1
|
de Carvalho ABG, Rahimnejad M, Oliveira RLMS, Sikder P, Saavedra GSFA, Bhaduri SB, Gawlitta D, Malda J, Kaigler D, Trichês ES, Bottino MC. Personalized bioceramic grafts for craniomaxillofacial bone regeneration. Int J Oral Sci 2024; 16:62. [PMID: 39482290 PMCID: PMC11528123 DOI: 10.1038/s41368-024-00327-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 09/16/2024] [Accepted: 09/20/2024] [Indexed: 11/03/2024] Open
Abstract
The reconstruction of craniomaxillofacial bone defects remains clinically challenging. To date, autogenous grafts are considered the gold standard but present critical drawbacks. These shortcomings have driven recent research on craniomaxillofacial bone reconstruction to focus on synthetic grafts with distinct materials and fabrication techniques. Among the various fabrication methods, additive manufacturing (AM) has shown significant clinical potential. AM technologies build three-dimensional (3D) objects with personalized geometry customizable from a computer-aided design. These layer-by-layer 3D biomaterial structures can support bone formation by guiding cell migration/proliferation, osteogenesis, and angiogenesis. Additionally, these structures can be engineered to degrade concomitantly with the new bone tissue formation, making them ideal as synthetic grafts. This review delves into the key advances of bioceramic grafts/scaffolds obtained by 3D printing for personalized craniomaxillofacial bone reconstruction. In this regard, clinically relevant topics such as ceramic-based biomaterials, graft/scaffold characteristics (macro/micro-features), material extrusion-based 3D printing, and the step-by-step workflow to engineer personalized bioceramic grafts are discussed. Importantly, in vitro models are highlighted in conjunction with a thorough examination of the signaling pathways reported when investigating these bioceramics and their effect on cellular response/behavior. Lastly, we summarize the clinical potential and translation opportunities of personalized bioceramics for craniomaxillofacial bone regeneration.
Collapse
Affiliation(s)
- Ana Beatriz G de Carvalho
- Department of Cariology, Restorative Sciences and Endodontics, School of Dentistry, University of Michigan, Ann Arbor, MI, USA
- Department of Dental Materials and Prosthodontics, São Paulo State University, São José dos Campos, SP, Brazil
| | - Maedeh Rahimnejad
- Department of Cariology, Restorative Sciences and Endodontics, School of Dentistry, University of Michigan, Ann Arbor, MI, USA
| | - Rodrigo L M S Oliveira
- Federal University of São Paulo, Institute of Science and Technology, São José dos Campos, SP, Brazil
| | - Prabaha Sikder
- Department of Mechanical Engineering, Cleveland State University, Cleveland, OH, USA
| | - Guilherme S F A Saavedra
- Department of Dental Materials and Prosthodontics, São Paulo State University, São José dos Campos, SP, Brazil
| | - Sarit B Bhaduri
- Department of Mechanical, Industrial and Manufacturing Engineering, University of Toledo, Toledo, OH, USA
| | - Debby Gawlitta
- Department of Oral and Maxillofacial Surgery & Special Dental Care, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
- Regenerative Medicine Center Utrecht, Utrecht, The Netherlands
| | - Jos Malda
- Department of Oral and Maxillofacial Surgery & Special Dental Care, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
- Regenerative Medicine Center Utrecht, Utrecht, The Netherlands
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
- Department of Orthopedics, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Darnell Kaigler
- Department of Periodontics and Oral Medicine, School of Dentistry, University of Michigan, Ann Arbor, MI, USA
- Department of Biomedical Engineering, College of Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Eliandra S Trichês
- Department of Cariology, Restorative Sciences and Endodontics, School of Dentistry, University of Michigan, Ann Arbor, MI, USA
- Federal University of São Paulo, Institute of Science and Technology, São José dos Campos, SP, Brazil
| | - Marco C Bottino
- Department of Cariology, Restorative Sciences and Endodontics, School of Dentistry, University of Michigan, Ann Arbor, MI, USA.
- Department of Biomedical Engineering, College of Engineering, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
2
|
Hemmerlein E, Vorndran E, Schmitt AM, Feichtner F, Waselau AC, Meyer-Lindenberg A. In Vivo Investigation of 3D-Printed Calcium Magnesium Phosphate Wedges in Partial Load Defects. MATERIALS (BASEL, SWITZERLAND) 2024; 17:2136. [PMID: 38730942 PMCID: PMC11085615 DOI: 10.3390/ma17092136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 04/26/2024] [Accepted: 04/30/2024] [Indexed: 05/13/2024]
Abstract
Bone substitutes are ideally biocompatible, osteoconductive, degradable and defect-specific and provide mechanical stability. Magnesium phosphate cements (MPCs) offer high initial stability and faster degradation compared to the well-researched calcium phosphate cements (CPCs). Calcium magnesium phosphate cements (CMPCs) should combine the properties of both and have so far shown promising results. The present study aimed to investigate and compare the degradation and osseointegration behavior of 3D powder-printed wedges of CMPC and MPC in vivo. The wedges were post-treated with phosphoric acid (CMPC) and diammonium hydrogen phosphate (MPC) and implanted in a partially loaded defect model in the proximal rabbit tibia. The evaluation included clinical, in vivo µ-CT and X-ray examinations, histology, energy dispersive X-ray analysis (EDX) and scanning electron microscopy (SEM) for up to 30 weeks. SEM analysis revealed a zone of unreacted material in the MPC, indicating the need to optimize the manufacturing and post-treatment process. However, all materials showed excellent biocompatibility and mechanical stability. After 24 weeks, they were almost completely degraded. The slower degradation rate of the CMPC corresponded more favorably to the bone growth rate compared to the MPC. Due to the promising results of the CMPC in this study, it should be further investigated, for example in defect models with higher load.
Collapse
Affiliation(s)
- Elke Hemmerlein
- Clinic for Small Animal Surgery and Reproduction, Ludwig Maximilians University Munich, 80539 Munich, Germany (A.-C.W.); (A.M.-L.)
| | - Elke Vorndran
- Department for Functional Materials in Medicine and Dentistry, University of Würzburg, 97070 Würzburg, Germany (A.-M.S.)
| | - Anna-Maria Schmitt
- Department for Functional Materials in Medicine and Dentistry, University of Würzburg, 97070 Würzburg, Germany (A.-M.S.)
| | - Franziska Feichtner
- Clinic for Small Animal Surgery and Reproduction, Ludwig Maximilians University Munich, 80539 Munich, Germany (A.-C.W.); (A.M.-L.)
| | - Anja-Christina Waselau
- Clinic for Small Animal Surgery and Reproduction, Ludwig Maximilians University Munich, 80539 Munich, Germany (A.-C.W.); (A.M.-L.)
| | - Andrea Meyer-Lindenberg
- Clinic for Small Animal Surgery and Reproduction, Ludwig Maximilians University Munich, 80539 Munich, Germany (A.-C.W.); (A.M.-L.)
| |
Collapse
|
3
|
Wojcik T, Chai F, Hornez V, Raoul G, Hornez JC. Engineering Precise Interconnected Porosity in β-Tricalcium Phosphate (β-TCP) Matrices by Means of Top-Down Digital Light Processing. Biomedicines 2024; 12:736. [PMID: 38672092 PMCID: PMC11047908 DOI: 10.3390/biomedicines12040736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 03/06/2024] [Accepted: 03/21/2024] [Indexed: 04/28/2024] Open
Abstract
This study evaluated the biocompatibility and accuracy of 3D-printed β-tricalcium phosphate (β-TCP) pure ceramic scaffolds. A specific shaping process associating a digital light processing (DLP) 3D printer and a heat treatment was developed to produce pure β-TCP scaffolds leaving no polymer binder residue. The β-TCP was characterised using X-ray diffraction, infrared spectroscopy and the detection of pollutants. The open porosity of produced matrices and their resorption were studied by hydrostatic weighing and calcium release measures. The biocompatibility of the printed matrices was evaluated by mean of osteoblast cultures. Finally, macroporous cubic matrices were produced. They were scanned using a micro-Computed Tomography scanner (micro-CT scan) and compared to their numeric models. The results demonstrated that DLP 3D printing with heat treatment produces pure β-TCP matrices with enhanced biocompatibility. They also demonstrated the printing accuracy of our technique, associating top-down DLP with the sintering of green parts. Thus, this production process is promising and will enable us to explore complex phosphocalcic matrices with a special focus on the development of a functional vascular network.
Collapse
Affiliation(s)
- Thomas Wojcik
- Univ. Lille, CHU Lille, INSERM, Department of Oral and Maxillofacial Surgery, U1008—Advanced Drug Delivery Systems, F-59000 Lille, France;
| | - Feng Chai
- Univ. Lille, CHU Lille, INSERM, U1008, F-59000 Lille, France;
| | | | - Gwenael Raoul
- Univ. Lille, CHU Lille, INSERM, Department of Oral and Maxillofacial Surgery, U1008—Advanced Drug Delivery Systems, F-59000 Lille, France;
| | - Jean-Christophe Hornez
- Département Matériaux et Procédés (DMP), Laboratoire de Matériaux Céramiques et de Mathématiques (CERAMATHS), Université Polytechnique Hauts-de-France, F-59600 Maubeuge, France;
| |
Collapse
|
4
|
Liu G, Wei X, Zhai Y, Zhang J, Li J, Zhao Z, Guan T, Zhao D. 3D printed osteochondral scaffolds: design strategies, present applications and future perspectives. Front Bioeng Biotechnol 2024; 12:1339916. [PMID: 38425994 PMCID: PMC10902174 DOI: 10.3389/fbioe.2024.1339916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 02/02/2024] [Indexed: 03/02/2024] Open
Abstract
Articular osteochondral (OC) defects are a global clinical problem characterized by loss of full-thickness articular cartilage with underlying calcified cartilage through to the subchondral bone. While current surgical treatments can relieve pain, none of them can completely repair all components of the OC unit and restore its original function. With the rapid development of three-dimensional (3D) printing technology, admirable progress has been made in bone and cartilage reconstruction, providing new strategies for restoring joint function. 3D printing has the advantages of fast speed, high precision, and personalized customization to meet the requirements of irregular geometry, differentiated composition, and multi-layered boundary layer structures of joint OC scaffolds. This review captures the original published researches on the application of 3D printing technology to the repair of entire OC units and provides a comprehensive summary of the recent advances in 3D printed OC scaffolds. We first introduce the gradient structure and biological properties of articular OC tissue. The considerations for the development of 3D printed OC scaffolds are emphatically summarized, including material types, fabrication techniques, structural design and seed cells. Especially from the perspective of material composition and structural design, the classification, characteristics and latest research progress of discrete gradient scaffolds (biphasic, triphasic and multiphasic scaffolds) and continuous gradient scaffolds (gradient material and/or structure, and gradient interface) are summarized. Finally, we also describe the important progress and application prospect of 3D printing technology in OC interface regeneration. 3D printing technology for OC reconstruction should simulate the gradient structure of subchondral bone and cartilage. Therefore, we must not only strengthen the basic research on OC structure, but also continue to explore the role of 3D printing technology in OC tissue engineering. This will enable better structural and functional bionics of OC scaffolds, ultimately improving the repair of OC defects.
Collapse
Affiliation(s)
- Ge Liu
- School of Mechanical Engineering, Dalian Jiaotong University, Dalian, China
- Department of Orthopedics, Affiliated Zhongshan Hospital of Dalian University, Dalian, China
| | - Xiaowei Wei
- Department of Orthopedics, Affiliated Zhongshan Hospital of Dalian University, Dalian, China
| | - Yun Zhai
- School of Mechanical Engineering, Dalian Jiaotong University, Dalian, China
| | - Jingrun Zhang
- Department of Orthopedics, Affiliated Zhongshan Hospital of Dalian University, Dalian, China
| | - Junlei Li
- Department of Orthopedics, Affiliated Zhongshan Hospital of Dalian University, Dalian, China
| | - Zhenhua Zhao
- Department of Orthopedics, Affiliated Zhongshan Hospital of Dalian University, Dalian, China
| | - Tianmin Guan
- School of Mechanical Engineering, Dalian Jiaotong University, Dalian, China
| | - Deiwei Zhao
- Department of Orthopedics, Affiliated Zhongshan Hospital of Dalian University, Dalian, China
| |
Collapse
|
5
|
Chen YT, Chuang YH, Chen CM, Wang JY, Wang J. Development of hybrid scaffolds with biodegradable polymer composites and bioactive hydrogels for bone tissue engineering. BIOMATERIALS ADVANCES 2023; 153:213562. [PMID: 37549480 DOI: 10.1016/j.bioadv.2023.213562] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 06/19/2023] [Accepted: 07/17/2023] [Indexed: 08/09/2023]
Abstract
The development of treatments for critical-sized bone defects has been considered an important topic in the biomedical field because of the high demand for transplantable bone grafts. Following the concept of tissue engineering, implantation of biocompatible porous scaffolds carrying cells and regulating factors is the most efficient strategy to stimulate clinical bone regeneration. With the advancement in the development of 3D-printing techniques, scaffolds with highly controllable architectures can be fabricated to further improve healing efficacies. However, challenges such as the limited biocompatibility of resin materials and poor cell-carrying capacities still exist in the application of current scaffolds. In this study, a novel biodegradable polymer, poly (ethylene glycol)-co-poly (glycerol sebacate) acrylate (PEGSA), was synthesized and blended with hydroxyapatite (HAP) nanoparticles to produce osteoinductive and photocurable resins for 3D printing. The composites were optimized and applied in the fabrication of gyroid scaffolds with biomimetic characteristics and high permeability, followed by the combination of bioactive hydrogels containing Wharton's jelly-derived mesenchymal stem cells (WJMSC) to increase the efficiency of cell delivery. The promotion of osteogenesis from 3D-printed scaffolds was confirmed in-vivo while the hybrid scaffolds were proven to be great platforms for WJMSC culture and differentiation in-vitro. These results indicate that the proposed hybrid systems, combining osteoinductive 3D-printed scaffolds and cell-laden hydrogels, have great potential for bone tissue engineering and are expected to be applied in the treatment of bone defects based on active tissue regeneration.
