1
|
Ghanem R, Youf R, Haute T, Buin X, Riool M, Pourchez J, Montier T. The (re)emergence of aerosol delivery: Treatment of pulmonary diseases and its clinical challenges. J Control Release 2025; 379:421-439. [PMID: 39800241 DOI: 10.1016/j.jconrel.2025.01.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 01/03/2025] [Accepted: 01/07/2025] [Indexed: 01/15/2025]
Abstract
Aerosol delivery represents a rapid and non-invasive way to directly reach the lungs while escaping the hepatic first-pass effect. The development of pulmonary drugs for respiratory diseases such as cystic fibrosis, lung infections, pulmonary fibrosis or lung cancer requires an enhanced understanding of the relationships between the natural physiology of the respiratory system and the pathophysiology of these conditions. This knowledge is crucial to better predict and thereby control drug deposition. Moreover, aerosol administration faces several challenges, including the pulmonary tract, immune system, mucociliary clearance, the presence of fluid on the airway surfaces, and, in some cases, bacterial colonisation. Each of them directly influences on the bioavailability of the active molecule. In addition to these challenges, particle size and the device used to administer the treatment are critical factors that can significantly impact the biodistribution of the drugs. Nanoparticles are very promising in the development of new formulations for aerosol drug delivery, as they can be fine-tuned to reach the entire pulmonary tract and overcome the difficulties encountered along the way. However, to properly assess drug delivery, preclinical studies need to be more thorough to efficiently enhance drug delivery.
Collapse
Affiliation(s)
- Rosy Ghanem
- Univ Brest, Inserm, EFS, UMR 1078, GGB, F-29200, Brest, France; CHU de Brest, Service de Génétique Médicale et de Biologie de la Reproduction, F-29200 Brest, France
| | - Raphaëlle Youf
- Department of Trauma Surgery, University Hospital Regensburg, Franz-Josef-Strauß-Allee 11, 93053 Regensburg, Germany
| | - Tanguy Haute
- Univ Brest, Inserm, EFS, UMR 1078, GGB, F-29200, Brest, France
| | - Xavier Buin
- Univ Brest, Inserm, EFS, UMR 1078, GGB, F-29200, Brest, France
| | - Martijn Riool
- Department of Trauma Surgery, University Hospital Regensburg, Franz-Josef-Strauß-Allee 11, 93053 Regensburg, Germany
| | - Jérémie Pourchez
- Mines Saint-Etienne, Univ Lyon, Univ Jean Monnet, INSERM, U 1059 Sainbiose, Centre CIS, F - 42023 Saint-Etienne, France
| | - Tristan Montier
- Univ Brest, Inserm, EFS, UMR 1078, GGB, F-29200, Brest, France; CHU de Brest, Service de Génétique Médicale et de Biologie de la Reproduction, F-29200 Brest, France.
| |
Collapse
|
2
|
Liu J, Dean DA. Gene Therapy for Acute Respiratory Distress Syndrome. Front Physiol 2022; 12:786255. [PMID: 35111077 PMCID: PMC8801611 DOI: 10.3389/fphys.2021.786255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 11/22/2021] [Indexed: 11/13/2022] Open
Abstract
Acute respiratory distress syndrome (ARDS) is a devastating clinical syndrome that leads to acute respiratory failure and accounts for over 70,000 deaths per year in the United States alone, even prior to the COVID-19 pandemic. While its molecular details have been teased apart and its pathophysiology largely established over the past 30 years, relatively few pharmacological advances in treatment have been made based on this knowledge. Indeed, mortality remains very close to what it was 30 years ago. As an alternative to traditional pharmacological approaches, gene therapy offers a highly controlled and targeted strategy to treat the disease at the molecular level. Although there is no single gene or combination of genes responsible for ARDS, there are a number of genes that can be targeted for upregulation or downregulation that could alleviate many of the symptoms and address the underlying mechanisms of this syndrome. This review will focus on the pathophysiology of ARDS and how gene therapy has been used for prevention and treatment. Strategies for gene delivery to the lung, such as barriers encountered during gene transfer, specific classes of genes that have been targeted, and the outcomes of these approaches on ARDS pathogenesis and resolution will be discussed.
