1
|
Carvalho DN, Gonçalves C, Sousa RO, Reis RL, Oliveira JM, Silva TH. Extraction and Purification of Biopolymers from Marine Origin Sources Envisaging Their Use for Biotechnological Applications. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2024; 26:1079-1119. [PMID: 39254780 PMCID: PMC11541305 DOI: 10.1007/s10126-024-10361-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 08/19/2024] [Indexed: 09/11/2024]
Abstract
Biopolymers are a versatile and diverse class of materials that has won high interest due to their potential application in several sectors of the economy, such as cosmetics, medical materials/devices, and food additives. In the last years, the search for these compounds has explored a wider range of marine organisms that have proven to be a great alternative to mammal sources for these applications and benefit from their biological properties, such as low antigenicity, biocompatibility, and biodegradability, among others. Furthermore, to ensure the sustainable exploitation of natural marine resources and address the challenges of 3R's policies, there is a current necessity to valorize the residues and by-products obtained from food processing to benefit both economic and environmental interests. Many extraction methodologies have received significant attention for the obtention of diverse polysaccharides, proteins, and glycosaminoglycans to accomplish the increasing demands for these products. The present review gives emphasis to the ones that can be obtained from marine biological resources, as agar/agarose, alginate and sulfated polysaccharides from seaweeds, chitin/chitosan from crustaceans from crustaceans, collagen, and some glycosaminoglycans such as chondroitin sulfate and hyaluronic acids from fish. It is offered, in a summarized and easy-to-interpret arrangement, the most well-established extraction and purification methodologies used for obtaining the referred marine biopolymers, their chemical structure, as well as the characterization tools that are required to validate the extracted material and respective features. As supplementary material, a practical guide with the step-by-step isolation protocol, together with the various materials, reagents, and equipment, needed for each extraction is also delivered is also delivered. Finally, some remarks are made on the needs still observed, despite all the past efforts, to improve the current extraction and purification procedures to achieve more efficient and green methodologies with higher yields, less time-consuming, and decreased batch-to-batch variability.
Collapse
Affiliation(s)
- Duarte Nuno Carvalho
- 3B´S Research Group, I3B´s - Research Institute on Biomaterials, Biodegradables and Biomimetics of University of Minho, Headquarters of the European Institute of Excellence On Tissue Engineering and Regenerative Medicine, AvePark 4805-017, Barco, Guimarães, Portugal
- ICVS/3B´s - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Cristiana Gonçalves
- 3B´S Research Group, I3B´s - Research Institute on Biomaterials, Biodegradables and Biomimetics of University of Minho, Headquarters of the European Institute of Excellence On Tissue Engineering and Regenerative Medicine, AvePark 4805-017, Barco, Guimarães, Portugal
- ICVS/3B´s - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Rita O Sousa
- 3B´S Research Group, I3B´s - Research Institute on Biomaterials, Biodegradables and Biomimetics of University of Minho, Headquarters of the European Institute of Excellence On Tissue Engineering and Regenerative Medicine, AvePark 4805-017, Barco, Guimarães, Portugal
- ICVS/3B´s - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Rui L Reis
- 3B´S Research Group, I3B´s - Research Institute on Biomaterials, Biodegradables and Biomimetics of University of Minho, Headquarters of the European Institute of Excellence On Tissue Engineering and Regenerative Medicine, AvePark 4805-017, Barco, Guimarães, Portugal
- ICVS/3B´s - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - J Miguel Oliveira
- 3B´S Research Group, I3B´s - Research Institute on Biomaterials, Biodegradables and Biomimetics of University of Minho, Headquarters of the European Institute of Excellence On Tissue Engineering and Regenerative Medicine, AvePark 4805-017, Barco, Guimarães, Portugal
- ICVS/3B´s - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Tiago H Silva
- 3B´S Research Group, I3B´s - Research Institute on Biomaterials, Biodegradables and Biomimetics of University of Minho, Headquarters of the European Institute of Excellence On Tissue Engineering and Regenerative Medicine, AvePark 4805-017, Barco, Guimarães, Portugal.
- ICVS/3B´s - PT Government Associate Laboratory, Braga/Guimarães, Portugal.
| |
Collapse
|
2
|
Wang H, Li X, Xuan M, Yang R, Zhang J, Chang J. Marine biomaterials for sustainable bone regeneration. GIANT 2024; 19:100298. [DOI: 10.1016/j.giant.2024.100298] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
3
|
Salthouse D, Goulding PD, Reay SL, Jackson EL, Xu C, Ahmed R, Mearns-Spragg A, Novakovic K, Hilkens CMU, Ferreira AM. Amine-reactive crosslinking enhances type 0 collagen hydrogel properties for regenerative medicine. Front Bioeng Biotechnol 2024; 12:1391728. [PMID: 39132253 PMCID: PMC11310005 DOI: 10.3389/fbioe.2024.1391728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 07/12/2024] [Indexed: 08/13/2024] Open
Abstract
Introduction Collagen is extensively utilised in regenerative medicine due to its highly desirable properties. However, collagen is typically derived from mammalian sources, which poses several limitations, including high cost, potential risk of immunogenicity and transmission of infectious diseases, and ethical and religious constraints. Jellyfish-sourced type 0 collagen represents a safer and more environmentally sustainable alternative collagen source. Methods Thus, we investigated the potential of jellyfish collagen-based hydrogels, obtained from Rhizostoma pulmo (R. pulmo) jellyfish, to be utilised in regenerative medicine. A variety of R. pulmo collagen hydrogels (RpCol hydrogels) were formed by adding a range of chemical crosslinking agents and their physicochemical and biological properties were characterised to assess their suitability for regenerative medicine applications. Results and Discussion The characteristic chemical composition of RpCol was confirmed by Fourier-transform infrared spectroscopy (FTIR), and the degradation kinetics, morphological, and rheological properties of RpCol hydrogels were shown to be adaptable through the addition of specific chemical crosslinking agents. The endotoxin levels of RpCol were below the Food and Drug Administration (FDA) limit for medical devices, thus allowing the potential use of RpCol in vivo. 8-arm polyethylene glycol succinimidyl carboxyl methyl ester (PEG-SCM)-crosslinked RpCol hydrogels preserved the viability and induced a significant increase in the metabolic activity of immortalised human mesenchymal stem/stromal cells (TERT-hMSCs), therefore demonstrating their potential to be utilised in a wide range of regenerative medicine applications.
Collapse
Affiliation(s)
- Daniel Salthouse
- School of Engineering, Newcastle University, Newcastle Upon Tyne, United Kingdom
| | - Peter D. Goulding
- School of Engineering, Newcastle University, Newcastle Upon Tyne, United Kingdom
| | - Sophie L. Reay
- School of Engineering, Newcastle University, Newcastle Upon Tyne, United Kingdom
| | - Emma L. Jackson
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Chenlong Xu
- School of Engineering, Newcastle University, Newcastle Upon Tyne, United Kingdom
| | | | | | - Katarina Novakovic
- School of Engineering, Newcastle University, Newcastle Upon Tyne, United Kingdom
| | - Catharien M. U. Hilkens
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Ana Marina Ferreira
- School of Engineering, Newcastle University, Newcastle Upon Tyne, United Kingdom
| |
Collapse
|
4
|
Rodrigues JP, da Costa Silva JR, Ferreira BA, Veloso LI, Quirino LS, Rosa RR, Barbosa MC, Rodrigues CM, Gaspari PBF, Beletti ME, Goulart LR, Corrêa NCR. Development of collagenous scaffolds for wound healing: characterization and in vivo analysis. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2024; 35:12. [PMID: 38315254 PMCID: PMC10844142 DOI: 10.1007/s10856-023-06774-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 12/28/2023] [Indexed: 02/07/2024]
Abstract
The development of wound dressings from biomaterials has been the subject of research due to their unique structural and functional characteristics. Proteins from animal origin, such as collagen and chitosan, act as promising materials for applications in injuries and chronic wounds, functioning as a repairing agent. This study aims to evaluate in vitro effects of scaffolds with different formulations containing bioactive compounds such as collagen, chitosan, N-acetylcysteine (NAC) and ε-poly-lysine (ε-PL). We manufactured a scaffold made of a collagen hydrogel bioconjugated with chitosan by crosslinking and addition of NAC and ε-PL. Cell viability was verified by resazurin and live/dead assays and the ultrastructure of biomaterials was evaluated by SEM. Antimicrobial sensitivity was assessed by antibiogram. The healing potential of the biomaterial was evaluated in vivo, in a model of healing of excisional wounds in mice. On the 7th day after the injury, the wounds and surrounding skin were processed for evaluation of biochemical and histological parameters associated with the inflammatory process. The results showed great cell viability and increase in porosity after crosslinking while antimicrobial action was observed in scaffolds containing NAC and ε-PL. Chitosan scaffolds bioconjugated with NAC/ε-PL showed improvement in tissue healing, with reduced lesion size and reduced inflammation. It is concluded that scaffolds crosslinked with chitosan-NAC-ε-PL have the desirable characteristics for tissue repair at low cost and could be considered promising biomaterials in the practice of regenerative medicine.
