1
|
Wang J, Lu Y, Carr C, Dhandapani KM, Brann DW. Senolytic therapy is neuroprotective and improves functional outcome long-term after traumatic brain injury in mice. Front Neurosci 2023; 17:1227705. [PMID: 37575310 PMCID: PMC10416099 DOI: 10.3389/fnins.2023.1227705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 07/10/2023] [Indexed: 08/15/2023] Open
Abstract
Introduction Chronic neuroinflammation can exist for months to years following traumatic brain injury (TBI), although the underlying mechanisms remain poorly understood. Methods In the current study, we used a controlled cortical impact mouse model of TBI to examine whether proinflammatory senescent cells are present in the brain long-term (months) after TBI and whether ablation of these cells via administration of senolytic drugs can improve long-term functional outcome after TBI. The results revealed that astrocytes and microglia in the cerebral cortex, hippocampus, corpus callosum and lateral posterior thalamus colocalized the senescent cell markers, p16Ink4a or p21Cip1/Waf1 at 5 weeks post injury (5wpi) and 4 months post injury (4mpi) in a controlled cortical impact (CCI) model. Intermittent administration of the senolytic drugs, dasatinib and quercetin (D + Q) beginning 1-month after TBI for 13 weeks significantly ablated p16Ink4a-positive- and p21Cip1/Waf1-positive-cells in the brain of TBI animals, and significantly reduced expression of the major senescence-associated secretory phenotype (SASP) pro-inflammatory factors, interleukin-1β and interleukin-6. Senolytic treatment also significantly attenuated neurodegeneration and enhanced neuron number at 18 weeks after TBI in the ipsilateral cortex, hippocampus, and lateral posterior thalamus. Behavioral testing at 18 weeks after TBI further revealed that senolytic therapy significantly rescued defects in spatial reference memory and recognition memory, as well as depression-like behavior in TBI mice. Discussion Taken as a whole, these findings indicate there is robust and widespread induction of senescent cells in the brain long-term after TBI, and that senolytic drug treatment begun 1-month after TBI can efficiently ablate the senescent cells, reduce expression of proinflammatory SASP factors, reduce neurodegeneration, and rescue defects in reference memory, recognition memory, and depressive behavior.
Collapse
Affiliation(s)
| | | | | | | | - Darrell W. Brann
- Department of Neurosurgery, Medical College of Georgia, Augusta University, Augusta, GA, United States
| |
Collapse
|
2
|
Sudhakar SK. Are GABAergic drugs beneficial in providing neuroprotection after traumatic brain injuries? A comprehensive literature review of preclinical studies. Front Neurol 2023; 14:1109406. [PMID: 36816561 PMCID: PMC9931759 DOI: 10.3389/fneur.2023.1109406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Accepted: 01/10/2023] [Indexed: 02/05/2023] Open
Abstract
Traumatic brain injuries (TBI) caused by physical impact to the brain can adversely impact the welfare and well-being of the affected individuals. One of the leading causes of mortality and dysfunction in the world, TBI is a major public health problem facing the human community. Drugs that target GABAergic neurotransmission are commonly used for sedation in clinical TBI yet their potential to cause neuroprotection is unclear. In this paper, I have performed a rigorous literature review of the neuroprotective effects of drugs that increase GABAergic currents based on the results reported in preclinical literature. The drugs covered in this review include the following: propofol, benzodiazepines, barbiturates, isoflurane, and other drugs that are agonists of GABAA receptors. A careful review of numerous preclinical studies reveals that these drugs fail to produce any neuroprotection after a primary impact to the brain. In numerous circumstances, they could be detrimental to neuroprotection by increasing the size of the contusional brain tissue and by severely interfering with behavioral and functional recovery. Therefore, anesthetic agents that work by enhancing the effect of neurotransmitter GABA should be administered with caution of TBI patients until a clear and concrete picture of their neuroprotective efficacy emerges in the clinical literature.
Collapse
Affiliation(s)
- Shyam Kumar Sudhakar
- Division of Sciences, School of Interwoven Arts and Sciences, Krea University, Sri City, Andhra Pradesh, India
| |
Collapse
|
3
|
Karakis I, Boualam N, Moura LM, Howard DH. Quality of life and functional limitations in persons with epilepsy. Epilepsy Res 2023; 190:107084. [PMID: 36657252 DOI: 10.1016/j.eplepsyres.2023.107084] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 12/22/2022] [Accepted: 01/09/2023] [Indexed: 01/15/2023]
Abstract
OBJECTIVE Epilepsy can reduce quality of life (QOL), functionality, and social participation, but these effects have not been adequately quantified in large, population-based, controlled studies. We sought to evaluate the impact of epilepsy on patients' QOL and employment outcomes. METHODS In this cross-sectional study we used nationally representative, pooled data from the Medical Expenditure Panel Survey (MEPS) household component files for 2010-2018. MEPS is a population-based survey of U.S. community-dwelling persons. We included respondents with condition file records for epilepsy. We also analyzed respondents with records for seizure. The primary outcomes were short form-12 physical and mental health scores. Secondary outcomes included self-rated health status, employment status, educational attainment, school/household/work limitations, and missed workdays. We compared these outcomes between persons with epilepsy (PWE) and age- and gender-matched controls. RESULTS We identified 1078 people with epilepsy, 2344 seizure cases, and 3422 cases of either condition (persons with epilepsy and/or seizures). Epilepsy was associated with a decrease of - 4.0 (95% CI: -5.1 to -2.8) points in SF-12 physical health scores and - 3.1 (95% CI: -4.2 to -1.9) in SF-12 mental health scores. Epilepsy was also associated with decreases in the likelihood of reporting good/very good/excellent health status (-13.3 [95% CI: -16.1 to -10.4] percentage points). Epilepsy was also associated with adverse employment-related outcomes. Specifically, PWE were 17.9 (95% CI: 14.3-21.4) percentage points more likely to report that they had work or household limitations. The associations between outcomes and epilepsy were, in most cases, larger than those between outcomes and other common, chronic conditions. SIGNIFICANCE Epilepsy is associated with worse quality of life and employment-related outcomes. Interventions should aim to improve functioning and patients' ability to maintain employment.
Collapse
Affiliation(s)
- Ioannis Karakis
- Department of Neurology, Emory University School of Medicine, Atlanta, Georgia.
| | - Nada Boualam
- Department of Health Policy, Emory University School of Medicine, Atlanta, Georgia
| | - Lidia Mvr Moura
- Department of Neurology, Massachusetts General Hospital, Boston, Massachusetts. Department of Neurology, Harvard Medical School, Boston, MA, USA
| | - David H Howard
- Department of Health Policy, Emory University School of Medicine, Atlanta, Georgia
| |
Collapse
|
4
|
Shishmanova-Doseva M, Atanasova D, Ioanidu L, Uzunova Y, Atanasova M, Peychev L, Tchekalarova J. The anticonvulsant effect of chronic treatment with topiramate after pilocarpine-induced status epilepticus is accompanied by a suppression of comorbid behavioral impairments and robust neuroprotection in limbic regions in rats. Epilepsy Behav 2022; 134:108802. [PMID: 35792414 DOI: 10.1016/j.yebeh.2022.108802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 06/04/2022] [Accepted: 06/07/2022] [Indexed: 11/30/2022]
Abstract
Epilepsy is a widespread neurological disorder frequently associated with a lot of comorbidities. The present study aimed to evaluate the effects of the antiseizure medication topiramate (TPM) on spontaneous motor seizures, the pathogenesis of comorbid mood and cognitive impairments, hippocampal neuronal loss, and oxidative stress and inflammation in a rat model of temporal lobe epilepsy (TLE). Vehicle/TPM treatment (80 mg/kg, p.o.) was administered 3 h after the pilocarpine (pilo)-induced status epilepticus (SE) and continued for up to 12 weeks in Wistar rats. The chronic TPM treatment caused side effects in naïve rats, including memory disturbance, anxiety, and depressive-like responses. However, the anticonvulsant effect of this drug, administered during epileptogenesis, was accompanied by beneficial activity against comorbid behavioral impairments. The drug treatment suppressed the SE-induced neuronal damage in limbic structures, including the dorsal (CA1 and CA2 subfield), the ventral (CA1, CA2 and CA3) hippocampus, the basolateral amygdala, and the piriform cortex, while was ineffective against the surge in the oxidative stress and inflammation. Our results suggest that neuroprotection is an essential mechanism of TPM against spontaneous generalized seizures and concomitant emotional and cognitive impairments.
Collapse
Affiliation(s)
- Michaela Shishmanova-Doseva
- Department of Pharmacology, Toxicology and Pharmacotherapy, Medical University of Plovdiv, Plovdiv 4002, Bulgaria.
| | - Dimitrinka Atanasova
- Institute of Neurobiology, Bulgarian Academy of Sciences (BAS), Sofia 1113, Bulgaria; Department of Anatomy, Faculty of Medicine, Trakia University, Stara Zagora 6003, Bulgaria
| | - Lyubka Ioanidu
- Department of Bioorganic Chemistry, Medical University of Plovdiv, Plovdiv 4002, Bulgaria
| | - Yordanka Uzunova
- Department of Bioorganic Chemistry, Medical University of Plovdiv, Plovdiv 4002, Bulgaria
| | - Milena Atanasova
- Department of Biology, Medical University of Pleven, Pleven 5800, Bulgaria
| | - Lyudmil Peychev
- Department of Pharmacology, Toxicology and Pharmacotherapy, Medical University of Plovdiv, Plovdiv 4002, Bulgaria
| | - Jana Tchekalarova
- Institute of Neurobiology, Bulgarian Academy of Sciences (BAS), Sofia 1113, Bulgaria.
| |
Collapse
|
5
|
Aydin S, Yazici ZG, Kilic C, Ercelen Ozozturk B, Kilic FS. An overview of the behavioral, neurobiological and morphological effects of topiramate in rats exposed to chronic unpredictable mild stress. Eur J Pharmacol 2021; 912:174578. [PMID: 34695423 DOI: 10.1016/j.ejphar.2021.174578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 10/07/2021] [Accepted: 10/18/2021] [Indexed: 10/20/2022]
Abstract
The environmental psychological stress causes depressive disorders. Stress causes many neurobiological, neurodegenerative changes in brain. Topiramate (TPM) is used in the treatment of epilepsy and psychiatric diseases. However, there are conflicting findings that TPM disrupts cognitive functions. We aimed to investigate the effects of TPM on depression, anxiety, learning and memory as well as neurobiological, morphological changes in rats exposed to chronic unpredictable mild stress (CUMS). After CUMS was formed by random application of nine mild stressors for 45 days, TPM (at doses of 0.1, 1, 10, 100 mg/kg) was administered for 21 days. Sucrose preference, locomotor activity, forced swimming, elevated plus maze and Morris water maze tests were performed. Corticosterone, BDNF (Brain-derived neurotrophic factor) and glutamate levels and volumes of hippocampus were evaluated. Body weights of the rats were measured. Immobilization time increased in CUMS, CUMS + TPM0.1 in forced swimming test and time spent in platform quadrant increased in Control + TPM1, CUMS, CUMS + TPM0.1, CUMS + TPM1 in Morris water maze test. Control + TPM1 decreased distance to platform in Morris water maze while CUMS + TPM100 increased. Learning is impaired in CUMS + TPM100 while it is improved in Control + TPM1. BDNF levels increased in CUMS and glutamate levels increased in CUMS, CUMS + TPM10. Body weight decreased in CUMS, CUMS + TPM0.1, CUMS + TPM1, CUMS + TPM100. Hippocampus volumes increased in CUMS. In conclusion, CUMS improved cognition and this finding was supported by the increase of BDNF levels and volume of hippocampus. TPM 1 mg/kg improved cognition in non-stressed rats. TPM 0.1 and 1 mg/kg improved while TPM 100 mg/kg impaired memory in rats exposed to stress.