Collapse
Affiliation(s)
- Jing Liu
- Department of Pediatrics, University of Rochester, Rochester, NY, United States
- Department of Pharmacology and Physiology, University of Rochester, Rochester, NY, United States
| | - David A. Dean
- Department of Pediatrics, University of Rochester, Rochester, NY, United States
- Department of Pharmacology and Physiology, University of Rochester, Rochester, NY, United States
| |
Collapse
|
3
|
Sondhi D, Stiles KM, De BP, Crystal RG. Genetic Modification of the Lung Directed Toward Treatment of Human Disease. Hum Gene Ther 2017; 28:3-84. [PMID: 27927014 DOI: 10.1089/hum.2016.152] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Genetic modification therapy is a promising therapeutic strategy for many diseases of the lung intractable to other treatments. Lung gene therapy has been the subject of numerous preclinical animal experiments and human clinical trials, for targets including genetic diseases such as cystic fibrosis and α1-antitrypsin deficiency, complex disorders such as asthma, allergy, and lung cancer, infections such as respiratory syncytial virus (RSV) and Pseudomonas, as well as pulmonary arterial hypertension, transplant rejection, and lung injury. A variety of viral and non-viral vectors have been employed to overcome the many physical barriers to gene transfer imposed by lung anatomy and natural defenses. Beyond the treatment of lung diseases, the lung has the potential to be used as a metabolic factory for generating proteins for delivery to the circulation for treatment of systemic diseases. Although much has been learned through a myriad of experiments about the development of genetic modification of the lung, more work is still needed to improve the delivery vehicles and to overcome challenges such as entry barriers, persistent expression, specific cell targeting, and circumventing host anti-vector responses.
Collapse
Affiliation(s)
- Dolan Sondhi
- Department of Genetic Medicine, Weill Cornell Medical College , New York, New York
| | - Katie M Stiles
- Department of Genetic Medicine, Weill Cornell Medical College , New York, New York
| | - Bishnu P De
- Department of Genetic Medicine, Weill Cornell Medical College , New York, New York
| | - Ronald G Crystal
- Department of Genetic Medicine, Weill Cornell Medical College , New York, New York
| |
Collapse
|
4
|
Castellani S, Orlando C, Carbone A, Di Gioia S, Conese M. Magnetofection Enhances Lentiviral-Mediated Transduction of Airway Epithelial Cells through Extracellular and Cellular Barriers. Genes (Basel) 2016; 7:genes7110103. [PMID: 27886077 PMCID: PMC5126789 DOI: 10.3390/genes7110103] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Revised: 11/04/2016] [Accepted: 11/15/2016] [Indexed: 02/03/2023] Open
Abstract
Gene transfer to airway epithelial cells is hampered by extracellular (mainly mucus) and cellular (tight junctions) barriers. Magnetofection has been used to increase retention time of lentiviral vectors (LV) on the cellular surface. In this study, magnetofection was investigated in airway epithelial cell models mimicking extracellular and cellular barriers. Bronchiolar epithelial cells (H441 line) were evaluated for LV-mediated transduction after polarization onto filters and dexamethasone (dex) treatment, which induced hemicyst formation, with or without magnetofection. Sputum from cystic fibrosis (CF) patients was overlaid onto cells, and LV-mediated transduction was evaluated in the absence or presence of magnetofection. Magnetofection of unpolarized H441 cells increased the transduction with 50 MOI (multiplicity of infection, i.e., transducing units/cell) up to the transduction obtained with 500 MOI in the absence of magnetofection. Magnetofection well-enhanced LV-mediated transduction in mucus-layered cells by 20.3-fold. LV-mediated transduction efficiency decreased in dex-induced hemicysts in a time-dependent fashion. In dome-forming cells, zonula occludens-1 (ZO-1) localization at the cell borders was increased by dex treatment. Under these experimental conditions, magnetofection significantly increased LV transduction by 5.3-fold. In conclusion, these results show that magnetofection can enhance LV-mediated gene transfer into airway epithelial cells in the presence of extracellular (sputum) and cellular (tight junctions) barriers, representing CF-like conditions.