Collapse
Affiliation(s)
- Jéssica Peixoto Rodrigues
- Laboratory of Nanobiotechnology, Institute of Biotechnology, Federal University of Uberlandia, Av. Amazonas s/n, Campus Umuarama BL-2E, SL-248, Uberlândia, Minas Gerais, 38400-902, Brazil.
| | - Jéssica Regina da Costa Silva
- Laboratory of Nanobiotechnology, Institute of Biotechnology, Federal University of Uberlandia, Av. Amazonas s/n, Campus Umuarama BL-2E, SL-248, Uberlândia, Minas Gerais, 38400-902, Brazil
| | - Bruno Antônio Ferreira
- Department of Physiological Sciences, Federal University of Uberlândia, UFU, Uberlândia, MG, Brazil
| | - Lucas Ian Veloso
- Laboratory of Nanobiotechnology, Institute of Biotechnology, Federal University of Uberlandia, Av. Amazonas s/n, Campus Umuarama BL-2E, SL-248, Uberlândia, Minas Gerais, 38400-902, Brazil
| | - Ludmila Sousa Quirino
- Laboratory of Nanobiotechnology, Institute of Biotechnology, Federal University of Uberlandia, Av. Amazonas s/n, Campus Umuarama BL-2E, SL-248, Uberlândia, Minas Gerais, 38400-902, Brazil
| | - Roberta Rezende Rosa
- Laboratory of Nanobiotechnology, Institute of Biotechnology, Federal University of Uberlandia, Av. Amazonas s/n, Campus Umuarama BL-2E, SL-248, Uberlândia, Minas Gerais, 38400-902, Brazil
| | - Matheus Carvalho Barbosa
- Laboratory of Nanobiotechnology, Institute of Biotechnology, Federal University of Uberlandia, Av. Amazonas s/n, Campus Umuarama BL-2E, SL-248, Uberlândia, Minas Gerais, 38400-902, Brazil
| | - Cláudia Mendonça Rodrigues
- Laboratory of Nanobiotechnology, Institute of Biotechnology, Federal University of Uberlandia, Av. Amazonas s/n, Campus Umuarama BL-2E, SL-248, Uberlândia, Minas Gerais, 38400-902, Brazil
| | - Paula Batista Fernandes Gaspari
- Laboratory of Nanobiotechnology, Institute of Biotechnology, Federal University of Uberlandia, Av. Amazonas s/n, Campus Umuarama BL-2E, SL-248, Uberlândia, Minas Gerais, 38400-902, Brazil
| | - Marcelo Emílio Beletti
- Department of Cell Biology, Histology and Embryology, Federal University of Uberlândia, UFU, Uberlândia, MG, Brazil
| | - Luiz Ricardo Goulart
- Laboratory of Nanobiotechnology, Institute of Biotechnology, Federal University of Uberlandia, Av. Amazonas s/n, Campus Umuarama BL-2E, SL-248, Uberlândia, Minas Gerais, 38400-902, Brazil
| | - Natássia Caroline Resende Corrêa
- Laboratory of Nanobiotechnology, Institute of Biotechnology, Federal University of Uberlandia, Av. Amazonas s/n, Campus Umuarama BL-2E, SL-248, Uberlândia, Minas Gerais, 38400-902, Brazil
| |
Collapse
|
5
|
Ciptawati E, Takase H, Watanabe NM, Okamoto Y, Nur H, Umakoshi H. Preparation and Characterization of Biodegradable Sponge-like Cryogel Particles of Chitosan via the Inverse Leidenfrost (iLF) Effect. ACS OMEGA 2024; 9:2383-2390. [PMID: 38250365 PMCID: PMC10795030 DOI: 10.1021/acsomega.3c06639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 12/18/2023] [Accepted: 12/21/2023] [Indexed: 01/23/2024]
Abstract
Chitosan-based cryogel particles were synthesized using the inverse Leidenfrost (iLF) effect, with glutaraldehyde employed as the cross-linker. The resulting cryogels exhibited a sponge-like morphology with micrometer-sized interconnected pores and demonstrated resilience, withstanding up to three compression-release cycles. These characteristics highlight the potential of chitosan cryogels for diverse applications, including adsorption and biomedical uses. We further investigated the influence of varying acetic acid concentrations on the properties of the chitosan cryogels. Our findings revealed that the particle size distribution of the cryogels ranged from 1300 to 2900 μm. As the concentration of acetic acid increased, the swelling degree of the chitosan cryogels decreased, stabilizing at an approximate value of around 6 at 0.03 mol of acetic acid. Additionally, the shift in the absorption peak of the OH and free amino groups from 3261 to 3404 cm-1 confirmed the cross-linking reaction between chitosan and glutaraldehyde.
Collapse
Affiliation(s)
- Endang Ciptawati
- Division
of Chemical Engineering, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama-cho, Toyonaka, Osaka 560-8531, Japan
- Department
of Chemistry, Faculty of Mathematics and Natural Science, Universitas Negeri Malang, Jl. Semarang 5, Malang 65145, Indonesia
| | - Hayato Takase
- Department
of Chemical Engineering, Graduate School of Science and Engineering, Kagoshima University, 1-21-40 Korimoto, Kagoshima 890-0065, Japan
| | - Nozomi Morishita Watanabe
- Division
of Chemical Engineering, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama-cho, Toyonaka, Osaka 560-8531, Japan
| | - Yukihiro Okamoto
- Division
of Chemical Engineering, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama-cho, Toyonaka, Osaka 560-8531, Japan
| | - Hadi Nur
- Department
of Chemistry, Faculty of Mathematics and Natural Science, Universitas Negeri Malang, Jl. Semarang 5, Malang 65145, Indonesia
| | - Hiroshi Umakoshi
- Division
of Chemical Engineering, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama-cho, Toyonaka, Osaka 560-8531, Japan
| |
Collapse
|
6
|
Sasidharan A. Fish Structural Proteins. FISH STRUCTURAL PROTEINS AND ITS DERIVATIVES: FUNCTIONALITY AND APPLICATIONS 2024:19-34. [DOI: 10.1007/978-981-97-2562-5_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
7
|
Carriero VC, Di Muzio L, Petralito S, Casadei MA, Paolicelli P. Cryogel Scaffolds for Tissue-Engineering: Advances and Challenges for Effective Bone and Cartilage Regeneration. Gels 2023; 9:979. [PMID: 38131965 PMCID: PMC10742915 DOI: 10.3390/gels9120979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 12/07/2023] [Accepted: 12/12/2023] [Indexed: 12/23/2023] Open
Abstract
Critical-sized bone defects and articular cartilage injuries resulting from trauma, osteonecrosis, or age-related degeneration can be often non-healed by physiological repairing mechanisms, thus representing a relevant clinical issue due to a high epidemiological incidence rate. Novel tissue-engineering approaches have been proposed as an alternative to common clinical practices. This cutting-edge technology is based on the combination of three fundamental components, generally referred to as the tissue-engineering triad: autologous or allogenic cells, growth-stimulating factors, and a scaffold. Three-dimensional polymer networks are frequently used as scaffolds to allow cell proliferation and tissue regeneration. In particular, cryogels give promising results for this purpose, thanks to their peculiar properties. Cryogels are indeed characterized by an interconnected porous structure and a typical sponge-like behavior, which facilitate cellular infiltration and ingrowth. Their composition and the fabrication procedure can be appropriately tuned to obtain scaffolds that match the requirements of a specific tissue or organ to be regenerated. These features make cryogels interesting and promising scaffolds for the regeneration of different tissues, including those characterized by very complex mechanical and physical properties, such as bones and joints. In this review, state-of-the-art fabrication and employment of cryogels for supporting effective osteogenic or chondrogenic differentiation to allow for the regeneration of functional tissues is reported. Current progress and challenges for the implementation of this technology in clinical practice are also highlighted.