Collapse
Affiliation(s)
- Yi-Ting Chen
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu 300044, Taiwan
| | - Ya-Han Chuang
- Interdisciplinary Program of Life Science and Medicine, National Tsing Hua University, Hsinchu 300044, Taiwan
| | - Chao-Ming Chen
- Department of Orthopedics Surgery and Traumatology, Taipei Veterans General Hospital, Taipei 11217, Taiwan
| | - Jir-You Wang
- Department of Orthopedics Surgery and Traumatology, Taipei Veterans General Hospital, Taipei 11217, Taiwan
| | - Jane Wang
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu 300044, Taiwan.
| |
Collapse
|
6
|
Afewerki S, Stocco TD, Rosa da Silva AD, Aguiar Furtado AS, Fernandes de Sousa G, Ruiz-Esparza GU, Webster TJ, Marciano FR, Strømme M, Zhang YS, Lobo AO. In vitro high-content tissue models to address precision medicine challenges. Mol Aspects Med 2023; 91:101108. [PMID: 35987701 PMCID: PMC9384546 DOI: 10.1016/j.mam.2022.101108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 06/29/2022] [Accepted: 07/20/2022] [Indexed: 01/18/2023]
Abstract
The field of precision medicine allows for tailor-made treatments specific to a patient and thereby improve the efficiency and accuracy of disease prevention, diagnosis, and treatment and at the same time would reduce the cost, redundant treatment, and side effects of current treatments. Here, the combination of organ-on-a-chip and bioprinting into engineering high-content in vitro tissue models is envisioned to address some precision medicine challenges. This strategy could be employed to tackle the current coronavirus disease 2019 (COVID-19), which has made a significant impact and paradigm shift in our society. Nevertheless, despite that vaccines against COVID-19 have been successfully developed and vaccination programs are already being deployed worldwide, it will likely require some time before it is available to everyone. Furthermore, there are still some uncertainties and lack of a full understanding of the virus as demonstrated in the high number new mutations arising worldwide and reinfections of already vaccinated individuals. To this end, efficient diagnostic tools and treatments are still urgently needed. In this context, the convergence of bioprinting and organ-on-a-chip technologies, either used alone or in combination, could possibly function as a prominent tool in addressing the current pandemic. This could enable facile advances of important tools, diagnostics, and better physiologically representative in vitro models specific to individuals allowing for faster and more accurate screening of therapeutics evaluating their efficacy and toxicity. This review will cover such technological advances and highlight what is needed for the field to mature for tackling the various needs for current and future pandemics as well as their relevancy towards precision medicine.
Collapse
Affiliation(s)
- Samson Afewerki
- Division of Nanotechnology and Functional Materials, Department of Materials Science and Engineering, Ångström Laboratory, Uppsala University, BOX 35, 751 03, Uppsala, Sweden
| | - Thiago Domingues Stocco
- Bioengineering Program, Technological and Scientific Institute, Brazil University, 08230-030, São Paulo, SP, Brazil; Faculty of Medical Sciences, Unicamp - State University of Campinas, 13083-877, Campinas, SP, Brazil
| | | | - André Sales Aguiar Furtado
- Interdisciplinary Laboratory for Advanced Materials, BioMatLab, Department of Materials Engineering, Federal University of Piauí (UFPI), Teresina, PI, Brazil
| | - Gustavo Fernandes de Sousa
- Interdisciplinary Laboratory for Advanced Materials, BioMatLab, Department of Materials Engineering, Federal University of Piauí (UFPI), Teresina, PI, Brazil
| | - Guillermo U Ruiz-Esparza
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, USA; Division of Health Sciences and Technology, Harvard University ‑ Massachusetts Institute of Technology, Boston, MA, 02115, USA
| | - Thomas J Webster
- Interdisciplinary Laboratory for Advanced Materials, BioMatLab, Department of Materials Engineering, Federal University of Piauí (UFPI), Teresina, PI, Brazil; Hebei University of Technology, Tianjin, China
| | - Fernanda R Marciano
- Department of Physics, Federal University of Piauí (UFPI), Teresina, PI, Brazil
| | - Maria Strømme
- Division of Nanotechnology and Functional Materials, Department of Materials Science and Engineering, Ångström Laboratory, Uppsala University, BOX 35, 751 03, Uppsala, Sweden
| | - Yu Shrike Zhang
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, USA; Division of Health Sciences and Technology, Harvard University ‑ Massachusetts Institute of Technology, Boston, MA, 02115, USA.
| | - Anderson Oliveira Lobo
- Interdisciplinary Laboratory for Advanced Materials, BioMatLab, Department of Materials Engineering, Federal University of Piauí (UFPI), Teresina, PI, Brazil.
| |
Collapse
|
7
|
Wang Q, Li M, Cui T, Wu R, Guo F, Fu M, Zhu Y, Yang C, Chen B, Sun G. A Novel Zwitterionic Hydrogel Incorporated with Graphene Oxide for Bone Tissue Engineering: Synthesis, Characterization, and Promotion of Osteogenic Differentiation of Bone Mesenchymal Stem Cells. Int J Mol Sci 2023; 24:ijms24032691. [PMID: 36769013 PMCID: PMC9916718 DOI: 10.3390/ijms24032691] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 01/18/2023] [Accepted: 01/29/2023] [Indexed: 02/05/2023] Open
Abstract
Zwitterionic materials are widely applied in the biomedical field due to their excellent antimicrobial, non-cytotoxicity, and antifouling properties but have never been applied in bone tissue engineering. In this study, we synthesized a novel zwitterionic hydrogel incorporated with graphene oxide (GO) using maleic anhydride (MA) as a cross-linking agent by grafted L-cysteine (L-Cys) as the zwitterionic material on maleilated chitosan via click chemistry. The composition and each reaction procedure of the novel zwitterionic hydrogel were characterized via X-ray diffraction (XRD) and Fourier transformed infrared spectroscopy (FT-IR), while the morphology was imaged by scanning electron microscope (SEM). In vitro cell studies, CCK-8 and live/dead assay, alkaline phosphatase activity, W-B, and qRT-CR tests showed zwitterionic hydrogel incorporated with GO remarkably enhanced the osteogenic differentiation of bone mesenchymal stem cells (BMSCs); it is dose-dependent, and 2 mg/mL GO is the optimum concentration. In vivo tests also indicated the same results. Hence, these results suggested the novel zwitterionic hydrogel exhibited porous characteristics similar to natural bone tissue. In conclusion, the zwitterionic scaffold has highly biocompatible and mechanical properties. When GO was incorporated in this zwitterionic scaffold, the zwitterionic scaffold slows down the release rate and reduces the cytotoxicity of GO. Zwitterions and GO synergistically promote the proliferation and osteogenic differentiation of rBMSCs in vivo and in vitro. The optimal concentration is 2 mg/mL GO.
Collapse
Affiliation(s)
- Qidong Wang
- Department of Traumatic Surgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200120, China
| | - Meng Li
- Department of Traumatic Surgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200120, China
| | - Tianming Cui
- Shanghai Research Institute for Intelligent Autonomous Systems, Tongji University, Shanghai 200092, China
| | - Rui Wu
- School of Materials Science and Engineering, Tongji University, Shanghai 201804, China
| | - Fangfang Guo
- The Institute for Biomedical Engineering & Nano Science, School of Medicine, Tongji University, Shanghai 200092, China
| | - Mei Fu
- Department of Traumatic Surgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200120, China
| | - Yuqian Zhu
- The Institute for Biomedical Engineering & Nano Science, School of Medicine, Tongji University, Shanghai 200092, China
| | - Chensong Yang
- Department of Traumatic Surgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200120, China
| | - Bingdi Chen
- The Institute for Biomedical Engineering & Nano Science, School of Medicine, Tongji University, Shanghai 200092, China
- Correspondence: (B.C.); (G.S.)
| | - Guixin Sun
- Department of Traumatic Surgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200120, China
- Correspondence: (B.C.); (G.S.)
| |
Collapse
|
8
|
Schaufler C, Schmitt AM, Moseke C, Stahlhut P, Geroneit I, Brückner M, Meyer-Lindenberg A, Vorndran E. Physicochemical degradation of calcium magnesium phosphate (stanfieldite) based bone replacement materials and the effect on their cytocompatibility. Biomed Mater 2022; 18. [PMID: 36541469 DOI: 10.1088/1748-605x/aca735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 11/29/2022] [Indexed: 12/05/2022]
Abstract
Regenerative bone implants should be completely replaced by new bone within a period of time corresponding to the growth rate of native bone. To meet this requirement, suitable biomaterials must be biodegradable and promote osteogenesis. The combination of slowly degrading but osteoconductive calcium phosphates (CPs) with rapidly degrading and mechanically more resilient magnesium phosphates represents a promising material class for this purpose. In order to create the best possible conditions for optimal implant integration, microporous calcium magnesium phosphate (CMP) cements were processed using 3D powder printing. This technique enables the production of a defect-adapted implant with an optimal fit and a high degree of open porosity to promote bone ingrowth. Four different compositions of 3D printed CMP ceramics were investigated with regard to essential properties of bone implants, including chemical composition, porosity, microstructure, mechanical strength, and cytocompatibility. The ceramics consisted of farringtonite (Mg3(PO4)2) and stanfieldite (Ca4Mg5(PO4)6), with either struvite (NH4MgPO4·6H2O) or newberyite (MgHPO4·3H2O) and brushite (CaHPO4·2H2O) as additional phases. The CMP materials showed open porosities between 13 and 28% and compressive strengths between 11 and 17 MPa, which was significantly higher, as compared with clinically established CP. The cytocompatibility was evaluated with the human fetal osteoblast cell line hFOB 1.19 and was proven to be equal or to even exceed that of tricalcium phosphate. Furthermore, a release of 4-8 mg magnesium and phosphate ions per mg scaffold material could be determined for CMPs over a period of 21 d. In the case of struvite containing CMPs the chemical dissolution of the cement matrix was combined with a physical degradation, which resulted in a mass loss of up to 3.1 wt%. In addition to its beneficial physical and biological properties, the proven continuous chemical degradation and bioactivity in the form of CP precipitation indicate an enhanced bone regeneration potential of CMPs.
Collapse
Affiliation(s)
- Christian Schaufler
- Department for Functional Materials in Medicine and Dentistry, University Clinic Würzburg, Würzburg, Germany
| | - Anna-Maria Schmitt
- Department for Functional Materials in Medicine and Dentistry, University Clinic Würzburg, Würzburg, Germany
| | - Claus Moseke
- Institute for Biomedical Engineering (IBMT), University of Applied Sciences Mittelhessen (THM), Wiesenstraße 14, Gießen, Germany
| | - Philipp Stahlhut
- Department for Functional Materials in Medicine and Dentistry, University Clinic Würzburg, Würzburg, Germany
| | - Isabel Geroneit
- Department for Functional Materials in Medicine and Dentistry, University Clinic Würzburg, Würzburg, Germany
| | - Manuel Brückner
- Department for Functional Materials in Medicine and Dentistry, University Clinic Würzburg, Würzburg, Germany
| | - Andrea Meyer-Lindenberg
- Clinic for Small Animal Surgery and Reproduction, Ludwig-Maximilians-Universität, Munich, Germany
| | - Elke Vorndran
- Department for Functional Materials in Medicine and Dentistry, University Clinic Würzburg, Würzburg, Germany
| |
Collapse
|
9
|
Alfayez E, Veschini L, Dettin M, Zamuner A, Gaetani M, Carreca AP, Najman S, Ghanaati S, Coward T, Di Silvio L. DAR 16-II Primes Endothelial Cells for Angiogenesis Improving Bone Ingrowth in 3D-Printed BCP Scaffolds and Regeneration of Critically Sized Bone Defects. Biomolecules 2022; 12:biom12111619. [PMID: 36358970 PMCID: PMC9687468 DOI: 10.3390/biom12111619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 10/28/2022] [Accepted: 10/30/2022] [Indexed: 11/06/2022] Open
Abstract
Bone is a highly vascularized tissue and relies on the angiogenesis and response of cells in the immediate environmental niche at the defect site for regeneration. Hence, the ability to control angiogenesis and cellular responses during osteogenesis has important implications in tissue-engineered strategies. Self-assembling ionic-complementary peptides have received much interest as they mimic the natural extracellular matrix. Three-dimensional (3D)-printed biphasic calcium phosphate (BCP) scaffolds coated with self-assembling DAR 16-II peptide provide a support template with the ability to recruit and enhance the adhesion of cells. In vitro studies demonstrated prompt the adhesion of both human umbilical vein endothelial cells (HUVEC) and human mesenchymal stem cells (hMSC), favoring endothelial cell activation toward an angiogenic phenotype. The SEM-EDS and protein micro bicinchoninic acid (BCA) assays demonstrated the efficacy of the coating. Whole proteomic analysis of DAR 16-II-treated HUVECs demonstrated the upregulation of proteins involved in cell adhesion (HABP2), migration (AMOTL1), cytoskeletal re-arrangement (SHC1, TMOD2), immuno-modulation (AMBP, MIF), and morphogenesis (COL4A1). In vivo studies using DAR-16-II-coated scaffolds provided an architectural template, promoting cell colonization, osteogenesis, and angiogenesis. In conclusion, DAR 16-II acts as a proactive angiogenic factor when adsorbed onto BCP scaffolds and provides a simple and effective functionalization step to facilitate the translation of tailored 3D-printed BCP scaffolds for clinical applications.
Collapse
Affiliation(s)
- Eman Alfayez
- Faculty of Dentistry, Oral Biology Department, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Faculty of Dentistry, Oral & Craniofacial Sciences King’s College London, London SE1 9RT, UK
| | - Lorenzo Veschini
- Faculty of Dentistry, Oral & Craniofacial Sciences King’s College London, London SE1 9RT, UK
| | - Monica Dettin
- Department of Industrial Engineering, University of Padua, 35131 Padua, Italy
| | - Annj Zamuner
- Department of Civil, Environmental, and Architectural Engineering, University of Padua, 35131 Padua, Italy
| | - Massimiliano Gaetani
- Fondazione Ricerca nel Mediterraneo (Ri.MED) and Department of Laboratory Medicine and Advanced Biotechnologies, Istituto di Ricovero e Cura a Carattere Scientifico-Istituto Mediterraneo per i Trapianti e Terapie ad Alta Specializzazione, 90100 Palermo, Italy
- Chemical Proteomics, Department of Medical Biochemistry and Biophysics, Karolinska Institutet and SciLifeLab (Science for Life Laboratory), SE-17 177 Stockholm, Sweden
| | - Anna P. Carreca
- Fondazione Ricerca nel Mediterraneo (Ri.MED) and Department of Laboratory Medicine and Advanced Biotechnologies, Istituto di Ricovero e Cura a Carattere Scientifico-Istituto Mediterraneo per i Trapianti e Terapie ad Alta Specializzazione, 90100 Palermo, Italy
| | - Stevo Najman
- Faculty of Medicine, University of Niš, 18000 Niš, Serbia
| | - Shahram Ghanaati
- Department for Oral, Cranio-Maxillofacial and Facial Plastic Surgery, Medical Center of the Goethe University, 60323 Frankfurt, Germany
| | - Trevor Coward
- Faculty of Dentistry, Oral & Craniofacial Sciences King’s College London, London SE1 9RT, UK
| | - Lucy Di Silvio
- Faculty of Dentistry, Oral & Craniofacial Sciences King’s College London, London SE1 9RT, UK
- Correspondence: ; Tel.: +44-02-07848-8475
| |
Collapse
|
10
|
Maksoud FJ, Velázquez de la Paz MF, Hann AJ, Thanarak J, Reilly GC, Claeyssens F, Green NH, Zhang YS. Porous biomaterials for tissue engineering: a review. J Mater Chem B 2022; 10:8111-8165. [PMID: 36205119 DOI: 10.1039/d1tb02628c] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The field of biomaterials has grown rapidly over the past decades. Within this field, porous biomaterials have played a remarkable role in: (i) enabling the manufacture of complex three-dimensional structures; (ii) recreating mechanical properties close to those of the host tissues; (iii) facilitating interconnected structures for the transport of macromolecules and cells; and (iv) behaving as biocompatible inserts, tailored to either interact or not with the host body. This review outlines a brief history of the development of biomaterials, before discussing current materials proposed for use as porous biomaterials and exploring the state-of-the-art in their manufacture. The wide clinical applications of these materials are extensively discussed, drawing on specific examples of how the porous features of such biomaterials impact their behaviours, as well as the advantages and challenges faced, for each class of the materials.
