1
|
López-Forniés I, Asión-Suñer L, Sarvisé-Biec A. The Bioinspired Prosumer-Interactions between Bioinspired Design Methods in the Prosumer Scope. Biomimetics (Basel) 2024; 9:539. [PMID: 39329561 PMCID: PMC11429633 DOI: 10.3390/biomimetics9090539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 08/22/2024] [Accepted: 08/31/2024] [Indexed: 09/28/2024] Open
Abstract
The emergence of prosumers, who actively participate in designing and producing goods, has generated a growing interest in homemade products. Factors such as design methods, component reuse, or digital fabrication empower prosumer designers to realize their ideas. Although there are cases of bioinspired products manufactured by prosumers, the interactions between bioinspired design methods in the prosumer field have not been addressed from an academic point of view. This article presents a case that combines bioinspired design methods with prosumer characteristics from the perspective of a designer who uses biological research results whilst acting as a prosumer. The proposal is to see whether working on a small scale, without the need for biomimetics experts, and independently, as a prosumer, is feasible and valuable. As a result, a bicycle flashlight is designed with a microgenerator bioinspired by the geometry of samara seeds, and is tested in a wind tunnel. This case shows that the integration of a bioinspired design in prosumer contexts poses unique challenges and requires a multidisciplinary approach. Furthermore, the application of a bioinspired approach in this case has not only provided a certain level of novelty to the final product, but has also improved its efficiency and reduced its financial expenditure.
Collapse
Affiliation(s)
- Ignacio López-Forniés
- Design and Manufacturing Engineering Department, Zaragoza University, 50009 Zaragoza, Spain; (L.A.-S.); (A.S.-B.)
| | | | | |
Collapse
|
2
|
Raman R, Sreenivasan A, Suresh M, Nedungadi P. Mapping biomimicry research to sustainable development goals. Sci Rep 2024; 14:18613. [PMID: 39127774 PMCID: PMC11316808 DOI: 10.1038/s41598-024-69230-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Accepted: 08/01/2024] [Indexed: 08/12/2024] Open
Abstract
This study systematically evaluates biomimicry research within the context of sustainable development goals (SDGs) to discern the interdisciplinary interplay between biomimicry and SDGs. The alignment of biomimicry with key SDGs showcases its interdisciplinary nature and potential to offer solutions across the health, sustainability, and energy sectors. This study identified two primary thematic clusters. The first thematic cluster focused on health, partnership, and life on land (SDGs 3, 17, and 15), highlighting biomimicry's role in healthcare innovations, sustainable collaboration, and land management. This cluster demonstrates the potential of biomimicry to contribute to medical technologies, emphasizing the need for cross-sectoral partnerships and ecosystem preservation. The second thematic cluster revolves around clean water, energy, infrastructure, and marine life (SDGs 6, 7, 9, and 14), showcasing nature-inspired solutions for sustainable development challenges, including energy generation and water purification. The prominence of SDG 7 within this cluster indicates that biomimicry significantly contributes to sustainable energy practices. The analysis of thematic clusters further revealed the broad applicability of biomimicry and its role in enhancing sustainable energy access and promoting ecosystem conservation. Emerging research topics, such as metaheuristics, nanogenerators, exosomes, and bioprinting, indicate a dynamic field poised for significant advancements. By mapping the connections between biomimicry and SDGs, this study provides a comprehensive overview of the field's trajectory, emphasizing its importance in advancing global sustainability efforts.
Collapse
Affiliation(s)
- Raghu Raman
- Amrita School of Business, Amritapuri, Amrita Vishwa Vidyapeetham, Kollam, Kerala, India.
| | - Aswathy Sreenivasan
- Amrita School of Business, Amrita Vishwa Vidyapeetham, Coimbatore, Tamil Nadu, India
| | - M Suresh
- Amrita School of Business, Amrita Vishwa Vidyapeetham, Coimbatore, Tamil Nadu, India
| | - Prema Nedungadi
- Amrita School of Computing, Amritapuri, Amrita Vishwa Vidyapeetham, Kollam, Kerala, India
| |
Collapse
|
3
|
Ding H, Chen R, Zhu Y, Shen H, Gao Q. Effect of Frequency-Amplitude Parameter and Aspect Ratio on Propulsion Performance of Underwater Flapping-Foil. Biomimetics (Basel) 2024; 9:324. [PMID: 38921204 PMCID: PMC11201721 DOI: 10.3390/biomimetics9060324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 05/26/2024] [Accepted: 05/26/2024] [Indexed: 06/27/2024] Open
Abstract
The propulsion system is the core component of unmanned underwater vehicles. The flapping propulsion method of marine animals' flippers, which allows for flexibility, low noise, and high energy utilization at low speeds, can provide a new perspective for the development of new propulsion technology. In this study, a new experimental flapping propulsion apparatus that can be installed in both directions has been constructed. The guide rail slider mechanism can achieve the retention of force in the direction of movement, thereby decoupling thrust, lift, and torque. Subsequently, the motion parameters of frequency-amplitude related to the thrust and lift of a bionic flapping-foil are scrutinized. A response surface connecting propulsion efficiency and these motion parameters is formulated. The highest efficiency of the flapping-foil propulsion is achieved at a frequency of 2 Hz and an amplitude of 40°. Furthermore, the impact of the installation mode and the aspect ratio of the flapping-foil is examined. The reverse installation of the swing yields a higher thrust than the forward swing. As the chord length remains constant and the span length increases, the propulsive efficiency gradually improves. When the chord length is extended to a certain degree, the propulsion efficiency exhibits a parabolic pattern, increasing initially and then diminishing. This investigation offers a novel perspective for the bionic design within the domain of underwater propulsion. This research provides valuable theoretical guidance for bionic design in the underwater propulsion field.
Collapse
Affiliation(s)
- Hao Ding
- Henan Key Laboratory of Superhard Abrasives and Grinding Equipment, Henan University of Technology, Zhengzhou 450001, China; (H.D.); (H.S.)
- School of Mechanical and Electrical Engineering, Henan University of Technology, Zhengzhou 450001, China; (R.C.); (Q.G.)
| | - Ruoqian Chen
- School of Mechanical and Electrical Engineering, Henan University of Technology, Zhengzhou 450001, China; (R.C.); (Q.G.)
| | - Yawei Zhu
- School of Mechanical and Electrical Engineering, Henan University of Technology, Zhengzhou 450001, China; (R.C.); (Q.G.)
| | - Huipeng Shen
- Henan Key Laboratory of Superhard Abrasives and Grinding Equipment, Henan University of Technology, Zhengzhou 450001, China; (H.D.); (H.S.)
- School of Mechanical and Electrical Engineering, Henan University of Technology, Zhengzhou 450001, China; (R.C.); (Q.G.)
| | - Qiang Gao
- School of Mechanical and Electrical Engineering, Henan University of Technology, Zhengzhou 450001, China; (R.C.); (Q.G.)
| |
Collapse
|
4
|
Cardenas JA, Samadikhoshkho Z, Rehman AU, Valle-Pérez AU, de León EHP, Hauser CAE, Feron EM, Ahmad R. A systematic review of robotic efficacy in coral reef monitoring techniques. MARINE POLLUTION BULLETIN 2024; 202:116273. [PMID: 38569302 DOI: 10.1016/j.marpolbul.2024.116273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 03/15/2024] [Accepted: 03/16/2024] [Indexed: 04/05/2024]
Abstract
Coral reefs are home to a variety of species, and their preservation is a popular study area; however, monitoring them is a significant challenge, for which the use of robots offers a promising answer. The purpose of this study is to analyze the current techniques and tools employed in coral reef monitoring, with a focus on the role of robotics and its potential in transforming this sector. Using a systematic review methodology examining peer-reviewed literature across engineering and earth sciences from the Scopus database focusing on "robotics" and "coral reef" keywords, the article is divided into three sections: coral reef monitoring, robots in coral reef monitoring, and case studies. The initial findings indicated a variety of monitoring strategies, each with its own advantages and disadvantages. Case studies have also highlighted the global application of robotics in monitoring, emphasizing the challenges and opportunities unique to each context. Robotic interventions driven by artificial intelligence and machine learning have led to a new era in coral reef monitoring. Such developments not only improve monitoring but also support the conservation and restoration of these vulnerable ecosystems. Further research is required, particularly on robotic systems for monitoring coral nurseries and maximizing coral health in both indoor and open-sea settings.
Collapse
Affiliation(s)
- Jennifer A Cardenas
- Aquaponics 4.0 Learning Factory (AllFactory), University of Alberta, Edmonton, Canada
| | - Zahra Samadikhoshkho
- Aquaponics 4.0 Learning Factory (AllFactory), University of Alberta, Edmonton, Canada
| | - Ateeq Ur Rehman
- Aquaponics 4.0 Learning Factory (AllFactory), University of Alberta, Edmonton, Canada
| | - Alexander U Valle-Pérez
- Laboratory for Nanomedicine, Division of Biological and Environmental Science and Engineering, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia; Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia; Red Sea Research Center, King Abdullah University of Science and Technology, Thuwal, Jeddah 23955, Saudi Arabia
| | - Elena Herrera-Ponce de León
- Laboratory for Nanomedicine, Division of Biological and Environmental Science and Engineering, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia; Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia; Red Sea Research Center, King Abdullah University of Science and Technology, Thuwal, Jeddah 23955, Saudi Arabia
| | - Charlotte A E Hauser
- Laboratory for Nanomedicine, Division of Biological and Environmental Science and Engineering, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia; Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia; Red Sea Research Center, King Abdullah University of Science and Technology, Thuwal, Jeddah 23955, Saudi Arabia
| | - Eric M Feron
- Laboratory for Nanomedicine, Division of Biological and Environmental Science and Engineering, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| | - Rafiq Ahmad
- Aquaponics 4.0 Learning Factory (AllFactory), University of Alberta, Edmonton, Canada.
| |
Collapse
|
5
|
Saint-Sardos A, Aish A, Tchakarov N, Bourgoin T, Petit LM, Sun JS, Vignes-Lebbe R. Bioinspire-Explore: Taxonomy-Driven Exploration of Biodiversity Data for Bioinspired Innovation. Biomimetics (Basel) 2024; 9:63. [PMID: 38392109 PMCID: PMC10886457 DOI: 10.3390/biomimetics9020063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 01/16/2024] [Accepted: 01/17/2024] [Indexed: 02/24/2024] Open
Abstract
Successful bioinspired design depends on practitioners' access to biological data in a relevant form. Although multiple open-access biodiversity databases exist, their presentation is often adapted to life scientists, rather than bioinspired designers. In this paper, we present a new tool, "Bioinspire-Explore", for navigating biodiversity data in order to uncover biological systems of interest for a range of sectors. Bioinspire-Explore allows users to search for inspiring biological models via taxa (species, genera, etc.) as an entry point. It provides information on a taxon's position in the "tree of life", its distribution and climatic niche, as well as its appearance. Bioinspire-Explore also shows users connections in the bioinspiration literature between their taxon of interest and associated biological processes, habitats, and physical measurements by way of their semantic proximity. We believe Bioinspire-Explore has the potential to become an indispensable resource for both biologists and bioinspired designers in different fields.
