1
|
Nunes ERDM, Zukurov JP, Maricato JT, Sucupira MCA, Diaz RS, Janini LMR. Analysis of HIV-1 protease gene reveals frequent multiple infections followed by recombination among drug treated individuals living in São Paulo and Santos, Brazil. PLoS One 2014; 9:e84066. [PMID: 24404149 PMCID: PMC3880281 DOI: 10.1371/journal.pone.0084066] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2013] [Accepted: 11/11/2013] [Indexed: 11/18/2022] Open
Abstract
The present study investigated the prevalence of HIV-1 multiple infections in a population composed by 47 patients under HAART failure and enrolled at the National DST/AIDS, Program, Ministry of Health, Brazil.Detection of multiple infections was done using a previously published RFLP assay for the HIV-1 protease gene, which is able of distinguishing between infections caused by a single or multiple HIV-1 subtypes. Samples with multiple infections were cloned, and sequence data submitted to phylogenetic analysis. We were able to identify 17 HIV-1 multiple infections out of 47 samples. Multiple infections were mostly composed by a mixture of recombinant viruses (94%), with only one case in which protease gene pure subtypes B and F were recovered. This is the first study that reports the prevalence of multiple infections and intersubtype recombinants in a population undergoing HAART in Brazil. Based on the data there was a steep increase of multiple infections after the introduction of the combined antiretroviral therapy in Brazil. Cases of multiple infections may be associated with HIV-1 genetic diversity through recombination allowing for the generation of viruses showing a combination of resistance mutations.
Collapse
Affiliation(s)
| | - Jean Paulo Zukurov
- Department of Medicine, Federal University of São Paulo, São Paulo, Brazil
| | - Juliana Terzi Maricato
- Department of Microbiology, Immunology and Parasitology, Federal University of São Paulo, São Paulo, Brazil
| | | | | | - Luíz Mário Ramos Janini
- Department of Medicine, Federal University of São Paulo, São Paulo, Brazil
- Department of Microbiology, Immunology and Parasitology, Federal University of São Paulo, São Paulo, Brazil
| |
Collapse
|
2
|
Soares de Oliveira AC, Pessôa de Farias R, da Costa AC, Sauer MM, Bassichetto KC, Oliveira SMS, Costa PR, Tomiyama C, Tomiyama HTI, Sabino EC, Kallas EG, Sanabani SS. Frequency of subtype B and F1 dual infection in HIV-1 positive, Brazilian men who have sex with men. Virol J 2012; 9:223. [PMID: 23021203 PMCID: PMC3499372 DOI: 10.1186/1743-422x-9-223] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2012] [Accepted: 09/27/2012] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND Because various HIV vaccination studies are in progress, it is important to understand how often inter- and intra-subtype co/superinfection occurs in different HIV-infected high-risk groups. This knowledge would aid in the development of future prevention programs. In this cross-sectional study, we report the frequency of subtype B and F1 co-infection in a clinical group of 41 recently HIV-1 infected men who have sex with men (MSM) in São Paulo, Brazil. METHODOLOGY Proviral HIV-1 DNA was isolated from subject's peripheral blood polymorphonuclear leukocytes that were obtained at the time of enrollment. Each subject was known to be infected with a subtype B virus as determined in a previous study. A small fragment of the integrase gene (nucleotide 4255-4478 of HXB2) was amplified by nested polymerase chain reaction (PCR) using subclade F1 specific primers. The PCR results were further confirmed by phylogenetic analysis. Viral load (VL) data were extrapolated from the medical records of each patient. RESULTS For the 41 samples from MSM who were recently infected with subtype B virus, it was possible to detect subclade F1 proviral DNA in five patients, which represents a co-infection rate of 12.2%. In subjects with dual infection, the median VL was 5.3 × 10(4) copies/ML, whereas in MSM that were infected with only subtype B virus the median VL was 3.8 × 10(4) copies/ML (p > 0.8). CONCLUSIONS This study indicated that subtype B and F1 co-infection occurs frequently within the HIV-positive MSM population as suggested by large number of BF1 recombinant viruses reported in Brazil. This finding will help us track the epidemic and provide support for the development of immunization strategies against the HIV.
