1
|
Ge FF, Shen LP, Yang DQ, Yang XC, Li X, Shen HX, Wang J, Huang S. H3N2 canine influenza virus-like particle vaccine with great protection in beagle dogs. Microbiol Spectr 2024; 12:e0044524. [PMID: 38874403 PMCID: PMC11323971 DOI: 10.1128/spectrum.00445-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 05/03/2024] [Indexed: 06/15/2024] Open
Abstract
In 2016, a distinct branch of H3N2 canine influenza virus (CIV) emerged, which has mutations related to mammalian adaptation and has replaced previously prevalent strains. This branch poses a risk of zoonotic infection. To prevent and control H3N2 CIV, an H3N2 virus-like particle (VLP) vaccine based on the insect cell baculovirus expression system has been developed in the study. The H3N2 VLP vaccine induced high titers of hemagglutination inhibition (HI) antibodies in nasal and muscular immunized beagle dogs. Meanwhile, the VLP vaccine provided effective protection against homologous virus challenge comparable to inactivated H3N2 canine influenza virus. In addition, the intranasal H3N2 VLP vaccine induced significantly higher Th1, Th2, and Th17 immune responses, respectively (p,0.05). Importantly, intramuscular injection of VLP and inactivated H3N2 virus has complete protective effects against homologous H3N2 virus attacks. Nasal immunization with H3N2 VLP can partially protect beagles from H3N2 influenza. IMPORTANCE A new antigenically and genetically distinct canine influenza virus (CIV) H3N2 clade possessing mutations associated with mammalian adaptation emerged in 2016 and substituted previously circulating strains. This clade poses a risk for zoonotic infection. In our study, intramuscular injection of the H3N2 virus-like particle (VLP) vaccine and inactivated H3N2 CIV confer completely sterilizing protection against homologous H3N2 canine influenza virus challenge. Our results provide further support for the possibility of developing VLP vaccines that can reliably induce immunity in animal species.
Collapse
Affiliation(s)
- Fei-fei Ge
- Shanghai Municipal Center For Animal Disease Diagnosis, Shanghai Animal Disease Control Center, Shanghai, China
| | - Li-pin Shen
- Shanghai Municipal Center For Animal Disease Diagnosis, Shanghai Animal Disease Control Center, Shanghai, China
| | - De-quan Yang
- Shanghai Municipal Center For Animal Disease Diagnosis, Shanghai Animal Disease Control Center, Shanghai, China
| | - Xian-cao Yang
- Shanghai Municipal Center For Animal Disease Diagnosis, Shanghai Animal Disease Control Center, Shanghai, China
| | - Xin Li
- Shanghai Municipal Center For Animal Disease Diagnosis, Shanghai Animal Disease Control Center, Shanghai, China
| | - Hai-xiao Shen
- Shanghai Municipal Center For Animal Disease Diagnosis, Shanghai Animal Disease Control Center, Shanghai, China
| | - Jian Wang
- Shanghai Municipal Center For Animal Disease Diagnosis, Shanghai Animal Disease Control Center, Shanghai, China
| | - Shixin Huang
- Shanghai Municipal Center For Animal Disease Diagnosis, Shanghai Animal Disease Control Center, Shanghai, China
| |
Collapse
|
2
|
Song Y, Mehl F, Zeichner SL. Vaccine Strategies to Elicit Mucosal Immunity. Vaccines (Basel) 2024; 12:191. [PMID: 38400174 PMCID: PMC10892965 DOI: 10.3390/vaccines12020191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 01/29/2024] [Accepted: 02/08/2024] [Indexed: 02/25/2024] Open
Abstract
Vaccines are essential tools to prevent infection and control transmission of infectious diseases that threaten public health. Most infectious agents enter their hosts across mucosal surfaces, which make up key first lines of host defense against pathogens. Mucosal immune responses play critical roles in host immune defense to provide durable and better recall responses. Substantial attention has been focused on developing effective mucosal vaccines to elicit robust localized and systemic immune responses by administration via mucosal routes. Mucosal vaccines that elicit effective immune responses yield protection superior to parenterally delivered vaccines. Beyond their valuable immunogenicity, mucosal vaccines can be less expensive and easier to administer without a need for injection materials and more highly trained personnel. However, developing effective mucosal vaccines faces many challenges, and much effort has been directed at their development. In this article, we review the history of mucosal vaccine development and present an overview of mucosal compartment biology and the roles that mucosal immunity plays in defending against infection, knowledge that has helped inform mucosal vaccine development. We explore new progress in mucosal vaccine design and optimization and novel approaches created to improve the efficacy and safety of mucosal vaccines.
Collapse
Affiliation(s)
- Yufeng Song
- Department of Pediatrics, University of Virginia, Charlottesville, VA 22908, USA; (Y.S.)
| | - Frances Mehl
- Department of Pediatrics, University of Virginia, Charlottesville, VA 22908, USA; (Y.S.)
| | - Steven L. Zeichner
- Department of Pediatrics, University of Virginia, Charlottesville, VA 22908, USA; (Y.S.)
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, VA 22908, USA
| |
Collapse
|
3
|
Eiden J, Fierro C, Schwartz H, Adams M, Ellis KJ, Aitchison R, Herber R, Hatta Y, Marshall D, Moser MJ, Belshe R, Greenberg H, Coelingh K, Kawaoka Y, Neumann G, Bilsel P. Intranasal M2SR (M2-Deficient Single Replication) H3N2 Influenza Vaccine Provides Enhanced Mucosal and Serum Antibodies in Adults. J Infect Dis 2022; 227:103-112. [PMID: 36350017 PMCID: PMC9796169 DOI: 10.1093/infdis/jiac433] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 10/24/2022] [Accepted: 11/02/2022] [Indexed: 11/11/2022] Open
Abstract
BACKGROUND We previously demonstrated that an intranasal dose of 108 50% tissue culture infectious dose (TCID50) M2-deficient single replication (M2SR) influenza vaccine protected against highly drifted H3N2 influenza challenge in a subset of subjects who demonstrated ≥2-fold increase in microneutralization (MN) antibodies to Belgium2015 (the challenge strain) after vaccination. Here, we describe a phase 1b, observer-blinded, dose-escalation study demonstrating an increased proportion of responders with this signal of immune protection. METHODS Serosusceptible subjects aged 18-49 years were randomized to receive 2 doses (108-109 TCID50) of M2SR or placebo administered 28 days apart. Clinical specimens were collected before and after each dose. The primary objective was to demonstrate safety of M2SR vaccines. RESULTS The vaccine was well tolerated at all dose levels. Against Belgium2015, ≥ 2-fold increases in MN antibodies were noted among 40% (95% confidence interval [CI], 24.9%-56.7%) of subjects following a single 108 TCID50 M2SR dose and among 80.6% (95% CI, 61.4%-92.3%) after 109 dose (P < .001). A single 109 TCID50 dose of M2SR generated ≥4-fold hemagglutination inhibition antibody seroconversion against the vaccine strain in 71% (95% CI, 52.0%-85.8%) of recipients. Mucosal and cellular immune responses were also induced. CONCLUSIONS These results indicate that M2SR may provide substantial protection against infection with highly drifted strains of H3N2 influenza. CLINICAL TRIALS REGISTRATION NCT03999554.
Collapse
Affiliation(s)
| | | | | | - Mark Adams
- Alliance for Multispecialty Research, Lexington, Kentucky, USA
| | | | | | | | | | | | | | | | | | | | - Yoshihiro Kawaoka
- Influenza Research Institute, University of Wisconsin, Madison, Wisconsin, USA
| | - Gabriele Neumann
- Influenza Research Institute, University of Wisconsin, Madison, Wisconsin, USA
| | - Pamuk Bilsel
- Correspondence: Pamuk Bilsel, PhD, FluGen, Inc, 597 Science Drive, Madison, WI 53711 ()
| |
Collapse
|
4
|
Ullah S, Ross TM. Next generation live-attenuated influenza vaccine platforms. Expert Rev Vaccines 2022; 21:1097-1110. [PMID: 35502639 DOI: 10.1080/14760584.2022.2072301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Influenza virus is a major cause of seasonal epidemics and intermittent pandemics. Despite the current molecular biology and vaccine development, influenza virus infection is a significant burden. Vaccines are considered an essential countermeasure for effective control and prevention of influenza virus infection. Even though current influenza virus vaccines provide efficient protection against seasonal influenza outbreaks, the efficacy of these vaccines is not suitable due to antigenic changes of the viruses. AREAS COVERED This review focuses on different live-attenuated platforms for influenza virus vaccine development and proposes essential considerations for a rational universal influenza virus vaccine design. EXPERT OPINION Despite the recent efforts for universal influenza virus vaccines, there is a lack of broadly reactive antibodies' induction that can confer broad and long-lasting protection. Various strategies using live-attenuated influenza virus vaccines (LAIVs) are investigated to induce broadly reactive, durable, and cross-protective immune responses. LAIVs based on NS segment truncation prevent influenza virus infection and have shown to be effective vaccine candidates among other vaccine platforms. Although many approaches have been used for LAIVs generation, there is still a need to focus on the LAIVs development platforms to generate a universal influenza virus vaccine candidate.
Collapse
Affiliation(s)
- Subhan Ullah
- Center for Vaccines and Immunology, University of Georgia, Athens, Georgia, USA
| | - Ted M Ross
- Center for Vaccines and Immunology, University of Georgia, Athens, Georgia, USA.,Department of Infectious Diseases, University of Georgia, Athens, Georgia, USA
| |
Collapse
|
5
|
Okamura S, Ebina H. Could live attenuated vaccines better control COVID-19? Vaccine 2021; 39:5719-5726. [PMID: 34426024 PMCID: PMC8354792 DOI: 10.1016/j.vaccine.2021.08.018] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Revised: 07/29/2021] [Accepted: 07/30/2021] [Indexed: 12/23/2022]
Abstract
In an effort to control the COVID-19 pandemic, large-scale vaccination is being implemented in various countries using anti-SARS-CoV-2 vaccines based on mRNAs, adenovirus vectors, and inactivated viruses. However, there are concerns regarding adverse effects, such as the induction of fever attributed to mRNA vaccines and pre-existing immunity against adenovirus vectored vaccines or their possible involvement in the development of thrombosis. The induction of antibodies against the adenovirus vector itself constitutes another hindrance, rendering boosting vaccinations ineffective. Additionally, it has been questioned whether inactivated vaccines that predominantly induce humoral immunity are effective against newly arising variants, as some isolated strains were found to be resistant to the serum from COVID-19-recovered patients. Although the number of vaccinated people is steadily increasing on a global scale, it is still necessary to develop vaccines to address the difficulties and concerns mentioned above. Among the various vaccine modalities, live attenuated vaccines have been considered the most effective, since they closely replicate a natural infection without the burden of the disease. In our attempt to provide an additional option to the repertoire of COVID-19 vaccines, we succeeded in isolating temperature-sensitive strains with unique phenotypes that could serve as seeds for a live attenuated vaccine. In this review article, we summarize the characteristics of the currently approved SARS-CoV-2 vaccines and discuss their advantages and disadvantages. In particular, we focus on the novel temperature-sensitive variants of SARS-CoV-2 that we have recently isolated, and their potential application as live-attenuated vaccines. Based on a thorough evaluation of the different vaccine modalities, we argue that it is important to optimize usage not only based on efficacy, but also on the phases of the pandemic. Our findings can be used to inform vaccination practices and improve global recovery from the COVID-19 pandemic.
Collapse
Affiliation(s)
- Shinya Okamura
- Virus Vaccine Group, BIKEN Innovative Vaccine Research Alliance Laboratories, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Suita, Osaka, Japan; The Research Foundation for Microbial Diseases of Osaka University, Suita, Osaka, Japan
| | - Hirotaka Ebina
- Virus Vaccine Group, BIKEN Innovative Vaccine Research Alliance Laboratories, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Suita, Osaka, Japan; The Research Foundation for Microbial Diseases of Osaka University, Suita, Osaka, Japan; Virus Vaccine Group, BIKEN Innovative Vaccine Research Alliance Laboratories, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan.
| |
Collapse
|
6
|
Abstract
Live attenuated, cold-adapted influenza vaccines exhibit several desirable characteristics, including the induction of systemic, mucosal, and cell-mediated immunity resulting in breadth of protection, ease of administration, and yield. Seasonal live attenuated influenza vaccines (LAIVs) were developed in the United States and Russia and have been used in several countries. In the last decade, following the incorporation of the 2009 pandemic H1N1 strain, the performance of both LAIVs has been variable and the U.S.-backbone LAIV was less effective than the corresponding inactivated influenza vaccines. The cause appears to be reduced replicative fitness of some H1N1pdm09 viruses, indicating a need for careful selection of strains included in multivalent LAIV formulations. Assays are now being implemented to select optimal strains. An improved understanding of the determinants of replicative fitness of vaccine strains and of vaccine effectiveness of LAIVs is needed for public health systems to take full advantage of these valuable vaccines.