Collapse
Affiliation(s)
- Adrien Saint-Sardos
- Centre d'Études et d'Expertises en Biomimétisme de Senlis (CEEBIOS), 62 Rue du Faubourg Saint-Martin, 60300 Senlis, France
| | - Annabelle Aish
- Bioinspire-Museum, Museum National d'Histoire Naturelle, 57 rue Cuvier, 75005 Paris, France
| | - Nikolay Tchakarov
- Centre d'Études et d'Expertises en Biomimétisme de Senlis (CEEBIOS), 62 Rue du Faubourg Saint-Martin, 60300 Senlis, France
| | - Thierry Bourgoin
- Sorbonne Université, Muséum National d'Histoire Naturelle, CNRS, EPHE, Université des Antilles, Institut de Systématique Évolution Biodiversité, ISYEB, CP 48, 57 Rue Cuvier, 75005 Paris, France
| | - Luce-Marie Petit
- Centre d'Études et d'Expertises en Biomimétisme de Senlis (CEEBIOS), 62 Rue du Faubourg Saint-Martin, 60300 Senlis, France
| | - Jian-Sheng Sun
- Bioinspire-Museum, Museum National d'Histoire Naturelle, 57 rue Cuvier, 75005 Paris, France
| | - Régine Vignes-Lebbe
- Sorbonne Université, Muséum National d'Histoire Naturelle, CNRS, EPHE, Université des Antilles, Institut de Systématique Évolution Biodiversité, ISYEB, CP 48, 57 Rue Cuvier, 75005 Paris, France
| |
Collapse
|
6
|
Snell-Rood EC, Smirnoff D. Biology for biomimetics I: function as an interdisciplinary bridge in bio-inspired design. BIOINSPIRATION & BIOMIMETICS 2023; 18:052001. [PMID: 37429293 DOI: 10.1088/1748-3190/ace5fb] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 07/10/2023] [Indexed: 07/12/2023]
Abstract
In bio-inspired design, the concept of 'function' allows engineers and designers to move between biological models and human applications. Abstracting a problem to general functions allows designers to look to traits that perform analogous functions in biological organisms. However, the idea of function can mean different things across fields, presenting challenges for interdisciplinary research. Here we review core ideas in biology that relate to the concept of 'function,' including adaptation, tradeoffs, and fitness, as a companion to bio-inspired design approaches. We align these ideas with a top-down approach in biomimetics, where engineers or designers start with a problem of interest and look to biology for ideas. We review how one can explore a range of biological analogies for a given function by considering function across different parts of an organism's life, such as acquiring nutrients or avoiding disease. Engineers may also draw inspiration from biological traits or systems that exhibit a particular function, but did not necessarily evolve to do so. Such an evolutionary perspective is important to how biodesigners search biological space for ideas. A consideration of the evolution of trait function can also clarify potential trade-offs and biological models that may be more promising for an application. This core set of concepts from evolutionary and organismal biology can aid engineers and designers in their search for biological inspiration.
Collapse
Affiliation(s)
- Emilie C Snell-Rood
- Department of Ecology, Evolution and Behavior, University of Minnesota, St Paul, MN, United States of America
| | - Dimitri Smirnoff
- Department of Curriculum and Instruction, University of Minnesota, Minneapolis, MN, United States of America
- Department of Biology Teaching and Learning, University of Minnesota, Minneapolis, MN, United States of America
| |
Collapse
|
7
|
Godon S, Kruusmaa M, Ristolainen A. Maneuvering on non-Newtonian fluidic terrain: a survey of animal and bio-inspired robot locomotion techniques on soft yielding grounds. Front Robot AI 2023; 10:1113881. [PMID: 37346053 PMCID: PMC10279858 DOI: 10.3389/frobt.2023.1113881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 05/18/2023] [Indexed: 06/23/2023] Open
Abstract
Frictionally yielding media are a particular type of non-Newtonian fluids that significantly deform under stress and do not recover their original shape. For example, mud, snow, soil, leaf litters, or sand are such substrates because they flow when stress is applied but do not bounce back when released. Some robots have been designed to move on those substrates. However, compared to moving on solid ground, significantly fewer prototypes have been developed and only a few prototypes have been demonstrated outside of the research laboratory. This paper surveys the existing biology and robotics literature to analyze principles of physics facilitating motion on yielding substrates. We categorize animal and robot locomotion based on the mechanical principles and then further on the nature of the contact: discrete contact, continuous contact above the material, or through the medium. Then, we extract different hardware solutions and motion strategies enabling different robots and animals to progress. The result reveals which design principles are more widely used and which may represent research gaps for robotics. We also discuss that higher level of abstraction helps transferring the solutions to the robotics domain also when the robot is not explicitly meant to be bio-inspired. The contribution of this paper is a review of the biology and robotics literature for identifying locomotion principles that can be applied for future robot design in yielding environments, as well as a catalog of existing solutions either in nature or man-made, to enable locomotion on yielding grounds.
Collapse
|
8
|
Osmólska E, Stoma M, Starek-Wójcicka A. Juice Quality Evaluation with Multisensor Systems-A Review. SENSORS (BASEL, SWITZERLAND) 2023; 23:4824. [PMID: 37430738 DOI: 10.3390/s23104824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 05/10/2023] [Accepted: 05/15/2023] [Indexed: 07/12/2023]
Abstract
E-nose and e-tongue are advanced technologies that allow for the fast and precise analysis of smells and flavours using special sensors. Both technologies are widely used, especially in the food industry, where they are implemented, e.g., for identifying ingredients and product quality, detecting contamination, and assessing their stability and shelf life. Therefore, the aim of this article is to provide a comprehensive review of the application of e-nose and e-tongue in various industries, focusing in particular on the use of these technologies in the fruit and vegetable juice industry. For this purpose, an analysis of research carried out worldwide over the last five years, concerning the possibility of using the considered multisensory systems to test the quality and taste and aroma profiles of juices is included. In addition, the review contains a brief characterization of these innovative devices through information such as their origin, mode of operation, types, advantages and disadvantages, challenges and perspectives, as well as the possibility of their applications in other industries besides the juice industry.
Collapse
Affiliation(s)
- Emilia Osmólska
- Department of Power Engineering and Transportation, Faculty of Production Engineering, University of Life Sciences in Lublin, 20-612 Lublin, Poland
| | - Monika Stoma
- Department of Power Engineering and Transportation, Faculty of Production Engineering, University of Life Sciences in Lublin, 20-612 Lublin, Poland
| | - Agnieszka Starek-Wójcicka
- Department of Biological Bases of Food and Feed Technologies, Faculty of Production Engineering, University of Life Sciences in Lublin, 20-612 Lublin, Poland
| |
Collapse
|
9
|
Yeter IH, Tan VSQ, Le Ferrand H. Conceptualization of Biomimicry in Engineering Context among Undergraduate and High School Students: An International Interdisciplinary Exploration. Biomimetics (Basel) 2023; 8:biomimetics8010125. [PMID: 36975355 PMCID: PMC10046154 DOI: 10.3390/biomimetics8010125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/13/2023] [Accepted: 03/15/2023] [Indexed: 03/29/2023] Open
Abstract
Biomimicry is an interdisciplinary design approach that provides solutions to engineering problems by taking inspiration from nature. Given the established importance of biomimicry for building a sustainable world, there is a need to develop effective curricula on this topic. In this study, a workshop was conducted twice in Singapore: once with 14 students from a local high school in Singapore, and once with 11 undergraduate students in engineering from the United States. The workshop aimed to better understand how students conceptualize biomimicry following the bottom-up and top-down biomimetic methods. The workshop contained a lecture and laboratory session, and data were collected via questionnaires, field observation, and participant presentations at the end of the laboratory session. A qualitative analysis revealed that the top-down biomimetic approach was initially understood using vague and generic terms. In contrast, the students described the bottom-up approach using precise and technical vocabulary. By naming the themes highlighting the students' conceptualizations, it was concluded that strengthening the principle that makes the natural object unique and increasing interdisciplinary knowledge are needed to help them perform the top-down approach. The results from this work should be confirmed with a more significant number of participants, and they could help develop a curriculum to teach the two approaches effectively by providing tools to help the students generalize their ideas and abstract meaning from systems.
Collapse
Affiliation(s)
- Ibrahim H Yeter
- National Institute of Education, Nanyang Technological University, 1 Nanyang Walk, Singapore 637616, Singapore
| | - Valerie Si Qi Tan
- National Institute of Education, Nanyang Technological University, 1 Nanyang Walk, Singapore 637616, Singapore
| | - Hortense Le Ferrand
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| |
Collapse
|
10
|
Singer L, Fouda A, Bourauel C. Biomimetic approaches and materials in restorative and regenerative dentistry: review article. BMC Oral Health 2023; 23:105. [PMID: 36797710 PMCID: PMC9936671 DOI: 10.1186/s12903-023-02808-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Accepted: 02/10/2023] [Indexed: 02/18/2023] Open
Abstract
Biomimetics is a branch of science that explores the technical beauty of nature. The concept of biomimetics has been brilliantly applied in famous applications such as the design of the Eiffel Tower that has been inspired from the trabecular structure of bone. In dentistry, the purpose of using biomimetic concepts and protocols is to conserve tooth structure and vitality, increase the longevity of restorative dental treatments, and eliminate future retreatment cycles. Biomimetic dental materials are inherently biocompatible with excellent physico-chemical properties. They have been successfully applied in different dental fields with the advantages of enhanced strength, sealing, regenerative and antibacterial abilities. Moreover, many biomimetic materials were proven to overcome significant limitations of earlier available generation counterpart. Therefore, this review aims to spot the light on some recent developments in the emerging field of biomimetics especially in restorative and regenerative dentistry. Different approaches of restoration, remineralisation and regeneration of teeth are also discussed in this review. In addition, various biomimetic dental restorative materials and tissue engineering materials are discussed.