Collapse
|
3
|
Afkhami-Goli A, Liu SH, Zhu Y, Antony JM, Arab H, Power C. Dual lentivirus infection potentiates neuroinflammation and neurodegeneration: viral copassage enhances neurovirulence. J Neurovirol 2009; 15:139-52. [PMID: 19115133 DOI: 10.1080/13550280802534763] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Infection by multiple lentiviral strains is recognized as a major driving force in the human immunodeficiency virus/acquired immunodeficiency syndrome (HIV/AIDS) epidemic, but the neuropathogenic consequences of multivirus infections remain uncertain. Herein, we investigated the neurovirulence and underlying mechanisms of dual lentivirus infections with distinct viral strains. Experimental feline immunodeficiency virus (FIV) infections were performed using cultured cells and an in vivo model of AIDS neuropathogenesis. Dual infections were comprised of two FIV strains (FIV-Ch and FIV-PPR) as copassaged or superinfected viruses, with subsequent outcome analyses of host immune responses, viral load, neuropathological features, and neurobehavioral performance. Dual infections of feline macrophages resulted in greater IL-1beta (interleukin-1beta), TNF-alpha (tumor necrosis factor alpha), and IDO (indoleamine 2,3-dioxygenase) expression and associated neurotoxic properties. FIV coinfection and sequential superinfection in vivo also induced greater IL-1beta, TNF-alpha, and IDO expression in the basal ganglia (BG) and cortex (CTX), compared to the monovirus- and mock-infected groups, although viral loads were similar in single virus- and dual virus-infected animals. Immunoblot analyses disclosed lower synaptophysin immunoreactivity in the CTX resulting from FIV super- and coinfections. Cholinergic and GABAergic neuronal injury was evident in the CTX of animals with dual FIV infections. With increased glial activation and neuronal loss in dual FIV-infected brains, immunohistochemical analysis also revealed elevated detection of cleaved caspase-3 in dysmorphic neurons, which was associated with worsened neurobehavioral abnormalities among animals infected with the copassaged viruses. Dual lentivirus infections caused an escalation in neuroinflammation and ensuing neurodegeneration, underscoring the contribution of infection by multiple viruses to neuropathogenesis.
Collapse
Affiliation(s)
- Amir Afkhami-Goli
- Departments of Medicine and Medical Microbiology and Immunology, University of Alberta, Alberta, Canada
| | | | | | | | | | | |
Collapse
|
4
|
HIV-1 superinfection in the antiretroviral therapy era: are seroconcordant sexual partners at risk? PLoS One 2009; 4:e5690. [PMID: 19479055 PMCID: PMC2684644 DOI: 10.1371/journal.pone.0005690] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2008] [Accepted: 04/09/2009] [Indexed: 11/19/2022] Open
Abstract
Background Acquisition of more than one strain of human immunodeficiency virus type 1 (HIV-1) has been reported to occur both during and after primary infection, but the risks and repercussions of dual and superinfection are incompletely understood. In this study, we evaluated a longitudinal cohort of chronically HIV-infected men who were sexual partners to determine if individuals acquired their partners' viral strains. Methodology Our cohort of HIV-positive men consisted of 8 couples that identified themselves as long-term sexual partners. Viral sequences were isolated from each subject and analyzed using phylogenetic methods. In addition, strain-specific PCR allowed us to search for partners' viruses present at low levels. Finally, we used computational algorithms to evaluate for recombination between partners' viral strains. Principal Findings/Conclusions All couples had at least one factor associated with increased risk for acquisition of new HIV strains during the study, including detectable plasma viral load, sexually transmitted infections, and unprotected sex. One subject was dually HIV-1 infected, but neither strain corresponded to that of his partner. Three couples' sequences formed monophyletic clusters at the entry visit, with phylogenetic analysis suggesting that one member of the couple had acquired an HIV strain from his identified partner or that both had acquired it from the same source outside their partnership. The 5 remaining couples initially displayed no evidence of dual infection, using phylogenetic analysis and strain-specific PCR. However, in 1 of these couples, further analysis revealed recombinant viral strains with segments of viral genomes in one subject that may have derived from the enrolled partner. Thus, chronically HIV-1 infected individuals may become superinfected with additional HIV strains from their seroconcordant sexual partners. In some cases, HIV-1 superinfection may become apparent when recombinant viral strains are detected.
