through computational models can provide a more accurate definition of the stimulation settings that are more effective. In this study, we investigate the effect of increasing the number of cathodes around a central anode placed over the target. We demonstrate that anode-cathode distance has the largest influence in the EF and using more than 3 cathodes did not result in considerable changes in the EF magnitude and direction. This could be relevant for simultaneous tDCS-electroencephalography (EEG) applications, by saving electrode positions for EEG acquisition. Clinical Relevance- This study demonstrates that distance between electrodes is more relevant than electrode number in determining the electric field distribution, and that a highly-focused stimulation can be equally effective with fewer electrodes.
Collapse
|
26
|
Stengel C, Sanches C, Toba MN, Valero-Cabré A. Things you wanted to know (but might have been afraid to ask) about how and why to explore and modulate brain plasticity with non-invasive neurostimulation technologies. Rev Neurol (Paris) 2022; 178:826-844. [PMID: 35623940 DOI: 10.1016/j.neurol.2021.12.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 12/15/2021] [Accepted: 12/28/2021] [Indexed: 11/30/2022]
Abstract
Brain plasticity can be defined as the ability of local and extended neural systems to organize either the structure and/or the function of their connectivity patterns to better adapt to changes of our inner/outer environment and optimally respond to new challenging behavioral demands. Plasticity has been traditionally conceived as a spontaneous phenomenon naturally occurring during pre and postnatal development, tied to learning and memory processes, or enabled following neural damage and their rehabilitation. Such effects can be easily observed and measured but remain hard to harness or to tame 'at will'. Non-invasive brain stimulation (NIBS) technologies offer the possibility to engage plastic phenomena, and use this ability to characterize the relationship between brain regions, networks and their functional connectivity patterns with cognitive process or disease symptoms, to estimate cortical malleability, and ultimately contribute to neuropsychiatric therapy and rehabilitation. NIBS technologies are unique tools in the field of fundamental and clinical research in humans. Nonetheless, their abilities (and also limitations) remain rather unknown and in the hands of a small community of experts, compared to widely established methods such as functional neuroimaging (fMRI) or electrophysiology (EEG, MEG). In the current review, we first introduce the features, mechanisms of action and operational principles of the two most widely used NIBS methods, Transcranial Magnetic Stimulation (TMS) and Transcranial Current Stimulation (tCS), for exploratory or therapeutic purposes, emphasizing their bearings on neural plasticity mechanisms. In a second step, we walk the reader through two examples of recent domains explored by our team to further emphasize the potential and limitations of NIBS to either explore or improve brain function in healthy individuals and neuropsychiatric populations. A final outlook will identify a series of future topics of interest that can foster progress in the field and achieve more effective manipulation of brain plasticity and interventions to explore and improve cognition and treat the symptoms of neuropsychiatric diseases.
Collapse
Affiliation(s)
- C Stengel
- Causal Dynamics, Plasticity and Rehabilitation Group, FRONTLAB team, office 3.028, Paris Brain Institute (Institut du Cerveau), CNRS UMR 7225, Inserm UMRS 1127 and Sorbonne Université, 47, boulevard de l'Hôpital, 75013 Paris, France
| | - C Sanches
- Causal Dynamics, Plasticity and Rehabilitation Group, FRONTLAB team, office 3.028, Paris Brain Institute (Institut du Cerveau), CNRS UMR 7225, Inserm UMRS 1127 and Sorbonne Université, 47, boulevard de l'Hôpital, 75013 Paris, France
| | - M N Toba
- Laboratory of Functional Neurosciences (UR UPJV 4559), University Hospital of Amiens and University of Picardie Jules Verne, Amiens, France
| | - A Valero-Cabré
- Causal Dynamics, Plasticity and Rehabilitation Group, FRONTLAB team, office 3.028, Paris Brain Institute (Institut du Cerveau), CNRS UMR 7225, Inserm UMRS 1127 and Sorbonne Université, 47, boulevard de l'Hôpital, 75013 Paris, France; Laboratory for Cerebral Dynamics Plasticity and Rehabilitation, Boston University School of Medicine, 700, Albany Street, Boston, MA W-702A, USA; Cognitive Neuroscience and Information Technology Research Program, Open University of Catalonia (UOC), Barcelona, Spain.
| |
Collapse
|
27
|
Ostrowski J, Svaldi J, Schroeder PA. More focal, less heterogeneous? Multi-level meta-analysis of cathodal high-definition transcranial direct current stimulation effects on language and cognition. J Neural Transm (Vienna) 2022; 129:861-878. [PMID: 35585206 PMCID: PMC9217872 DOI: 10.1007/s00702-022-02507-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 04/26/2022] [Indexed: 11/17/2022]
Abstract
High-definition transcranial direct current stimulation (HD-tDCS) is a relatively focal, novel non-invasive brain stimulation method with the potential to investigate the causal contributions of specific cortical brain regions to language and cognition. Studies with HD-tDCS typically employ a 4 × 1 electrode design with a single central target electrode surrounded by four return electrodes, among which return current intensity is evenly distributed. With cathodal HD-tDCS, neural excitability in the target region is assumed to be reduced, which offers interesting perspectives for neuropsychological research and interventions. This multi-level meta-analysis compiles published studies using cathodal HD-tDCS in 4 × 1 configuration to modulate cognition and behavior. Regarding HD-tDCS, 77 effect sizes were gathered from 11 eligible reports. We extended this database with 52 effect sizes from 11 comparable reports using conventional tDCS with cathodal polarity. We observed no significant overall effect and no moderation by within-study and between-study variables in HD. In the extended analysis, results suggested a non-linear moderation of cathodal tDCS effects by intensity, driven by negative effect sizes at 1.5 mA. However, studies varied tremendously in task parameters, outcomes, and even technical parameters. Interestingly, within-study heterogeneity exceeded between-study heterogeneity in the present sample, and moderators hardly reduced the residual heterogeneity. Across domains and configurations, both positive and negative effect sizes are possible. We discuss the findings in relation to conventional cathodal tDCS and the framework of polarity specificity. Fundamental aspects of cathodal HD-tDCS are still to be addressed in future research.
Collapse
Affiliation(s)
- Jan Ostrowski
- Department of Psychology, University of Tübingen, Tübingen, Germany.,Department of Systems Neuroscience, University Medical Center Hamburg Eppendorf, Hamburg, Germany
| | - Jennifer Svaldi
- Department of Psychology, University of Tübingen, Tübingen, Germany
| | | |
Collapse
|
28
|
Parietal but not temporoparietal alpha-tACS modulates endogenous visuospatial attention. Cortex 2022; 154:149-166. [DOI: 10.1016/j.cortex.2022.01.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 12/01/2021] [Accepted: 01/03/2022] [Indexed: 11/18/2022]
|
29
|
Fellner A, Heshmat A, Werginz P, Rattay F. A finite element method framework to model extracellular neural stimulation. J Neural Eng 2022; 19. [PMID: 35320783 DOI: 10.1088/1741-2552/ac6060] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 03/23/2022] [Indexed: 11/11/2022]
Abstract
OBJECTIVE Increasing complexity in extracellular stimulation experiments and neural implant design also requires realistic computer simulations capable of modeling the neural activity of nerve cells under the influence of an electrical stimulus. Classical model approaches are often based on simplifications, are not able to correctly calculate the electric field generated by complex electrode designs, and do not consider electrical effects of the cell on its surrounding. A more accurate approach is the finite element method (FEM), which provides necessary techniques to solve the Poisson equation for complex geometries under consideration of electrical tissue properties. Especially in situations where neurons experience large and non-symmetric extracellular potential gradients, a FEM solution that implements the cell membrane model can improve the computer simulation results. To investigate the response of neurons in an electric field generated by complex electrode designs, a FEM framework for extracellular stimulation was developed in COMSOL. APPROACH Methods to implement morphologically- and biophysically-detailed neurons including active Hodgkin-Huxley (HH) cell membrane dynamics as well as the stimulation setup are described in detail. Covered methods are (i) development of cell and electrode geometries including meshing strategies, (ii) assignment of physics for the conducting spaces and the realization of active electrodes, (iii) implementation of the HH model, and (iv) coupling of the physics to get a fully described model. MAIN RESULTS Several implementation examples are briefly presented: (i) a full FEM implementation of a HH model cell stimulated with a honeycomb electrode, (ii) the electric field of a cochlear electrode placed inside the cochlea, and (iii) a proof of concept implementation of a detailed double-cable cell membrane model for myelinated nerve fibers. SIGNIFICANCE The presented concepts and methods provide basic and advanced techniques to realize a full FEM framework for innovative studies of neural excitation in response to extracellular stimulation.