Collapse
Affiliation(s)
- Lamia Singer
- Oral Technology, University Hospital Bonn, 53111, Bonn, North Rhine-Westphalia, Germany. .,Department of Orthodontics, University Hospital Bonn, 53111, Bonn, North Rhine-Westphalia, Germany.
| | - Ahmed Fouda
- grid.15090.3d0000 0000 8786 803XOral Technology, University Hospital Bonn, 53111 Bonn, North Rhine-Westphalia Germany ,grid.33003.330000 0000 9889 5690Department of Fixed Prosthodontics, Suez Canal University, Ismailia, Egypt
| | - Christoph Bourauel
- grid.15090.3d0000 0000 8786 803XOral Technology, University Hospital Bonn, 53111 Bonn, North Rhine-Westphalia Germany
| |
Collapse
|
11
|
Hinkelman K, Yang Y, Zuo W. Design methodologies and engineering applications for ecosystem biomimicry: an interdisciplinary review spanning cyber, physical, and cyber-physical systems. BIOINSPIRATION & BIOMIMETICS 2023; 18:021001. [PMID: 36669206 DOI: 10.1088/1748-3190/acb520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 01/20/2023] [Indexed: 06/17/2023]
Abstract
Ecosystem biomimicry is a promising pathway for sustainable development. However, while typical form- and process-level biomimicry is prevalent, system-level ecosystem biomimicry remains a nascent practice in numerous engineering fields. This critical review takes an interdisciplinary approach to synthesize trends across case studies, evaluate design methodologies, and identify future opportunities when applying ecosystem biomimicry to engineering practices, including cyber systems (CS), physical systems (PS), and cyber-physical systems (CPS). After systematically sourcing publications from major databases, the papers were first analyzed at a meta level for their bibliographic context and for statistical correlations among categorical variables. Then, we investigated deeper into the engineering applications and design methodologies. Results indicate that CPS most frequently mimic organisms and ecosystems, while CS and PS frequently mimic populations-communities and molecules-tissues-organ systems, respectively (statistically highly significant). An indirect approach is most often used for mimicry at organizational levels from populations to ecosystems, while a direct approach frequently suits levels from molecules to organisms (highly significant). Dominant themes across engineering applications include symbiotic organism search algorithms for CS and ecological network analysis for CPS, while PS are highly diverse. For design methodologies, this work summarizes and details ten well-documented biomimetic process models among literature, which addresses an outdated concern for a lack of systematic methods for ecosystem biomimicry. In addition to the Biomimetics Standard ISO 18458, these methods include the Natural Step and Techno-Ecological Synergy framework, among others. Further, the analyses revealed future opportunities from less utilized design methods (e.g. interdisciplinary teams tackling indirect, ecosystem-level projects) to well-established engineering concepts ready for technological advancement (e.g. implementing membrane computing for physical applications). For future studies, this review provides a comprehensive reference for ecosystem biomimetic design practices and application opportunities across multiple engineering domains.
Collapse
Affiliation(s)
- Kathryn Hinkelman
- Architectural Engineering, Pennsylvania State University, University Park, PA 16802, United States of America
| | - Yizhi Yang
- Architectural Engineering, Pennsylvania State University, University Park, PA 16802, United States of America
| | - Wangda Zuo
- Architectural Engineering, Pennsylvania State University, University Park, PA 16802, United States of America
- National Renewable Energy Laboratory, Golden, CO 80401, United States of America
| |
Collapse
|
12
|
Cruz E, Blanco E, Aujard F, Raskin K. Has Biomimicry in Architecture Arrived in France? Diversity of Challenges and Opportunities for a Paradigm Shift. Biomimetics (Basel) 2022; 7:biomimetics7040212. [PMID: 36546912 PMCID: PMC9775457 DOI: 10.3390/biomimetics7040212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/21/2022] [Accepted: 11/01/2022] [Indexed: 11/25/2022] Open
Abstract
Biomimicry is a growing field of developing environmental innovations for materials, facade systems, buildings, and urban planning. In France, we observe an extensive diversity of initiatives in biomimicry for the development of regenerative cities. These initiatives blossom in a large range of areas, from education to urban policies, to achieve a major environmental, social and economic paradigm shift. To provide a comprehensive understanding of this development at the national scale, this paper presents and discusses the diversity of the developed initiatives over the last 10 years in six main fields-education, urban policies, fundamental and applied research, design demonstrators, arts, and communication. This research is an opportunistic study based on the analysis of these initiatives enriched by the feedback of the stakeholders collected by the authors working in the field of biomimicry over the last seven years. We identify that biomimicry in France has mainly extended through individual initiatives of teachers, territorial authorities, architectural studios, or researchers rather than through the support of public policies. Putting into perspective developments in biomimicry by other countries, this cross-discipline analysis provides recommendations for the extensive development of regenerative architecture and urbanism at the national scale.
Collapse
Affiliation(s)
- Estelle Cruz
- CEEBIOS, French Network in Biomimetics, 75004 Paris, France
- MECADEV UMR CNRS 7179-National Museum of Natural History of Paris, 91800 Brunoy, France
- Correspondence:
| | - Eduardo Blanco
- CEEBIOS, French Network in Biomimetics, 75004 Paris, France
- CESCO UMR 7204-National Museum of Natural History of Paris, 75005 Paris, France
| | - Fabienne Aujard
- MECADEV UMR CNRS 7179-National Museum of Natural History of Paris, 91800 Brunoy, France
| | - Kalina Raskin
- CEEBIOS, French Network in Biomimetics, 75004 Paris, France
| |
Collapse
|
13
|
Konrad W, Neinhuis C, Roth-Nebelsick A. Straight roads into nowhere - obvious and not-so-obvious biological models for ferrophobic surfaces. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2022; 13:1345-1360. [PMID: 36474925 PMCID: PMC9679617 DOI: 10.3762/bjnano.13.111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 10/18/2022] [Indexed: 06/17/2023]
Abstract
There are currently efforts to improve strategies for biomimetic approaches, to identify pitfalls and to provide recommendations for a successful biomimetic work flow. In this contribution, a case study of a concrete biomimetic project is described that started with a posed technical problem for which seemingly obvious biological models exist. The technical problem was to devise a ferrophobic surface that prevents the contact between the copper surface of a tuyère (a water cooled aeration pipe within a blast furnace) and liquid iron. Therefore, biological external surfaces that strongly repel liquids appeared to be suitable, particularly the hair cover of the water fern Salvinia molesta and the surface of Collembola (an arthropod group). It turned out, however, that it was not feasible to realise the functional structures of both biological models for the tuyère problem. Instead, a seemingly not obvious biological model was identified, namely micropores within the cell walls of water-transporting conduits of plants that connect the conduits to a three-dimensional flow network. These specially shaped pores are assumed to be able to create stable air bodies, which support the refilling of embolised conduits. By adopting the shape of these micropores, a successful prototype for a ferrophobic copper surface repelling liquid iron could be devised. This case study illustrates that straight road maps from technical problems to obvious biological models are no guarantee for success, and that it is difficult to arrive at a formalised biomimetic working scheme. Rather, a broad understanding of biological function and its complexity is beneficial.
Collapse
Affiliation(s)
- Wilfried Konrad
- Institute of Botany, Technical University Dresden, Zellescher Weg 20b, D-01217 Dresden, Germany
- Department of Geosciences, University of Tübingen, Schnarrenbergstr. 94–96, D-72076 Tübingen, Germany
| | - Christoph Neinhuis
- Institute of Botany, Technical University Dresden, Zellescher Weg 20b, D-01217 Dresden, Germany
| | - Anita Roth-Nebelsick
- State Museum of Natural History Stuttgart, Rosenstein 1, D-70191 Stuttgart, Germany
| |
Collapse
|
14
|
Wissa A, Alleyne M, Barley W, Suarez A. Best Practices of Bioinspired Design: Key Themes and Challenges. Integr Comp Biol 2022; 62:icac143. [PMID: 36124738 DOI: 10.1093/icb/icac143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Bioinspired design (BID) is an interdisciplinary research field that can lead to innovations to solve technical problems. There have been many attempts to develop a framework to de-silo engineering and biology and implement processes to enable BID. In January of 2022, we organized a symposium at the 2022 Society of Integrative and Comparative Biology Annual Meeting to bring together educators and practitioners of BID. The symposium aimed to: a) consolidate best practices in teaching bioinspiration, b) create and sustain effective multidisciplinary teams, c) summarize best approaches to conduct problem-based or solution-driven fundamental research, and d) bring bioinspired design innovations to market. During the symposium, several themes emerged. Here we highlight three critical themes that need to be addressed for BID to become a truly interdisciplinary strategy that benefits all stakeholders and results in innovation. First, there is a need for a usable methodology that leads to proper abstraction of biological principles for engineering design. Second, the utilization of engineering models to test biological hypotheses is essential for the continued engagement of biologists in BID. And third, the necessity of proven team-science strategies that will lead to successful collaborations between engineers and biologists. Accompanying this introduction is a variety of perspectives and research articles highlighting best practices in bioinspired design research and product development and guides that can highlight the challenges and facilitate interdisciplinary collaborations in the field of bioinspired design.
Collapse
Affiliation(s)
- Aimy Wissa
- Princeton University, Mechanical and Aerospace Eng, Princeton, US
| | - Marianne Alleyne
- University of Illinois at Urbana-Champaign College of Liberal Arts and Sciences, Entomology, Urbana, US
| | - William Barley
- University of Illinois at Urbana-Champaign, Communication, Urbana, US
| | - Andrew Suarez
- University of Illinois at Urbana-Champaign, Entomology, Urbana, US
| |
Collapse
|
15
|
Metal deposition and shape reproduction at biological temperatures on cell-level samples. Sci Rep 2022; 12:13328. [PMID: 35922439 PMCID: PMC9349294 DOI: 10.1038/s41598-022-17562-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 07/27/2022] [Indexed: 11/17/2022] Open
Abstract
The use of metal deposition has been limited to a limited number of applicable samples due to the increased temperature caused by accelerated electron impact on the substrate surface. The surfaces of various biological samples have a nanoscale structure with specific properties, which have been simulated in numerous studies. However, no examples of nano/microscale reproductions of biological surface features have used moulds. In this study, a mould that imitates the surface shape of a cellular-level biological material was fabricated, for the first time, and the shape was successfully reproduced using the mould. Al thin films were deposited on bovine sperm using magnetron sputtering without thermal denaturation with a cathode operating at a biological temperature. It is difficult to deposit films used as metal coatings on pre-treated biological materials at temperatures below 40 °C during evaporation. The Al thin film was peeled off and used as a mould to reproduce the shape of the sperm with high accuracy using a polymer. The results of this study represent a major innovation in reproducible biomimetic moulding technology, demonstrating biological temperature sputtering. We expect our non-destructive metal deposition and metal nano-moulding methods for biological samples to be the basis for the effective utilization of various biological structures.