Collapse
Affiliation(s)
- Stefano Castellani
- Department of Medical and Surgical Sciences, University of Foggia, V. L. Pinto 1, 71122 Foggia, Italy.
| | - Clara Orlando
- Brainlab AG, Kapellenstrasse 12, 85622 Feldkirchen, Germany.
| | - Annalucia Carbone
- Department of Medical and Surgical Sciences, University of Foggia, V. L. Pinto 1, 71122 Foggia, Italy.
| | - Sante Di Gioia
- Department of Medical and Surgical Sciences, University of Foggia, V. L. Pinto 1, 71122 Foggia, Italy.
| | - Massimo Conese
- Department of Medical and Surgical Sciences, University of Foggia, V. L. Pinto 1, 71122 Foggia, Italy.
| |
Collapse
|
5
|
Hida K, Lai SK, Suk JS, Won SY, Boyle MP, Hanes J. Common gene therapy viral vectors do not efficiently penetrate sputum from cystic fibrosis patients. PLoS One 2011; 6:e19919. [PMID: 21637751 PMCID: PMC3103503 DOI: 10.1371/journal.pone.0019919] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2011] [Accepted: 04/14/2011] [Indexed: 02/07/2023] Open
Abstract
Norwalk virus and human papilloma virus, two viruses that infect humans at mucosal surfaces, have been found capable of rapidly penetrating human mucus secretions. Viral vectors for gene therapy of Cystic Fibrosis (CF) must similarly penetrate purulent lung airway mucus (sputum) to deliver DNA to airway epithelial cells. However, surprisingly little is known about the rates at which gene delivery vehicles penetrate sputum, including viral vectors used in clinical trials for CF gene therapy. We find that sputum spontaneously expectorated by CF patients efficiently traps two viral vectors commonly used in CF gene therapy trials, adenovirus (d∼80 nm) and adeno-associated virus (AAV serotype 5; d∼20 nm), leading to average effective diffusivities that are ∼3,000-fold and 12,000-fold slower than their theoretical speeds in water, respectively. Both viral vectors are slowed by adhesion, as engineered muco-inert nanoparticles with diameters as large as 200 nm penetrate the same sputum samples at rates only ∼40-fold reduced compared to in pure water. A limited fraction of AAV exhibit sufficiently fast mobility to penetrate physiologically thick sputum layers, likely because of the lower viscous drag and smaller surface area for adhesion to sputum constituents. Nevertheless, poor penetration of CF sputum is likely a major contributor to the ineffectiveness of viral vector based gene therapy in the lungs of CF patients observed to date.
Collapse
Affiliation(s)
- Kaoru Hida
- Department of Biomedical Engineering, The Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Samuel K. Lai
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, Maryland, United States of America
- Institute for NanoBioTechnology, The Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Jung Soo Suk
- Department of Biomedical Engineering, The Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Sang Y. Won
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Michael P. Boyle
- Institute for NanoBioTechnology, The Johns Hopkins University, Baltimore, Maryland, United States of America
- Division of Pulmonary and Critical Care Medicine, Johns Hopkins Adult Cystic Fibrosis Program, The Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Justin Hanes
- Department of Ophthalmology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- Department of Biomedical Engineering, The Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, Maryland, United States of America
- Institute for NanoBioTechnology, The Johns Hopkins University, Baltimore, Maryland, United States of America
- The Center for Nanomedicine, The Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- * E-mail:
| |
Collapse
|
6
|
Ibrahim BM, Tsifansky MD, Yang Y, Yeo Y. Challenges and advances in the development of inhalable drug formulations for cystic fibrosis lung disease. Expert Opin Drug Deliv 2011; 8:451-66. [PMID: 21375469 DOI: 10.1517/17425247.2011.561310] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION Cystic fibrosis (CF) is a multisystem genetic disorder, which usually results in significant respiratory dysfunction. At present there is no cure for CF, but advances in pharmacotherapy have gradually increased the life expectancy of CF patients. As many drugs used in the therapy of CF are delivered by inhalation, the demand for effective and convenient inhalational CF drug formulations will grow as CF patients live longer. Knowledge of the current limitations in inhalational CF drug delivery is critical in identifying new opportunities and designing rational delivery strategies. AREAS COVERED This review discusses current and emerging therapeutic agents for CF therapy, selected physiological challenges to effective inhalational medication delivery, and various approaches to overcoming these challenges. The reader will find an integrated view of the known inhalational drug delivery challenges and the rationales for recent investigational inhalational drug formulations. EXPERT OPINION An ideal drug/gene delivery system to CF airways should overcome the tenacious sputum, which presents physical, chemical and biological barriers to effective transport of therapeutic agents to the targets and various cellular challenges.