Collapse
Affiliation(s)
- Sule Aydin
- Eskisehir Osmangazi University, Faculty of Medicine, Department of Pharmacology, Meselik Kampusu, Eskisehir, Turkey.
| | - Zeynep Gul Yazici
- Eskisehir Osmangazi University, Faculty of Medicine, Department of Pharmacology, Meselik Kampusu, Eskisehir, Turkey.
| | - Cansu Kilic
- Eskisehir Osmangazi University, Faculty of Medicine, Department of Pharmacology, Meselik Kampusu, Eskisehir, Turkey.
| | | | - Fatma Sultan Kilic
- Eskisehir Osmangazi University, Faculty of Medicine, Department of Pharmacology, Meselik Kampusu, Eskisehir, Turkey.
| |
Collapse
|
6
|
Kobayashi K, Liu C, Jonas RA, Ishibashi N. The Current Status of Neuroprotection in Congenital Heart Disease. CHILDREN 2021; 8:children8121116. [PMID: 34943311 PMCID: PMC8700367 DOI: 10.3390/children8121116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 11/26/2021] [Accepted: 11/29/2021] [Indexed: 11/16/2022]
Abstract
Neurological deficits are a serious and common sequelae of congenital heart disease (CHD). While their underlying mechanisms have not been fully characterized, their manifestations are well-known and understood to persist through adulthood. Development of therapies to address or prevent these deficits are critical to attenuate future morbidity and improve quality of life. In this review, we aim to summarize the current status of neuroprotective therapy in CHD. Through an exploration of present research in the pre-operative, intra-operative, and post-operative phases of patient management, we will describe existing clinical and bench efforts as well as current endeavors underway within this research area.
Collapse
Affiliation(s)
- Kei Kobayashi
- Center for Neuroscience Research, Sheikh Zayed Institute for Pediatric Surgical Innovation, Children’s National Hospital, Washington, DC 20010, USA; (K.K.); (C.L.); (R.A.J.)
- Children’s National Heart Institute, Children’s National Hospital, Washington, DC 20010, USA
| | - Christopher Liu
- Center for Neuroscience Research, Sheikh Zayed Institute for Pediatric Surgical Innovation, Children’s National Hospital, Washington, DC 20010, USA; (K.K.); (C.L.); (R.A.J.)
- School of Medicine, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Richard A. Jonas
- Center for Neuroscience Research, Sheikh Zayed Institute for Pediatric Surgical Innovation, Children’s National Hospital, Washington, DC 20010, USA; (K.K.); (C.L.); (R.A.J.)
- Children’s National Heart Institute, Children’s National Hospital, Washington, DC 20010, USA
- School of Medicine and Health Science, George Washington University, Washington, DC 20052, USA
| | - Nobuyuki Ishibashi
- Center for Neuroscience Research, Sheikh Zayed Institute for Pediatric Surgical Innovation, Children’s National Hospital, Washington, DC 20010, USA; (K.K.); (C.L.); (R.A.J.)
- Children’s National Heart Institute, Children’s National Hospital, Washington, DC 20010, USA
- School of Medicine and Health Science, George Washington University, Washington, DC 20052, USA
- Correspondence:
| |
Collapse
|
7
|
Beitchman JA, Lifshitz J, Harris NG, Thomas TC, Lafrenaye AD, Hånell A, Dixon CE, Povlishock JT, Rowe RK. Spatial Distribution of Neuropathology and Neuroinflammation Elucidate the Biomechanics of Fluid Percussion Injury. Neurotrauma Rep 2021; 2:59-75. [PMID: 34223546 PMCID: PMC8240834 DOI: 10.1089/neur.2020.0046] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Diffuse brain injury is better described as multi-focal, where pathology can be found adjacent to seemingly uninjured neural tissue. In experimental diffuse brain injury, pathology and pathophysiology have been reported far more lateral than predicted by the impact site. We hypothesized that local thickening of the rodent skull at the temporal ridges serves to focus the intracranial mechanical forces experienced during brain injury and generate predictable pathology. We demonstrated local thickening of the skull at the temporal ridges using contour analysis on magnetic resonance imaging. After diffuse brain injury induced by midline fluid percussion injury (mFPI), pathological foci along the anterior-posterior length of cortex under the temporal ridges were evident acutely (1, 2, and 7 days) and chronically (28 days) post-injury by deposition of argyophilic reaction product. Area CA3 of the hippocampus and lateral nuclei of the thalamus showed pathological change, suggesting that mechanical forces to or from the temporal ridges shear subcortical regions. A proposed model of mFPI biomechanics suggests that injury force vectors reflect off the skull base and radiate toward the temporal ridge, thereby injuring ventral thalamus, dorsolateral hippocampus, and sensorimotor cortex. Surgically thinning the temporal ridge before injury reduced injury-induced inflammation in the sensorimotor cortex. These data build evidence for temporal ridges of the rodent skull to contribute to the observed pathology, whether by focusing extracranial forces to enter the cranium or intracranial forces to escape the cranium. Pre-clinical investigations can take advantage of the predicted pathology to explore injury mechanisms and treatment efficacy.
Collapse
Affiliation(s)
- Joshua A Beitchman
- BARROW Neurological Institute at Phoenix Children's Hospital, Phoenix, Arizona, USA.,Child Health, University of Arizona College of Medicine-Phoenix, Phoenix, Arizona, USA.,Midwestern University, Glendale, Arizona, USA
| | - Jonathan Lifshitz
- BARROW Neurological Institute at Phoenix Children's Hospital, Phoenix, Arizona, USA.,Child Health, University of Arizona College of Medicine-Phoenix, Phoenix, Arizona, USA.,Arizona State University, Tempe, Arizona, USA.,Phoenix VA Health Care System, Phoenix, Arizona, USA
| | - Neil G Harris
- UCLA Brain Injury Research Center, Department of Neurosurgery, and Intellectual Development and Disabilities Research Center, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, California, USA
| | - Theresa Currier Thomas
- BARROW Neurological Institute at Phoenix Children's Hospital, Phoenix, Arizona, USA.,Child Health, University of Arizona College of Medicine-Phoenix, Phoenix, Arizona, USA.,Arizona State University, Tempe, Arizona, USA.,Phoenix VA Health Care System, Phoenix, Arizona, USA
| | | | - Anders Hånell
- Virginia Commonwealth University, Richmond, Virginia, USA.,Uppsala University Hospital, Uppsala, Sweden
| | | | | | - Rachel K Rowe
- BARROW Neurological Institute at Phoenix Children's Hospital, Phoenix, Arizona, USA.,Child Health, University of Arizona College of Medicine-Phoenix, Phoenix, Arizona, USA.,Phoenix VA Health Care System, Phoenix, Arizona, USA
| |
Collapse
|
8
|
Klein P, Friedman A, Hameed MQ, Kaminski RM, Bar-Klein G, Klitgaard H, Koepp M, Jozwiak S, Prince DA, Rotenberg A, Twyman R, Vezzani A, Wong M, Löscher W. Repurposed molecules for antiepileptogenesis: Missing an opportunity to prevent epilepsy? Epilepsia 2020; 61:359-386. [PMID: 32196665 PMCID: PMC8317585 DOI: 10.1111/epi.16450] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 01/26/2020] [Accepted: 01/27/2020] [Indexed: 12/11/2022]
Abstract
Prevention of epilepsy is a great unmet need. Acute central nervous system (CNS) insults such as traumatic brain injury (TBI), cerebrovascular accidents (CVA), and CNS infections account for 15%-20% of all epilepsy. Following TBI and CVA, there is a latency of days to years before epilepsy develops. This allows treatment to prevent or modify postinjury epilepsy. No such treatment exists. In animal models of acquired epilepsy, a number of medications in clinical use for diverse indications have been shown to have antiepileptogenic or disease-modifying effects, including medications with excellent side effect profiles. These include atorvastatin, ceftriaxone, losartan, isoflurane, N-acetylcysteine, and the antiseizure medications levetiracetam, brivaracetam, topiramate, gabapentin, pregabalin, vigabatrin, and eslicarbazepine acetate. In addition, there are preclinical antiepileptogenic data for anakinra, rapamycin, fingolimod, and erythropoietin, although these medications have potential for more serious side effects. However, except for vigabatrin, there have been almost no translation studies to prevent or modify epilepsy using these potentially "repurposable" medications. We may be missing an opportunity to develop preventive treatment for epilepsy by not evaluating these medications clinically. One reason for the lack of translation studies is that the preclinical data for most of these medications are disparate in terms of types of injury, models within different injury type, dosing, injury-treatment initiation latencies, treatment duration, and epilepsy outcome evaluation mode and duration. This makes it difficult to compare the relative strength of antiepileptogenic evidence across the molecules, and difficult to determine which drug(s) would be the best to evaluate clinically. Furthermore, most preclinical antiepileptogenic studies lack information needed for translation, such as dose-blood level relationship, brain target engagement, and dose-response, and many use treatment parameters that cannot be applied clinically, for example, treatment initiation before or at the time of injury and dosing higher than tolerated human equivalent dosing. Here, we review animal and human antiepileptogenic evidence for these medications. We highlight the gaps in our knowledge for each molecule that need to be filled in order to consider clinical translation, and we suggest a platform of preclinical antiepileptogenesis evaluation of potentially repurposable molecules or their combinations going forward.
Collapse
Affiliation(s)
- Pavel Klein
- Mid-Atlantic Epilepsy and Sleep Center, Bethesda, Maryland
| | - Alon Friedman
- Departments of Physiology and Cell Biology, and Brain and Cognitive Science, Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beer-Sheva, Israel
- Departments of Medical Neuroscience and Brain Repair Center, Dalhousie University, Halifax, Canada
| | - Mustafa Q. Hameed
- Neuromodulation Program, Division of Epilepsy and Clinical Neurophysiology, Department of Neurology, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts
| | - Rafal M. Kaminski
- Neurosymptomatic Domains Section, Roche Pharma Research & Early Development, Roche Innovation Center, Basel, Switzerland
| | - Guy Bar-Klein
- McKusick-Nathans Institute of Genetic Medicine, Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Henrik Klitgaard
- Neurosciences Therapeutic Area, UCB Pharma, Braine-l’Alleud, Belgium
| | - Mathias Koepp
- Department of Clinical and Experimental Epilepsy, University College London Institute of Neurology, London, UK
| | - Sergiusz Jozwiak
- Department of Pediatric Neurology, Warsaw Medical University, Warsaw, Poland
| | - David A. Prince
- Neurology and the Neurological Sciences, Stanford University School of Medicine, Stanford, California
| | - Alexander Rotenberg
- Neuromodulation Program, Division of Epilepsy and Clinical Neurophysiology, Department of Neurology, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts
| | | | - Annamaria Vezzani
- Department of Neuroscience, Mario Negri Institute for Pharmacological Research, Scientific Institute for Research and Health Care, Milan, Italy
| | - Michael Wong
- Department of Neurology, Washington University School of Medicine, St Louis, Missouri
| | - Wolfgang Löscher
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine, Hannover, Germany
- Center for Systems Neuroscience, Hannover, Germany
| |
Collapse
|
9
|
Sudhakar SK, Choi TJ, Ahmed OJ. Biophysical Modeling Suggests Optimal Drug Combinations for Improving the Efficacy of GABA Agonists after Traumatic Brain Injuries. J Neurotrauma 2019; 36:1632-1645. [PMID: 30484362 PMCID: PMC6531909 DOI: 10.1089/neu.2018.6065] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Traumatic brain injuries (TBI) lead to dramatic changes in the surviving brain tissue. Altered ion concentrations, coupled with changes in the expression of membrane-spanning proteins, create a post-TBI brain state that can lead to further neuronal loss caused by secondary excitotoxicity. Several GABA receptor agonists have been tested in the search for neuroprotection immediately after an injury, with paradoxical results. These drugs not only fail to offer neuroprotection, but can also slow down functional recovery after TBI. Here, using computational modeling, we provide a biophysical hypothesis to explain these observations. We show that the accumulation of intracellular chloride ions caused by a transient upregulation of Na+-K+-2Cl- (NKCC1) co-transporters as observed following TBI, causes GABA receptor agonists to lead to excitation and depolarization block, rather than the expected hyperpolarization. The likelihood of prolonged, excitotoxic depolarization block is further exacerbated by the extremely high levels of extracellular potassium seen after TBI. Our modeling results predict that the neuroprotective efficacy of GABA receptor agonists can be substantially enhanced when they are combined with NKCC1 co-transporter inhibitors. This suggests a rational, biophysically principled method for identifying drug combinations for neuroprotection after TBI.