Collapse
Affiliation(s)
- Andreas Fellner
- Institute of Analysis and Scientific Computing, Vienna University of Technology, Wiedner Hauptstraße 8-10, Vienna, Vienna, 1040, AUSTRIA
| | - Amirreza Heshmat
- Department of Otorhinolaryngology, Innsbruck Medical University, Anichstrasse 35, Innsbruck, 6020, AUSTRIA
| | - Paul Werginz
- Institute of Analysis and Scientific Computing, Vienna University of Technology, Wiedner Hauptstraße 8-10, Vienna, Vienna, 1040, AUSTRIA
| | - Frank Rattay
- Institute of Analysis and Scientific Computing, Vienna University of Technology, Wiedner Hauptstraße 8-10, Vienna, Vienna, 1040, AUSTRIA
| |
Collapse
|
30
|
Chenot Q, Hamery C, Lepron E, Besson P, De Boissezon X, Perrey S, Scannella S. Performance after training in a complex cognitive task is enhanced by high-definition transcranial random noise stimulation. Sci Rep 2022; 12:4618. [PMID: 35301388 PMCID: PMC8931133 DOI: 10.1038/s41598-022-08545-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 02/28/2022] [Indexed: 11/10/2022] Open
Abstract
Interest for neuromodulation, and transcranial random noise stimulation (tRNS) in particular, is growing. It concerns patients rehabilitation, but also healthy people who want or need to improve their cognitive and learning abilities. However, there is no consensus yet regarding the efficacy of tRNS on learning and performing a complex task. In particular, the most effective electrode montage is yet to be determined. Here, we examined the effect of two different tRNS montages on learning rate, short- and long-term performance in a video game (Space Fortress) that engages multiple cognitive abilities. Sixty-one participants were randomly assigned to one of three groups (sham vs. simple-definition tRNS vs. high-definition tRNS) in a double-blind protocol. Their performance on the Space Fortress task was monitored during a 15-day experiment with baseline (day 1), stimulation (day 2 to 4), short- (day 5) and long-term (day 15) evaluations. Our results show that the high-definition tRNS group improved more on the long term than simple-definition tRNS group, tended to learn faster and had better performance retention compared to both simple-definition tRNS and sham groups. This study is the first to report that high-definition tRNS is more effective than conventional simple-definition tRNS to enhance performance in a complex task.
Collapse
Affiliation(s)
| | | | | | - Pierre Besson
- EuroMov Digital Health in Motion, Univ Montpellier, IMT Mines Ales, Montpellier, France
| | - Xavier De Boissezon
- Toulouse Neuroimaging Center (ToNIC), Université de Toulouse, INSERM, Toulouse, France
- Department of Physical Medicine and Rehabilitation, University Hospital of Toulouse, Toulouse, France
| | - Stéphane Perrey
- EuroMov Digital Health in Motion, Univ Montpellier, IMT Mines Ales, Montpellier, France
| | | |
Collapse
|
31
|
Janssens SEW, Oever ST, Sack AT, de Graaf TA. "Broadband Alpha Transcranial Alternating Current Stimulation": Exploring a new biologically calibrated brain stimulation protocol. Neuroimage 2022; 253:119109. [PMID: 35306159 DOI: 10.1016/j.neuroimage.2022.119109] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 03/09/2022] [Accepted: 03/15/2022] [Indexed: 11/26/2022] Open
Abstract
Transcranial alternating current stimulation (tACS) can be used to study causal contributions of oscillatory brain mechanisms to cognition and behavior. For instance, individual alpha frequency (IAF) tACS was reported to enhance alpha power and impact visuospatial attention performance. Unfortunately, such results have been inconsistent and difficult to replicate. In tACS, stimulation generally involves one frequency, sometimes individually calibrated to a peak value observed in an M/EEG power spectrum. Yet, the 'peak' actually observed in such power spectra often contains a broader range of frequencies, raising the question whether a biologically calibrated tACS protocol containing this fuller range of alpha-band frequencies might be more effective. Here, we introduce 'Broadband-alpha-tACS', a complex individually calibrated electrical stimulation protocol. We band-pass filtered left posterior resting-state EEG data around the IAF (± 2 Hz), and converted that time series into an electrical waveform for tACS stimulation of that same left posterior parietal cortex location. In other words, we stimulated a brain region with a 'replay' of its own alpha-band frequency content, based on spontaneous activity. Within-subjects (N = 24), we compared to a sham tACS session the effects of broadband-alpha tACS, power-matched spectral inverse ('alpha-removed') control tACS, and individual alpha frequency (IAF) tACS, on EEG alpha power and performance in an endogenous attention task previously reported to be affected by alpha tACS. Broadband-alpha-tACS significantly modulated attention task performance (i.e., reduced the rightward visuospatial attention bias in trials without distractors, and reduced attention benefits). Alpha-removed tACS also reduced the rightward visuospatial attention bias. IAF-tACS did not significantly modulate attention task performance compared to sham tACS, but also did not statistically significantly differ from broadband-alpha-tACS. This new broadband-alpha-tACS approach seems promising, but should be further explored and validated in future studies.
Collapse
Affiliation(s)
- Shanice E W Janssens
- Section Brain Stimulation and Cognition, Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, Netherlands; Maastricht Brain Imaging Centre (MBIC), Maastricht, Netherlands.
| | - Sanne Ten Oever
- Section Brain Stimulation and Cognition, Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, Netherlands; Language and Computation in Neural Systems Group, Max Planck Institute for Psycholinguistics, Nijmegen, Netherlands; Donders Centre for Cognitive Neuroimaging, Radboud University, Nijmegen, Netherlands
| | - Alexander T Sack
- Section Brain Stimulation and Cognition, Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, Netherlands; Maastricht Brain Imaging Centre (MBIC), Maastricht, Netherlands; Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience (MHeNs), Brain+Nerve Centre, Maastricht University Medical Centre+ (MUMC+), Maastricht, Netherlands; Center for Integrative Neuroscience (CIN), Maastricht University, Maastricht, Netherlands
| | - Tom A de Graaf
- Section Brain Stimulation and Cognition, Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, Netherlands; Maastricht Brain Imaging Centre (MBIC), Maastricht, Netherlands; Center for Integrative Neuroscience (CIN), Maastricht University, Maastricht, Netherlands
| |
Collapse
|
32
|
Gomez A, Escobar-Huertas J, Linero D, Cardenas F, Garzón-Alvarado D. Simulation of the Electrical Stimulation of the Rat Brain Using Sleep Frequencies: A Finite Element Modeling Approach. J Theor Biol 2022; 542:111093. [DOI: 10.1016/j.jtbi.2022.111093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 03/09/2022] [Accepted: 03/14/2022] [Indexed: 11/30/2022]
|
33
|
Kemmerer SK, Sack AT, de Graaf TA, Ten Oever S, De Weerd P, Schuhmann T. Frequency-specific transcranial neuromodulation of alpha power alters visuospatial attention performance. Brain Res 2022; 1782:147834. [PMID: 35176250 DOI: 10.1016/j.brainres.2022.147834] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 01/21/2022] [Accepted: 02/10/2022] [Indexed: 12/23/2022]
Abstract
Transcranial alternating current stimulation (tACS) at 10Hz has been shown to modulate spatial attention. However, the frequency-specificity and the oscillatory changes underlying this tACS effect are still largely unclear. Here, we applied high-definition tACS at individual alpha frequency (IAF), two control frequencies (IAF+/-2Hz) and sham to the left posterior parietal cortex and measured its effects on visuospatial attention performance and offline alpha power (using electroencephalography, EEG). We revealed a behavioural and electrophysiological stimulation effect relative to sham for IAF but not control frequency stimulation conditions: there was a leftward lateralization of alpha power for IAF tACS, which differed from sham for the first out of three minutes following tACS. At a high value of this EEG effect (moderation effect), we observed a leftward attention bias relative to sham. This effect was task-specific, i.e. it could be found in an endogenous attention but not in a detection task. Only in the IAF tACS condition, we also found a correlation between the magnitude of the alpha lateralization and the attentional bias effect. Our results support a functional role of alpha oscillations in visuospatial attention and the potential of tACS to modulate it. The frequency-specificity of the effects suggests that an individualization of the stimulation frequency is necessary in heterogeneous target groups with a large variation in IAF.