Collapse
Affiliation(s)
- Fouad Junior Maksoud
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA 02139, USA.
| | - María Fernanda Velázquez de la Paz
- Department of Materials Science and Engineering, Kroto Research Building, North Campus, Broad Lane, University of Sheffield, Sheffield, S3 7HQ, UK.
| | - Alice J Hann
- Department of Materials Science and Engineering, Kroto Research Building, North Campus, Broad Lane, University of Sheffield, Sheffield, S3 7HQ, UK.
| | - Jeerawan Thanarak
- Department of Materials Science and Engineering, Kroto Research Building, North Campus, Broad Lane, University of Sheffield, Sheffield, S3 7HQ, UK.
| | - Gwendolen C Reilly
- Department of Materials Science and Engineering, Kroto Research Building, North Campus, Broad Lane, University of Sheffield, Sheffield, S3 7HQ, UK. .,INSIGNEO Institute for in silico Medicine, University of Sheffield, S3 7HQ, UK
| | - Frederik Claeyssens
- Department of Materials Science and Engineering, Kroto Research Building, North Campus, Broad Lane, University of Sheffield, Sheffield, S3 7HQ, UK. .,INSIGNEO Institute for in silico Medicine, University of Sheffield, S3 7HQ, UK
| | - Nicola H Green
- Department of Materials Science and Engineering, Kroto Research Building, North Campus, Broad Lane, University of Sheffield, Sheffield, S3 7HQ, UK. .,INSIGNEO Institute for in silico Medicine, University of Sheffield, S3 7HQ, UK
| | - Yu Shrike Zhang
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA 02139, USA.
| |
Collapse
|
11
|
Kowalewicz K, Waselau AC, Feichtner F, Schmitt AM, Brückner M, Vorndran E, Meyer-Lindenberg A. Comparison of degradation behavior and osseointegration of 3D powder-printed calcium magnesium phosphate cement scaffolds with alkaline or acid post-treatment. Front Bioeng Biotechnol 2022; 10:998254. [PMID: 36246367 PMCID: PMC9554004 DOI: 10.3389/fbioe.2022.998254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 09/05/2022] [Indexed: 11/13/2022] Open
Abstract
Due to the positive effects of magnesium substitution on the mechanical properties and the degradation rate of the clinically well-established calcium phosphate cements (CPCs), calcium magnesium phosphate cements (CMPCs) are increasingly being researched as bone substitutes. A post-treatment alters the materials’ physical properties and chemical composition, reinforcing the structure and modifying the degradation rate. By alkaline post-treatment with diammonium hydrogen phosphate (DAHP, (NH4)2HPO4), the precipitation product struvite is formed, while post-treatment with an acidic phosphate solution [e.g., phosphoric acid (PA, H3PO4)] results in precipitation of newberyite and brushite. However, little research has yet been conducted on newberyite as a bone substitute and PA post-treatment of CMPCs has not been described in the accessible literature so far. Therefore, in the present study, the influence of an alkaline (DAHP) or acid (PA) post-treatment on the biocompatibility, degradation behavior, and osseointegration of cylindrical scaffolds (h = 5.1 mm, Ø = 4.2 mm) produced from the ceramic cement powder Ca0.75Mg2.25(PO4)2 by the advantageous manufacturing technique of three-dimensional (3D) powder printing was investigated in vivo. Scaffolds of the material groups Mg225d (DAHP post-treatment) and Mg225p (PA post-treatment) were implanted into the cancellous part of the lateral femoral condyles in rabbits. They were evaluated up to 24 weeks by regular clinical, X-ray, micro-computed tomographic (µCT), and histological examinations as well as scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDX) analysis and compared with tricalcium phosphate (TCP). All materials showed excellent biocompatibility and rapid osseointegration. While TCP degraded only slightly, the CMPCs showed almost complete degradation. Mg225d demonstrated significantly faster loss of form and demarcability from surrounding bone, scaffold volume reduction, and significantly greater degradation on the side towards the bone marrow than to the cortex than Mg225p. Simultaneously, numerous bone trabeculae have grown into the implantation site. While these were mostly located on the side towards the cortex in Mg225d, they were more evenly distributed in Mg225p and showed almost the same structural characteristics as physiological bone after 24 weeks in Mg225p. Based on these results, the acid post-treated 3D powder-printed Mg225p is a promising degradable bone substitute that should be further investigated.
Collapse
Affiliation(s)
- Katharina Kowalewicz
- Clinic for Small Animal Surgery and Reproduction, Ludwig-Maximilians-University of Munich, Munich, Germany
| | - Anja-Christina Waselau
- Clinic for Small Animal Surgery and Reproduction, Ludwig-Maximilians-University of Munich, Munich, Germany
| | - Franziska Feichtner
- Clinic for Small Animal Surgery and Reproduction, Ludwig-Maximilians-University of Munich, Munich, Germany
| | - Anna-Maria Schmitt
- Department for Functional Materials in Medicine and Dentistry, University of Würzburg, Würzburg, Germany
| | - Manuel Brückner
- Department for Functional Materials in Medicine and Dentistry, University of Würzburg, Würzburg, Germany
| | - Elke Vorndran
- Department for Functional Materials in Medicine and Dentistry, University of Würzburg, Würzburg, Germany
| | - Andrea Meyer-Lindenberg
- Clinic for Small Animal Surgery and Reproduction, Ludwig-Maximilians-University of Munich, Munich, Germany
- *Correspondence: Andrea Meyer-Lindenberg,
| |
Collapse
|
12
|
Liu G, Zhang B, Wan T, Zhou C, Fan Y, Tian W, Jing W. A 3D-printed biphasic calcium phosphate scaffold loaded with platelet lysate/gelatin methacrylate to promote vascularization. J Mater Chem B 2022; 10:3138-3151. [PMID: 35352743 DOI: 10.1039/d2tb00006g] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
3D-printed biphasic calcium phosphate (BCP) scaffolds show great clinical application potential in bone tissue engineering; however, vascularization of the scaffold is a crucial step for bone regeneration and is still difficult to be controlled. To enhance scaffold vascularization, a novel bioactive scaffold loaded with platelet lysate/gelatin methacrylate (PL/GelMA) in a BCP scaffold was proposed for promoting vascularization. The PL/GelMA/BCP scaffold was successfully prepared via digital light processing (DLP) printing and filled with PL/GelMA to promote the vascularization effect. In vitro evaluation indicated that human umbilical vein endothelial cells (HUVECs) adhered well on the PL/GelMA/BCP scaffold, and cell proliferation was significantly promoted by coculture with the scaffold. Moreover, a variety of growth factors (GFs) in the PL were detected which were slowly released from the scaffold to modulate the cell behaviour and promote the formation of blood vessel-like structures. Co-culturing with the PL/GelMA/BCP scaffold upregulated the expression of angiogenesis-related genes in cells. In vitro results showed that a higher capillary formation was also observed in PL/GelMA/BCP scaffolds implanted subcutaneously on the back of the rats. These results indicated that the vascularization ability of BCP was enhanced by filling it with PL/GelMA. The PL/GelMA/BCP scaffold has the potential to promote vascularization in tissue engineering.
Collapse
Affiliation(s)
- Gang Liu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Engineering Research Center of Oral Translational Medicine, Ministry of Education & National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China. .,Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, No. 14, 3Rd Section of Ren Min Nan Rd., Chengdu, Sichuan 610041, China
| | - Boqing Zhang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China
| | - Ting Wan
- Affiliated Hospital of Sichuan Nursing Vocational College (The Third People's Hospital of Sichuan Province), Chengdu 610071, China
| | - Changchun Zhou
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China
| | - Yujiang Fan
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China
| | - Weidong Tian
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Engineering Research Center of Oral Translational Medicine, Ministry of Education & National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China. .,Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, No. 14, 3Rd Section of Ren Min Nan Rd., Chengdu, Sichuan 610041, China
| | - Wei Jing
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Engineering Research Center of Oral Translational Medicine, Ministry of Education & National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China. .,Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, No. 14, 3Rd Section of Ren Min Nan Rd., Chengdu, Sichuan 610041, China
| |
Collapse
|
13
|
Bahraminasab M, Janmohammadi M, Arab S, Talebi A, Nooshabadi VT, Koohsarian P, Nourbakhsh MS. Bone Scaffolds: An Incorporation of Biomaterials, Cells, and Biofactors. ACS Biomater Sci Eng 2021; 7:5397-5431. [PMID: 34797061 DOI: 10.1021/acsbiomaterials.1c00920] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Large injuries to bones are still one of the most challenging musculoskeletal problems. Tissue engineering can combine stem cells, scaffold biomaterials, and biofactors to aid in resolving this complication. Therefore, this review aims to provide information on the recent advances made to utilize the potential of biomaterials for making bone scaffolds and the assisted stem cell therapy and use of biofactors for bone tissue engineering. The requirements and different types of biomaterials used for making scaffolds are reviewed. Furthermore, the importance of stem cells and biofactors (growth factors and extracellular vesicles) in bone regeneration and their use in bone scaffolds and the key findings are discussed. Lastly, some of the main obstacles in bone tissue engineering and future trends are highlighted.
Collapse
Affiliation(s)
- Marjan Bahraminasab
- Department of Tissue Engineering and Applied Cell Sciences, School of Medicine, Semnan University of Medical Sciences, Semnan 3513138111, Iran.,Nervous System Stem Cells Research Center, Semnan University of Medical Sciences, Semnan 3513138111, Iran
| | - Mahsa Janmohammadi
- Department of Biomedical Engineering, Faculty of New Sciences and Technologies, Semnan University, Semnan 3513119111, Iran
| | - Samaneh Arab
- Department of Tissue Engineering and Applied Cell Sciences, School of Medicine, Semnan University of Medical Sciences, Semnan 3513138111, Iran.,Nervous System Stem Cells Research Center, Semnan University of Medical Sciences, Semnan 3513138111, Iran
| | - Athar Talebi
- Nervous System Stem Cells Research Center, Semnan University of Medical Sciences, Semnan 3513138111, Iran
| | - Vajihe Taghdiri Nooshabadi
- Department of Tissue Engineering and Applied Cell Sciences, School of Medicine, Semnan University of Medical Sciences, Semnan 3513138111, Iran.,Nervous System Stem Cells Research Center, Semnan University of Medical Sciences, Semnan 3513138111, Iran
| | - Parisa Koohsarian
- Department of Biochemistry and Hematology, School of Medicine, Semnan University of Medical Sciences, Semnan 3513138111, Iran
| | | |
Collapse
|
14
|
Applying extrusion-based 3D printing technique accelerates fabricating complex biphasic calcium phosphate-based scaffolds for bone tissue regeneration. J Adv Res 2021; 40:69-94. [PMID: 36100335 PMCID: PMC9481949 DOI: 10.1016/j.jare.2021.12.012] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 12/09/2021] [Accepted: 12/23/2021] [Indexed: 12/17/2022] Open
Abstract
Biphasic calcium phosphates offer a chemically similar biomaterial to the natural bone, which can significantly accelerate bone formation and reconstruction. Robocasting is a suitable technique to produce porous scaffolds supporting cell viability, proliferation, and differentiation. This review discusses materials and methods utilized for BCP robocasting, considering recent advancements and existing challenges in using additives for bioink preparation. Commercialization and marketing approach, in-vitro and in-vivo evaluations, biologic responses, and post-processing steps are also investigated. Possible strategies and opportunities for the use of BCP toward injured bone regeneration along with clinical applications are discussed. The study proposes that BCP possesses an acceptable level of bone substituting, considering its challenges and struggles.
Background Aim of review Key scientific concepts of review
Collapse
|
15
|
Golafshan N, Willemsen K, Kadumudi FB, Vorndran E, Dolatshahi‐Pirouz A, Weinans H, van der Wal BCH, Malda J, Castilho M. 3D-Printed Regenerative Magnesium Phosphate Implant Ensures Stability and Restoration of Hip Dysplasia. Adv Healthc Mater 2021; 10:e2101051. [PMID: 34561956 PMCID: PMC11468606 DOI: 10.1002/adhm.202101051] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 09/06/2021] [Indexed: 11/10/2022]
Abstract
Osteoarthritis of the hip is a painful and debilitating condition commonly occurring in humans and dogs. One of the main causes that leads to hip osteoarthritis is hip dysplasia. Although the current surgical methods to correct dysplasia work satisfactorily in many circumstances, these are associated with serious complications, tissue resorption, and degeneration. In this study, a one-step fabrication of a regenerative hip implant with a patient-specific design and load-bearing properties is reported. The regenerative hip implant is fabricated based on patient imaging files and by an extrusion assisted 3D printing process using a flexible, bone-inducing biomaterial. The novel implant can be fixed with metallic screws to host bone and can be loaded up to physiological loads without signs of critical permanent deformation or failure. Moreover, after exposing the hip implant to accelerated in vitro degradation, it is confirmed that it is still able to support physiological loads even after losing ≈40% of its initial mass. In addition, the osteopromotive properties of the novel hip implant is demonstrated as shown by an increased expression of osteonectin and osteocalcin by cultured human mesenchymal stem cells after 21 days. Overall, the proposed hip implant provides an innovative regenerative and mechanically stable solution for hip dysplasia treatment.