Collapse
Affiliation(s)
- Kanta Subbarao
- WHO Collaborating Centre for Reference and Research on Influenza and Department of Microbiology and Immunology, University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria 3000, Australia
| |
Collapse
|
7
|
A New Master Donor Virus for the Development of Live-Attenuated Influenza B Virus Vaccines. Viruses 2021; 13:v13071278. [PMID: 34208979 PMCID: PMC8310163 DOI: 10.3390/v13071278] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 06/27/2021] [Accepted: 06/27/2021] [Indexed: 12/23/2022] Open
Abstract
Influenza B viruses (IBV) circulate annually, with young children, the elderly and immunocompromised individuals being at high risk. Yearly vaccinations are recommended to protect against seasonally influenza viruses, including IBV. Live attenuated influenza vaccines (LAIV) provide the unique opportunity for direct exposure to the antigenically variable surface glycoproteins as well as the more conserved internal components. Ideally, LAIV Master Donor Viruses (MDV) should accurately reflect seasonal influenza strains. Unfortunately, the continuous evolution of IBV have led to significant changes in conserved epitopes compared to the IBV MDV based on B/Ann Arbor/1/1966 strain. Here, we propose a recent influenza B/Brisbane/60/2008 as an efficacious MDV alternative, as its internal viral proteins more accurately reflect those of circulating IBV strains. We introduced the mutations responsible for the temperature sensitive (ts), cold adapted (ca) and attenuated (att) phenotype of B/Ann Arbor/1/1966 MDV LAIV into B/Brisbane/60/2008 to generate a new MDV LAIV. In vitro and in vivo analysis demonstrated that the mutations responsible of the ts, ca, and att phenotype of B/Ann Arbor/1/1966 MDV LAIV were able to infer the same phenotype to B/Brisbane/60/2008, demonstrating its potential as a new MDV for the development of LAIV to protect against contemporary IBV strains.
Collapse
|
8
|
Development of a Genetically Stable Live Attenuated Influenza Vaccine Strain Using an Engineered High-Fidelity Viral Polymerase. J Virol 2021; 95:JVI.00493-21. [PMID: 33827947 DOI: 10.1128/jvi.00493-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 03/28/2021] [Indexed: 12/28/2022] Open
Abstract
RNA viruses demonstrate a vast range of variants, called quasispecies, due to error-prone replication by viral RNA-dependent RNA polymerase. Although live attenuated vaccines are effective in preventing RNA virus infection, there is a risk of reversal to virulence after their administration. To test the hypothesis that high-fidelity viral polymerase reduces the diversity of influenza virus quasispecies, resulting in inhibition of reversal of the attenuated phenotype, we first screened for a high-fidelity viral polymerase using serial virus passages under selection with a guanosine analog ribavirin. Consequently, we identified a Leu66-to-Val single amino acid mutation in polymerase basic protein 1 (PB1). The high-fidelity phenotype of PB1-L66V was confirmed using next-generation sequencing analysis and biochemical assays with the purified influenza viral polymerase. As expected, PB1-L66V showed at least two-times-lower mutation rates and decreased misincorporation rates, compared to the wild type (WT). Therefore, we next generated an attenuated PB1-L66V virus with a temperature-sensitive (ts) phenotype based on FluMist, a live attenuated influenza vaccine (LAIV) that can restrict virus propagation by ts mutations, and examined the genetic stability of the attenuated PB1-L66V virus using serial virus passages. The PB1-L66V mutation prevented reversion of the ts phenotype to the WT phenotype, suggesting that the high-fidelity viral polymerase could contribute to generating an LAIV with high genetic stability, which would not revert to the pathogenic virus.IMPORTANCE The LAIV currently in use is prescribed for actively immunizing individuals aged 2 to 49 years. However, it is not approved for infants and elderly individuals, who actually need it the most, because it might prolong virus propagation and cause an apparent infection in these individuals, due to their weak immune systems. Recently, reversion of the ts phenotype of the LAIV strain currently in use to a pathogenic virus was demonstrated in cultured cells. Thus, the generation of mutations associated with enhanced virulence in LAIV should be considered. In this study, we isolated a novel influenza virus strain with a Leu66-to-Val single amino acid mutation in PB1 that displayed a significantly higher fidelity than the WT. We generated a novel LAIV candidate strain harboring this mutation. This strain showed higher genetic stability and no ts phenotype reversion. Thus, our high-fidelity strain might be useful for the development of a safer LAIV.
Collapse
|
9
|
Sekiya T, Ohno M, Nomura N, Handabile C, Shingai M, Jackson DC, Brown LE, Kida H. Selecting and Using the Appropriate Influenza Vaccine for Each Individual. Viruses 2021; 13:971. [PMID: 34073843 PMCID: PMC8225103 DOI: 10.3390/v13060971] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 05/17/2021] [Accepted: 05/20/2021] [Indexed: 12/28/2022] Open
Abstract
Despite seasonal influenza vaccines having been routinely used for many decades, influenza A virus continues to pose a global threat to humans, causing high morbidity and mortality each year. The effectiveness of the vaccine is largely dependent on how well matched the vaccine strains are with the circulating influenza virus strains. Furthermore, low vaccine efficacy in naïve populations such as young children, or in the elderly, who possess weakened immune systems, indicates that influenza vaccines need to be more personalized to provide broader community protection. Advances in both vaccine technologies and our understanding of influenza virus infection and immunity have led to the design of a variety of alternate vaccine strategies to extend population protection against influenza, some of which are now in use. In this review, we summarize the progress in the field of influenza vaccines, including the advantages and disadvantages of different strategies, and discuss future prospects. We also highlight some of the challenges to be faced in the ongoing effort to control influenza through vaccination.
Collapse
Affiliation(s)
- Toshiki Sekiya
- International Institute for Zoonosis Control, Hokkaido University, Kita-20 Nishi-10, Kita-ku, Sapporo 001-0020, Japan; (T.S.); (M.O.); (N.N.); (C.H.); (M.S.)
- International Collaboration Unit, International Institute for Zoonosis Control, Hokkaido University, Sapporo 001-0020, Japan; (D.C.J.); (L.E.B.)
- The Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne 3000, Australia
| | - Marumi Ohno
- International Institute for Zoonosis Control, Hokkaido University, Kita-20 Nishi-10, Kita-ku, Sapporo 001-0020, Japan; (T.S.); (M.O.); (N.N.); (C.H.); (M.S.)
| | - Naoki Nomura
- International Institute for Zoonosis Control, Hokkaido University, Kita-20 Nishi-10, Kita-ku, Sapporo 001-0020, Japan; (T.S.); (M.O.); (N.N.); (C.H.); (M.S.)
| | - Chimuka Handabile
- International Institute for Zoonosis Control, Hokkaido University, Kita-20 Nishi-10, Kita-ku, Sapporo 001-0020, Japan; (T.S.); (M.O.); (N.N.); (C.H.); (M.S.)
| | - Masashi Shingai
- International Institute for Zoonosis Control, Hokkaido University, Kita-20 Nishi-10, Kita-ku, Sapporo 001-0020, Japan; (T.S.); (M.O.); (N.N.); (C.H.); (M.S.)
- International Collaboration Unit, International Institute for Zoonosis Control, Hokkaido University, Sapporo 001-0020, Japan; (D.C.J.); (L.E.B.)
| | - David C. Jackson
- International Collaboration Unit, International Institute for Zoonosis Control, Hokkaido University, Sapporo 001-0020, Japan; (D.C.J.); (L.E.B.)
- The Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne 3000, Australia
| | - Lorena E. Brown
- International Collaboration Unit, International Institute for Zoonosis Control, Hokkaido University, Sapporo 001-0020, Japan; (D.C.J.); (L.E.B.)
- The Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne 3000, Australia
| | - Hiroshi Kida
- International Institute for Zoonosis Control, Hokkaido University, Kita-20 Nishi-10, Kita-ku, Sapporo 001-0020, Japan; (T.S.); (M.O.); (N.N.); (C.H.); (M.S.)
- International Collaboration Unit, International Institute for Zoonosis Control, Hokkaido University, Sapporo 001-0020, Japan; (D.C.J.); (L.E.B.)
- Collaborating Research Center for the Control of Infectious Diseases, Nagasaki University, Nagasaki 852-8521, Japan
| |
Collapse
|
10
|
Rudraraju R, Mordant F, Subbarao K. How Live Attenuated Vaccines Can Inform the Development of Broadly Cross-Protective Influenza Vaccines. J Infect Dis 2020; 219:S81-S87. [PMID: 30715386 PMCID: PMC7313962 DOI: 10.1093/infdis/jiy703] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Affiliation(s)
- Rajeev Rudraraju
- Department of Microbiology and Immunology, University of Melbourne
| | | | - Kanta Subbarao
- Department of Microbiology and Immunology, University of Melbourne.,World Health Organization Collaborating Centre for Reference and Research on Influenza, Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| |
Collapse
|
11
|
Affiliation(s)
- Kanta Subbarao
- World Health Organization Collaborating Centre for Reference and Research on Influenza, Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia.,Department of Microbiology and Immunology, University of Melbourne, Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| |
Collapse
|
12
|
Tannock GA, Kim H, Xue L. Why are vaccines against many human viral diseases still unavailable; an historic perspective? J Med Virol 2020; 92:129-138. [PMID: 31502669 PMCID: PMC7166819 DOI: 10.1002/jmv.25593] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 09/08/2019] [Indexed: 01/10/2023]
Abstract
The number of new and improved human viral vaccines licensed in recent years contrasts sharply with what could be termed the golden era (1955-1990) when vaccines against polio-, measles, mumps, rubella, and hepatitis B viruses first became available. Here, we attempt to explain why vaccines, mainly against viruses other than human immunodeficiency virus and hepatitis C virus, are still unavailable. They include human herpesviruses other than varicella-zoster virus, respiratory syncytial and most other respiratory, enteric and arthropod-borne viruses. Improved oral poliovirus vaccines are also urgently required. Their unavailability is attributable to regulatory/economic factors and the properties of individual viruses, but also to an absence of relevant animal models and ethical problems for the conduct of clinical of trials in pediatric and other critical populations. All are portents of likely difficulties for the licensing of effective vaccines against emerging pathogens, such as avian influenza, Ebola, and Zika viruses.
Collapse
Affiliation(s)
| | - Hyunsuh Kim
- Department of Infectious DiseasesSt. Jude Children's Research HospitalMemphisTennessee
| | - Lumin Xue
- Peter MacCallum Cancer CentreMelbourneVictoriaAustralia
| |
Collapse
|
13
|
Holzer B, Morgan SB, Martini V, Sharma R, Clark B, Chiu C, Salguero FJ, Tchilian E. Immunogenicity and Protective Efficacy of Seasonal Human Live Attenuated Cold-Adapted Influenza Virus Vaccine in Pigs. Front Immunol 2019; 10:2625. [PMID: 31787986 PMCID: PMC6856147 DOI: 10.3389/fimmu.2019.02625] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Accepted: 10/22/2019] [Indexed: 01/31/2023] Open
Abstract
Influenza A virus infection is a global health threat to livestock and humans, causing substantial mortality and morbidity. As both pigs and humans are readily infected with influenza viruses of similar subtype, the pig is a robust and appropriate model for investigating swine and human disease. We evaluated the efficacy of the human cold-adapted 2017–2018 quadrivalent seasonal LAIV in pigs against H1N1pdm09 challenge. LAIV immunized animals showed significantly reduced viral load in nasal swabs. There was limited replication of the H1N1 component of the vaccine in the nose, a limited response to H1N1 in the lung lymph nodes and a low H1N1 serum neutralizing titer. In contrast there was better replication of the H3N2 component of the LAIV, accompanied by a stronger response to H3N2 in the tracheobronchial lymph nodes (TBLN). Our data demonstrates that a single administration of human quadrivalent LAIV shows limited replication in the nose and induces detectable responses to the H1N1 and H3N2 components. These data suggest that pigs may be a useful model for assessing LAIV against influenza A viruses.
