1
|
Karpowicz BM, Bhaduri B, Nason-Tomaszewski SR, Jacques BG, Ali YH, Flint RD, Bechefsky PH, Hochberg LR, AuYong N, Slutzky MW, Pandarinath C. Reducing power requirements for high-accuracy decoding in iBCIs. J Neural Eng 2024; 21:066001. [PMID: 39423832 PMCID: PMC11528220 DOI: 10.1088/1741-2552/ad88a4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 09/24/2024] [Accepted: 10/18/2024] [Indexed: 10/21/2024]
Abstract
Objective.Current intracortical brain-computer interfaces (iBCIs) rely predominantly on threshold crossings ('spikes') for decoding neural activity into a control signal for an external device. Spiking data can yield high accuracy online control during complex behaviors; however, its dependence on high-sampling-rate data collection can pose challenges. An alternative signal for iBCI decoding is the local field potential (LFP), a continuous-valued signal that can be acquired simultaneously with spiking activity. However, LFPs are seldom used alone for online iBCI control as their decoding performance has yet to achieve parity with spikes.Approach.Here, we present a strategy to improve the performance of LFP-based decoders by first training a neural dynamics model to use LFPs to reconstruct the firing rates underlying spiking data, and then decoding from the estimated rates. We test these models on previously-collected macaque data during center-out and random-target reaching tasks as well as data collected from a human iBCI participant during attempted speech.Main results.In all cases, training models from LFPs enables firing rate reconstruction with accuracy comparable to spiking-based dynamics models. In addition, LFP-based dynamics models enable decoding performance exceeding that of LFPs alone and approaching that of spiking-based models. In all applications except speech, LFP-based dynamics models also facilitate decoding accuracy exceeding that of direct decoding from spikes.Significance.Because LFP-based dynamics models operate on lower bandwidth and with lower sampling rate than spiking models, our findings indicate that iBCI devices can be designed to operate with lower power requirements than devices dependent on recorded spiking activity, without sacrificing high-accuracy decoding.
Collapse
Affiliation(s)
- Brianna M Karpowicz
- Wallace H. Coulter Department of Biomedical Engineering, Emory University and Georgia Institute of Technology, Atlanta, GA, United States of America
| | - Bareesh Bhaduri
- Wallace H. Coulter Department of Biomedical Engineering, Emory University and Georgia Institute of Technology, Atlanta, GA, United States of America
| | - Samuel R Nason-Tomaszewski
- Wallace H. Coulter Department of Biomedical Engineering, Emory University and Georgia Institute of Technology, Atlanta, GA, United States of America
| | - Brandon G Jacques
- Wallace H. Coulter Department of Biomedical Engineering, Emory University and Georgia Institute of Technology, Atlanta, GA, United States of America
| | - Yahia H Ali
- Wallace H. Coulter Department of Biomedical Engineering, Emory University and Georgia Institute of Technology, Atlanta, GA, United States of America
| | - Robert D Flint
- Department of Neurology, Northwestern University, Chicago, IL, United States of America
| | - Payton H Bechefsky
- Wallace H. Coulter Department of Biomedical Engineering, Emory University and Georgia Institute of Technology, Atlanta, GA, United States of America
| | - Leigh R Hochberg
- Center for Neurotechnology and Neurorecovery, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States of America
- Veterans Affairs Rehabilitation Research & Development Center for Neurorestoration and Neurotechnology, Providence VA Medical Center, Providence, RI, United States of America
- Robert J. & Nancy D. Carney Institute for Brain Science and School of Engineering, Brown University, Providence, RI, United States of America
| | - Nicholas AuYong
- Wallace H. Coulter Department of Biomedical Engineering, Emory University and Georgia Institute of Technology, Atlanta, GA, United States of America
- Department of Neurosurgery, Emory University, Atlanta, GA, United States of America
- Department of Cell Biology, Emory University, Atlanta, GA, United States of America
| | - Marc W Slutzky
- Department of Neurology, Northwestern University, Chicago, IL, United States of America
- Department of Neuroscience, Northwestern University, Chicago, IL, United States of America
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, United States of America
- Department of Physical Medicine and Rehabilitation, Northwestern University, Chicago, IL, United States of America
- Shirley Ryan AbilityLab, Chicago, IL, United States of America
| | - Chethan Pandarinath
- Wallace H. Coulter Department of Biomedical Engineering, Emory University and Georgia Institute of Technology, Atlanta, GA, United States of America
- Department of Neurosurgery, Emory University, Atlanta, GA, United States of America
| |
Collapse
|
2
|
Johnston R, Boulay C, Miller K, Sachs A. Mapping cognitive activity from electrocorticography field potentials in humans performing NBack task. Biomed Phys Eng Express 2024; 10:065029. [PMID: 39260393 DOI: 10.1088/2057-1976/ad795e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 09/11/2024] [Indexed: 09/13/2024]
Abstract
Objective. Advancements in data science and assistive technologies have made invasive brain-computer interfaces (iBCIs) increasingly viable for enhancing the quality of life in physically disabled individuals. Intracortical microelectrode implants are a common choice for such a communication system due to their fine temporal and spatial resolution. The small size of these implants makes the implantation plan critical for the successful exfiltration of information, particularly when targeting representations of task goals that lack robust anatomical correlates.Approach. Working memory processes including encoding, retrieval, and maintenance are observed in many areas of the brain. Using human electrocorticography (ECoG) recordings during a working memory experiment, we provide proof that it is possible to localize cognitive activity associated with the task and to identify key locations involved with executive memory functions.Results.From the analysis, we could propose an optimal iBCI implant location with the desired features. The general approach is not limited to working memory but could also be used to map other goal-encoding factors such as movement intentions, decision-making, and visual-spatial attention.Significance. Deciphering the intended action of a BCI user is a complex challenge that involves the extraction and integration of cognitive factors such as movement planning, working memory, visual-spatial attention, and the decision state. Examining field potentials from ECoG electrodes while participants engaged in tailored cognitive tasks can pinpoint location with valuable information related to anticipated actions. This manuscript demonstrates the feasibility of identifying electrodes involved in cognitive activity related to working memory during user engagement in the NBack task. Devoting time in meticulous preparation to identify the optimal brain regions for BCI implant locations will increase the likelihood of rich signal outcomes, thereby improving the overall BCI user experience.
Collapse
Affiliation(s)
- Renée Johnston
- Ottawa Hospital Research Institute, 725 Parkdale Ave., Ottawa, ON, Canada
| | - Chadwick Boulay
- Ottawa Hospital Research Institute, 725 Parkdale Ave., Ottawa, ON, Canada
| | - Kai Miller
- Department of Neurologic Surgery, Mayo Clinic, 200 First St. Rochester, MN, 55902, United States of America
| | - Adam Sachs
- Ottawa Hospital Research Institute, 725 Parkdale Ave., Ottawa, ON, Canada
- Division of Neurosurgery, Ottawa Hospital Research Institute, Ottawa, ON, Canada
| |
Collapse
|
3
|
Hsieh JK, Prakash PR, Flint RD, Fitzgerald Z, Mugler E, Wang Y, Crone NE, Templer JW, Rosenow JM, Tate MC, Betzel R, Slutzky MW. Cortical sites critical to language function act as connectors between language subnetworks. Nat Commun 2024; 15:7897. [PMID: 39284848 PMCID: PMC11405775 DOI: 10.1038/s41467-024-51839-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Accepted: 08/15/2024] [Indexed: 09/20/2024] Open
Abstract
Historically, eloquent functions have been viewed as localized to focal areas of human cerebral cortex, while more recent studies suggest they are encoded by distributed networks. We examined the network properties of cortical sites defined by stimulation to be critical for speech and language, using electrocorticography from sixteen participants during word-reading. We discovered distinct network signatures for sites where stimulation caused speech arrest and language errors. Both demonstrated lower local and global connectivity, whereas sites causing language errors exhibited higher inter-community connectivity, identifying them as connectors between modules in the language network. We used machine learning to classify these site types with reasonably high accuracy, even across participants, suggesting that a site's pattern of connections within the task-activated language network helps determine its importance to function. These findings help to bridge the gap in our understanding of how focal cortical stimulation interacts with complex brain networks to elicit language deficits.
Collapse
Affiliation(s)
- Jason K Hsieh
- Department of Neurosurgery, Cleveland Clinic Foundation, Cleveland, OH, 44195, USA
- Department of Neurosurgery, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Prashanth R Prakash
- Department of Biomedical Engineering, Northwestern University, Chicago, IL, 60611, USA
| | - Robert D Flint
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Zachary Fitzgerald
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Emily Mugler
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Yujing Wang
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Nathan E Crone
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Jessica W Templer
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Joshua M Rosenow
- Department of Neurosurgery, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Matthew C Tate
- Department of Neurosurgery, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Richard Betzel
- Department of Psychological and Brain Sciences, Cognitive Science Program, Program in Neuroscience, and Network Science Institute, Indiana University, Bloomington, IN, 47401, USA
| | - Marc W Slutzky
- Department of Biomedical Engineering, Northwestern University, Chicago, IL, 60611, USA.
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA.
- Department of Neuroscience, Northwestern University, Chicago, IL, 60611, USA.
- Department of Physical Medicine & Rehabilitation, Northwestern University, Chicago, IL, 60611, USA.
| |
Collapse
|
4
|
Ahmadipour P, Sani OG, Pesaran B, Shanechi MM. Multimodal subspace identification for modeling discrete-continuous spiking and field potential population activity. J Neural Eng 2024; 21:026001. [PMID: 38016450 PMCID: PMC10913727 DOI: 10.1088/1741-2552/ad1053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 10/23/2023] [Accepted: 11/28/2023] [Indexed: 11/30/2023]
Abstract
Objective.Learning dynamical latent state models for multimodal spiking and field potential activity can reveal their collective low-dimensional dynamics and enable better decoding of behavior through multimodal fusion. Toward this goal, developing unsupervised learning methods that are computationally efficient is important, especially for real-time learning applications such as brain-machine interfaces (BMIs). However, efficient learning remains elusive for multimodal spike-field data due to their heterogeneous discrete-continuous distributions and different timescales.Approach.Here, we develop a multiscale subspace identification (multiscale SID) algorithm that enables computationally efficient learning for modeling and dimensionality reduction for multimodal discrete-continuous spike-field data. We describe the spike-field activity as combined Poisson and Gaussian observations, for which we derive a new analytical SID method. Importantly, we also introduce a novel constrained optimization approach to learn valid noise statistics, which is critical for multimodal statistical inference of the latent state, neural activity, and behavior. We validate the method using numerical simulations and with spiking and local field potential population activity recorded during a naturalistic reach and grasp behavior.Main results.We find that multiscale SID accurately learned dynamical models of spike-field signals and extracted low-dimensional dynamics from these multimodal signals. Further, it fused multimodal information, thus better identifying the dynamical modes and predicting behavior compared to using a single modality. Finally, compared to existing multiscale expectation-maximization learning for Poisson-Gaussian observations, multiscale SID had a much lower training time while being better in identifying the dynamical modes and having a better or similar accuracy in predicting neural activity and behavior.Significance.Overall, multiscale SID is an accurate learning method that is particularly beneficial when efficient learning is of interest, such as for online adaptive BMIs to track non-stationary dynamics or for reducing offline training time in neuroscience investigations.
Collapse
Affiliation(s)
- Parima Ahmadipour
- Ming Hsieh Department of Electrical and Computer Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, CA, United States of America
| | - Omid G Sani
- Ming Hsieh Department of Electrical and Computer Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, CA, United States of America
| | - Bijan Pesaran
- Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States of America
| | - Maryam M Shanechi
- Ming Hsieh Department of Electrical and Computer Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, CA, United States of America
- Thomas Lord Department of Computer Science, Alfred E. Mann Department of Biomedical Engineering, and the Neuroscience Graduate Program, University of Southern California, Los Angeles, CA, United States of America
| |
Collapse
|
5
|
Almani MN, Lazzari J, Chacon A, Saxena S. μSim: A goal-driven framework for elucidating the neural control of movement through musculoskeletal modeling. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.02.578628. [PMID: 38405828 PMCID: PMC10888726 DOI: 10.1101/2024.02.02.578628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
How does the motor cortex (MC) produce purposeful and generalizable movements from the complex musculoskeletal system in a dynamic environment? To elucidate the underlying neural dynamics, we use a goal-driven approach to model MC by considering its goal as a controller driving the musculoskeletal system through desired states to achieve movement. Specifically, we formulate the MC as a recurrent neural network (RNN) controller producing muscle commands while receiving sensory feedback from biologically accurate musculoskeletal models. Given this real-time simulated feedback implemented in advanced physics simulation engines, we use deep reinforcement learning to train the RNN to achieve desired movements under specified neural and musculoskeletal constraints. Activity of the trained model can accurately decode experimentally recorded neural population dynamics and single-unit MC activity, while generalizing well to testing conditions significantly different from training. Simultaneous goal- and data- driven modeling in which we use the recorded neural activity as observed states of the MC further enhances direct and generalizable single-unit decoding. Finally, we show that this framework elucidates computational principles of how neural dynamics enable flexible control of movement and make this framework easy-to-use for future experiments.