Collapse
Affiliation(s)
| | - Thomas J. Choi
- Department of Psychology, University of Michigan, Ann Arbor, Michigan
| | - Omar J. Ahmed
- Department of Psychology, University of Michigan, Ann Arbor, Michigan
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan
- Department of Neuroscience Graduate Program, University of Michigan, Ann Arbor, Michigan
- Department of Kresge Hearing Research Institute, University of Michigan, Ann Arbor, Michigan
- Department of Michigan Center for Integrative Research in Critical Care, University of Michigan, Ann Arbor, Michigan
| |
Collapse
|
10
|
Andrade P, Banuelos-Cabrera I, Lapinlampi N, Paananen T, Ciszek R, Ndode-Ekane XE, Pitkänen A. Acute Non-Convulsive Status Epilepticus after Experimental Traumatic Brain Injury in Rats. J Neurotrauma 2019; 36:1890-1907. [PMID: 30543155 DOI: 10.1089/neu.2018.6107] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Severe traumatic brain injury (TBI) induces seizures or status epilepticus (SE) in 20-30% of patients during the acute phase. We hypothesized that severe TBI induced with lateral fluid-percussion injury (FPI) triggers post-impact SE. Adult Sprague-Dawley male rats were anesthetized with isoflurane and randomized into the sham-operated experimental control or lateral FPI-induced severe TBI groups. Electrodes were implanted right after impact or sham-operation, then video-electroencephalogram (EEG) monitoring was started. In addition, video-EEG was recorded from naïve rats. During the first 72 h post-TBI, injured rats had seizures that were intermingled with other epileptiform EEG patterns typical to non-convulsive SE, including occipital intermittent rhythmic delta activity, lateralized or generalized periodic discharges, spike-and-wave complexes, poly-spikes, poly-spike-and-wave complexes, generalized continuous spiking, burst suppression, or suppression. Almost all (98%) of the electrographic seizures were recorded during 0-72 h post-TBI (23.2 ± 17.4 seizures/rat). Mean latency from the impact to the first electrographic seizure was 18.4 ± 15.1 h. Mean seizure duration was 86 ± 57 sec. Analysis of high-resolution videos indicated that only 41% of electrographic seizures associated with behavioral abnormalities, which were typically subtle (Racine scale 1-2). Fifty-nine percent of electrographic seizures did not show any behavioral manifestations. In most of the rats, epileptiform EEG patterns began to decay spontaneously on Days 5-6 after TBI. Interestingly, also a few sham-operated and naïve rats had post-operation seizures, which were not associated with EEG background patterns typical to non-convulsive SE seen in TBI rats. To summarize, our data show that lateral FPI-induced TBI results in non-convulsive SE with subtle behavioral manifestations; this explains why it has remained undiagnosed until now. The lateral FPI model provides a novel platform for assessing the mechanisms of acute symptomatic non-convulsive SE and for testing treatments to prevent post-injury SE in a clinically relevant context.
Collapse
Affiliation(s)
- Pedro Andrade
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Ivette Banuelos-Cabrera
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Niina Lapinlampi
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Tomi Paananen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Robert Ciszek
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | | | - Asla Pitkänen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| |
Collapse
|
11
|
Cheng WH, Martens KM, Bashir A, Cheung H, Stukas S, Gibbs E, Namjoshi DR, Button EB, Wilkinson A, Barron CJ, Cashman NR, Cripton PA, Wellington CL. CHIMERA repetitive mild traumatic brain injury induces chronic behavioural and neuropathological phenotypes in wild-type and APP/PS1 mice. ALZHEIMERS RESEARCH & THERAPY 2019; 11:6. [PMID: 30636629 PMCID: PMC6330571 DOI: 10.1186/s13195-018-0461-0] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Accepted: 12/19/2018] [Indexed: 12/14/2022]
Abstract
Background The annual incidence of traumatic brain injury (TBI) in the United States is over 2.5 million, with approximately 3–5 million people living with chronic sequelae. Compared with moderate-severe TBI, the long-term effects of mild TBI (mTBI) are less understood but important to address, particularly for contact sport athletes and military personnel who have high mTBI exposure. The purpose of this study was to determine the behavioural and neuropathological phenotypes induced by the Closed-Head Impact Model of Engineered Rotational Acceleration (CHIMERA) model of mTBI in both wild-type (WT) and APP/PS1 mice up to 8 months post-injury. Methods Male WT and APP/PS1 littermates were randomized to sham or repetitive mild TBI (rmTBI; 2 × 0.5 J impacts 24 h apart) groups at 5.7 months of age. Animals were assessed up to 8 months post-injury for acute neurological deficits using the loss of righting reflex (LRR) and Neurological Severity Score (NSS) tasks, and chronic behavioural changes using the passive avoidance (PA), Barnes maze (BM), elevated plus maze (EPM) and rotarod (RR) tasks. Neuropathological assessments included white matter damage; grey matter inflammation; and measures of Aβ levels, deposition, and aducanumab binding activity. Results The very mild CHIMERA rmTBI conditions used here produced no significant acute neurological or motor deficits in WT and APP/PS1 mice, but they profoundly inhibited extinction of fear memory specifically in APP/PS1 mice over the 8-month assessment period. Spatial learning and memory were affected by both injury and genotype. Anxiety and risk-taking behaviour were affected by injury but not genotype. CHIMERA rmTBI induced chronic white matter microgliosis, axonal injury and astrogliosis independent of genotype in the optic tract but not the corpus callosum, and it altered microgliosis in APP/PS1 amygdala and hippocampus. Finally, rmTBI did not alter long-term tau, Aβ or amyloid levels, but it increased aducanumab binding activity. Conclusions CHIMERA is a useful model to investigate the chronic consequences of rmTBI, including behavioural abnormalities consistent with features of post-traumatic stress disorder and inflammation of both white and grey matter. The presence of human Aβ greatly modified extinction of fear memory after rmTBI. Electronic supplementary material The online version of this article (10.1186/s13195-018-0461-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Wai Hang Cheng
- Department of Pathology and Laboratory Medicine, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, 2215 Wesbrook Mall, Vancouver, BC, V6T 1Z3, Canada
| | - Kris M Martens
- Department of Pathology and Laboratory Medicine, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, 2215 Wesbrook Mall, Vancouver, BC, V6T 1Z3, Canada
| | - Asma Bashir
- Department of Pathology and Laboratory Medicine, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, 2215 Wesbrook Mall, Vancouver, BC, V6T 1Z3, Canada
| | - Honor Cheung
- Department of Pathology and Laboratory Medicine, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, 2215 Wesbrook Mall, Vancouver, BC, V6T 1Z3, Canada
| | - Sophie Stukas
- Department of Pathology and Laboratory Medicine, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, 2215 Wesbrook Mall, Vancouver, BC, V6T 1Z3, Canada
| | - Ebrima Gibbs
- Department of Neurology, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, 2215 Wesbrook Mall, Vancouver, BC, V6T 1Z3, Canada
| | - Dhananjay R Namjoshi
- Department of Pathology and Laboratory Medicine, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, 2215 Wesbrook Mall, Vancouver, BC, V6T 1Z3, Canada
| | - Emily B Button
- Department of Pathology and Laboratory Medicine, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, 2215 Wesbrook Mall, Vancouver, BC, V6T 1Z3, Canada
| | - Anna Wilkinson
- Department of Pathology and Laboratory Medicine, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, 2215 Wesbrook Mall, Vancouver, BC, V6T 1Z3, Canada
| | - Carlos J Barron
- Department of Pathology and Laboratory Medicine, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, 2215 Wesbrook Mall, Vancouver, BC, V6T 1Z3, Canada
| | - Neil R Cashman
- Department of Neurology, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, 2215 Wesbrook Mall, Vancouver, BC, V6T 1Z3, Canada
| | - Peter A Cripton
- Department of Mechanical Engineering, International Collaboration on Repair Discoveries, University of British Columbia, 6250 Applied Sciences Lane, Vancouver, BC, V6T 1Z4, Canada
| | - Cheryl L Wellington
- Department of Pathology and Laboratory Medicine, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, 2215 Wesbrook Mall, Vancouver, BC, V6T 1Z3, Canada.
| |
Collapse
|
12
|
Ma MW, Wang J, Dhandapani KM, Brann DW. Deletion of NADPH oxidase 4 reduces severity of traumatic brain injury. Free Radic Biol Med 2018; 117:66-75. [PMID: 29391196 DOI: 10.1016/j.freeradbiomed.2018.01.031] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Revised: 01/23/2018] [Accepted: 01/25/2018] [Indexed: 12/30/2022]
Abstract
Traumatic brain injury (TBI) contributes to over 30% of injury-related deaths and is a major cause of disability without effective clinical therapies. Oxidative stress contributes to neurodegeneration, neuroinflammation, and neuronal death to amplify the primary injury after TBI. NADPH oxidase (NOX) is a major source of reactive oxygen species following brain injury. Our current study addresses the functional role of the NOX4 isoform in the damaged cortex following TBI. Adult male C57BL/6 J and NOX4-/- mice received a controlled cortical impact and lesion size, NOX4 expression, oxidative stress, neurodegeneration, and cell death were assessed in the injured cerebral cortex. The results revealed that NOX4 mRNA and protein expression were significantly upregulated at 1-7 days post-TBI in the injured cerebral cortex. Expression of the oxidative stress markers, 8-OHdG, 4-HNE, and nitrotyrosine was upregulated at 2 and 4 days post-TBI in the WT injured cerebral cortex, and nitrotyrosine primarily colocalized with neurons. In the NOX4-/- mice, expression of these oxidative stress markers, 8-OHdG, 4-HNE, and nitrotyrosine were significantly attenuated at both timepoints. In addition, examination of NOX4-/- mice revealed a reduced number of apoptotic (TUNEL+) and degenerating (FJB+) cells in the perilesional cortex after TBI, as well as a smaller lesion size compared with the WT group. The results of this study implicate a functional role for NOX4 in TBI induced oxidative damage and neurodegeneration and raise the possibility that targeting NOX4 may have therapeutic efficacy in TBI.