Collapse
Affiliation(s)
- Barbara Holzer
- Enhanced Host Responses, The Pirbright Institute, Woking, United Kingdom
| | - Sophie B Morgan
- Enhanced Host Responses, The Pirbright Institute, Woking, United Kingdom
| | - Veronica Martini
- Enhanced Host Responses, The Pirbright Institute, Woking, United Kingdom
| | - Rajni Sharma
- Enhanced Host Responses, The Pirbright Institute, Woking, United Kingdom
| | - Becky Clark
- Enhanced Host Responses, The Pirbright Institute, Woking, United Kingdom
| | - Christopher Chiu
- Department of Infectious Disease, Hammersmith Campus Imperial College London, London, United Kingdom
| | | | - Elma Tchilian
- Enhanced Host Responses, The Pirbright Institute, Woking, United Kingdom
| |
Collapse
|
14
|
Comparative Study of the Temperature Sensitive, Cold Adapted and Attenuated Mutations Present in the Master Donor Viruses of the Two Commercial Human Live Attenuated Influenza Vaccines. Viruses 2019; 11:v11100928. [PMID: 31658679 PMCID: PMC6832241 DOI: 10.3390/v11100928] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 10/03/2019] [Accepted: 10/08/2019] [Indexed: 12/28/2022] Open
Abstract
Influenza viruses cause annual, seasonal infection across the globe. Vaccination represents the most effective strategy to prevent such infections and/or to reduce viral disease. Two major types of influenza vaccines are approved for human use: inactivated influenza vaccines (IIVs) and live attenuated influenza vaccines (LAIVs). Two Master Donor Virus (MDV) backbones have been used to create LAIVs against influenza A virus (IAV): the United States (US) A/Ann Arbor/6/60 (AA) and the Russian A/Leningrad/134/17/57 (Len) H2N2 viruses. The mutations responsible for the temperature sensitive (ts), cold-adapted (ca) and attenuated (att) phenotypes of the two MDVs have been previously identified and genetically mapped. However, a direct comparison of the contribution of these residues to viral attenuation, immunogenicity and protection efficacy has not been conducted. Here, we compared the In vitro and in vivo phenotype of recombinant influenza A/Puerto Rico/8/34 H1N1 (PR8) viruses containing the ts, ca and att mutations of the US (PR8/AA) and the Russian (PR8/Len) MDVs. Our results show that PR8/Len is more attenuated in vivo than PR8/AA, although both viruses induced similar levels of humoral and cellular responses, and protection against homologous and heterologous viral challenges. Our findings support the feasibility of using a different virus backbone as MDV for the development of improved LAIVs for the prevention of IAV infections.
Collapse
|
15
|
Generation of DelNS1 Influenza Viruses: a Strategy for Optimizing Live Attenuated Influenza Vaccines. mBio 2019; 10:mBio.02180-19. [PMID: 31530680 PMCID: PMC6751066 DOI: 10.1128/mbio.02180-19] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Current seasonal influenza vaccines are suboptimal and low in immunogenicity and do not provide long-lasting immunity and cross protection against influenza virus strains that have antigenically drifted. More-effective influenza vaccines which can induce both humoral immunity and T cell immunity are needed. The NS1 protein of influenza virus is a virulence element and the critical factor for regulation of the host immune response during virus infection. Deletion of the NS1 protein is a strategy to make an optimal LAIV vaccine. However, DelNS1 viruses are very difficult to grow in regular vaccine-producing systems, hampering the application of DelNS1 LAIV vaccines in humans. We have generated a panel of both influenza A and influenza B DelNS1 LAIVs which are able to grow in regular vaccine-producing cells. These DelNS1 LAIV vaccines are completely nonpathogenic, exhibit potent and long-lasting immunity, and can be used to express extra viral antigen to induce cross protective immunity against seasonal and emerging influenza. Nonstructural protein 1 (NS1) of influenza virus is a key virulence element with multifunctional roles in virus replication and a potent antagonist of host immune response. Deletion of NS1 (DelNS1) would create a safer and more extensively immunogenic live attenuated influenza virus (LAIV) vaccine. However, DelNS1 viruses are very difficult to grow in regular vaccine-producing systems, which has hampered the application of DelNS1 LAIV vaccines in humans. We have developed two master backbones of deleted-NS1 (DelNS1) viral genomes from influenza A or B viruses which contain novel adaptive mutations to support DelNS1-LAIV replication. These DelNS1-LAIVs are highly attenuated in human cells in vitro and nonpathogenic in mice but replicate well in vaccine-producing cells. Both influenza A and influenza B DelNS1 LAIVs grow better at 33°C than at 37 to 39°C. Vaccination with DelNS1 LAIV performed once is enough to provide potent protection against lethal challenge with homologous virus and strong long-lasting cross protection against heterosubtypic or antigenically distantly related influenza viruses in mice. Mechanistic investigations revealed that DelNS1-LAIVs induce cross protective neutralizing antibody and CD8+ and CD4+ T cell immunities. Importantly, it has been shown that DelNS1-LAIV can be used to enhance specific anti-influenza immunity through expression of additional antigens from the deleted-NS1 site. Generation of DelNS1 viruses which are nonpathogenic and able to grow in vaccine-producing systems is an important strategy for making highly immunogenic LAIV vaccines that induce broad cross protective immunity against seasonal and emerging influenza.
Collapse
|
16
|
Blanco-Lobo P, Nogales A, Rodríguez L, Martínez-Sobrido L. Novel Approaches for The Development of Live Attenuated Influenza Vaccines. Viruses 2019; 11:E190. [PMID: 30813325 PMCID: PMC6409754 DOI: 10.3390/v11020190] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 02/19/2019] [Accepted: 02/19/2019] [Indexed: 01/04/2023] Open
Abstract
Influenza virus still represents a considerable threat to global public health, despite the advances in the development and wide use of influenza vaccines. Vaccination with traditional inactivate influenza vaccines (IIV) or live-attenuated influenza vaccines (LAIV) remains the main strategy in the control of annual seasonal epidemics, but it does not offer protection against new influenza viruses with pandemic potential, those that have shifted. Moreover, the continual antigenic drift of seasonal circulating influenza viruses, causing an antigenic mismatch that requires yearly reformulation of seasonal influenza vaccines, seriously compromises vaccine efficacy. Therefore, the quick optimization of vaccine production for seasonal influenza and the development of new vaccine approaches for pandemic viruses is still a challenge for the prevention of influenza infections. Moreover, recent reports have questioned the effectiveness of the current LAIV because of limited protection, mainly against the influenza A virus (IAV) component of the vaccine. Although the reasons for the poor protection efficacy of the LAIV have not yet been elucidated, researchers are encouraged to develop new vaccination approaches that overcome the limitations that are associated with the current LAIV. The discovery and implementation of plasmid-based reverse genetics has been a key advance in the rapid generation of recombinant attenuated influenza viruses that can be used for the development of new and most effective LAIV. In this review, we provide an update regarding the progress that has been made during the last five years in the development of new LAIV and the innovative ways that are being explored as alternatives to the currently licensed LAIV. The safety, immunogenicity, and protection efficacy profile of these new LAIVs reveal their possible implementation in combating influenza infections. However, efforts by vaccine companies and government agencies will be needed for controlled testing and approving, respectively, these new vaccine methodologies for the control of influenza infections.
Collapse
Affiliation(s)
- Pilar Blanco-Lobo
- Department of Microbiology and Immunology, School of Medicine and Dentistry, University of Rochester, Rochester, New York, NY 14642, USA.
| | - Aitor Nogales
- Department of Microbiology and Immunology, School of Medicine and Dentistry, University of Rochester, Rochester, New York, NY 14642, USA.
| | - Laura Rodríguez
- Department of Microbiology and Immunology, School of Medicine and Dentistry, University of Rochester, Rochester, New York, NY 14642, USA.
| | - Luis Martínez-Sobrido
- Department of Microbiology and Immunology, School of Medicine and Dentistry, University of Rochester, Rochester, New York, NY 14642, USA.
| |
Collapse
|
17
|
Shcherbik S, Carney P, Pearce N, Stevens J, Dugan VG, Wentworth DE, Bousse T. Monoclonal antibody against N2 neuraminidase of cold adapted A/Leningrad/134/17/57 (H2N2) enables efficient generation of live attenuated influenza vaccines. Virology 2018; 522:65-72. [PMID: 30014859 DOI: 10.1016/j.virol.2018.07.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 07/05/2018] [Accepted: 07/05/2018] [Indexed: 01/13/2023]
Abstract
Cold adapted influenza virus A/Leningrad/134/17/57 (H2N2) is a reliable master donor virus (Len/17-MDV) for preparing live attenuated influenza vaccines (LAIV). LAIVs are 6:2 reasortants that contain 6 segments of Len/17-MDV and the hemagglutinin (HA) and neuraminidase (NA) of contemporary circulating influenza A viruses. The problem with the classical reassortment procedure used to generate LAIVs is that there is limited selection pressure against NA of the Len/17-MDV resulting in 7:1 reassortants with desired HA only, which are not suitable LAIVs. The monoclonal antibodies (mAb) directed against the N2 of Len/17-MDV were generated. 10C4-8E7 mAb inhibits cell-to-cell spread of viruses containing the Len/17-MDV N2, but not viruses with the related N2 from contemporary H3N2 viruses. 10C4-8E7 antibody specifically inhibited the Len/17-MDV replication in vitro and in ovo but didn't inhibit replication of H3N2 or H1N1pdm09 reassortants. Our data demonstrate that addition of 10C4-8E7 in the classical reassortment improves efficiency of LAIV production.
Collapse
Affiliation(s)
- Svetlana Shcherbik
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, 1600 Clifton Road, Atlanta, GA 30333, United States
| | - Paul Carney
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, 1600 Clifton Road, Atlanta, GA 30333, United States
| | | | - James Stevens
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, 1600 Clifton Road, Atlanta, GA 30333, United States
| | - Vivien G Dugan
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, 1600 Clifton Road, Atlanta, GA 30333, United States
| | - David E Wentworth
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, 1600 Clifton Road, Atlanta, GA 30333, United States
| | - Tatiana Bousse
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, 1600 Clifton Road, Atlanta, GA 30333, United States.
| |
Collapse
|
18
|
Hatta Y, Boltz D, Sarawar S, Kawaoka Y, Neumann G, Bilsel P. Novel influenza vaccine M2SR protects against drifted H1N1 and H3N2 influenza virus challenge in ferrets with pre-existing immunity. Vaccine 2018; 36:5097-5103. [PMID: 30007825 DOI: 10.1016/j.vaccine.2018.06.053] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 06/19/2018] [Accepted: 06/23/2018] [Indexed: 11/17/2022]
Abstract
Current influenza vaccines do not provide effective protection against heterologous influenza viruses. The ability of the novel M2SR influenza vaccine to protect against drifted influenza viruses was evaluated in naïve ferrets and in ferrets with pre-existing immunity to influenza. In naïve ferrets, M2SR provided similar protection against drifted challenge viruses as the comparator vaccine, FluMist®. However, in ferrets with pre-existing immunity, M2SR provided superior protection than FluMist in two model systems. In the first model, ferrets were infected with influenza A H1N1pdm and influenza B viruses to mimic the diverse influenza exposure in humans. The pre-infected ferrets, seropositive to H1N1pdm and influenza B but seronegative to H3N2, were then vaccinated with H3N2 M2SR or monovalent H3N2 FluMist virus (A/Brisbane/10/2007, clade 1) and challenged 6 weeks later with a drifted H3N2 virus (clade 3C.2a). Antibody titers to Brisbane/10/2007 were higher in M2SR vaccinated ferrets than in FluMist vaccinated ferrets in the pre-infected ferrets whereas the opposite was observed in naïve ferrets. After challenge with drifted H3N2 virus, M2SR provided superior protection than FluMist monovalent vaccine. In the second model, the impact of homologous pre-existing immunity upon vaccine-induced protection was evaluated. Ferrets, pre-infected with H1N1pdm virus, were vaccinated 90 days later with H1N1pdm M2SR or FluMist monovalent vaccine and challenged 6 weeks later with a pre-pandemic seasonal H1N1 virus, A/Brisbane/59/2007 (Bris59). While cross-reactive serum IgG antibodies against the Bris59 HA were detected after vaccination, anti-Bris59 hemagglutination inhibition antibodies were only detected post-challenge. M2SR provided better protection against Bris59 challenge than FluMist suggesting that homologous pre-existing immunity affected FluMist virus to a greater degree than M2SR. These results suggest that the single replication intranasal M2SR vaccine provides effective protection against drifted influenza A viruses not only in naïve ferrets but also in those with pre-existing immunity in contrast to FluMist viruses.