Collapse
|
6
|
Nie JZ, Flint RD, Prakash P, Hsieh JK, Mugler EM, Tate MC, Rosenow JM, Slutzky MW. High-Gamma Activity Is Coupled to Low-Gamma Oscillations in Precentral Cortices and Modulates with Movement and Speech. eNeuro 2024; 11:ENEURO.0163-23.2023. [PMID: 38242691 PMCID: PMC10867721 DOI: 10.1523/eneuro.0163-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 10/26/2023] [Accepted: 12/06/2023] [Indexed: 01/21/2024] Open
Abstract
Planning and executing motor behaviors requires coordinated neural activity among multiple cortical and subcortical regions of the brain. Phase-amplitude coupling between the high-gamma band amplitude and the phase of low frequency oscillations (theta, alpha, beta) has been proposed to reflect neural communication, as has synchronization of low-gamma oscillations. However, coupling between low-gamma and high-gamma bands has not been investigated. Here, we measured phase-amplitude coupling between low- and high-gamma in monkeys performing a reaching task and in humans either performing finger-flexion or word-reading tasks. We found significant coupling between low-gamma phase and high-gamma amplitude in multiple sensorimotor and premotor cortices of both species during all tasks. This coupling modulated with the onset of movement. These findings suggest that interactions between the low and high gamma bands are markers of network dynamics related to movement and speech generation.
Collapse
Affiliation(s)
- Jeffrey Z Nie
- Southern Illinois University School of Medicine, Springfield 62794, Illinois
- Departments of Neurology, Northwestern University, Chicago 60611, Illinois
| | - Robert D Flint
- Departments of Neurology, Northwestern University, Chicago 60611, Illinois
| | - Prashanth Prakash
- Departments of Neurology, Northwestern University, Chicago 60611, Illinois
| | - Jason K Hsieh
- Departments of Neurology, Northwestern University, Chicago 60611, Illinois
- Neurological Surgery, Northwestern University, Chicago 60611, Illinois
- Department of Neurosurgery, Neurological Institute, Cleveland Clinic Foundation, Cleveland, Ohio
| | - Emily M Mugler
- Departments of Neurology, Northwestern University, Chicago 60611, Illinois
| | - Matthew C Tate
- Departments of Neurology, Northwestern University, Chicago 60611, Illinois
- Neurological Surgery, Northwestern University, Chicago 60611, Illinois
| | - Joshua M Rosenow
- Departments of Neurology, Northwestern University, Chicago 60611, Illinois
- Neurological Surgery, Northwestern University, Chicago 60611, Illinois
- Physical Medicine & Rehabilitation, Northwestern University, Chicago 60611, Illinois
- Shirley Ryan AbilityLab, Chicago 60611, Illinois
| | - Marc W Slutzky
- Departments of Neurology, Northwestern University, Chicago 60611, Illinois
- Physical Medicine & Rehabilitation, Northwestern University, Chicago 60611, Illinois
- Neuroscience, Northwestern University, Chicago 60611, Illinois
- Shirley Ryan AbilityLab, Chicago 60611, Illinois
- Department of Biomedical Engineering, Northwestern University, Evanston 60201, Illinois
| |
Collapse
|
7
|
Mirfathollahi A, Ghodrati MT, Shalchyan V, Zarrindast MR, Daliri MR. Decoding hand kinetics and kinematics using somatosensory cortex activity in active and passive movement. iScience 2023; 26:107808. [PMID: 37736040 PMCID: PMC10509302 DOI: 10.1016/j.isci.2023.107808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 07/20/2023] [Accepted: 08/30/2023] [Indexed: 09/23/2023] Open
Abstract
Area 2 of the primary somatosensory cortex (S1), encodes proprioceptive information of limbs. Several studies investigated the encoding of movement parameters in this area. However, the single-trial decoding of these parameters, which can provide additional knowledge about the amount of information available in sub-regions of this area about instantaneous limb movement, has not been well investigated. We decoded kinematic and kinetic parameters of active and passive hand movement during center-out task using conventional and state-based decoders. Our results show that this area can be used to accurately decode position, velocity, force, moment, and joint angles of hand. Kinematics had higher accuracies compared to kinetics and active trials were decoded more accurately than passive trials. Although the state-based decoder outperformed the conventional decoder in the active task, it was the opposite in the passive task. These results can be used in intracortical micro-stimulation procedures to provide proprioceptive feedback to BCI subjects.
Collapse
Affiliation(s)
- Alavie Mirfathollahi
- Institute for Cognitive Science Studies (ICSS), Pardis 16583- 44575 Tehran, Iran
- Neuroscience & Neuroengineering Research Lab, Biomedical Engineering Department, School of Electrical Engineering, Iran University of Science and Technology (IUST), Narmak, Tehran 16846-13114, Iran
| | - Mohammad Taghi Ghodrati
- Neuroscience & Neuroengineering Research Lab, Biomedical Engineering Department, School of Electrical Engineering, Iran University of Science and Technology (IUST), Narmak, Tehran 16846-13114, Iran
| | - Vahid Shalchyan
- Neuroscience & Neuroengineering Research Lab, Biomedical Engineering Department, School of Electrical Engineering, Iran University of Science and Technology (IUST), Narmak, Tehran 16846-13114, Iran
| | - Mohammad Reza Zarrindast
- Institute for Cognitive Science Studies (ICSS), Pardis 16583- 44575 Tehran, Iran
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran 14166-34793, Iran
| | - Mohammad Reza Daliri
- Institute for Cognitive Science Studies (ICSS), Pardis 16583- 44575 Tehran, Iran
- Neuroscience & Neuroengineering Research Lab, Biomedical Engineering Department, School of Electrical Engineering, Iran University of Science and Technology (IUST), Narmak, Tehran 16846-13114, Iran
| |
Collapse
|
8
|
Zhang Z, Feng P, Oprea A, Constandinou TG. Calibration-Free and Hardware-Efficient Neural Spike Detection for Brain Machine Interfaces. IEEE TRANSACTIONS ON BIOMEDICAL CIRCUITS AND SYSTEMS 2023; 17:725-740. [PMID: 37216253 DOI: 10.1109/tbcas.2023.3278531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Recent translational efforts in brain-machine interfaces (BMI) are demonstrating the potential to help people with neurological disorders. The current trend in BMI technology is to increase the number of recording channels to the thousands, resulting in the generation of vast amounts of raw data. This in turn places high bandwidth requirements for data transmission, which increases power consumption and thermal dissipation of implanted systems. On-implant compression and/or feature extraction are therefore becoming essential to limiting this increase in bandwidth, but add further power constraints - the power required for data reduction must remain less than the power saved through bandwidth reduction. Spike detection is a common feature extraction technique used for intracortical BMIs. In this article, we develop a novel firing-rate-based spike detection algorithm that requires no external training and is hardware efficient and therefore ideally suited for real-time applications. Key performance and implementation metrics such as detection accuracy, adaptability in chronic deployment, power consumption, area utilization, and channel scalability are benchmarked against existing methods using various datasets. The algorithm is first validated using a reconfigurable hardware (FPGA) platform and then ported to a digital ASIC implementation in both 65 nm and 0.18 μm CMOS technologies. The 128-channel ASIC design implemented in a 65 nm CMOS technology occupies 0.096 mm2 silicon area and consumes 4.86 μW from a 1.2 V power supply. The adaptive algorithm achieves a 96% spike detection accuracy on a commonly used synthetic dataset, without the need for any prior training.
Collapse
|
9
|
Ahmadipour P, Sani OG, Pesaran B, Shanechi MM. Multimodal subspace identification for modeling discrete-continuous spiking and field potential population activity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.26.542509. [PMID: 37398400 PMCID: PMC10312539 DOI: 10.1101/2023.05.26.542509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Learning dynamical latent state models for multimodal spiking and field potential activity can reveal their collective low-dimensional dynamics and enable better decoding of behavior through multimodal fusion. Toward this goal, developing unsupervised learning methods that are computationally efficient is important, especially for real-time learning applications such as brain-machine interfaces (BMIs). However, efficient learning remains elusive for multimodal spike-field data due to their heterogeneous discrete-continuous distributions and different timescales. Here, we develop a multiscale subspace identification (multiscale SID) algorithm that enables computationally efficient modeling and dimensionality reduction for multimodal discrete-continuous spike-field data. We describe the spike-field activity as combined Poisson and Gaussian observations, for which we derive a new analytical subspace identification method. Importantly, we also introduce a novel constrained optimization approach to learn valid noise statistics, which is critical for multimodal statistical inference of the latent state, neural activity, and behavior. We validate the method using numerical simulations and spike-LFP population activity recorded during a naturalistic reach and grasp behavior. We find that multiscale SID accurately learned dynamical models of spike-field signals and extracted low-dimensional dynamics from these multimodal signals. Further, it fused multimodal information, thus better identifying the dynamical modes and predicting behavior compared to using a single modality. Finally, compared to existing multiscale expectation-maximization learning for Poisson-Gaussian observations, multiscale SID had a much lower computational cost while being better in identifying the dynamical modes and having a better or similar accuracy in predicting neural activity. Overall, multiscale SID is an accurate learning method that is particularly beneficial when efficient learning is of interest.
Collapse
|
10
|
Martineau T, He S, Vaidyanathan R, Tan H. Hyper-parameter tuning and feature extraction for asynchronous action detection from sub-thalamic nucleus local field potentials. Front Hum Neurosci 2023; 17:1111590. [PMID: 37292583 PMCID: PMC10244770 DOI: 10.3389/fnhum.2023.1111590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 05/04/2023] [Indexed: 06/10/2023] Open
Abstract
Introduction Decoding brain states from subcortical local field potentials (LFPs) indicative of activities such as voluntary movement, tremor, or sleep stages, holds significant potential in treating neurodegenerative disorders and offers new paradigms in brain-computer interface (BCI). Identified states can serve as control signals in coupled human-machine systems, e.g., to regulate deep brain stimulation (DBS) therapy or control prosthetic limbs. However, the behavior, performance, and efficiency of LFP decoders depend on an array of design and calibration settings encapsulated into a single set of hyper-parameters. Although methods exist to tune hyper-parameters automatically, decoders are typically found through exhaustive trial-and-error, manual search, and intuitive experience. Methods This study introduces a Bayesian optimization (BO) approach to hyper-parameter tuning, applicable through feature extraction, channel selection, classification, and stage transition stages of the entire decoding pipeline. The optimization method is compared with five real-time feature extraction methods paired with four classifiers to decode voluntary movement asynchronously based on LFPs recorded with DBS electrodes implanted in the subthalamic nucleus of Parkinson's disease patients. Results Detection performance, measured as the geometric mean between classifier specificity and sensitivity, is automatically optimized. BO demonstrates improved decoding performance from initial parameter setting across all methods. The best decoders achieve a maximum performance of 0.74 ± 0.06 (mean ± SD across all participants) sensitivity-specificity geometric mean. In addition, parameter relevance is determined using the BO surrogate models. Discussion Hyper-parameters tend to be sub-optimally fixed across different users rather than individually adjusted or even specifically set for a decoding task. The relevance of each parameter to the optimization problem and comparisons between algorithms can also be difficult to track with the evolution of the decoding problem. We believe that the proposed decoding pipeline and BO approach is a promising solution to such challenges surrounding hyper-parameter tuning and that the study's findings can inform future design iterations of neural decoders for adaptive DBS and BCI.
Collapse
Affiliation(s)
- Thomas Martineau
- Biomechatronics Group, Department of Mechanical Engineering, Imperial College London, London, United Kingdom
| | - Shenghong He
- Medical Research Council Brain Network Dynamics Unit, University of Oxford, Oxford, United Kingdom
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | - Ravi Vaidyanathan
- Biomechatronics Group, Department of Mechanical Engineering, Imperial College London, London, United Kingdom
- UK Dementia Research Institute-Care Research and Technology, Imperial College London, London, United Kingdom
| | - Huiling Tan
- Medical Research Council Brain Network Dynamics Unit, University of Oxford, Oxford, United Kingdom
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
11
|
Branco MP, Geukes SH, Aarnoutse EJ, Ramsey NF, Vansteensel MJ. Nine decades of electrocorticography: A comparison between epidural and subdural recordings. Eur J Neurosci 2023; 57:1260-1288. [PMID: 36843389 DOI: 10.1111/ejn.15941] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 02/10/2023] [Accepted: 02/18/2023] [Indexed: 02/28/2023]
Abstract
In recent years, electrocorticography (ECoG) has arisen as a neural signal recording tool in the development of clinically viable neural interfaces. ECoG electrodes are generally placed below the dura mater (subdural) but can also be placed on top of the dura (epidural). In deciding which of these modalities best suits long-term implants, complications and signal quality are important considerations. Conceptually, epidural placement may present a lower risk of complications as the dura is left intact but also a lower signal quality due to the dura acting as a signal attenuator. The extent to which complications and signal quality are affected by the dura, however, has been a matter of debate. To improve our understanding of the effects of the dura on complications and signal quality, we conducted a literature review. We inventorized the effect of the dura on signal quality, decodability and longevity of acute and chronic ECoG recordings in humans and non-human primates. Also, we compared the incidence and nature of serious complications in studies that employed epidural and subdural ECoG. Overall, we found that, even though epidural recordings exhibit attenuated signal amplitude over subdural recordings, particularly for high-density grids, the decodability of epidural recorded signals does not seem to be markedly affected. Additionally, we found that the nature of serious complications was comparable between epidural and subdural recordings. These results indicate that both epidural and subdural ECoG may be suited for long-term neural signal recordings, at least for current generations of clinical and high-density ECoG grids.