Collapse
Affiliation(s)
- Merry W Ma
- Charlie Norwood VA Medical Center, One Freedom Way, Augusta, GA 30904, USA; Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Jing Wang
- Charlie Norwood VA Medical Center, One Freedom Way, Augusta, GA 30904, USA; Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Krishnan M Dhandapani
- Charlie Norwood VA Medical Center, One Freedom Way, Augusta, GA 30904, USA; Department of Neurosurgery, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Darrell W Brann
- Charlie Norwood VA Medical Center, One Freedom Way, Augusta, GA 30904, USA; Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA.
| |
Collapse
|
13
|
de la Tremblaye PB, O'Neil DA, LaPorte MJ, Cheng JP, Beitchman JA, Thomas TC, Bondi CO, Kline AE. Elucidating opportunities and pitfalls in the treatment of experimental traumatic brain injury to optimize and facilitate clinical translation. Neurosci Biobehav Rev 2018; 85:160-175. [PMID: 28576511 PMCID: PMC5709241 DOI: 10.1016/j.neubiorev.2017.05.022] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Accepted: 05/12/2017] [Indexed: 12/19/2022]
Abstract
The aim of this review is to discuss the research presented in a symposium entitled "Current progress in characterizing therapeutic strategies and challenges in experimental CNS injury" which was presented at the 2016 International Behavioral Neuroscience Society annual meeting. Herein we discuss diffuse and focal traumatic brain injury (TBI) and ensuing chronic behavioral deficits as well as potential rehabilitative approaches. We also discuss the effects of stress on executive function after TBI as well as the response of the endocrine system and regulatory feedback mechanisms. The role of the endocannabinoids after CNS injury is also discussed. Finally, we conclude with a discussion of antipsychotic and antiepileptic drugs, which are provided to control TBI-induced agitation and seizures, respectively. The review consists predominantly of published data.
Collapse
Affiliation(s)
- Patricia B de la Tremblaye
- Department of Physical Medicine & Rehabilitation, University of Pittsburgh, Pittsburgh, PA, United States; Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, PA, United States
| | - Darik A O'Neil
- Department of Physical Medicine & Rehabilitation, University of Pittsburgh, Pittsburgh, PA, United States; Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, PA, United States
| | - Megan J LaPorte
- Department of Physical Medicine & Rehabilitation, University of Pittsburgh, Pittsburgh, PA, United States; Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, PA, United States
| | - Jeffrey P Cheng
- Department of Physical Medicine & Rehabilitation, University of Pittsburgh, Pittsburgh, PA, United States; Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, PA, United States
| | - Joshua A Beitchman
- Barrow Neurological Institute at Phoenix Children's Hospital, Phoenix, AZ, United States; Department of Child Health, University of Arizona College of Medicine, Phoenix, AZ, United States; Midwestern University, Glendale, AZ, United States
| | - Theresa Currier Thomas
- Barrow Neurological Institute at Phoenix Children's Hospital, Phoenix, AZ, United States; Department of Child Health, University of Arizona College of Medicine, Phoenix, AZ, United States; Phoenix VA Healthcare System, Phoenix, AZ, United States
| | - Corina O Bondi
- Department of Physical Medicine & Rehabilitation, University of Pittsburgh, Pittsburgh, PA, United States; Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, PA, United States; Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA, United States; Department of Neurobiology, University of Pittsburgh, Pittsburgh, PA, United States
| | - Anthony E Kline
- Department of Physical Medicine & Rehabilitation, University of Pittsburgh, Pittsburgh, PA, United States; Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, PA, United States; Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA, United States; Center for the Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, PA, United States; Department of Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA, United States; Department of Psychology, University of Pittsburgh, Pittsburgh, PA, United States.
| |
Collapse
|
14
|
NADPH Oxidase 2 Regulates NLRP3 Inflammasome Activation in the Brain after Traumatic Brain Injury. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:6057609. [PMID: 28785377 PMCID: PMC5529650 DOI: 10.1155/2017/6057609] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Revised: 05/02/2017] [Accepted: 06/01/2017] [Indexed: 01/27/2023]
Abstract
Traumatic brain injury (TBI) is a leading cause of death and disability worldwide. After the initial primary mechanical injury, a complex secondary injury cascade involving oxidative stress and neuroinflammation follows, which may exacerbate the injury and complicate the healing process. NADPH oxidase 2 (NOX2) is a major contributor to oxidative stress in TBI pathology, and inhibition of NOX2 is neuroprotective. The NLRP3 inflammasome can become activated in response to oxidative stress, but little is known about the role of NOX2 in regulating NLRP3 inflammasome activation following TBI. In this study, we utilized NOX2 knockout mice to study the role of NOX2 in mediating NLRP3 inflammasome expression and activation following a controlled cortical impact. Expression of NLRP3 inflammasome components NLRP3 and apoptosis-associated speck-like protein containing a CARD (ASC), as well as its downstream products cleaved caspase-1 and interleukin-1β (IL-1β), was robustly increased in the injured cerebral cortex following TBI. Deletion of NOX2 attenuated the expression, assembly, and activity of the NLRP3 inflammasome via a mechanism that was associated with TXNIP, a sensor of oxidative stress. The results support the notion that NOX2-dependent inflammasome activation contributes to TBI pathology.
Collapse
|
15
|
Clossen BL, Reddy DS. Novel therapeutic approaches for disease-modification of epileptogenesis for curing epilepsy. Biochim Biophys Acta Mol Basis Dis 2017; 1863:1519-1538. [PMID: 28179120 PMCID: PMC5474195 DOI: 10.1016/j.bbadis.2017.02.003] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Revised: 01/31/2017] [Accepted: 02/03/2017] [Indexed: 11/16/2022]
Abstract
This article describes the recent advances in epileptogenesis and novel therapeutic approaches for the prevention of epilepsy, with a special emphasis on the pharmacological basis of disease-modification of epileptogenesis for curing epilepsy. Here we assess animal studies and human clinical trials of epilepsy spanning 1982-2016. Epilepsy arises from a number of neuronal factors that trigger epileptogenesis, which is the process by which a brain shifts from a normal physiologic state to an epileptic condition. The events precipitating these changes can be of diverse origin, including traumatic brain injury, cerebrovascular damage, infections, chemical neurotoxicity, and emergency seizure conditions such as status epilepticus. Expectedly, the molecular and system mechanisms responsible for epileptogenesis are not well defined or understood. To date, there is no approved therapy for the prevention of epilepsy. Epigenetic dysregulation, neuroinflammation, and neurodegeneration appear to trigger epileptogenesis. Targeted drugs are being identified that can truly prevent the development of epilepsy in at-risk people. The promising agents include rapamycin, COX-2 inhibitors, TRK inhibitors, epigenetic modulators, JAK-STAT inhibitors, and neurosteroids. Recent evidence suggests that neurosteroids may play a role in modulating epileptogenesis. A number of promising drugs are under investigation for the prevention or modification of epileptogenesis to halt the development of epilepsy. Some drugs in development appear rational for preventing epilepsy because they target the initial trigger or related signaling pathways as the brain becomes progressively more prone to seizures. Additional research into the target validity and clinical investigation is essential to make new frontiers in curing epilepsy.
Collapse
Affiliation(s)
- Bryan L Clossen
- Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M University Health Science Center, Bryan, TX 77807, USA
| | - Doodipala Samba Reddy
- Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M University Health Science Center, Bryan, TX 77807, USA.
| |
Collapse
|
16
|
Narin F, Hanalioglu S, Ustun H, Kilinc K, Bilginer B. Topiramate as a neuroprotective agent in a rat model of spinal cord injury. Neural Regen Res 2017; 12:2071-2076. [PMID: 29323048 PMCID: PMC5784357 DOI: 10.4103/1673-5374.221164] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Topiramate (TPM) is a widely used antiepileptic and antimigraine agent which has been shown to exert neuroprotective effects in various experimental traumatic brain injury and stroke models. However, its utility in spinal cord injury has not been studied extensively. Thus, we evaluated effects of TPM on secondary cellular injury mechanisms in an experimental rat model of traumatic spinal cord injury (SCI). After rat models of thoracic contusive SCI were established by free weight-drop method, TPM (40 mg/kg) was given at 12-hour intervals for four times orally. Post TPM treatment, malondialdehyde and protein carbonyl levels were significantly reduced and reduced glutathione levels were increased, while immunoreactivity for endothelial nitric oxide synthase, inducible nitric oxide synthase, and apoptotic peptidase activating factor 1 was diminished in SCI rats. In addition, TPM treatment improved the functional recovery of SCI rats. This study suggests that administration of TPM exerts neuroprotective effects on SCI.
Collapse
Affiliation(s)
- Firat Narin
- Department of Neurosurgery, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - Sahin Hanalioglu
- Department of Neurosurgery, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - Huseyin Ustun
- Department of Pathology, Ankara Training and Research Hospital, Ankara, Turkey
| | - Kamer Kilinc
- Department of Biochemistry, TOBB University of Economics and Technology Faculty of Medicine, Ankara, Turkey
| | - Burcak Bilginer
- Department of Neurosurgery, Hacettepe University Faculty of Medicine, Ankara, Turkey
| |
Collapse
|
17
|
Osier ND, Carlson SW, DeSana A, Dixon CE. Chronic Histopathological and Behavioral Outcomes of Experimental Traumatic Brain Injury in Adult Male Animals. J Neurotrauma 2015; 32:1861-82. [PMID: 25490251 PMCID: PMC4677114 DOI: 10.1089/neu.2014.3680] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The purpose of this review is to survey the use of experimental animal models for studying the chronic histopathological and behavioral consequences of traumatic brain injury (TBI). The strategies employed to study the long-term consequences of TBI are described, along with a summary of the evidence available to date from common experimental TBI models: fluid percussion injury; controlled cortical impact; blast TBI; and closed-head injury. For each model, evidence is organized according to outcome. Histopathological outcomes included are gross changes in morphology/histology, ventricular enlargement, gray/white matter shrinkage, axonal injury, cerebrovascular histopathology, inflammation, and neurogenesis. Behavioral outcomes included are overall neurological function, motor function, cognitive function, frontal lobe function, and stress-related outcomes. A brief discussion is provided comparing the most common experimental models of TBI and highlighting the utility of each model in understanding specific aspects of TBI pathology. The majority of experimental TBI studies collect data in the acute postinjury period, but few continue into the chronic period. Available evidence from long-term studies suggests that many of the experimental TBI models can lead to progressive changes in histopathology and behavior. The studies described in this review contribute to our understanding of chronic TBI pathology.
Collapse
Affiliation(s)
- Nicole D. Osier
- Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, Pennsylvania
- School of Nursing, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Shaun W. Carlson
- Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, Pennsylvania
- Department of Neurological Surgery, Brain Trauma Research Center, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Anthony DeSana
- Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, Pennsylvania
- Seton Hill University, Greensburg, Pennsylvania
| | - C. Edward Dixon
- Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, Pennsylvania
- Department of Neurological Surgery, Brain Trauma Research Center, University of Pittsburgh, Pittsburgh, Pennsylvania
- V.A. Pittsburgh Healthcare System, Pittsburgh, Pennsylvania
| |
Collapse
|
18
|
Tian Y, Guo SX, Li JR, Du HG, Wang CH, Zhang JM, Wu Q. Topiramate attenuates early brain injury following subarachnoid haemorrhage in rats via duplex protection against inflammation and neuronal cell death. Brain Res 2015; 1622:174-85. [PMID: 26086367 DOI: 10.1016/j.brainres.2015.06.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Revised: 06/04/2015] [Accepted: 06/07/2015] [Indexed: 01/31/2023]
Abstract
Early brain injury (EBI) following aneurysmal subarachnoid haemorrhage (SAH) insults contributes to the poor prognosis and high mortality observed in SAH patients. Topiramate (TPM) is a novel, broad-spectrum, antiepileptic drug with a reported protective effect against several brain injuries. The current study aimed to investigate the potential of TPM for neuroprotection against EBI after SAH and the possible dose-dependency of this effect. An endovascular perforation SAH model was established in rats, and TPM was administered by intraperitoneal injection after surgery at three different doses (20mg/kg, 40mg/kg, and 80mg/kg). The animals' neurological scores and brain water content were evaluated, and ELISA, Western blotting and immunostaining assays were conducted to assess the effect of TPM. The results revealed that TPM lowers the elevated levels of myeloperoxidase and proinflammatory mediators observed after SAH in a dose-related fashion, and the nuclear factor-kappa B (NF-κB) signalling pathway is the target of neuroinflammation regulation. In addition, TPM ameliorated SAH-induced cortical neuronal apoptosis by influencing Bax, Bcl-2 and cleaved caspase-3 protein expression, and the effect of TPM was enhanced in a dose-dependent manner. Various dosages of TPM also upregulated the protein expression of the γ-aminobutyric acid (GABA)-ergic signalling molecules, GABAA receptor (GABAAR) α1, GABAAR γ2, and K(+)-Cl(-) co-transporter 2 (KCC2) together and downregulated Na(+)-K(+)-Cl(-) co-transporter 1 (NKCC1) expression. Thus, TPM may be an effective neuroprotectant in EBI after SAH by regulating neuroinflammation and neuronal cell death.