Collapse
Affiliation(s)
| | - David Boltz
- IIT Research Institute, Chicago, IL 60616, USA
| | - Sally Sarawar
- The Biomedical Research Institute of Southern California, Oceanside, CA 92056, USA
| | - Yoshihiro Kawaoka
- Influenza Research Institute, Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin, Madison, WI 53711, USA; Division of Virology, Department of Microbiology and Immunology and Department of Special Pathogens, International Research Center for Infectious Diseases, Institute of Medical Science, University of Tokyo, Tokyo 108-8639, Japan
| | - Gabriele Neumann
- Influenza Research Institute, Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin, Madison, WI 53711, USA
| | | |
Collapse
|
19
|
Rodriguez L, Reedy S, Nogales A, Murcia PR, Chambers TM, Martinez-Sobrido L. Development of a novel equine influenza virus live-attenuated vaccine. Virology 2018; 516:76-85. [PMID: 29331866 PMCID: PMC5840510 DOI: 10.1016/j.virol.2018.01.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2017] [Revised: 01/04/2018] [Accepted: 01/05/2018] [Indexed: 11/16/2022]
Abstract
H3N8 equine influenza virus (EIV) is an important and significant respiratory pathogen of horses. EIV is enzootic in Europe and North America, mainly due to the suboptimal efficacy of current vaccines. We describe, for the first time, the generation of a temperature sensitive (ts) H3N8 EIV live-attenuated influenza vaccine (LAIV) using reverse-genetics approaches. Our EIV LAIV was attenuated (att) in vivo and able to induce, upon a single intranasal administration, protection against H3N8 EIV wild-type (WT) challenge in both a mouse model and the natural host, the horse. Notably, since our EIV LAIV was generated using reverse genetics, the vaccine can be easily updated against drifting or emerging strains of EIV using the safety backbone of our EIV LAIV as master donor virus (MDV). These results demonstrate the feasibility of implementing a novel EIV LAIV approach for the prevention and control of currently circulating H3N8 EIVs in horse populations.
Collapse
Affiliation(s)
- Laura Rodriguez
- Department of Microbiology and Immunology, University of Rochester, Rochester, NY, United States
| | - Stephanie Reedy
- Department of Veterinary Science, Gluck Equine Research Center, University of Kentucky, Lexington, KY, United States
| | - Aitor Nogales
- Department of Microbiology and Immunology, University of Rochester, Rochester, NY, United States
| | - Pablo R Murcia
- MRC-University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
| | - Thomas M Chambers
- Department of Veterinary Science, Gluck Equine Research Center, University of Kentucky, Lexington, KY, United States
| | - Luis Martinez-Sobrido
- Department of Microbiology and Immunology, University of Rochester, Rochester, NY, United States.
| |
Collapse
|
20
|
Gill MA, Schlaudecker EP. Perspectives from the Society for Pediatric Research: Decreased Effectiveness of the Live Attenuated Influenza Vaccine. Pediatr Res 2018; 83:31-40. [PMID: 28945700 DOI: 10.1038/pr.2017.239] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Accepted: 09/15/2017] [Indexed: 11/09/2022]
Abstract
The intranasal live attenuated influenza vaccine (LAIV), FluMist, has been widely appreciated by pediatricians, parents, and children alike for its ease of administration. However, concerns regarding lack of effectiveness in recent influenza seasons led to the CDC Advisory Committee on Immunization Practices (ACIP) recommendation to administer inactivated influenza vaccines (IIVs), and not LAIV, during the 2016-17 and 2017-18 seasons. Given that data from previous years demonstrated equivalent and even improved efficacy of LAIV compared with IIV, these recent data were surprising, raising many questions about the potential mechanisms underlying this change. This review seeks to summarize the history of LAIV studies and ACIP recommendations with a focus on the recent decrease in vaccine effectiveness (VE) and discordant results among studies performed in different countries. Decreased VE for A/H1N1pdm09 viruses represents the most consistent finding across studies, as VE has been low every season these viruses predominated since 2010-11. Potential explanations underlying diminished effectiveness include the hypothesis that prior vaccination, reduced thermostability of A/H1N1pdm09, addition of a fourth virus, or reduced replication fitness of A/H1N1pdm09 strains may have contributed to this phenomenon. Ongoing studies and potential alterations to LAIV formulations provide hope for a return of effective LAIV in future influenza seasons.
Collapse
Affiliation(s)
- Michelle A Gill
- Division of Infectious Diseases, Departments of Pediatrics, Internal Medicine, and Immunology, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Elizabeth P Schlaudecker
- Division of Infectious Diseases, Global Health Center, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| |
Collapse
|
21
|
Long Y, Ma L, Liu Z, Song S, Geng X, Yang F, Guo Q, Li Z, Li W, Liao G. Preparation and evaluation of a novel, live, attenuated influenza H1N1 vaccine strain produced by a modified classical reassortment method. Hum Vaccin Immunother 2017; 14:615-622. [PMID: 29064728 DOI: 10.1080/21645515.2017.1380761] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Abstract
Live attenuated influenza vaccine (LAIV)-based Vero cells could provide a better choice to control and prevent influenza virus infections. This study used the human influenza virus A/Yunnan/1/2005Vca(H3N2) (YN/05Vca) as a donor strain. YN/05Vca has a double phenotype of cold adaption (ca) and Vero cell adaption (va). The parental virus strain used was the wild-type A/Solomon Islands/3/2006 (H1N1) (SI/06wt). The study employed the modified classical reassortment method to generate a new virus strain. After co-infection of Vero cells, some different sub-types of the reassorted viruses were generated randomly. Then, the specific anti-serum (anti-YN/05Vca) could combine with and neutralize the donor virus, and the original parental virus could not grow in Vero cells at a low temperature until it was re-structured with the meaningful gene fragment from the donor virus in Vero cells. According to the plaques and RT-PCR results, a new monoclonal strain of Vero cell cold adaption virus was screened: SI/06Vca. After immunological and biological identification, this new strain virus could be used as a seed bank for LAIV, which has maintained surface antigenicity with SI/06wt. Consequently, this new Vero cell cold adaption virus SI/06Vca could be used for large-scale vaccine production with sufficient safety and efficacy, as confirmed by animal experiments with mice and ferrets.
Collapse
Affiliation(s)
- Yunfeng Long
- a The fifth Department of Biological products , Institute of Medical Biology, Chinese Academy of Medical Science and Peking Union Medical College , Kunming , People's Republic of China.,b Department of Food Laboratory, Animal, Plant and Food Inspection Center, Jiangsu Entry-Exit Inspection and Quarantine Bureau , Nanjing , People's Republic of China
| | - Lei Ma
- a The fifth Department of Biological products , Institute of Medical Biology, Chinese Academy of Medical Science and Peking Union Medical College , Kunming , People's Republic of China
| | - Ze Liu
- a The fifth Department of Biological products , Institute of Medical Biology, Chinese Academy of Medical Science and Peking Union Medical College , Kunming , People's Republic of China
| | - Shaohui Song
- a The fifth Department of Biological products , Institute of Medical Biology, Chinese Academy of Medical Science and Peking Union Medical College , Kunming , People's Republic of China
| | - Xingliang Geng
- a The fifth Department of Biological products , Institute of Medical Biology, Chinese Academy of Medical Science and Peking Union Medical College , Kunming , People's Republic of China
| | - Fan Yang
- a The fifth Department of Biological products , Institute of Medical Biology, Chinese Academy of Medical Science and Peking Union Medical College , Kunming , People's Republic of China.,c Department of Pathogenic Biology, Medical Faculty , Kunming University of Science and Technology , Kunming , People's Republic of China
| | - Qi Guo
- a The fifth Department of Biological products , Institute of Medical Biology, Chinese Academy of Medical Science and Peking Union Medical College , Kunming , People's Republic of China
| | - Zhuofan Li
- a The fifth Department of Biological products , Institute of Medical Biology, Chinese Academy of Medical Science and Peking Union Medical College , Kunming , People's Republic of China
| | - Weidong Li
- d The Department of Production Administration , Institute of Medical Biology, Chinese Academy of Medical Science and Peking Union Medical College , Kunming , People's Republic of China
| | - Guoyang Liao
- a The fifth Department of Biological products , Institute of Medical Biology, Chinese Academy of Medical Science and Peking Union Medical College , Kunming , People's Republic of China
| |
Collapse
|
22
|
Gould PS, Easton AJ, Dimmock NJ. Live Attenuated Influenza Vaccine contains Substantial and Unexpected Amounts of Defective Viral Genomic RNA. Viruses 2017; 9:E269. [PMID: 28934167 PMCID: PMC5691621 DOI: 10.3390/v9100269] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Revised: 09/18/2017] [Accepted: 09/20/2017] [Indexed: 12/15/2022] Open
Abstract
The live attenuated influenza vaccine FluMist® was withdrawn in the USA by the Centers for Disease Control and Prevention after its failure to provide adequate protective immunity during 2013-2016. The vaccine uses attenuated core type A and type B viruses, reconfigured each year to express the two major surface antigens of the currently circulating viruses. Here Fluenz™ Tetra, the European version of this vaccine, was examined directly for defective-interfering (DI) viral RNAs. DI RNAs are deleted versions of the infectious virus genome, and have powerful biological properties including attenuation of infection, reduction of infectious virus yield, and stimulation of some immune responses. Reverse transcription polymerase chain reaction followed by cloning and sequencing showed that Fluenz™ vaccine contains unexpected and substantial amounts of DI RNA arising from both its influenza A and influenza B components, with 87 different DI RNA sequences identified. Flu A DI RNAs from segment 3 replaced the majority of the genomic full-length segment 3, thus compromising its infectivity. DI RNAs arise during vaccine production and non-infectious DI virus replaces infectious virus pro rata so that fewer doses of the vaccine can be made. Instead the vaccine carries a large amount of non-infectious but biologically active DI virus. The presence of DI RNAs could significantly reduce the multiplication in the respiratory tract of the vaccine leading to reduced immunizing efficacy and could also stimulate the host antiviral responses, further depressing vaccine multiplication. The role of DI viruses in the performance of this and other vaccines requires further investigation.
Collapse
Affiliation(s)
- Philip S Gould
- Faculty of Health and Life Sciences, Coventry University, Science and Health Building, 20 Whitefriars Street Coventry CV1 2DS, UK.
| | - Andrew J Easton
- School of Life Sciences, University of Warwick, Coventry CV4 7AL, UK.
| | - Nigel J Dimmock
- School of Life Sciences, University of Warwick, Coventry CV4 7AL, UK.
| |
Collapse
|
23
|
Matyushenko V, Isakova-Sivak I, Smolonogina T, Dubrovina I, Tretiak T, Rudenko L. Genotyping assay for differentiation of wild-type and vaccine viruses in subjects immunized with live attenuated influenza vaccine. PLoS One 2017; 12:e0180497. [PMID: 28686625 PMCID: PMC5501548 DOI: 10.1371/journal.pone.0180497] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Accepted: 05/11/2017] [Indexed: 01/03/2023] Open
Abstract
Live attenuated influenza vaccines (LAIVs) are considered as safe and effective tool to control influenza in different age groups, especially in young children. An important part of the LAIV safety evaluation is the detection of vaccine virus replication in the nasopharynx of the vaccinees, with special attention to a potential virus transmission to the unvaccinated close contacts. Conducting LAIV clinical trials in some geographical regions with year-round circulation of influenza viruses warrants the development of robust and reliable tools for differentiating vaccine viruses from wild-type influenza viruses in nasal pharyngeal wash (NPW) specimens of vaccinated subjects. Here we report the development of genotyping assay for the detection of wild-type and vaccine-type influenza virus genes in NPW specimens of young children immunized with Russian-backbone seasonal trivalent LAIV using Sanger sequencing from newly designed universal primers. The new primer set allowed amplification and sequencing of short fragments of viral genes in NPW specimens and appeared to be more sensitive than conventional real-time RT-PCR protocols routinely used for the detection and typing/subtyping of influenza virus in humans. Furthermore, the new assay is capable of defining the origin of wild-type influenza virus through BLAST search with the generated sequences of viral genes fragments.
Collapse
Affiliation(s)
- Victoria Matyushenko
- Department of virology, Institute of Experimental Medicine, Saint Petersburg, Russia
| | - Irina Isakova-Sivak
- Department of virology, Institute of Experimental Medicine, Saint Petersburg, Russia
| | - Tatiana Smolonogina
- Department of virology, Institute of Experimental Medicine, Saint Petersburg, Russia
| | - Irina Dubrovina
- Department of virology, Institute of Experimental Medicine, Saint Petersburg, Russia
| | - Tatiana Tretiak
- Department of virology, Institute of Experimental Medicine, Saint Petersburg, Russia
| | - Larisa Rudenko
- Department of virology, Institute of Experimental Medicine, Saint Petersburg, Russia
| |
Collapse
|
24
|
Rodriguez L, Nogales A, Reilly EC, Topham DJ, Murcia PR, Parrish CR, Martinez Sobrido L. A live-attenuated influenza vaccine for H3N2 canine influenza virus. Virology 2017; 504:96-106. [PMID: 28167384 DOI: 10.1016/j.virol.2017.01.020] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Revised: 01/25/2017] [Accepted: 01/25/2017] [Indexed: 11/24/2022]
Abstract
Canine influenza is a contagious respiratory disease in dogs caused by two subtypes (H3N2 and H3N8) of canine influenza virus (CIV). Currently, only inactivated influenza vaccines (IIVs) are available for the prevention of CIVs. Historically, live-attenuated influenza vaccines (LAIVs) have been shown to produce better immunogenicity and protection efficacy than IIVs. Here, we have engineered a CIV H3N2 LAIV by using the internal genes of a previously described CIV H3N8 LAIV as a master donor virus (MDV) and the surface HA and NA genes of a circulating CIV H3N2 strain. Our findings show that CIV H3N2 LAIV replicates efficiently at low temperature but its replication is impaired at higher temperatures. The CIV H3N2 LAIV was attenuated in vivo but induced better protection efficacy in mice against challenge with wild-type CIV H3N2 than a commercial CIV H3N2 IIV. This is the first description of a LAIV for the prevention of CIV H3N2 in dogs.