Collapse
Affiliation(s)
- Nasim Golafshan
- Department of OrthopaedicsUniversity Medical Center UtrechtUtrecht3584 CXThe Netherlands
- Regenerative Medicine UtrechtUtrecht UniversityUtrecht3584 CTThe Netherlands
| | - Koen Willemsen
- Department of OrthopaedicsUniversity Medical Center UtrechtUtrecht3584 CXThe Netherlands
| | - Firoz Babu Kadumudi
- Department of Health TechnologyTechnical University of DenmarkLyngby2800Denmark
| | - Elke Vorndran
- Department for Functional Materials in Medicine and DentistryUniversity of WürzburgWürzburg97070Germany
| | | | - Harrie Weinans
- Department of OrthopaedicsUniversity Medical Center UtrechtUtrecht3584 CXThe Netherlands
- Department of Biomechanical EngineeringTU DelftDelft2628 CDThe Netherlands
| | - Bart C. H. van der Wal
- Department of OrthopaedicsUniversity Medical Center UtrechtUtrecht3584 CXThe Netherlands
| | - Jos Malda
- Department of OrthopaedicsUniversity Medical Center UtrechtUtrecht3584 CXThe Netherlands
- Regenerative Medicine UtrechtUtrecht UniversityUtrecht3584 CTThe Netherlands
- Department of Clinical SciencesFaculty of Veterinary MedicineUtrecht UniversityUtrecht3584 CLThe Netherlands
| | - Miguel Castilho
- Department of OrthopaedicsUniversity Medical Center UtrechtUtrecht3584 CXThe Netherlands
- Regenerative Medicine UtrechtUtrecht UniversityUtrecht3584 CTThe Netherlands
- Orthopaedic BiomechanicsDepartment of Biomedical EngineeringEindhoven University of TechnologyEindhoven5612 AZThe Netherlands
| |
Collapse
|
16
|
Time-dependent growth of CaO nano flowers from egg shells exhibit improved adsorption and catalytic activity. ADV POWDER TECHNOL 2021. [DOI: 10.1016/j.apt.2021.07.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
17
|
Shaping collagen for engineering hard tissues: Towards a printomics approach. Acta Biomater 2021; 131:41-61. [PMID: 34192571 DOI: 10.1016/j.actbio.2021.06.035] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 06/21/2021] [Accepted: 06/22/2021] [Indexed: 12/21/2022]
Abstract
Hard tissue engineering has evolved over the past decades, with multiple approaches being explored and developed. Despite the rapid development and success of advanced 3D cell culture, 3D printing technologies and material developments, a gold standard approach to engineering and regenerating hard tissue substitutes such as bone, dentin and cementum, has not yet been realised. One such strategy that differs from conventional regenerative medicine approach of other tissues, is the in vitro mineralisation of collagen templates in the absence of cells. Collagen is the most abundant protein within the human body and forms the basis of all hard tissues. Once mineralised, collagen provides important support and protection to humans, for example in the case of bone tissue. Multiple in vitro fabrication strategies and mineralisation approaches have been developed and their success in facilitating mineral deposition on collagen to achieve bone-like scaffolds evaluated. Critical to the success of such fabrication and biomineralisation approaches is the collagen template, and its chemical composition, organisation, and density. The key factors that influence such properties are the collagen processing and fabrication techniques utilised to create the template, and the mineralisation strategy employed to deposit mineral on and throughout the templates. However, despite its importance, relatively little attention has been placed on these two critical factors. Here, we critically examine the processing, fabrication and mineralisation strategies that have been used to mineralise collagen templates, and offer insights and perspectives on the most promising strategies for creating mineralised collagen scaffolds. STATEMENT OF SIGNIFICANCE: In this review, we highlight the critical need to fabricate collagen templates with advanced processing techniques, in a manner that achieves biomimicry of the hierarchical collagen structure, prior to utilising in vitro mineralisation strategies. To this end, we focus on the initial collagen that is selected, the extraction techniques used and the native fibril forming potential retained to create reconstituted collagen scaffolds. This review synthesises current best practises in material sourcing, processing, mineralisation strategies and fabrication techniques, and offers insights into how these can best be exploited in future studies to successfully mineralise collagen templates.
Collapse
|
18
|
Wang Z, Agrawal P, Zhang YS. Nanotechnologies and Nanomaterials in 3D (Bio)printing toward Bone Regeneration. ADVANCED NANOBIOMED RESEARCH 2021. [DOI: 10.1002/anbr.202100035] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Affiliation(s)
- Zongliang Wang
- Division of Engineering in Medicine Department of Medicine Brigham and Women's Hospital Harvard Medical School Cambridge MA 02139 USA
| | - Prajwal Agrawal
- Division of Engineering in Medicine Department of Medicine Brigham and Women's Hospital Harvard Medical School Cambridge MA 02139 USA
| | - Yu Shrike Zhang
- Division of Engineering in Medicine Department of Medicine Brigham and Women's Hospital Harvard Medical School Cambridge MA 02139 USA
| |
Collapse
|
19
|
Erezuma I, Eufrasio‐da‐Silva T, Golafshan N, Deo K, Mishra YK, Castilho M, Gaharwar AK, Leeuwenburgh S, Dolatshahi‐Pirouz A, Orive G. Nanoclay Reinforced Biomaterials for Mending Musculoskeletal Tissue Disorders. Adv Healthc Mater 2021; 10:e2100217. [PMID: 34185438 DOI: 10.1002/adhm.202100217] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 06/10/2021] [Indexed: 12/11/2022]
Abstract
Nanoclay-reinforced biomaterials have sparked a new avenue in advanced healthcare materials that can potentially revolutionize treatment of musculoskeletal defects. Native tissues display many important chemical, mechanical, biological, and physical properties that engineered biomaterials need to mimic for optimal tissue integration and regeneration. However, it is time-consuming and difficult to endow such combinatorial properties on materials via feasible and nontoxic procedures. Fortunately, a number of nanomaterials such as graphene, carbon nanotubes, MXenes, and nanoclays already display a plethora of material properties that can be transferred to biomaterials through a simple incorporation procedure. In this direction, the members of the nanoclay family are easy to functionalize chemically, they can significantly reinforce the mechanical performance of biomaterials, and can provide bioactive properties by ionic dissolution products to upregulate cartilage and bone tissue formation. For this reason, nanoclays can become a key component for future orthopedic biomaterials. In this review, we specifically focus on the rapidly decreasing gap between clinic and laboratory by highlighting their application in a number of promising in vivo studies.
Collapse
Affiliation(s)
- Itsasne Erezuma
- NanoBioCel Group Laboratory of Pharmaceutics School of Pharmacy University of the Basque Country (UPV/EHU) Paseo de la Universidad 7 Vitoria‐Gasteiz 01006 Spain
- Bioaraba NanoBioCel Research Group Vitoria‐Gasteiz 01009 Spain
| | - Tatiane Eufrasio‐da‐Silva
- Department of Dentistry – Regenerative Biomaterials Radboud University Medical Center Radboud Institute for Molecular Life Sciences Nijmegen 6525 The Netherlands
| | - Nasim Golafshan
- Department of Orthopedics University Medical Center Utrecht Utrecht GA 3584 the Netherlands
- Regenerative Medicine Utrecht Utrecht 3584 the Netherlands
| | - Kaivalya Deo
- Department of Biomedical Engineering College of Engineering Texas A&M University College Station TX‐77843 USA
| | - Yogendra Kumar Mishra
- Mads Clausen Institute NanoSYD University of Southern Denmark Alsion 2 Sønderborg 6400 Denmark
| | - Miguel Castilho
- Department of Orthopedics University Medical Center Utrecht Utrecht GA 3584 the Netherlands
- Regenerative Medicine Utrecht Utrecht 3584 the Netherlands
- Department of Biomedical Engineering Eindhoven University of Technology Eindhoven MB 5600 The Netherlands
| | - Akhilesh K. Gaharwar
- Department of Biomedical Engineering College of Engineering Texas A&M University College Station TX‐77843 USA
- Material Science and Engineering College of Engineering Texas A&M University College Station TX 77843 USA
- Center for Remote Health Technologies and Systems Texas A&M University College Station TX 77843 USA
- Interdisciplinary Graduate Program in Genetics Texas A&M University College Station TX‐77843 USA
| | - Sander Leeuwenburgh
- Department of Biomaterials Radboud University Medical Center Philips van Leydenlaan 25 Nijmegen 6525 EX the Netherlands
| | - Alireza Dolatshahi‐Pirouz
- Department of Dentistry – Regenerative Biomaterials Radboud University Medical Center Radboud Institute for Molecular Life Sciences Nijmegen 6525 The Netherlands
- Department of Health Technology Center for Intestinal Absorption and Transport of Biopharmaceuticals Technical University of Denmark Sønderborg 2800 Kgs Denmark
| | - Gorka Orive
- NanoBioCel Group Laboratory of Pharmaceutics School of Pharmacy University of the Basque Country (UPV/EHU) Paseo de la Universidad 7 Vitoria‐Gasteiz 01006 Spain
- Bioaraba NanoBioCel Research Group Vitoria‐Gasteiz 01009 Spain
- Biomedical Research Networking Centre in Bioengineering Biomaterials and Nanomedicine (CIBER‐BBN) Vitoria‐Gasteiz 01006 Spain
- University Institute for Regenerative Medicine and Oral Implantology – UIRMI (UPV/EHU‐Fundación Eduardo Anitua) Vitoria 01007 Spain
- Singapore Eye Research Institute The Academia, 20 College Road, Discovery Tower Singapore 169856 Singapore
| |
Collapse
|
20
|
Gao H, Xiao J, Wei Y, Yang H, Zou F. Manipulating Mesenchymal Stem Cell Differentiation on Nanopattern Constructed through Cell-Mediated Mineralization. ACS APPLIED BIO MATERIALS 2021; 4:5727-5734. [PMID: 35006735 DOI: 10.1021/acsabm.1c00497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The extracellular matrix microenvironment, including chemical constituents and topological structure, plays key role in regulating the cell behavior, such as adhesion, proliferation, differentiation, apoptosis, etc. Until now, to investigate the relationship between surface texture and cell response, various ordered patterns have been prepared on the surface of different matrixes, whereas almost all these strategies depend on advanced instruments or severe synthesis conditions. Herein, cell-mediated mineralization method has been applied to construct nanopattern on the surface of β-TCP scaffold. The formation process, morphology, and composition of the final pattern were characterized, and a possible mineralization mechanism has been proposed. Moreover, the cell behavior on the nanopattern has been investigated, and the results showed that the mouse bone marrow mesenchyme stem cells (mBMSCs) display good affinity with the nanopattern, which was manifested by the good proliferation and osteogenic differentiation status of cells. The synthetic strategy may shed light to construct advanced topological structures on other matrixes for bone repair.
Collapse
Affiliation(s)
- Huichang Gao
- School of Medicine, South China University of Technology, Guangzhou 510006, China.,National Engineering Research Centre for Tissue Restoration and Reconstruction, Guangzhou 510006, China
| | - Jin Xiao
- Department of Orthopedics, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China
| | - Yingqi Wei
- The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou 510655, China
| | - Hui Yang
- School of Information Engineering, Gannan Medical University, Ganzhou 341000, China
| | - Fen Zou
- School of Medicine, South China University of Technology, Guangzhou 510006, China
| |
Collapse
|
21
|
Dadhich P, Srivas PK, Das B, Pal P, Dutta J, Maity P, Guha Ray P, Roy S, Das SK, Dhara S. Direct 3D Printing of Seashell Precursor toward Engineering a Multiphasic Calcium Phosphate Bone Graft. ACS Biomater Sci Eng 2021; 7:3806-3820. [PMID: 34269559 DOI: 10.1021/acsbiomaterials.1c00303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Multiphasic calcium phosphate (Ca-P) has widely been explored for bone graft replacement. This study represents a simple method of developing osteoinductive scaffolds by direct printing of seashell resources. The process demonstrates a coagulation-assisted extrusion-based three-dimensional (3D) printing process for rapid fabrication of multiphasic calcium phosphate-incorporated 3D scaffolds. These scaffolds demonstrated an interconnected open porous architecture with improved compressive strength and higher surface area. Multiphasic calcium phosphate (Ca-P) and hydroxyapatite present in the multi-scalar naturally resourced scaffold displayed differential protein adsorption, thus facilitating cell adhesion, migration, and differentiation, resulting in enhanced deposition of the extracellular matrix. The microstructural and physicochemical attributes of the scaffolds also lead to enhanced stem cell differentiation as witnessed from gene and protein expression analysis. Furthermore, the histological study of subcutaneous implantation evidently portrays promising biocompatibility without foreign body reaction. Neo-tissue in-growth was manifested with abundant blood vessels, thus indicative of excellent vascularization. Notably, cartilaginous and proteoglycan-rich tissue deposition indicated ectopic bone formation via an endochondral ossification pathway. The hierarchical interconnected porous architectural tribology accompanied with multiphasic calcium phosphate composition manifests its successful implication in enhancing stem cell differentiation and promoting excellent tissue in-growth, thus making it a plausible alternative in bone tissue engineering applications.
Collapse
Affiliation(s)
- Prabhash Dadhich
- Biomaterials and Tissue Engineering Laboratory, School of Medical Science and Technology (SMST), Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Pavan Kumar Srivas
- Biomaterials and Tissue Engineering Laboratory, School of Medical Science and Technology (SMST), Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Bodhisatwa Das
- Biomaterials and Tissue Engineering Laboratory, School of Medical Science and Technology (SMST), Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Pallabi Pal
- Biomaterials and Tissue Engineering Laboratory, School of Medical Science and Technology (SMST), Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Joy Dutta
- Biomaterials and Tissue Engineering Laboratory, School of Medical Science and Technology (SMST), Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Pritiprasanna Maity
- Biomaterials and Tissue Engineering Laboratory, School of Medical Science and Technology (SMST), Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Preetam Guha Ray
- Biomaterials and Tissue Engineering Laboratory, School of Medical Science and Technology (SMST), Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Sabyasachi Roy
- Department of Gynaecology, Midnapore Medical College and Hospital, Midnapore, West Bengal 721101, India
| | - Subrata K Das
- Biomaterials and Tissue Engineering Laboratory, School of Medical Science and Technology (SMST), Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Santanu Dhara
- Biomaterials and Tissue Engineering Laboratory, School of Medical Science and Technology (SMST), Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| |
Collapse
|
22
|
Aytac Z, Dubey N, Daghrery A, Ferreira JA, de Souza Araújo IJ, Castilho M, Malda J, Bottino MC. Innovations in Craniofacial Bone and Periodontal Tissue Engineering - From Electrospinning to Converged Biofabrication. INTERNATIONAL MATERIALS REVIEWS 2021; 67:347-384. [PMID: 35754978 PMCID: PMC9216197 DOI: 10.1080/09506608.2021.1946236] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 06/11/2021] [Indexed: 06/02/2023]
Abstract
From a materials perspective, the pillars for the development of clinically translatable scaffold-based strategies for craniomaxillofacial (CMF) bone and periodontal regeneration have included electrospinning and 3D printing (biofabrication) technologies. Here, we offer a detailed analysis of the latest innovations in 3D (bio)printing strategies for CMF bone and periodontal regeneration and provide future directions envisioning the development of advanced 3D architectures for successful clinical translation. First, the principles of electrospinning applied to the generation of biodegradable scaffolds are discussed. Next, we present on extrusion-based 3D printing technologies with a focus on creating scaffolds with improved regenerative capacity. In addition, we offer a critical appraisal on 3D (bio)printing and multitechnology convergence to enable the reconstruction of CMF bones and periodontal tissues. As a future outlook, we highlight future directions associated with the utilization of complementary biomaterials and (bio)fabrication technologies for effective translation of personalized and functional scaffolds into the clinics.