Collapse
|
16
|
The Education Pipeline of Biomimetics and Its Challenges. Biomimetics (Basel) 2022; 7:biomimetics7030093. [PMID: 35892363 PMCID: PMC9326522 DOI: 10.3390/biomimetics7030093] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 06/28/2022] [Accepted: 06/29/2022] [Indexed: 11/23/2022] Open
Abstract
Biomimetics must be taught to the next generation of designers in the interest of delivering solutions for current problems. Teaching biomimetics involves teachers and students from and in various disciplines at different stages of the educational system. There is no common understanding of how and what to teach in the different phases of the educational pipeline. This manuscript describes different perspectives, expectations, needs, and challenges of users from various backgrounds. It focuses on how biomimetics is taught at the various stages of education and career: from K-12 to higher education to continuing education. By constructing the biomimetics education pipeline, we find that some industry challenges are addressed and provide opportunities to transfer the lessons to application. We also identify existing gaps in the biomimetics education pipeline that could further advance industry application if a curriculum is developed.
Collapse
|
17
|
Perricone V, Grun T, Raia P, Langella C. Paleomimetics: A Conceptual Framework for a Biomimetic Design Inspired by Fossils and Evolutionary Processes. Biomimetics (Basel) 2022; 7:biomimetics7030089. [PMID: 35892359 PMCID: PMC9326541 DOI: 10.3390/biomimetics7030089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 06/29/2022] [Accepted: 07/02/2022] [Indexed: 12/10/2022] Open
Abstract
In biomimetic design, functional systems, principles, and processes observed in nature are used for the development of innovative technical systems. The research on functional features is often carried out without giving importance to the generative mechanism behind them: evolution. To deeply understand and evaluate the meaning of functional morphologies, integrative structures, and processes, it is imperative to not only describe, analyse, and test their behaviour, but also to understand the evolutionary history, constraints, and interactions that led to these features. The discipline of palaeontology and its approach can considerably improve the efficiency of biomimetic transfer by analogy of function; additionally, this discipline, as well as biology, can contribute to the development of new shapes, textures, structures, and functional models for productive and generative processes useful in the improvement of designs. Based on the available literature, the present review aims to exhibit the potential contribution that palaeontology can offer to biomimetic processes, integrating specific methodologies and knowledge in a typical biomimetic design approach, as well as laying the foundation for a biomimetic design inspired by extinct species and evolutionary processes: Paleomimetics. A state of the art, definition, method, and tools are provided, and fossil entities are presented as potential role models for technical transfer solutions.
Collapse
Affiliation(s)
- Valentina Perricone
- Department of Engineering, University of Campania Luigi Vanvitelli, Via Roma 29, 81031 Aversa, Italy
- Correspondence:
| | - Tobias Grun
- Department of Invertebrate Palaeontology, University of Florida, Florida Museum, Dickinson Hall, Gainesville, FL 32611, USA;
| | - Pasquale Raia
- Department of Earth Sciences, Environment and Resources, University of Naples Federico II, Via Vicinale Cupa Cintia 26, 80126 Napoli, Italy;
| | - Carla Langella
- Department of Architecture and Industrial Design, University of Campania Luigi Vanvitelli, Via San Lorenzo, 81031 Aversa, Italy;
| |
Collapse
|
18
|
Broers KCV, Armanini SF. Design and Testing of a Bioinspired Lightweight Perching Mechanism for Flapping-Wing MAVs Using Soft Grippers. IEEE Robot Autom Lett 2022. [DOI: 10.1109/lra.2022.3184447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Krispin C. V. Broers
- eAviation Laboratory, TUM School of Engineering and Design, Technical University of Munich, Ottobrunn, Germany
| | - Sophie F. Armanini
- eAviation Laboratory, TUM School of Engineering and Design, Technical University of Munich, Ottobrunn, Germany
| |
Collapse
|
19
|
Penick CA, Cope G, Morankar S, Mistry Y, Grishin A, Chawla N, Bhate D. The Comparative approach to bio-inspired design: integrating biodiversity and biologists into the design process. Integr Comp Biol 2022; 62:icac097. [PMID: 35767863 DOI: 10.1093/icb/icac097] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Biodiversity provides a massive library of ideas for bio-inspired design, but the sheer number of species to consider can be daunting. Current approaches for sifting through biodiversity to identify relevant biological models include searching for champion adapters that are particularly adept at solving a particular design challenge. While the champion adapter approach has benefits, it tends to focus on a narrow set of popular models while neglecting the majority of species. An alternative approach to bio-inspired design is the comparative method, which leverages biodiversity by drawing inspiration across a broad range of species. This approach uses methods in phylogenetics to map traits across evolutionary trees and compare trait variation to infer structure-function relationships. Although comparative methods have not been widely used in bio-inspired design, they have led to breakthroughs in studies on gecko-inspired adhesives and multifunctionality of butterfly wing scales. Here we outline how comparative methods can be used to complement existing approaches to bioinspired design, and we provide an example focused on bio-inspired lattices, including honeycomb and glass sponges. We demonstrate how comparative methods can lead to breakthroughs in bio-inspired applications as well as answer major questions in biology, which can strengthen collaborations with biologists and produce deeper insights into biological function.
Collapse
Affiliation(s)
- Clint A Penick
- Department of Ecology, Evolution, and Organismal Biology, Kennesaw State University, Kennesaw, GA, 30144USA
| | - Grace Cope
- Department of Ecology, Evolution, and Organismal Biology, Kennesaw State University, Kennesaw, GA, 30144USA
| | - Swapnil Morankar
- School of Materials Engineering, Purdue University, West Lafayette, IN 47907, USA
| | - Yash Mistry
- 3DX Research Group, Arizona State University, Mesa, AZ 85212, USA
| | - Alex Grishin
- Phoenix Analysis & Design Technologies, Inc., Tempe, AZ 85284, USA
| | - Nikhilesh Chawla
- School of Materials Engineering, Purdue University, West Lafayette, IN 47907, USA
| | - Dhruv Bhate
- 3DX Research Group, Arizona State University, Mesa, AZ 85212, USA
| |
Collapse
|
20
|
McInerney SJ, Niewiarowski PH. Biomimicry Training to Promote Employee Engagement in Sustainability. Biomimetics (Basel) 2022; 7:biomimetics7020071. [PMID: 35735587 PMCID: PMC9220765 DOI: 10.3390/biomimetics7020071] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 05/27/2022] [Accepted: 06/01/2022] [Indexed: 11/16/2022] Open
Abstract
Employees play a critical role in the success of corporate sustainability initiatives, yet sustained employee engagement is a constant challenge. The psychology literature states that to intrinsically motivate employees to engage in sustainability, there must be opportunity for employees to engage in practices that are directly relevant to their job duties. Traditional ad hoc initiatives such as Earth Week events, recycling challenges and so on, are not sufficient to derive this type of intrinsic motivation. Therefore, the goal of this study was to examine the psychological impact of a biomimicry sustainable innovation training program, to intrinsically motivate R&D employees to reconnect with nature and identify whether this promotes creative thinking and employee engagement. Due to COVID-19 restrictions, the current study conducted virtual workshops with R&D employees and demonstrated that biomimicry training was intrinsically motivating to employees and was valued as a practice that could be incorporated into R&D job duties. In conclusion, this study provides an adaptable procedural template for biomimicry training with a corporate audience. The results demonstrate a strong business case for organizations to experiment with biomimicry by illustrating its potential to create positive change across several business units beyond sustainable innovation to include human resources and sustainable marketing.
Collapse
|
21
|
Barley WC, Ruge-Jones L, Wissa A, Suarez AV, Alleyne M. Addressing Diverse Motivations to Enable Bioinspired Design. Integr Comp Biol 2022; 62:icac041. [PMID: 35588375 DOI: 10.1093/icb/icac041] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Bioinspired design (BID) is an inherently interdisciplinary practice that connects fundamental biological knowledge with the capabilities of engineering solutions. This paper discusses common social challenges inherent to interdisciplinary research, and specific to collaborating across the disciplines of biology and engineering when practicing BID. We also surface best practices that members of the community have identified to help address these challenges. To accomplish this goal, we address challenges of bioinspiration through a lens of recent findings within the social scientific study of interdisciplinary teams. We propose three challenges faced in BID: (1) complex motivations across collaborating researchers, (2) misperceptions of relationships and benefits between biologists and engineers, and (3) institutionalized barriers that disincentivize interdisciplinary work. We advance specific recommendations for how to address each of these challenges.
Collapse
Affiliation(s)
- William C Barley
- Department of Communication, University of Illinois at Urbana-Champaign, 3001 Lincoln Hall MC-456, 702 S. Wright St., Urbana, IL 61801 USA
| | - Luisa Ruge-Jones
- Department of Communication, University of Illinois at Urbana-Champaign, 3001 Lincoln Hall MC-456, 702 S. Wright St., Urbana, IL 61801 USA
| | - Aimy Wissa
- Mechanical & Aerospace Engineering, Princeton University
| | - Andrew V Suarez
- Department of Entomology, University of Illinois at Urbana-Champaign
- Department of Evolution, Ecology, and Behavior, University of Illinois at Urbana-Champaign
| | - Marianne Alleyne
- Department of Entomology, University of Illinois at Urbana-Champaign
| |
Collapse
|
22
|
Understanding the Use of Bio-Inspired Design Tools by Industry Professionals. Biomimetics (Basel) 2022; 7:biomimetics7020063. [PMID: 35645190 PMCID: PMC9149936 DOI: 10.3390/biomimetics7020063] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 05/04/2022] [Accepted: 05/13/2022] [Indexed: 02/01/2023] Open
Abstract
Bio-inspired design (BID) has the potential to evolve the way engineers and designers solve problems. Several tools have been developed to assist one or multiple phases of the BID process. These tools, typically studied individually and through the performance of college students, have yielded interesting results for increasing the novelty of solutions. However, not much is known about the likelihood of the tools being integrated into the design and development process of established companies. The mixed-methods study presented in this paper seeks to address this gap by providing industry engineers and designers hands-on training with the BID process and four BID tools. Understanding which tools are valued and could be adopted in an industry context is the goal. The results indicate multiple encouraging outcomes including that industry practitioners highly valued the process framework tool (BID canvas) as it allows for flexibility in tool use, as well as valued learning with a suite of BID tools rather than a single one to accommodate different workflows and ways of thinking.