Collapse
Affiliation(s)
- Basma M Ibrahim
- Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, 575 Stadium Mall Drive, West Lafayette, IN 47907, USA
| | | | | | | |
Collapse
|
7
|
Abstract
Many inherited and acquired pulmonary disorders without satisfactory therapies may be amenable to gene therapy. Despite numerous advances, efficient delivery and expression of the therapeutic transgene at physiological levels for phenotypic correction of disease has proved elusive. This article focuses on various strategies aimed at achieving targeted delivery to the lungs. Both physical methods and biological targeting have been successfully applied in various gene delivery systems. Targeting of different cell types has been achieved by pseudotyping of viral vectors with capsids from different serotypes and modification of nonviral vectors with targeting ligands. Both classes of vectors are discussed with respect to their gene delivery and expression efficiencies, longevity of expression and immunogenicity. Moreover, gene therapy clinical trials for different lung diseases are discussed.
Collapse
|
8
|
Rejman J, De Fino I, Paroni M, Bragonzi A, Demeester J, De Smedt S, Conese M. Impact of chronic pulmonary infection with Pseudomonas aeruginosa on transfection mediated by viral and nonviral vectors. Hum Gene Ther 2010; 21:351-6. [PMID: 19788388 DOI: 10.1089/hum.2009.085] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Pseudomonas aeruginosa plays a crucial role in the lung pathology of cystic fibrosis (CF). We showed that acute infection with P. aeruginosa has a substantial impact on gene transfer into lung epithelial cells mediated by polyplexes. As an extension of those studies we report here on the effect of chronic pulmonary infection with P. aeruginosa on transfection of lung epithelial cells by viral and nonviral vectors. As an in vivo model of the persistent chronic infection in patients with CF we used C57BL/6 mice intratracheally infected with P. aeruginosa encapsulated in agar beads. Two weeks after infection the presence of viable bacteria in the lungs was confirmed, mostly in the bronchial lumen. In lung tissue sections stained with hematoxylin and eosin, extensive inflammatory infiltrations were found. At that time point the mice received an intratracheal dose of luciferase gene complexed with either Lipofectamine (Lf), a GL67 lipid mixture (GL67), or polyethylenimine (PEI) or with lentivirus (LV) as a carrier system. Luciferase activity was determined by a luminescence assay in supernatants of lung homogenates. The transfection level induced by PEI/DNA polyplexes complexed with serum albumin was decreased in infected mice. Lf-mediated transfection was almost completely blocked in infected mice. Transfection levels in mice treated with LV or plain PEI/DNA polyplexes were unchanged in infected animals as compared with control mice. The only carrier that displayed a clearly increased transfection level in infected mice was the GL67 lipid mixture, which is tentatively ascribed to the presence of polyethylene glycol in this carrier.
Collapse
Affiliation(s)
- Joanna Rejman
- Institute for Experimental Treatment of Cystic Fibrosis, San Raffaele Scientific Institute, 20132 Milan, Italy.
| | | | | | | | | | | | | |
Collapse
|
9
|
Sanders N, Rudolph C, Braeckmans K, De Smedt SC, Demeester J. Extracellular barriers in respiratory gene therapy. Adv Drug Deliv Rev 2009; 61:115-27. [PMID: 19146894 PMCID: PMC7103358 DOI: 10.1016/j.addr.2008.09.011] [Citation(s) in RCA: 169] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2007] [Accepted: 09/22/2008] [Indexed: 12/11/2022]
Abstract
Respiratory gene therapy has been considered for the treatment of a broad range of pulmonary disorders. However, respiratory secretions form an important barrier towards the pulmonary delivery of therapeutic nucleic acids. In this review we will start with a brief description of the biophysical properties of respiratory mucus and alveolar fluid. This must allow the reader to gain insights into the mechanisms by which respiratory secretions may impede the gene transfer efficiency of nucleic acid containing nanoparticles (NANs). Subsequently, we will summarize the efforts that have been done to understand the barrier properties of respiratory mucus and alveolar fluid towards the respiratory delivery of therapeutic nucleic acids. Finally, new and current strategies that can overcome the inhibitory effects of respiratory secretions are discussed.