Collapse
|
5
|
Rousseau CM, Learn GH, Bhattacharya T, Nickle DC, Heckerman D, Chetty S, Brander C, Goulder PJR, Walker BD, Kiepiela P, Korber BT, Mullins JI. Extensive intrasubtype recombination in South African human immunodeficiency virus type 1 subtype C infections. J Virol 2007; 81:4492-500. [PMID: 17314156 PMCID: PMC1900147 DOI: 10.1128/jvi.02050-06] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Recombinant human immunodeficiency virus type 1 (HIV-1) strains containing sequences from different viral genetic subtypes (intersubtype) and different lineages from within the same subtype (intrasubtype) have been observed. A consequence of recombination can be the distortion of the phylogenetic signal. Several intersubtype recombinants have been identified; however, less is known about the frequency of intrasubtype recombination. For this study, near-full-length HIV-1 subtype C genomes from 270 individuals were evaluated for the presence of intrasubtype recombination. A sliding window schema (window, 2 kb; step, 385 bp) was used to partition the aligned sequences. The Shimodaira-Hasegawa test detected significant topological incongruence in 99.6% of the comparisons of the maximum-likelihood trees generated from each sequence partition, a result that could be explained by recombination. Using RECOMBINE, we detected significant levels of recombination using five random subsets of the sequences. With a set of 23 topologically consistent sequences used as references, bootscanning followed by the interactive informative site test defined recombination breakpoints. Using two multiple-comparison correction methods, 47% of the sequences showed significant evidence of recombination in both analyses. Estimated evolutionary rates were revised from 0.51%/year (95% confidence interval [CI], 0.39 to 0.53%) with all sequences to 0.46%/year (95% CI, 0.38 to 0.48%) with the putative recombinants removed. The timing of the subtype C epidemic origin was revised from 1961 (95% CI, 1947 to 1962) with all sequences to 1958 (95% CI, 1949 to 1960) with the putative recombinants removed. Thus, intrasubtype recombinants are common within the subtype C epidemic and these impact analyses of HIV-1 evolution.
Collapse
Affiliation(s)
- Christine M Rousseau
- Department of Microbiology, University of Washington, 1959 NE Pacific Street, Box 358070, Seattle, WA 98195-8070, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Jobes DV, Daoust M, Nguyen VT, Padua A, Sinangil F, Pérez-Losada M, Crandall KA, Oliphant T, Posada D, Rambaut A, Fuchs J, Berman PW. Longitudinal population analysis of dual infection with recombination in two strains of HIV type 1 subtype B in an individual from a Phase 3 HIV vaccine efficacy trial. AIDS Res Hum Retroviruses 2006; 22:968-78. [PMID: 17067266 PMCID: PMC1982842 DOI: 10.1089/aid.2006.22.968] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
This study documents a case of coinfection (simultaneous infection of an individual with two or more strains) of two HIV-1 subtype B strains in an individual from a Phase 3 HIV-1 vaccine efficacy trial, conducted in North American and the Netherlands. We examined 86 full-length gp120 (env) gene sequences from this individual collected from nine different time points over a 20-month period. We estimated evolutionary relationships using maximum likelihood and Bayesian methods and inferred recombination breakpoints and recombinant sequences using phylogenetic and substitutional methods. These analyses identified two strongly supported monophyletic clades (clades A and B) of 14 and 69 sequences each and a small paraphyletic recombinant clade of three sequences. We then studied the genetic characteristics of these lineages by comparing estimates of genetic diversity generated by mutation and recombination and adaptive selection within a coalescent and maximum likelihood framework. Our results suggest significant differences on the evolutionary dynamics of these strains. We then discuss the implications of these results for vaccine development.