Collapse
Affiliation(s)
| | | | | | | | - Patrizia Paolicelli
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, 00185 Rome, Italy; (V.C.C.); (L.D.M.); (S.P.); (M.A.C.)
| |
Collapse
|
8
|
Kang MS, Jo HJ, Jang HJ, Kim B, Jung TG, Han DW. Recent Advances in Marine Biomaterials Tailored and Primed for the Treatment of Damaged Soft Tissues. Mar Drugs 2023; 21:611. [PMID: 38132932 PMCID: PMC10744877 DOI: 10.3390/md21120611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 11/23/2023] [Accepted: 11/24/2023] [Indexed: 12/23/2023] Open
Abstract
The inherent self-repair abilities of the body often fall short when it comes to addressing injuries in soft tissues like skin, nerves, and cartilage. Tissue engineering and regenerative medicine have concentrated their research efforts on creating natural biomaterials to overcome this intrinsic healing limitation. This comprehensive review delves into the advancement of such biomaterials using substances and components sourced from marine origins. These marine-derived materials offer a sustainable alternative to traditional mammal-derived sources, harnessing their advantageous biological traits including sustainability, scalability, reduced zoonotic disease risks, and fewer religious restrictions. The use of diverse engineering methodologies, ranging from nanoparticle engineering and decellularization to 3D bioprinting and electrospinning, has been employed to fabricate scaffolds based on marine biomaterials. Additionally, this review assesses the most promising aspects in this field while acknowledging existing constraints and outlining necessary future steps for advancement.
Collapse
Affiliation(s)
- Moon Sung Kang
- Department of Cogno-Mechatronics Engineering, Pusan National University, Busan 46241, Republic of Korea; (M.S.K.); (H.J.J.); (H.J.J.)
| | - Hyo Jung Jo
- Department of Cogno-Mechatronics Engineering, Pusan National University, Busan 46241, Republic of Korea; (M.S.K.); (H.J.J.); (H.J.J.)
| | - Hee Jeong Jang
- Department of Cogno-Mechatronics Engineering, Pusan National University, Busan 46241, Republic of Korea; (M.S.K.); (H.J.J.); (H.J.J.)
| | - Bongju Kim
- Dental Life Science Research Institute/Innovation Research & Support Center for Dental Science, Seoul National University Dental Hospital, Seoul 03080, Republic of Korea;
| | - Tae Gon Jung
- Medical Device Development Center, Osong Medical Innovation Foundation, Cheonju-si 28160, Republic of Korea
| | - Dong-Wook Han
- Department of Cogno-Mechatronics Engineering, Pusan National University, Busan 46241, Republic of Korea; (M.S.K.); (H.J.J.); (H.J.J.)
- Institute of Nano-Bio Convergence, Pusan National University, Busan 46241, Republic of Korea
| |
Collapse
|
9
|
Carvalho DN, Lobo FCM, Rodrigues LC, Fernandes EM, Williams DS, Mearns-Spragg A, Sotelo CG, Perez-Martín RI, Reis RL, Gelinsky M, Silva TH. Advanced Polymeric Membranes as Biomaterials Based on Marine Sources Envisaging the Regeneration of Human Tissues. Gels 2023; 9:gels9030247. [PMID: 36975696 PMCID: PMC10048504 DOI: 10.3390/gels9030247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 03/16/2023] [Accepted: 03/17/2023] [Indexed: 03/22/2023] Open
Abstract
The self-repair capacity of human tissue is limited, motivating the arising of tissue engineering (TE) in building temporary scaffolds that envisage the regeneration of human tissues, including articular cartilage. However, despite the large number of preclinical data available, current therapies are not yet capable of fully restoring the entire healthy structure and function on this tissue when significantly damaged. For this reason, new biomaterial approaches are needed, and the present work proposes the development and characterization of innovative polymeric membranes formed by blending marine origin polymers, in a chemical free cross-linking approach, as biomaterials for tissue regeneration. The results confirmed the production of polyelectrolyte complexes molded as membranes, with structural stability resulting from natural intermolecular interactions between the marine biopolymers collagen, chitosan and fucoidan. Furthermore, the polymeric membranes presented adequate swelling ability without compromising cohesiveness (between 300 and 600%), appropriate surface properties, revealing mechanical properties similar to native articular cartilage. From the different formulations studied, the ones performing better were the ones produced with 3 % shark collagen, 3% chitosan and 10% fucoidan, as well as with 5% jellyfish collagen, 3% shark collagen, 3% chitosan and 10% fucoidan. Overall, the novel marine polymeric membranes demonstrated to have promising chemical, and physical properties for tissue engineering approaches, namely as thin biomaterial that can be applied over the damaged articular cartilage aiming its regeneration.
Collapse
Affiliation(s)
- Duarte Nuno Carvalho
- 3B’s Research Group, I3B’s—Research Institute on Biomaterials, Biodegradables and Biomimetics of University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark 4805-017, Barco, 4805-017 Guimarães, Portugal
- ICVS/3B’s—PT Government Associate Laboratory, 4710-057 Braga/Guimarães, Portugal
| | - Flávia C. M. Lobo
- 3B’s Research Group, I3B’s—Research Institute on Biomaterials, Biodegradables and Biomimetics of University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark 4805-017, Barco, 4805-017 Guimarães, Portugal
- ICVS/3B’s—PT Government Associate Laboratory, 4710-057 Braga/Guimarães, Portugal
| | - Luísa C. Rodrigues
- 3B’s Research Group, I3B’s—Research Institute on Biomaterials, Biodegradables and Biomimetics of University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark 4805-017, Barco, 4805-017 Guimarães, Portugal
- ICVS/3B’s—PT Government Associate Laboratory, 4710-057 Braga/Guimarães, Portugal
| | - Emanuel M. Fernandes
- 3B’s Research Group, I3B’s—Research Institute on Biomaterials, Biodegradables and Biomimetics of University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark 4805-017, Barco, 4805-017 Guimarães, Portugal
- ICVS/3B’s—PT Government Associate Laboratory, 4710-057 Braga/Guimarães, Portugal
| | - David S. Williams
- Jellagen Limited, Unit G6, Capital Business Park, Parkway, St Mellons, Cardiff CF3 2PY, UK
| | - Andrew Mearns-Spragg
- Jellagen Limited, Unit G6, Capital Business Park, Parkway, St Mellons, Cardiff CF3 2PY, UK
| | - Carmen G. Sotelo
- Group of Food Biochemistry, Instituto de Investigaciones Marinas (IIM-CSIC), C/ Eduardo Cabello 6, 36208 Vigo, Spain
| | - Ricardo I. Perez-Martín
- Group of Food Biochemistry, Instituto de Investigaciones Marinas (IIM-CSIC), C/ Eduardo Cabello 6, 36208 Vigo, Spain
| | - Rui L. Reis
- 3B’s Research Group, I3B’s—Research Institute on Biomaterials, Biodegradables and Biomimetics of University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark 4805-017, Barco, 4805-017 Guimarães, Portugal
- ICVS/3B’s—PT Government Associate Laboratory, 4710-057 Braga/Guimarães, Portugal
| | - Michael Gelinsky
- Centre for Translational Bone, Joint and Soft Tissue Research, Faculty of Medicine and University Hospital, Technische Universität Dresden, 01307 Dresden, Germany
| | - Tiago H. Silva
- 3B’s Research Group, I3B’s—Research Institute on Biomaterials, Biodegradables and Biomimetics of University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark 4805-017, Barco, 4805-017 Guimarães, Portugal
- ICVS/3B’s—PT Government Associate Laboratory, 4710-057 Braga/Guimarães, Portugal
- Correspondence: ; Tel.: +351253510931
| |
Collapse
|
10
|
Smith IP, Domingos M, Richardson SM, Bella J. Characterization of the Biophysical Properties and Cell Adhesion Interactions of Marine Invertebrate Collagen from Rhizostoma pulmo. Mar Drugs 2023; 21:59. [PMID: 36827101 PMCID: PMC9966395 DOI: 10.3390/md21020059] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/10/2023] [Accepted: 01/17/2023] [Indexed: 01/21/2023] Open
Abstract
Collagen is the most ubiquitous biomacromolecule found in the animal kingdom and is commonly used as a biomaterial in regenerative medicine therapies and biomedical research. The collagens used in these applications are typically derived from mammalian sources which poses sociological issues due to widespread religious constraints, rising ethical concern over animal rights and the continuous risk of zoonotic disease transmission. These issues have led to increasing research into alternative collagen sources, of which marine collagens, in particular from jellyfish, have emerged as a promising resource. This study provides a characterization of the biophysical properties and cell adhesion interactions of collagen derived from the jellyfish Rhizostoma pulmo (JCol). Circular dichroism spectroscopy and atomic force microscopy were used to observe the triple-helical conformation and fibrillar morphology of JCol. Heparin-affinity chromatography was also used to demonstrate the ability of JCol to bind to immobilized heparin. Cell adhesion assays using integrin blocking antibodies and HT-1080 human fibrosarcoma cells revealed that adhesion to JCol is primarily performed via β1 integrins, with the exception of α2β1 integrin. It was also shown that heparan sulfate binding plays a much greater role in fibroblast and mesenchymal stromal cell adhesion to JCol than for type I mammalian collagen (rat tail collagen). Overall, this study highlights the similarities and differences between collagens from mammalian and jellyfish origins, which should be considered when utilizing alternative collagen sources for biomedical research.