Collapse
Affiliation(s)
- Yong Tian
- Department of Neurosurgery, Second Affiliated Hospital, Zhejiang Chinese Medical University, 318 Chaowang Road, Hangzhou 310005, Zhejiang, China; Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, 88 Jiefang Road, Hangzhou 310009, Zhejiang, China
| | - Song-Xue Guo
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, 88 Jiefang Road, Hangzhou 310009, Zhejiang, China; Department of Burns, Second Affiliated Hospital, School of Medicine, Zhejiang University, 88 Jiefang Road, Hangzhou 310009, Zhejiang, China
| | - Jian-Ru Li
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, 88 Jiefang Road, Hangzhou 310009, Zhejiang, China
| | - Hang-Gen Du
- Department of Neurosurgery, Second Affiliated Hospital, Zhejiang Chinese Medical University, 318 Chaowang Road, Hangzhou 310005, Zhejiang, China
| | - Chao-Hui Wang
- Department of Neurosurgery, Ruian People's Hospital, 108 Wansong Road, Ruian 325200, Zhejiang, China
| | - Jian-Min Zhang
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, 88 Jiefang Road, Hangzhou 310009, Zhejiang, China
| | - Qun Wu
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, 88 Jiefang Road, Hangzhou 310009, Zhejiang, China.
| |
Collapse
|
19
|
|
20
|
Kaminski RM, Rogawski MA, Klitgaard H. The potential of antiseizure drugs and agents that act on novel molecular targets as antiepileptogenic treatments. Neurotherapeutics 2014; 11:385-400. [PMID: 24671870 PMCID: PMC3996125 DOI: 10.1007/s13311-014-0266-1] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
A major goal of contemporary epilepsy research is the identification of therapies to prevent the development of recurrent seizures in individuals at risk, including those with brain injuries, infections, or neoplasms; status epilepticus; cortical dysplasias; or genetic epilepsy susceptibility. In this review we consider the evidence largely from preclinical models for the antiepileptogenic activity of a diverse range of potential therapies, including some marketed antiseizure drugs, as well as agents that act by immune and inflammatory mechanisms; reduction of oxidative stress; activation of the mammalian target of rapamycin or peroxisome proliferator-activated receptors γ pathways; effects on factors related to thrombolysis, hematopoesis, and angiogenesis; inhibition of 3-hydroxy-3-methylglutaryl-coenzyme A reducatase; brain-derived neurotrophic factor signaling; and blockade of α2 adrenergic and cannabinoid receptors. Antiepileptogenesis refers to a therapy of which the beneficial action is to reduce seizure frequency or severity outlasting the treatment period. To date, clinical trials have failed to demonstrate that antiseizure drugs have such disease-modifying activity. However, studies in animal models with levetiracetam and ethosuximide are encouraging, and clinical trials with these agents are warranted. Other promising strategies are inhibition of interleukin 1β signaling by drugs such as VX-765; modulation of sphingosine 1-phosphate signaling by drugs such as fingolimod; activation of the mammalian target of rapamycin by drugs such as rapamycin; the hormone erythropoietin; and, paradoxically, drugs such as the α2 adrenergic receptor antagonist atipamezole and the CB1 cannabinoid antagonist SR141716A (rimonabant) with proexcitatory activity. These approaches could lead to a new paradigm in epilepsy drug therapy where treatment for a limited period prevents the occurrence of spontaneous seizures, thus avoiding lifelong commitment to symptomatic treatment.
Collapse
Affiliation(s)
| | - Michael A. Rogawski
- />Department of Neurology, University of California, Davis School of Medicine, Sacramento, CA USA
| | | |
Collapse
|
21
|
Effect of lacosamide on structural damage and functional recovery after traumatic brain injury in rats. Epilepsy Res 2014; 108:653-65. [PMID: 24636248 DOI: 10.1016/j.eplepsyres.2014.02.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2013] [Revised: 01/31/2014] [Accepted: 02/01/2014] [Indexed: 11/23/2022]
Abstract
In a subgroup of patients, traumatic brain injury (TBI) results in the occurrence of acute epileptic seizures or even status epilepticus, which are treated with antiepileptic drugs (AEDs). Recent experimental data, however, suggest that administration of AEDs at the early post-injury phase can compromise the recovery process. The present study was designed to assess the profile of a novel anticonvulsant, lacosamide (Vimpat) on post-TBI structural, motor and cognitive outcomes. Moderate TBI was induced by lateral fluid-percussion injury in adult rats. Treatment with 0.9% saline or lacosamide (30 mg/kg, i.p.) was started at 30 min post-injury and continued at 8h intervals for 3d (total daily dose 90 mg/kg/d). Rats were randomly assigned to 4 treatment groups: sham-operated controls treated with vehicle (Sham-Veh) or lacosamide (Sham-LCM) and injured animals treated with vehicle (TBI-Veh) or lacosamide (TBI-LCM). As functional outcomes we tested motor recovery with composite neuroscore and beam-walking at 2, 7, and 15 d post-injury. Cognitive recovery was tested with the Morris water-maze at 12-14 d post-TBI. To assess the structural outcome, animals underwent magnetic resonance imaging (MRI) at 2 d post-TBI. At 16d post-TBI, rats were perfused for histology to analyze cortical and hippocampal neurodegeneration and axonal damage. Our data show that at 2 d post-TBI, both the TBI-Veh and TBI-LCM groups were equally impaired in neuroscore. Thereafter, motor recovery occurred similarly during the first week. At 2 wk post-TBI, recovery of the TBI-LCM group lagged behind that in the TBI-VEH group (p<0.05). Performance in beam-walking did not differ between the TBI-Veh and TBI-LCM groups. Both TBI groups were similarly impaired in the Morris water-maze at 2 wk post-TBI. MRI and histology did not reveal any differences in the cortical or hippocampal damage between the TBI-Veh and TBI-LCM groups. Taken together, acute treatment with LCM had no protective effects on post-TBI structural or functional impairment. Composite neuroscore in the TBI-LCM group lagged behind that in the TBI-Veh group at 15 d post-injury, but no compromise was found in other indices of post-TBI recovery in the LCM treated animals.
Collapse
|
22
|
Gold EM, Su D, López-Velázquez L, Haus DL, Perez H, Lacuesta GA, Anderson AJ, Cummings BJ. Functional assessment of long-term deficits in rodent models of traumatic brain injury. Regen Med 2014; 8:483-516. [PMID: 23826701 DOI: 10.2217/rme.13.41] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Traumatic brain injury (TBI) ranks as the leading cause of mortality and disability in the young population worldwide. The annual US incidence of TBI in the general population is estimated at 1.7 million per year, with an estimated financial burden in excess of US$75 billion a year in the USA alone. Despite the prevalence and cost of TBI to individuals and society, no treatments have passed clinical trial to clinical implementation. The rapid expansion of stem cell research and technology offers an alternative to traditional pharmacological approaches targeting acute neuroprotection. However, preclinical testing of these approaches depends on the selection and characterization of appropriate animal models. In this article we consider the underlying pathophysiology for the focal and diffuse TBI subtypes, discuss the existing preclinical TBI models and functional outcome tasks used for assessment of injury and recovery, identify criteria particular to preclinical animal models of TBI in which stem cell therapies can be tested for safety and efficacy, and review these criteria in the context of the existing TBI literature. We suggest that 2 months post-TBI is the minimum period needed to evaluate human cell transplant efficacy and safety. Comprehensive review of the published TBI literature revealed that only 32% of rodent TBI papers evaluated functional outcome ≥1 month post-TBI, and only 10% evaluated functional outcomes ≥2 months post-TBI. Not all published papers that evaluated functional deficits at a minimum of 2 months post-TBI reported deficits; hence, only 8.6% of overall TBI papers captured in this review demonstrated functional deficits at 2 months or more postinjury. A 2-month survival and assessment period would allow sufficient time for differentiation and integration of human neural stem cells with the host. Critically, while trophic effects might be observed at earlier time points, it will also be important to demonstrate the sustainability of such an effect, supporting the importance of an extended period of in vivo observation. Furthermore, regulatory bodies will likely require at least 6 months survival post-transplantation for assessment of toxicology/safety, particularly in the context of assessing cell abnormalities.
Collapse
Affiliation(s)
- Eric M Gold
- Sue & Bill Gross Stem Cell Research Center, University of California, Irvine 2030 Gross Hall, CA 92697-1705, USA
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Szaflarski JP, Nazzal Y, Dreer LE. Post-traumatic epilepsy: current and emerging treatment options. Neuropsychiatr Dis Treat 2014; 10:1469-77. [PMID: 25143737 PMCID: PMC4136984 DOI: 10.2147/ndt.s50421] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Traumatic brain injury (TBI) leads to many undesired problems and complications, including immediate and long-term seizures/epilepsy, changes in mood, behavioral, and personality problems, cognitive and motor deficits, movement disorders, and sleep problems. Clinicians involved in the treatment of patients with acute TBI need to be aware of a number of issues, including the incidence and prevalence of early seizures and post-traumatic epilepsy (PTE), comorbidities associated with seizures and anticonvulsant therapies, and factors that can contribute to their emergence. While strong scientific evidence for early seizure prevention in TBI is available for phenytoin (PHT), other antiepileptic medications, eg, levetiracetam (LEV), are also being utilized in clinical settings. The use of PHT has its drawbacks, including cognitive side effects and effects on function recovery. Rates of recovery after TBI are expected to plateau after a certain period of time. Nevertheless, some patients continue to improve while others deteriorate without any clear contributing factors. Thus, one must ask, 'Are there any actions that can be taken to decrease the chance of post-traumatic seizures and epilepsy while minimizing potential short- and long-term effects of anticonvulsants?' While the answer is 'probably,' more evidence is needed to replace PHT with LEV on a permanent basis. Some have proposed studies to address this issue, while others look toward different options, including other anticonvulsants (eg, perampanel or other AMPA antagonists), or less established treatments (eg, ketamine). In this review, we focus on a comparison of the use of PHT versus LEV in the acute TBI setting and summarize the clinical aspects of seizure prevention in humans with appropriate, but general, references to the animal literature.
Collapse
Affiliation(s)
- Jerzy P Szaflarski
- Department of Neurology, University of Alabama at Birmingham, Birmingham, AL, USA ; UAB Epilepsy Center, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Yara Nazzal
- Department of Neurology, University of Alabama at Birmingham, Birmingham, AL, USA ; UAB Epilepsy Center, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Laura E Dreer
- Department of Ophthalmology, University of Alabama at Birmingham, Birmingham, AL, USA
| |
Collapse
|
24
|
Sommer BR, Mitchell EL, Wroolie TE. Topiramate: Effects on cognition in patients with epilepsy, migraine headache and obesity. Ther Adv Neurol Disord 2013; 6:211-27. [PMID: 23858325 DOI: 10.1177/1756285613481257] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
This paper reviews the clinical implications of topiramate (TPM)-induced cognitive deficits in patients with epilepsy, migraine headache, obesity, and in normal populations, followed by reviews of the literature describing the reversal of such deficits upon medication discontinuation. It also discusses animal investigations of TPM's role of neuroprotection in brain injury. TPM's most intolerable adverse effects (AEs) are on verbal fluency and reaction time, resulting in high discontinuation rates in patients taking it for epilepsy and migraine headache. However, because TPM is so effective in the treatment of epilepsy and migraine headache, its use is expected to continue. There appears to be greater tolerance of TPM's cognitive AEs when it is used in the treatment of obesity, perhaps because of the lower doses required. Research attempting to predict the populations most vulnerable to the cognitive effects caused by TPM is ongoing. Studies suggest that one such population may include patients with a past psychiatric history. Slow titration and administration of the lowest possible doses may decrease risk of cognitive deficits.