Collapse
Affiliation(s)
- Mariana P Branco
- Department of Neurology and Neurosurgery, University Medical Center Utrecht Brain Center, Utrecht University, Utrecht, The Netherlands
| | - Simon H Geukes
- Department of Neurology and Neurosurgery, University Medical Center Utrecht Brain Center, Utrecht University, Utrecht, The Netherlands
| | - Erik J Aarnoutse
- Department of Neurology and Neurosurgery, University Medical Center Utrecht Brain Center, Utrecht University, Utrecht, The Netherlands
| | - Nick F Ramsey
- Department of Neurology and Neurosurgery, University Medical Center Utrecht Brain Center, Utrecht University, Utrecht, The Netherlands
| | - Mariska J Vansteensel
- Department of Neurology and Neurosurgery, University Medical Center Utrecht Brain Center, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
12
|
Johnston R, Abbass M, Corrigan B, Gulli R, Martinez-Trujillo J, Sachs A. Decoding spatial locations from primate lateral prefrontal cortex neural activity during virtual navigation. J Neural Eng 2023; 20. [PMID: 36693278 DOI: 10.1088/1741-2552/acb5c2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 01/24/2023] [Indexed: 01/25/2023]
Abstract
Objective. Decoding the intended trajectories from brain signals using a brain-computer interface system could be used to improve the mobility of patients with disabilities.Approach. Neuronal activity associated with spatial locations was examined while macaques performed a navigation task within a virtual environment.Main results.Here, we provide proof of principle that multi-unit spiking activity recorded from the lateral prefrontal cortex (LPFC) of non-human primates can be used to predict the location of a subject in a virtual maze during a navigation task. The spatial positions within the maze that require a choice or are associated with relevant task events can be better predicted than the locations where no relevant events occur. Importantly, within a task epoch of a single trial, multiple locations along the maze can be independently identified using a support vector machine model.Significance. Considering that the LPFC of macaques and humans share similar properties, our results suggest that this area could be a valuable implant location for an intracortical brain-computer interface system used for spatial navigation in patients with disabilities.
Collapse
Affiliation(s)
- Renée Johnston
- University of Ottawa Brain and Mind Research Institute, Ottawa, ON, Canada.,Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - Mohamad Abbass
- Department of Clinical Neurological Sciences, London Health Sciences Centre, Western University, London, ON, Canada.,Western Institute for Neuroscience, Western University, London, ON, Canada.,Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| | - Benjamin Corrigan
- Western Institute for Neuroscience, Western University, London, ON, Canada.,Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| | - Roberto Gulli
- Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, United States of America.,Center for Theoretical Neuroscience, Columbia University, New York, NY, United States of America
| | - Julio Martinez-Trujillo
- Western Institute for Neuroscience, Western University, London, ON, Canada.,Department of Physiology, Pharmacology, and Psychiatry, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| | - Adam Sachs
- University of Ottawa Brain and Mind Research Institute, Ottawa, ON, Canada.,Division of Neurosurgery, Ottawa Hospital Research Institute, Ottawa, ON, Canada
| |
Collapse
|
13
|
Nie JZ, Flint RD, Prakash P, Hsieh JK, Mugler EM, Tate MC, Rosenow JM, Slutzky MW. High-gamma activity is coupled to low-gamma oscillations in precentral cortices and modulates with movement and speech. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.13.528325. [PMID: 36824850 PMCID: PMC9949043 DOI: 10.1101/2023.02.13.528325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
Planning and executing motor behaviors requires coordinated neural activity among multiple cortical and subcortical regions of the brain. Phase-amplitude coupling between the high-gamma band amplitude and the phase of low frequency oscillations (theta, alpha, beta) has been proposed to reflect neural communication, as has synchronization of low-gamma oscillations. However, coupling between low-gamma and high-gamma bands has not been investigated. Here, we measured phase-amplitude coupling between low- and high-gamma in monkeys performing a reaching task and in humans either performing finger movements or speaking words aloud. We found significant coupling between low-gamma phase and high-gamma amplitude in multiple sensorimotor and premotor cortices of both species during all tasks. This coupling modulated with the onset of movement. These findings suggest that interactions between the low and high gamma bands are markers of network dynamics related to movement and speech generation.
Collapse
|
14
|
Wilson GH, Willett FR, Stein EA, Kamdar F, Avansino DT, Hochberg LR, Shenoy KV, Druckmann S, Henderson JM. Long-term unsupervised recalibration of cursor BCIs. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.03.527022. [PMID: 36778458 PMCID: PMC9915729 DOI: 10.1101/2023.02.03.527022] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Intracortical brain-computer interfaces (iBCIs) require frequent recalibration to maintain robust performance due to changes in neural activity that accumulate over time. Compensating for this nonstationarity would enable consistently high performance without the need for supervised recalibration periods, where users cannot engage in free use of their device. Here we introduce a hidden Markov model (HMM) to infer what targets users are moving toward during iBCI use. We then retrain the system using these inferred targets, enabling unsupervised adaptation to changing neural activity. Our approach outperforms the state of the art in large-scale, closed-loop simulations over two months and in closed-loop with a human iBCI user over one month. Leveraging an offline dataset spanning five years of iBCI recordings, we further show how recently proposed data distribution-matching approaches to recalibration fail over long time scales; only target-inference methods appear capable of enabling long-term unsupervised recalibration. Our results demonstrate how task structure can be used to bootstrap a noisy decoder into a highly-performant one, thereby overcoming one of the major barriers to clinically translating BCIs.
Collapse
|
15
|
Liang W, Balasubramanian K, Papadourakis V, Hatsopoulos NG. Propagating spatiotemporal activity patterns across macaque motor cortex carry kinematic information. Proc Natl Acad Sci U S A 2023; 120:e2212227120. [PMID: 36652475 PMCID: PMC9942811 DOI: 10.1073/pnas.2212227120] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Accepted: 12/05/2022] [Indexed: 01/19/2023] Open
Abstract
Propagating spatiotemporal neural patterns are widely evident across sensory, motor, and association cortical areas. However, it remains unclear whether any characteristics of neural propagation carry information about specific behavioral details. Here, we provide the first evidence for a link between the direction of cortical propagation and specific behavioral features of an upcoming movement on a trial-by-trial basis. We recorded local field potentials (LFPs) from multielectrode arrays implanted in the primary motor cortex of two rhesus macaque monkeys while they performed a 2D reach task. Propagating patterns were extracted from the information-rich high-gamma band (200 to 400 Hz) envelopes in the LFP amplitude. We found that the exact direction of propagating patterns varied systematically according to initial movement direction, enabling kinematic predictions. Furthermore, characteristics of these propagation patterns provided additional predictive capability beyond the LFP amplitude themselves, which suggests the value of including mesoscopic spatiotemporal characteristics in refining brain-machine interfaces.
Collapse
Affiliation(s)
- Wei Liang
- Committee on Computational Neuroscience, University of Chicago, Chicago, IL60637
- Organismal Biology and Anatomy, University of Chicago, Chicago, IL60637
| | | | | | - Nicholas G. Hatsopoulos
- Committee on Computational Neuroscience, University of Chicago, Chicago, IL60637
- Organismal Biology and Anatomy, University of Chicago, Chicago, IL60637
| |
Collapse
|
16
|
Mirfathollahi A, Ghodrati MT, Shalchyan V, Daliri MR. Decoding locomotion speed and slope from local field potentials of rat motor cortex. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2022; 223:106961. [PMID: 35759821 DOI: 10.1016/j.cmpb.2022.106961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 06/02/2022] [Accepted: 06/14/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND AND OBJECTIVE Local Field Potentials (LFPs) recorded from the primary motor cortex (M1) have been shown to be very informative for decoding movement parameters, and these signals can be used to decode forelimb kinematic and kinetic parameters accurately. Although locomotion is one of the most basic and important motor abilities of humans and animals, the potential of LFPs in decoding abstract hindlimb locomotor parameters has not been investigated. This study investigates the feasibility of decoding speed and slope of locomotion, as two important abstract parameters of walking, using the LFP signals. METHODS Rats were trained to walk smoothly on a treadmill with different speeds and slopes. The brain signals were recorded using the microwire arrays chronically implanted in the hindlimb area of M1 while rats walked on the treadmill. LFP channels were spatially filtered using optimal common spatial patterns to increase the discriminability of speeds and slopes of locomotion. Logarithmic wavelet band powers were extracted as basic features, and the best features were selected using the statistical dependency criterion before classification. RESULTS Using 5 s LFP trials, the average classification accuracies of four different speeds and seven different slopes reached 90.8% and 86.82%, respectively. The high-frequency LFP band (250-500 Hz) was the most informative band about these parameters and contributed more than other frequency bands in the final decoder model. CONCLUSIONS Our results show that the LFP signals in M1 accurately decode locomotion speed and slope, which can be considered as abstract walking parameters needed for designing long-term brain-computer interfaces for hindlimb locomotion control.
Collapse
Affiliation(s)
- Alavie Mirfathollahi
- Neuroscience and Neuroengineering Research Lab, Biomedical Engineering Department, School of Electrical Engineering, Iran University of Science and Technology (IUST), Narmak, Tehran 16846-13114, Iran; Institute for Cognitive Science Studies (ICSS), Tehran, Pardis 16583-44575, Iran
| | - Mohammad Taghi Ghodrati
- Neuroscience and Neuroengineering Research Lab, Biomedical Engineering Department, School of Electrical Engineering, Iran University of Science and Technology (IUST), Narmak, Tehran 16846-13114, Iran
| | - Vahid Shalchyan
- Neuroscience and Neuroengineering Research Lab, Biomedical Engineering Department, School of Electrical Engineering, Iran University of Science and Technology (IUST), Narmak, Tehran 16846-13114, Iran.
| | - Mohammad Reza Daliri
- Neuroscience and Neuroengineering Research Lab, Biomedical Engineering Department, School of Electrical Engineering, Iran University of Science and Technology (IUST), Narmak, Tehran 16846-13114, Iran
| |
Collapse
|
17
|
Hosseini SM, Shalchyan V. Continuous Decoding of Hand Movement From EEG Signals Using Phase-Based Connectivity Features. Front Hum Neurosci 2022; 16:901285. [PMID: 35845243 PMCID: PMC9279670 DOI: 10.3389/fnhum.2022.901285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 06/06/2022] [Indexed: 11/13/2022] Open
Abstract
The principal goal of the brain-computer interface (BCI) is to translate brain signals into meaningful commands to control external devices or neuroprostheses to restore lost functions of patients with severe motor disabilities. The invasive recording of brain signals involves numerous health issues. Therefore, BCIs based on non-invasive recording modalities such as electroencephalography (EEG) are safer and more comfortable for the patients. The BCI requires reconstructing continuous movement parameters such as position or velocity for practical application of neuroprostheses. The BCI studies in continuous decoding have extensively relied on extracting features from the amplitude of brain signals, whereas the brain connectivity features have rarely been explored. This study aims to investigate the feasibility of using phase-based connectivity features in decoding continuous hand movements from EEG signals. To this end, the EEG data were collected from seven healthy subjects performing a 2D center-out hand movement task in four orthogonal directions. The phase-locking value (PLV) and magnitude-squared coherence (MSC) are exploited as connectivity features along with multiple linear regression (MLR) for decoding hand positions. A brute-force search approach is employed to find the best channel pairs for extracting features related to hand movements. The results reveal that the regression models based on PLV and MSC features achieve the average Pearson correlations of 0.43 ± 0.03 and 0.42 ± 0.06, respectively, between predicted and actual trajectories over all subjects. The delta and alpha band features have the most contribution in regression analysis. The results also demonstrate that both PLV and MSC decoding models lead to superior results on our data compared to two recently proposed feature extraction methods solely based on the amplitude or phase of recording signals (p < 0.05). This study verifies the ability of PLV and MSC features in the continuous decoding of hand movements with linear regression. Thus, our findings suggest that extracting features based on brain connectivity can improve the accuracy of trajectory decoder BCIs.
Collapse
|
18
|
Flint RD, Li Y, Wang P, Vaidya M, Barry A, Ghassemi M, Tomic G, Brkic N, Ripley D, Liu C, Kamper D, Do A, Slutzky MW. Noninvasively recorded high-gamma signals improve synchrony of force feedback in a novel neurorehabilitation brain-machine interface for brain injury. J Neural Eng 2022; 19. [PMID: 35576911 PMCID: PMC9728942 DOI: 10.1088/1741-2552/ac7004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Accepted: 05/16/2022] [Indexed: 11/11/2022]
Abstract
OBJECTIVE Brain injury is the leading cause of long-term disability worldwide, often resulting in impaired hand function. Brain-machine interfaces (BMIs) offer a potential way to improve hand function. BMIs often target replacing lost function, but may also be employed in neurorehabilitation (nrBMI) by facilitating neural plasticity and functional recovery. Here, we report a novel nrBMI capable of acquiring high-γ (70-115 Hz) information through a unique post-TBI hemicraniectomy window model, and delivering sensory feedback that is synchronized with, and proportional to, intended grasp force. APPROACH We developed the nrBMI to use electroencephalogram recorded over a hemicraniectomy (hEEG) in individuals with traumatic brain injury (TBI). The nrBMI empowered users to exert continuous, proportional control of applied force, and provided continuous force feedback. We report the results of an initial testing group of three human participants with TBI, along with a control group of three skull- and motor-intact volunteers. MAIN RESULTS All participants controlled the nrBMI successfully, with high initial success rates (2 of 6 participants) or performance that improved over time (4 of 6 participants). We observed high-γ modulation with force intent in hEEG but not skull-intact EEG. Most significantly, we found that high-γ control significantly improved the timing synchronization between neural modulation onset and nrBMI output/haptic feedback (compared to low-frequency nrBMI control). SIGNIFICANCE These proof-of-concept results show that high-γ nrBMIs can be used by individuals with impaired ability to control force (without immediately resorting to invasive signals like ECoG). Of note, the nrBMI includes a parameter to change the fraction of control shared between decoded intent and volitional force, to adjust for recovery progress. The improved synchrony between neural modulations and force control for high-γ signals is potentially important for maximizing the ability of nrBMIs to induce plasticity in neural circuits. Inducing plasticity is critical to functional recovery after brain injury.