Collapse
Affiliation(s)
- Ian P. Smith
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester M13 9PT, UK
| | - Marco Domingos
- Department of Mechanical, Aerospace and Civil Engineering, Faculty of Science and Engineering and Henry Royce Institute, University of Manchester, Manchester M13 9PY, UK
| | - Stephen M. Richardson
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester M13 9PT, UK
| | - Jordi Bella
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester M13 9PT, UK
| |
Collapse
|
11
|
Przybyłek M, Bełdowski P, Wieland F, Cysewski P, Sionkowska A. Collagen Type II-Chitosan Interactions as Dependent on Hydroxylation and Acetylation Inferred from Molecular Dynamics Simulations. MOLECULES (BASEL, SWITZERLAND) 2022; 28:molecules28010154. [PMID: 36615345 PMCID: PMC9821911 DOI: 10.3390/molecules28010154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 12/14/2022] [Accepted: 12/21/2022] [Indexed: 12/28/2022]
Abstract
Chitosan-collagen blends have been widely applied in tissue engineering, joints diseases treatment, and many other biomedical fields. Understanding the affinity between chitosan and collagen type II is particularly relevant in the context of mechanical properties modulation, which is closely associated with designing biomaterials suitable for cartilage and synovial fluid regeneration. However, many structural features influence chitosan's affinity for collagen. One of the most important ones is the deacetylation degree (DD) in chitosan and the hydroxylation degree (HD) of proline (PRO) moieties in collagen. In this paper, combinations of both factors were analyzed using a very efficient molecular dynamics approach. It was found that DD and HD modifications significantly affect the structural features of the complex related to considered types of interactions, namely hydrogen bonds, hydrophobic, and ionic contacts. In the case of hydrogen bonds both direct and indirect (water bridges) contacts were examined. In case of the most collagen analogues, a very good correlation between binding free energy and DD was observed.
Collapse
Affiliation(s)
- Maciej Przybyłek
- Department of Physical Chemistry, Pharmacy Faculty, Collegium Medicum of Bydgoszcz, Nicolaus Copernicus University in Toruń, Kurpińskiego 5, 85-950 Bydgoszcz, Poland
- Correspondence: (M.P.); (A.S.)
| | - Piotr Bełdowski
- Institute of Mathematics and Physics, Bydgoszcz University of Science and Technology, al. Kaliskiego 7, 85-796 Bydgoszcz, Poland
- Helmholtz-Zentrum Hereon, Institute for Metallic Biomaterials, Max-Planck-Straße 1, 21502 Geesthacht, Germany
| | - Florian Wieland
- Helmholtz-Zentrum Hereon, Institute for Metallic Biomaterials, Max-Planck-Straße 1, 21502 Geesthacht, Germany
| | - Piotr Cysewski
- Department of Physical Chemistry, Pharmacy Faculty, Collegium Medicum of Bydgoszcz, Nicolaus Copernicus University in Toruń, Kurpińskiego 5, 85-950 Bydgoszcz, Poland
| | - Alina Sionkowska
- Department of Biomaterials and Cosmetics Chemistry, Faculty of Chemistry, Nicolaus Copernicus University in Toruń, Gagarin 7, 87-100 Toruń, Poland
- Correspondence: (M.P.); (A.S.)
| |
Collapse
|
12
|
Sun TC, Yan BY, Ning XC, Tang ZY, Hui C, Hu MZ, Ramakrishna S, Long YZ, Zhang J. A nanofiber hydrogel derived entirely from ocean biomass for wound healing. NANOSCALE ADVANCES 2022; 5:160-170. [PMID: 36605791 PMCID: PMC9765447 DOI: 10.1039/d2na00535b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 10/20/2022] [Indexed: 06/17/2023]
Abstract
Crustaceans and fish scales in the marine food industry are basically thrown away as waste. This not only wastes resources but also causes environmental pollution. While reducing pollution and waste, biological activity and storage of materials are urgent issues to be solved. In this study, by first preparing dry fibers and then making hydrogels, we prepared a fish scale/sodium alginate/chitosan nanofiber hydrogel (FS-P) by cross-linking the nanofibers in situ. From fish and other organisms, fish gelatin (FG), collagen and CaCO3 were extracted. Fish scale (FS)/sodium alginate/chitosan nanofibers were cross-linked with copper sulfide nanoparticles prepared by a one-step green method to obtain FS-P nanofiber hydrogels under mild conditions without catalyst and additional procedures. These fiber hydrogels not only have good tissue adhesion and tensile properties, but also have the antibacterial effect of natural antibacterial and CuS photothermal synergism, which can achieve 51.32% and 49.96% of the antibacterial effect against Staphylococcus aureus and Escherichia coli respectively, avoiding the generation of superbacteria. The nanofiber hydrogels have 87.56% voidage and 52.68% degradability after 14 days. The combined strategy of using marine bio-based fibers to prepare gels promoted angiogenesis and tissue repair.
Collapse
Affiliation(s)
- Tian-Cai Sun
- Collaborative Innovation Center for Nanomaterials & Devices, College of Physics, Qingdao University Qingdao 266071 P. R. China
| | - Bing-Yu Yan
- Collaborative Innovation Center for Nanomaterials & Devices, College of Physics, Qingdao University Qingdao 266071 P. R. China
| | - Xu-Chao Ning
- Medical College, Qingdao University Qingdao 266071 P. R. China
| | - Zhi-Yue Tang
- Collaborative Innovation Center for Nanomaterials & Devices, College of Physics, Qingdao University Qingdao 266071 P. R. China
| | - Chao Hui
- Collaborative Innovation Center for Nanomaterials & Devices, College of Physics, Qingdao University Qingdao 266071 P. R. China
| | - Mao-Zhi Hu
- Equipment Division, Qingyun County People's Hospital Dezhou 253000 P. R. China
| | - Seeram Ramakrishna
- Center for Nanofibers & Nanotechnology, Department of Mechanical Engineering, National University of Singapore Singapore 117574 Singapore
| | - Yun-Ze Long
- Collaborative Innovation Center for Nanomaterials & Devices, College of Physics, Qingdao University Qingdao 266071 P. R. China
| | - Jun Zhang
- Collaborative Innovation Center for Nanomaterials & Devices, College of Physics, Qingdao University Qingdao 266071 P. R. China
| |
Collapse
|
13
|
Tudu M, Samanta A. Natural polysaccharides: Chemical properties and application in pharmaceutical formulations. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
14
|
Ma Y, Wang X, Su T, Lu F, Chang Q, Gao J. Recent Advances in Macroporous Hydrogels for Cell Behavior and Tissue Engineering. Gels 2022; 8:606. [PMID: 36286107 PMCID: PMC9601978 DOI: 10.3390/gels8100606] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 09/07/2022] [Accepted: 09/14/2022] [Indexed: 11/23/2022] Open
Abstract
Hydrogels have been extensively used as scaffolds in tissue engineering for cell adhesion, proliferation, migration, and differentiation because of their high-water content and biocompatibility similarity to the extracellular matrix. However, submicron or nanosized pore networks within hydrogels severely limit cell survival and tissue regeneration. In recent years, the application of macroporous hydrogels in tissue engineering has received considerable attention. The macroporous structure not only facilitates nutrient transportation and metabolite discharge but also provides more space for cell behavior and tissue formation. Several strategies for creating and functionalizing macroporous hydrogels have been reported. This review began with an overview of the advantages and challenges of macroporous hydrogels in the regulation of cellular behavior. In addition, advanced methods for the preparation of macroporous hydrogels to modulate cellular behavior were discussed. Finally, future research in related fields was discussed.
Collapse
Affiliation(s)
| | | | | | | | - Qiang Chang
- Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, 1838 Guangzhou North Road, Guangzhou 510515, China
| | - Jianhua Gao
- Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, 1838 Guangzhou North Road, Guangzhou 510515, China
| |
Collapse
|
15
|
Wang S, Xing Q. Preparation and in vitro biocompatibility of PBAT and chitosan composites for novel biodegradable cardiac occluders. E-POLYMERS 2022. [DOI: 10.1515/epoly-2022-0064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
The biodegradable composites were prepared by melt blending of chitosan (CS) and poly(butyleneadipate-co-terephthalate) (PBAT). By utilizing Fourier transformed infrared spectroscopy, scanning electron microscopy-energy dispersive spectroscopy, mechanical properties analysis, water contact angle measuring, differential scanning calorimetry, and thermogravimetric analysis, it was demonstrated that the CS of the PBAT-CS10 composite was relatively evenly dispersed in the PBAT matrix, the mechanical properties were significantly improved, the hydrophilicity was increased, the cold crystallization temperature was increased, and a good range of melt working temperature was obtained. The PBAT-CS10 composite was used to fabricate a cardiac occluder by fused deposition modeling of three-dimensional printing, and finite element analysis, and in vitro implantation testing proved the occluder’s mechanical support and sealing function under extreme boundary conditions. In vitro degradation experiments, neutral red uptake cytotoxicity assay, CCK-8 cell proliferation detection, immunofluorescence staining of the cytoskeleton, cell apoptosis detection, and reactive oxygen species assay were all performed on the composite, confirming that it and the occluder made of it could be hydrolyzed under physiological conditions and had no adverse effects on the cell membrane, lysosome membrane, cell proliferation, cell morphology, cell apoptosis, or ROS level, and had good biocompatibility.