Collapse
Affiliation(s)
- S K Kemmerer
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, The Netherlands; Brain Imaging Center, Maastricht, The Netherlands.
| | - A T Sack
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, The Netherlands; Brain Imaging Center, Maastricht, The Netherlands; Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Brain + Nerve Centre, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - T A de Graaf
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, The Netherlands; Brain Imaging Center, Maastricht, The Netherlands
| | - S Ten Oever
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, The Netherlands; Max Planck Institute for Psycholinguistics, Nijmegen, The Netherlands; Donders Centre for Cognitive Neuroimaging, Nijmegen, The Netherlands
| | - P De Weerd
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, The Netherlands; Brain Imaging Center, Maastricht, The Netherlands
| | - T Schuhmann
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, The Netherlands; Brain Imaging Center, Maastricht, The Netherlands
| |
Collapse
|
34
|
Review of tDCS Configurations for Stimulation of the Lower-Limb Area of Motor Cortex and Cerebellum. Brain Sci 2022; 12:brainsci12020248. [PMID: 35204011 PMCID: PMC8870282 DOI: 10.3390/brainsci12020248] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/28/2022] [Accepted: 02/01/2022] [Indexed: 11/17/2022] Open
Abstract
This article presents an exhaustive analysis of the works present in the literature pertaining to transcranial direct current stimulation(tDCS) applications. The aim of this work is to analyze the specific characteristics of lower-limb stimulation, identifying the strengths and weaknesses of these works and framing them with the current knowledge of tDCS. The ultimate goal of this work is to propose areas of improvement to create more effective stimulation therapies with less variability.
Collapse
|
35
|
Mattavelli G, Lo Presti S, Tornaghi D, Canessa N. High-definition transcranial direct current stimulation of the dorsal anterior cingulate cortex modulates decision-making and executive control. Brain Struct Funct 2022; 227:1565-1576. [PMID: 35102442 DOI: 10.1007/s00429-022-02456-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Accepted: 01/13/2022] [Indexed: 11/02/2022]
Abstract
Previous neuroimaging evidence highlights the translational implications of targeting the dorsal anterior cingulate cortex (dACC), i.e. a key node of the networks underlying conflict monitoring and decision-making, in brain stimulation treatments with clinical or rehabilitative purposes. While the optimized modelling of "high-definition" current flows between multiple anode-cathode pairs might, in principle, allow to stimulate an otherwise challenging target, sensitive benchmark metrics of dACC neuromodulation are required to assess the effectiveness of this approach. On this basis, we aimed to assess the modulatory effect of anodal and cathodal high-definition tDCS (HD-tDCS) of the dACC on different facets of executive control and decision-making in healthy young individuals. A combined modelling/targeting procedure provided the optimal montage for the maximum intensity of dACC stimulation with six small "high-definition" electrodes delivering anodal, cathodal or sham HD-tDCS for 20 min in a within-subject design with three separate sessions. Following stimulation, participants performed Flanker and gambling tasks unveiling individual differences in executive control and both loss- and risk-aversion in decision-making, respectively. Compared to both anodal and sham conditions, cathodal dACC stimulation significantly affected task performance by increasing control over the Flanker conflict effect, and both loss and risk-aversion in decision-making. By confirming the feasibility and effectiveness of dACC stimulation with HD-tDCS, these findings highlight the implications of modelling and targeting procedures for neuromodulation in clinical research, whereby innovative protocols might serve as treatment addressing dysfunctional dACC activity, or combined with cognitive training, to enhance higher-order executive functioning in different neuropsychiatric conditions.
Collapse
Affiliation(s)
- Giulia Mattavelli
- IUSS Cognitive Neuroscience (ICoN) Center, Scuola Universitaria Superiore IUSS, 27100, Pavia, Italy.,Cognitive Neuroscience Laboratory of Pavia Institute, Istituti Clinici Scientifici Maugeri IRCCS, Via Maugeri 4, 27100, Pavia, Italy
| | - Sara Lo Presti
- IUSS Cognitive Neuroscience (ICoN) Center, Scuola Universitaria Superiore IUSS, 27100, Pavia, Italy
| | - Diana Tornaghi
- IUSS Cognitive Neuroscience (ICoN) Center, Scuola Universitaria Superiore IUSS, 27100, Pavia, Italy
| | - Nicola Canessa
- IUSS Cognitive Neuroscience (ICoN) Center, Scuola Universitaria Superiore IUSS, 27100, Pavia, Italy. .,Cognitive Neuroscience Laboratory of Pavia Institute, Istituti Clinici Scientifici Maugeri IRCCS, Via Maugeri 4, 27100, Pavia, Italy.
| |
Collapse
|
36
|
Arif Y, Embury CM, Spooner RK, Okelberry HJ, Willett MP, Eastman JA, Wilson TW. High-definition transcranial direct current stimulation of the occipital cortices induces polarity dependent effects within the brain regions serving attentional reorientation. Hum Brain Mapp 2022; 43:1930-1940. [PMID: 34997673 PMCID: PMC8933319 DOI: 10.1002/hbm.25764] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 12/05/2021] [Accepted: 12/16/2021] [Indexed: 12/28/2022] Open
Abstract
Numerous brain stimulation studies have targeted the posterior parietal cortex, a key hub of the attention network, to manipulate attentional reorientation. However, the impact of stimulating brain regions earlier in the pathway, including early visual regions, is poorly understood. In this study, 28 healthy adults underwent three high‐definition transcranial direct current stimulation (HD‐tDCS) visits (i.e., anodal, cathodal, and sham). During each visit, they completed 20 min of occipital HD‐tDCS and then a modified Posner task during magnetoencephalography (MEG). MEG data were transformed into the time‐frequency domain and significant oscillatory events were imaged using a beamformer. Oscillatory response amplitude values were extracted from peak voxels in the whole‐brain maps and were statistically compared. Behaviorally, we found that the participants responded slowly when attention reallocation was needed (i.e., the validity effect), irrespective of the stimulation condition. Our neural findings indicated that cathodal HD‐tDCS was associated with significantly reduced theta validity effects in the occipital cortices, as well as reduced alpha validity effects in the left occipital and parietal cortices relative to anodal HD‐tDCS. Additionally, anodal occipital stimulation significantly increased gamma amplitude in right occipital regions relative to cathodal and sham stimulation. Finally, we also found a negative correlation between the alpha validity effect and reaction time following anodal stimulation. Our findings suggest that HD‐tDCS of the occipital cortices has a polarity dependent impact on the multispectral neural oscillations serving attentional reorientation in healthy adults, and that such effects may reflect altered local GABA concentrations in the neural circuitry serving attentional reorientation.