Collapse
Affiliation(s)
- Laura Rodriguez
- Department of Microbiology and Immunology, University of Rochester, Rochester, NY, US
| | - Aitor Nogales
- Department of Microbiology and Immunology, University of Rochester, Rochester, NY, US
| | - Emma C Reilly
- Department of Microbiology and Immunology, University of Rochester, Rochester, NY, US; David H. Smith Center for Vaccine Biology and Immunology, University of Rochester, Rochester, NY, US
| | - David J Topham
- Department of Microbiology and Immunology, University of Rochester, Rochester, NY, US; David H. Smith Center for Vaccine Biology and Immunology, University of Rochester, Rochester, NY, US
| | - Pablo R Murcia
- MRC-University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
| | - Colin R Parrish
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, NY, US
| | - Luis Martinez Sobrido
- Department of Microbiology and Immunology, University of Rochester, Rochester, NY, US.
| |
Collapse
|
25
|
Temperature-Sensitive Live-Attenuated Canine Influenza Virus H3N8 Vaccine. J Virol 2017; 91:JVI.02211-16. [PMID: 27928017 DOI: 10.1128/jvi.02211-16] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Accepted: 12/05/2016] [Indexed: 12/22/2022] Open
Abstract
Canine influenza is a respiratory disease of dogs caused by canine influenza virus (CIV). CIV subtypes responsible for influenza in dogs include H3N8, which originated from the transfer of H3N8 equine influenza virus to dogs; and the H3N2 CIV, which is an avian-origin virus that adapted to infect dogs. Influenza infections are most effectively prevented through vaccination to reduce transmission and future infection. Currently, only inactivated influenza vaccines (IIVs) are available for the prevention of CIV in dogs. However, the efficacy of IIVs is suboptimal, and novel approaches are necessary for the prevention of disease caused by this canine respiratory pathogen. Using reverse genetics techniques, we have developed a live-attenuated CIV vaccine (LACIV) for the prevention of H3N8 CIV. The H3N8 LACIV replicates efficiently in canine cells at 33°C but is impaired at temperatures of 37 to 39°C and was attenuated compared to wild-type H3N8 CIV in vivo and ex vivo The LACIV was able to induce protection against H3N8 CIV challenge with a single intranasal inoculation in mice. Immunogenicity and protection efficacy were better than that observed with a commercial CIV H3N8 IIV but provided limited cross-reactive immunity and heterologous protection against H3N2 CIV. These results demonstrate the feasibility of implementing a LAIV approach for the prevention and control of H3N8 CIV in dogs and suggest the need for a new LAIV for the control of H3N2 CIV. IMPORTANCE Two influenza A virus subtypes has been reported in dogs in the last 16 years: the canine influenza viruses (CIV) H3N8 and H3N2 of equine and avian origins, respectively. To date, only inactivated influenza vaccines (IIVs) are available to prevent CIV infections. Here, we report the generation of a recombinant, temperature-sensitive H3N8 CIV as a live-attenuated influenza vaccine (LAIV), which was attenuated in mice and dog tracheal, explants compared to CIV H3N8 wild type. A single dose of H3N8 LACIV showed immunogenicity and protection against a homologous challenge that was better than that conferred with an H3N8 IIV, demonstrating the feasibility of implementing a LAIV approach for the improved control of H3N8 CIV infections in dogs.
Collapse
|
26
|
Reversion of Cold-Adapted Live Attenuated Influenza Vaccine into a Pathogenic Virus. J Virol 2016; 90:8454-63. [PMID: 27440882 PMCID: PMC5021423 DOI: 10.1128/jvi.00163-16] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2016] [Accepted: 07/05/2016] [Indexed: 12/14/2022] Open
Abstract
UNLABELLED The only licensed live attenuated influenza A virus vaccines (LAIVs) in the United States (FluMist) are created using internal protein-coding gene segments from the cold-adapted temperature-sensitive master donor virus A/Ann Arbor/6/1960 and HA/NA gene segments from circulating viruses. During serial passage of A/Ann Arbor/6/1960 at low temperatures to select the desired attenuating phenotypes, multiple cold-adaptive mutations and temperature-sensitive mutations arose. A substantial amount of scientific and clinical evidence has proven that FluMist is safe and effective. Nevertheless, no study has been conducted specifically to determine if the attenuating temperature-sensitive phenotype can revert and, if so, the types of substitutions that will emerge (i.e., compensatory substitutions versus reversion of existing attenuating mutations). Serial passage of the monovalent FluMist 2009 H1N1 pandemic vaccine at increasing temperatures in vitro generated a variant that replicated efficiently at higher temperatures. Sequencing of the variant identified seven nonsynonymous mutations, PB1-E51K, PB1-I171V, PA-N350K, PA-L366I, NP-N125Y, NP-V186I, and NS2-G63E. None occurred at positions previously reported to affect the temperature sensitivity of influenza A viruses. Synthetic genomics technology was used to synthesize the whole genome of the virus, and the roles of individual mutations were characterized by assessing their effects on RNA polymerase activity and virus replication kinetics at various temperatures. The revertant also regained virulence and caused significant disease in mice, with severity comparable to that caused by a wild-type 2009 H1N1 pandemic virus. IMPORTANCE The live attenuated influenza vaccine FluMist has been proven safe and effective and is widely used in the United States. The phenotype and genotype of the vaccine virus are believed to be very stable, and mutants that cause disease in animals or humans have never been reported. By propagating the virus under well-controlled laboratory conditions, we found that the FluMist vaccine backbone could regain virulence to cause severe disease in mice. The identification of the responsible substitutions and elucidation of the underlying mechanisms provide unique insights into the attenuation of influenza virus, which is important to basic research on vaccines, attenuation reversion, and replication. In addition, this study suggests that the safety of LAIVs should be closely monitored after mass vaccination and that novel strategies to continue to improve LAIV vaccine safety should be investigated.
Collapse
|
27
|
White JA, Estrada M, Flood EA, Mahmood K, Dhere R, Chen D. Development of a stable liquid formulation of live attenuated influenza vaccine. Vaccine 2016; 34:3676-83. [PMID: 27155495 PMCID: PMC4940209 DOI: 10.1016/j.vaccine.2016.04.074] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Revised: 04/08/2016] [Accepted: 04/25/2016] [Indexed: 11/02/2022]
Abstract
Vaccination is the most effective means of preventing influenza. However, the cost of producing annual seasonal influenza vaccines puts them out of reach for most developing countries. While live attenuated influenza vaccines are among the most efficacious and can be manufactured at low cost, they may require lyophilization to be stable enough for developing-country use, which adds a significant cost burden. The development of a liquid live attenuated seasonal influenza vaccine that is stable for around a year-the duration of an annual influenza season-would significantly improve not only the production output but also the use and accessibility of influenza vaccines in low-resource settings. In this study, potential stabilizing excipients were screened and optimized using the least stable influenza vaccine strain presently known, H1N1 (A/California/07/2009), as a model. The stability-conferring properties of the lead formulations were also tested with a Type B strain of influenza virus (B/Brisbane/60/2008). Stability was also evaluated with higher titers of influenza virus and exposure to agitation and freeze-thaw stresses to further confirm the stability of the lead formulations. Through this process, we identified a liquid formulation consisting of sucrose phosphate glutamate buffer with 1% arginine and 0.5% recombinant human serum albumin that provided storage stability of one year at 2-8°C for the influenza A and B strains tested.
Collapse
Affiliation(s)
| | | | | | | | - Rajeev Dhere
- Serum Institute of India Pvt Ltd, Pune, MH, India
| | | |
Collapse
|
28
|
Gianchecchi E, Trombetta C, Piccirella S, Montomoli E. Evaluating influenza vaccines: progress and perspectives. Future Virol 2016. [DOI: 10.2217/fvl-2016-0012] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Severe influenza infections are responsible for 3–5 million cases worldwide and 250,000–500,000 deaths per year. Although vaccination is the primary and most effective means of inducing protection against influenza viruses, it also presents limitations. This review outlines the promising steps that have been taken toward the development of a broadly protective influenza virus vaccine through the use of new technologies. The future challenge is to develop a broadly protective vaccine that is able to induce long-term protection against antigenically variant influenza viruses, regardless of antigenic shift and drift, and thus to protect against seasonal and pandemic influenza viruses.
Collapse
Affiliation(s)
- Elena Gianchecchi
- VisMederi Srl, Enterprise of Service in Life Sciences, Via Fiorentina 1, 53100 Siena, Italy
| | - Claudia Trombetta
- Department of Molecular & Developmental Medicine, University of Siena, Via Aldo Moro, 53100 Siena, Italy
| | - Simona Piccirella
- VisMederi Srl, Enterprise of Service in Life Sciences, Via Fiorentina 1, 53100 Siena, Italy
| | - Emanuele Montomoli
- VisMederi Srl, Enterprise of Service in Life Sciences, Via Fiorentina 1, 53100 Siena, Italy
- Department of Molecular & Developmental Medicine, University of Siena, Via Aldo Moro, 53100 Siena, Italy
| |
Collapse
|
29
|
Lee YJ, Jang YH, Kim P, Lee YH, Lee YJ, Byun YH, Lee KH, Kim K, Seong BL. Enhancement of the safety of live influenza vaccine by attenuating mutations from cold-adapted hemagglutinin. Virology 2016; 491:1-9. [PMID: 26874012 DOI: 10.1016/j.virol.2016.01.022] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Revised: 11/12/2015] [Accepted: 01/31/2016] [Indexed: 10/22/2022]
Abstract
In our previous study, X-31ca-based H5N1 LAIVs, in particular, became more virulent in mice than the X-31ca MDV, possibly by the introduction of the surface antigens of highly pathogenic H5N1 influenza virus, implying that additional attenuation is needed in this cases to increase the safety level of the vaccine. In this report we suggest an approach to further increase the safety of LAIV through additional cold-adapted mutations in the hemagglutinin. The cold-adaptation of X-31 virus resulted in four amino acid mutations in the HA. We generated a panel of 7:1 reassortant viruses each carrying the hemagglutinins with individual single amino acid mutations. We examined their phenotypes and found a major attenuating mutation, N81K. This attenuation marker conferred additional temperature-sensitive and attenuation phenotype to the LAIV. Our data indicate that the cold-adapted mutation in the HA confers additional attenuation to the LAIV strain, without compromising its productivity and immune response.
Collapse
Affiliation(s)
- Yoon Jae Lee
- Graduate Program in Biomaterials Science and Engineering, College of Life Science and Biotechnology, Yonsei University, Seoul, South Korea; Laboratory of Molecular Medicine, Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, South Korea; Vaccine Translational Research Center, Yonsei University, Seoul, South Korea
| | - Yo Han Jang
- Laboratory of Molecular Medicine, Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, South Korea
| | - Paul Kim
- Laboratory of Molecular Medicine, Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, South Korea; Vaccine Translational Research Center, Yonsei University, Seoul, South Korea
| | - Yun Ha Lee
- Laboratory of Molecular Medicine, Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, South Korea; Vaccine Translational Research Center, Yonsei University, Seoul, South Korea
| | - Young Jae Lee
- Laboratory of Molecular Medicine, Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, South Korea; Vaccine Translational Research Center, Yonsei University, Seoul, South Korea
| | - Young Ho Byun
- Laboratory of Molecular Medicine, Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, South Korea
| | - Kwang-Hee Lee
- Laboratory of Molecular Medicine, Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, South Korea
| | - Kyusik Kim
- Laboratory of Molecular Medicine, Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, South Korea
| | - Baik Lin Seong
- Graduate Program in Biomaterials Science and Engineering, College of Life Science and Biotechnology, Yonsei University, Seoul, South Korea; Laboratory of Molecular Medicine, Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, South Korea; Vaccine Translational Research Center, Yonsei University, Seoul, South Korea.
| |
Collapse
|
30
|
Jang YH, Jung EJ, Lee KH, Byun YH, Yang SW, Seong BL. Genetic analysis of attenuation markers of cold-adapted X-31 influenza live vaccine donor strain. Vaccine 2016; 34:1343-9. [PMID: 26851733 DOI: 10.1016/j.vaccine.2016.01.053] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Revised: 01/05/2016] [Accepted: 01/26/2016] [Indexed: 02/05/2023]
Abstract
Cold-adapted live attenuated influenza vaccines (CAIVs) have been considered as a safe prophylactic measure to prevent influenza virus infections. The safety of a CAIV depends largely on genetic markers that confer specific attenuation phenotypes. Previous studies with other CAIVs reported that polymerase genes were primarily responsible for the attenuation. Here, we analyzed the genetic mutations and their phenotypic contribution in the X-31 ca strain, a recently developed alternative CAIV donor strain. During the cold-adaptation of its parental X-31 virus, various numbers of sequence changes were accumulated in all six internal genes. Phenotypic analysis with single-gene and multiple-gene reassortant viruses suggests that NP gene makes the largest contribution to the cold-adapted (ca) and temperature-sensitive (ts) characters, while the remaining other internal genes also impart attenuation characters with varying degrees. A balanced contribution of all internal genes to the attenuation suggests that X-31 ca could serve as an ideal master donor strain for CAIVs preventing influenza epidemics and pandemics.