Collapse
Affiliation(s)
- David V Jobes
- VaxGen, Inc., South San Francisco, California 94080, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Herbinger KH, Gerhardt M, Piyasirisilp S, Mloka D, Arroyo MA, Hoffmann O, Maboko L, Birx DL, Mmbando D, McCutchan FE, Hoelscher M. Frequency of HIV type 1 dual infection and HIV diversity: analysis of low- and high-risk populations in Mbeya Region, Tanzania. AIDS Res Hum Retroviruses 2006; 22:599-606. [PMID: 16831083 DOI: 10.1089/aid.2006.22.599] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
HIV-1 diversity, frequency of recombinants, and dual infection were determined in two populations with different HIV risk behavior. A high-risk cohort of 600 female bar workers and a normal-risk population of 1,108 antenatal clinic attendees and blood donors were recruited. Behavioral data were assessed and blood for HIV- 1 diagnosis and genotyping was sampled. HIV-1 subtypes were defined through the multiregion hybridization assay (MHA(acd)). HIV-1 prevalence differed significantly among the two populations. The prevalence was 67.8% in the population of bar workers and 17% in the normal-risk population (antenatal care attendees and blood donors). Within the normal-risk population the HIV-1 prevalence was lowest in the group of volunteer blood donors. The frequency of HIV-1 infection in women was 1.7 times higher than in men. The overall subtype distribution was A (8.5%), C (40.8%), D (3.8%), AC (25.4%), AD (5.4%), CD (8.8%), and ACD (7.3%). In the high-risk population there was a higher percentage of HIV-1 recombinant strains (54% vs. 40%, p < 0.05) and a higher frequency of dual infections (19% vs. 9%, p < 0.02) compared to the normal-risk population. High-risk populations may play an important role in the evolution of HIV, as they can provide an opportunity for the virus to coinfect, recombine, and adapt to the host-specific genetic background.
Collapse
Affiliation(s)
- Karl-Heinz Herbinger
- Department of Infectious Diseases and Tropical Medicine, Ludwig-Maximilians-University, Munich, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Yang OO, Daar ES, Jamieson BD, Balamurugan A, Smith DM, Pitt JA, Petropoulos CJ, Richman DD, Little SJ, Brown AJL. Human immunodeficiency virus type 1 clade B superinfection: evidence for differential immune containment of distinct clade B strains. J Virol 2005; 79:860-8. [PMID: 15613314 PMCID: PMC538553 DOI: 10.1128/jvi.79.2.860-868.2005] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Sequential infection with different strains of human immunodeficiency virus type 1 (HIV-1) is a rarely identified phenomenon with important implications for immunopathogenesis and vaccine development. Here, we identify an individual whose good initial control of viremia was lost in association with reduced containment of a superinfecting strain. Subject 2030 presented with acute symptoms of HIV-1 infection with high viremia and an incomplete seroconversion as shown by Western blotting. A low set point of viremia (approximately 1,000 HIV-1 copies/ml) was initially established without drug therapy, but a new higher set point (approximately 40,000 HIV-1 copies/ml) manifested about 5 months after infection. Drug susceptibility testing demonstrated a multidrug-resistant virus initially but a fully sensitive virus after 5 months, and an analysis of pol genotypes showed that these were two phylogenetically distinct strains of virus (strains A and B). Replication capacity assays suggested that the outgrowth of strain B was not due to higher fitness conferred by pol, and env sequences indicated that the two strains had the same R5 coreceptor phenotype. Delineation of CD8+-T-lymphocyte responses against HIV-1 showed a striking pattern of decay of the initial cellular immune responses after superinfection, followed by some adaptation of targeting to new epitopes. An examination of targeted sequences suggested that differences in the recognized epitopes contributed to the poor immune containment of strain B. In conclusion, the rapid overgrowth of a superinfecting strain of HIV-1 of the same subtype raises major concerns for effective vaccine development.
Collapse
Affiliation(s)
- Otto O Yang
- 37-121 Center for Health Sciences, Division of Infectious Diseases, 10833 LeConte Ave., UCLA Medical Center, Los Angeles, CA 90095, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Abstract
OBJECTIVE Sequential acquisition of viral variants, or HIV-1 superinfection, has been proposed to explain the high fractions of recombinant viruses observed in some geographical regions, but only a few cases of superinfection in humans have been reported. Animal models suggest that susceptibility to superinfection may be restricted to a short period of time after initial infection, possibly due to maturation of broad antiviral immune responses. METHODS A mathematical model involving a system of differential equations was developed to identify transmission and superinfection patterns that would lead to the observed global patterns of viral diversity. RESULTS Requirements for a high prevalence of infections involving recombinant viruses include high viral infectivity, the presence of highly sexually active core groups, and introduction of divergent viruses early in the epidemic spread of HIV-1. Restricted superinfection could explain the persistent predominance of single virus subtypes in regions with well-established HIV-1 epidemics. The rate of recombination within individuals was not strongly related to recombinant fractions in populations. CONCLUSIONS HIV-1 superinfection restricted to early HIV-1 infection could account for the high fraction of recombinant virus infections observed in populations. The relationship between recombination in cellular infections and recombinant fractions in populations is complex and depends on epidemiological factors and biological factors that can be modeled.