Collapse
Affiliation(s)
- Shanshan Wang
- Medical College, Qingdao University , Qingdao 266071 , China
| | - Quansheng Xing
- Heart Center, Qingdao Women and Children’s Hospital, Qingdao University , Qingdao 266034 , China
| |
Collapse
|
16
|
Iqbal MW, Riaz T, Mahmood S, Bilal M, Manzoor MF, Qamar SA, Qi X. Fucoidan-based nanomaterial and its multifunctional role for pharmaceutical and biomedical applications. Crit Rev Food Sci Nutr 2022; 64:354-380. [PMID: 35930305 DOI: 10.1080/10408398.2022.2106182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Fucoidans are promising sulfated polysaccharides isolated from marine sources that have piqued the interest of scientists in recent years due to their widespread use as a bioactive substance. Bioactive coatings and films, unsurprisingly, have seized these substances to create novel, culinary, therapeutic, and diagnostic bioactive nanomaterials. The applications of fucoidan and its composite nanomaterials have a wide variety of food as well as pharmacological properties, including anti-oxidative, anti-inflammatory, anti-cancer, anti-thrombic, anti-coagulant, immunoregulatory, and anti-viral properties. Blends of fucoidan with other biopolymers such as chitosan, alginate, curdlan, starch, etc., have shown promising coating and film-forming capabilities. A blending of biopolymers is a recommended approach to improve their anticipated properties. This review focuses on the fundamental knowledge and current development of fucoidan, fucoidan-based composite material for bioactive coatings and films, and their biological properties. In this article, fucoidan-based edible bioactive coatings and films expressed excellent mechanical strength that can prolong the shelf-life of food products and maintain their biodegradability. Additionally, these coatings and films showed numerous applications in the biomedical field and contribute to the economy. We hope this review can deliver the theoretical basis for the development of fucoidan-based bioactive material and films.
Collapse
Affiliation(s)
| | - Tahreem Riaz
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Shahid Mahmood
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, China
| | | | - Sarmad Ahmad Qamar
- Institute of Organic and Polymeric Materials, National Taipei University of Technology, Taipei, Taiwan
| | - Xianghui Qi
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| |
Collapse
|
17
|
Ohmes J, Saure LM, Schütt F, Trenkel M, Seekamp A, Scherließ R, Adelung R, Fuchs S. Injectable Thermosensitive Chitosan-Collagen Hydrogel as A Delivery System for Marine Polysaccharide Fucoidan. Mar Drugs 2022; 20:402. [PMID: 35736205 PMCID: PMC9229026 DOI: 10.3390/md20060402] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 06/09/2022] [Accepted: 06/15/2022] [Indexed: 01/26/2023] Open
Abstract
Fucoidans, sulfated polysaccharides from brown algae, possess multiple bioactivities in regard to osteogenesis, angiogenesis, and inflammation, all representing key molecular processes for successful bone regeneration. To utilize fucoidans in regenerative medicine, a delivery system is needed which temporarily immobilizes the polysaccharide at the injured site. Hydrogels have become increasingly interesting biomaterials for the support of bone regeneration. Their structural resemblance with the extracellular matrix, their flexible shape, and capacity to deliver bioactive compounds or stem cells into the affected tissue make them promising materials for the support of healing processes. Especially injectable hydrogels stand out due to their minimal invasive application. In the current study, we developed an injectable thermosensitive hydrogel for the delivery of fucoidan based on chitosan, collagen, and β-glycerophosphate (β-GP). Physicochemical parameters such as gelation time, gelation temperature, swelling capacity, pH, and internal microstructure were studied. Further, human bone-derived mesenchymal stem cells (MSC) and human outgrowth endothelial cells (OEC) were cultured on top (2D) or inside the hydrogels (3D) to assess the biocompatibility. We found that the sol-gel transition occurred after approximately 1 min at 37 °C. Fucoidan integration into the hydrogel had no or only a minor impact on the mentioned physicochemical parameters compared to hydrogels which did not contain fucoidan. Release assays showed that 60% and 80% of the fucoidan was released from the hydrogel after two and six days, respectively. The hydrogel was biocompatible with MSC and OEC with a limitation for OEC encapsulation. This study demonstrates the potential of thermosensitive chitosan-collagen hydrogels as a delivery system for fucoidan and MSC for the use in regenerative medicine.
Collapse
Affiliation(s)
- Julia Ohmes
- Experimental Trauma Surgery, Department of Orthopedics and Trauma Surgery, University Medical Center Schleswig-Holstein, 24105 Kiel, Germany; (J.O.); (A.S.)
| | - Lena Marie Saure
- Functional Nanomaterials, Institute for Materials Science, Kiel University, Kaiser Str. 2, 24143 Kiel, Germany; (L.M.S.); (F.S.); (R.A.)
| | - Fabian Schütt
- Functional Nanomaterials, Institute for Materials Science, Kiel University, Kaiser Str. 2, 24143 Kiel, Germany; (L.M.S.); (F.S.); (R.A.)
| | - Marie Trenkel
- Department of Pharmaceutics and Biopharmaceutics, Kiel University, 24118 Kiel, Germany; (M.T.); (R.S.)
| | - Andreas Seekamp
- Experimental Trauma Surgery, Department of Orthopedics and Trauma Surgery, University Medical Center Schleswig-Holstein, 24105 Kiel, Germany; (J.O.); (A.S.)
| | - Regina Scherließ
- Department of Pharmaceutics and Biopharmaceutics, Kiel University, 24118 Kiel, Germany; (M.T.); (R.S.)
| | - Rainer Adelung
- Functional Nanomaterials, Institute for Materials Science, Kiel University, Kaiser Str. 2, 24143 Kiel, Germany; (L.M.S.); (F.S.); (R.A.)
| | - Sabine Fuchs
- Experimental Trauma Surgery, Department of Orthopedics and Trauma Surgery, University Medical Center Schleswig-Holstein, 24105 Kiel, Germany; (J.O.); (A.S.)
| |
Collapse
|
18
|
Yu Q, Han F, Yuan Z, Zhu Z, Liu C, Tu Z, Guo Q, Zhao R, Zhang W, Wang H, Mao H, Li B, Zhu C. Fucoidan-loaded nanofibrous scaffolds promote annulus fibrosus repair by ameliorating the inflammatory and oxidative microenvironments in degenerative intervertebral discs. Acta Biomater 2022; 148:73-89. [PMID: 35671874 DOI: 10.1016/j.actbio.2022.05.054] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 05/23/2022] [Accepted: 05/31/2022] [Indexed: 11/01/2022]
Abstract
Tissue engineering holds potential in the treatment of intervertebral disc degeneration (IDD). However, implantation of tissue engineered constructs may cause foreign body reaction and aggravate the inflammatory and oxidative microenvironment of the degenerative intervertebral disc (IVD). In order to ameliorate the adverse microenvironment of IDD, in this study, we prepared a biocompatible poly (ether carbonate urethane) urea (PECUU) nanofibrous scaffold loaded with fucoidan, a natural marine bioactive polysaccharide which has great anti-inflammatory and antioxidative functions. Compared with pure PECUU scaffold, the fucoidan-loaded PECUU nanofibrous scaffold (F-PECUU) decreased the gene and protein expression related to inflammation and the oxidative stress in the lipopolysaccharide (LPS) induced annulus fibrosus cells (AFCs) significantly (p<0.05). Especially, gene expression of Ill 6 and Ptgs2 was decreased by more than 50% in F-PECUU with 3.0 wt% fucoidan (HF-PECUU). Moreover, the gene and protein expression related to the degradation of extracellular matrix (ECM) were reduced in a fucoidan concentration-dependent manner significantly, with increased almost 3 times gene expression of Col1a2 and Acan in HF-PECUU. Further, in a 'box' defect model, HF-PECUU decreased the expression of COX-2 and deposited more ECM between scaffold layers when compared with pure PECUU. The disc height and nucleus pulposus hydration of repaired IVD reached up to 75% and 85% of those in the sham group. In addition, F-PECUU helped to maintain an integrate tissue structure with a similar compression modulus to that in sham group. Taken together, the F-PECUU nanofibrous scaffolds showed promising potential to promote AF repair in IDD treatment by ameliorating the harsh degenerative microenvironment. STATEMENT OF SIGNIFICANCE: Annulus fibrosus (AF) tissue engineering holds potential in the treatment of intervertebral disc degeneration (IDD), but is restricted by the inflammatory and oxidative microenvironment of degenerative disc. This study developed a biocompatible polyurethane scaffold (F-PECUU) loaded with fucoidan, a marine bioactive polysaccharide, for ameliorating IDD microenvironment and promoting disc regeneration. F-PECUU alleviated the inflammation and oxidative stress caused by lipopolysaccharide and prevented extracellular matrix (ECM) degradation in AF cells. In vivo, it promoted ECM deposition to maintain the height, water content and mechanical property of disc. This work has shown the potential of marine polysaccharides-containing functional scaffolds in IDD treatment by ameliorating the harsh microenvironment accompanied with disc degeneration.