Collapse
Affiliation(s)
- Yo Han Jang
- Laboratory of Molecular Medicine, Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, South Korea
| | - Eun-Ju Jung
- Laboratory of Molecular Medicine, Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, South Korea
| | - Kwang-Hee Lee
- Laboratory of Molecular Medicine, Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, South Korea
| | - Young Ho Byun
- Laboratory of Molecular Medicine, Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, South Korea
| | - Seung Won Yang
- Laboratory of Molecular Medicine, Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, South Korea
| | - Baik Lin Seong
- Laboratory of Molecular Medicine, Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, South Korea; Vaccine Translational Research Center, Yonsei University, Seoul, South Korea.
| |
Collapse
|
31
|
Shcherbik S, Pearce N, Kiseleva I, Larionova N, Rudenko L, Xu X, Wentworth DE, Bousse T. Implementation of new approaches for generating conventional reassortants for live attenuated influenza vaccine based on Russian master donor viruses. J Virol Methods 2015; 227:33-9. [PMID: 26519883 PMCID: PMC4773654 DOI: 10.1016/j.jviromet.2015.10.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Revised: 10/15/2015] [Accepted: 10/23/2015] [Indexed: 12/20/2022]
Abstract
Cold-adapted influenza strains A/Leningrad/134/17/57 (H2N2) and B/USSR/60/69, originally developed in Russia, have been reliable master donors of attenuation for preparing live attenuated influenza vaccines (LAIV). The classical strategy for generating LAIV reassortants is robust, but has some disadvantages. The generation of reassortants requires at least 3 passages under selective conditions after co-infection; each of these selective passages takes six days. Screening the reassortants for a genomic composition traditionally starts after a second limiting dilution cloning procedure, and the number of suitable reassortants is limited. We developed a new approach to shorten process of preparing LAIV seed viruses. Introducing the genotyping of reassortants by pyrosequencing and monitoring sequence integrity of surface antigens starting at the first selective passage allowed specific selection of suitable reassortants for the next cloning procedure and also eliminate one of the group selective passage in vaccine candidate generation. Homogeneity analysis confirmed that reducing the number of selective passages didn't affect the quality of LAIV seed viruses. Finally, the two-way hemagglutination inhibition test, implemented for all the final seed viruses, confirmed that any amino acid substitutions acquired by reassortants during egg propagation didn't affect antigenicity of the vaccine. Our new strategy reduces the time required to generate a vaccine and was used to generate seasonal LAIVs candidates for the 2012/2013, 2014/2015, and 2015/2016 seasons more rapidly.
Collapse
Affiliation(s)
- Svetlana Shcherbik
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, MS-G16, 1600 Clifton Road, Atlanta, GA 30333, United States; Battelle, Atlanta, GA 30329, United States
| | - Nicholas Pearce
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, MS-G16, 1600 Clifton Road, Atlanta, GA 30333, United States; Battelle, Atlanta, GA 30329, United States
| | - Irina Kiseleva
- Institute of Experimental Medicine, Department of Virology, St. Petersburg, Russia
| | - Natalie Larionova
- Institute of Experimental Medicine, Department of Virology, St. Petersburg, Russia
| | - Larisa Rudenko
- Institute of Experimental Medicine, Department of Virology, St. Petersburg, Russia
| | - Xiyan Xu
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, MS-G16, 1600 Clifton Road, Atlanta, GA 30333, United States
| | - David E Wentworth
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, MS-G16, 1600 Clifton Road, Atlanta, GA 30333, United States
| | - Tatiana Bousse
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, MS-G16, 1600 Clifton Road, Atlanta, GA 30333, United States.
| |
Collapse
|
32
|
Restricted replication of the live attenuated influenza A virus vaccine during infection of primary differentiated human nasal epithelial cells. Vaccine 2015. [PMID: 26196325 DOI: 10.1016/j.vaccine.2015.07.023] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Live Attenuated Influenza Vaccine (LAIV) strains are associated with cold adapted, temperature sensitive and attenuated phenotypes that have been studied in non-human or immortalized cell cultures as well as in animal models. Using a primary, differentiated human nasal epithelial cell (hNEC) culture system we compared the replication kinetics, levels of cell-associated viral proteins and virus particle release during infection with LAIV or the corresponding wild type (WT) influenza viruses. At both 33 °C and 37 °C, seasonal influenza virus and an antigenically matched LAIV replicated to similar titers in MDCK cells but seasonal influenza virus replicated to higher titers than LAIV in hNEC cultures, suggesting a greater restriction of LAIV replication in hNEC cultures. Despite the disparity in infectious virus production, the supernatants from H1N1 and LAIV infected hNEC cultures had equivalent amounts of viral proteins and hemagglutination titers, suggesting the formation of non-infectious virus particles by LAIV in hNEC cultures.
Collapse
|
33
|
Feng C, Tan M, Sun W, Shi Y, Xing Z. Attenuation of the influenza virus by microRNA response element in vivo and protective efficacy against 2009 pandemic H1N1 virus in mice. Int J Infect Dis 2015; 38:146-52. [PMID: 26163223 DOI: 10.1016/j.ijid.2015.07.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Revised: 06/29/2015] [Accepted: 07/02/2015] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND The 2009 influenza pandemics underscored the need for effective vaccines to block the spread of influenza virus infection. Most live attenuated vaccines utilize cold-adapted, temperature-sensitive virus. An alternative to live attenuated virus is presented here, based on microRNA-induced gene silencing. METHODS In this study, miR-let-7b target sequences were inserted into the H1N1 genome to engineer a recombinant virus - miRT-H1N1. Female BALB/c mice were vaccinated intranasally with the miRT-H1N1 and challenged with a lethal dose of homologous virus. RESULTS This miRT-H1N1 virus was attenuated in mice, while it exhibited wild-type characteristics in chicken embryos. Mice vaccinated intranasally with the miRT-H1N1 responded with robust immunity that protected the vaccinated mice from a lethal challenge with the wild-type 2009 pandemic H1N1 virus. CONCLUSIONS These results indicate that the influenza virus containing microRNA response elements (MREs) is attenuated in vivo and can be used to design a live attenuated vaccine.
Collapse
Affiliation(s)
- Chunlai Feng
- Department of Respiratory and Critical Care Medicine, Jinling Hospital affiliated to Southern Medical University, Nanjing, China
| | - Mingming Tan
- Department of Respiratory and Critical Care Medicine, Jinling Hospital affiliated to Southern Medical University, Nanjing, China
| | - Wenkui Sun
- Department of Respiratory and Critical Care Medicine, Jinling Hospital affiliated to Southern Medical University, Nanjing, China
| | - Yi Shi
- Department of Respiratory and Critical Care Medicine, Jinling Hospital affiliated to Southern Medical University, Nanjing, China.
| | - Zheng Xing
- The Key Laboratory of Pharmaceutical Biotechnology and Medical School, Nanjing University, Nanjing, China; Department of Veterinary Biomedical Sciences, College of Veterinary Medicine, University of Minnesota at Twin Cities, Saint Paul, Minnesota, USA.
| |
Collapse
|
34
|
Kong H, Zhang Q, Gu C, Shi J, Deng G, Ma S, Liu J, Chen P, Guan Y, Jiang Y, Chen H. A live attenuated vaccine prevents replication and transmission of H7N9 virus in mammals. Sci Rep 2015; 5:11233. [PMID: 26058711 PMCID: PMC4462025 DOI: 10.1038/srep11233] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Accepted: 05/19/2015] [Indexed: 11/09/2022] Open
Abstract
The continued spread of the newly emerged H7N9 viruses among poultry in China, together with the emergence of drug-resistant variants and the possibility of human-to-human transmission, has spurred attempts to develop an effective vaccine. An MF59-adjuvant H7N9 inactivated vaccine is reported to be well-tolerated and immunogenic in humans; however a study in ferrets indicated that while a single dose of the inactivated H7N9 vaccine reduced disease severity, it did not prevent virus replication and transmission. In this study, we used reverse genetics to produce a cold-adapted, live attenuated H7N9 vaccine (H7N9/AAca) that contains wild-type HA and NA genes from AH/1, and the backbone of the cold-adapted influenza H2N2 A/Ann Arbor/6/60 virus (AAca). H7N9/AAca was attenuated in mice and ferrets, and induced robust neutralizing antibody responses in rhesus mice, ferrets, and guinea pigs immunized once or twice intranasally. The animals immunized twice were completely protected from H7N9 virus challenge. Importantly, the animals vaccinated once were fully protected from transmission when exposed to or in contact with the H7N9 virus-inoculated animals. These results demonstrate that a cold-adapted H7N9 vaccine can prevent H7N9 virus transmission; they provide a compelling argument for further testing of this vaccine in human trials.
Collapse
Affiliation(s)
- Huihui Kong
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, People's Republic of China
| | - Qianyi Zhang
- 1] State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, People's Republic of China [2] Department of Inspection Technology Research &National Classical Swine Fever Reference Laboratory, China Institute of Veterinary Drug Control, Beijing 100081, People's Republic of China
| | - Chunyang Gu
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, People's Republic of China
| | - Jianzhong Shi
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, People's Republic of China
| | - Guohua Deng
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, People's Republic of China
| | - Shujie Ma
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, People's Republic of China
| | - Jinxiong Liu
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, People's Republic of China
| | - Pucheng Chen
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, People's Republic of China
| | - Yuntao Guan
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, People's Republic of China
| | - Yongping Jiang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, People's Republic of China
| | - Hualan Chen
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, People's Republic of China
| |
Collapse
|
35
|
Coughlan L, Mullarkey C, Gilbert S. Adenoviral vectors as novel vaccines for influenza. ACTA ACUST UNITED AC 2015; 67:382-99. [PMID: 25560474 DOI: 10.1111/jphp.12350] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Accepted: 10/05/2014] [Indexed: 12/19/2022]
Abstract
OBJECTIVES Influenza is a viral respiratory disease causing seasonal epidemics, with significant annual illness and mortality. Emerging viruses can pose a major pandemic threat if they acquire the capacity for sustained human-to-human transmission. Vaccination reduces influenza-associated mortality and is critical in minimising the burden on the healthcare system. However, current vaccines are not always effective in at-risk populations and fail to induce long-lasting protective immunity against a range of viruses. KEY FINDINGS The development of 'universal' influenza vaccines, which induce heterosubtypic immunity capable of reducing disease severity, limiting viral shedding or protecting against influenza subtypes with pandemic potential, has gained interest in the research community. To date, approaches have focused on inducing immune responses to conserved epitopes within the stem of haemagglutinin, targeting the ectodomain of influenza M2e or by stimulating cellular immunity to conserved internal antigens, nucleoprotein or matrix protein 1. SUMMARY Adenoviral vectors are potent inducers of T-cell and antibody responses and have demonstrated safety in clinical applications, making them an excellent choice of vector for delivery of vaccine antigens. In order to circumvent pre-existing immunity in humans, serotypes from non-human primates have recently been investigated. We will discuss the pre-clinical development of these novel vectors and their advancement to clinical trials.