Collapse
Affiliation(s)
- Kimber L Gross
- San Francisco Department of Public Health, San Francisco, California, USA
| | | | | |
Collapse
|
10
|
Tsui R, Herring BL, Barbour JD, Grant RM, Bacchetti P, Kral A, Edlin BR, Delwart EL. Human immunodeficiency virus type 1 superinfection was not detected following 215 years of injection drug user exposure. J Virol 2004; 78:94-103. [PMID: 14671091 PMCID: PMC303392 DOI: 10.1128/jvi.78.1.94-103.2004] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Evidence for human immunodeficiency virus type 1 (HIV-1) superinfection was sought among 37 HIV-1-positive street-recruited active injection drug users (IDUs) from the San Francisco Bay area. HIV-1 sequences from pairs of samples collected 1 to 12 years apart, spanning a total of 215 years of exposure, were generated at p17 gag, the V3-V5 region of env, and/or the first exon of tat and phylogenetically analyzed. No evidence of HIV-1 superinfection was detected in which a highly divergent HIV-1 variant emerged at a frequency >20% of the serum viral quasispecies. Based on the reported risk behavior of the IDUs and the HIV-1 incidence in uninfected subjects in the same cohort, a total of 3.4 new infections would have been expected if existing infection conferred no protection from superinfection. Adjusted for risk behaviors, the estimated relative risk of superinfection compared with initial infection was therefore 0.0 (95% confidence interval, 0.00, 0.79; P = 0.02), indicating that existing infection conferred a statistically significant level of protection against superinfection with an HIV-1 strain of the same subtype, which was between 21 and 100%.
Collapse
Affiliation(s)
- Rose Tsui
- Blood Systems Research Institute, University of California, San Francisco, San Francisco, California, USA
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Abstract
During the past year, a number of reports have described HIV-1 superinfection in human subjects, defined as the reinfection of an individual with a second heterologous strain of HIV-1. These reports have challenged the assumption that HIV-1-specific immune responses generated during primary infection are protective against subsequent infection and have raised concern, not only with respect to HIV-1-positive individuals engaging in unsafe sex but also from the standpoint of developing effective vaccines. Herein we review the published reports of HIV-1 superinfection and highlight studies providing additional insight into the potential for HIV-1 superinfections to affect the global epidemic.
Collapse
Affiliation(s)
- Todd M Allen
- Partners AIDS Research Center, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA
| | | |
Collapse
|
12
|
Verhofstede C, Demecheleer E, De Cabooter N, Gaillard P, Mwanyumba F, Claeys P, Chohan V, Mandaliya K, Temmerman M, Plum J. Diversity of the human immunodeficiency virus type 1 (HIV-1) env sequence after vertical transmission in mother-child pairs infected with HIV-1 subtype A. J Virol 2003; 77:3050-7. [PMID: 12584330 PMCID: PMC149764 DOI: 10.1128/jvi.77.5.3050-3057.2003] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Although several virologic and immunologic factors associated with an increased risk of perinatal human immunodeficiency virus type 1 (HIV-1) transmission have been described, the mechanism of mother-to-child transmission is still unclear. More specifically, the question of whether selective pressures influence the transmission remains unanswered. The aim of this study was to assess the genetic diversity of the transmitted virus after in utero transmission and after peripartum transmission and to compare the viral heterogeneity in the child with the viral heterogeneity in the mother. To allow a very accurate characterization of the viral heterogeneity in a single sample, limiting-dilution sequencing of a 1016-bp fragment of the env gene was performed. Thirteen children were tested, including 6 with in utero infections and 7 with peripartum infections. Samples were taken the day after birth and at the ages of 6 and 14 weeks. A homogeneous virus population was seen in six (46.2%) infants, of whom two were infected in utero and four were infected peripartum. A more heterogeneous virus population was detected in seven infants (53.8%), four infected in utero and three infected peripartum. The phylogenetic trees of the mother-child pairs presented a whole range of different tree topologies and showed infection of the child by one or more maternal variants. In conclusion, after HIV-1 transmission from mother to child a heterogeneous virus population was detected in approximately one-half of the children examined. Heterogeneous virus populations were found after peripartum infection as well as after in utero infection. Phylogenetic tree topologies argue against selection processes as the major mechanism driving mother-to-child transmission but support the hypothesis that virus variability is mainly driven by the inoculum level and/or exposure time.