Collapse
Affiliation(s)
- Yasra Arif
- Institute for Human Neuroscience, Boys Town National Research Hospital, Omaha, Nebraska, USA.,College of Medicine, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Christine M Embury
- Institute for Human Neuroscience, Boys Town National Research Hospital, Omaha, Nebraska, USA.,Department of Psychology, University of Nebraska, Omaha, Nebraska, USA
| | - Rachel K Spooner
- Institute for Human Neuroscience, Boys Town National Research Hospital, Omaha, Nebraska, USA.,College of Medicine, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Hannah J Okelberry
- Institute for Human Neuroscience, Boys Town National Research Hospital, Omaha, Nebraska, USA
| | - Madelyn P Willett
- Institute for Human Neuroscience, Boys Town National Research Hospital, Omaha, Nebraska, USA
| | - Jacob A Eastman
- Institute for Human Neuroscience, Boys Town National Research Hospital, Omaha, Nebraska, USA
| | - Tony W Wilson
- Institute for Human Neuroscience, Boys Town National Research Hospital, Omaha, Nebraska, USA.,College of Medicine, University of Nebraska Medical Center, Omaha, Nebraska, USA.,Department of Psychology, University of Nebraska, Omaha, Nebraska, USA
| |
Collapse
|
37
|
Thomas C, Truong DQ, Lee K, Deblieck C, Androulakis XM, Datta A. Determination of Current Flow Induced by Transcutaneous Electrical Nerve Stimulation for the Treatment of Migraine: Potential for Optimization. FRONTIERS IN PAIN RESEARCH 2021; 2:753454. [PMID: 35295421 PMCID: PMC8915572 DOI: 10.3389/fpain.2021.753454] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 11/02/2021] [Indexed: 11/13/2022] Open
Abstract
Introduction: Transcutaneous electrical nerve stimulation (TENS) for migraine involves the application of pulsatile stimulation through electrodes placed on the forehead to target the underlying trigeminal nerves. It is a simple, safe modality and has secured clinical approval in several markets including the European Union and the United States. Despite nearing almost 7 years of use (postclinical approval), the exact mechanism of action is not fully known. Guided by the need to stimulate the trigeminal nerves bilaterally, electrode dimensions are simply required to extend enough to cover the underlying nerves. The goal of this study is to examine induced current flow [magnitude and spatial distribution of electric field (EF)] and another driver of stimulation [activating function (AF)] due to TENS therapy for migraine for the first time. We further consider the effect of changing the electrode dimension and shape and propose a design modification to deliver optimal flow. Methods: We developed the first ultra-high-resolution finite element (FE) model of TENS for migraine incorporating the target supratrochlear (ST) and the supraorbital (SO) nerves. We first simulated the clinically approved V-shaped geometry. We then considered three additional designs: extended V-shaped, idealized pill-shaped, and finally an extended V-shaped but with greater contact spacing (extended V-shaped +CS). Results: Our findings revealed that the clinically approved electrode design delivered substantially higher mean current flow to the ST nerve in comparison with the SO nerves (Medial: 53% and Lateral: 194%). Consideration of an extended design (~10 mm longer and ~ 4 mm shorter) and a pill-like design had negligible impact on the induced current flow pattern. The extended V-shaped +CS montage delivered relatively comparable current flow to each of the three target nerves. The EF induced in the ST nerve was 49 and 141% higher in the Medial and Lateral SO nerve, respectively. When considering maximum induced values, the delivery of comparable stimulation was further apparent. Given the existing electrode design's established efficacy, our results imply that preferential targeting of the ST nerve is related to the mechanism of action. Additionally, if comparable targeting of all three nerves continues to hold promise, the extended V-shaped +CS montage presents an optimized configuration to explore in clinical studies.
Collapse
Affiliation(s)
- Chris Thomas
- Research and Development, Soterix Medical, Woodbridge, NJ, United States
| | - Dennis Q Truong
- Research and Development, Soterix Medical, Woodbridge, NJ, United States
| | - Kiwon Lee
- Research and Development, Soterix Medical, Woodbridge, NJ, United States
- Ybrain Inc., Seongnam-si, South Korea
| | - Choi Deblieck
- Academic Center for Electroconvulsive Therapy (ECT) and Neuromodulation, University Psychiatric Center, University of Leuven, Leuven, Belgium
| | - Xiao Michelle Androulakis
- Neurology, Columbia VA Health System, Columbia, SC, United States
- School of Medicine, University of South Carolina, Columbia, SC, United States
| | - Abhishek Datta
- Research and Development, Soterix Medical, Woodbridge, NJ, United States
- City College of New York, New York, NY, United States
| |
Collapse
|
38
|
Arif Y, Spooner RK, Heinrichs-Graham E, Wilson TW. High-definition transcranial direct current stimulation modulates performance and alpha/beta parieto-frontal connectivity serving fluid intelligence. J Physiol 2021; 599:5451-5463. [PMID: 34783045 PMCID: PMC9250752 DOI: 10.1113/jp282387] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 11/08/2021] [Indexed: 11/08/2022] Open
Abstract
Fluid intelligence (Gƒ) includes logical reasoning abilities and is an essential component of normative cognition. Despite the broad consensus that parieto-prefrontal connectivity is critical for Gƒ (e.g. the parieto-frontal integration theory of intelligence, P-FIT), the dynamics of such functional connectivity during logical reasoning remains poorly understood. Further, given the known importance of these brain regions for Gƒ, numerous studies have targeted one or both of these areas with non-invasive stimulation with the goal of improving Gƒ, but to date there remains little consensus on the overall stimulation-related effects. To examine this, we applied high-definition direct current anodal stimulation to the left and right dorsolateral prefrontal cortex (DLPFC) of 24 healthy adults for 20 min in three separate sessions (sham, left, and right active). Following stimulation, participants completed a logical reasoning task during magnetoencephalography (MEG). Significant neural responses at the sensor-level were imaged using a beamformer, and peak task-induced activity was subjected to dynamic functional connectivity analyses to evaluate the impact of distinct stimulation montages on network activity. We found that participants responded faster following right DLPFC stimulation vs. sham. Moreover, our neural findings followed a similar trajectory of effects such that left parieto-frontal connectivity decreased following right and left DLPFC stimulation compared to sham, with connectivity following right stimulation being significantly correlated with the faster reaction times. Importantly, our findings are consistent with P-FIT, as well as the neural efficiency hypothesis (NEH) of intelligence. In sum, this study provides evidence for beneficial effects of right DLPFC stimulation on logical reasoning. KEY POINTS: Logical reasoning is an indispensable component of fluid intelligence and involves multispectral oscillatory activity in parietal and frontal regions. Parieto-frontal integration is well characterized in logical reasoning; however, its direct neural quantification and neuromodulation by brain stimulation remain poorly understood. High-definition transcranial direct current stimulation of dorsolateral prefrontal cortex (DLPFC) had modulatory effects on task performance and neural interactions serving logical reasoning, with right stimulation showing beneficial effects. Right DLPFC stimulation led to a decrease in the response time (i.e. better task performance) and left parieto-frontal connectivity with a marginal positive association between behavioural and neural metrics. Other modes of targeted stimulation of DLPFC (e.g. frequency-specific) can be employed in future studies.
Collapse
Affiliation(s)
- Yasra Arif
- Institute for Human Neuroscience, Boys Town National Research Hospital, Omaha, NE, USA
- Interdisciplinary Graduate Program in Biomedical Sciences (Neuroscience), University of Nebraska Medical Center, Omaha, NE, USA
| | - Rachel K. Spooner
- Institute for Human Neuroscience, Boys Town National Research Hospital, Omaha, NE, USA
- Interdisciplinary Graduate Program in Biomedical Sciences (Neuroscience), University of Nebraska Medical Center, Omaha, NE, USA
| | | | - Tony W. Wilson
- Institute for Human Neuroscience, Boys Town National Research Hospital, Omaha, NE, USA
| |
Collapse
|
39
|
A Future of Current Flow Modelling for Transcranial Electrical Stimulation? Curr Behav Neurosci Rep 2021. [DOI: 10.1007/s40473-021-00238-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Abstract
Purpose of Review
Transcranial electrical stimulation (tES) is used to non-invasively modulate brain activity in health and disease. Current flow modeling (CFM) provides estimates of where and how much electrical current is delivered to the brain during tES. It therefore holds promise as a method to reduce commonplace variability in tES delivery and, in turn, the outcomes of stimulation. However, the adoption of CFM has not yet been widespread and its impact on tES outcome variability is unclear. Here, we discuss the potential barriers to effective, practical CFM-informed tES use.