Collapse
|
10
|
Griesenbach U, Alton EWFW. Gene transfer to the lung: lessons learned from more than 2 decades of CF gene therapy. Adv Drug Deliv Rev 2009; 61:128-39. [PMID: 19138713 DOI: 10.1016/j.addr.2008.09.010] [Citation(s) in RCA: 105] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2008] [Accepted: 09/22/2008] [Indexed: 11/30/2022]
Abstract
Gene therapy is currently being developed for a wide range of acute and chronic lung diseases. The target cells, and to a degree the extra and intra-cellular barriers, are disease-specific and over the past decade the gene therapy community has recognized that no one vector is good for all applications, but that the gene transfer agent (GTA) has to be carefully matched to the specific disease target. Gene therapy is particularly attractive for diseases that currently do not have satisfactory treatment options and probably easier for monogenic disorders than for complex diseases. Cystic fibrosis (CF) fulfils these criteria and is, therefore, a good candidate for gene therapy-based treatment. This review will focus on CF as an example for lung gene therapy, but lessons learned may be applicable to other target diseases.
Collapse
Affiliation(s)
- Uta Griesenbach
- Department of Gene Therapy, Faculty of Medicine at the National Heart and Lung Institute, Imperial College London, Manresa Road, London SW36LR, UK.
| | | |
Collapse
|
11
|
Sueblinvong V, Suratt BT, Weiss DJ. Novel Therapies for the Treatment of Cystic Fibrosis: New Developments in Gene and Stem Cell Therapy. Clin Chest Med 2007; 28:361-79. [PMID: 17467554 DOI: 10.1016/j.ccm.2007.02.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Cystic fibrosis (CF) was one of the first target diseases for lung gene therapy. Studies of lung gene transfer for CF have provided many insights into the necessary components of successful gene therapy for lung diseases. Many advancements have been achieved with promising results in vitro and in small animal models. However, studies in primate models and patients have been discouraging despite a large number of clinical trials. This reflects a number of obstacles to successful, sustained, and repeatable gene transfer in the lung. Cell-based therapy with embryonic stem cells and adult stem cells (bone marrow or cord blood), have been investigated recently and may provide a viable therapeutic approach in the future. In this article, the authors review CF pathophysiology with a focus on specific targets in the lung epithelium for gene transfer and summarize the current status and future directions of gene- and cell-based therapies.
Collapse
Affiliation(s)
- Viranuj Sueblinvong
- Division of Pulmonary and Critical Care Medicine, The University of Vermont and Fletcher Allen Health Care, 149 Beaumont Avenue, Burlington, VT 05405, USA
| | | | | |
Collapse
|
12
|
Gene Therapy for Lung Diseases. PRINCIPLES OF MOLECULAR MEDICINE 2006. [PMCID: PMC7121178 DOI: 10.1007/978-1-59259-963-9_28] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Gene therapy is under development for a variety of lung disease, both those caused by single gene defects, such as cystic fibrosis and α1-antitrypsin deficiency, and multifactorial diseases such as cancer, asthma, lung fibrosis, and ARDS. Both viral and nonviral approaches have been explored, the major limitation to the former being the inability to repeatedly administer, which renders this approach perhaps more applicable to conditions requiring single administration, such as cancer. Progress in development and clinical trials in each of these diseases is reviewed, together with some potential newer approaches for the future.