Collapse
Affiliation(s)
- Qifan Yu
- Department of Orthopaedic Surgery, Orthopaedic Institute, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215000, China
| | - Feng Han
- Department of Orthopaedic Surgery, Orthopaedic Institute, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215000, China
| | - Zhangqin Yuan
- Department of Orthopaedic Surgery, Orthopaedic Institute, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215000, China
| | - Zhuang Zhu
- Department of Orthopaedic Surgery, Orthopaedic Institute, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215000, China
| | - Changjiang Liu
- Department of Orthopaedic Surgery, Orthopaedic Institute, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215000, China
| | - Zhengdong Tu
- Department of Orthopaedic Surgery, Orthopaedic Institute, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215000, China
| | - Qianping Guo
- Department of Orthopaedic Surgery, Orthopaedic Institute, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215000, China
| | - Runze Zhao
- Department of Orthopaedic Surgery, Orthopaedic Institute, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215000, China
| | - Weidong Zhang
- Department of Orthopaedic Surgery, Orthopaedic Institute, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215000, China
| | - Huan Wang
- Department of Orthopaedic Surgery, Orthopaedic Institute, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215000, China
| | - Haijiao Mao
- Department of Orthopaedic Surgery, The Affiliated Hospital of Medical School, Ningbo University, Ningbo, Zhejiang 315000, China.
| | - Bin Li
- Department of Orthopaedic Surgery, Orthopaedic Institute, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215000, China; Department of Orthopaedic Surgery, The Affiliated Hospital of Medical School, Ningbo University, Ningbo, Zhejiang 315000, China; Collaborative Innovation Center of Hematology, Soochow University, Suzhou, Jiangsu 215000, China.
| | - Caihong Zhu
- Department of Orthopaedic Surgery, Orthopaedic Institute, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215000, China.
| |
Collapse
|
19
|
Carvalho DN, Gonçalves C, Oliveira JM, Williams DS, Mearns-Spragg A, Reis RL, Silva TH. A Design of Experiments (DoE) Approach to Optimize Cryogel Manufacturing for Tissue Engineering Applications. Polymers (Basel) 2022; 14:2026. [PMID: 35631910 PMCID: PMC9143905 DOI: 10.3390/polym14102026] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 05/07/2022] [Accepted: 05/13/2022] [Indexed: 02/05/2023] Open
Abstract
Marine origin polymers represent a sustainable and natural alternative to mammal counterparts regarding the biomedical application due to their similarities with proteins and polysaccharides present in extracellular matrix (ECM) in humans and can reduce the risks associated with zoonosis and overcoming social- and religious-related constraints. In particular, collagen-based biomaterials have been widely explored in tissue engineering scaffolding applications, where cryogels are of particular interest as low temperature avoids protein denaturation. However, little is known about the influence of the parameters regarding their behavior, i.e., how they can influence each other toward improving their physical and chemical properties. Factorial design of experiments (DoE) and response surface methodology (RSM) emerge as tools to overcome these difficulties, which are statistical tools to find the most influential parameter and optimize processes. In this work, we hypothesized that a design of experiments (DoE) model would be able to support the optimization of the collagen-chitosan-fucoidan cryogel manufacturing. Therefore, the parameters temperature (A), collagen concentration (B), and fucoidan concentration (C) were carefully considered to be applied to the Box-Behnken design (three factors and three levels). Data obtained on rheological oscillatory measurements, as well as on the evaluation of antioxidant concentration and adenosine triphosphate (ATP) concentration, showed that fucoidan concentration could significantly influence collagen-chitosan-fucoidan cryogel formation, creating a stable internal polymeric network promoted by ionic crosslinking bonds. Additionally, the effect of temperature significantly contributed to rheological oscillatory properties. Overall, the condition that allowed us to have better results, from an optimization point of view according to the DoE, were the gels produced at -80 °C and composed of 5% of collagen, 3% of chitosan, and 10% fucoidan. Therefore, the proposed DoE model was considered suitable for predicting the best parameter combinations needed to develop these cryogels.
Collapse
Affiliation(s)
- Duarte Nuno Carvalho
- 3B’s Research Group, I3B’s—Research Institute on Biomaterials, Biodegradables and Biomimetics of University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Barco, 4805-017 Guimarães, Portugal; (D.N.C.); (J.M.O.); (R.L.R.); (T.H.S.)
- ICVS/3B’s—P.T. Government Associate Laboratory, Braga, 4805-017 Guimarães, Portugal
| | - Cristiana Gonçalves
- 3B’s Research Group, I3B’s—Research Institute on Biomaterials, Biodegradables and Biomimetics of University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Barco, 4805-017 Guimarães, Portugal; (D.N.C.); (J.M.O.); (R.L.R.); (T.H.S.)
- ICVS/3B’s—P.T. Government Associate Laboratory, Braga, 4805-017 Guimarães, Portugal
| | - Joaquim Miguel Oliveira
- 3B’s Research Group, I3B’s—Research Institute on Biomaterials, Biodegradables and Biomimetics of University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Barco, 4805-017 Guimarães, Portugal; (D.N.C.); (J.M.O.); (R.L.R.); (T.H.S.)
- ICVS/3B’s—P.T. Government Associate Laboratory, Braga, 4805-017 Guimarães, Portugal
| | - David S. Williams
- Jellagen Limited, Unit G6, Capital Business Park, Parkway, St. Mellons, Cardiff CF3 2PY, UK; (D.S.W.); (A.M.-S.)
| | - Andrew Mearns-Spragg
- Jellagen Limited, Unit G6, Capital Business Park, Parkway, St. Mellons, Cardiff CF3 2PY, UK; (D.S.W.); (A.M.-S.)
| | - Rui L. Reis
- 3B’s Research Group, I3B’s—Research Institute on Biomaterials, Biodegradables and Biomimetics of University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Barco, 4805-017 Guimarães, Portugal; (D.N.C.); (J.M.O.); (R.L.R.); (T.H.S.)
- ICVS/3B’s—P.T. Government Associate Laboratory, Braga, 4805-017 Guimarães, Portugal
| | - Tiago H. Silva
- 3B’s Research Group, I3B’s—Research Institute on Biomaterials, Biodegradables and Biomimetics of University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Barco, 4805-017 Guimarães, Portugal; (D.N.C.); (J.M.O.); (R.L.R.); (T.H.S.)
- ICVS/3B’s—P.T. Government Associate Laboratory, Braga, 4805-017 Guimarães, Portugal
| |
Collapse
|
20
|
Romano G, Almeida M, Varela Coelho A, Cutignano A, Gonçalves LG, Hansen E, Khnykin D, Mass T, Ramšak A, Rocha MS, Silva TH, Sugni M, Ballarin L, Genevière AM. Biomaterials and Bioactive Natural Products from Marine Invertebrates: From Basic Research to Innovative Applications. Mar Drugs 2022; 20:md20040219. [PMID: 35447892 PMCID: PMC9027906 DOI: 10.3390/md20040219] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 03/16/2022] [Accepted: 03/16/2022] [Indexed: 12/22/2022] Open
Abstract
Aquatic invertebrates are a major source of biomaterials and bioactive natural products that can find applications as pharmaceutics, nutraceutics, cosmetics, antibiotics, antifouling products and biomaterials. Symbiotic microorganisms are often the real producers of many secondary metabolites initially isolated from marine invertebrates; however, a certain number of them are actually synthesized by the macro-organisms. In this review, we analysed the literature of the years 2010–2019 on natural products (bioactive molecules and biomaterials) from the main phyla of marine invertebrates explored so far, including sponges, cnidarians, molluscs, echinoderms and ascidians, and present relevant examples of natural products of interest to public and private stakeholders. We also describe omics tools that have been more relevant in identifying and understanding mechanisms and processes underlying the biosynthesis of secondary metabolites in marine invertebrates. Since there is increasing attention on finding new solutions for a sustainable large-scale supply of bioactive compounds, we propose that a possible improvement in the biodiscovery pipeline might also come from the study and utilization of aquatic invertebrate stem cells.