Collapse
Affiliation(s)
- Zeynep Aytac
- Department of Cariology, Restorative Sciences, and Endodontics, University of Michigan, School of Dentistry, Ann Arbor, Michigan, United States
| | - Nileshkumar Dubey
- Department of Cariology, Restorative Sciences, and Endodontics, University of Michigan, School of Dentistry, Ann Arbor, Michigan, United States
| | - Arwa Daghrery
- Department of Cariology, Restorative Sciences, and Endodontics, University of Michigan, School of Dentistry, Ann Arbor, Michigan, United States
| | - Jessica A. Ferreira
- Department of Cariology, Restorative Sciences, and Endodontics, University of Michigan, School of Dentistry, Ann Arbor, Michigan, United States
| | - Isaac J. de Souza Araújo
- Department of Cariology, Restorative Sciences, and Endodontics, University of Michigan, School of Dentistry, Ann Arbor, Michigan, United States
| | - Miguel Castilho
- Regenerative Medicine Center, University Medical Center Utrecht, Utrecht, The Netherlands
- Department of Orthopedics, University Medical Center Utrecht, Utrecht, The Netherlands
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Jos Malda
- Regenerative Medicine Center, University Medical Center Utrecht, Utrecht, The Netherlands
- Department of Orthopedics, University Medical Center Utrecht, Utrecht, The Netherlands
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Marco C. Bottino
- Department of Cariology, Restorative Sciences, and Endodontics, University of Michigan, School of Dentistry, Ann Arbor, Michigan, United States
- Department of Biomedical Engineering, College of Engineering, University of Michigan, Ann Arbor, Michigan, United States
| |
Collapse
|
23
|
Qu M, Wang C, Zhou X, Libanori A, Jiang X, Xu W, Zhu S, Chen Q, Sun W, Khademhosseini A. Multi-Dimensional Printing for Bone Tissue Engineering. Adv Healthc Mater 2021; 10:e2001986. [PMID: 33876580 PMCID: PMC8192454 DOI: 10.1002/adhm.202001986] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 03/15/2021] [Indexed: 02/05/2023]
Abstract
The development of 3D printing has significantly advanced the field of bone tissue engineering by enabling the fabrication of scaffolds that faithfully recapitulate desired mechanical properties and architectures. In addition, computer-based manufacturing relying on patient-derived medical images permits the fabrication of customized modules in a patient-specific manner. In addition to conventional 3D fabrication, progress in materials engineering has led to the development of 4D printing, allowing time-sensitive interventions such as programed therapeutics delivery and modulable mechanical features. Therapeutic interventions established via multi-dimensional engineering are expected to enhance the development of personalized treatment in various fields, including bone tissue regeneration. Here, recent studies utilizing 3D printed systems for bone tissue regeneration are summarized and advances in 4D printed systems are highlighted. Challenges and perspectives for the future development of multi-dimensional printed systems toward personalized bone regeneration are also discussed.
Collapse
Affiliation(s)
- Moyuan Qu
- Department of Bioengineering, California NanoSystems Institute and Center for Minimally Invasive Therapeutics (C-MIT) University of California, Los Angeles, Los Angeles, CA 90095, USA
- The Affiliated Hospital of Stomatology, School of Stomatology, Zhejiang University School of Medicine and Key Laboratory of Oral Biomedical Research of Zhejiang Province, Hangzhou, Zhejiang, 310006, China
| | - Canran Wang
- Department of Bioengineering, California NanoSystems Institute and Center for Minimally Invasive Therapeutics (C-MIT) University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Xingwu Zhou
- Department of Bioengineering, California NanoSystems Institute and Center for Minimally Invasive Therapeutics (C-MIT) University of California, Los Angeles, Los Angeles, CA 90095, USA
- Department of Chemical and Biomolecular Engineering, University of California-Los Angeles, Los Angeles, CA 90095, USA
| | - Alberto Libanori
- Department of Bioengineering, California NanoSystems Institute and Center for Minimally Invasive Therapeutics (C-MIT) University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Xing Jiang
- Department of Bioengineering, California NanoSystems Institute and Center for Minimally Invasive Therapeutics (C-MIT) University of California, Los Angeles, Los Angeles, CA 90095, USA
- School of Nursing, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Weizhe Xu
- The Affiliated Hospital of Stomatology, School of Stomatology, Zhejiang University School of Medicine and Key Laboratory of Oral Biomedical Research of Zhejiang Province, Hangzhou, Zhejiang, 310006, China
| | - Songsong Zhu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Qianming Chen
- The Affiliated Hospital of Stomatology, School of Stomatology, Zhejiang University School of Medicine and Key Laboratory of Oral Biomedical Research of Zhejiang Province, Hangzhou, Zhejiang, 310006, China
| | - Wujin Sun
- Department of Bioengineering, California NanoSystems Institute and Center for Minimally Invasive Therapeutics (C-MIT) University of California, Los Angeles, Los Angeles, CA 90095, USA
- Terasaki Institute for Biomedical Innovation, Los Angeles, California 90064, United States
| | - Ali Khademhosseini
- Department of Bioengineering, California NanoSystems Institute and Center for Minimally Invasive Therapeutics (C-MIT) University of California, Los Angeles, Los Angeles, CA 90095, USA
- Department of Chemical and Biomolecular Engineering, University of California-Los Angeles, Los Angeles, CA 90095, USA
- Jonsson Comprehensive Cancer Center, Department of Radiology University of California-Los Angeles, Los Angeles, CA 90095, USA
- Terasaki Institute for Biomedical Innovation, Los Angeles, California 90064, United States
| |
Collapse
|
24
|
Mangano C, Giuliani A, De Tullio I, Raspanti M, Piattelli A, Iezzi G. Case Report: Histological and Histomorphometrical Results of a 3-D Printed Biphasic Calcium Phosphate Ceramic 7 Years After Insertion in a Human Maxillary Alveolar Ridge. Front Bioeng Biotechnol 2021; 9:614325. [PMID: 33937211 PMCID: PMC8082101 DOI: 10.3389/fbioe.2021.614325] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 03/08/2021] [Indexed: 02/04/2023] Open
Abstract
Introduction: Dental implant placement can be challenging when insufficient bone volume is present and bone augmentation procedures are indicated. The purpose was to assess clinically and histologically a specimen of 30%HA-60%β-TCP BCP 3D-printed scaffold, after 7-years. Case Description: The patient underwent bone regeneration of maxillary buccal plate with 3D-printed biphasic-HA block in 2013. After 7-years, a specimen of the regenerated bone was harvested and processed to perform microCT and histomorphometrical analyses. Results: The microarchitecture study performed by microCT in the test-biopsy showed that biomaterial volume decreased more than 23% and that newly-formed bone volume represented more than 57% of the overall mineralized tissue. Comparing with unloaded controls or peri-dental bone, Test-sample appeared much more mineralized and bulky. Histological evaluation showed complete integration of the scaffold and signs of particles degradation. The percentage of bone, biomaterials and soft tissues was, respectively, 59.2, 25.6, and 15.2%. Under polarized light microscopy, the biomaterial was surrounded by lamellar bone. These results indicate that, while unloaded jaws mimicked the typical osteoporotic microarchitecture after 1-year without loading, the BCP helped to preserve a correct microarchitecture after 7-years. Conclusions: BCP 3D-printed scaffolds represent a suitable solution for bone regeneration: they can lead to straightforward and less time-consuming surgery, and to bone preservation.
Collapse
Affiliation(s)
| | - Alessandra Giuliani
- Department of Clinical Sciences, Polytechnic University of Marche, Ancona, Italy
| | - Ilaria De Tullio
- Department of Medical, Oral and Biotechnological Sciences, University "G. D'Annunzio" of Chieti-Pescara, Chieti, Italy
| | - Mario Raspanti
- Department of Medicine and Surgery, University of Insubria, Varese, Italy
| | - Adriano Piattelli
- Department of Medical, Oral and Biotechnological Sciences, University "G. D'Annunzio" of Chieti-Pescara, Chieti, Italy.,Chair of Biomaterials Engineering, Catholic University of San Antonio de Murcia (UCAM), Murcia, Spain.,Fondazione Villaserena per la Ricerca, Città Sant'Angelo, Italy
| | - Giovanna Iezzi
- Department of Medical, Oral and Biotechnological Sciences, University "G. D'Annunzio" of Chieti-Pescara, Chieti, Italy
| |
Collapse
|
25
|
Wan M, Liu S, Huang D, Qu Y, Hu Y, Su Q, Zheng W, Dong X, Zhang H, Wei Y, Zhou W. Biocompatible heterogeneous bone incorporated with polymeric biocomposites for human bone repair by
3D
printing technology. J Appl Polym Sci 2021. [DOI: 10.1002/app.50114] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Meiling Wan
- Research Center of Biomass 3D printing materials, College of Materials and Energy South China Agricultural University Guangzhou China
| | - Shuifeng Liu
- Research Center of Biomass 3D printing materials, College of Materials and Energy South China Agricultural University Guangzhou China
| | - Da Huang
- Department of Anatomy, Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering Southern Medical University Guangzhou China
| | - Yang Qu
- Research Center of Biomass 3D printing materials, College of Materials and Energy South China Agricultural University Guangzhou China
| | - Yang Hu
- Research Center of Biomass 3D printing materials, College of Materials and Energy South China Agricultural University Guangzhou China
| | - Qisheng Su
- Research Center of Biomass 3D printing materials, College of Materials and Energy South China Agricultural University Guangzhou China
| | - Wenxu Zheng
- Research Center of Biomass 3D printing materials, College of Materials and Energy South China Agricultural University Guangzhou China
| | - Xianming Dong
- Research Center of Biomass 3D printing materials, College of Materials and Energy South China Agricultural University Guangzhou China
| | - Hongwu Zhang
- Department of Anatomy, Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering Southern Medical University Guangzhou China
| | - Yen Wei
- Department of Chemistry and the Tsinghua Center for Frontier Polymer Research Tsinghua University Beijing P. R. China
| | - Wuyi Zhou
- Research Center of Biomass 3D printing materials, College of Materials and Energy South China Agricultural University Guangzhou China
| |
Collapse
|
26
|
Three-Dimensional Printing of Hydroxyapatite Composites for Biomedical Application. CRYSTALS 2021. [DOI: 10.3390/cryst11040353] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Hydroxyapatite (HA) and HA-based nanocomposites have been recognized as ideal biomaterials in hard tissue engineering because of their compositional similarity to bioapatite. However, the traditional HA-based nanocomposites fabrication techniques still limit the utilization of HA in bone, cartilage, dental, applications, and other fields. In recent years, three-dimensional (3D) printing has been shown to provide a fast, precise, controllable, and scalable fabrication approach for the synthesis of HA-based scaffolds. This review therefore explores available 3D printing technologies for the preparation of porous HA-based nanocomposites. In the present review, different 3D printed HA-based scaffolds composited with natural polymers and/or synthetic polymers are discussed. Furthermore, the desired properties of HA-based composites via 3D printing such as porosity, mechanical properties, biodegradability, and antibacterial properties are extensively explored. Lastly, the applications and the next generation of HA-based nanocomposites for tissue engineering are discussed.
Collapse
|
27
|
Abd El-Aziz AM, El-Maghraby A, Ewald A, Kandil SH. In-Vitro Cytotoxicity Study: Cell Viability and Cell Morphology of Carbon Nanofibrous Scaffold/Hydroxyapatite Nanocomposites. Molecules 2021; 26:molecules26061552. [PMID: 33799902 PMCID: PMC7999924 DOI: 10.3390/molecules26061552] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 02/28/2021] [Accepted: 03/05/2021] [Indexed: 12/23/2022] Open
Abstract
Electrospun carbon nanofibers (CNFs), which were modified with hydroxyapatite, were fabricated to be used as a substrate for bone cell proliferation. The CNFs were derived from electrospun polyacrylonitrile (PAN) nanofibers after two steps of heat treatment: stabilization and carbonization. Carbon nanofibrous (CNF)/hydroxyapatite (HA) nanocomposites were prepared by two different methods; one of them being modification during electrospinning (CNF-8HA) and the second method being hydrothermal modification after carbonization (CNF-8HA; hydrothermally) to be used as a platform for bone tissue engineering. The biological investigations were performed using in-vitro cell counting, WST cell viability and cell morphology after three and seven days. L929 mouse fibroblasts were found to be more viable on the hydrothermally-modified CNF scaffolds than on the unmodified CNF scaffolds. The biological characterizations of the synthesized CNF/HA nanofibrous composites indicated higher capability of bone regeneration.
Collapse
Affiliation(s)
- Asmaa M. Abd El-Aziz
- Fabrication Technology Research Department, Advanced Technology and New Materials Research Institute, City for Scientific Research and Technological Applications, Alexandria 23713, Egypt;
- Department of Materials Science, Institute of Graduate Studies and Research, Alexandria University, Alexandria 21526, Egypt;
- Correspondence: ; Tel.: +20-01149431552
| | - Azza El-Maghraby
- Fabrication Technology Research Department, Advanced Technology and New Materials Research Institute, City for Scientific Research and Technological Applications, Alexandria 23713, Egypt;
| | - Andrea Ewald
- Department of Functional Materials in Medicine and Dentistry, University Hospital Würzburg Center for Dental, Würzburg University, 97070 Würzburg, Germany;
| | - Sherif H. Kandil
- Department of Materials Science, Institute of Graduate Studies and Research, Alexandria University, Alexandria 21526, Egypt;
| |
Collapse
|
28
|
In-Vivo Degradation Behavior and Osseointegration of 3D Powder-Printed Calcium Magnesium Phosphate Cement Scaffolds. MATERIALS 2021; 14:ma14040946. [PMID: 33671265 PMCID: PMC7923127 DOI: 10.3390/ma14040946] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 02/08/2021] [Accepted: 02/10/2021] [Indexed: 02/07/2023]
Abstract
Calcium magnesium phosphate cements (CMPCs) are promising bone substitutes and experience great interest in research. Therefore, in-vivo degradation behavior, osseointegration and biocompatibility of three-dimensional (3D) powder-printed CMPC scaffolds were investigated in the present study. The materials Mg225 (Ca0.75Mg2.25(PO4)2) and Mg225d (Mg225 treated with diammonium hydrogen phosphate (DAHP)) were implanted as cylindrical scaffolds (h = 5 mm, Ø = 3.8 mm) in both lateral femoral condyles in rabbits and compared with tricalcium phosphate (TCP). Treatment with DAHP results in the precipitation of struvite, thus reducing pore size and overall porosity and increasing pressure stability. Over 6 weeks, the scaffolds were evaluated clinically, radiologically, with Micro-Computed Tomography (µCT) and histological examinations. All scaffolds showed excellent biocompatibility. X-ray and in-vivo µCT examinations showed a volume decrease and increasing osseointegration over time. Structure loss and volume decrease were most evident in Mg225. Histologically, all scaffolds degraded centripetally and were completely traversed by new bone, in which the remaining scaffold material was embedded. While after 6 weeks, Mg225d and TCP were still visible as a network, only individual particles of Mg225 were present. Based on these results, Mg225 and Mg225d appear to be promising bone substitutes for various loading situations that should be investigated further.