Collapse
Affiliation(s)
- Chris Verhofstede
- AIDS Reference Laboratory, Ghent University Hospital, Ghent, Belgium.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Tàpia N, Franco S, Puig-Basagoiti F, Menéndez C, Alonso PL, Mshinda H, Clotet B, Saiz JC, Martínez MA. Influence of human immunodeficiency virus type 1 subtype on mother-to-child transmission. J Gen Virol 2003; 84:607-613. [PMID: 12604812 DOI: 10.1099/vir.0.18754-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The present study was designed to assess whether the subtype of human immunodeficiency virus type 1 (HIV-1) could affect the rate of HIV-1 mother-to-child transmission in a cohort of 31 HIV-1-seropositive pregnant Tanzanian women. In order to assign a subtype to the samples analysed, nucleotide sequencing of the HIV-1 long terminal repeat U3 and C2V3C3 envelope regions was performed from the sera of these 31 pregnant women. Except in three cases, amplification of both regions was achieved in all samples. Subtypes A (n=13, 46 %), C (n=6, 21 %) and D (n=2, 7 %), as well as a number (25 %) of A/C, C/A, D/A and C/D recombinant forms (n=3, 2, 1 and 1, respectively), were identified. Of the 31 HIV-1 seropositive pregnant women analysed, eight (26 %) transmitted HIV-1 to their infants. Among the eight transmitter mothers, four (4 of 13, 31 %) were infected with HIV-1 subtype A, one (1 of 6, 17 %) with HIV-1 subtype C, none (0 of 2, 0 %) with HIV-1 subtype D and three (3 of 7, 43 %) with HIV-1 subtype recombinant A/C. These findings show no significant differences in the mother-to-child transmissibility of HIV-1 subtypes A, C and D and detected recombinants forms.
Collapse
Affiliation(s)
- Natàlia Tàpia
- Fundació irsiCaixa, Hospital Universitari Germans Trias i Pujol, 08916 Badalona, Spain
| | - Sandra Franco
- Liver Unit, Department of Medicine, Institut d'Investigacions Biomèdiques August Pí i Sunyer (IDIBAPS), Hospital Clinic, Facultad de Medicina, Universidad de Barcelona, Spain
| | - Francesc Puig-Basagoiti
- Liver Unit, Department of Medicine, Institut d'Investigacions Biomèdiques August Pí i Sunyer (IDIBAPS), Hospital Clinic, Facultad de Medicina, Universidad de Barcelona, Spain
| | - Clara Menéndez
- Unitat d'Epidemiologia i Bioestadística, Department of Medicine, Institut d'Investigacions Biomèdiques August Pí i Sunyer (IDIBAPS), Hospital Clinic, Facultad de Medicina, Universidad de Barcelona, Spain
| | - Pedro Luis Alonso
- Unitat d'Epidemiologia i Bioestadística, Department of Medicine, Institut d'Investigacions Biomèdiques August Pí i Sunyer (IDIBAPS), Hospital Clinic, Facultad de Medicina, Universidad de Barcelona, Spain
| | - Hassan Mshinda
- Ifakara Health Research and Development Centre, Ifakara, Tanzania
| | - Bonaventura Clotet
- Fundació irsiCaixa, Hospital Universitari Germans Trias i Pujol, 08916 Badalona, Spain
| | - Juan Carlos Saiz
- Liver Unit, Department of Medicine, Institut d'Investigacions Biomèdiques August Pí i Sunyer (IDIBAPS), Hospital Clinic, Facultad de Medicina, Universidad de Barcelona, Spain
| | - Miguel Angel Martínez
- Fundació irsiCaixa, Hospital Universitari Germans Trias i Pujol, 08916 Badalona, Spain
| |
Collapse
|
14
|
Harris ME, Serwadda D, Sewankambo N, Kim B, Kigozi G, Kiwanuka N, Phillips JB, Wabwire F, Meehen M, Lutalo T, Lane JR, Merling R, Gray R, Wawer M, Birx DL, Robb ML, McCutchan FE. Among 46 near full length HIV type 1 genome sequences from Rakai District, Uganda, subtype D and AD recombinants predominate. AIDS Res Hum Retroviruses 2002; 18:1281-90. [PMID: 12487816 DOI: 10.1089/088922202320886325] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The impact of HIV-1 genetic diversity on candidate vaccines is uncertain. To minimize genetic diversity in the evaluation of HIV-1 vaccines, vaccine products must be matched to the predominant subtype in a vaccine cohort. To that end, full genome sequencing was used to detect and characterize HIV-1 subtypes and recombinant strains from individuals in Rakai District, Uganda. DNA extracted from