Collapse
Affiliation(s)
- Giovanna Romano
- Marine Biotechnology Department, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Naples, Italy;
- Correspondence: (G.R.); (L.B.)
| | - Mariana Almeida
- 3B’s Research Group, I3B’s—Research Institute on Biomaterials, Biodegradables and Biomimetics of University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark—Parque de Ciência e Tecnologia, Barco, 4805-017 Guimarães, Portugal; (M.A.); (M.S.R.); (T.H.S.)
- ICVS/3B´s—PT Government Associate Laboratory, 4710-057 Braga, Portugal
| | - Ana Varela Coelho
- ITQB NOVA, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal; (A.V.C.); (L.G.G.)
| | - Adele Cutignano
- Marine Biotechnology Department, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Naples, Italy;
- CNR-Institute of Biomolecular Chemistry, Via Campi Flegrei 34, 80078 Pozzuoli, Italy
| | - Luis G Gonçalves
- ITQB NOVA, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal; (A.V.C.); (L.G.G.)
| | - Espen Hansen
- Marbio, UiT-The Arctic University of Norway, 9037 Tromso, Norway;
| | - Denis Khnykin
- Laboratory for Immunohistochemistry and Immunopathology (LIIPAT), Department of Pathology, Oslo University Hospital-Rikshospitalet, 0450 Oslo, Norway;
| | - Tali Mass
- Faculty of Natural Science, Department of Marine Biology, Charney School of Marine Sciences, University of Haifa, Haifa 3498838, Israel;
| | - Andreja Ramšak
- National Institute of Biology, Marine Biology Station, Fornače 41, SI-6330 Piran, Slovenia;
| | - Miguel S. Rocha
- 3B’s Research Group, I3B’s—Research Institute on Biomaterials, Biodegradables and Biomimetics of University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark—Parque de Ciência e Tecnologia, Barco, 4805-017 Guimarães, Portugal; (M.A.); (M.S.R.); (T.H.S.)
- ICVS/3B´s—PT Government Associate Laboratory, 4710-057 Braga, Portugal
| | - Tiago H. Silva
- 3B’s Research Group, I3B’s—Research Institute on Biomaterials, Biodegradables and Biomimetics of University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark—Parque de Ciência e Tecnologia, Barco, 4805-017 Guimarães, Portugal; (M.A.); (M.S.R.); (T.H.S.)
- ICVS/3B´s—PT Government Associate Laboratory, 4710-057 Braga, Portugal
| | - Michela Sugni
- Department of Environmental Science and Policy, University of Milan, Via Celoria, 2, 20133 Milan, Italy;
| | - Loriano Ballarin
- Department of Biology, University of Padova, Via U. Bassi 58/B, 35100 Padova, Italy
- Correspondence: (G.R.); (L.B.)
| | - Anne-Marie Genevière
- Biologie Intégrative des Organismes Marins (BIOM), Observatoire Océanologique de Banyuls-sur-Mer, Sorbonne Université, CNRS, 1 Avenue Pierre Fabre, 66650 Banyuls-sur-Mer, France;
| |
Collapse
|
21
|
Wan MC, Qin W, Lei C, Li QH, Meng M, Fang M, Song W, Chen JH, Tay F, Niu LN. Biomaterials from the sea: Future building blocks for biomedical applications. Bioact Mater 2021; 6:4255-4285. [PMID: 33997505 PMCID: PMC8102716 DOI: 10.1016/j.bioactmat.2021.04.028] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Revised: 04/15/2021] [Accepted: 04/17/2021] [Indexed: 02/08/2023] Open
Abstract
Marine resources have tremendous potential for developing high-value biomaterials. The last decade has seen an increasing number of biomaterials that originate from marine organisms. This field is rapidly evolving. Marine biomaterials experience several periods of discovery and development ranging from coralline bone graft to polysaccharide-based biomaterials. The latter are represented by chitin and chitosan, marine-derived collagen, and composites of different organisms of marine origin. The diversity of marine natural products, their properties and applications are discussed thoroughly in the present review. These materials are easily available and possess excellent biocompatibility, biodegradability and potent bioactive characteristics. Important applications of marine biomaterials include medical applications, antimicrobial agents, drug delivery agents, anticoagulants, rehabilitation of diseases such as cardiovascular diseases, bone diseases and diabetes, as well as comestible, cosmetic and industrial applications.
Collapse
Affiliation(s)
- Mei-chen Wan
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, 710032, PR China
| | - Wen Qin
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, 710032, PR China
| | - Chen Lei
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, 710032, PR China
| | - Qi-hong Li
- Department of Stomatology, The Fifth Medical Centre, Chinese PLA General Hospital (Former 307th Hospital of the PLA), Dongda Street, Beijing, 100071, PR China
| | - Meng Meng
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, 710032, PR China
| | - Ming Fang
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, 710032, PR China
| | - Wen Song
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, 710032, PR China
| | - Ji-hua Chen
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, 710032, PR China
| | - Franklin Tay
- College of Graduate Studies, Augusta University, Augusta, GA, 30912, USA
| | - Li-na Niu
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, 710032, PR China
- The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan, 453000, PR China
| |
Collapse
|
22
|
Carvalho DN, Reis RL, Silva TH. Marine origin materials on biomaterials and advanced therapies to cartilage tissue engineering and regenerative medicine. Biomater Sci 2021; 9:6718-6736. [PMID: 34494053 DOI: 10.1039/d1bm00809a] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The body's self-repair capacity is limited, including injuries on articular cartilage zones. Over the past few decades, tissue engineering and regenerative medicine (TERM) has focused its studies on the development of natural biomaterials for clinical applications aiming to overcome this self-therapeutic bottleneck. This review focuses on the development of these biomaterials using compounds and materials from marine sources that are able to be produced in a sustainable way, as an alternative to mammal sources (e.g., collagens) and benefiting from their biological properties, such as biocompatibility, low antigenicity, biodegradability, among others. The structure and composition of the new biomaterials require mimicking the native extracellular matrix (ECM) of articular cartilage tissue. To design an ideal temporary tissue-scaffold, it needs to provide a suitable environment for cell growth (cell attachment, proliferation, and differentiation), towards the regeneration of the damaged tissues. Overall, the purpose of this review is to summarize various marine sources to be used in the development of different tissue-scaffolds with the capability to sustain cells envisaging cartilage tissue engineering, analysing the systems displaying more promising performance, while pointing out current limitations and steps to be given in the near future.
Collapse
Affiliation(s)
- Duarte Nuno Carvalho
- 3B's Research Group, I3B's - Research Institute on Biomaterials, Biodegradables and Biomimetics of University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark 4805-017, Barco, Guimarães, Portugal. .,ICVS/3B's - P.T. Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Rui L Reis
- 3B's Research Group, I3B's - Research Institute on Biomaterials, Biodegradables and Biomimetics of University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark 4805-017, Barco, Guimarães, Portugal. .,ICVS/3B's - P.T. Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Tiago H Silva
- 3B's Research Group, I3B's - Research Institute on Biomaterials, Biodegradables and Biomimetics of University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark 4805-017, Barco, Guimarães, Portugal. .,ICVS/3B's - P.T. Government Associate Laboratory, Braga/Guimarães, Portugal
| |
Collapse
|
23
|
Xu N, Peng XL, Li HR, Liu JX, Cheng JSY, Qi XY, Ye SJ, Gong HL, Zhao XH, Yu J, Xu G, Wei DX. Marine-Derived Collagen as Biomaterials for Human Health. Front Nutr 2021; 8:702108. [PMID: 34504861 PMCID: PMC8421607 DOI: 10.3389/fnut.2021.702108] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 07/08/2021] [Indexed: 12/19/2022] Open
Abstract
Collagen is a kind of biocompatible protein material, which is widely used in medical tissue engineering, drug delivery, cosmetics, food and other fields. Because of its wide source, low extraction cost and good physical and chemical properties, it has attracted the attention of many researchers in recent years. However, the application of collagen derived from terrestrial organisms is limited due to the existence of diseases, religious beliefs and other problems. Therefore, exploring a wider range of sources of collagen has become one of the main topics for researchers. Marine-derived collagen (MDC) stands out because it comes from a variety of sources and avoids issues such as religion. On the one hand, this paper summarized the sources, extraction methods and characteristics of MDC, and on the other hand, it summarized the application of MDC in the above fields. And on the basis of the review, we found that MDC can not only be extracted from marine organisms, but also from the wastes of some marine organisms, such as fish scales. This makes further use of seafood resources and increases the application prospect of MDC.