Collapse
Affiliation(s)
- Barbara R Sommer
- Stanford University School of Medicine, Department of Psychiatry, 401 Quarry Road, Stanford, CA 94305-5723, USA
| | | | | |
Collapse
|
25
|
Gensel JC, Tovar CA, Bresnahan JC, Beattie MS. Topiramate treatment is neuroprotective and reduces oligodendrocyte loss after cervical spinal cord injury. PLoS One 2012; 7:e33519. [PMID: 22428066 PMCID: PMC3302770 DOI: 10.1371/journal.pone.0033519] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2011] [Accepted: 02/15/2012] [Indexed: 11/21/2022] Open
Abstract
Excess glutamate release and associated neurotoxicity contributes to cell death after spinal cord injury (SCI). Indeed, delayed administration of glutamate receptor antagonists after SCI in rodents improves tissue sparing and functional recovery. Despite their therapeutic potential, most glutamate receptor antagonists have detrimental side effects and have largely failed clinical trials. Topiramate is an AMPA-specific, glutamate receptor antagonists that is FDA-approved to treat CNS disorders. In the current study we tested whether topiramate treatment is neuroprotective after cervical contusion injury in rats. We report that topiramate, delivered 15-minutes after SCI, increases tissue sparing and preserves oligodendrocytes and neurons when compared to vehicle treatment. In addition, topiramate is more effective than the AMPA-receptor antagonist, NBQX. To the best of our knowledge, this is the first report documenting a neuroprotective effect of topiramate treatment after spinal cord injury.
Collapse
Affiliation(s)
- John C Gensel
- Center for Brain and Spinal Cord Repair, Department of Neuroscience, The Ohio State University College of Medicine, Columbus, Ohio, United States of America.
| | | | | | | |
Collapse
|
26
|
Kouzounias K, Kimiskidis VK, Siozos T, Violaris K, Kostomitsopoulos N, Karayannakos PE, Sotirakoglou K, Nanassis K. Topiramate promotes neurological recovery in a new model of traumatic brain injury in rats. Neuroscience 2011; 183:171-7. [PMID: 21496474 DOI: 10.1016/j.neuroscience.2011.03.069] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2011] [Revised: 03/22/2011] [Accepted: 03/30/2011] [Indexed: 12/31/2022]
Abstract
The aim of this study is to investigate the neuroprotective effects of the anticonvulsant topiramate in a new model of traumatic brain injury in rats. A new model of traumatic brain injury, based on the weight-drop technique, was developed for the purpose of this study. Seventy-five male Wistar rats weighing 320-470 g were studied. All rats were anesthetized, subsequently submitted to a round craniectomy in the left parietal region and a weight of 50 g was used for the production of a cortical contusion. In study I, 44 rats were randomized in three groups to receive either topiramate 40 mg/kg (n=13), topiramate 60 mg/kg (n=14), or water for injection (n=17) i.p. 30 min after the injury and every 12 h thereafter for 3 days. The rats were tested clinically 24 h, 72 h, 10 days and 20 days after the injury. On day 21 the animals were sacrificed and the brains were removed and prepared for histopathological analysis. In study II, 19 rats were randomized to receive either topiramate 60 mg/kg (n=10) or water for injection (n=9) i.p. 30 min after the injury and every 12 h (four doses in total). 48 h after the injury the animals were sacrificed and the brains were rapidly removed and analyzed for water content with the dry-wet weight technique. The animals that received topiramate performed significantly better in neurological tests compared to the animals that received vehicle ten (P<0.05) and 20 (P<0.001) days after the injury. There was no difference between the high and the low dose of the drug. Topiramate had no effect on the anatomic volume of the lesion. The animals that received topiramate had a tendency to present with less cerebral edema formation, but the difference was not statistically significant (P>0.05). These findings suggest that topiramate promotes neurological recovery in rats after traumatic brain injury without affecting the final size of the traumatic lesion and that it might play a role in the reduction of post-traumatic cerebral edema.
Collapse
Affiliation(s)
- K Kouzounias
- Department of Neurosurgery, Aristotle University of Thessaloniki, Ippokrateio Hospital, Thessaloniki, Greece.
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Pitkänen A, Bolkvadze T, Immonen R. Anti-epileptogenesis in rodent post-traumatic epilepsy models. Neurosci Lett 2011; 497:163-71. [PMID: 21402123 DOI: 10.1016/j.neulet.2011.02.033] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2010] [Revised: 01/25/2011] [Accepted: 02/15/2011] [Indexed: 10/18/2022]
Abstract
Post-traumatic epilepsy (PTE) accounts for 10-20% of symptomatic epilepsies. The urgency to understand the process of post-traumatic epileptogenesis and search for antiepileptogenic treatments is emphasized by a recent increase in traumatic brain injury (TBI) related to military combat or accidents in the aging population. Recent developments in modeling of PTE in rodents have provided tools for identification of novel drug targets for antiepileptogenesis and biomarkers for predicting the risk of epileptogenesis and treatment efficacy after TBI. Here we review the available data on endophenotypes of humans and rodents with TBI associated with epilepsy. Also, current understanding of the mechanisms and biomarkers for PTE as well as factors associated with preclinical study designs are discussed. Finally, we summarize the attempts to prevent PTE in experimental models.
Collapse
Affiliation(s)
- Asla Pitkänen
- Department of Neurobiology, Epilepsy Research Laboratory, A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, P.O. Box 1627, FIN-70211 Kuopio, Finland.
| | | | | |
Collapse
|
28
|
Pangilinan PH, Giacoletti-Argento A, Shellhaas R, Hurvitz EA, Hornyak JE. Neuropharmacology in Pediatric Brain Injury: A Review. PM R 2010; 2:1127-40. [DOI: 10.1016/j.pmrj.2010.07.007] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2009] [Revised: 06/16/2010] [Accepted: 07/05/2010] [Indexed: 11/28/2022]
|
29
|
Quigley A, Tan AA, Hoane MR. The effects of hypertonic saline and nicotinamide on sensorimotor and cognitive function following cortical contusion injury in the rat. Brain Res 2009; 1304:138-48. [PMID: 19781534 PMCID: PMC2784246 DOI: 10.1016/j.brainres.2009.09.062] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2009] [Revised: 09/15/2009] [Accepted: 09/16/2009] [Indexed: 11/30/2022]
Abstract
Hypertonic saline (HTS) is an accepted treatment for traumatic brain injury (TBI). However, the behavioral and cognitive consequences following HTS administration have not thoroughly been examined. Recent preclinical evidence has suggested that nicotinamide (NAM) is beneficial for recovery of function following TBI. The current study compared the behavioral and cognitive consequences of HTS and NAM as competitive therapeutic agents for the treatment of TBI. Following controlled cortical impact (CCI), bolus administrations of NAM (500 mg/kg), 7.5% HTS, or 0.9% saline Vehicle (1.0 mL/kg) were given at 2, 24, and 48 h post-CCI. Behavioral results revealed that animals treated with NAM and HTS showed significant improvements in beam walk and locomotor placing compared to the Vehicle group. The Morris water maze (MWM) retrograde amnesia test was conducted on day 12 post-CCI and showed that all groups had significant retention of memory compared to injured, Vehicle-treated animals. Working memory was also assessed on days 8-20 using the MWM. The NAM and Vehicle groups quickly acquired the task; however, HTS animals showed no acquisition of this task. Histological examinations revealed that the HTS-treated animals lost significantly more cortical tissue than either the NAM or Vehicle-treated animals. HTS-treated animals showed a greater loss of hippocampal tissue compared to the other groups. In general, NAM showed a faster rate of recovery than HTS without this associated tissue loss. The results of this study reiterate the strengths of NAM following injury and show concerns with bolus administrations of HTS due to the differential effects on cognitive performance and apparent tissue loss.
Collapse
|
30
|
Pitkänen A, Immonen RJ, Gröhn OH, Kharatishvili I. From traumatic brain injury to posttraumatic epilepsy: What animal models tell us about the process and treatment options. Epilepsia 2009; 50 Suppl 2:21-9. [DOI: 10.1111/j.1528-1167.2008.02007.x] [Citation(s) in RCA: 117] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
31
|
Topiramate reduces non-convulsive seizures after focal brain ischemia in the rat. Neurosci Lett 2008; 430:7-12. [DOI: 10.1016/j.neulet.2007.09.052] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2007] [Revised: 08/08/2007] [Accepted: 09/26/2007] [Indexed: 11/18/2022]
|
32
|
Shank RP, Maryanoff BE. Molecular pharmacodynamics, clinical therapeutics, and pharmacokinetics of topiramate. CNS Neurosci Ther 2008; 14:120-42. [PMID: 18482025 PMCID: PMC6494007 DOI: 10.1111/j.1527-3458.2008.00041.x] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Topiramate (TPM; TOPAMAX) is a broad-spectrum antiepileptic drug (AED) that is approved in many world markets for preventing or reducing the frequency of epileptic seizures (as monotherapy or adjunctive therapy), and for the prophylaxis of migraine. TPM, a sulfamate derivative of the naturally occurring sugar D-fructose, possesses several pharmacodynamic properties that may contribute to its clinically useful attributes, and to its observed adverse effects. The sulfamate moiety is essential, but not sufficient, for its pharmacodynamic properties. In this review, we discuss the known pharmacodynamic and pharmacokinetic properties of TPM, as well as its various clinically beneficial and adverse effects.
Collapse
Affiliation(s)
- Richard P. Shank
- Research & Early Development, Johnson & Johnson Pharmaceutical Research & Development, Spring House, Pennsylvania 19477‐0776 USA
| | - Bruce E. Maryanoff
- Research & Early Development, Johnson & Johnson Pharmaceutical Research & Development, Spring House, Pennsylvania 19477‐0776 USA
| |
Collapse
|
33
|
Nonconvulsive electrographic seizures after traumatic brain injury result in a delayed, prolonged increase in intracranial pressure and metabolic crisis. Crit Care Med 2007. [DOI: 10.1097/00003246-200712000-00023] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
34
|
Nonconvulsive electrographic seizures after traumatic brain injury result in a delayed, prolonged increase in intracranial pressure and metabolic crisis. Crit Care Med 2007. [DOI: 10.1097/01.ccm.0000295667.66853.bc] [Citation(s) in RCA: 238] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
35
|
Marklund N, Bareyre FM, Royo NC, Thompson HJ, Mir AK, Grady MS, Schwab ME, McIntosh TK. Cognitive outcome following brain injury and treatment with an inhibitor of Nogo-A in association with an attenuated downregulation of hippocampal growth-associated protein-43 expression. J Neurosurg 2007; 107:844-53. [PMID: 17937233 DOI: 10.3171/jns-07/10/0844] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
OBJECT Central nervous system axons regenerate poorly after traumatic brain injury (TBI), partly due to inhibitors such as the protein Nogo-A present in myelin. The authors evaluated the efficacy of anti-Nogo-A monoclonal antibody (mAb) 7B12 administration on the neurobehavioral and cognitive outcome of rats following lateral fluid-percussion brain injury, characterized the penetration of the 7B12 or control antibodies into target brain regions, and evaluated the effects of Nogo-A inhibition on hemispheric tissue loss and sprouting of uninjured motor tracts in the cervical cord. To elucidate a potential molecular response to Nogo-A inhibition, we evaluated the effects of 7B12 on hippocampal GAP-43 expression. METHODS Beginning 24 hours after lateral fluid-percussion brain injury or sham injury in rats, the mAb 7B12 or control antibody was infused intracerebroventricularly over 14 days, and behavior was assessed over 4 weeks. RESULTS Immunoreactivity for 7B12 or immunoglobulin G was detected in widespread brain regions at 1 and 3 weeks postinjury. The brain-injured animals treated with 7B12 showed improvement in cognitive function (p < 0.05) at 4 weeks but no improvement in neurological motor function from 1 to 4 weeks postinjury compared with brain-injured, vehicle-treated controls. The enhanced cognitive function following inhibition of Nogo-A was correlated with an attenuated postinjury downregulation of hippocampal GAP-43 expression (p < 0.05). CONCLUSIONS Increased GAP-43 expression may be a novel molecular mechanism of the enhanced cognitive recovery mediated by Nogo-A inhibition after TBI in rats.