Collapse
|
29
|
Charbonnier B, Hadida M, Marchat D. Additive manufacturing pertaining to bone: Hopes, reality and future challenges for clinical applications. Acta Biomater 2021; 121:1-28. [PMID: 33271354 DOI: 10.1016/j.actbio.2020.11.039] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 11/06/2020] [Accepted: 11/24/2020] [Indexed: 12/12/2022]
Abstract
For the past 20 years, the democratization of additive manufacturing (AM) technologies has made many of us dream of: low cost, waste-free, and on-demand production of functional parts; fully customized tools; designs limited by imagination only, etc. As every patient is unique, the potential of AM for the medical field is thought to be considerable: AM would allow the division of dedicated patient-specific healthcare solutions entirely adapted to the patients' clinical needs. Pertinently, this review offers an extensive overview of bone-related clinical applications of AM and ongoing research trends, from 3D anatomical models for patient and student education to ephemeral structures supporting and promoting bone regeneration. Today, AM has undoubtably improved patient care and should facilitate many more improvements in the near future. However, despite extensive research, AM-based strategies for bone regeneration remain the only bone-related field without compelling clinical proof of concept to date. This may be due to a lack of understanding of the biological mechanisms guiding and promoting bone formation and due to the traditional top-down strategies devised to solve clinical issues. Indeed, the integrated holistic approach recommended for the design of regenerative systems (i.e., fixation systems and scaffolds) has remained at the conceptual state. Challenged by these issues, a slower but incremental research dynamic has occurred for the last few years, and recent progress suggests notable improvement in the years to come, with in view the development of safe, robust and standardized patient-specific clinical solutions for the regeneration of large bone defects.
Collapse
|
30
|
Chen Y, Li W, Zhang C, Wu Z, Liu J. Recent Developments of Biomaterials for Additive Manufacturing of Bone Scaffolds. Adv Healthc Mater 2020; 9:e2000724. [PMID: 32743960 DOI: 10.1002/adhm.202000724] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 07/09/2020] [Indexed: 12/11/2022]
Abstract
Recent years have witnessed surging demand for bone repair/regeneration implants due to the increasing number of bone defects caused by trauma, cancer, infection, and arthritis worldwide. In addition to bone autografts and allografts, biomaterial substitutes have been widely used in clinical practice. Personalized implants with precise and personalized control of shape, porosity, composition, surface chemistry, and mechanical properties will greatly facilitate the regeneration of bone tissue and satiate the clinical needs. Additive manufacturing (AM) techniques, also known as 3D printing, are drawing fast growing attention in the fabrication of implants or scaffolding materials due to their capability of manufacturing complex and irregularly shaped scaffolds in repairing bone defects in clinical practice. This review aims to provide a comprehensive overview of recent progress in the development of materials and techniques used in the additive manufacturing of bone scaffolds. In addition, clinical application, pre-clinical trials and future prospects of AM based bone implants are also summarized and discussed.
Collapse
Affiliation(s)
- You Chen
- School of Biomedical Engineering, Sun Yat-sen University, Guangzhou, Guangdong, 510006, China
| | - Weilin Li
- School of Biomedical Engineering, Sun Yat-sen University, Guangzhou, Guangdong, 510006, China
| | - Chao Zhang
- School of Biomedical Engineering, Sun Yat-sen University, Guangzhou, Guangdong, 510006, China
| | - Zhaoying Wu
- School of Biomedical Engineering, Sun Yat-sen University, Guangzhou, Guangdong, 510006, China
| | - Jie Liu
- School of Biomedical Engineering, Sun Yat-sen University, Guangzhou, Guangdong, 510006, China
| |
Collapse
|
31
|
Wu N, Liu J, Ma W, Dong X, Wang F, Yang D, Xu Y. Degradable calcium deficient hydroxyapatite/PLGA bilayer scaffold through integral molding 3D printing for bone defect repair. Biofabrication 2020; 13. [PMID: 33202398 DOI: 10.1088/1758-5090/abcb48] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 11/17/2020] [Indexed: 11/12/2022]
Abstract
A novel method was developed for calcium deficient hydroxyapatite (CDHA) scaffold 3D printing, through which a bilayer scaffold was fabricated by integral molding of individual CDHA and PLGA. The hydration reaction of α-TCP was utilized to form CDHA, and a mixed solution of gelatin, glycerine, glutaraldehyde was applied as the dispersant and adhesive. The concentration of the glutaraldehyde (1 ‱(v/v)) and the mixing ratio of α-TCP (0.6, 0.8, 1.0, 1.2(g/mL)) was studied in the effect on the forming ability of the CDHA ink. The influence of α-TCP proportion (0.6, 0.8, 1.0, 1.2 (g/mL)) on the formation of CDHA was also researched in phase analysis, morphology and compressive strength measurements. The CDHA/PLGA bilayer scaffold was fabricated with a good combination of the two components by 3D printing. The in vitro degradation, cytotoxicity, and cell proliferation behavior were studied. Meanwhile the in-vivo performances in terms of surgical safety, biodegradation, and osteogenic capacity were investigated with a cortical bone defect model in a rabbit femur. The results showed that the CDHA/PLGA bilayer scaffold had excellent biocompatibility and no cytotoxicity. The scaffolds were successfully implanted and presented remarkable osteogenic capacity within 6 months through analyses in radiography and histology. In conclusion, the method has a potential clinical application in diverse bone repair practices by varied 3D-printing fabrication.
Collapse
Affiliation(s)
- Ning Wu
- Shanghai University of Medicine and Health Sciences, Shanghai, Shanghai, CHINA
| | - Jia Liu
- Changzheng Hospital, Shanghai, Shanghai, CHINA
| | - Weibo Ma
- Shanghai University of Traditional Chinese Medicine, Shanghai, Shanghai, CHINA
| | - Xian Dong
- Shanghai University of Medicine and Health Sciences Affiliated Jia Ding Hospital Shanghai, Shanghai, Shanghai, CHINA
| | - Feng Wang
- Shanghai University of Traditional Chinese Medicine, Shanghai, Shanghai, CHINA
| | - Dicheng Yang
- Shanghai University of Medicine and Health Sciences, Shanghai, CHINA
| | - Yan Xu
- National Engineering Research Center for Nanotechnology, Shanghai, Shanghai, CHINA
| |
Collapse
|
32
|
Okolie O, Stachurek I, Kandasubramanian B, Njuguna J. 3D Printing for Hip Implant Applications: A Review. Polymers (Basel) 2020; 12:E2682. [PMID: 33202958 PMCID: PMC7697992 DOI: 10.3390/polym12112682] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 11/05/2020] [Indexed: 12/12/2022] Open
Abstract
There is a rising demand for replacement, regeneration of tissues and organ repairs for patients who suffer from diseased/damaged bones or tissues such as hip pains. The hip replacement treatment relies on the implant, which may not always meet the requirements due to mechanical and biocompatibility issues which in turn may aggravate the pain. To surpass these limitations, researchers are investigating the use of scaffolds as another approach for implants. Three-dimensional (3D) printing offers significant potential as an efficient fabrication technique on personalized organs as it is capable of biomimicking the intricate designs found in nature. In this review, the determining factors for hip replacement and the different fabrication techniques such as direct 3D printing, Fused Deposition Modelling (FDM), Selective Laser Sintering (SLS) and stereolithography (SLA) for hip replacement. The study also covers surface modifications of 3D printed implants and provides an overview on 3D tissue regeneration. To appreciate the current conventional hip replacement practices, the conventional metallic and ceramic materials are covered, highlighting their rationale as the material of choice. Next, the challenges, ethics and trends in the implants' 3D printing are covered and conclusions drawn. The outlook and challenges are also presented here. The knowledge from this review indicates that 3D printing has enormous potential for providing a pathway for a sustainable hip replacement.
Collapse
Affiliation(s)
- Obinna Okolie
- Centre of Advanced Engineering Materials, School of Engineering, Robert Gordon University, Riverside East, Garthdee Road, Aberdeen AB10 7AQ, UK;
| | - Iwona Stachurek
- Łukasiewicz Research Network—Krakow Institute of Technology, 73 Zakopianska Street, 30-418 Krakow, Poland;
| | - Balasubramanian Kandasubramanian
- Rapid Prototyping Lab, Department of Metallurgical and Materials Engineering, Defence Institute of Advanced Technology (DU), Ministry of Defence, Girinagar, Pune, Maharashtra 411025, India;
| | - James Njuguna
- Centre of Advanced Engineering Materials, School of Engineering, Robert Gordon University, Riverside East, Garthdee Road, Aberdeen AB10 7AQ, UK;
| |
Collapse
|
33
|
Safari N, Golafshan N, Kharaziha M, Reza Toroghinejad M, Utomo L, Malda J, Castilho M. Stable and Antibacterial Magnesium-Graphene Nanocomposite-Based Implants for Bone Repair. ACS Biomater Sci Eng 2020; 6:6253-6262. [PMID: 33449672 DOI: 10.1021/acsbiomaterials.0c00613] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Magnesium (Mg)-based alloys are promising biodegradable materials for bone repair applications. However, due to their rapid degradation and high corrosion rate, Mg-based alloys are typically associated with in vivo infections and implant failure. This study evaluated the synergistic stability and anti-inflammatory properties that could potentially be achieved by the modification of the Mg alloy with graphene nanoparticles (Gr). Incorporation of low dosages of Gr (0.18 and 0.50 wt %) in a Mg alloy with aluminum (Al, 1 wt %) and copper (Cu, 0.25 wt %) was successfully achieved by a spark plasma sintering (SPS) method. Notably, the degradation rate of the Mg-based alloys was reduced approximately 4-fold and the bactericidal activity was enhanced up to 5-fold with incorporation of only 0.18 wt % Gr to the Mg-1Al-Cu matrix. Moreover, the modified Mg-based nanocomposites with 0.18 wt % Gr demonstrated compressive properties within the range of native cancellous bone (modulus of approximately 6 GPa), whereas in vitro studies with human mesenchymal stromal cells (hMSCs) showed high cytocompatibility and superior osteogenic properties compared to non-Gr-modified Mg-1Al-Cu implants. Overall, this study provides foundations for the fabrication of stable, yet fully resorbable, Mg-based bone implants that could reduce implant-associated infections.
Collapse
Affiliation(s)
- Narges Safari
- Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran
| | - Nasim Golafshan
- Department of Orthopedics, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands.,Regenerative Medicine Utrecht, 3584 CT Utrecht, The Netherlands
| | - Mahshid Kharaziha
- Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran
| | | | - Lizette Utomo
- Department of Oral and Maxillofacial Surgery and Special Dental Care, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands
| | - Jos Malda
- Department of Orthopedics, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands.,Regenerative Medicine Utrecht, 3584 CT Utrecht, The Netherlands.,Department of Equine Sciences, Faculty of Veterinary Sciences, Utrecht University, 3584 CS Utrecht, The Netherlands
| | - Miguel Castilho
- Department of Orthopedics, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands.,Regenerative Medicine Utrecht, 3584 CT Utrecht, The Netherlands.,Department of Biomedical Engineering, Eindhoven University of Technology, 5612 AZ Eindhoven, The Netherlands
| |
Collapse
|
34
|
Guerrieri AN, Montesi M, Sprio S, Laranga R, Mercatali L, Tampieri A, Donati DM, Lucarelli E. Innovative Options for Bone Metastasis Treatment: An Extensive Analysis on Biomaterials-Based Strategies for Orthopedic Surgeons. Front Bioeng Biotechnol 2020; 8:589964. [PMID: 33123519 PMCID: PMC7573123 DOI: 10.3389/fbioe.2020.589964] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 09/07/2020] [Indexed: 12/27/2022] Open
Abstract
Bone is the third most frequent site of metastasis, with a particular incidence in breast and prostate cancer patients. For example, almost 70% of breast cancer patients develop several bone metastases in the late stage of the disease. Bone metastases are a challenge for clinicians and a burden for patients because they frequently cause pain and can lead to fractures. Unfortunately, current therapeutic options are in most cases only palliative and, although not curative, surgery remains the gold standard for bone metastasis treatment. Surgical intervention mostly provides the replacement of the affected bone with a bioimplant, which can be made by materials of different origins and designed through several techniques that have evolved throughout the years simultaneously with clinical needs. Several scientists and clinicians have worked to develop biomaterials with potentially successful biological and mechanical features, however, only a few of them have actually reached the scope. In this review, we extensively analyze currently available biomaterials-based strategies focusing on the newest and most innovative ideas while aiming to highlight what should be considered both a reliable choice for orthopedic surgeons and a future definitive and curative option for bone metastasis and cancer patients.