Collapse
Affiliation(s)
- Ning Xu
- Department of Orthopedics, Second Affiliated Hospital, Naval Medical University, Shanghai, China
| | - Xue-Liang Peng
- Key Laboratory of Resource Biology and Biotechnology in Western China, Department of Life Sciences and Medicine, Ministry of Education, School of Medicine, Northwest University, Xi'an, China
| | - Hao-Ru Li
- Key Laboratory of Resource Biology and Biotechnology in Western China, Department of Life Sciences and Medicine, Ministry of Education, School of Medicine, Northwest University, Xi'an, China
| | - Jia-Xuan Liu
- Key Laboratory of Resource Biology and Biotechnology in Western China, Department of Life Sciences and Medicine, Ministry of Education, School of Medicine, Northwest University, Xi'an, China
| | - Ji-Si-Yu Cheng
- Key Laboratory of Resource Biology and Biotechnology in Western China, Department of Life Sciences and Medicine, Ministry of Education, School of Medicine, Northwest University, Xi'an, China
| | - Xin-Ya Qi
- Key Laboratory of Resource Biology and Biotechnology in Western China, Department of Life Sciences and Medicine, Ministry of Education, School of Medicine, Northwest University, Xi'an, China
| | - Shao-Jie Ye
- Key Laboratory of Resource Biology and Biotechnology in Western China, Department of Life Sciences and Medicine, Ministry of Education, School of Medicine, Northwest University, Xi'an, China
| | - Hai-Lun Gong
- Key Laboratory of Resource Biology and Biotechnology in Western China, Department of Life Sciences and Medicine, Ministry of Education, School of Medicine, Northwest University, Xi'an, China
| | - Xiao-Hong Zhao
- Key Laboratory of Resource Biology and Biotechnology in Western China, Department of Life Sciences and Medicine, Ministry of Education, School of Medicine, Northwest University, Xi'an, China
| | - Jiangming Yu
- Department of Orthopedics, Tongren Hospital, Shanghai Jiaotong University, Shanghai, China
| | - Guohua Xu
- Department of Orthopedics, Second Affiliated Hospital, Naval Medical University, Shanghai, China
| | - Dai-Xu Wei
- Key Laboratory of Resource Biology and Biotechnology in Western China, Department of Life Sciences and Medicine, Ministry of Education, School of Medicine, Northwest University, Xi'an, China
| |
Collapse
|
24
|
He Y, Wang C, Wang C, Xiao Y, Lin W. An Overview on Collagen and Gelatin-Based Cryogels: Fabrication, Classification, Properties and Biomedical Applications. Polymers (Basel) 2021; 13:2299. [PMID: 34301056 PMCID: PMC8309424 DOI: 10.3390/polym13142299] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 06/20/2021] [Accepted: 07/09/2021] [Indexed: 12/16/2022] Open
Abstract
Decades of research into cryogels have resulted in the development of many types of cryogels for various applications. Collagen and gelatin possess nontoxicity, intrinsic gel-forming ability and physicochemical properties, and excellent biocompatibility and biodegradability, making them very desirable candidates for the fabrication of cryogels. Collagen-based cryogels (CBCs) and gelatin-based cryogels (GBCs) have been successfully applied as three-dimensional substrates for cell culture and have shown promise for biomedical use. A key point in the development of CBCs and GBCs is the quantitative and precise characterization of their properties and their correlation with preparation process and parameters, enabling these cryogels to be tuned to match engineering requirements. Great efforts have been devoted to fabricating these types of cryogels and exploring their potential biomedical application. However, to the best of our knowledge, no comprehensive overviews focused on CBCs and GBCs have been reported currently. In this review, we attempt to provide insight into the recent advances on such kinds of cryogels, including their fabrication methods and structural properties, as well as potential biomedical applications.
Collapse
Affiliation(s)
- Yujing He
- Department of Biomass and Leather Engineering, Key Laboratory of Leather Chemistry and Engineering of Ministry of Education, Sichuan University, Chengdu 610065, China; (Y.H.); (C.W.); (Y.X.)
| | - Chunhua Wang
- Department of Biomass and Leather Engineering, Key Laboratory of Leather Chemistry and Engineering of Ministry of Education, Sichuan University, Chengdu 610065, China; (Y.H.); (C.W.); (Y.X.)
- National Engineering Research Center of Clean Technology in Leather Industry, Sichuan University, Chengdu 610065, China
| | - Chenzhi Wang
- Department of Biomass and Leather Engineering, Key Laboratory of Leather Chemistry and Engineering of Ministry of Education, Sichuan University, Chengdu 610065, China; (Y.H.); (C.W.); (Y.X.)
| | - Yuanhang Xiao
- Department of Biomass and Leather Engineering, Key Laboratory of Leather Chemistry and Engineering of Ministry of Education, Sichuan University, Chengdu 610065, China; (Y.H.); (C.W.); (Y.X.)
| | - Wei Lin
- Department of Biomass and Leather Engineering, Key Laboratory of Leather Chemistry and Engineering of Ministry of Education, Sichuan University, Chengdu 610065, China; (Y.H.); (C.W.); (Y.X.)
- National Engineering Research Center of Clean Technology in Leather Industry, Sichuan University, Chengdu 610065, China
| |
Collapse
|
25
|
Kumar P, Pillay V, Choonara YE. Macroporous chitosan/methoxypoly(ethylene glycol) based cryosponges with unique morphology for tissue engineering applications. Sci Rep 2021; 11:3104. [PMID: 33542336 PMCID: PMC7862315 DOI: 10.1038/s41598-021-82484-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Accepted: 01/07/2021] [Indexed: 12/21/2022] Open
Abstract
Three-dimensional porous scaffolds are widely employed in tissue engineering and regenerative medicine for their ability to carry bioactives and cells; and for their platform properties to allow for bridging-the-gap within an injured tissue. This study describes the effect of various methoxypolyethylene glycol (mPEG) derivatives (mPEG (-OCH3 functionality), mPEG-aldehyde (mPEG-CHO) and mPEG-acetic acid (mPEG-COOH)) on the morphology and physical properties of chemically crosslinked, semi-interpenetrating polymer network (IPN), chitosan (CHT)/mPEG blend cryosponges. Physicochemical and molecular characterization revealed that the –CHO and –COOH functional groups in mPEG derivatives interacted with the –NH2 functionality of the chitosan chain. The distinguishing feature of the cryosponges was their unique morphological features such as fringe thread-, pebble-, curved quartz crystal-, crystal flower-; and canyon-like structures. The morphological data was well corroborated by the image processing data and physisorption curves corresponding to Type II isotherm with open hysteresis loops. Functionalization of mPEG had no evident influence on the macro-mechanical properties of the cryosponges but increased the matrix strength as determined by the rheomechanical analyses. The cryosponges were able to deliver bioactives (dexamethasone and curcumin) over 10 days, showed varied matrix degradation profiles, and supported neuronal cells on the matrix surface. In addition, in silico simulations confirmed the compatibility and molecular stability of the CHT/mPEG blend compositions. In conclusion, the study confirmed that significant morphological variations may be induced by minimal functionalization and crosslinking of biomaterials.
Collapse
Affiliation(s)
- Pradeep Kumar
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, 2193, South Africa
| | - Viness Pillay
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, 2193, South Africa
| | - Yahya E Choonara
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, 2193, South Africa.
| |
Collapse
|
26
|
Khrunyk Y, Lach S, Petrenko I, Ehrlich H. Progress in Modern Marine Biomaterials Research. Mar Drugs 2020; 18:E589. [PMID: 33255647 PMCID: PMC7760574 DOI: 10.3390/md18120589] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 11/16/2020] [Accepted: 11/19/2020] [Indexed: 02/06/2023] Open
Abstract
The growing demand for new, sophisticated, multifunctional materials has brought natural structural composites into focus, since they underwent a substantial optimization during long evolutionary selection pressure and adaptation processes. Marine biological materials are the most important sources of both inspiration for biomimetics and of raw materials for practical applications in technology and biomedicine. The use of marine natural products as multifunctional biomaterials is currently undergoing a renaissance in the modern materials science. The diversity of marine biomaterials, their forms and fields of application are highlighted in this review. We will discuss the challenges, solutions, and future directions of modern marine biomaterialogy using a thorough analysis of scientific sources over the past ten years.
Collapse
Affiliation(s)
- Yuliya Khrunyk
- Department of Heat Treatment and Physics of Metal, Ural Federal University, 620002 Ekaterinburg, Russia;
- Institute of High Temperature Electrochemistry, Ural Branch, Russian Academy of Sciences, 620990 Ekaterinburg, Russia
| | - Slawomir Lach
- Department of Biomedical Chemistry, Faculty of Chemistry, University of Gdansk, 80-308 Gdansk, Poland;
| | - Iaroslav Petrenko
- Institute of Electronics and Sensor Materials, Technische Universität Bergakademie Freiberg, 09599 Freiberg, Germany;
| | - Hermann Ehrlich
- Institute of Electronics and Sensor Materials, Technische Universität Bergakademie Freiberg, 09599 Freiberg, Germany;
- Center for Advanced Technology, Adam Mickiewicz University, 61614 Poznan, Poland
| |
Collapse
|