Recent Findings
CFM has progressed from models based on concentric spheres to gyri-precise head models derived from individual MRI scans. Users can now estimate the intensity of electrical fields (E-fields), their spatial extent, and the direction of current flow in a target brain region during tES. Here. we consider the multi-dimensional challenge of implementing CFM to optimise stimulation dose: this requires informed decisions to prioritise E-field characteristics most likely to result in desired stimulation outcomes, though the physiological consequences of the modelled current flow are often unknown. Second, we address the issue of a disconnect between predictions of E-field characteristics provided by CFMs and predictions of the physiological consequences of stimulation which CFMs are not designed to address. Third, we discuss how ongoing development of CFM in conjunction with other modelling approaches could overcome these challenges while maintaining accessibility for widespread use.
Summary
The increasing complexity and sophistication of CFM is a mandatory step towards dose control and precise, individualised delivery of tES. However, it also risks counteracting the appeal of tES as a straightforward, cost-effective tool for neuromodulation, particularly in clinical settings.
Collapse
|
40
|
Louviot S, Tyvaert L, Maillard LG, Colnat-Coulbois S, Dmochowski J, Koessler L. Transcranial Electrical Stimulation generates electric fields in deep human brain structures. Brain Stimul 2021; 15:1-12. [PMID: 34742994 DOI: 10.1016/j.brs.2021.11.001] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 10/21/2021] [Accepted: 11/01/2021] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND Transcranial electrical stimulation (TES) efficiency is related to the electric field (EF) magnitude delivered on the target. Very few studies (n = 4) have estimated the in-vivo intracerebral electric fields in humans. They have relied mainly on electrocorticographic recordings, which require a craniotomy impacting EF distribution, and did not investigate deep brain structures. OBJECTIVE To measure the electric field in deep brain structures during TES in humans in-vivo. Additionally, to investigate the effects of TES frequencies, intensities, and montages on the intracerebral EF. METHODS Simultaneous bipolar transcranial alternating current stimulation and intracerebral recordings (SEEG) were performed in 8 drug-resistant epileptic patients. TES was applied using small high-definition (HD) electrodes. Seven frequencies, two intensities and 15 montages were applied on one, six and one patients, respectively. RESULTS At 1 mA intensity, we found mean EF magnitudes of 0.21, 0.17 and 0.07 V·m-1 in the amygdala, hippocampus, and cingulate gyrus, respectively. An average of 0.14 ± 0.07 V·m-1 was measured in these deep brain structures. Mean EF magnitudes in these structures at 1Hz were 11% higher than at 300Hz (+0.03 V·m-1). The EF was correlated with the TES intensities. The TES montages that yielded the maximum EF in the amygdalae were T7-T8 and in the cingulate gyri were C3-FT10 and T7-C4. CONCLUSION TES at low intensities and with small HD electrodes can generate an EF in deep brain structures, irrespective of stimulation frequency. EF magnitude is correlated to the stimulation intensity and depends upon the stimulation montage.
Collapse
Affiliation(s)
- Samuel Louviot
- Université de Lorraine, CNRS, CRAN, F-54000, Nancy, France
| | - Louise Tyvaert
- Université de Lorraine, CNRS, CRAN, F-54000, Nancy, France; Université de Lorraine, CHRU-Nancy, Service de Neurologie, F-54000, Nancy, France
| | - Louis G Maillard
- Université de Lorraine, CNRS, CRAN, F-54000, Nancy, France; Université de Lorraine, CHRU-Nancy, Service de Neurologie, F-54000, Nancy, France
| | - Sophie Colnat-Coulbois
- Université de Lorraine, CNRS, CRAN, F-54000, Nancy, France; Université de Lorraine, CHRU-Nancy, Service de Neurochirurgie, F-54000, Nancy, France
| | - Jacek Dmochowski
- Department of Biomedical Engineering, City College of New York, New York, NY, USA
| | | |
Collapse
|
41
|
Preconditioning with Cathodal High-Definition Transcranial Direct Current Stimulation Sensitizes the Primary Motor Cortex to Subsequent Intermittent Theta Burst Stimulation. Neural Plast 2021; 2021:8966584. [PMID: 34721571 PMCID: PMC8553444 DOI: 10.1155/2021/8966584] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 08/23/2021] [Accepted: 09/18/2021] [Indexed: 11/17/2022] Open
Abstract
Noninvasive brain stimulation techniques such as transcranial magnetic stimulation (TMS) and transcranial direct current stimulation (tDCS) can induce long-term potentiation-like facilitation, but whether the combination of TMS and tDCS has additive effects is unclear. To address this issue, in this randomized crossover study, we investigated the effect of preconditioning with cathodal high-definition (HD) tDCS on intermittent theta burst stimulation- (iTBS-) induced plasticity in the left motor cortex. A total of 24 healthy volunteers received preconditioning with cathodal HD-tDCS or sham intervention prior to iTBS in a random order with a washout period of 1 week. The amplitude of motor evoked potentials (MEPs) was measured at baseline and at several time points (5, 10, 15, and 30 min) after iTBS to determine the effects of the intervention on cortical plasticity. Preconditioning with cathodal HD-tDCS followed by iTBS showed a greater increase in MEP amplitude than sham cathodal HD-tDCS preconditioning and iTBS at each time postintervention point, with longer-lasting after-effects on cortical excitability. These results demonstrate that preintervention with cathodal HD-tDCS primes the motor cortex for long-term potentiation induced by iTBS and is a potential strategy for improving the clinical outcome to guide therapeutic decisions.
Collapse
|
42
|
Wang H, Sun W, Zhang J, Yan Z, Wang C, Wang L, Liu T, Li C, Chen D, Shintaro F, Wu J, Yan T. Influence of layered skull modeling on the frequency sensitivity and target accuracy in simulations of transcranial current stimulation. Hum Brain Mapp 2021; 42:5345-5356. [PMID: 34390079 PMCID: PMC8519867 DOI: 10.1002/hbm.25622] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 06/29/2021] [Accepted: 07/31/2021] [Indexed: 11/27/2022] Open
Abstract
With the development of electrical stimulation technology, especially the emergence of temporally interfering (TI) stimulation, it is necessary to discuss the influence of current frequency on stimulation intensity. Accurate skull modeling is important for transcranial current stimulation (tCS) simulation prediction because of its large role in dispersing current. In this study, we simulated different frequencies of transcranial alternating current stimulation (tACS) and TI stimulation in single-layer and layered skull model, compared the electric field via error parameters such as the relative difference measure and relative magnification factor. Pearson correlation analysis and t-test were used to measure the differences in envelope amplitude. The results showed that the intensity of electric field in the brain generated by per unit of stimulation current will increase with current frequency, and the layered skull model had a better response to frequency. An obvious pattern difference was found between the electric fields of the layered and single-layer skull individualized models. For TI stimulation, the Pearson correlation coefficient between the envelope distribution of the layered skull model and the single-layer skull was only 0.746 in the individualized model, which is clearly lower than the correlation coefficient of 0.999 determined from the spherical model. Higher carrier frequencies seemed to be easier to generate a large enough brain electric field envelope in TI stimulation. In conclusion, we recommend using layered skull models instead of single-layer skull models in tCS (particularly TI stimulation) simulation studies in order to improve the accuracy of the prediction of stimulus intensity and stimulus target.