Collapse
Affiliation(s)
- Ania Naila Guerrieri
- Unit of Orthopaedic Pathology and Osteoarticular Tissue Regeneration, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Monica Montesi
- Institute of Science and Technology for Ceramics, National Research Council, Faenza, Italy
| | - Simone Sprio
- Institute of Science and Technology for Ceramics, National Research Council, Faenza, Italy
| | - Roberta Laranga
- Unit of Orthopaedic Pathology and Osteoarticular Tissue Regeneration, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Laura Mercatali
- Osteoncology and Rare Tumors Center, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Meldola, Italy
| | - Anna Tampieri
- Institute of Science and Technology for Ceramics, National Research Council, Faenza, Italy
| | - Davide Maria Donati
- Third Orthopaedic and Traumatologic Clinic Prevalently Oncologic, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Enrico Lucarelli
- Unit of Orthopaedic Pathology and Osteoarticular Tissue Regeneration, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| |
Collapse
|
35
|
Golafshan N, Vorndran E, Zaharievski S, Brommer H, Kadumudi FB, Dolatshahi-Pirouz A, Gbureck U, van Weeren R, Castilho M, Malda J. Tough magnesium phosphate-based 3D-printed implants induce bone regeneration in an equine defect model. Biomaterials 2020; 261:120302. [PMID: 32932172 PMCID: PMC7116184 DOI: 10.1016/j.biomaterials.2020.120302] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 07/16/2020] [Accepted: 08/04/2020] [Indexed: 12/25/2022]
Abstract
One of the important challenges in bone tissue engineering is the development of biodegradable bone substitutes with appropriate mechanical and biological properties for the treatment of larger defects and those with complex shapes. Recently, magnesium phosphate (MgP) doped with biologically active ions like strontium (Sr2+) have shown to significantly enhance bone formation when compared with the standard calcium phosphate-based ceramics. However, such materials can hardly be shaped into large and complex geometries and more importantly lack the adequate mechanical properties for the treatment of load-bearing bone defects. In this study, we have fabricated bone implants through extrusion assisted three-dimensional (3D) printing of MgP ceramics modified with Sr2+ ions (MgPSr) and a medical-grade polycaprolactone (PCL) polymer phase. MgPSr with 30 wt% PCL (MgPSr-PCL30) allowed the printability of relevant size structures (>780 mm3) at room temperature with an interconnected macroporosity of approximately 40%. The printing resulted in implants with a compressive strength of 4.3 MPa, which were able to support up to 50 cycles of loading without plastic deformation. Notably, MgPSr-PCL30 scaffolds were able to promote in vitro bone formation in medium without the supplementation with osteo-inducing components. In addition, long-term in vivo performance of the 3D printed scaffolds was investigated in an equine tuber coxae model over 6 months. The micro-CT and histological analysis showed that implantation of MgPSr-PCL30 induced bone regeneration, while no bone formation was observed in the empty defects. Overall, the novel polymer-modified MgP ceramic material and extrusion-based 3D printing process presented here greatly improved the shape ability and load-bearing properties of MgP-based ceramics with simultaneous induction of new bone formation.
Collapse
Affiliation(s)
- Nasim Golafshan
- Department of Orthopedics, University Medical Center Utrecht, GA, Utrecht, the Netherlands; Regenerative Medicine Utrecht, Utrecht, the Netherlands
| | - Elke Vorndran
- Department for Functional Materials in Medicine and Dentistry, University of Wurzburg, Germany
| | - Stefan Zaharievski
- Department of Orthopedics, University Medical Center Utrecht, GA, Utrecht, the Netherlands; Regenerative Medicine Utrecht, Utrecht, the Netherlands
| | - Harold Brommer
- Department of Equine Sciences, Faculty of Veterinary Sciences, Utrecht University, the Netherlands
| | - Firoz Babu Kadumudi
- Technical University of Denmark, Department of Health Technology, 2800 Kgs, Lyngby, Denmark
| | - Alireza Dolatshahi-Pirouz
- Technical University of Denmark, Department of Health Technology, Center for Intestinal Absorption and Transport of Biopharmaceuticals, 2800 Kgs, Lyngby, Denmark; Department of Regenerative Biomaterials, Radboud University Medical Center, Philips van Leydenlaan 25, Nijmegen, 6525 EX, the Netherlands
| | - Uwe Gbureck
- Department for Functional Materials in Medicine and Dentistry, University of Wurzburg, Germany
| | - René van Weeren
- Department of Equine Sciences, Faculty of Veterinary Sciences, Utrecht University, the Netherlands
| | - Miguel Castilho
- Department of Orthopedics, University Medical Center Utrecht, GA, Utrecht, the Netherlands; Regenerative Medicine Utrecht, Utrecht, the Netherlands; Orthopedic Biomechanics, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands.
| | - Jos Malda
- Department of Orthopedics, University Medical Center Utrecht, GA, Utrecht, the Netherlands; Regenerative Medicine Utrecht, Utrecht, the Netherlands; Department of Equine Sciences, Faculty of Veterinary Sciences, Utrecht University, the Netherlands
| |
Collapse
|
36
|
Maeng WY, Jeon JW, Lee JB, Lee H, Koh YH, Kim HE. Photocurable ceramic/monomer feedstocks containing terpene crystals as sublimable porogen for UV curing-assisted 3D plotting. Ann Ital Chir 2020. [DOI: 10.1016/j.jeurceramsoc.2020.03.047] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
37
|
Xie Z, Gao M, Lobo AO, Webster TJ. 3D Bioprinting in Tissue Engineering for Medical Applications: The Classic and the Hybrid. Polymers (Basel) 2020; 12:E1717. [PMID: 32751797 PMCID: PMC7464247 DOI: 10.3390/polym12081717] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 07/27/2020] [Accepted: 07/28/2020] [Indexed: 12/16/2022] Open
Abstract
Three-dimensional (3D) printing, as one of the most popular recent additive manufacturing processes, has shown strong potential for the fabrication of biostructures in the field of tissue engineering, most notably for bones, orthopedic tissues, and associated organs. Desirable biological, structural, and mechanical properties can be achieved for 3D-printed constructs with a proper selection of biomaterials and compatible bioprinting methods, possibly even while combining additive and conventional manufacturing (AM and CM) procedures. However, challenges remain in the need for improved printing resolution (especially at the nanometer level), speed, and biomaterial compatibilities, and a broader range of suitable 3D-printed materials. This review provides an overview of recent advances in the development of 3D bioprinting techniques, particularly new hybrid 3D bioprinting technologies for combining the strengths of both AM and CM, along with a comprehensive set of material selection principles, promising medical applications, and limitations and future prospects.
Collapse
Affiliation(s)
- Zelong Xie
- Department of Chemical Engineering, Northeastern University, Boston, MA 02115, USA; (Z.X.); (M.G.)
| | - Ming Gao
- Department of Chemical Engineering, Northeastern University, Boston, MA 02115, USA; (Z.X.); (M.G.)
| | - Anderson O. Lobo
- LIMAV–Interdisciplinary Laboratory for Advanced Materials, BioMatLab, UFPI–Federal University of Piauí, Teresina 64049-550, Brazil;
| | - Thomas J. Webster
- Department of Chemical Engineering, Northeastern University, Boston, MA 02115, USA; (Z.X.); (M.G.)
| |
Collapse
|
38
|
Evaluation of BMP-2 and VEGF loaded 3D printed hydroxyapatite composite scaffolds with enhanced osteogenic capacity in vitro and in vivo. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 112:110893. [PMID: 32409051 DOI: 10.1016/j.msec.2020.110893] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 03/02/2020] [Accepted: 03/20/2020] [Indexed: 11/22/2022]
Abstract
Large-sized bone defect repair is a challenging task in orthopedic surgery. Porous scaffolds with controlled release of growth factors have been investigated for many years. In this study, a hydroxyapatite composite scaffold was prepared by 3D printing at low temperature and coating with layer-by-layer (LBL) assembly. Bone morphogenic protein-2 (BMP-2) and vascular endothelial growth factors (VEGF) were loaded into the composite scaffolds. The release of dual growth factors was analyzed in vitro. The cell growth and osteogenic differentiation were assessed by culturing MC3T3-E1 cells onto the scaffolds. In an established rabbit model of critical-sized calvarial defect (15 mm in diameter), the osteogenic and angiogenic properties after implantation of scaffolds were evaluated by micro-computed tomography (micro-CT) and stained sections. Our results showed that the scaffolds possessed well-designed porous structure and could release two growth factors in a sustained way. The micro-CT analysis showed that the scaffolds with BMP-2/VEGF could accelerate new bone formation. Findings of immunochemical staining of collagen type I and lectin indicated that better osteogenic and angiogenic properties induced by BMP-2 and VEGF. These results suggested that the novel composite scaffolds combined with BMP-2/VEGF had both osteogenic and angiogenic abilities which could enhance new bone formation with good quality. Thus, the combination of 3D printed scaffolds loaded with BMP-2/VEGF might provide a potential solution for bone repair and regeneration in clinical applications.
Collapse
|
39
|
Bolaños RV, Castilho M, de Grauw J, Cokelaere S, Plomp S, Groll J, van Weeren PR, Gbureck U, Malda J. Long-Term in Vivo Performance of Low-Temperature 3D-Printed Bioceramics in an Equine Model. ACS Biomater Sci Eng 2020; 6:1681-1689. [PMID: 33455387 DOI: 10.1021/acsbiomaterials.9b01819] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Bone has great self-healing capacity, but above a certain critical size, bone defects will not heal spontaneously, requiring intervention to achieve full healing. Among the synthetic calcium phosphate (CaP) bone replacement materials, brushite (CaHPO4·2H2O)-based materials are of particular interest because of their degree of solubility and the related high potential to promote bone regeneration after dissolution. They can be produced tailor-made using modern three-dimensional (3D) printing technology. Although this type of implant has been widely tested in vitro, there are only limited in vivo data and less so in a relevant large animal model. In this study, material properties of a 3D-printed brushite-based scaffold are characterized, after which the material is tested by in vivo orthotopic implantation in the equine tuber coxae for 6 months. The implantation procedure was easy to perform and was well tolerated by the animals, which showed no detectable signs of discomfort. In vitro tests showed that compressive strength along the vertical axis of densely printed material was around 13 MPa, which was reduced to approximately 8 MPa in the cylindrical porous implant. In vivo, approximately 40% of the visible volume of the implants was degraded after 6 months and replaced by bone, showing the capacity to stimulate new bone formation. Histologically, ample bone ingrowth was observed. In contrast, empty defects were filled with fibrous tissue only, confirming the material's osteoconductive capacity. It is concluded that this study provides proof that the 3D-printed brushite implants were able to promote new bone growth after 6 months' implantation in a large animal model and that the new equine tuber coxae bone model that was used is a promising tool for bone regeneration studies.
Collapse
Affiliation(s)
- Rafael Vindas Bolaños
- Cátedra de Cirugı́a de Especies Mayores, Escuela de Medicina Veterinaria, Universidad Nacional, Avenida 1, Calle 9, 86-3000, Heredia, Costa Rica.,Department of Equine Sciences, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 1, 3584 CL Utrecht, The Netherlands.,Regenerative Medicine Center Utrecht, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands
| | - Miguel Castilho
- Regenerative Medicine Center Utrecht, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands.,Department of Orthopaedics, Division of Surgical Specialties, University Medical Center Utrecht, Utrecht University, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands
| | - Janny de Grauw
- Department of Equine Sciences, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 1, 3584 CL Utrecht, The Netherlands.,Regenerative Medicine Center Utrecht, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands
| | - Stefan Cokelaere
- Department of Equine Sciences, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 1, 3584 CL Utrecht, The Netherlands
| | - Saskia Plomp
- Department of Equine Sciences, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 1, 3584 CL Utrecht, The Netherlands.,Regenerative Medicine Center Utrecht, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands
| | - Jürgen Groll
- Department of Functional Materials in Medicine and Dentistry, University of Würzburg, Pleicherwall 2, D-97070 Würzburg, Germany
| | - P René van Weeren
- Department of Equine Sciences, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 1, 3584 CL Utrecht, The Netherlands.,Regenerative Medicine Center Utrecht, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands
| | - Uwe Gbureck
- Department of Functional Materials in Medicine and Dentistry, University of Würzburg, Pleicherwall 2, D-97070 Würzburg, Germany
| | - Jos Malda
- Department of Equine Sciences, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 1, 3584 CL Utrecht, The Netherlands.,Regenerative Medicine Center Utrecht, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands.,Department of Orthopaedics, Division of Surgical Specialties, University Medical Center Utrecht, Utrecht University, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands
| |
Collapse
|
40
|
Synergistic Effects on Incorporation of β-Tricalcium Phosphate and Graphene Oxide Nanoparticles to Silk Fibroin/Soy Protein Isolate Scaffolds for Bone Tissue Engineering. Polymers (Basel) 2020; 12:polym12010069. [PMID: 31906498 PMCID: PMC7023539 DOI: 10.3390/polym12010069] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 12/16/2019] [Accepted: 12/16/2019] [Indexed: 02/07/2023] Open
Abstract
In bone tissue engineering, an ideal scaffold is required to have favorable physical, chemical (or physicochemical), and biological (or biochemical) properties to promote osteogenesis. Although silk fibroin (SF) and/or soy protein isolate (SPI) scaffolds have been widely used as an alternative to autologous and heterologous bone grafts, the poor mechanical property and insufficient osteoinductive capability has become an obstacle for their in vivo applications. Herein, β-tricalcium phosphate (β-TCP) and graphene oxide (GO) nanoparticles are incorporated into SF/SPI scaffolds simultaneously or individually. Physical and chemical properties of these composite scaffolds are evaluated using field emission scanning electron microscope (FESEM), X-ray diffraction (XRD) and attenuated total reflectance Fourier transformed infrared spectroscopy (ATR-FTIR). Biocompatibility and osteogenesis of the composite scaffolds are evaluated using bone marrow mesenchymal stem cells (BMSCs). All the composite scaffolds have a complex porous structure with proper pore sizes and porosities. Physicochemical properties of the scaffolds can be significantly increased through the incorporation of β-TCP and GO nanoparticles. Alkaline phosphatase activity (ALP) and osteogenesis-related gene expression of the BMSCs are significantly enhanced in the presence of β-TCP and GO nanoparticles. Especially, β-TCP and GO nanoparticles have a synergistic effect on promoting osteogenesis. These results suggest that the β-TCP and GO enhanced SF/SPI scaffolds are promising candidates for bone tissue regeneration.
Collapse
|
41
|
3D printing of hydroxyapatite/tricalcium phosphate scaffold with hierarchical porous structure for bone regeneration. Biodes Manuf 2019. [DOI: 10.1007/s42242-019-00056-5] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
42
|
Alshehri F, Alshehri M, Sumague T, Niazy A, Jansen J, van den Beucken J, Alghamdi H. Evaluation of Peri-Implant Bone Grafting Around Surface-Porous Dental Implants: An In Vivo Study in a Goat Model. MATERIALS 2019; 12:ma12213606. [PMID: 31684138 PMCID: PMC6862611 DOI: 10.3390/ma12213606] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 10/22/2019] [Accepted: 10/30/2019] [Indexed: 12/11/2022]
Abstract
Dental implants with surface-porous designs have been recently developed. Clinically, peri-implant bone grafting is expected to promote early osseointegration and bone ingrowth when applied with surface-porous dental implants in challenging conditions. The aim of this study was to comparatively analyze peri-implant bone healing around solid implants and surface-porous implants with and without peri-implant bone grafting, using biomechanical and histomorphometrical assessment in a goat iliac bone model. A total of 36 implants (4.1 mm wide, 11.5 mm long) divided into three groups, solid titanium implant (STI; n = 12), porous titanium implants (PTI; n = 12) and PTI with peri-implant bone grafting using biphasic calcium phosphate granules (PTI + BCP; n = 12), were placed bilaterally in the iliac crests of six goats. The goats were sacrificed seven weeks post-operatively and then subjected to biomechanical (n = 6 per group) and histomorphometrical (n = 6 per group) assessment. The biomechanical assessment revealed no significant differences between the three types of implants. Although the peri-implant bone-area (PIBA%) measured by histomorphometry (STI: 8.63 ± 3.93%, PTI: 9.89 ± 3.69%, PTI + BCP: 9.28 ± 2.61%) was similar for the three experimental groups, the percentage of new bone growth area (BGA%) inside the porous implant portion was significantly higher (p < 0.05) in the PTI group (10.67 ± 4.61%) compared to the PTI + BCP group (6.50 ± 6.53%). These data demonstrate that peri-implant bone grafting around surface-porous dental implants does not significantly accelerate early osseointegration and bone ingrowth.