Collapse
|
13
|
Abstract
Given both the accessibility and the genetic basis of several pulmonary diseases, the lungs and airways initially seemed ideal candidates for gene therapy. Several routes of access are available, many of which have been refined and optimized for nongene drug delivery. Two respiratory diseases, cystic fibrosis (CF) and alpha1-antitrypsin (alpha1-AT) deficiency, are relatively common; the single gene responsible has been identified and current treatment strategies are not curative. This type of inherited disease was the obvious initial target for gene therapy, but it has become clear that nongenetic and acquired diseases, including cancer, may also be amenable to this approach. The majority of preclinical and clinical studies in the airway have involved viral vectors, although for diseases such as CF, likely to require repeated application, non-viral delivery systems have clear advantages. However, with both approaches a range of barriers to gene expression have been identified that are limiting success in the airway and alveolar region. This chapter reviews these issues, strategies aimed at overcoming them, and progress into clinical trials with non-viral vectors in a variety of pulmonary diseases.
Collapse
Affiliation(s)
- Jane C Davies
- Department of Gene Therapy, Imperial College London, London SW3 6LR, United Kingdom
| | | |
Collapse
|
14
|
Carrabino S, Di Gioia S, Copreni E, Conese M. Serum albumin enhances polyethylenimine-mediated gene delivery to human respiratory epithelial cells. J Gene Med 2005; 7:1555-64. [PMID: 16028303 DOI: 10.1002/jgm.799] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
BACKGROUND The interaction of polyethylenimine (PEI) polyplexes with proteins in cystic fibrosis (CF) airway secretions poses a significant hurdle to this nonviral delivery system. The aim of this study was to evaluate whether albumin may increase the efficiency of PEI complexes in mediating gene transfer into respiratory epithelial cells in the presence of CF mucus. METHODS PEI (25 kDa) was complexed to DNA in the presence of human serum albumin (HSA) and used to transfect confluent A549 and 9HTEo- cells. Alternatively, albumin was added to preformed PEI-DNA complexes. The cytotoxicity of complexes was analysed by the LDH (lactate dehydrogenase) assay. CF CFT1-C2 cells were allowed to polarise and were transfected either with luciferase- or CFTR-expressing plasmids. To evaluate the effect of CF respiratory secretions on transfection efficiency, confluent cells were transfected in the presence of sputum obtained from two CF patients. RESULTS The ternary PEI-HSA complexes increased luciferase expression in confluent cultures in a dose-dependent fashion up to 100 times as compared to PEI-DNA. The number of GFP-expressing cells, as evaluated by epifluorescence, was augmented several-fold. When HSA was added to preformed PEI-DNA complexes, a further 5-10-fold increase in gene expression was observed. No significant cytotoxicity was observed with either PEI or PEI-HSA polyplexes. The ternary complexes determined detectable CFTR gene transfer and expression at the apical membrane in polarised CFT1-C2 cells, as evaluated by confocal microscopy. CF sputum inhibited PEI-mediated gene transfer by 7-186-fold. Although luciferase expression mediated by PEI-HSA was still inhibited by CF sputum, these levels were 18-83.8-fold higher than with PEI. CONCLUSIONS Our results demonstrate that albumin increases PEI gene transfer efficiency in confluent and polarised respiratory epithelial cells and can allow CFTR gene expression in the appropriate cellular compartment. PEI-HSA complexes display a higher efficiency than PEI also in the presence of CF sputum, indicating that albumin-containing polyplexes may help overcome barriers imposed by CF airway secretions.