Collapse
|
36
|
A live attenuated equine H3N8 influenza vaccine is highly immunogenic and efficacious in mice and ferrets. J Virol 2014; 89:1652-9. [PMID: 25410860 DOI: 10.1128/jvi.02449-14] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
UNLABELLED Equine influenza viruses (EIV) are responsible for rapidly spreading outbreaks of respiratory disease in horses. Although natural infections of humans with EIV have not been reported, experimental inoculation of humans with these viruses can lead to a productive infection and elicit a neutralizing antibody response. Moreover, EIV have crossed the species barrier to infect dogs, pigs, and camels and therefore may also pose a threat to humans. Based on serologic cross-reactivity of H3N8 EIV from different lineages and sublineages, A/equine/Georgia/1/1981 (eq/GA/81) was selected to produce a live attenuated candidate vaccine by reverse genetics with the hemagglutinin and neuraminidase genes of the eq/GA/81 wild-type (wt) virus and the six internal protein genes of the cold-adapted (ca) A/Ann Arbor/6/60 (H2N2) vaccine donor virus, which is the backbone of the licensed seasonal live attenuated influenza vaccine. In both mice and ferrets, intranasal administration of a single dose of the eq/GA/81 ca vaccine virus induced neutralizing antibodies and conferred complete protection from homologous wt virus challenge in the upper respiratory tract. One dose of the eq/GA/81 ca vaccine also induced neutralizing antibodies and conferred complete protection in mice and nearly complete protection in ferrets upon heterologous challenge with the H3N8 (eq/Newmarket/03) wt virus. These data support further evaluation of the eq/GA/81 ca vaccine in humans for use in the event of transmission of an equine H3N8 influenza virus to humans. IMPORTANCE Equine influenza viruses have crossed the species barrier to infect other mammals such as dogs, pigs, and camels and therefore may also pose a threat to humans. We believe that it is important to develop vaccines against equine influenza viruses in the event that an EIV evolves, adapts, and spreads in humans, causing disease. We generated a live attenuated H3N8 vaccine candidate and demonstrated that the vaccine was immunogenic and protected mice and ferrets against homologous and heterologous EIV.
Collapse
|
37
|
The matrix gene segment destabilizes the acid and thermal stability of the hemagglutinin of pandemic live attenuated influenza virus vaccines. J Virol 2014; 88:12374-84. [PMID: 25122789 DOI: 10.1128/jvi.01107-14] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED The threat of future influenza pandemics and their potential for rapid spread, morbidity, and mortality has led to the development of pandemic vaccines. We generated seven reassortant pandemic live attenuated influenza vaccines (pLAIVs) with the hemagglutinin (HA) and neuraminidase (NA) genes derived from animal influenza viruses on the backbone of the six internal protein gene segments of the temperature sensitive, cold-adapted (ca) A/Ann Arbor/60 (H2N2) virus (AA/60 ca) of the licensed seasonal LAIV. The pLAIV viruses were moderately to highly restricted in replication in seronegative adults; we sought to determine the biological basis for this restriction. Avian influenza viruses generally replicate at higher temperatures than human influenza viruses and, although they shared the same backbone, the pLAIV viruses had a lower shutoff temperature than seasonal LAIV viruses, suggesting that the HA and NA influence the degree of temperature sensitivity. The pH of HA activation of highly pathogenic avian influenza viruses was greater than human and low-pathogenicity avian influenza viruses, as reported by others. However, pLAIV viruses had a consistently higher pH of HA activation and reduced HA thermostability compared to the corresponding wild-type parental viruses. From studies with single-gene reassortant viruses bearing one gene segment from the AA/60 ca virus in recombinant H5N1 or pH1N1 viruses, we found that the lower HA thermal stability and increased pH of HA activation were associated with the AA/60 M gene. Together, the impaired HA acid and thermal stability and temperature sensitivity likely contributed to the restricted replication of the pLAIV viruses we observed in seronegative adults. IMPORTANCE There is increasing evidence that the HA stability of influenza viruses depends on the virus strain and host species and that HA stability can influence replication, virulence, and transmission of influenza A viruses in different species. We investigated the HA stability of pandemic live attenuated influenza vaccine (pLAIV) viruses and observed that the pLAIV viruses consistently had a less stable HA than the corresponding wild-type influenza viruses. The reduced HA stability and temperature sensitivity of the pLAIV viruses may account for their restricted replication in clinical trials.
Collapse
|
38
|
Luke CJ, Subbarao K. Improving pandemic H5N1 influenza vaccines by combining different vaccine platforms. Expert Rev Vaccines 2014; 13:873-83. [DOI: 10.1586/14760584.2014.922416] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
39
|
Background paper to the recommendation for the preferential use of live-attenuated influenza vaccine in children aged 2-6 years in Germany. Bundesgesundheitsblatt Gesundheitsforschung Gesundheitsschutz 2014; 56:1557-64. [PMID: 24170085 DOI: 10.1007/s00103-013-1844-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The German Standing Committee on Vaccination (STIKO) recommends seasonal influenza vaccination for children and adolescents with chronic medical conditions that put them at risk for severe influenza illness. In addition to trivalent inactivated influenza vaccines (TIV), a trivalent live-attenuated influenza vaccine (LAIV) was licensed for children and adolescents aged 2-17 years in the European Union in 2011. Employing the methodology of the Grading of Recommendations Assessment, Development and Evaluation (GRADE) working group, we examined the evidence for efficacy and safety of LAIV relative to TIV to guide STIKO's decision on whether LAIV should be preferentially recommended for at-risk children. In our meta-analysis of data from two randomized trials directly comparing LAIV and TIV in children aged ≤ 6 years, the protective efficacy of LAIV against laboratory-confirmed influenza was 53 % [95 % confidence interval (CI): 45-61 %] higher than that of TIV. A similar study in individuals aged 6-17 years showed a 32 % (95 % CI: 3-52 %) higher efficacy of LAIV. The quality of the evidence for a superior protective efficacy of LAIV against all relevant clinical outcomes was rated 'moderate' for children aged 2-6 years and 'low' for the age group 7-17 years. Regarding safety outcomes, the available data suggest no significant differences between LAIV and TIV. Based on these results, STIKO recommends that LAIV should be used preferentially for influenza vaccination of at-risk children aged 2-6 years. In children and adolescents aged 7-17 years, either LAIV or TIV may be used without specific preference. Possible contraindications and the vaccinee's and his/her guardians' preferences should be taken into account.
Collapse
|
40
|
Bergmann-Leitner ES, Leitner WW. Adjuvants in the Driver's Seat: How Magnitude, Type, Fine Specificity and Longevity of Immune Responses Are Driven by Distinct Classes of Immune Potentiators. Vaccines (Basel) 2014; 2:252-96. [PMID: 26344620 PMCID: PMC4494256 DOI: 10.3390/vaccines2020252] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2013] [Revised: 03/20/2014] [Accepted: 03/28/2014] [Indexed: 12/16/2022] Open
Abstract
The mechanism by which vaccine adjuvants enhance immune responses has historically been considered to be the creation of an antigen depot. From here, the antigen is slowly released and provided to immune cells over an extended period of time. This "depot" was formed by associating the antigen with substances able to persist at the injection site, such as aluminum salts or emulsions. The identification of Pathogen-Associated Molecular Patterns (PAMPs) has greatly advanced our understanding of how adjuvants work beyond the simple concept of extended antigen release and has accelerated the development of novel adjuvants. This review focuses on the mode of action of different adjuvant classes in regards to the stimulation of specific immune cell subsets, the biasing of immune responses towards cellular or humoral immune response, the ability to mediate epitope spreading and the induction of persistent immunological memory. A better understanding of how particular adjuvants mediate their biological effects will eventually allow them to be selected for specific vaccines in a targeted and rational manner.
Collapse
Affiliation(s)
- Elke S Bergmann-Leitner
- US Military Malaria Research Program, Malaria Vaccine Branch, 503 Robert Grant Ave, 3W65, Silver Spring, MD 20910, USA.
| | - Wolfgang W Leitner
- Division on Allergy, Immunology and Transplantation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 6610 Rockledge Drive, Bethesda, MD 20892, USA.
| |
Collapse
|
41
|
Development of a high-yield live attenuated H7N9 influenza virus vaccine that provides protection against homologous and heterologous H7 wild-type viruses in ferrets. J Virol 2014; 88:7016-23. [PMID: 24719414 DOI: 10.1128/jvi.00100-14] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
UNLABELLED Live attenuated H7N9 influenza vaccine viruses that possess the hemagglutinin (HA) and neuraminidase (NA) gene segments from the newly emerged wild-type (wt) A/Anhui/1/2013 (H7N9) and six internal protein gene segments from the cold-adapted influenza virus A/Ann Arbor/6/60 (AA ca) were generated by reverse genetics. The reassortant virus containing the original wt A/Anhui/1/2013 HA and NA sequences replicated poorly in eggs. Multiple variants with amino acid substitutions in the HA head domain that improved viral growth were identified by viral passage in eggs and MDCK cells. The selected vaccine virus containing two amino acid changes (N133D/G198E) in the HA improved viral titer by more than 10-fold (reached a titer of 10(8.6) fluorescent focus units/ml) without affecting viral antigenicity. Introduction of these amino acid changes into an H7N9 PR8 reassortant virus also significantly improved viral titers and HA protein yield in eggs. The H7N9 ca vaccine virus was immunogenic in ferrets. A single dose of vaccine conferred complete protection of ferrets from homologous wt A/Anhui/1/2013 (H7N9) and nearly complete protection from heterologous wt A/Netherlands/219/2003 (H7N7) challenge infection. Therefore, this H7N9 live attenuated influenza vaccine (LAIV) candidate has been selected for vaccine manufacture and clinical evaluation to protect humans from wt H7N9 virus infection. IMPORTANCE In response to the recent avian H7N9 influenza virus infection in humans, we developed a live attenuated H7N9 influenza vaccine (LAIV) with two amino acid substitutions in the viral HA protein that improved vaccine yield by 10-fold in chicken embryonated eggs, the substrate for vaccine manufacture. The two amino acids also improved the antigen yield for inactivated H7N9 vaccines, demonstrating that this finding could great facilitate the efficiency of H7N9 vaccine manufacture. The candidate H7N9 LAIV was immunogenic and protected ferrets against homologous and heterologous wild-type H7 virus challenge, making it suitable for use in protecting humans from H7 infection.
Collapse
|
42
|
Production of live attenuated influenza vaccines against seasonal and potential pandemic influenza viruses. Curr Opin Virol 2014; 6:34-9. [PMID: 24705137 DOI: 10.1016/j.coviro.2014.02.008] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Revised: 02/27/2014] [Accepted: 02/28/2014] [Indexed: 01/26/2023]
Abstract
Vaccination remains the most effective means to prevent morbidity and mortality caused by influenza epidemics and pandemics. Live attenuated influenza vaccine (LAIV) has been proven to be effective in preventing influenza with broad cross reactivity to drifted strains. Owing to the sophisticated nature of the influenza vaccine production process, the time needed to develop high yield LAIV strains for vaccine production and product release remains a constant challenge. This review summarizes LAIV production process with highlights on the experiences gained during the past decade generating seasonal and pandemic LAIV seeds by reverse genetics strategy.
Collapse
|
43
|
Fischer WA, Chason KD, Brighton M, Jaspers I. Live attenuated influenza vaccine strains elicit a greater innate immune response than antigenically-matched seasonal influenza viruses during infection of human nasal epithelial cell cultures. Vaccine 2014; 32:1761-7. [PMID: 24486351 DOI: 10.1016/j.vaccine.2013.12.069] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2013] [Revised: 12/08/2013] [Accepted: 12/24/2013] [Indexed: 01/27/2023]
Abstract
Influenza viruses are global pathogens that infect approximately 10-20% of the world's population each year. Vaccines, including the live attenuated influenza vaccine (LAIV), are the best defense against influenza infections. The LAIV is a novel vaccine that actively replicates in the human nasal epithelium and elicits both mucosal and systemic protective immune responses. The differences in replication and innate immune responses following infection of human nasal epithelium with influenza seasonal wild type (WT) and LAIV viruses remain unknown. Using a model of primary differentiated human nasal epithelial cell (hNECs) cultures, we compared influenza WT and antigenically-matched cold adapted (CA) LAIV virus replication and the subsequent innate immune response including host cellular pattern recognition protein expression, host innate immune gene expression, secreted pro-inflammatory cytokine production, and intracellular viral RNA levels. Growth curves comparing virus replication between WT and LAIV strains revealed significantly less infectious virus production during LAIV compared with WT infection. Despite this disparity in infectious virus production the LAIV strains elicited a more robust innate immune response with increased expression of RIG-I, TLR-3, IFNβ, STAT-1, IRF-7, MxA, and IP-10. There were no differences in cytotoxicity between hNEC cultures infected with WT and LAIV strains as measured by basolateral levels of LDH. Elevated levels of intracellular viral RNA during LAIV as compared with WT virus infection of hNEC cultures at 33°C may explain the augmented innate immune response via the up-regulation of pattern recognition receptors and down-stream type I IFN expression. Taken together our results suggest that the decreased replication of LAIV strains in human nasal epithelial cells is associated with a robust innate immune response that differs from infection with seasonal influenza viruses, limits LAIV shedding and plays a role in the silent clinical phenotype seen in human LAIV inoculation.