Collapse
|
23
|
Marmo F, Perricone V, Cutolo A, Daniela Candia Carnevali M, Langella C, Rosati L. Flexible sutures reduce bending moments in shells: from the echinoid test to tessellated shell structures. ROYAL SOCIETY OPEN SCIENCE 2022; 9:211972. [PMID: 35592761 PMCID: PMC9066305 DOI: 10.1098/rsos.211972] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 03/17/2022] [Indexed: 06/15/2023]
Abstract
In the field of structural engineering, lightweight and resistant shell structures can be designed by efficiently integrating and optimizing form, structure and function to achieve the capability to sustain a variety of loading conditions with a reduced use of resources. Interestingly, a limitless variety of high-performance shell structures can be found in nature. Their study can lead to the acquisition of new functional solutions that can be employed to design innovative bioinspired constructions. In this framework, the present study aimed to illustrate the main results obtained in the mechanical analysis of the echinoid test in the common sea urchin Paracentrotus lividus (Lamarck, 1816) and to employ its principles to design lightweight shell structures. For this purpose, visual survey, photogrammetry, three-dimensional modelling, three-point bending tests and finite-element modelling were used to interpret the mechanical behaviour of the tessellated structure that characterize the echinoid test. The results achieved demonstrated that this structural topology, consisting of rigid plates joined by flexible sutures, allows for a significant reduction of bending moments. This strategy was generalized and applied to design both free-form and form-found shell structures for architecture exhibiting improved structural efficiency.
Collapse
Affiliation(s)
- Francesco Marmo
- Department of Structures for Engineering and Architecture, University of Naples Federico II, Napoli, Italy
| | | | - Arsenio Cutolo
- Department of Structures for Engineering and Architecture, University of Naples Federico II, Napoli, Italy
- LIMITS Laboratory, University of Naples Federico II, Napoli, Italy
| | | | - Carla Langella
- Department of Architecture and Industrial Design, University of Campania Luigi Vanvitelli, Aversa, Italy
| | - Luciano Rosati
- Department of Structures for Engineering and Architecture, University of Naples Federico II, Napoli, Italy
| |
Collapse
|
24
|
Emerging Developments on Nanocellulose as Liquid Crystals: A Biomimetic Approach. Polymers (Basel) 2022; 14:polym14081546. [PMID: 35458295 PMCID: PMC9025541 DOI: 10.3390/polym14081546] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 03/11/2022] [Accepted: 03/14/2022] [Indexed: 02/06/2023] Open
Abstract
Biomimetics is the field of obtaining ideas from nature that can be applied in science, engineering, and medicine. The usefulness of cellulose nanocrystals (CNC) and their excellent characteristics in biomimetic applications are exciting and promising areas of present and future research. CNCs are bio-based nanostructured material that can be isolated from several natural biomasses. The CNCs are one-dimensional with a high aspect ratio. They possess high crystalline order and high chirality when they are allowed to assemble in concentrated dispersions. Recent studies have demonstrated that CNCs possess remarkable optical and chemical properties that can be used to fabricate liquid crystals. Research is present in the early stage to develop CNC-based solvent-free liquid crystals that behave like both crystalline solids and liquids and exhibit the phenomenon of birefringence in anisotropic media. All these characteristics are beneficial for several biomimetic applications. Moreover, the films of CNC show the property of iridescent colors, making it suitable for photonic applications in various devices, such as electro-optical devices and flat panel displays.
Collapse
|
25
|
Gerbaud V, Leiser H, Beaugrand J, Cathala B, Molina-Jouve C, Gue AM. Bibliometric survey and network analysis of biomimetics and nature inspiration in engineering science. BIOINSPIRATION & BIOMIMETICS 2022; 17:031001. [PMID: 35081515 DOI: 10.1088/1748-3190/ac4f2e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 01/26/2022] [Indexed: 06/14/2023]
Abstract
The field encompassing biomimetics, bioinspiration and nature inspiration in engineering science is growing steadily, pushed by exogenous factors like the search for potentially sustainable engineering solutions that might already exist in nature. With the help of information provided by a bibliometric database and further processed with a dynamic network and semantic analysis tool, we provide insight at two scales into the corpus of nature-inspired engineering field and its dynamics. At the macroscale, the Web of Science®(WoS) categories, countries and institutions are ranked and ordered by thematic clusters and country networks, highlighting the leading countries and institutions and how they focus on specific topics. Such an insight provides an overview at the macroscale that can be valuable to orient scientific strategy at the country level. At the mesoscale, where science is incarnated by collaborative networks of authors and institutions that run across countries, we identify six semantic clusters and subclusters within them, and their dynamics. We also pinpoint leading academic collaborative networks and their activity in relation to the six semantic clusters. Trends and prospective are also discussed. Typically, one observes that the field is becoming mature since, starting by imitating nature, it proceeded with mimicking more complex natural structures and functions and now it investigates ways used in nature in response to changes in the environment and implements them in innovative and adaptive artefacts. The sophistication of devices, methods and tools has been increasing over the years as well as their functionalities and adaptability, whereas the size of devices has decreased at the same time.
Collapse
Affiliation(s)
- Vincent Gerbaud
- Laboratoire de Génie Chimique, Université de Toulouse, CNRS, INP, UPS, Toulouse, France
| | - Hugues Leiser
- INRAE, Unités CSE PSH Serv.Doc., F-84914 Avignon, Domaine Saint-PScaul, France
| | | | | | | | | |
Collapse
|
26
|
Wanieck K, Hamann L, Bartz M, Uttich E, Hollermann M, Drack M, Beismann H. Biomimetics Linked to Classical Product Development: An Interdisciplinary Endeavor to Develop a Technical Standard. Biomimetics (Basel) 2022; 7:biomimetics7020036. [PMID: 35466253 PMCID: PMC9036278 DOI: 10.3390/biomimetics7020036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 03/23/2022] [Accepted: 03/25/2022] [Indexed: 02/01/2023] Open
Abstract
Biomimetics is a well-known approach for technical innovation. However, most of its influence remains in the academic field. One option for increasing its application in the practice of technical design is to enhance the use of the biomimetic process with a step-by-step standard, building a bridge to common engineering procedures. This article presents the endeavor of an interdisciplinary expert panel from the fields of biology, engineering science, and industry to develop a standard that links biomimetics to the classical processes of product development and engineering design. This new standard, VDI 6220 Part 2, proposes a process description that is compatible and connectable to classical approaches in engineering design. The standard encompasses both the solution-based and the problem-driven process of biomimetics. It is intended to be used in any product development process for more biomimetic applications in the future.
Collapse
Affiliation(s)
- Kristina Wanieck
- Faculty of Applied Informatics, Deggendorf Institute of Technology (DIT), Teaching Area Biomimetics and Innovation, Grafenauer Str. 22, 94078 Freyung, Germany;
| | - Leandra Hamann
- Institute of Evolutionary Biology and Animal Ecology, University of Bonn, An der Immenburg 1, 53121 Bonn, Germany;
| | - Marcel Bartz
- Engineering Design, Faculty of Engineering, Department of Mechanical Engineering, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Martensstraße 9, 91058 Erlangen, Germany;
| | - Eike Uttich
- Product Development, Institute Product and Service Engineering, Faculty Mechanical Engineering, Ruhr-University Bochum (RUB), Universitaetsstr. 150, 44801 Bochum, Germany;
| | - Markus Hollermann
- Die Bioniker GbR/ELISE GmbH, Consulting & Development, Im Mersch 14, 49577 Eggermühlen, Germany;
| | - Manfred Drack
- Evolutionary Biology of Invertebrates, Institute of Evolution and Ecology, University of Tübingen, Auf der Morgenstelle 28E, 72076 Tübingen, Germany;
| | - Heike Beismann
- Department of Mechanical Engineering, Westphalian University of Applied Sciences, Teaching Area Biology and Biomimetics, Münsterstr. 265, 46397 Bocholt, Germany
- Correspondence: ; Tel.: +49-2871-2155-944
| |
Collapse
|
27
|
Ilieva L, Ursano I, Traista L, Hoffmann B, Dahy H. Biomimicry as a Sustainable Design Methodology—Introducing the ‘Biomimicry for Sustainability’ Framework. Biomimetics (Basel) 2022; 7:biomimetics7020037. [PMID: 35466254 PMCID: PMC9036301 DOI: 10.3390/biomimetics7020037] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 03/28/2022] [Accepted: 03/28/2022] [Indexed: 11/16/2022] Open
Abstract
Biomimicry is an interdisciplinary approach to study and transfer principles or mechanisms from nature to solve design challenges, frequently differentiated from other design disciplines by its particular focus on and promise of sustainability. However, in the biomimicry and biologically inspired design literature, there are varying interpretations of how and whether biomimetic designs lead to sustainable outcomes and how sustainability, nature, and mimesis are conceptualised and engaged in practice. This paper takes a particular focus on the built environment and presents a theoretical overview of biomimicry literature spanning across specific fields, namely architecture, philosophy, sustainability and design. We develop upon conceptual considerations in an effort to contribute to the growing calls in the literature for more reflective discussions about the nuanced relationship between biomimicry and sustainability. We further develop a ‘Biomimicry for Sustainability’ framework that synthesises recent reflective deliberations, as a possible direction for further theorisation of biomimicry, aiming to elaborate on the role of biomimicry as a sustainable design methodology and its potential to cultivate more sustainable human–nature relations. The framework is used as a tool for retrospective analysis, based on literature of completed designs, and as a catalyst for biomimetic design thinking. The objective of this paper is to serve as a point of departure for more active and deeper discussions regarding future biomimetic practice in the context of sustainability and transformational change, particularly within the built environment.
Collapse
Affiliation(s)
- Lazaara Ilieva
- Research Group in Sustainable Design Engineering, Technical Faculty of IT & Design, Aalborg University, 2450 Copenhagen, Denmark; (I.U.); (L.T.)