Collapse
Affiliation(s)
- Fahad Alshehri
- Department of Periodontics and Community Dentistry, College of Dentistry, King Saud University, Riyadh 11545, Saudi Arabia.
| | - Mohammed Alshehri
- Dental Department, King Khalid University Hospital, King Saud University, Riyadh 11545, Saudi Arabia.
| | - Terrence Sumague
- Molecular and Cell Biology Laboratory, College of Dentistry, King Saud University, Riyadh 11545, Saudi Arabia.
| | - Abdurahman Niazy
- Molecular and Cell Biology Laboratory, College of Dentistry, King Saud University, Riyadh 11545, Saudi Arabia.
| | - John Jansen
- Department of Regenerative Biomaterials, Radboudumc, 6525EX Nijmegen, The Netherlands.
| | | | - Hamdan Alghamdi
- Department of Periodontics and Community Dentistry, College of Dentistry, King Saud University, Riyadh 11545, Saudi Arabia.
- Molecular and Cell Biology Laboratory, College of Dentistry, King Saud University, Riyadh 11545, Saudi Arabia.
| |
Collapse
|
43
|
Masaeli R, Zandsalimi K, Rasoulianboroujeni M, Tayebi L. Challenges in Three-Dimensional Printing of Bone Substitutes. TISSUE ENGINEERING PART B-REVIEWS 2019; 25:387-397. [DOI: 10.1089/ten.teb.2018.0381] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Reza Masaeli
- Department of Dental Biomaterials, School of Dentistry, Tehran University of Medical Sciences, Tehran, Iran
| | - Kavosh Zandsalimi
- Department of Life Sciences Engineering, Faculty of New Sciences and Technologies, University of Tehran, Tehran, Iran
| | | | - Lobat Tayebi
- Marquette University School of Dentistry, Milwaukee, Wisconsin
- Department of Engineering Science, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
44
|
Lin K, Sheikh R, Romanazzo S, Roohani I. 3D Printing of Bioceramic Scaffolds-Barriers to the Clinical Translation: From Promise to Reality, and Future Perspectives. MATERIALS (BASEL, SWITZERLAND) 2019; 12:E2660. [PMID: 31438561 PMCID: PMC6747602 DOI: 10.3390/ma12172660] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 08/17/2019] [Accepted: 08/19/2019] [Indexed: 12/11/2022]
Abstract
In this review, we summarize the challenges of the three-dimensional (3D) printing of porous bioceramics and their translational hurdles to clinical applications. The state-of-the-art of the major 3D printing techniques (powder-based and slurry-based), their limitations and key processing parameters are discussed in detail. The significant roadblocks that prevent implementation of 3D printed bioceramics in tissue engineering strategies, and medical applications are outlined, and the future directions where new research may overcome the limitations are proposed. In recent years, there has been an increasing demand for a nanoscale control in 3D fabrication of bioceramic scaffolds via emerging techniques such as digital light processing, two-photon polymerization, or large area maskless photopolymerization. However, these techniques are still in a developmental stage and not capable of fabrication of large-sized bioceramic scaffolds; thus, there is a lack of sufficient data to evaluate their contribution. This review will also not cover polymer matrix composites reinforced with particulate bioceramics, hydrogels reinforced with particulate bioceramics, polymers coated with bioceramics and non-porous bioceramics.
Collapse
Affiliation(s)
- Kang Lin
- Biomaterials Design and Tissue Engineering Lab, School of Chemistry, University of New South Wales, Sydney, NSW 2052, Australia
| | - Rakib Sheikh
- Biomaterials Design and Tissue Engineering Lab, School of Chemistry, University of New South Wales, Sydney, NSW 2052, Australia
| | - Sara Romanazzo
- Biomaterials Design and Tissue Engineering Lab, School of Chemistry, University of New South Wales, Sydney, NSW 2052, Australia
| | - Iman Roohani
- Biomaterials Design and Tissue Engineering Lab, School of Chemistry, University of New South Wales, Sydney, NSW 2052, Australia.
| |
Collapse
|
45
|
Peng XY, Hu M, Liao F, Yang F, Ke QF, Guo YP, Zhu ZH. La-Doped mesoporous calcium silicate/chitosan scaffolds for bone tissue engineering. Biomater Sci 2019; 7:1565-1573. [PMID: 30688345 DOI: 10.1039/c8bm01498a] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Trace rare earth elements such as lanthanum (La) regulated effectively bone tissue performances; however, the underlying mechanism remains unknown. In order to accelerate bone defects especially in patients with osteoporosis or other metabolic diseases, we firstly constructed lanthanum-doped mesoporous calcium silicate/chitosan (La-MCS/CTS) scaffolds by freeze-drying technology. During the freeze-drying procedure, three-dimensional macropores were produced within the La-MCS/CTS scaffolds by using ice crystals as templates, and the La-MCS nanoparticles were distributed on the macropore walls. The hierarchically porous structures and biocompatible components contributed to the adhesion, spreading and proliferation of rat bone marrow-derived mesenchymal stem cells (rBMSCs), and accelerated the in-growth of new bone tissues. Particularly, the La3+ ions in the bone scaffolds remarkably induced the osteogenic differentiation of rBMSCs via the activation of the TGF signal pathway. A critical-sized calvarial-defect rat model further revealed that the La-MCS/CTS scaffolds significantly promoted new bone regeneration as compared with pure MCS/CTS scaffolds. In conclusion, the La-MCS/CTS scaffold showed the prominent ability in osteogenesis and bone regeneration, which showed its application potential for bone defect therapy.
Collapse
Affiliation(s)
- Xiao-Yuan Peng
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, P. R. China.
| | | | | | | | | | | | | |
Collapse
|
46
|
Rana Khalid I, Darakhshanda I, Rafi a R. 3D Bioprinting: An attractive alternative to traditional organ transplantation. ACTA ACUST UNITED AC 2019. [DOI: 10.17352/abse.000012] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
47
|
Comparative Study between Laser Light Stereo-Lithography 3D-Printed and Traditionally Sintered Biphasic Calcium Phosphate Scaffolds by an Integrated Morphological, Morphometric and Mechanical Analysis. Int J Mol Sci 2019; 20:ijms20133118. [PMID: 31247936 PMCID: PMC6651383 DOI: 10.3390/ijms20133118] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 06/24/2019] [Accepted: 06/24/2019] [Indexed: 01/05/2023] Open
Abstract
In dental districts, successful bone regeneration using biphasic calcium phosphate materials was recently explored. The present study aimed to perform a comparative study between 3D-printed scaffolds produced by laser light stereo-lithography (SLA) and traditionally sintered biphasic calcium phosphate scaffolds by an integrated morphological, morphometric and mechanical analysis. Methods: Biphasic calcium phosphate (30% HA/70% β-TCP) samples, produced by SLA-3D-printing or by traditional sintering methods, were tested. The experimental sequence included: (1) Microtomography (microCT) analyses, to serve as control-references for the 3D morphometric analysis; (2) loading tests in continuous mode, with compression up to fracture, to reconstruct their mechanical characteristics; and (3) microCT of the same samples after the loading tests, for the prediction of the morphometric changes induced by compressive loading of the selected materials. All the biomaterials were also studied by complementary scanning electron microscopy to evaluate fracture regions and surfaces. Results: The characterization of the 3D mineralized microarchitecture showed that the SLA-3D-printed biomaterials offer performances comparable to and in some cases better than the traditionally sintered ones, with higher mean thickness of struts and pores. Interestingly, the SLA-3D-printed samples had a higher ultimate strength than the sintered ones, with a smaller plastic region. Moreover, by SEM observation, it was observed that fractures in the SLA-3D-printed samples were localized in the structure nodes or on the external shells of the rods, while all the traditionally sintered samples revealed a ductile fracture surface. Conclusions: The reduction of the region of plastic deformation in the SLA-3D-printed samples with respect to traditionally sintered biomaterials is expected to positively influence, in vivo, the cell adhesion. Both microCT and SEM imaging revealed that the studied biomaterials exhibit a structure more similar to human jaw than the sintered biomaterials.
Collapse
|
48
|
Alluri R, Song X, Bougioukli S, Pannell W, Vakhshori V, Sugiyama O, Tang A, Park SH, Chen Y, Lieberman JR. Regional gene therapy with 3D printed scaffolds to heal critical sized bone defects in a rat model. J Biomed Mater Res A 2019; 107:2174-2182. [PMID: 31112357 DOI: 10.1002/jbm.a.36727] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 03/29/2019] [Accepted: 05/20/2019] [Indexed: 01/23/2023]
Abstract
The objective of the present study was to assess the ability of transduced rat bone marrow cells (RBMCs) that overexpress BMP-2 loaded on a three-dimensionally (3D) printed scaffold to heal a critical sized rat femoral defect. Tricalcium phosphate (TCP) scaffolds were 3D printed to fit a critical sized rat femoral defect. The RBMCs were transduced with a lentiviral (LV) vector expressing BMP-2 or GFP. The rats were randomized into the following treatment groups: (1) RBMC/LV-BMP-2 + TCP, (2) RBMC/LV-GFP + TCP, (3) nontransduced RBMCs + TCP, (4) TCP scaffold alone. The animals were euthanized at 12 weeks and evaluated with plain radiographs, microcomputed tomography (micro-CT), histology, histomorphometry, and biomechanically. Each LV-BMP-2 + TCP treated specimen demonstrated complete healing of the femoral defect on plain radiographs and micro-CT. No femurs healed in the control groups. Micro-CT demonstrated that LV-BMP-2 + TCP treated femoral defects formed 197% more bone volume compared to control groups (p < 0.05). Histologic analysis demonstrated bone formation across the TCP scaffold, uniting the femoral defect on both ends in the LV-BMP-2 + TCP treated specimens. Biomechanical assessment demonstrated similar stiffness (p = 0.863), but lower total energy to failure, peak torque, and peak displacement (p < 0.001) of the femurs treated with LV-BMP-2 + TCP when compared to the contralateral control femur. Regional gene therapy induced overexpression of BMP-2 via transduced RBMCs combined with an osteoconductive 3D printed TCP scaffold can heal a critically sized femoral defect in an animal model. The combination of regional gene therapy and 3D printed osteoconductive scaffolds has significant clinical potential to enhance bone regeneration.
Collapse
Affiliation(s)
- Ram Alluri
- Department of Orthopaedic Surgery, Keck School of Medicine of the University of Southern California, Los Angeles, California
| | - Xuan Song
- Department of Industrial and Systems Engineering, The University of Iowa, Iowa City, Iowa
| | - Sofia Bougioukli
- Department of Orthopaedic Surgery, Keck School of Medicine of the University of Southern California, Los Angeles, California
| | - William Pannell
- Department of Orthopaedic Surgery, Keck School of Medicine of the University of Southern California, Los Angeles, California
| | - Venus Vakhshori
- Department of Orthopaedic Surgery, Keck School of Medicine of the University of Southern California, Los Angeles, California
| | - Osamu Sugiyama
- Department of Orthopaedic Surgery, Keck School of Medicine of the University of Southern California, Los Angeles, California
| | - Amy Tang
- Department of Orthopaedic Surgery, Keck School of Medicine of the University of Southern California, Los Angeles, California
| | - Sang-Hyun Park
- Orthopaedic Institute for Children, J. Vernon Luck. Sr. Orthopaedic Research Center, Los Angeles, California
| | - Yong Chen
- Viterbi School of Engineering, University of Southern California, Los Angeles, California
| | - Jay R Lieberman
- Department of Orthopaedic Surgery, Keck School of Medicine of the University of Southern California, Los Angeles, California
| |
Collapse
|
49
|
Midha S, Dalela M, Sybil D, Patra P, Mohanty S. Advances in three-dimensional bioprinting of bone: Progress and challenges. J Tissue Eng Regen Med 2019; 13:925-945. [PMID: 30812062 DOI: 10.1002/term.2847] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 02/19/2019] [Accepted: 02/21/2019] [Indexed: 12/28/2022]
Abstract
Several attempts have been made to engineer a viable three-dimensional (3D) bone tissue equivalent using conventional tissue engineering strategies, but with limited clinical success. Using 3D bioprinting technology, scientists have developed functional prototypes of clinically relevant and mechanically robust bone with a functional bone marrow. Although the field is in its infancy, it has shown immense potential in the field of bone tissue engineering by re-establishing the 3D dynamic micro-environment of the native bone. Inspite of their in vitro success, maintaining the viability and differentiation potential of such cell-laden constructs overtime, and their subsequent preclinical testing in terms of stability, mechanical loading, immune responses, and osseointegrative potential still needs to be explored. Progress is slow due to several challenges such as but not limited to the choice of ink used for cell encapsulation, optimal cell source, bioprinting method suitable for replicating the heterogeneous tissues and organs, and so on. Here, we summarize the recent advancements in bioprinting of bone, their limitations, challenges, and strategies for future improvisations. The generated knowledge will provide deep insights on our current understanding of the cellular interactions with the hydrogel matrices and help to unravel new methodologies for facilitating precisely regulated stem cell behaviour.
Collapse
Affiliation(s)
- Swati Midha
- Stem Cell Facility (DBT-Centre of Excellence for Stem Cell Research), All India Institute of Medical Sciences (AIIMS), New Delhi, India
| | - Manu Dalela
- Stem Cell Facility (DBT-Centre of Excellence for Stem Cell Research), All India Institute of Medical Sciences (AIIMS), New Delhi, India
| | - Deborah Sybil
- Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, Jamia Millia Islamia, New Delhi, India
| | - Prabir Patra
- Department of Biomedical Engineering, University of Bridgeport, Bridgeport, CT.,Department of Mechanical Engineering, University of Bridgeport, Bridgeport, CT
| | - Sujata Mohanty
- Stem Cell Facility (DBT-Centre of Excellence for Stem Cell Research), All India Institute of Medical Sciences (AIIMS), New Delhi, India
| |
Collapse
|
50
|
|