Collapse
Affiliation(s)
- Robert D Flint
- Department of Physiology, Northwestern University, Northwestern University, The Feinberg School of Medicine, 303 E. Chicago Ave. , Chicago, IL 60611, USA, Chicago, Illinois, 60611, UNITED STATES
| | - Yongcheng Li
- University of California Irvine, 402 E Peltason Dr, Irvine, California, 92617, UNITED STATES
| | - Po Wang
- University of California Irvine, 402 E Peltason Dr, Irvine, California, 92617, UNITED STATES
| | - Mukta Vaidya
- Northwestern University Feinberg School of Medicine, 320 E Superior St, Chicago, Illinois, 60611-3008, UNITED STATES
| | - Alex Barry
- Shirley Ryan AbilityLab, 355 E Erie St, Chicago, Illinois, 60611-2654, UNITED STATES
| | - Mohammad Ghassemi
- North Carolina State University, Engineering Building III, 4130, Raleigh, North Carolina, 27695, UNITED STATES
| | - Goran Tomic
- Department of Physiology, Northwestern University, Northwestern University, The Feinberg School of Medicine, 303 E. Chicago Ave. , Chicago, IL 60611, USA, Chicago, Illinois, 60611, UNITED STATES
| | - Nenad Brkic
- Shirley Ryan AbilityLab, 355 E Erie St, Chicago, Illinois, 60611-2654, UNITED STATES
| | - David Ripley
- Shirley Ryan AbilityLab, 355 E Erie St, Chicago, Illinois, 60611-2654, UNITED STATES
| | - Charles Liu
- University of California Irvine, 402 E Peltason Dr, Irvine, California, 92617, UNITED STATES
| | - Derek Kamper
- North Carolina State University, Engineering Building III, 4130, Raleigh, North Carolina, 27695, UNITED STATES
| | - An Do
- University of California Irvine, 402 E Peltason Dr, Irvine, California, 92617, UNITED STATES
| | - Marc W Slutzky
- Department of Physiology, Northwestern University Medical School, 303 East Chicago Avenue, Chicago, Illinois, 60611, UNITED STATES
| |
Collapse
|
19
|
Pandarinath C, Bensmaia SJ. The science and engineering behind sensitized brain-controlled bionic hands. Physiol Rev 2022; 102:551-604. [PMID: 34541898 PMCID: PMC8742729 DOI: 10.1152/physrev.00034.2020] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 09/07/2021] [Accepted: 09/13/2021] [Indexed: 12/13/2022] Open
Abstract
Advances in our understanding of brain function, along with the development of neural interfaces that allow for the monitoring and activation of neurons, have paved the way for brain-machine interfaces (BMIs), which harness neural signals to reanimate the limbs via electrical activation of the muscles or to control extracorporeal devices, thereby bypassing the muscles and senses altogether. BMIs consist of reading out motor intent from the neuronal responses monitored in motor regions of the brain and executing intended movements with bionic limbs, reanimated limbs, or exoskeletons. BMIs also allow for the restoration of the sense of touch by electrically activating neurons in somatosensory regions of the brain, thereby evoking vivid tactile sensations and conveying feedback about object interactions. In this review, we discuss the neural mechanisms of motor control and somatosensation in able-bodied individuals and describe approaches to use neuronal responses as control signals for movement restoration and to activate residual sensory pathways to restore touch. Although the focus of the review is on intracortical approaches, we also describe alternative signal sources for control and noninvasive strategies for sensory restoration.
Collapse
Affiliation(s)
- Chethan Pandarinath
- Department of Biomedical Engineering, Emory University and Georgia Institute of Technology, Atlanta, Georgia
- Department of Neurosurgery, Emory University, Atlanta, Georgia
| | - Sliman J Bensmaia
- Department of Organismal Biology and Anatomy, University of Chicago, Chicago, Illinois
- Committee on Computational Neuroscience, University of Chicago, Chicago, Illinois
- Grossman Institute for Neuroscience, Quantitative Biology, and Human Behavior, University of Chicago, Chicago, Illinois
| |
Collapse
|
20
|
Wang C, Pesaran B, Shanechi MM. Modeling multiscale causal interactions between spiking and field potential signals during behavior. J Neural Eng 2022; 19:10.1088/1741-2552/ac4e1c. [PMID: 35073530 PMCID: PMC11524050 DOI: 10.1088/1741-2552/ac4e1c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 01/24/2022] [Indexed: 11/12/2022]
Abstract
Objective.Brain recordings exhibit dynamics at multiple spatiotemporal scales, which are measured with spike trains and larger-scale field potential signals. To study neural processes, it is important to identify and model causal interactions not only at a single scale of activity, but also across multiple scales, i.e. between spike trains and field potential signals. Standard causality measures are not directly applicable here because spike trains are binary-valued but field potentials are continuous-valued. It is thus important to develop computational tools to recover multiscale neural causality during behavior, assess their performance on neural datasets, and study whether modeling multiscale causalities can improve the prediction of neural signals beyond what is possible with single-scale causality.Approach.We design a multiscale model-based Granger-like causality method based on directed information and evaluate its success both in realistic biophysical spike-field simulations and in motor cortical datasets from two non-human primates (NHP) performing a motor behavior. To compute multiscale causality, we learn point-process generalized linear models that predict the spike events at a given time based on the history of both spike trains and field potential signals. We also learn linear Gaussian models that predict the field potential signals at a given time based on their own history as well as either the history of binary spike events or that of latent firing rates.Main results.We find that our method reveals the true multiscale causality network structure in biophysical simulations despite the presence of model mismatch. Further, models with the identified multiscale causalities in the NHP neural datasets lead to better prediction of both spike trains and field potential signals compared to just modeling single-scale causalities. Finally, we find that latent firing rates are better predictors of field potential signals compared with the binary spike events in the NHP datasets.Significance.This multiscale causality method can reveal the directed functional interactions across spatiotemporal scales of brain activity to inform basic science investigations and neurotechnologies.
Collapse
Affiliation(s)
- Chuanmeizhi Wang
- Ming Hsieh Department of Electrical and Computer Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, CA, United States of America
| | - Bijan Pesaran
- Center for Neural Sciences, New York University, New York, NY, United States of America
| | - Maryam M Shanechi
- Ming Hsieh Department of Electrical and Computer Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, CA, United States of America
- Neuroscience Graduate Program, University of Southern California, Los Angeles, CA, United States of America
- Department of Biomedical Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, CA, United States of America
| |
Collapse
|
21
|
Savolainen OW. The significance of neural inter-frequency power correlations. Sci Rep 2021; 11:23190. [PMID: 34848759 PMCID: PMC8633012 DOI: 10.1038/s41598-021-02277-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Accepted: 10/26/2021] [Indexed: 11/29/2022] Open
Abstract
It is of great interest in neuroscience to determine what frequency bands in the brain have covarying power. This would help us robustly identify the frequency signatures of neural processes. However to date, to the best of the author's knowledge, a comprehensive statistical approach to this question that accounts for intra-frequency autocorrelation, frequency-domain oversampling, and multiple testing under dependency has not been undertaken. As such, this work presents a novel statistical significance test for correlated power across frequency bands for a broad class of non-stationary time series. It is validated on synthetic data. It is then used to test all of the inter-frequency power correlations between 0.2 and 8500 Hz in continuous intracortical extracellular neural recordings in Macaque M1, using a very large, publicly available dataset. The recordings were Current Source Density referenced and were recorded with a Utah array. The results support previous results in the literature that show that neural processes in M1 have power signatures across a very broad range of frequency bands. In particular, the power in LFP frequency bands as low as 20 Hz was found to almost always be statistically significantly correlated to the power in kHz frequency ranges. It is proposed that this test can also be used to discover the superimposed frequency domain signatures of all the neural processes in a neural signal, allowing us to identify every interesting neural frequency band.
Collapse
Affiliation(s)
- Oscar W Savolainen
- Centre for Bio-Inspired Technology, Imperial College London, London, UK.
| |
Collapse
|
22
|
Li M, Gao H, Qi Y, Pan G. A Brain Biometric-based Identification Approach Using Local Field Potentials. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2021; 2021:1116-1119. [PMID: 34891483 DOI: 10.1109/embc46164.2021.9630079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Traditional biometrics such as face, iris and fingerprint have been applied widely nowadays. Nevertheless, with more and more potential problems being exposed, such as privacy leak and fabricate attack, it is urgent to find new secure biometrics to meet the needs. Identification based on brain signals is a promising option due to its unique advantages of confidentiality, anti-spoofing, continuity and cancelability. Among various types of brain signals, local field potential (LFP) has long term stability, high signal to noise ratio and high spatial resolution, which is suitable for identification. In this paper, we propose a novel biometric which is extracted from LFP signals with a deep neural network. The proposed biometric can be generated in a task-related manner thus is cancelable. Experiments with ten rats demonstrate that, the proposed biometric achieves a high identification accuracy of 94.47%, and the performance is stable over several days.
Collapse
|
23
|
Inferring entire spiking activity from local field potentials. Sci Rep 2021; 11:19045. [PMID: 34561480 PMCID: PMC8463692 DOI: 10.1038/s41598-021-98021-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Accepted: 09/01/2021] [Indexed: 11/29/2022] Open
Abstract
Extracellular recordings are typically analysed by separating them into two distinct signals: local field potentials (LFPs) and spikes. Previous studies have shown that spikes, in the form of single-unit activity (SUA) or multiunit activity (MUA), can be inferred solely from LFPs with moderately good accuracy. SUA and MUA are typically extracted via threshold-based technique which may not be reliable when the recordings exhibit a low signal-to-noise ratio (SNR). Another type of spiking activity, referred to as entire spiking activity (ESA), can be extracted by a threshold-less, fast, and automated technique and has led to better performance in several tasks. However, its relationship with the LFPs has not been investigated. In this study, we aim to address this issue by inferring ESA from LFPs intracortically recorded from the motor cortex area of three monkeys performing different tasks. Results from long-term recording sessions and across subjects revealed that ESA can be inferred from LFPs with good accuracy. On average, the inference performance of ESA was consistently and significantly higher than those of SUA and MUA. In addition, local motor potential (LMP) was found to be the most predictive feature. The overall results indicate that LFPs contain substantial information about spiking activity, particularly ESA. This could be useful for understanding LFP-spike relationship and for the development of LFP-based BMIs.
Collapse
|
24
|
Kim MK, Sohn JW, Kim SP. Finding Kinematics-Driven Latent Neural States From Neuronal Population Activity for Motor Decoding. IEEE Trans Neural Syst Rehabil Eng 2021; 29:2027-2036. [PMID: 34550888 DOI: 10.1109/tnsre.2021.3114367] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
While intracortical brain-machine interfaces (BMIs) demonstrate feasibility to restore mobility to people with paralysis, it is still challenging to maintain high-performance decoding in clinical BMIs. One of the main obstacles for high-performance BMI is the noise-prone nature of traditional decoding methods that connect neural response explicitly with physical quantity, such as velocity. In contrast, the recent development of latent neural state model enables a robust readout of large-scale neuronal population activity contents. However, these latent neural states do not necessarily contain kinematic information useful for decoding. Therefore, this study proposes a new approach to finding kinematics-dependent latent factors by extracting latent factors' kinematics-dependent components using linear regression. We estimated these components from the population activity through nonlinear mapping. The proposed kinematics-dependent latent factors generate neural trajectories that discriminate latent neural states before and after the motion onset. We compared the decoding performance of the proposed analysis model with the results from other popular models. They are factor analysis (FA), Gaussian process factor analysis (GPFA), latent factor analysis via dynamical systems (LFADS), preferential subspace identification (PSID), and neuronal population firing rates. The proposed analysis model results in higher decoding accuracy than do the others ( % improvement on average). Our approach may pave a new way to extract latent neural states specific to kinematic information from motor cortices, potentially improving decoding performance for online intracortical BMIs.