Collapse
Affiliation(s)
- Heng Wang
- School of Mechatronical EngineeringBeijing Institute of TechnologyBeijingChina
| | - Weiqian Sun
- School of Life ScienceBeijing Institute of TechnologyBeijingChina
| | - Jianxu Zhang
- School of Mechatronical EngineeringBeijing Institute of TechnologyBeijingChina
| | - Zilong Yan
- School of Mechatronical EngineeringBeijing Institute of TechnologyBeijingChina
| | - Chenyu Wang
- School of Mechatronical EngineeringBeijing Institute of TechnologyBeijingChina
| | - Luyao Wang
- School of Mechatronical EngineeringBeijing Institute of TechnologyBeijingChina
| | - Tiantian Liu
- School of Life ScienceBeijing Institute of TechnologyBeijingChina
| | - Chunlin Li
- School of Biomedical EngineeringCapital Medical UniversityBeijingChina
| | - Duanduan Chen
- School of Life ScienceBeijing Institute of TechnologyBeijingChina
| | | | - Jinglong Wu
- School of Mechatronical EngineeringBeijing Institute of TechnologyBeijingChina
- Department of Neurology and NeuroscienceOkayama UniversityOkayamaJapan
| | - Tianyi Yan
- School of Life ScienceBeijing Institute of TechnologyBeijingChina
| |
Collapse
|
43
|
Xue H, Herzog R, Berger TM, Bäumer T, Weissbach A, Rueckert E. Using Probabilistic Movement Primitives in Analyzing Human Motion Differences Under Transcranial Current Stimulation. Front Robot AI 2021; 8:721890. [PMID: 34595209 PMCID: PMC8476753 DOI: 10.3389/frobt.2021.721890] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 08/19/2021] [Indexed: 11/13/2022] Open
Abstract
In medical tasks such as human motion analysis, computer-aided auxiliary systems have become the preferred choice for human experts for their high efficiency. However, conventional approaches are typically based on user-defined features such as movement onset times, peak velocities, motion vectors, or frequency domain analyses. Such approaches entail careful data post-processing or specific domain knowledge to achieve a meaningful feature extraction. Besides, they are prone to noise and the manual-defined features could hardly be re-used for other analyses. In this paper, we proposed probabilistic movement primitives (ProMPs), a widely-used approach in robot skill learning, to model human motions. The benefit of ProMPs is that the features are directly learned from the data and ProMPs can capture important features describing the trajectory shape, which can easily be extended to other tasks. Distinct from previous research, where classification tasks are mostly investigated, we applied ProMPs together with a variant of Kullback-Leibler (KL) divergence to quantify the effect of different transcranial current stimulation methods on human motions. We presented an initial result with 10 participants. The results validate ProMPs as a robust and effective feature extractor for human motions.
Collapse
Affiliation(s)
- Honghu Xue
- Institute for Robotics and Cognitive Systems, University of Luebeck, Luebeck, Germany
| | - Rebecca Herzog
- Institute of Systems Motor Science, University of Luebeck, Luebeck, Germany.,Department of Neurology, University Medical Center Schleswig-Holstein, Luebeck, Germany
| | - Till M Berger
- Institute of Systems Motor Science, University of Luebeck, Luebeck, Germany
| | - Tobias Bäumer
- Department of Neurology, University Medical Center Schleswig-Holstein, Luebeck, Germany
| | - Anne Weissbach
- Institute of Systems Motor Science, University of Luebeck, Luebeck, Germany.,Institute of Neurogenetics, University of Luebeck, Luebeck, Germany
| | - Elmar Rueckert
- Chair of Cyber-Physical-Systems, Montanuniversität Leoben, Leoben, Austria
| |
Collapse
|
44
|
Koshy SM, Wiesman AI, Spooner RK, Embury C, Rezich MT, Heinrichs-Graham E, Wilson TW. Multielectrode Transcranial Electrical Stimulation of the Left and Right Prefrontal Cortices Differentially Impacts Verbal Working Memory Neural Circuitry. Cereb Cortex 2021; 30:2389-2400. [PMID: 31799616 DOI: 10.1093/cercor/bhz246] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Recent studies have examined the effects of conventional transcranial direct current stimulation (tDCS) on working memory (WM) performance, but this method has relatively low spatial precision and generally involves a reference electrode that complicates interpretation. Herein, we report a repeated-measures crossover study of 25 healthy adults who underwent multielectrode tDCS of the left dorsolateral prefrontal cortex (DLPFC), right DLPFC, or sham in 3 separate visits. Shortly after each stimulation session, participants performed a verbal WM (VWM) task during magnetoencephalography, and the resulting data were examined in the time-frequency domain and imaged using a beamformer. We found that after left DLPFC stimulation, participants exhibited stronger responses across a network of left-lateralized cortical areas, including the supramarginal gyrus, prefrontal cortex, inferior frontal gyrus, and cuneus, as well as the right hemispheric homologues of these regions. Importantly, these effects were specific to the alpha-band, which has been previously implicated in VWM processing. Although stimulation condition did not significantly affect performance, stepwise regression revealed a relationship between reaction time and response amplitude in the left precuneus and supramarginal gyrus. These findings suggest that multielectrode tDCS targeting the left DLPFC affects the neural dynamics underlying offline VWM processing, including utilization of a more extensive bilateral cortical network.
Collapse
Affiliation(s)
- Sam M Koshy
- Center for Magnetoencephalography, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Alex I Wiesman
- Center for Magnetoencephalography, University of Nebraska Medical Center, Omaha, NE 68198, USA.,Department of Neurological Sciences, University of Nebraska Medical Center, Omaha, NE, USA
| | - Rachel K Spooner
- Center for Magnetoencephalography, University of Nebraska Medical Center, Omaha, NE 68198, USA.,Department of Neurological Sciences, University of Nebraska Medical Center, Omaha, NE, USA
| | - Christine Embury
- Center for Magnetoencephalography, University of Nebraska Medical Center, Omaha, NE 68198, USA.,Department of Neurological Sciences, University of Nebraska Medical Center, Omaha, NE, USA.,Department of Psychology, University of Nebraska Omaha, Omaha, NE 68182, USA
| | - Michael T Rezich
- Center for Magnetoencephalography, University of Nebraska Medical Center, Omaha, NE 68198, USA.,Department of Neurological Sciences, University of Nebraska Medical Center, Omaha, NE, USA
| | - Elizabeth Heinrichs-Graham
- Center for Magnetoencephalography, University of Nebraska Medical Center, Omaha, NE 68198, USA.,Department of Neurological Sciences, University of Nebraska Medical Center, Omaha, NE, USA
| | - Tony W Wilson
- Center for Magnetoencephalography, University of Nebraska Medical Center, Omaha, NE 68198, USA.,Department of Neurological Sciences, University of Nebraska Medical Center, Omaha, NE, USA
| |
Collapse
|
45
|
Coldea A, Morand S, Veniero D, Harvey M, Thut G. Parietal alpha tACS shows inconsistent effects on visuospatial attention. PLoS One 2021; 16:e0255424. [PMID: 34351972 PMCID: PMC8341497 DOI: 10.1371/journal.pone.0255424] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 07/15/2021] [Indexed: 11/19/2022] Open
Abstract
Transcranial alternating current stimulation (tACS) is a popular technique that has been used for manipulating brain oscillations and inferring causality regarding the brain-behaviour relationship. Although it is a promising tool, the variability of tACS results has raised questions regarding the robustness and reproducibility of its effects. Building on recent research using tACS to modulate visuospatial attention, we here attempted to replicate findings of lateralized parietal tACS at alpha frequency to induce a change in attention bias away from the contra- towards the ipsilateral visual hemifield. 40 healthy participants underwent tACS in two separate sessions where either 10 Hz tACS or sham was applied via a high-density montage over the left parietal cortex at 1.5 mA for 20 min, while performance was assessed in an endogenous attention task. Task and tACS parameters were chosen to match those of previous studies reporting positive effects. Unlike these studies, we did not observe lateralized parietal alpha tACS to affect attention deployment or visual processing across the hemifields as compared to sham. Likewise, additional resting electroencephalography immediately offline to tACS did not reveal any notable effects on individual alpha power or frequency. Our study emphasizes the need for more replication studies and systematic investigations of the factors that drive tACS effects.