peripheral blood mononuclear cells (PMBC) was PCR amplified using primers in the long terminal repeats (LTRs) to generate nearly full length genomes. Amplicons were directly sequenced with dye terminators and automated sequencers. Sequences were phylogenetically analyzed and recombinants were detected and mapped with distance scan and bootscan. Among 46 sequences, 54% were subtype D, 15% were subtype A, and 30% were recombinant. All recombinants were individually unique, and most combined subtypes A and D. Subtype D comprised more than 70% of all the HIV-1 genomes in Rakai when both pure subtypes and recombinants were considered. Candidate vaccines based on HIV-1 subtype D would be appropriate for evaluation in Rakai District, Uganda.
Collapse
Affiliation(s)
- Matthew E Harris
- Walter Reed Army Institute of Research, Silver Spring, Maryland 20910, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Ramos A, Hu DJ, Nguyen L, Phan KO, Vanichseni S, Promadej N, Choopanya K, Callahan M, Young NL, McNicholl J, Mastro TD, Folks TM, Subbarao S. Intersubtype human immunodeficiency virus type 1 superinfection following seroconversion to primary infection in two injection drug users. J Virol 2002; 76:7444-52. [PMID: 12097556 PMCID: PMC136380 DOI: 10.1128/jvi.76.15.7444-7452.2002] [Citation(s) in RCA: 127] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In this study, we describe two cases of human immunodeficiency virus type 1 (HIV-1) intersubtype superinfection with CRF01_AE and subtype B strains, which occurred in two injection drug users participating in a prospective cohort study in Bangkok, Thailand. In both cases, the superinfecting strain was detected by molecular and serologic analyses several weeks after complete seroconversion to the primary infection with a strain belonging to a different subtype. Superinfection occurred despite specific T-cell and humoral antibody responses to the primary virus. In both cases, cross-subtype immune responses were limited or absent prior to the second infection. These data show that, in some individuals, the quality and quantity of the immune response elicited by primary HIV-1 infection may not protect against superinfection. This finding has important implications for vaccine design. HIV-1 vaccines, at a minimum, will need to include potent, broadly protective, conserved immunogens derived from several group M subtypes.
Collapse
Affiliation(s)
- Artur Ramos
- Centers for Disease Control and Prevention, Atlanta, Georgia 30333, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Eshleman SH, Gonzales MJ, Becker-Pergola G, Cunningham SC, Guay LA, Jackson JB, Shafer RW. Identification of Ugandan HIV type 1 variants with unique patterns of recombination in pol involving subtypes A and D. AIDS Res Hum Retroviruses 2002; 18:507-11. [PMID: 12015904 PMCID: PMC2573392 DOI: 10.1089/088922202317406655] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Most HIV-1 infections in Uganda are caused by subtypes A and D. The prevalence of recombination and the sites of specific breakpoints between these subtypes have not been reported. HIV-1 pol sequences encoding protease (amino acids 1-99) and reverse transcriptase (amino acids 1-324) from 102 pregnant Ugandan women were analyzed by the Recombinant Identification Program, SimPlot, and examination of phylogenetically informative sites to identify sites of recombination between sequence segments belonging to different subtypes. Thirteen percent (13 of 102) of the pol sequences contained strong evidence of recombination between subtypes A and D. At least nine different patterns of recombination were observed. Five women infected with a recombinant virus transmitted the recombinant virus perinatally. In this population-based study, intersubtype recombinants were common. The large number of different types of pol recombinants identified suggests that recombination occurs readily in the pol region. Perinatal transmission of the recombinant viruses demonstrates their evolutionary stability.