Collapse
|
25
|
Lu HY, Lorenc ES, Zhu H, Kilmarx J, Sulzer J, Xie C, Tobler PN, Watrous AJ, Orsborn AL, Lewis-Peacock J, Santacruz SR. Multi-scale neural decoding and analysis. J Neural Eng 2021; 18. [PMID: 34284369 PMCID: PMC8840800 DOI: 10.1088/1741-2552/ac160f] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 07/20/2021] [Indexed: 12/15/2022]
Abstract
Objective. Complex spatiotemporal neural activity encodes rich information related to behavior and cognition. Conventional research has focused on neural activity acquired using one of many different measurement modalities, each of which provides useful but incomplete assessment of the neural code. Multi-modal techniques can overcome tradeoffs in the spatial and temporal resolution of a single modality to reveal deeper and more comprehensive understanding of system-level neural mechanisms. Uncovering multi-scale dynamics is essential for a mechanistic understanding of brain function and for harnessing neuroscientific insights to develop more effective clinical treatment. Approach. We discuss conventional methodologies used for characterizing neural activity at different scales and review contemporary examples of how these approaches have been combined. Then we present our case for integrating activity across multiple scales to benefit from the combined strengths of each approach and elucidate a more holistic understanding of neural processes. Main results. We examine various combinations of neural activity at different scales and analytical techniques that can be used to integrate or illuminate information across scales, as well the technologies that enable such exciting studies. We conclude with challenges facing future multi-scale studies, and a discussion of the power and potential of these approaches. Significance. This roadmap will lead the readers toward a broad range of multi-scale neural decoding techniques and their benefits over single-modality analyses. This Review article highlights the importance of multi-scale analyses for systematically interrogating complex spatiotemporal mechanisms underlying cognition and behavior.
Collapse
Affiliation(s)
- Hung-Yun Lu
- The University of Texas at Austin, Biomedical Engineering, Austin, TX, United States of America
| | - Elizabeth S Lorenc
- The University of Texas at Austin, Psychology, Austin, TX, United States of America.,The University of Texas at Austin, Institute for Neuroscience, Austin, TX, United States of America
| | - Hanlin Zhu
- Rice University, Electrical and Computer Engineering, Houston, TX, United States of America
| | - Justin Kilmarx
- The University of Texas at Austin, Mechanical Engineering, Austin, TX, United States of America
| | - James Sulzer
- The University of Texas at Austin, Mechanical Engineering, Austin, TX, United States of America.,The University of Texas at Austin, Institute for Neuroscience, Austin, TX, United States of America
| | - Chong Xie
- Rice University, Electrical and Computer Engineering, Houston, TX, United States of America
| | - Philippe N Tobler
- University of Zurich, Neuroeconomics and Social Neuroscience, Zurich, Switzerland
| | - Andrew J Watrous
- The University of Texas at Austin, Neurology, Austin, TX, United States of America
| | - Amy L Orsborn
- University of Washington, Electrical and Computer Engineering, Seattle, WA, United States of America.,University of Washington, Bioengineering, Seattle, WA, United States of America.,Washington National Primate Research Center, Seattle, WA, United States of America
| | - Jarrod Lewis-Peacock
- The University of Texas at Austin, Psychology, Austin, TX, United States of America.,The University of Texas at Austin, Institute for Neuroscience, Austin, TX, United States of America
| | - Samantha R Santacruz
- The University of Texas at Austin, Biomedical Engineering, Austin, TX, United States of America.,The University of Texas at Austin, Institute for Neuroscience, Austin, TX, United States of America
| |
Collapse
|
26
|
Restoring upper extremity function with brain-machine interfaces. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2021; 159:153-186. [PMID: 34446245 DOI: 10.1016/bs.irn.2021.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
One of the most exciting advances to emerge in neural interface technologies has been the development of real-time brain-machine interface (BMI) neuroprosthetic devices to restore upper extremity function. BMI neuroprostheses, made possible by synergistic advances in neural recording technologies, high-speed computation and signal processing, and neuroscience, have permitted the restoration of volitional movement to patients suffering the loss of upper-extremity function. In this chapter, we review the scientific and technological advances underlying these remarkable devices. After presenting an introduction to the current state of the field, we provide an accessible technical discussion of the two fundamental requirements of a successful neuroprosthesis: signal extraction from the brain and signal decoding that results in robust prosthetic control. We close with a presentation of emerging technologies that are likely to substantially advance the field.
Collapse
|
27
|
Johnston R, Doucet G, Boulay C, Miller K, Martinez-Trujillo J, Sachs A. Decoding Saccade Intention From Primate Prefrontal Cortical Local Field Potentials Using Spectral, Spatial, and Temporal Dimensionality Reduction. Int J Neural Syst 2021; 31:2150023. [PMID: 33931006 DOI: 10.1142/s0129065721500234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Most invasive Brain Computer Interfaces (iBCIs) use spike and Local Field Potentials (LFPs) from the motor or parietal cortices to decode movement intentions. It has been debated whether harvesting signals from other brain areas that encode global cognitive variables, such as the allocation of attention and eye movement goals in a variety of spatial reference frames, may improve the outcome of iBCIs. Here, we explore the ability of LFP signals, sampled from the lateral prefrontal cortex (LPFC) of macaque monkeys, to encode eye-movement intention during the pre-movement fixation period of a delayed saccade task. We use spectral dimensionality reduction to examine the spatiotemporal properties of the extracted non-rhythmic broadband activity and explore its usefulness in decoding saccade goals. The dynamics of the broadband signal in low spatial dimensions across the pre-movement fixation period uncovered saccade target separation; its discriminative potential was confirmed using support vector machine classifications. These findings reveal that broadband LFP from the LPFC can be used to decode intended saccade target location during pre-movement periods. We further provide a general workflow that can be implemented in iBCIs and it is relatively robust to the loss of spikes in individual electrodes.
Collapse
Affiliation(s)
- Renée Johnston
- Ottawa Hospital Research Institute, 725 Parkdale Ave., Ottawa, ON, K1Y 4E9, Canada
| | - Guillaume Doucet
- Ottawa Hospital Research Institute, 725 Parkdale Ave., Ottawa, ON, K1Y 4E9, Canada
| | - Chadwick Boulay
- Ottawa Hospital Research Institute, 725 Parkdale Ave., Ottawa, ON, K1Y 4E9, Canada
| | - Kai Miller
- Department of Neurologic Surgery, Mayo Clinic, 200 First St., Rochester, MN 55902, United States
| | - Julio Martinez-Trujillo
- Robarts Research Institute, Western University, 1151 Richmond Street N., London, ON, N6A 5B7, Canada
| | - Adam Sachs
- Division of Neurosurgery, Ottawa Hospital Research Institute, 725 Parkdale Ave., Ottawa, ON, K1Y 4E9, Canada
| |
Collapse
|
28
|
Kaiju T, Inoue M, Hirata M, Suzuki T. High-density mapping of primate digit representations with a 1152-channel µECoG array. J Neural Eng 2021; 18. [PMID: 33530064 DOI: 10.1088/1741-2552/abe245] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 02/02/2021] [Indexed: 12/11/2022]
Abstract
Objective.Advances in brain-machine interfaces (BMIs) are expected to support patients with movement disorders. Electrocorticogram (ECoG) measures electrophysiological activities over a large area using a low-invasive flexible sheet placed on the cortex. ECoG has been considered as a feasible signal source of the clinical BMI device. To capture neural activities more precisely, the feasibility of higher-density arrays has been investigated. However, currently, the number of electrodes is limited to approximately 300 due to wiring difficulties, device size, and system costs.Approach.We developed a high-density recording system with a large coverage (14 × 7 mm2) and using 1152 electrodes by directly integrating dedicated flexible arrays with the neural-recording application-specific integrated circuits and their interposers.Main results.Comparative experiments with a 128-channel array demonstrated that the proposed device could delineate the entire digit representation of a nonhuman primate. Subsampling analysis revealed that higher-amplitude signals can be measured using higher-density arrays.Significance.We expect that the proposed system that simultaneously establishes large-scale sampling, high temporal-precision of electrophysiology, and high spatial resolution comparable to optical imaging will be suitable for next-generation brain-sensing technology.
Collapse
Affiliation(s)
- Taro Kaiju
- Center for Information and Neural Networks (CiNet), National Institute of Information and Communications Technology, and Osaka University, Osaka, Japan
| | - Masato Inoue
- Center for Information and Neural Networks (CiNet), National Institute of Information and Communications Technology, and Osaka University, Osaka, Japan.,Department of Neurological Diagnosis and Restoration, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Masayuki Hirata
- Center for Information and Neural Networks (CiNet), National Institute of Information and Communications Technology, and Osaka University, Osaka, Japan.,Department of Neurological Diagnosis and Restoration, Osaka University Graduate School of Medicine, Osaka, Japan
| | | |
Collapse
|
29
|
Gao H, Sun M, Li M, Wang C, Yu C, Wang Y, Xu K. Force Decoding of Caudal Forelimb Area and Rostral Forelimb Area in Chronic Stroke Rats. IEEE Trans Biomed Eng 2021; 68:3078-3086. [PMID: 33661731 DOI: 10.1109/tbme.2021.3063903] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Brain machine interfaces (BMIs) used for movement restoration primarily rely on studies of motor decoding. It has been proved that local field potentials (LFPs) from primary motor cortex and premotor cortex of normal rodents could be used for decoding motor signals. However, few studies have explored the decoding performance of these brain areas under motor cortex damage. In this work, we focus on force decoding performance of LFPs spectrum from both ipsilesional caudal forelimb area (CFA) and rostral forelimb area (RFA) of rodents with ischemia over CFA. After three months of ischemia induced by photothrombosis over CFA, the power of high-frequency bands (>120 Hz) from both CFA and RFA can decode force signals by Kalman filters. The fair performance of CFA indicates motor reorganization over penumbra. Further exploration of RFA decoding ability proves that at least four electrodes of RFA should be used on decoding and electrodes far from CFA of stroke rats could achieve almost as good results as those close to CFA of normal rats, which indicates the motor remapping. Experimental results show the long-term stability of PM LFPs decoding performance of stroke rats as the trained Kalman model could be used to accurately decode force some days later which provides a possibility for online decoding system. In conclusion, our work shows that even under CFA ischemia, high-frequency power of LFPs from RFA is still able to accurately decode force signals and has long stability, which provides the possibility of BMIs for motor function reconstruction of chronic stroke patients.
Collapse
|
30
|
Abbaspourazad H, Choudhury M, Wong YT, Pesaran B, Shanechi MM. Multiscale low-dimensional motor cortical state dynamics predict naturalistic reach-and-grasp behavior. Nat Commun 2021; 12:607. [PMID: 33504797 PMCID: PMC7840738 DOI: 10.1038/s41467-020-20197-x] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 11/18/2020] [Indexed: 01/30/2023] Open
Abstract
Motor function depends on neural dynamics spanning multiple spatiotemporal scales of population activity, from spiking of neurons to larger-scale local field potentials (LFP). How multiple scales of low-dimensional population dynamics are related in control of movements remains unknown. Multiscale neural dynamics are especially important to study in naturalistic reach-and-grasp movements, which are relatively under-explored. We learn novel multiscale dynamical models for spike-LFP network activity in monkeys performing naturalistic reach-and-grasps. We show low-dimensional dynamics of spiking and LFP activity exhibited several principal modes, each with a unique decay-frequency characteristic. One principal mode dominantly predicted movements. Despite distinct principal modes existing at the two scales, this predictive mode was multiscale and shared between scales, and was shared across sessions and monkeys, yet did not simply replicate behavioral modes. Further, this multiscale mode's decay-frequency explained behavior. We propose that multiscale, low-dimensional motor cortical state dynamics reflect the neural control of naturalistic reach-and-grasp behaviors.
Collapse
Affiliation(s)
- Hamidreza Abbaspourazad
- Ming Hsieh Department of Electrical and Computer Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, CA, 90089, USA
| | - Mahdi Choudhury
- Center for Neural Science, New York University, New York City, NY, 10003, USA
| | - Yan T Wong
- Center for Neural Science, New York University, New York City, NY, 10003, USA
- Department of Physiology, and Electrical and Computer Systems Engineering, Monash University, Melbourne, VIC, 3800, Australia
| | - Bijan Pesaran
- Center for Neural Science, New York University, New York City, NY, 10003, USA
| | - Maryam M Shanechi
- Ming Hsieh Department of Electrical and Computer Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, CA, 90089, USA.
- Neuroscience Graduate Program, University of Southern California, Los Angeles, CA, 90089, USA.
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, 90089, USA.
| |
Collapse
|
31
|
Ahmadi N, Constandinou T, Bouganis CS. Robust and accurate decoding of hand kinematics from entire spiking activity using deep learning. J Neural Eng 2021; 18. [PMID: 33477128 DOI: 10.1088/1741-2552/abde8a] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 01/21/2021] [Indexed: 12/18/2022]
Abstract
OBJECTIVE Brain-machine interfaces (BMIs) seek to restore lost motor functions in individuals with neurological disorders by enabling them to control external devices directly with their thoughts. This work aims to improve robustness and decoding accuracy that currently become major challenges in the clinical translation of intracortical BMIs. APPROACH We propose entire spiking activity (ESA) -an envelope of spiking activity that can be extracted by a simple, threshold-less, and automated technique- as the input signal. We couple ESA with deep learning-based decoding algorithm that uses quasi-recurrent neural network (QRNN) architecture. We evaluate comprehensively the performance of ESA-driven QRNN decoder for decoding hand kinematics from neural signals chronically recorded from the primary motor cortex area of three non-human primates performing different tasks. MAIN RESULTS Our proposed method yields consistently higher decoding performance than any other combinations of the input signal and decoding algorithm previously reported across long term recording sessions. It can sustain high decoding performance even when removing spikes from the raw signals, when using the different number of channels, and when using a smaller amount of training data. SIGNIFICANCE Overall results demonstrate exceptionally high decoding accuracy and chronic robustness, which is highly desirable given it is an unresolved challenge in BMIs.