- Correspondence:
| | - Isabella Ursano
- Research Group in Sustainable Design Engineering, Technical Faculty of IT & Design, Aalborg University, 2450 Copenhagen, Denmark; (I.U.); (L.T.)
| | - Lamiita Traista
- Research Group in Sustainable Design Engineering, Technical Faculty of IT & Design, Aalborg University, 2450 Copenhagen, Denmark; (I.U.); (L.T.)
| | - Birgitte Hoffmann
- Department of Planning, Technical Faculty of IT & Design, Aalborg University, 2450 Copenhagen, Denmark; (B.H.); (H.D.)
| | - Hanaa Dahy
- Department of Planning, Technical Faculty of IT & Design, Aalborg University, 2450 Copenhagen, Denmark; (B.H.); (H.D.)
- BioMat Department, Bio-Based Materials and Materials Cycles in Architecture, Institute of Building Structures and Structural Design (ITKE), University of Stuttgart, Keplerstr. 11, 70174 Stuttgart, Germany
- Department of Architecture (FEDA), Faculty of Engineering, Ain Shams University, Cairo 11517, Egypt
| |
Collapse
|
28
|
Roth-Nebelsick A. How much biology is in the product? Role and relevance of biological evolution and function for bio-inspired design. Theory Biosci 2022; 141:233-247. [PMID: 35344153 PMCID: PMC9474337 DOI: 10.1007/s12064-022-00367-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 03/11/2022] [Indexed: 11/25/2022]
Abstract
Bio-inspired design (BID) means the concept of transferring functional principles from biology to technology. The core idea driving BID-related work is that evolution has shaped functional attributes, which are termed “adaptations” in biology, to a high functional performance by relentless selective pressure. For current methods and tools, such as data bases, it is implicitly supposed that the considered biological models are adaptations and their functions already clarified. Often, however, the identification of adaptations and their functional features is a difficult task which is not yet accomplished for numerous biological structures, as happens to be the case also for various organismic features from which successful BID developments were derived. This appears to question the relevance of the much stressed importance of evolution for BID. While it is obviously possible to derive an attractive technical principle from an observed biological effect without knowing its original functionality, this kind of BID (“analog BID”) has no further ties to biology. In contrast, a BID based on an adaptation and its function (“homolog BID”) is deeply embedded in biology. It is suggested that a serious and honest clarification of the functional background of a biological structure is an essential first step in devising a BID project, to recognize possible problems and pitfalls as well as to evaluate the need for further biological analysis.
Collapse
Affiliation(s)
- Anita Roth-Nebelsick
- Department of Palaeontology, State Museum of Natural History Stuttgart, Stuttgart, Germany.
| |
Collapse
|
29
|
The Bridging Role of Goals between Affective Traits and Positive Creativity. EDUCATION SCIENCES 2022. [DOI: 10.3390/educsci12020144] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Positive creativity training is crucial for 21st century learning, yet the influence of affective traits and goals with different intentions on positive creativity is unclear. We held a creativity training workshop for fifty-four undergraduates to determine its influence. We first assessed participants’ affective traits (risk-taking, curiosity, imagination, and complexity) using the Test of Divergent Feeling from the Creativity Assessment Packet. Then, we provided participants with twenty-seven products as inspiration sources for designing novel staplers. Each participant was asked to define a certain design goal, for which they chose one of the inspiration sources to generate ideas. We assessed the novelty of ideas and classified them according to the goals with different intentions. Results showed a bridging role of the goals between affective traits and creativity. This role was reflected in positive correlations between (1) curiosity and novelty with effort-saving goals; (2) complexity and novelty with orderliness goals. In addition, we found participants with high risk-taking tended to set versatility goals; the orderliness goal led to the highest novelty of ideas. Our findings suggested that teachers should pay attention to students’ affective traits and guide them to set goals in positive creativity education.
Collapse
|
30
|
Chaturvedi I, Jandyal A, Wazir I, Raina A, Ul Haq MI. Biomimetics and 3D printing - Opportunities for design applications. SENSORS INTERNATIONAL 2022. [DOI: 10.1016/j.sintl.2022.100191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/17/2022] Open
|
31
|
Snell‐Rood EC, Smirnoff D, Cantrell H, Chapman K, Kirscht E, Stretch E. Bioinspiration as a method of problem-based STEM education: A case study with a class structured around the COVID-19 crisis. Ecol Evol 2021; 11:16374-16386. [PMID: 34900221 PMCID: PMC8646331 DOI: 10.1002/ece3.8044] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 07/21/2021] [Accepted: 08/03/2021] [Indexed: 12/23/2022] Open
Abstract
Bioinspiration is a promising lens for biology instruction as it allows the instructor to focus on current issues, such as the COVID-19 pandemic. From social distancing to oxygen stress, organisms have been tackling pandemic-related problems for millions of years. What can we learn from such diverse adaptations in our own applications? This review uses a seminar course on the COVID-19 crisis to illustrate bioinspiration as an approach to teaching biology content. At the start of the class, students mind-mapped the entire problem; this range of subproblems was used to structure the biology content throughout the entire class. Students came to individual classes with a brainstormed list of biological systems that could serve as inspiration for a particular problem (e.g., absorptive leaves in response to the problem of toilet paper shortages). After exploration of relevant biology content, discussion returned to the focal problem. Students dug deeper into the literature in a group project on mask design and biological systems relevant to filtration and transparency. This class structure was an engaging way for students to learn principles from ecology, evolution, behavior, and physiology. Challenges with this course design revolved around the interdisciplinary and creative nature of the structure; for instance, the knowledge of the participants was often stretched by engineering details. While the present class was focused on the COVID-19 crisis, a course structured through a bioinspired approach can be applied to other focal problems, or subject areas, giving instructors a powerful method to deliver interdisciplinary content in an integrated and inquiry-driven way.
Collapse
Affiliation(s)
- Emilie C. Snell‐Rood
- Department of Ecology, Evolution and BehaviorUniversity of Minnesota‐Twin CitiesSaint PaulMinnesotaUSA
| | - Dimitri Smirnoff
- Department of Ecology, Evolution and BehaviorUniversity of Minnesota‐Twin CitiesSaint PaulMinnesotaUSA
- Department of Curriculum and InstructionSaint PaulMinnesotaUSA
| | - Hunter Cantrell
- Department of Ecology, Evolution and BehaviorUniversity of Minnesota‐Twin CitiesSaint PaulMinnesotaUSA
| | - Kaila Chapman
- Department of Ecology, Evolution and BehaviorUniversity of Minnesota‐Twin CitiesSaint PaulMinnesotaUSA
| | - Elizabeth Kirscht
- Department of Ecology, Evolution and BehaviorUniversity of Minnesota‐Twin CitiesSaint PaulMinnesotaUSA
| | | |
Collapse
|
32
|
Buccino F, Martinoia G, Vergani LM. Torsion-Resistant Structures: A Nature Addressed Solution. MATERIALS (BASEL, SWITZERLAND) 2021; 14:5368. [PMID: 34576592 PMCID: PMC8472553 DOI: 10.3390/ma14185368] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 09/14/2021] [Accepted: 09/15/2021] [Indexed: 01/21/2023]
Abstract
The complexity of torsional load, its three-dimensional nature, its combination with other stresses, and its disruptive impact make torsional failure prevention an ambitious goal. However, even if the problem has been addressed for decades, a deep and organized treatment is still lacking in the actual research landscape. For this reason, this review aims at presenting a methodical approach to address torsional issues starting from a punctual problem definition. Accidents and breaks due to torsion, which often occur in different engineering fields such as mechanical, biomedical, and civil industry are considered and critically compared. More in depth, the limitations of common-designed torsion-resistant structures (i.e., high complexity and increased weight) are highlighted, and emerge as a crucial point for a deeper nature-driven analysis of novel solutions. In this context, an accurate screening of torsion-resistant bio-inspired unit cells is presented, taking inspiration specifically from plants, that are often subjected to the torsional effect of winds. As future insights, the actual state of technology suggests an innovative transposition to the industry: these unit cells could be prominently implied to develop novel metamaterials that could be able to address the torsional issue with a multi-scale and tailored arrangement.
Collapse
Affiliation(s)
- Federica Buccino
- Department of Mechanical Engineering (DMEC), Politecnico di Milano, Via La Masa 1, 20156 Milano, Italy
| | - Giada Martinoia
- Department of Mechanical Engineering (DMEC), Politecnico di Milano, Via La Masa 1, 20156 Milano, Italy
| | - Laura Maria Vergani
- Department of Mechanical Engineering (DMEC), Politecnico di Milano, Via La Masa 1, 20156 Milano, Italy
| |
Collapse
|
33
|
Speck O, Speck T. Functional morphology of plants - a key to biomimetic applications. THE NEW PHYTOLOGIST 2021; 231:950-956. [PMID: 33864693 DOI: 10.1111/nph.17396] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 03/20/2021] [Indexed: 05/24/2023]
Abstract
Learning from living organisms has emerged from a mainly curiosity-driven examination, where helpful functions of biological structures have been copied, into systematic biomimetic approaches that transfer a targeted function and its underlying principles from the biological model to a technical product. Plant biomimetics is based on functional morphology, which combines the knowledge gained from the morphology, anatomy and mechanics of plants and makes a statement about their form-structure-function relationship. Since the functional morphology of plants has become key to biomimetic applications, we present its central role in deciphering the functional principles that can be applied to engineering solutions. We consider that the future of biomimetics will include bioinspired developments that will contribute to better sustainability than that achieved by conventional products.