Collapse
Affiliation(s)
- William A Fischer
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, The University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA; The Center for Environmental Medicine, Asthma and Lung Biology, The University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA.
| | - Kelly D Chason
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, University of North Carolina at Chapel Hill, 8033 Burnett-Womack, Chapel Hill, NC 27599-7219, USA
| | - Missy Brighton
- The Center for Environmental Medicine, Asthma and Lung Biology, The University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA
| | - Ilona Jaspers
- The Center for Environmental Medicine, Asthma and Lung Biology, The University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA; Department of Pediatrics, The University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA
| |
Collapse
|
44
|
Epstein SL. Control of influenza virus infection by immunity to conserved viral features. Expert Rev Anti Infect Ther 2014; 1:627-38. [PMID: 15482160 DOI: 10.1586/14787210.1.4.627] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Influenza has circulated among humans for centuries and kills more people than many newly emerging diseases. The present methods for control of influenza are not adequate, especially for dealing with a pandemic. In the face of a rapidly spreading outbreak, a race to isolate the virus and prepare a vaccine would probably not succeed in time to avoid great losses. Thus, additional anti-infection strategies are needed. Broad cross-protection against widely divergent influenza A subtypes is readily achieved in animals by several means of immunization. How does cross-protection work in animals, and can we apply what we have learned about it to induce broad cross-protection in humans?
Collapse
Affiliation(s)
- Suzanne L Epstein
- Laboratory of Immunology and Developmental Biology, Division of Cellular and Gene Therapies, HFM-730, Office of Cellular, Tissue and Gene Therapies, Center for Biologics Evaluation and Research, Food and Drug Administration, USA.
| |
Collapse
|
45
|
Toback SL, Levin MJ, Block SL, Belshe RB, Ambrose CS, Falloon J. Quadrivalent Ann Arbor strain live-attenuated influenza vaccine. Expert Rev Vaccines 2014; 11:1293-303. [DOI: 10.1586/erv.12.108] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
46
|
|
47
|
Lee YT, Kim KH, Ko EJ, Lee YN, Kim MC, Kwon YM, Tang Y, Cho MK, Lee YJ, Kang SM. New vaccines against influenza virus. Clin Exp Vaccine Res 2013; 3:12-28. [PMID: 24427759 PMCID: PMC3890446 DOI: 10.7774/cevr.2014.3.1.12] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2013] [Revised: 11/15/2013] [Accepted: 11/20/2013] [Indexed: 12/23/2022] Open
Abstract
Vaccination is one of the most effective and cost-benefit interventions that prevent the mortality and reduce morbidity from infectious pathogens. However, the licensed influenza vaccine induces strain-specific immunity and must be updated annually based on predicted strains that will circulate in the upcoming season. Influenza virus still causes significant health problems worldwide due to the low vaccine efficacy from unexpected outbreaks of next epidemic strains or the emergence of pandemic viruses. Current influenza vaccines are based on immunity to the hemagglutinin antigen that is highly variable among different influenza viruses circulating in humans and animals. Several scientific advances have been endeavored to develop universal vaccines that will induce broad protection. Universal vaccines have been focused on regions of viral proteins that are highly conserved across different virus subtypes. The strategies of universal vaccines include the matrix 2 protein, the hemagglutinin HA2 stalk domain, and T cell-based multivalent antigens. Supplemented and/or adjuvanted vaccination in combination with universal target antigenic vaccines would have much promise. This review summarizes encouraging scientific advances in the field with a focus on novel vaccine designs.
Collapse
Affiliation(s)
- Young-Tae Lee
- Center for Inflammation, Immunity & Infection, and Department of Biology, Georgia State University, Atlanta, GA, USA
| | - Ki-Hye Kim
- Center for Inflammation, Immunity & Infection, and Department of Biology, Georgia State University, Atlanta, GA, USA
| | - Eun-Ju Ko
- Center for Inflammation, Immunity & Infection, and Department of Biology, Georgia State University, Atlanta, GA, USA
| | - Yu-Na Lee
- Center for Inflammation, Immunity & Infection, and Department of Biology, Georgia State University, Atlanta, GA, USA
| | - Min-Chul Kim
- Animal and Plant Quarantine Agency, Anyang, Korea
| | - Young-Man Kwon
- Center for Inflammation, Immunity & Infection, and Department of Biology, Georgia State University, Atlanta, GA, USA
| | - Yinghua Tang
- Center for Inflammation, Immunity & Infection, and Department of Biology, Georgia State University, Atlanta, GA, USA
| | - Min-Kyoung Cho
- Center for Inflammation, Immunity & Infection, and Department of Biology, Georgia State University, Atlanta, GA, USA
| | | | - Sang-Moo Kang
- Center for Inflammation, Immunity & Infection, and Department of Biology, Georgia State University, Atlanta, GA, USA
| |
Collapse
|
48
|
Jang YH, Lee EY, Byun YH, Jung EJ, Lee YJ, Lee YH, Lee KH, Lee J, Seong BL. Protective efficacy in mice of monovalent and trivalent live attenuated influenza vaccines in the background of cold-adapted A/X-31 and B/Lee/40 donor strains. Vaccine 2013; 32:535-43. [PMID: 24342248 DOI: 10.1016/j.vaccine.2013.12.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2013] [Revised: 11/19/2013] [Accepted: 12/02/2013] [Indexed: 11/17/2022]
Abstract
Influenza virus continues to take a heavy toll on human health and vaccination remains the mainstay of efforts to reduce the clinical impact imposed by viral infections. Proven successful for establishing live attenuated vaccine donor strains, cold-adapted live attenuated influenza vaccines (CAIVs) have become an attractive modality for controlling the virus infection. Previously, we developed the cold-adapted strains A/X-31 and B/Lee/40 as novel donor strains of CAIVs against influenza A and B viruses. In this study, we investigated the protective immune responses of both mono- and trivalent vaccine formulations in the mouse model. Two type A vaccines and one type B vaccine against A/New Caledonia/20/99 (H1N1), A/Panama/2007/99 (H3N2), and B/Shangdong/7/97 in the background of the A/X-31 ca or B/Lee/40 ca were generated by a reassortment procedure and evaluated for their immunogenicity and protective efficacy. Each monovalent vaccine elicited high levels of serum antibodies and conferred complete protection against homologous wild type virus infection. As compared to the monovalent vaccines, trivalent formulation induced higher levels of type A-specific serum antibodies and slightly lower levels of type B-specific antibodies, suggesting an immunological synergism within type A viruses and an interference in the replication of type B virus. Relatively lower type B-specific immunogenicity in trivalent vaccine formulation could be effectively implemented by increasing the vaccine dose of influenza B virus. These results of immunogenicity, protection efficacy, and immunological synergism between type A vaccines provide an experimental basis for optimal composition of trivalent vaccines for subsequent developments of multivalent CAIVs against seasonal and pandemic influenza viruses.
Collapse
Affiliation(s)
- Yo Han Jang
- Laboratory of Molecular Medicine, Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, South Korea
| | - Eun-Young Lee
- Laboratory of Molecular Medicine, Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, South Korea
| | - Young Ho Byun
- Laboratory of Molecular Medicine, Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, South Korea
| | - Eun-Ju Jung
- Laboratory of Molecular Medicine, Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, South Korea
| | - Yoon Jae Lee
- Laboratory of Molecular Medicine, Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, South Korea
| | - Yun Ha Lee
- Laboratory of Molecular Medicine, Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, South Korea
| | - Kwang-Hee Lee
- Laboratory of Molecular Medicine, Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, South Korea
| | - Jinhee Lee
- Laboratory of Molecular Medicine, Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, South Korea
| | - Baik Lin Seong
- Laboratory of Molecular Medicine, Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, South Korea; Translational Vaccine Research Center, Yonsei University, Seoul, South Korea; Translational Research Center for Protein Function Control, Yonsei University, Seoul, South Korea.
| |
Collapse
|
49
|
Baz M, Luke CJ, Cheng X, Jin H, Subbarao K. H5N1 vaccines in humans. Virus Res 2013; 178:78-98. [PMID: 23726847 PMCID: PMC3795810 DOI: 10.1016/j.virusres.2013.05.006] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2012] [Revised: 04/04/2013] [Accepted: 05/20/2013] [Indexed: 11/28/2022]
Abstract
The spread of highly pathogenic avian H5N1 influenza viruses since 1997 and their virulence for poultry and humans has raised concerns about their potential to cause an influenza pandemic. Vaccines offer the most viable means to combat a pandemic threat. However, it will be a challenge to produce, distribute and implement a new vaccine if a pandemic spreads rapidly. Therefore, efforts are being undertaken to develop pandemic vaccines that use less antigen and induce cross-protective and long-lasting responses, that can be administered as soon as a pandemic is declared or possibly even before, in order to prime the population and allow for a rapid and protective antibody response. In the last few years, several vaccine manufacturers have developed candidate pandemic and pre-pandemic vaccines, based on reverse genetics and have improved the immunogenicity by formulating these vaccines with different adjuvants. Some of the important and consistent observations from clinical studies with H5N1 vaccines are as follows: two doses of inactivated vaccine are generally necessary to elicit the level of immunity required to meet licensure criteria, less antigen can be used if an oil-in-water adjuvant is included, in general antibody titers decline rapidly but can be boosted with additional doses of vaccine and if high titers of antibody are elicited, cross-reactivity against other clades is observed. Prime-boost strategies elicit a more robust immune response. In this review, we discuss data from clinical trials with a variety of H5N1 influenza vaccines. We also describe studies conducted in animal models to explore the possibility of reassortment between pandemic live attenuated vaccine candidates and seasonal influenza viruses, since this is an important consideration for the use of live vaccines in a pandemic setting.
Collapse
Affiliation(s)
- Mariana Baz
- Laboratory of Infectious Diseases, NIAID, NIH, Bethesda, Maryland, USA
| | - Catherine J Luke
- Laboratory of Infectious Diseases, NIAID, NIH, Bethesda, Maryland, USA
| | | | - Hong Jin
- MedImmune, Mountain View, California
| | - Kanta Subbarao
- Laboratory of Infectious Diseases, NIAID, NIH, Bethesda, Maryland, USA
| |
Collapse
|
50
|
Wutzler P, Hardt R, Knuf M, Wahle K. Targeted vaccine selection in influenza vaccination. DEUTSCHES ARZTEBLATT INTERNATIONAL 2013; 110:793-8. [PMID: 24314622 PMCID: PMC3859908 DOI: 10.3238/arztebl.2013.0793] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2012] [Revised: 09/20/2013] [Accepted: 09/20/2013] [Indexed: 11/27/2022]
Abstract
BACKGROUND The main target groups for influenza vaccination are the elderly, the chronically ill, infants, and toddlers. Influenza vaccines are needed that suit the immunological particularities of each of these age and risk groups. Recent years have seen the approval of influenza vaccines that are more immunogenic than before, but whose use in Germany is limited by the restriction of reimbursement to a small number of vaccines. METHODS The Medline database was selectively searched for pertinent literature. RESULTS The suboptimal immunogenicity of conventional influenza vaccines that contain inactivated viral cleavage products and subunits can be markedly improved by the use of squalene-based adjuvant systems, by the integration of viral antigens in virosomal particles, or by intradermal administration. The vaccination of elderly persons with a vaccine containing the adjuvant MF59 was found to lower the risk of hospitalization for influenza or pneumonia by 25% compared to vaccination with a trivalent inactivated vaccine (TIV). On the other hand, the adjuvant ASO3 was found to be associated with an up to 17-fold increase in the frequency of narcolepsy among 4- to 18-year-olds. In a prospective study, a virosomal vaccine lowered the frequency of laboratory-confirmed influenza in vaccinated children by 88% compared to unvaccinated children (2 versus 18 cases per 1000 individuals). A live, attenuated influenza vaccine lowered the rate of disease in children up to age 7 by 48% compared to a TIV (4.2% versus 8.1%). CONCLUSION The newer vaccines possess improved efficacy when used for primary and booster immunization in certain age and risk groups, and they are superior in this respect to conventional vaccines based on viral cleavage products and subunits. The risk/benefit profiles of all currently available vaccines vary depending on the age group or risk group in which they are used.
Collapse
Affiliation(s)
- Peter Wutzler
- Institute of Virology and Antiviral Therapy – University Hospital Jena
| | | | - Markus Knuf
- Department of Child and Adolescent Medicine, Dr. Horst Schmidt Clinic GmbH, Wiesbaden
| | - Klaus Wahle
- German Association of General Practitioners, Münster
| |
Collapse
|