Collapse
Affiliation(s)
- Andra Coldea
- Centre for Cognitive Neuroimaging, Institute of Neuroscience and Psychology, University of Glasgow, Glasgow, United Kingdom
| | - Stephanie Morand
- School of Life Sciences, MVLS College, University of Glasgow, Glasgow, United Kingdom
| | - Domenica Veniero
- School of Psychology, University of Nottingham, Nottingham, United Kingdom
| | - Monika Harvey
- Centre for Cognitive Neuroimaging, Institute of Neuroscience and Psychology, University of Glasgow, Glasgow, United Kingdom
| | - Gregor Thut
- Centre for Cognitive Neuroimaging, Institute of Neuroscience and Psychology, University of Glasgow, Glasgow, United Kingdom
| |
Collapse
|
46
|
da Silva Machado DG, Bikson M, Datta A, Caparelli-Dáquer E, Unal G, Baptista AF, Cyrino ES, Li LM, Morya E, Moreira A, Okano AH. Acute effect of high-definition and conventional tDCS on exercise performance and psychophysiological responses in endurance athletes: a randomized controlled trial. Sci Rep 2021; 11:13911. [PMID: 34230503 PMCID: PMC8260713 DOI: 10.1038/s41598-021-92670-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 06/03/2021] [Indexed: 02/06/2023] Open
Abstract
Transcranial direct current stimulation (tDCS) has been used aiming to boost exercise performance and inconsistent findings have been reported. One possible explanation is related to the limitations of the so-called "conventional" tDCS, which uses large rectangular electrodes, resulting in a diffuse electric field. A new tDCS technique called high-definition tDCS (HD-tDCS) has been recently developed. HD-tDCS uses small ring electrodes and produces improved focality and greater magnitude of its aftereffects. This study tested whether HD-tDCS would improve exercise performance to a greater extent than conventional tDCS. Twelve endurance athletes (29.4 ± 7.3 years; 60.15 ± 5.09 ml kg-1 min-1) were enrolled in this single-center, randomized, crossover, and sham-controlled trial. To test reliability, participants performed two time to exhaustion (TTE) tests (control conditions) on a cycle simulator with 80% of peak power until volitional exhaustion. Next, they randomly received HD-tDCS (2.4 mA), conventional (2.0 mA), or active sham tDCS (2.0 mA) over the motor cortex for 20-min before performing the TTE test. TTE, heart rate (HR), associative thoughts, peripheral (lower limbs), and whole-body ratings of perceived exertion (RPE) were recorded every minute. Outcome measures were reliable. There was no difference in TTE between HD-tDCS (853.1 ± 288.6 s), simulated conventional (827.8 ± 278.7 s), sham (794.3 ± 271.2 s), or control conditions (TTE1 = 751.1 ± 261.6 s or TTE2 = 770.8 ± 250.6 s) [F(1.95; 21.4) = 1.537; P = 0.24; η2p = 0.123]. There was no effect on peripheral or whole-body RPE and associative thoughts (P > 0.05). No serious adverse effect was reported. A single session of neither HD-tDCS nor conventional tDCS changed exercise performance and psychophysiological responses in athletes, suggesting that a ceiling effect may exist.
Collapse
Affiliation(s)
- Daniel Gomes da Silva Machado
- Associate Graduate Program in Physical Education - UEM/UEL, State University of Londrina, Londrina, PR, Brazil
- Department of Physical Education, Universidade Federal do Rio Grande do Norte, Natal, RN, Brazil
| | - Marom Bikson
- Department of Biomedical Engineering, The City College of New York of CUNY, New York, NY, USA
| | - Abhishek Datta
- Department of Biomedical Engineering, The City College of New York of CUNY, New York, NY, USA
| | - Egas Caparelli-Dáquer
- Nervous System Electric Stimulation Lab (LabEEL), Rio de Janeiro State University (UERJ), Rio de Janeiro, RJ, Brazil
| | - Gozde Unal
- Department of Biomedical Engineering, The City College of New York of CUNY, New York, NY, USA
| | - Abrahão F Baptista
- Nervous System Electric Stimulation Lab (LabEEL), Rio de Janeiro State University (UERJ), Rio de Janeiro, RJ, Brazil
- Center of Mathematics, Computation, and Cognition, Universidade Federal do ABC, São Bernardo do Campo, SP, Brazil
- Brazilian Institute of Neuroscience and Neurotechnology (BRAINN/CEPID-FAPESP), Faculty of Medical Sciences, Department of Neurology, University of Campinas, Campinas, São Paulo, Brazil
| | - Edilson Serpeloni Cyrino
- Associate Graduate Program in Physical Education - UEM/UEL, State University of Londrina, Londrina, PR, Brazil
| | - Li Min Li
- Brazilian Institute of Neuroscience and Neurotechnology (BRAINN/CEPID-FAPESP), Faculty of Medical Sciences, Department of Neurology, University of Campinas, Campinas, São Paulo, Brazil
| | - Edgard Morya
- Edmond and Lily Safra International Institute of Neuroscience, Santos Dumont Institute, Macaíba, RN, Brazil
| | - Alexandre Moreira
- Department of Sport, School of Physical Education and Sport, University of São Paulo, São Paulo, SP, Brazil
| | - Alexandre Hideki Okano
- Associate Graduate Program in Physical Education - UEM/UEL, State University of Londrina, Londrina, PR, Brazil.
- Center of Mathematics, Computation, and Cognition, Universidade Federal do ABC, São Bernardo do Campo, SP, Brazil.
- Brazilian Institute of Neuroscience and Neurotechnology (BRAINN/CEPID-FAPESP), Faculty of Medical Sciences, Department of Neurology, University of Campinas, Campinas, São Paulo, Brazil.
| |
Collapse
|
47
|
Lerner O, Friedman J, Frenkel-Toledo S. The effect of high-definition transcranial direct current stimulation intensity on motor performance in healthy adults: a randomized controlled trial. J Neuroeng Rehabil 2021; 18:103. [PMID: 34174914 PMCID: PMC8236155 DOI: 10.1186/s12984-021-00899-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 06/14/2021] [Indexed: 11/22/2022] Open
Abstract
Background The results of transcranial direct current stimulation (tDCS) studies that seek to improve motor performance for people with neurological disorders, by targeting the primary motor cortex, have been inconsistent. One possible reason, among others, for this inconsistency, is that very little is known about the optimal protocols for enhancing motor performance in healthy individuals. The best way to optimize stimulation protocols for enhancing tDCS effects on motor performance by means of current intensity modulation has not yet been determined. We aimed to determine the effect of current intensity on motor performance using–for the first time–a montage optimized for maximal focal stimulation via anodal high-definition tDCS (HD-tDCS) on the right primary motor cortex in healthy subjects. Methods Sixty participants randomly received 20-min HD-tDCS at 1.5, 2 mA, or sham stimulation. Participants’ reaching performance with the left hand on a tablet was tested before, during, and immediately following stimulation, and retested after 24 h. Results In the current montage of HD-tDCS, movement time did not differ between groups in each timepoint. However, only after HD-tDCS at 1.5 mA did movement time improve at posttest as compared to pretest. This reduction in movement time from pretest to posttest was significantly greater compared to HD-tDCS 2 mA. Following HD-tDCS at 1.5 mA and sham HD-tDCS, but not 2 mA, movement time improved at retest compared to pretest, and at posttest and retest compared to the movement time during stimulation. In HD-tDCS at 2 mA, the negligible reduction in movement time from the course of stimulation to posttest was significantly lower compared to sham HD-tDCS. Across all groups, reaction time improved in retest compared to pretest and to the reaction time during stimulation, and did not differ between groups in each timepoint. Conclusions It appears that 2 mA in this particular experimental setup inhibited the learning effects. These results suggest that excitatory effects induced by anodal stimulation do not hold for every stimulation intensity, information that should be taken into consideration when translating tDCS use from the realm of research into more optimal neurorehabilitation. Trial registration: Clinical Trials Gov, NCT04577768. Registered 6 October 2019 -Retrospectively registered, https://register.clinicaltrials.gov/prs/app/action/SelectProtocol?sid=S000A9B3&selectaction=Edit&uid=U0005AKF&ts=8&cx=buucf0. Supplementary Information The online version contains supplementary material available at 10.1186/s12984-021-00899-z.