Collapse
Affiliation(s)
- Olga Speck
- Plant Biomechanics Group @ Botanic Garden, Faculty of Biology, University of Freiburg, Schänzlestraße 1, Freiburg, D-79104, Germany
- Cluster of Excellence livMatS @ FIT - Freiburg Center for Interactive Materials and Bioinspired Technologies, University of Freiburg, Georges-Köhler-Allee 105, Freiburg, D-79110, Germany
| | - Thomas Speck
- Plant Biomechanics Group @ Botanic Garden, Faculty of Biology, University of Freiburg, Schänzlestraße 1, Freiburg, D-79104, Germany
- Cluster of Excellence livMatS @ FIT - Freiburg Center for Interactive Materials and Bioinspired Technologies, University of Freiburg, Georges-Köhler-Allee 105, Freiburg, D-79110, Germany
| |
Collapse
|
34
|
Stachew E, Houette T, Gruber P. Root Systems Research for Bioinspired Resilient Design: A Concept Framework for Foundation and Coastal Engineering. Front Robot AI 2021; 8:548444. [PMID: 33981727 PMCID: PMC8107439 DOI: 10.3389/frobt.2021.548444] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 04/08/2021] [Indexed: 01/12/2023] Open
Abstract
The continuous increase in population and human migration to urban and coastal areas leads to the expansion of built environments over natural habitats. Current infrastructure suffers from environmental changes and their impact on ecosystem services. Foundations are static anchoring structures dependent on soil compaction, which reduces water infiltration and increases flooding. Coastal infrastructure reduces wave action and landward erosion but alters natural habitat and sediment transport. On the other hand, root systems are multifunctional, resilient, biological structures that offer promising strategies for the design of civil and coastal infrastructure, such as adaptivity, multifunctionality, self-healing, mechanical and chemical soil attachment. Therefore, the biomimetic methodology is employed to abstract root strategies of interest for the design of building foundations and coastal infrastructures that prevent soil erosion, anchor structures, penetrate soils, and provide natural habitat. The strategies are described in a literature review on root biology, then these principles are abstracted from their biological context to show their potential for engineering transfer. After a review of current and developing technologies in both application fields, the abstracted strategies are translated into conceptual designs for foundation and coastal engineering. In addition to presenting the potential of root-inspired designs for both fields, this paper also showcases the main steps of the biomimetic methodology from the study of a biological system to the development of conceptual technical designs. In this way the paper also contributes to the development of a more strategic intersection between biology and engineering and provides a framework for further research and development projects.
Collapse
Affiliation(s)
- Elena Stachew
- Biomimicry Research and Innovation Center BRIC, Department of Biology, The University of Akron, Akron, OH, United States
| | - Thibaut Houette
- Biomimicry Research and Innovation Center BRIC, Department of Biology, The University of Akron, Akron, OH, United States
| | - Petra Gruber
- Biomimicry Research and Innovation Center BRIC, Myers School of Art and Department of Biology, The University of Akron, Akron, OH, United States
| |
Collapse
|
35
|
Chen C, Tao Y, Li Y, Liu Q, Li S, Tang Z. A structure-function knowledge extraction method for bio-inspired design. COMPUT IND 2021. [DOI: 10.1016/j.compind.2021.103402] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
36
|
Wanieck K, Beismann H. Perception and role of standards in the world of biomimetics. BIOINSPIRED BIOMIMETIC AND NANOBIOMATERIALS 2021. [DOI: 10.1680/jbibn.20.00024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Biomimetics is the interdisciplinary co-operation of various scientific disciplines and fields of innovation, and it aims to solve practical problems using biological models. Biomimetic research and its fields of application are manifold, and the community is made up of a wide range of disciplines, from biologists and engineers to designers. Guidelines and standards can build a common ground for understanding of the field, communication across disciplines, present and future projects and implementation of biomimetic knowledge. Since 2015, three international standards have been published and defined terms and definitions, as well as specific applications. The scientific literature and patents in several databases were searched for citations of the published standards. Standards or technical guidelines on biomimetics are represented both in the scientific literature and in patents. However, taking into account the increasing number of publications in biomimetics, the number of publications (52) citing the international standards is low. This shows that the perception of technical rules is still underrepresented in the academic field. Greater awareness and acceptance of the importance of standards for quality assurance even in the academic environment is discussed, and active participation in the corresponding International Organization for Standardization committee on biomimetics is asked for.
Collapse
Affiliation(s)
- Kristina Wanieck
- Arbeitsgruppe Bionik (Working Group Biomimetics), Technische Hochschule Deggendorf (Deggendorf Institute of Technology), Freyung, Germany
| | - Heike Beismann
- Lehrgebiet Biologie und Bionik (Teaching Area Biology and Biomimetics), Fachbereich Maschinenbau (Department of Mechanical Engineering), Westfälische Hochschule (Westphalian University of Applied Sciences), Bocholt, Germany
| |
Collapse
|
37
|
Perricone V, Grun TB, Marmo F, Langella C, Candia Carnevali MD. Constructional design of echinoid endoskeleton: main structural components and their potential for biomimetic applications. BIOINSPIRATION & BIOMIMETICS 2020; 16:011001. [PMID: 32927446 DOI: 10.1088/1748-3190/abb86b] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 09/14/2020] [Indexed: 06/11/2023]
Abstract
The endoskeleton of echinoderms (Deuterostomia: Echinodermata) is of mesodermal origin and consists of cells, organic components, as well as an inorganic mineral matrix. The echinoderm skeleton forms a complex lattice-system, which represents a model structure for naturally inspired engineering in terms of construction, mechanical behaviour and functional design. The sea urchin (Echinodermata: Echinoidea) endoskeleton consists of three main structural components: test, dental apparatus and accessory appendages. Although, all parts of the echinoid skeleton consist of the same basic material, their microstructure displays a great potential in meeting several mechanical needs according to a direct and clear structure-function relationship. This versatility has allowed the echinoid skeleton to adapt to different activities such as structural support, defence, feeding, burrowing and cleaning. Although, constrained by energy and resource efficiency, many of the structures found in the echinoid skeleton are optimized in terms of functional performances. Therefore, these structures can be used as role models for bio-inspired solutions in various industrial sectors such as building constructions, robotics, biomedical and material engineering. The present review provides an overview of previous mechanical and biomimetic research on the echinoid endoskeleton, describing the current state of knowledge and providing a reference for future studies.
Collapse
Affiliation(s)
- Valentina Perricone
- Dept. of Engineering, University of Campania Luigi Vanvitelli, Aversa, Italy
| | - Tobias B Grun
- Dept. of Invertebrate Paleontology, University of Florida, Florida Museum, Gainesville, Florida, United States of America
| | - Francesco Marmo
- Dept. of Structures for Engineering and Architecture, University of Naples Federico II, Napoli, Italy
| | - Carla Langella
- Dept. of Architecture and Industrial Design, University of Campania Luigi Vanvitelli, Aversa, Italy
| | | |
Collapse
|
38
|
Graeff E, Maranzana N, Aoussat A. Biological Practices and Fields, Missing Pieces of the Biomimetics' Methodological Puzzle. Biomimetics (Basel) 2020; 5:biomimetics5040062. [PMID: 33218019 PMCID: PMC7709660 DOI: 10.3390/biomimetics5040062] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 11/08/2020] [Accepted: 11/16/2020] [Indexed: 01/14/2023] Open
Abstract
Facing current biomimetics impediments, recent studies have supported the integration within biomimetic teams of a new actor having biological knowledge and know-how. This actor is referred to as the "biomimetician" in this article. However, whereas biology is often considered a homogenous whole in the methodological literature targeting biomimetics, it actually gathers fundamentally different fields. Each of these fields is structured around specific practices, tools, and reasoning. Based on this observation, we wondered which knowledge and know-how, and so biological fields, should characterize biomimeticians. Following the design research methodology, this article thus investigates the operational integration of two biological fields, namely ecology and phylogenetics, as a starting point in the establishment of the biomimetician's biological tools and practices. After a descriptive phase identifying specific needs and potential conceptual bridges, we presented various ways of applying biological expertise during biomimetic processes in the prescriptive phase of the study. Finally, we discussed current limitations and future research axes.
Collapse
|
39
|
Navigating the Tower of Babel: The Epistemological Shift of Bioinspired Innovation. Biomimetics (Basel) 2020; 5:biomimetics5040060. [PMID: 33182234 PMCID: PMC7709637 DOI: 10.3390/biomimetics5040060] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 10/25/2020] [Accepted: 11/02/2020] [Indexed: 11/25/2022] Open
Abstract
The disparity between disciplinary approaches to bioinspired innovation has created a cultural divide that is stifling to the overall advancement of the approach for sustainable societies. This paper aims to advance the effectiveness of bioinspired innovation processes for positive benefits through interdisciplinary communication by exploring the epistemological assumptions in various fields that contribute to the discipline. We propose that there is a shift in epistemological assumptions within bioinspired innovation processes at the points where biological models derived from reductionist approaches are interpreted as socially-constructed design principles, which are then realized in practical settings wrought with complexity and multiplicity. This epistemological shift from one position to another frequently leaves practitioners with erroneous assumptions due to a naturalistic fallacy. Drawing on examples in biology, we provide three recommendations to improve the clarity of the dialogue amongst interdisciplinary teams. (1) The deliberate articulation of epistemological perspectives amongst team members. (2) The application of a gradient orientation towards sustainability instead of a dichotomous orientation. (3) Ongoing dialogue and further research to develop novel epistemological approaches towards the topic. Adopting these recommendations could further advance the effectiveness of bioinspired innovation processes to positively impact social and ecological systems.
Collapse
|
40
|
Framework for Developing Bio-Inspired Morphologies for Walking Robots. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10196986] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Morphology is a defining trait of any walking entity, animal or robot, and is crucial in obtaining movement versatility, dexterity and durability. Collaborations between biologist and engineers create opportunities for implementing bio-inspired morphologies in walking robots. However, there is little guidance for such interdisciplinary collaborations and what tools to use. We propose a development framework for transferring animal morphologies to robots and substantiate it with a replication of the ability of the dung beetle species Scarabaeus galenus to use the same morphology for both locomotion and object manipulation. As such, we demonstrate the advantages of a bio-inspired dung beetle-like robot, ALPHA, and how its morphology outperforms a conventional hexapod by increasing the (1) step length by 50.0%, (2) forward and upward reach by 95.5%, and by lowering the (3) overall motor acceleration by 7.9%, and (4) step frequency by 21.1% at the same walking speed. Thereby, the bio-inspired robot has longer and fewer steps that lower fatigue-inducing impulses, a greater variety of step patterns, and can potentially better utilise its workspace to overcome obstacles. Hence, we demonstrate how the framework can be used to develop legged robots with bio-inspired morphologies that embody greater movement versatility, dexterity and durability.