Collapse
Affiliation(s)
- Susan H Eshleman
- Department of Pathology, Johns Hopkins Medical Institutions, Ross Building 646, 720 Rutland Avenue, Baltimore, MD 21205, USA.
| | | | | | | | | | | | | |
Collapse
|
17
|
Blackard JT, Cohen DE, Mayer KH. Human immunodeficiency virus superinfection and recombination: current state of knowledge and potential clinical consequences. Clin Infect Dis 2002; 34:1108-14. [PMID: 11915000 DOI: 10.1086/339547] [Citation(s) in RCA: 124] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2001] [Revised: 12/19/2001] [Indexed: 11/03/2022] Open
Abstract
Superinfection with multiple strains or subtypes of the human and simian immunodeficiency viruses has been documented. Recent increases in the prevalences of both unprotected anal intercourse and sexually transmitted diseases among men who have sex with men indicate that these men continue to practice unsafe sex and, therefore, are at risk for superinfection with the human immunodeficiency virus (HIV). Recurrent exposure to HIV among seropositive individuals who engage in high-risk behaviors can have serious consequences, because superinfection is a necessary first step for viral recombination to occur. Recombination may produce more virulent viruses, drug-resistant viruses, or viruses with altered cell tropism. Additionally, recombinant viruses and superinfection can accelerate disease progression and increase the likelihood of sexual transmission by increasing virus load in the blood and genital tract. The extent of superinfection and recombination in persons living with HIV is unknown. The implications of HIV superinfection and the generation of recombinant viruses are discussed.
Collapse
Affiliation(s)
- Jason T Blackard
- Research and Evaluation Department, Fenway Community Health, Boston, MA, 02115, USA.
| | | | | |
Collapse
|
18
|
Mracna M, Becker-Pergola G, Dileanis J, Guay LA, Cunningham S, Jackson JB, Eshleman SH. Performance of Applied Biosystems ViroSeq HIV-1 Genotyping System for sequence-based analysis of non-subtype B human immunodeficiency virus type 1 from Uganda. J Clin Microbiol 2001; 39:4323-7. [PMID: 11724839 PMCID: PMC88543 DOI: 10.1128/jcm.39.12.4323-4327.2001] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Applied Biosystems ViroSeq HIV-1 Genotyping System is a commercially available, integrated system for sequence-based analysis of drug resistance mutations in human immunodeficiency virus type 1 (HIV-1) protease and reverse transcriptase (RT). We evaluated the performance of this system for analysis of non-subtype B HIV-1 by analyzing plasma samples from Ugandan women and infants. Plasma samples were obtained from 105 women and 25 infants enrolled in a Ugandan clinical trial. HIV-1 analysis was performed with the ViroSeq system according to the manufacturer's instructions, except that the volume of plasma used for analysis was less than the recommended 0.5 ml for some samples. Viral loads ranged from 2,313 to 2,336,400 copies/ml. PCR products suitable for sequencing were amplified from all samples tested. Complete sequences for protease (amino acids 1 to 99) and RT (amino acids 1 to 320) were obtained for 102 of 105 (97%) of the maternal samples tested and all 25 of the infant samples tested. Complete double-stranded sequences were obtained for 90 of 105 (86%) of the maternal samples tested and 22 of 25 (88%) of the infant samples tested. The sequences obtained with this system were used for HIV-1 subtyping. The subtypes identified were A, C, D, and A/D recombinant HIV-1. The performances of the seven sequencing primers were similar for the subtypes examined. The ViroSeq system performs well for analysis of Ugandan plasma samples with subtypes A, C, D, and A/D recombinant HIV-1. The availability of this genotyping system should facilitate studies of HIV-1 drug resistance in countries where these subtypes are prevalent.
Collapse
Affiliation(s)
- M Mracna
- Department of Pathology, The Johns Hopkins Medical Institutions, Baltimore, Maryland 21205, USA
| | | | | | | | | | | | | |
Collapse
|