Collapse
Affiliation(s)
- Nur Ahmadi
- Electrical and Electronic Engineering, Imperial College London, South Kensington Campus, London, London, SW7 2BT, UNITED KINGDOM OF GREAT BRITAIN AND NORTHERN IRELAND
| | - Timothy Constandinou
- Electrical & Electronic Engineering, Imperial College London, South Kensington Campus, London, London, SW7 2BT, UNITED KINGDOM OF GREAT BRITAIN AND NORTHERN IRELAND
| | - Christos-Savvas Bouganis
- Electrical and Electronic Engineering, Imperial College London, South Kensington Campus, London, London, SW7 2BT, UNITED KINGDOM OF GREAT BRITAIN AND NORTHERN IRELAND
| |
Collapse
|
32
|
Affiliation(s)
- Marc W Slutzky
- Departments of Neurology, Physiology, Physical Medicine & Rehabilitation, and Biomedical Engineering, Northwestern University, Chicago, IL, USA.
| |
Collapse
|
33
|
Asgharpour M, Foodeh R, Daliri MR. Regularized Kalman filter for brain-computer interfaces using local field potential signals. J Neurosci Methods 2020; 350:109022. [PMID: 33290753 DOI: 10.1016/j.jneumeth.2020.109022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 11/27/2020] [Indexed: 10/22/2022]
Abstract
BACKGROUND Brain-computer interfaces (BCIs) seek to establish a direct connection from brain to computer, to use in applications such as motor prosthesis control, control of a cursor on the monitor, and so on. Hence, the accuracy of movement decoding from brain signals in BCIs is crucial. The Kalman filter (KF) is often used in BCI systems to decode neural activity and estimate kinetic and kinematic parameters. To use the KF, the state transition matrix, the observation matrix and the covariance matrices of the process and measurement noises must be known in advance, however, in many applications these matrices are not known. Typically, to estimate these parameters, the ordinary least squares method and the sample covariance matrix estimator are used. Our purpose is to enhance the decoding performance of the KF in BCI systems by improving the estimation of the mentioned parameters. NEW METHOD Here, we propose the Regularized Kalman Filter (RKF) which implements two fundamental features: 1) Regularizing the regression estimate of the state equation to improve the estimation of the state transition matrix, and 2) Use of shrinkage method to improve the estimation of the unknown measurement noise covariance matrix. We validated the performance of the proposed method using two datasets of local field potentials obtained from motor cortex of a monkey (Estimation of kinematic parameters during hand movement) and three rats (Estimation of the amount of force applied by hand as a kinetic parameter). RESULTS The results demonstrate that the proposed method outperforms the conventional KF, the KF with feature selection, the Partial least squares, and the Ridge regression approaches.
Collapse
Affiliation(s)
- Matin Asgharpour
- Neuroscience and Neuroengineering Research Lab, Biomedical Engineering Department, School of Electrical Engineering, Iran University of Science & Technology (IUST), Narmak, 16846-13114, Tehran, Iran
| | - Reza Foodeh
- Neuroscience and Neuroengineering Research Lab, Biomedical Engineering Department, School of Electrical Engineering, Iran University of Science & Technology (IUST), Narmak, 16846-13114, Tehran, Iran
| | - Mohammad Reza Daliri
- Neuroscience and Neuroengineering Research Lab, Biomedical Engineering Department, School of Electrical Engineering, Iran University of Science & Technology (IUST), Narmak, 16846-13114, Tehran, Iran.
| |
Collapse
|
34
|
Ahmadi N, Constandinou T, Bouganis CS. Impact of referencing scheme on decoding performance of LFP-based brain-machine interface. J Neural Eng 2020; 18. [PMID: 33242850 DOI: 10.1088/1741-2552/abce3c] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Accepted: 11/26/2020] [Indexed: 12/19/2022]
Abstract
OBJECTIVE There has recently been an increasing interest in local field potential (LFP) for brain-machine interface (BMI) applications due to its desirable properties (signal stability and low bandwidth). LFP is typically recorded with respect to a single unipolar reference which is susceptible to common noise. Several referencing schemes have been proposed to eliminate the common noise, such as bipolar reference, current source density (CSD), and common average reference (CAR). However, to date, there have not been any studies to investigate the impact of these referencing schemes on decoding performance of LFP-based BMIs. APPROACH To address this issue, we comprehensively examined the impact of different referencing schemes and LFP features on the performance of hand kinematic decoding using a deep learning method. We used LFPs chronically recorded from the motor cortex area of a monkey while performing reaching tasks. MAIN RESULTS Experimental results revealed that local motor potential (LMP) emerged as the most informative feature regardless of the referencing schemes. Using LMP as the feature, CAR was found to yield consistently better decoding performance than other referencing schemes over long-term recording sessions. Significance Overall, our results suggest the potential use of LMP coupled with CAR for enhancing the decoding performance of LFP-based BMIs.
Collapse
Affiliation(s)
- Nur Ahmadi
- Electrical and Electronic Engineering, Imperial College London, South Kensington Campus, London, London, SW7 2AZ, UNITED KINGDOM OF GREAT BRITAIN AND NORTHERN IRELAND
| | - Timothy Constandinou
- Electrical & Electronic Engineering, Imperial College London, London, London, UNITED KINGDOM OF GREAT BRITAIN AND NORTHERN IRELAND
| | - Christos-Savvas Bouganis
- Electrical and Electronic Engineering, Imperial College London, London, London, UNITED KINGDOM OF GREAT BRITAIN AND NORTHERN IRELAND
| |
Collapse
|
35
|
Li Y, Wang PT, Vaidya MP, Flint RD, Liu CY, Slutzky MW, Do AH. Refinement of High-Gamma EEG Features From TBI Patients With Hemicraniectomy Using an ICA Informed by Simulated Myoelectric Artifacts. Front Neurosci 2020; 14:599010. [PMID: 33328870 PMCID: PMC7732541 DOI: 10.3389/fnins.2020.599010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 10/30/2020] [Indexed: 11/20/2022] Open
Abstract
Recent studies have shown the ability to record high-γ signals (80-160 Hz) in electroencephalogram (EEG) from traumatic brain injury (TBI) patients who have had hemicraniectomies. However, extraction of the movement-related high-γ remains challenging due to a confounding bandwidth overlap with surface electromyogram (EMG) artifacts related to facial and head movements. In our previous work, we described an augmented independent component analysis (ICA) approach for removal of EMG artifacts from EEG, and referred to as EMG Reduction by Adding Sources of EMG (ERASE). Here, we tested this algorithm on EEG recorded from six TBI patients with hemicraniectomies while they performed a thumb flexion task. ERASE removed a mean of 52 ± 12% (mean ± S.E.M) (maximum 73%) of EMG artifacts. In contrast, conventional ICA removed a mean of 27 ± 19% (mean ± S.E.M) of EMG artifacts from EEG. In particular, high-γ synchronization was significantly improved in the contralateral hand motor cortex area within the hemicraniectomy site after ERASE was applied. A more sophisticated measure of high-γ complexity is the fractal dimension (FD). Here, we computed the FD of EEG high-γ on each channel. Relative FD of high-γ was defined as that the FD in move state was subtracted by FD in idle state. We found relative FD of high-γ over hemicraniectomy after applying ERASE were strongly correlated to the amplitude of finger flexion force. Results showed that significant correlation coefficients across the electrodes related to thumb flexion averaged ~0.76, while the coefficients across the homologous electrodes in non-hemicraniectomy areas were nearly 0. After conventional ICA, a correlation between relative FD of high-γ and force remained high in both hemicraniectomy areas (up to 0.86) and non-hemicraniectomy areas (up to 0.81). Across all subjects, an average of 83% of electrodes significantly correlated with force was located in the hemicraniectomy areas after applying ERASE. After conventional ICA, only 19% of electrodes with significant correlations were located in the hemicraniectomy. These results indicated that the new approach isolated electrophysiological features during finger motor activation while selectively removing confounding EMG artifacts. This approach removed EMG artifacts that can contaminate high-gamma activity recorded over the hemicraniectomy.
Collapse
Affiliation(s)
- Yongcheng Li
- Department of Neurology, University of California, Irvine, Irvine, CA, United States
| | - Po T. Wang
- Department of Biomedical Engineering, University of California, Irvine, Irvine, CA, United States
| | - Mukta P. Vaidya
- Department of Neurology, Northwestern University, Chicago, IL, United States
- Department of Physiology, Northwestern University, Chicago, IL, United States
- Department of Physical Medicine and Rehabilitation, Northwestern University, Chicago, IL, United States
| | - Robert D. Flint
- Department of Neurology, Northwestern University, Chicago, IL, United States
- Department of Physiology, Northwestern University, Chicago, IL, United States
- Department of Physical Medicine and Rehabilitation, Northwestern University, Chicago, IL, United States
| | - Charles Y. Liu
- Department of Neurosurgery, University of Southern California, Los Angeles, CA, United States
- Rancho Los Amigos National Rehabilitation Center, Downey, CA, United States
- Neurorestoration Center, University of Southern California, Los Angeles, CA, United States
| | - Marc W. Slutzky
- Department of Neurology, Northwestern University, Chicago, IL, United States
- Department of Physiology, Northwestern University, Chicago, IL, United States
- Department of Physical Medicine and Rehabilitation, Northwestern University, Chicago, IL, United States
| | - An H. Do
- Department of Neurology, University of California, Irvine, Irvine, CA, United States
| |
Collapse
|
36
|
Kim MK, Sohn JW, Kim SP. Decoding Kinematic Information From Primary Motor Cortex Ensemble Activities Using a Deep Canonical Correlation Analysis. Front Neurosci 2020; 14:509364. [PMID: 33177971 PMCID: PMC7596741 DOI: 10.3389/fnins.2020.509364] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Accepted: 09/22/2020] [Indexed: 12/17/2022] Open
Abstract
The control of arm movements through intracortical brain–machine interfaces (BMIs) mainly relies on the activities of the primary motor cortex (M1) neurons and mathematical models that decode their activities. Recent research on decoding process attempts to not only improve the performance but also simultaneously understand neural and behavioral relationships. In this study, we propose an efficient decoding algorithm using a deep canonical correlation analysis (DCCA), which maximizes correlations between canonical variables with the non-linear approximation of mappings from neuronal to canonical variables via deep learning. We investigate the effectiveness of using DCCA for finding a relationship between M1 activities and kinematic information when non-human primates performed a reaching task with one arm. Then, we examine whether using neural activity representations from DCCA improves the decoding performance through linear and non-linear decoders: a linear Kalman filter (LKF) and a long short-term memory in recurrent neural networks (LSTM-RNN). We found that neural representations of M1 activities estimated by DCCA resulted in more accurate decoding of velocity than those estimated by linear canonical correlation analysis, principal component analysis, factor analysis, and linear dynamical system. Decoding with DCCA yielded better performance than decoding the original FRs using LSTM-RNN (6.6 and 16.0% improvement on average for each velocity and position, respectively; Wilcoxon rank sum test, p < 0.05). Thus, DCCA can identify the kinematics-related canonical variables of M1 activities, thus improving the decoding performance. Our results may help advance the design of decoding models for intracortical BMIs.
Collapse
Affiliation(s)
- Min-Ki Kim
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology, Ulsan, South Korea
| | - Jeong-Woo Sohn
- Department of Medical Science, College of Medicine, Catholic Kwandong University, Gangneung, South Korea
| | - Sung-Phil Kim
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology, Ulsan, South Korea
| |
Collapse
|
37
|
Even-Chen N, Muratore DG, Stavisky SD, Hochberg LR, Henderson JM, Murmann B, Shenoy KV. Power-saving design opportunities for wireless intracortical brain-computer interfaces. Nat Biomed Eng 2020; 4:984-996. [PMID: 32747834 PMCID: PMC8286886 DOI: 10.1038/s41551-020-0595-9] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Accepted: 06/30/2020] [Indexed: 12/17/2022]
Abstract
The efficacy of wireless intracortical brain-computer interfaces (iBCIs) is limited in part by the number of recording channels, which is constrained by the power budget of the implantable system. Designing wireless iBCIs that provide the high-quality recordings of today's wired neural interfaces may lead to inadvertent over-design at the expense of power consumption and scalability. Here, we report analyses of neural signals collected from experimental iBCI measurements in rhesus macaques and from a clinical-trial participant with implanted 96-channel Utah multielectrode arrays to understand the trade-offs between signal quality and decoder performance. Moreover, we propose an efficient hardware design for clinically viable iBCIs, and suggest that the circuit design parameters of current recording iBCIs can be relaxed considerably without loss of performance. The proposed design may allow for an order-of-magnitude power savings and lead to clinically viable iBCIs with a higher channel count.