Collapse
Affiliation(s)
- Ohad Lerner
- Department of Physical Therapy, Faculty of Health Sciences, Ariel University, Ariel, Israel
| | - Jason Friedman
- Department of Physical Therapy, Stanley Steyer School of Health Professions, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.,Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Silvi Frenkel-Toledo
- Department of Physical Therapy, Faculty of Health Sciences, Ariel University, Ariel, Israel. .,Department of Neurological Rehabilitation, Loewenstein Hospital, Raanana, Israel.
| |
Collapse
|
48
|
Masina F, Arcara G, Galletti E, Cinque I, Gamberini L, Mapelli D. Neurophysiological and behavioural effects of conventional and high definition tDCS. Sci Rep 2021; 11:7659. [PMID: 33828202 PMCID: PMC8027218 DOI: 10.1038/s41598-021-87371-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 03/26/2021] [Indexed: 11/09/2022] Open
Abstract
High-definition transcranial direct current stimulation (HD-tDCS) seems to overcome a drawback of traditional bipolar tDCS: the wide-spread diffusion of the electric field. Nevertheless, most of the differences that characterise the two techniques are based on mathematical simulations and not on real, behavioural and neurophysiological, data. The study aims to compare a widespread tDCS montage (i.e., a Conventional bipolar montage with extracephalic return electrode) and HD-tDCS, investigating differences both at a behavioural level, in terms of dexterity performance, and a neurophysiological level, as modifications of alpha and beta power as measured with EEG. Thirty participants took part in three sessions, one for each montage: Conventional tDCS, HD-tDCS, and sham. In all the conditions, the anode was placed over C4, while the cathode/s placed according to the montage. At baseline, during, and after each stimulation condition, dexterity was assessed with a Finger Tapping Task. In addition, resting-state EEG was recorded at baseline and after the stimulation. Power spectrum density was calculated, selecting two frequency bands: alpha (8-12 Hz) and beta (18-22 Hz). Linear mixed effect models (LMMs) were used to analyse the modulation induced by tDCS. To evaluate differences among the montages and consider state-dependency phenomenon, the post-stimulation measurements were covariate-adjusted for baseline levels. We observed that HD-tDCS induced an alpha power reduction in participants with lower alpha at baseline. Conversely, Conventional tDCS induced a beta power reduction in participants with higher beta at baseline. Furthermore, data showed a trend towards a behavioural effect of HD-tDCS in participants with lower beta at baseline showing faster response times. Conventional and HD-tDCS distinctively modulated cortical activity. The study highlights the importance of considering state-dependency to determine the effects of tDCS on individuals.
Collapse
Affiliation(s)
- Fabio Masina
- IRCCS San Camillo Hospital, Venice, Italy. .,Human Inspired Technologies Research Center, University of Padova, Padua, Italy.
| | | | - Eleonora Galletti
- Department of General Psychology, University of Padova, Padua, Italy
| | - Isabella Cinque
- Department of General Psychology, University of Padova, Padua, Italy
| | - Luciano Gamberini
- Human Inspired Technologies Research Center, University of Padova, Padua, Italy.,Department of General Psychology, University of Padova, Padua, Italy
| | - Daniela Mapelli
- Human Inspired Technologies Research Center, University of Padova, Padua, Italy.,Department of General Psychology, University of Padova, Padua, Italy
| |
Collapse
|
49
|
Wu D, Zhou Y, Lv H, Liu N, Zhang P. The initial visual performance modulates the effects of anodal transcranial direct current stimulation over the primary visual cortex on the contrast sensitivity function. Neuropsychologia 2021; 156:107854. [PMID: 33823163 DOI: 10.1016/j.neuropsychologia.2021.107854] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 03/09/2021] [Accepted: 03/31/2021] [Indexed: 10/21/2022]
Abstract
Transcranial direct current stimulation (tDCS) has great potential to modulate cortical excitability and further facilitate visual function or rehabilitation. However, tDCS modulation effects are largely variable, possibly because of the individual differences in initial performance. The present study investigated the influence of the initial performance on contrast sensitivity function (CSF) following tDCS. Fifty healthy participants were randomly assigned to three groups: anodal, cathodal and sham stimulation. The CSF was measured through a grating detection task before and immediately after tDCS. Active and reference electrodes were applied to the primary occipital cortex (Oz) and the middle of the head (Cz) for 20 min with an intensity of 1.5 mA, respectively. Compared with sham stimulation, anodal or cathodal stimulation had no effect on the area under the log CSF (AULCSF) or contrast sensitivity (CS) of various spatial frequencies at the group level. However, a negative relationship was found between initial performance and the AULCSF change (or CS change at a spatial of frequency 8 c/°) after the application of anodal tDCS, indicating that the degree of change was dependent on initial performance, with greater gains observed for those with poorer initial performance. Initial performance modulated the effect of anodal tDCS over the Oz on the CSF, indicating that the Oz plays a crucial role in visual function. These results contribute to a deep understanding of the mechanisms of tDCS and to the design of more precise and efficient personalized simulation approaches based on individual differences.
Collapse
Affiliation(s)
- Di Wu
- Department of Medical Psychology, Air Force Medical University, Xi'an, China
| | - YingJie Zhou
- Basic Medical School, Air Force Medical University, Xi'an, China
| | - Haixu Lv
- Basic Medical School, Air Force Medical University, Xi'an, China
| | - Na Liu
- Department of Nursing, Air Force Medical University, Xi'an, China
| | - Pan Zhang
- Department of Psychology, Hebei Normal University, Shijiazhuang, China.
| |
Collapse
|
50
|
Seo H, Jun SC. Computational exploration of epidural cortical stimulation using a realistic head model. Comput Biol Med 2021; 135:104290. [PMID: 33775416 DOI: 10.1016/j.compbiomed.2021.104290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 02/15/2021] [Indexed: 10/21/2022]
Abstract
Motor cortex stimulation, either non-invasively or with implanted electrodes, has been applied worldwide as a treatment for intractable neuropathic pain syndromes. Although computer simulations of non-invasive brain stimulation have been investigated largely to optimize protocols and improve our understanding of underlying mechanisms using a realistic head model, computational studies of invasive cortical stimulation are rare and limited to very simplified cortical models. In this paper, we present an anatomically realistic head model for epidural cortical stimulation that includes the most sophisticated epidural electrodes with an insulating paddle. The head model predicted the stimulus-induced field strengths according to two different stimulation techniques, bipolar and monopolar stimulations. We found that the stimulus-induced field focused on the precentral and postcentral gyri because of the epidural lead's invasiveness. Different stimulation configurations influenced the shape of the field markedly, and complex patterns of inward and outward directions of the radial field were observed in bipolar stimulation compared to those in monopolar stimulation. The spatial distributions of field strength showed that the optimal stimulation varied according to the target areas. In conclusion, we proposed an anatomically realistic head model and a sophisticated epidural lead to simulate epidural cortical stimulation-induced field strengths and identified the importance of such detailed modeling for epidural cortical stimulation because of the current's shunting through the cerebrospinal fluid.
Collapse
Affiliation(s)
- Hyeon Seo
- School of Electrical Engineering and Computer Science, Gwangju Institute of Science & Technology, South Korea; Medical Device Development Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu, South Korea
| | - Sung Chan Jun
- School of Electrical Engineering and Computer Science, Gwangju Institute of Science & Technology, South Korea.
| |
Collapse
|