Collapse
Affiliation(s)
- Niklas Marklund
- Traumatic Brain Injury Laboratory, Department of Neurosurgery, University of Pennsylvania, Philadelphia, USA.
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Royo NC, LeBold D, Magge SN, Chen I, Hauspurg A, Cohen AS, Watson DJ. Neurotrophin-mediated neuroprotection of hippocampal neurons following traumatic brain injury is not associated with acute recovery of hippocampal function. Neuroscience 2007; 148:359-70. [PMID: 17681695 PMCID: PMC2579330 DOI: 10.1016/j.neuroscience.2007.06.014] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2007] [Revised: 06/12/2007] [Accepted: 06/18/2007] [Indexed: 11/23/2022]
Abstract
Traumatic brain injury (TBI) causes selective hippocampal cell death which is believed to be associated with the cognitive impairment observed in both clinical and experimental settings. The endogenous neurotrophin-4/5 (NT-4/5), a TrkB ligand, has been shown to be neuroprotective for vulnerable CA3 pyramidal neurons after experimental brain injury. In this study, infusion of recombinant NT-4/5 increased survival of CA2/3 pyramidal neurons to 71% after lateral fluid percussion brain injury in rats, compared with 55% in vehicle-treated controls. The functional outcome of this NT-4/5-mediated neuroprotection was examined using three hippocampal-dependent behavioral tests. Injury-induced impairment was evident in all three tests, but interestingly, there was no treatment-related improvement in any of these measures. Similarly, injury-induced decreased excitability in the Schaffer collaterals was not affected by NT-4/5 treatment. We propose that a deeper understanding of the factors that link neuronal survival to recovery of function will be important for future studies of potentially therapeutic agents.
Collapse
Affiliation(s)
- N C Royo
- Department of Neurosurgery, 371A Stemmler Hall/6071, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA.
| | | | | | | | | | | | | |
Collapse
|
37
|
Schouten JW. Neuroprotection in traumatic brain injury: a complex struggle against the biology of nature. Curr Opin Crit Care 2007; 13:134-42. [PMID: 17327733 DOI: 10.1097/mcc.0b013e3280895d5c] [Citation(s) in RCA: 112] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
PURPOSE OF REVIEW Translating the efficacy of neuroprotective agents in experimental traumatic brain injury to clinical benefit has proven an extremely complex and, to date, unsuccessful undertaking. The focus of this review is on neuroprotective agents that have recently been evaluated in clinical trials and are currently under clinical evaluation, as well as on those that appear promising and are likely to undergo clinical evaluation in the near future. RECENT FINDINGS Excitatory neurotransmitter blockage and magnesium have recently been evaluated in phase III clinical trials, but showed no neuroprotective efficacy. Cyclosporin A, erythropoietin, progesterone and bradykinin antagonists are currently under clinical investigation, and appear promising. SUMMARY Traumatic brain injury is a complex disease, and development of clinically effective neuroprotective agents is a difficult task. Experimental traumatic brain injury has provided numerous promising compounds, but to date these have not been translated into successful clinical trials. Continued research efforts are required to identify and test new neuroprotective agents, to develop a better understanding of the sequential activity of pathophysiologic mechanisms, and to improve the design and analysis of clinical trials, thereby optimizing chances for showing benefit in future clinical trials.
Collapse
Affiliation(s)
- Joost W Schouten
- Department of Neurosurgery, Erasmus Medical Center, Rotterdam, The Netherlands.
| |
Collapse
|
38
|
Lebesgue D, LeBold DG, Surles NO, Morales DM, Etgen AM, Zukin RS, Saatman KE. Effects of estradiol on cognition and hippocampal pathology after lateral fluid percussion brain injury in female rats. J Neurotrauma 2007; 23:1814-27. [PMID: 17184191 DOI: 10.1089/neu.2006.23.1814] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Studies involving animal models of acute central nervous system (CNS) stroke and trauma strongly indicate that sex and/or hormonal status are important determinants of outcome after brain injury. The present study was undertaken to examine the ability of estradiol to protect hippocampal neurons from lateral fluid percussion brain injury. Sprague-Dawley female rats (211-285 g; n = 119) were ovariectomized, and a subset (n = 66) were implanted with 17beta-estradiol pellets to provide near physiological levels of estradiol. Animals were subjected to lateral fluid percussion brain injury or sham injury 1 week later. Activation of caspase-3 (n = 26) and TUNEL staining (n = 21) were assessed at 3 and 12 h after injury, respectively, in surviving control and estradiol-treated animals. Memory retention was examined using a Morris water maze test in a separate subset of animals (n = 43) at 8 days after injury. Activated caspase-3 and TUNEL staining were observed in the dentate hilus, granule cell layer, and CA3 regions in all injured rats, indicative of selective hippocampal cell apoptosis in the acute posttraumatic period. Estradiol did not significantly alter the number of hippocampal neurons exhibiting caspase-3 activity or TUNEL staining. Brain injury impaired cognitive ability, assessed at 1 week post-injury (p < 0.001). However, estradiol at physiological levels did not significantly alter injury-induced loss of memory. These data indicate that estradiol at physiological levels does not ameliorate trauma-induced hippocampal injury or cognitive deficits in ovariectomized female rats.
Collapse
Affiliation(s)
- Diane Lebesgue
- Department of Neuroscience, Albert Einstein College of Medicine, Bronx, New York, USA
| | | | | | | | | | | | | |
Collapse
|
39
|
Thompson HJ, Marklund N, LeBold DG, Morales DM, Keck CA, Vinson M, Royo NC, Grundy R, McIntosh TK. Tissue sparing and functional recovery following experimental traumatic brain injury is provided by treatment with an anti-myelin-associated glycoprotein antibody. Eur J Neurosci 2007; 24:3063-72. [PMID: 17156367 PMCID: PMC2377452 DOI: 10.1111/j.1460-9568.2006.05197.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Axonal injury is a hallmark of traumatic brain injury (TBI) and is associated with a poor clinical outcome. Following central nervous system injury, axons regenerate poorly, in part due to the presence of molecules associated with myelin that inhibit axonal outgrowth, including myelin-associated glycoprotein (MAG). The involvement of MAG in neurobehavioral deficits and tissue loss following experimental TBI remains unexplored and was evaluated in the current study using an MAG-specific monoclonal antibody (mAb). Anesthetized rats (n=102) were subjected to either lateral fluid percussion brain injury (n=59) or sham injury (n=43). In surviving animals, beginning at 1 h post-injury, 8.64 microg anti-MAG mAb (n=33 injured, n=21 sham) or control IgG (n=26 injured, n=22 sham) was infused intracerebroventricularly for 72 h. One group of these rats (n=14 sham, n=11 injured) was killed at 72 h post-injury for verification of drug diffusion and MAG immunohistochemistry. All other animals were evaluated up to 8 weeks post-injury using tests for neurologic motor, sensory and cognitive function. Hemispheric tissue loss was also evaluated at 8 weeks post-injury. At 72 h post-injury, increased immunoreactivity for MAG was seen in the ipsilateral cortex, thalamus and hippocampus of brain-injured animals, and anti-MAG mAb was detectable in the hippocampus, fimbria and ventricles. Brain-injured animals receiving anti-MAG mAb showed significantly improved recovery of sensorimotor function at 6 and 8 weeks (P<0.01) post-injury when compared with brain-injured IgG-treated animals. Additionally, at 8 weeks post-injury, the anti-MAG mAb-treated brain-injured animals demonstrated significantly improved cognitive function and reduced hemispheric tissue loss (P<0.05) when compared with their brain-injured controls. These results indicate that MAG may contribute to the pathophysiology of experimental TBI and treatment strategies that target MAG may be suitable for further evaluation.
Collapse
Affiliation(s)
- Hilaire J Thompson
- Traumatic Brain Injury Laboratory, Department of Neurosurgery, The University of Pennsylvania, Philadelphia, PA, USA, and Department of Neurosurgery, Uppsala University Hospital, Sweden.
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Martins de Lima MN, Presti-Torres J, Dornelles A, Bromberg E, Schröder N. Differential effects of low and high doses of topiramate on consolidation and retrieval of novel object recognition memory in rats. Epilepsy Behav 2007; 10:32-7. [PMID: 17070735 DOI: 10.1016/j.yebeh.2006.09.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2006] [Revised: 09/09/2006] [Accepted: 09/13/2006] [Indexed: 10/24/2022]
Abstract
Topiramate is a new antiepileptic drug proposed to facilitate synaptic inhibition and block excitatory receptors. However, little is known about the effects of topiramate on memory. In the first experiment, intraperitoneal injection of topiramate at doses of 10.0 and 100.0 mg/kg, immediately after training, induced a deficit in short-term memory (STM) of a novel object recognition (NOR) task tested 1.5 hours after training in rats. In a long-term memory (LTM) test given to the same rats 24 hours after training, topiramate 0.1mg/kg enhanced, whereas 10.0 and 100.0 mg/kg impaired, NOR retention. In the second experiment, administration of topiramate 0.01 and 0.10 mg/kg 1 hour prior to the LTM retention test improved NOR retention, whereas 10.0 and 100.0 mg/kg produced retrieval deficits. The results indicate that low doses of topiramate improve, whereas high doses impair, consolidation and retrieval of recognition memory in rats.
Collapse
Affiliation(s)
- Maria Noemia Martins de Lima
- Graduate Program in Biomedical Gerontology, Institute for Geriatrics and Gerontology, São Lucas Hospital, Pontifical Catholic University, 90619-900 Porto Alegre, RS, Brazil
| | | | | | | | | |
Collapse
|
41
|
Witgen BM, Lifshitz J, Grady MS. Inbred mouse strains as a tool to analyze hippocampal neuronal loss after brain injury: a stereological study. J Neurotrauma 2006; 23:1320-9. [PMID: 16958584 DOI: 10.1089/neu.2006.23.1320] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Traumatic brain injury (TBI) damages the hippocampus both in experimental animal models and in humans. In particular, the mechanical injury in combination with the genetic susceptibility to injury may result in neuronal loss from the hippocampus. This report explores the time-course of neuronal loss in the four primary subregions of the mouse hippocampus after a lateral fluid percussion injury (FPI) to the brain, and how subtle genetic differences between C57BL/6J and C57BL/10J mouse strains influence the extent and time course of neuronal loss. Using design-based stereological procedures, our results indicate negligible neuronal loss ipsilateral to the injury at 2 days postinjury in C57BL/6J mice, whereas a significant number (30-40%) of neurons are lost across all subregions of the hippocampus (dentate, hilus, area CA3, and area CA1) by 1 week, which does not appear to progress at 1 month, compared to sham. Additionally, neuronal counts after lateral FPI in a genetically similar, yet kainic acid-sensitive, mouse strain (C57BL/10J) showed no statistically significant differences in neuron number compared to the C57BL/6J strain in response to brain injury. Hippocampal neuronal loss after lateral FPI and its consequent circuit disruption may depend more on factors related to the mechanics and secondary consequences of the injury, as opposed to subtle genetic variations between inbred mouse strains. The loss of neurons appears to be restricted to the first week post-injury, and the remaining neurons may serve as a substrate for recovery.