Collapse
Affiliation(s)
- Nir Even-Chen
- Department of Electrical Engineering, Stanford University, Stanford, CA, USA.
| | - Dante G Muratore
- Department of Electrical Engineering, Stanford University, Stanford, CA, USA
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, USA
| | - Sergey D Stavisky
- Department of Electrical Engineering, Stanford University, Stanford, CA, USA
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, USA
- Department of Neurosurgery, Stanford University, Stanford, CA, USA
| | - Leigh R Hochberg
- Department of Veterans Affairs Medical Center, Center for Neurorestoration and Neurotechnology, Providence, RI, USA
- School of Engineering and Carney Institute for Brain Science, Brown University, Providence, RI, USA
- Center for Neurotechnology and Neurorecovery, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Jaimie M Henderson
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, USA
- Department of Neurosurgery, Stanford University, Stanford, CA, USA
| | - Boris Murmann
- Department of Electrical Engineering, Stanford University, Stanford, CA, USA
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, USA
| | - Krishna V Shenoy
- Department of Electrical Engineering, Stanford University, Stanford, CA, USA
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, USA
- Department of Bioengineering, Stanford University, Stanford, CA, USA
- Department of Neurobiology, Stanford University, Stanford, CA, USA
- Howard Hughes Medical Institute at Stanford University, Stanford, CA, USA
- The Bio-X Institute, Stanford University, Stanford, CA, USA
| |
Collapse
|
38
|
Shi Z, Chen X, Zhao C, He H, Stuphorn V, Wu D. Multi-View Broad Learning System for Primate Oculomotor Decision Decoding. IEEE Trans Neural Syst Rehabil Eng 2020; 28:1908-1920. [PMID: 32746296 PMCID: PMC7521581 DOI: 10.1109/tnsre.2020.3003342] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Multi-view learning improves the learning performance by utilizing multi-view data: data collected from multiple sources, or feature sets extracted from the same data source. This approach is suitable for primate brain state decoding using cortical neural signals. This is because the complementary components of simultaneously recorded neural signals, local field potentials (LFPs) and action potentials (spikes), can be treated as two views. In this paper, we extended broad learning system (BLS), a recently proposed wide neural network architecture, from single-view learning to multi-view learning, and validated its performance in decoding monkeys' oculomotor decision from medial frontal LFPs and spikes. We demonstrated that medial frontal LFPs and spikes in non-human primate do contain complementary information about the oculomotor decision, and that the proposed multi-view BLS is a more effective approach for decoding the oculomotor decision than several classical and state-of-the-art single-view and multi-view learning approaches.
Collapse
Affiliation(s)
- Zhenhua Shi
- Ministry of Education Key Laboratory of Image Processing and Intelligent Control, School of Artificial Intelligence and Automation, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaomo Chen
- Zanvyl Krieger Mind and Brain Institute, Johns Hopkins University School of Medicine
| | | | | | | | | |
Collapse
|
39
|
Loutit AJ, Potas JR. Dorsal Column Nuclei Neural Signal Features Permit Robust Machine-Learning of Natural Tactile- and Proprioception-Dominated Stimuli. Front Syst Neurosci 2020; 14:46. [PMID: 32848640 PMCID: PMC7399364 DOI: 10.3389/fnsys.2020.00046] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2020] [Accepted: 06/22/2020] [Indexed: 02/03/2023] Open
Abstract
Neural prostheses enable users to effect movement through a variety of actuators by translating brain signals into movement control signals. However, to achieve more natural limb movements from these devices, the restoration of somatosensory feedback is required. We used feature-learnability, a machine-learning approach, to assess signal features for their capacity to enhance decoding performance of neural signals evoked by natural tactile and proprioceptive somatosensory stimuli, recorded from the surface of the dorsal column nuclei (DCN) in urethane-anesthetized rats. The highest performing individual feature, spike amplitude, classified somatosensory DCN signals with 70% accuracy. The highest accuracy achieved was 87% using 13 features that were extracted from both high and low-frequency (LF) bands of DCN signals. In general, high-frequency (HF) features contained the most information about peripheral somatosensory events, but when features were acquired from short time-windows, classification accuracy was significantly improved by adding LF features to the feature set. We found that proprioception-dominated stimuli generalize across animals better than tactile-dominated stimuli, and we demonstrate how information that signal features contribute to neural decoding changes over the time-course of dynamic somatosensory events. These findings may inform the biomimetic design of artificial stimuli that can activate the DCN to substitute somatosensory feedback. Although, we investigated somatosensory structures, the feature set we investigated may also prove useful for decoding other (e.g., motor) neural signals.
Collapse
Affiliation(s)
- Alastair J. Loutit
- School of Medical Sciences, University of New South Wales Sydney, Kensington, NSW, Australia
- The Eccles Institute of Neuroscience, John Curtin School of Medical Research, Australian National University, Canberra, ACT, Australia
| | - Jason R. Potas
- School of Medical Sciences, University of New South Wales Sydney, Kensington, NSW, Australia
- The Eccles Institute of Neuroscience, John Curtin School of Medical Research, Australian National University, Canberra, ACT, Australia
| |
Collapse
|
40
|
Nason SR, Vaskov AK, Willsey MS, Welle EJ, An H, Vu PP, Bullard AJ, Nu CS, Kao JC, Shenoy KV, Jang T, Kim HS, Blaauw D, Patil PG, Chestek CA. A low-power band of neuronal spiking activity dominated by local single units improves the performance of brain-machine interfaces. Nat Biomed Eng 2020; 4:973-983. [PMID: 32719512 DOI: 10.1038/s41551-020-0591-0] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 06/24/2020] [Indexed: 12/18/2022]
Abstract
The large power requirement of current brain-machine interfaces is a major hindrance to their clinical translation. In basic behavioural tasks, the downsampled magnitude of the 300-1,000 Hz band of spiking activity can predict movement similarly to the threshold crossing rate (TCR) at 30 kilo-samples per second. However, the relationship between such a spiking-band power (SBP) and neural activity remains unclear, as does the capability of using the SBP to decode complicated behaviour. By using simulations of recordings of neural activity, here we show that the SBP is dominated by local single-unit spikes with spatial specificity comparable to or better than that of the TCR, and that the SBP correlates better with the firing rates of lower signal-to-noise-ratio units than the TCR. With non-human primates, in an online task involving the one-dimensional decoding of the movement of finger groups and in an offline two-dimensional cursor-control task, the SBP performed equally well or better than the TCR. The SBP may enhance the decoding performance of neural interfaces while enabling substantial cuts in power consumption.
Collapse
Affiliation(s)
- Samuel R Nason
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Alex K Vaskov
- Robotics Graduate Program, University of Michigan, Ann Arbor, MI, USA
| | - Matthew S Willsey
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA.,Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Elissa J Welle
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Hyochan An
- Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, MI, USA
| | - Philip P Vu
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Autumn J Bullard
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Chrono S Nu
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Jonathan C Kao
- Department of Electrical and Computer Engineering, University of California, Los Angeles, Los Angeles, CA, USA.,Neurosciences Program, University of California, Los Angeles, Los Angeles, CA, USA
| | - Krishna V Shenoy
- Department of Electrical Engineering, Stanford University, Stanford, CA, USA.,Department of Bioengineering, Stanford University, Stanford, CA, USA.,Department of Neurobiology, Stanford University, Stanford, CA, USA.,The Bio-X Program, Stanford University, Stanford, CA, USA.,Wu Tsai Neuroscience Institute, Stanford University, Stanford, CA, USA.,Howard Hughes Medical Institute, Stanford University, Stanford, CA, USA
| | - Taekwang Jang
- Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, MI, USA.,Department of Information Technology and Electrical Engineering, ETH Zürich, Zürich, Switzerland
| | - Hun-Seok Kim
- Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, MI, USA
| | - David Blaauw
- Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, MI, USA
| | - Parag G Patil
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA.,Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI, USA.,Department of Neurology, University of Michigan Medical School, Ann Arbor, MI, USA.,Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI, USA
| | - Cynthia A Chestek
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA. .,Robotics Graduate Program, University of Michigan, Ann Arbor, MI, USA. .,Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, MI, USA. .,Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
41
|
Burkhart MC, Brandman DM, Franco B, Hochberg LR, Harrison MT. The Discriminative Kalman Filter for Bayesian Filtering with Nonlinear and Nongaussian Observation Models. Neural Comput 2020; 32:969-1017. [PMID: 32187000 PMCID: PMC8259355 DOI: 10.1162/neco_a_01275] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
The Kalman filter provides a simple and efficient algorithm to compute the posterior distribution for state-space models where both the latent state and measurement models are linear and gaussian. Extensions to the Kalman filter, including the extended and unscented Kalman filters, incorporate linearizations for models where the observation model p ( observation | state ) is nonlinear. We argue that in many cases, a model for p ( state | observation ) proves both easier to learn and more accurate for latent state estimation. Approximating p ( state | observation ) as gaussian leads to a new filtering algorithm, the discriminative Kalman filter (DKF), which can perform well even when p ( observation | state ) is highly nonlinear and/or nongaussian. The approximation, motivated by the Bernstein-von Mises theorem, improves as the dimensionality of the observations increases. The DKF has computational complexity similar to the Kalman filter, allowing it in some cases to perform much faster than particle filters with similar precision, while better accounting for nonlinear and nongaussian observation models than Kalman-based extensions. When the observation model must be learned from training data prior to filtering, off-the-shelf nonlinear and nonparametric regression techniques can provide a gaussian model for p ( observation | state ) that cleanly integrates with the DKF. As part of the BrainGate2 clinical trial, we successfully implemented gaussian process regression with the DKF framework in a brain-computer interface to provide real-time, closed-loop cursor control to a person with a complete spinal cord injury. In this letter, we explore the theory underlying the DKF, exhibit some illustrative examples, and outline potential extensions.
Collapse
Affiliation(s)
- Michael C Burkhart
- Division of Applied Mathematics, Brown University, Providence, RI 02912, U.S.A.
| | - David M Brandman
- Department of Neuroscience, Brown University, Providence, RI 02912, U.S.A., and Department of Surgery (Neurosurgery), Dalhousie University, Halifax, NS, B3H 4R2, Canada
| | - Brian Franco
- Center for Neurotechnology and Neurorecovery, Neurology, Massachusetts General Hospital, Boston, MA 02114, U.S.A.
| | - Leigh R Hochberg
- Center for Neurotechnology and Neurorecovery, Neurology, Massachusetts General Hospital, Boston, MA 02114, U.S.A.; School of Engineering and Carney Institute for Brain Science, Brown University, Providence, RI 02912, U.S.A.; Neurology, Harvard Medical School, Boston, MA 02115, U.S.A.; and VA RR&D Center for Neurorestoration and Neurotechnology, Providence Veterans Affairs Medical Center, Providence, RI 02908, U.S.A.
| | - Matthew T Harrison
- Division of Applied Mathematics, Brown University, Providence, RI 02912, U.S.A.
| |
Collapse
|
42
|
Fatemi M, Daliri MR. Nonlinear sparse partial least squares: an investigation of the effect of nonlinearity and sparsity on the decoding of intracranial data. J Neural Eng 2020; 17:016055. [DOI: 10.1088/1741-2552/ab5d47] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
43
|
Huang Y, Shen X, Wang Y, Chen S, Zhang X. Time-frequency Relevancy Analysis between Local Field Potentials and Lever Pressing Motion of Rats. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2020; 2019:7169-7172. [PMID: 31947488 DOI: 10.1109/embc.2019.8857640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Cortical Local field potentials (LFPs) in primary motor cortex (M1) include significant movement information. As a movement decoding source, LFPs have the advantage of being long-lasting and stable. However, LFPs contain activity of neural ensemble from neighborhood or even distant cortical areas. Information fully relevant to the movement task is necessary to be extracted. Existing studies indicate the movement relevant information is embedded in different frequency ranges. The analysis generally assumes linear relationship between band-limited LFPs and movement or specifically bases on the decoding method. The contribution of each frequency band is exhaustedly search for a variety of frequency band combinations, which increases the computation complexity. Considering the distinct frequency ranges may also exhibit relevancy over time, we propose to analyze the time-frequency relevancy between LFP signals and the rat lever-press tasks with a local learning based algorithm method. This approach extracts the important time-frequency features from the nonlinear LFP data structure, and labels the sequence of importance for time-frequency features. Comparing to the greedy search, our method demonstrate more clear time-frequency contribution, especially 50-100Hz signal and 200-400Hz signal for holding and pressing respectively, and are validated by better decoding results.
Collapse
|
44
|
Sihn D, Kim SP. A Spike Train Distance Robust to Firing Rate Changes Based on the Earth Mover's Distance. Front Comput Neurosci 2020; 13:82. [PMID: 31920607 PMCID: PMC6914768 DOI: 10.3389/fncom.2019.00082] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 11/25/2019] [Indexed: 11/25/2022] Open
Abstract
Neural spike train analysis methods are mainly used for understanding the temporal aspects of neural information processing. One approach is to measure the dissimilarity between the spike trains of a pair of neurons, often referred to as the spike train distance. The spike train distance has been often used to classify neuronal units with similar temporal patterns. Several methods to compute spike train distance have been developed so far. Intuitively, a desirable distance should be the shortest length between two objects. The Earth Mover’s Distance (EMD) can compute spike train distance by measuring the shortest length between two spike trains via shifting a fraction of spikes from one spike train to another. The EMD could accurately measure spike timing differences, temporal similarity, and spikes time synchrony. It is also robust to firing rate changes. Victor and Purpura (1996) distance measures the minimum cost between two spike trains. Although it also measures the shortest path between spike trains, its output can vary with the time-scale parameter. In contrast, the EMD measures distance in a unique way by calculating the genuine shortest length between spike trains. The EMD also outperforms other existing spike train distance methods in measuring various aspects of the temporal characteristics of spike trains and in robustness to firing rate changes. The EMD can effectively measure the shortest length between spike trains without being considerably affected by the overall firing rate difference between them. Hence, it is suitable for pure temporal coding exclusively, which is a predominant premise underlying the present study.