Collapse
|
41
|
Wanieck K, Ritzinger D, Zollfrank C, Jacobs S. Biomimetics: teaching the tools of the trade. FEBS Open Bio 2020; 10:2250-2267. [PMID: 32860736 PMCID: PMC7609788 DOI: 10.1002/2211-5463.12963] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 08/04/2020] [Accepted: 08/24/2020] [Indexed: 11/13/2022] Open
Abstract
Biomimetics is a known innovation paradigm of the twenty‐first century with significant impact on science, society, economy, and challenges of sustainability. As such, it can be understood as a mindset for creative thinking and as a methodology or technique for effective knowledge transfer between disciplines, mainly biology and technology. As biomimetics is relevant to practitioners in various fields of application, understanding the teaching and training of biomimetics for different audiences is important. With this article, we aim to give a holistic view of teaching and training practices and opportunities. First, we offer a set of learning objectives based on an analysis of various courses worldwide and we give recommendations for the design of future curricula. Second, based on an audience analysis and interviews, we developed a set of personas of the users of biomimetics, and as such, we offer a deeper understanding of their needs for the design of the process, including tools and methods.
Collapse
Affiliation(s)
- Kristina Wanieck
- Working Group Biomimetics, THD-Technische Hochschule Deggendorf (Deggendorf Institute of Technology), Freyung, Germany.,Biogenic Polymers, TUM Campus Straubing for Biotechnology and Sustainability, Technische Universität München, Straubing, Germany
| | - Daniel Ritzinger
- Faculty of Applied Natural Sciences and Industrial Engineering, THD - Technische Hochschule Deggendorf, Deggendorf, Germany
| | - Cordt Zollfrank
- Biogenic Polymers, TUM Campus Straubing for Biotechnology and Sustainability, Technische Universität München, Straubing, Germany
| | - Shoshanah Jacobs
- Department of Integrative Biology and Office of Educational Scholarship and Practice, University of Guelph, Canada
| |
Collapse
|
42
|
Kohsaka R, Fujihira Y, Uchiyama Y. Biomimetics for business? Industry perceptions and patent application. JOURNAL OF SCIENCE AND TECHNOLOGY POLICY MANAGEMENT 2019. [DOI: 10.1108/jstpm-05-2018-0052] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
PurposeBiomimetics are expected to contribute to sustainable environmental management; however, there has been no exploration of industry perceptions by using empirical data. This study aims to identify the trends and perceptions of biomimetics. The industrial sectors in Japan and international patent application trends are analyzed.Design/methodology/approachAn online survey to identify the perceptions of staff members in Japanese private companies (n = 276) was conducted. Japan is an emerging country in terms of the social implementation of biomimetics, and this paper can provide insights into other such countries.FindingsIt is identified that the strength of connections to biomimetics differs across industrial sectors. The respondents from companies that use nanoscale biomimetics tend to have the knowledge of, and experience in, biomimetics. Regarding the overall understanding of patent applications, Japanese private company employees require knowledge of patent application trends and country rankings as potential factors influencing the development of biomimetics.Social implicationsKnowledge transfer and sharing of experience among engineers and researchers of nanoscale technologies and urban scales are necessary to facilitate biomimetic advancement.Originality/valueThe results of the first survey and an analysis of the perceptions of staff members in private companies in Japan are provided to show the challenges in the social implementation of biomimetics. The results can be referred to for the social implementation of biomimetics in emerging countries. The method of this study can be applied to an international comparative analysis in future research.
Collapse
|
43
|
What Do We Learn from Good Practices of Biologically Inspired Design in Innovation? APPLIED SCIENCES-BASEL 2019. [DOI: 10.3390/app9040650] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Biologically inspired design (BID) is an emerging field of research with increasing achievements in engineering for design and problem solving. Its economic, societal, and ecological impact is considered to be significant. However, the number of existing products and success stories is still limited when compared to the knowledge that is available from biology and BID research. This article describes success factors for BID solutions, from the design process to the commercialization process, based on case studies and market analyses of biologically inspired products. Furthermore, the paper presents aspects of an effective knowledge transfer from science to industrial application, based on interviews with industrial partners. The accessibility of the methodological approach has led to promising advances in BID in practice. The findings can be used to increase the number of success stories by providing key steps toward the implementation and commercialization of BID products, and to point out necessary fields of cooperative research.
Collapse
|
44
|
Duysens J, Forner-Cordero A. Walking with perturbations: a guide for biped humans and robots. BIOINSPIRATION & BIOMIMETICS 2018; 13:061001. [PMID: 30109860 DOI: 10.1088/1748-3190/aada54] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
This paper provides an update on the neural control of bipedal walking in relation to bioinspired models and robots. It is argued that most current models or robots are based on the construct of a symmetrical central pattern generator (CPG). However, new evidence suggests that CPG functioning is basically asymmetrical with its flexor half linked more tightly to the rhythm generator. The stability of bipedal gait, which is an important problem for robots and biological systems, is also addressed. While it is not possible to determine how biological biped systems guarantee stability, robot solutions can be useful to propose new hypotheses for biology. In the second part of this review, the focus is on gait perturbations, which is an important topic in robotics in view of the frequent falls of robots when faced with perturbations. From the human physiology it is known that the initial reaction often consists of a brief interruption followed by an adequate response. For instance, the successful recovery from a trip is achieved using some basic reactions (termed elevating and lowering strategies), that depend on the phase of the step cycle of the trip occurrence. Reactions to stepping unexpectedly in a hole depend on comparing expected and real feedback. Implementation of these ideas in models and robotics starts to emerge, with the most advanced robots being able to learn how to fall safely and how to deal with complicated disturbances such as provided by walking on a split-belt.
Collapse
Affiliation(s)
- Jacques Duysens
- Biomechatronics Lab., Mechatronics Department, Escola Politécnica da Universidade de São Paulo, Av. Prof. Mello Moraes, 2231, Cidade Universitária 05508-030, São Paulo-SP, Brasil. Department of Kinesiology, FaBeR, Katholieke Universiteit Leuven, Leuven, Belgium
| | | |
Collapse
|
45
|
Deuerling S, Kugler S, Klotz M, Zollfrank C, Van Opdenbosch D. A Perspective on Bio-Mediated Material Structuring. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2018; 30:e1703656. [PMID: 29178190 DOI: 10.1002/adma.201703656] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 09/22/2017] [Indexed: 06/07/2023]
Abstract
Bioinspiration, biomorphy, biomimicry, biomimetics, bionics, and biotemplating are terms used to describe the fabrication of materials or, more generally, systems to solve technological problems by abstracting, emulating, using, or transferring structures from biological paradigms. Herein, a brief overview of how the different terminologies are being typically applied is provided. It is proposed that there is a rich field of research that can be expanded by utilizing various novel approaches for the guidance of living organisms for "bio-mediated" material structuring purposes. As examples of contact-based or contact-free guidance, such as substrate patterning, the application of light, magnetic fields, or chemical gradients, potentially interesting methods of creating hierarchically structured monolithic engineering materials, using live patterned biomass, biofilms, or extracellular substances as scaffolds, are presented. The potential advantages of such materials are discussed, and examples of live self-patterning of materials are given.
Collapse
Affiliation(s)
- Steffi Deuerling
- Technical University of Munich Chair of Biogenic Polymers, Schulgasse 16, D-94315, Straubing, Germany
| | - Sabine Kugler
- Technical University of Munich Chair of Biogenic Polymers, Schulgasse 16, D-94315, Straubing, Germany
| | - Moritz Klotz
- Technical University of Munich Chair of Biogenic Polymers, Schulgasse 16, D-94315, Straubing, Germany
| | - Cordt Zollfrank
- Technical University of Munich Chair of Biogenic Polymers, Schulgasse 16, D-94315, Straubing, Germany
| | - Daniel Van Opdenbosch
- Technical University of Munich Chair of Biogenic Polymers, Schulgasse 16, D-94315, Straubing, Germany
| |
Collapse
|
46
|
Drack M, Limpinsel M, de Bruyn G, Nebelsick JH, Betz O. Towards a theoretical clarification of biomimetics using conceptual tools from engineering design. BIOINSPIRATION & BIOMIMETICS 2017; 13:016007. [PMID: 29235451 DOI: 10.1088/1748-3190/aa967c] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Many successful examples of biomimetic products are available, and most research efforts in this emerging field are directed towards the development of specific applications. The theoretical and conceptual underpinnings of the knowledge transfer between biologists, engineers and architects are, however, poorly investigated. The present article addresses this gap. We use a 'technomorphic' approach, i.e. the application of conceptual tools derived from engineering design, to better understand the processes operating during a typical biomimetic research project. This helps to elucidate the formal connections between functions, working principles and constructions (in a broad sense)-because the 'form-function-relationship' is a recurring issue in biology and engineering. The presented schema also serves as a conceptual framework that can be implemented for future biomimetic projects. The concepts of 'function' and 'working principle' are identified as the core elements in the biomimetic knowledge transfer towards applications. This schema not only facilitates the development of a common language in the emerging science of biomimetics, but also promotes the interdisciplinary dialogue among its subdisciplines.
Collapse
Affiliation(s)
- M Drack
- Evolutionary Biology of Invertebrates, Institute of Evolution and Ecology, University of Tübingen, Auf der Morgenstelle 28, 72076 Tübingen, Germany
| | | | | | | | | |
Collapse
|
47
|
Lantada AD, Hengsbach S, Bade K. Lotus-on-chip: computer-aided design and 3D direct laser writing of bioinspired surfaces for controlling the wettability of materials and devices. BIOINSPIRATION & BIOMIMETICS 2017; 12:066004. [PMID: 28752821 DOI: 10.1088/1748-3190/aa82e0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
In this study we present the combination of a math-based design strategy with direct laser writing as high-precision technology for promoting solid free-form fabrication of multi-scale biomimetic surfaces. Results show a remarkable control of surface topography and wettability properties. Different examples of surfaces inspired on the lotus leaf, which to our knowledge are obtained for the first time following a computer-aided design with this degree of precision, are presented. Design and manufacturing strategies towards microfluidic systems whose fluid driving capabilities are obtained just by promoting a design-controlled wettability of their surfaces, are also discussed and illustrated by means of conceptual proofs. According to our experience, the synergies between the presented computer-aided design strategy and the capabilities of direct laser writing, supported by innovative writing strategies to promote final size while maintaining high precision, constitute a relevant step forward towards materials and devices with design-controlled multi-scale and micro-structured surfaces for advanced functionalities. To our knowledge, the surface geometry of the lotus leaf, which has relevant industrial applications thanks to its hydrophobic and self-cleaning behavior, has not yet been adequately modeled and manufactured in an additive way with the degree of precision that we present here.
Collapse
Affiliation(s)
- Andrés Díaz Lantada
- UPM Product Development Lab, Mechanical Engineering Department, Universidad Politécnica de Madrid, c/José Gutiérrez Abascal 2, 28006 Madrid, Spain
| | | | | |
Collapse
|