Collapse
Affiliation(s)
- Brent M Witgen
- Department of Neurosurgery, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | | | | |
Collapse
|
42
|
Bakshi A, Shimizu S, Keck CA, Cho S, LeBold DG, Morales D, Arenas E, Snyder EY, Watson DJ, McIntosh TK. Neural progenitor cells engineered to secrete GDNF show enhanced survival, neuronal differentiation and improve cognitive function following traumatic brain injury. Eur J Neurosci 2006; 23:2119-34. [PMID: 16630059 DOI: 10.1111/j.1460-9568.2006.04743.x] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
We sought to evaluate the potential of C17.2 neural progenitor cells (NPCs) engineered to secrete glial cell line-derived neurotrophic factor (GDNF) to survive, differentiate and promote functional recovery following engraftment into the brains of adult male Sprague-Dawley rats subjected to lateral fluid percussion brain injury. First, we demonstrated continued cortical expression of GDNF receptor components (GFRalpha-1, c-Ret), suggesting that GDNF could have a physiological effect in the immediate post-traumatic period. Second, we demonstrated that GDNF over-expression reduced apoptotic NPC death in vitro. Finally, we demonstrated that GDNF over-expression improved survival, promoted neuronal differentiation of GDNF-NPCs at 6 weeks, as compared with untransduced (MT) C17.2 cells, following transplantation into the perilesional cortex of rats at 24 h post-injury, and that brain-injured animals receiving GDNF-C17.2 transplants showed improved learning compared with those receiving vehicle or MT-C17.2 cells. Our results suggest that transplantation of GDNF-expressing NPCs in the acute post-traumatic period promotes graft survival, migration, neuronal differentiation and improves cognitive outcome following traumatic brain injury.
Collapse
Affiliation(s)
- Asha Bakshi
- Traumatic Brain Injury Laboratory, Department of Neurosurgery, University of Pennsylvania, Philadelphia, PA, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Abstract
Epilepsy is a major unfavorable long-term consequence of traumatic brain injury (TBI). Moreover, TBI is one of the most important predisposing factors for the development of epilepsy, particularly in young adults. Understanding the molecular and cellular cascades that lead to the development of post-traumatic epilepsy (PTE) is key for preventing its development or modifying the disease process in such a way that epilepsy, if it develops, is milder and easier-to-treat. Tissue from TBI patients undergoing epileptogenesis is not available for such studies, which underscores the importance of developing clinically relevant animal models of PTE. The goal of this review is to (1) provide a description of PTE in humans, which is critical for the development of clinically relevant models of PTE, (2) review the characteristics of currently available PTE models, and (3) provide suggestions for the development of future models of PTE based on our current understanding of the mechanisms of TBI and epilepsy. The development of clinically relevant models of PTE is critical to advance our understanding of the mechanisms of post-traumatic epileptogenesis and epilepsy, as well as for producing breakthroughs in the development and testing of novel antiepileptogenic treatments.
Collapse
Affiliation(s)
- Asla Pitkänen
- Epilepsy Research Laboratory, AI Virtanen Institute for Molecular Sciences, University of Kuopio, Kuopio, Finland.
| | | |
Collapse
|
44
|
Smith DC, Modglin AA, Roosevelt RW, Neese SL, Jensen RA, Browning RA, Clough RW. Electrical stimulation of the vagus nerve enhances cognitive and motor recovery following moderate fluid percussion injury in the rat. J Neurotrauma 2005; 22:1485-502. [PMID: 16379585 PMCID: PMC1769332 DOI: 10.1089/neu.2005.22.1485] [Citation(s) in RCA: 107] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Intermittent, chronically delivered electrical stimulation of the vagus nerve (VNS) is an FDA-approved procedure for the treatment of refractory complex/partial epilepsy in humans. Stimulation of the vagus has also been shown to enhance memory storage processes in laboratory rats and human subjects. Recent evidence suggests that some of these effects of VNS may be due to the activation of neurons in the nucleus locus coeruleus resulting in the release of norepinephrine (NE) throughout the neuraxis. Because antagonism of NE systems has been shown to delay recovery of function following brain damage, it is possible that enhanced release of NE in the CNS may facilitate recovery of function. To evaluate this hypothesis the lateral fluid percussion injury (LFP) model of traumatic brain injury was used and a variety of motor and cognitive behavioral tests were employed to assess recovery in pre-trained stimulated, control, and sham-injured laboratory rats. Two hours following moderate LFP, vagus nerve stimulation (30.0-sec trains of 0.5 mA, 20.0 Hz, biphasic pulses) was initiated. Stimulation continued in each animal's home cage at 30-min intervals for a period of 14 days, with the exception of brief periods when the animals were disconnected for behavioral assessments. Motor behaviors were evaluated every other day following LFP and tests included beam walk, locomotor placing, and skilled forelimb reaching. In each measure an enhanced rate of recovery and /or level of final performance was observed in the VNS-LFP animals compared to nonstimulated LFP controls. Behavior in the Morris water maze was assessed on days 11-14 following injury. Stimulated LFP animals showed significantly shorter latencies to find the hidden platform than did controls. Despite these behavioral effects, neurohistological examination did not reveal significant differences in lesion extent, density of fluorojade positive neurons, reactive astrocytes or numbers of spared neurons in the CA3 subarea of the hippocampus, at least at the one time point studied 15 days post-injury. These results support the idea that vagus nerve stimulation enhances the neural plasticity that underlies recovery of function following brain damage and provides indirect support for the hypothesis that enhanced NE release may mediate the effect. Importantly, since VNS facilitated both the rate of recovery and the extent of motor and cognitive recovery, these findings suggest that electrical stimulation of the vagus nerve may prove to be an effective non-pharmacological treatment for traumatic brain injury.
Collapse
Affiliation(s)
- Douglas C Smith
- Brain & Cognitive Sciences Program, Department of Psychology, Southern Illinois University School of Medicine, Carbondale, IL 62901-6502, USA.
| | | | | | | | | | | | | |
Collapse
|
45
|
Morales DM, Marklund N, Lebold D, Thompson HJ, Pitkanen A, Maxwell WL, Longhi L, Laurer H, Maegele M, Neugebauer E, Graham DI, Stocchetti N, McIntosh TK. Experimental models of traumatic brain injury: do we really need to build a better mousetrap? Neuroscience 2005; 136:971-89. [PMID: 16242846 DOI: 10.1016/j.neuroscience.2005.08.030] [Citation(s) in RCA: 240] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2005] [Revised: 06/08/2005] [Accepted: 08/04/2005] [Indexed: 11/19/2022]
Abstract
Approximately 4000 human beings experience a traumatic brain injury each day in the United States ranging in severity from mild to fatal. Improvements in initial management, surgical treatment, and neurointensive care have resulted in a better prognosis for traumatic brain injury patients but, to date, there is no available pharmaceutical treatment with proven efficacy, and prevention is the major protective strategy. Many patients are left with disabling changes in cognition, motor function, and personality. Over the past two decades, a number of experimental laboratories have attempted to develop novel and innovative ways to replicate, in animal models, the different aspects of this heterogenous clinical paradigm to better understand and treat patients after traumatic brain injury. Although several clinically-relevant but different experimental models have been developed to reproduce specific characteristics of human traumatic brain injury, its heterogeneity does not allow one single model to reproduce the entire spectrum of events that may occur. The use of these models has resulted in an increased understanding of the pathophysiology of traumatic brain injury, including changes in molecular and cellular pathways and neurobehavioral outcomes. This review provides an up-to-date and critical analysis of the existing models of traumatic brain injury with a view toward guiding and improving future research endeavors.
Collapse
Affiliation(s)
- D M Morales
- Traumatic Brain Injury Laboratory, Department of Neurosurgery, University of Pennsylvania, 3320 Smith Walk, 105C Hayden Hall, Philadelphia, PA 19104, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Thompson HJ, Lifshitz J, Marklund N, Grady MS, Graham DI, Hovda DA, McIntosh TK. Lateral fluid percussion brain injury: a 15-year review and evaluation. J Neurotrauma 2005; 22:42-75. [PMID: 15665602 DOI: 10.1089/neu.2005.22.42] [Citation(s) in RCA: 389] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
This article comprehensively reviews the lateral fluid percussion (LFP) model of traumatic brain injury (TBI) in small animal species with particular emphasis on its validity, clinical relevance and reliability. The LFP model, initially described in 1989, has become the most extensively utilized animal model of TBI (to date, 232 PubMed citations), producing both focal and diffuse (mixed) brain injury. Despite subtle variations in injury parameters between laboratories, universal findings are evident across studies, including histological, physiological, metabolic, and behavioral changes that serve to increase the reliability of the model. Moreover, demonstrable histological damage and severity-dependent behavioral deficits, which partially recover over time, validate LFP as a clinically-relevant model of human TBI. The LFP model, also has been used extensively to evaluate potential therapeutic interventions, including resuscitation, pharmacologic therapies, transplantation, and other neuroprotective and neuroregenerative strategies. Although a number of positive studies have identified promising therapies for moderate TBI, the predictive validity of the model may be compromised when findings are translated to severely injured patients. Recently, the clinical relevance of LFP has been enhanced by combining the injury with secondary insults, as well as broadening studies to incorporate issues of gender and age to better approximate the range of human TBI within study design. We conclude that the LFP brain injury model is an appropriate tool to study the cellular and mechanistic aspects of human TBI that cannot be addressed in the clinical setting, as well as for the development and characterization of novel therapeutic interventions. Continued translation of pre-clinical findings to human TBI will enhance the predictive validity of the LFP model, and allow novel neuroprotective and neuroregenerative treatment strategies developed in the laboratory to reach the appropriate TBI patients.
Collapse
Affiliation(s)
- Hilaire J Thompson
- Traumatic Brain Injury Laboratory, Department of Neurosurgery, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | | | | | | | | | | | | |
Collapse
|
47
|
Fujimoto ST, Longhi L, Saatman KE, Conte V, Stocchetti N, McIntosh TK. Motor and cognitive function evaluation following experimental traumatic brain injury. Neurosci Biobehav Rev 2004; 28:365-78. [PMID: 15341032 DOI: 10.1016/j.neubiorev.2004.06.002] [Citation(s) in RCA: 225] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2004] [Revised: 06/18/2004] [Accepted: 06/21/2004] [Indexed: 01/11/2023]
Abstract
Traumatic brain injury (TBI) in humans may cause extensive sensorimotor and cognitive dysfunction. As a result, many TBI researchers are beginning to assess behavioral correlates of histologically determined damage in animal models. Although this is an important step in TBI research, there is a need for standardization between laboratories. The ability to reliably test treatments across laboratories and multiple injury models will close the gap between treatment success in the lab and success in the clinic. The goal of this review is to describe and evaluate the tests employed to assess functional outcome after TBI and to overview aspects of cognitive, sensory, and motor function that may be suitable targets for therapeutic intervention.
Collapse
Affiliation(s)
- Scott T Fujimoto
- Department of Neurosurgery, University of Pennsylvania, 3320 Smith Walk, 105C Hayden Hall, Philadelphia, PA 19104-6316, USA
| | | | | | | | | | | |
Collapse
|