Collapse
Affiliation(s)
- Duho Sihn
- Department of Human Factors Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, South Korea
| | - Sung-Phil Kim
- Department of Human Factors Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, South Korea
| |
Collapse
|
45
|
Heydari Beni N, Foodeh R, Shalchyan V, Daliri MR. Force decoding using local field potentials in primary motor cortex: PLS or Kalman filter regression? AUSTRALASIAN PHYSICAL & ENGINEERING SCIENCES IN MEDICINE 2020; 43:10.1007/s13246-019-00833-7. [PMID: 31898242 DOI: 10.1007/s13246-019-00833-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 12/09/2019] [Indexed: 11/30/2022]
Abstract
The development of brain-computer interface (BCI) systems is an important approach in brain studies. Control of communication devices and prostheses in real-world scenarios requires complex movement parameters. Decoding a variety of neural signals captured by micro-wire arrays is a potential applicant for extracting movement-related information. The present work was conducted to compare the functionality of partial least square (PLS) regression and Kalman filter to predict the force parameter from local field potential (LFP) signals of the primary motor cortex (M1). The signals were recorded using a 16-channel micro-wire array from the forelimb-related area of the M1 of three rats performing a behavioral task in which the force signal of the rat's forelimb paw was generated. Our results show that PLS regression and Kalman filters with the mean performance of 0.75 and 0.72 in terms of the correlation coefficient (CC) and 0.37 and 0.48 in terms of normalized mean square error (NMSE), respectively, are effective methods for decoding the force parameter from LFPs. Kalman filter underperforms PLS both in performance and speed. Although adding nonlinearity to the Kalman filter results in equally accurate CC performance as PLS, it has even more computational cost. Therefore, it is inferred that nonlinear methods do not necessarily have better functionality than linear ones and PLS, as a simple fast linear method could be an effectively applicable regression technique for BCIs.
Collapse
Affiliation(s)
- Nargess Heydari Beni
- Neuroscience and Neuroengineering Research Lab, Department of Biomedical Engineering, School of Electrical Engineering, Iran University of Science and Technology (IUST), Narmak, 16846-13114, Tehran, Iran
- Engineering Bionics Lab, Department of Systems Design Engineering, University of Waterloo, Waterloo, Canada
| | - Reza Foodeh
- Neuroscience and Neuroengineering Research Lab, Department of Biomedical Engineering, School of Electrical Engineering, Iran University of Science and Technology (IUST), Narmak, 16846-13114, Tehran, Iran
| | - Vahid Shalchyan
- Neuroscience and Neuroengineering Research Lab, Department of Biomedical Engineering, School of Electrical Engineering, Iran University of Science and Technology (IUST), Narmak, 16846-13114, Tehran, Iran
| | - Mohammad Reza Daliri
- Neuroscience and Neuroengineering Research Lab, Department of Biomedical Engineering, School of Electrical Engineering, Iran University of Science and Technology (IUST), Narmak, 16846-13114, Tehran, Iran.
| |
Collapse
|
46
|
Bundy DT, Guggenmos DJ, Murphy MD, Nudo RJ. Chronic stability of single-channel neurophysiological correlates of gross and fine reaching movements in the rat. PLoS One 2019; 14:e0219034. [PMID: 31665145 PMCID: PMC6821068 DOI: 10.1371/journal.pone.0219034] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Accepted: 09/24/2019] [Indexed: 11/30/2022] Open
Abstract
While substantial task-related neural activity has been observed during motor tasks in rodent primary motor cortex and premotor cortex, the long-term stability of these responses in healthy rats is uncertain, limiting the interpretability of longitudinal changes in the specific patterns of neural activity associated with learning or motor recovery following injury. This study examined the stability of task-related neural activity associated with execution of two distinct reaching tasks in healthy rodents. A novel automated rodent behavioral apparatus was constructed and rats were trained to perform a reaching task combining a ‘gross’ lever press and a ‘fine’ pellet retrieval. In each animal, two chronic microelectrode arrays were implanted in motor cortex spanning the caudal forelimb area (rodent primary motor cortex) and the rostral forelimb area (rodent premotor cortex). We recorded multiunit spiking and local field potential activity from 10 days to 7–10 weeks post-implantation to characterize the patterns of neural activity observed during each task component and analyzed the consistency of channel-specific task-related neural activity. Task-related changes in neural activity were observed on the majority of channels. While the task-related changes in multi-unit spiking and local field potential spectral power were consistent over several weeks, spectral power changes were more stable, despite the trade-off of decreased spatial and temporal resolution. These results show that neural activity in rodent primary and premotor cortex is associated with specific phases of reaching movements with stable patterns of task-related activity across time, establishing the relevance of the rodent for future studies designed to examine changes in task-related neural activity during recovery from focal cortical lesions.
Collapse
Affiliation(s)
- David T. Bundy
- Department of Rehabilitation Medicine, University of Kansas Medical Center, Kansas City, KS, United States of America
| | - David J. Guggenmos
- Department of Rehabilitation Medicine, University of Kansas Medical Center, Kansas City, KS, United States of America
| | - Maxwell D. Murphy
- Bioengineering Graduate Program, University of Kansas, Lawrence, KS, United States of America
| | - Randolph J. Nudo
- Department of Rehabilitation Medicine, University of Kansas Medical Center, Kansas City, KS, United States of America
- Landon Center on Aging, University of Kansas Medical Center, Kansas City, KS, United States of America
- * E-mail:
| |
Collapse
|
47
|
Usoro JO, Shih E, Black BJ, Rihani RT, Abbott J, Chakraborty B, Pancrazio JJ, Cogan SF. Chronic stability of local field potentials from standard and modified Blackrock microelectrode arrays implanted in the rat motor cortex. Biomed Phys Eng Express 2019. [DOI: 10.1088/2057-1976/ab4c02] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
48
|
Yousefi A, Basu I, Paulk AC, Peled N, Eskandar EN, Dougherty DD, Cash SS, Widge AS, Eden UT. Decoding Hidden Cognitive States From Behavior and Physiology Using a Bayesian Approach. Neural Comput 2019; 31:1751-1788. [DOI: 10.1162/neco_a_01196] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Cognitive processes, such as learning and cognitive flexibility, are both difficult to measure and to sample continuously using objective tools because cognitive processes arise from distributed, high-dimensional neural activity. For both research and clinical applications, that dimensionality must be reduced. To reduce dimensionality and measure underlying cognitive processes, we propose a modeling framework in which a cognitive process is defined as a low-dimensional dynamical latent variable—called a cognitive state, which links high-dimensional neural recordings and multidimensional behavioral readouts. This framework allows us to decompose the hard problem of modeling the relationship between neural and behavioral data into separable encoding-decoding approaches. We first use a state-space modeling framework, the behavioral decoder, to articulate the relationship between an objective behavioral readout (e.g., response times) and cognitive state. The second step, the neural encoder, involves using a generalized linear model (GLM) to identify the relationship between the cognitive state and neural signals, such as local field potential (LFP). We then use the neural encoder model and a Bayesian filter to estimate cognitive state using neural data (LFP power) to generate the neural decoder. We provide goodness-of-fit analysis and model selection criteria in support of the encoding-decoding result. We apply this framework to estimate an underlying cognitive state from neural data in human participants ([Formula: see text]) performing a cognitive conflict task. We successfully estimated the cognitive state within the 95% confidence intervals of that estimated using behavior readout for an average of 90% of task trials across participants. In contrast to previous encoder-decoder models, our proposed modeling framework incorporates LFP spectral power to encode and decode a cognitive state. The framework allowed us to capture the temporal evolution of the underlying cognitive processes, which could be key to the development of closed-loop experiments and treatments.
Collapse
Affiliation(s)
- Ali Yousefi
- Department of Computer Science, Worcester Polytechnic Institute, 100 Institute Road, Worcester, MA 01609, U.S.A
| | - Ishita Basu
- Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, U.S.A
| | - Angelique C. Paulk
- Department of Neurology, Massachusetts General Hospital, Boston, MA 02114, U.S.A
| | - Noam Peled
- Department of Radiology, MBGH/HST Martinos Center for Biomedical Imaging and Harvard Medical School, Boston, MA 02114, U.S.A
| | - Emad N. Eskandar
- Department of Neurological Surgery, Albert Einstein College of Medicine, Bronx, NY 10461, U.S.A
| | - Darin D. Dougherty
- Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, U.S.A
| | - Sydney S. Cash
- Department of Neurology, Massachusetts General Hospital, Boston, MA 02114, U.S.A
| | - Alik S. Widge
- Department of Psychiatry, University of Minnesota, Minneapolis, MN 55454, U.S.A
| | - Uri T. Eden
- Department of Mathematics and Statistics, Boston University, Boston, MA 02215, U.S.A
| |
Collapse
|
49
|
Fischer B, Schander A, Kreiter AK, Lang W, Wegener D. Visual epidural field potentials possess high functional specificity in single trials. J Neurophysiol 2019; 122:1634-1648. [PMID: 31412218 DOI: 10.1152/jn.00510.2019] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Recordings of epidural field potentials (EFPs) allow neuronal activity to be acquired over a large region of cortical tissue with minimal invasiveness. Because electrodes are placed on top of the dura and do not enter the neuronal tissue, EFPs offer intriguing options for both clinical and basic science research. On the other hand, EFPs represent the integrated activity of larger neuronal populations and possess a higher trial-by-trial variability and a reduced signal-to-noise ratio due the additional barrier of the dura. It is thus unclear whether and to what extent EFPs have sufficient spatial selectivity to allow for conclusions about the underlying functional cortical architecture, and whether single EFP trials provide enough information on the short timescales relevant for many clinical and basic neuroscience purposes. We used the high spatial resolution of primary visual cortex to address these issues and investigated the extent to which very short EFP traces allow reliable decoding of spatial information. We briefly presented different visual objects at one of nine closely adjacent locations and recorded neuronal activity with a high-density epidural multielectrode array in three macaque monkeys. With the use of receiver operating characteristics (ROC) to identify the most informative data, machine-learning algorithms provided close-to-perfect classification rates for all 27 stimulus conditions. A binary classifier applying a simple max function on ROC-selected data further showed that single trials might be classified with 100% performance even without advanced offline classifiers. Thus, although highly variable, EFPs constitute an extremely valuable source of information and offer new perspectives for minimally invasive recording of large-scale networks.NEW & NOTEWORTHY Epidural field potential (EFP) recordings provide a minimally invasive approach to investigate large-scale neural networks, but little is known about whether they possess the required specificity for basic and clinical neuroscience. By making use of the spatial selectivity of primary visual cortex, we show that single-trial information can be decoded with close-to-perfect performance, even without using advanced classifiers and based on very few data. This labels EFPs as a highly attractive and widely usable signal.
Collapse
Affiliation(s)
- Benjamin Fischer
- Brain Research Institute, Center for Cognitive Sciences, University of Bremen, Bremen, Germany
| | - Andreas Schander
- Institute for Microsensors, -Actuators, and -Systems, University of Bremen, Bremen, Germany
| | - Andreas K Kreiter
- Brain Research Institute, Center for Cognitive Sciences, University of Bremen, Bremen, Germany
| | - Walter Lang
- Institute for Microsensors, -Actuators, and -Systems, University of Bremen, Bremen, Germany
| | - Detlef Wegener
- Brain Research Institute, Center for Cognitive Sciences, University of Bremen, Bremen, Germany
| |
Collapse
|
50
|
Liu J, Ren Y, Xu D, Kang SH, Zhang LQ. EMG-Based Real-Time Linear-Nonlinear Cascade Regression Decoding of Shoulder, Elbow, and Wrist Movements in Able-Bodied Persons and Stroke Survivors. IEEE Trans Biomed Eng 2019; 67:1272-1281. [PMID: 31425016 DOI: 10.1109/tbme.2019.2935182] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
OBJECTIVE This study aimed to decode shoulder, elbow and wrist dynamic movements continuously and simultaneously based on multi-channel surface electromyography signals, useful for electromyography controlled exoskeleton robots for upper-limb rehabilitation. METHODS Ten able-bodied subjects and ten stroke subjects were instructed to voluntarily move the shoulder, elbow and wrist joints back and forth in a horizontal plane with an exoskeleton robot. The shoulder, elbow and wrist movements and surface electromyography signals from six muscles crossing the joints were recorded. A set of three parallel linear-nonlinear cascade decoders was developed to continuously estimate the selected shoulder, elbow and wrist movements based on a generalized linear model using the anterior deltoid, posterior deltoid, biceps brachii, long head triceps brachii, flexor carpi radialis, and extensor carpi radialis muscle electromyography signals as the model inputs. RESULTS The decoder performed well for both healthy and stroke populations. As movement smoothness decreased, decoding performance decreased for the stroke population. CONCLUSION The proposed method is capable of simultaneously and continuously estimating multi-joint movements of the human arm in real-time by characterizing the nonlinear mappings between muscle activity and kinematic signals based on linear regression. SIGNIFICANCE This may prove useful in developing myoelectric controlled exoskeletons for motor rehabilitation of neurological disorders.
Collapse
|