Collapse
Affiliation(s)
- Salvatore Carrabino
- Institute for Experimental Treatment of Cystic Fibrosis, H. S. Raffaele, Milano, Italy
| | | | | | | |
Collapse
|
15
|
Johnson LG, Vanhook MK, Coyne CB, Haykal-Coates N, Gavett SH. Safety and efficiency of modulating paracellular permeability to enhance airway epithelial gene transfer in vivo. Hum Gene Ther 2003; 14:729-47. [PMID: 12804137 DOI: 10.1089/104303403765255138] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
We evaluated the safety of agents that enhance gene transfer by modulating paracellular permeability. Lactate dehydrogenase (LDH) and cytokine release were measured in polarized primary human airway epithelial (HAE) cells after lumenal application of vehicle, ethyleneglycol-bis-(beta-aminoethyl ether)-N,N'-tetraacetic acid (EGTA), sodium caprate (C10), or sodium laurate (C12). Lung toxicity was assessed after tracheobronchial instillation to murine airways and the relative ability of these agents to enhance in vivo adenoviral gene transfer was evaluated. Lumenal C12 increased LDH release in vitro, but C10 and EGTA did not. Increased levels of interleukin 8 (IL-8) were secreted from EGTA-pretreated cystic fibrosis HAE cells after apical application of Pseudomonas aeruginosa (10(8) CFU/ml), whereas IL-8 secretion from C10- and C12-pretreated cells was not different from controls. In vivo toxicity studies demonstrated no effect of EGTA, C10, or C12 on weight gain, lung edema, or bronchoalveolar lavage fluid (BALF) albumin. EGTA increased BALF cell counts, neutrophils, and murine (m) macrophage inflammatory protein 2, mKC, mIL-6, and mIL-1 beta levels. C10 had no effect on BALF cell counts or LDH, but increased murine tumor necrosis factor alpha. C12 increased BALF LDH, neutrophils, and mIL-6 levels. Histopathological analysis revealed mild focal lung inflammation more frequently in the EGTA, C10, and C12 groups than in vehicle controls, with greater intensity in the C12 group relative to the other groups. C10 and C12 also increased airway responsiveness to methacholine challenge compared with control and EGTA groups. Adenoviral gene transfer to murine trachea in vivo was enhanced more efficiently by C10 than by C12 or EGTA. Thus, the different toxicities may permit the selection of agents that enhance gene transfer with minimal adverse effects.
Collapse
Affiliation(s)
- Larry G Johnson
- Cystic Fibrosis/Pulmonary Research and Treatment Center, and Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, USA.
| | | | | | | | | |
Collapse
|
16
|
Toietta G, Koehler DR, Finegold MJ, Lee B, Hu J, Beaudet AL. Reduced inflammation and improved airway expression using helper-dependent adenoviral vectors with a K18 promoter. Mol Ther 2003; 7:649-58. [PMID: 12718908 DOI: 10.1016/s1525-0016(03)00059-5] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Efforts have been made to deliver transgenes to the airway epithelia of laboratory animals and humans to develop gene therapy for cystic fibrosis. These investigations have been disappointing due to combinations of transient and low-level gene expression, acute toxicity, and inflammation. We have developed new helper-dependent adenoviral vectors to deliver an epithelial cell-specific keratin 18 expression cassette driving the beta-galactosidase (beta-gal) or human alpha-fetoprotein (AFP) reporter genes. Following intranasal administration to mice, we found that the reporter genes were widely expressed in airway epithelial and submucosal cells, and secreted human AFP was also detectable in serum. In contrast to a first-generation adenoviral vector, inflammation was negligible at doses providing efficient transduction, and expression lasted longer than typically reported-up to 28 days with beta-gal and up to 15 weeks with human AFP. These results suggest that delivery to the airway of helper-dependent adenoviral vectors utilizing a tissue-specific promoter could be a significant advance in the development of gene therapy for cystic fibrosis.
Collapse
Affiliation(s)
- Gabriele Toietta
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA
| | | | | | | | | | | |
Collapse
|
17
|
Abstract
Gene delivery has the potential to offer effective treatment to patients with life-threatening lung diseases such as cystic fibrosis, alpha1-antitrypsin deficiency and lung cancer. Phase I/II clinical trials have shown that, in principle, gene transfer to the lung is feasible and safe. However, gene expression from both viral and non-viral gene delivery systems has been inefficient. In addition to extra- and intracellular barriers, the host innate and acquired immune system represents a major barrier to successful gene transfer to the lung. Results from studies in experimental animals and clinical trials have shown that inflammatory, antibody and T cell responses can limit transgene expression duration and readministration of the gene transfer vector. We will review here how the development of pharmacological and/or immunological agents can modulate the host immune system and the limitations of these strategies. A better understanding of the immunological barriers which exist in the lung might allow for a more sustained expression of the transgene and importantly help overcome the problem of readministration of viral vectors.
Collapse
Affiliation(s)
- S Ferrari
- Department of Gene Therapy, National Heart and Lung Institute, Imperial College Faculty of Medicine, London, UK.
| | | | | | | |
Collapse
|
18
|
Abstract
Gene therapy as a treatment modality for pulmonary disorders has attracted significant interest over the past decade. Since the initiation of the first clinical trials for cystic fibrosis lung disease using recombinant adenovirus in the early 1990s, the field has encountered numerous obstacles including vector inflammation, inefficient delivery, and vector production. Despite these obstacles, enthusiasm for lung gene therapy remains high. In part, this enthusiasm is fueled through the diligence of numerous researchers whose studies continue to reveal great potential of new gene transfer vectors that demonstrate increased tropism for airway epithelia. Several newly identified serotypes of adeno-associated virus have demonstrated substantial promise in animal models and will likely surface soon in clinical trials. Furthermore, an increased understanding of vector biology has also led to the development of new technologies to enhance the efficiency and selectivity of gene delivery to the lung. Although the promise of gene therapy to the lung has yet to be realized, the recent concentrated efforts in the field that focus on the basic virology of vector development will undoubtedly reap great rewards over the next decade in treating lung diseases.
Collapse
Affiliation(s)
- Ryan A Driskell
- Center for Gene Therapy of Cystic Fibrosis and Other Genetic Diseases, Department of Anatomy and Cell Biology, University of Iowa, Iowa City, Iowa 52242, USA.
| | | |
Collapse
|
19
|
Abstract
Clinical trials of gene therapy for cystic fibrosis suggest that current levels of gene transfer efficiency are probably too low to result in clinical benefit, largely as a result of the barriers faced by gene transfer vectors within the airways. The respiratory epithelium has evolved a complex series of extracellular barriers (mucus, lack of receptors, immune surveillance, etc.) aimed at preventing penetration of lumenally delivered materials, including gene therapy vectors. In addition, once in the cell, further hurdles have to be overcome, including DNA degradation, nuclear import and the ability to maintain long-term transgene expression. Strategies to overcome these barriers will be addressed in this review and include the use of: (i) clinically relevant adjuncts to overcome the extra- and intracellular barriers; (ii) less-conventional delivery routes, such as intravenous or in utero administration; (iii) more efficient non-viral vectors and 'stealth' viruses which can be re-administered; and (iv) new approaches to prolong transgene expression by means of alternative promoters or integrating vectors. These advances have the potential to improve the efficiency of gene delivery to the airway epithelium, thus making gene therapy a more realistic option for cystic fibrosis.
Collapse
Affiliation(s)
- Stefano Ferrari
- Department of Gene Therapy, National Heart and Lung Institute, Imperial College Faculty of Medicine, UK Cystic fibrosis Gene Therapy Consortium, Edinburgh-London-Oxford, UK, London SW3 6LR, UK.
| | | | | |
Collapse
|
20
|
Abstract
Since the cloning of the cystic fibrosis gene (CFTR) in 1989, 18 clinical trials have been carried out, including five in the 2 years reviewed here. Most trials demonstrated proof-of-principle for gene transfer to the airway. However, gene transfer efficiency with each of the three gene transfer agents (adenovirus (Ad), adeno-associated virus 2 (AAV2) and cationic liposomes) was low, and most likely insufficient to achieve clinical benefit. Here, we will review the clinical and pre-clinical progress for the last 2 years (2000-2001) and briefly speculate on future prospects for the next 2 in CF gene therapy.
Collapse
Affiliation(s)
- U Griesenbach
- Department of Gene Therapy, National Heart and Lung Institute, Imperial College, Faculty of Medicine, London, UK
| | | | | | | |
Collapse
|
21
|
Rooney CP, Denning GM, Davis BP, Flaherty DM, Chiorini JA, Zabner J. Bronchoalveolar fluid is not a major hindrance to virus-mediated gene therapy in cystic fibrosis. J Virol 2002; 76:10437-43. [PMID: 12239320 PMCID: PMC136549 DOI: 10.1128/jvi.76.20.10437-10443.2002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Successfully targeting the airway epithelium is essential for gene therapy of some pulmonary diseases. However, the airway epithelium is resistant to virus-mediated gene transfer with commonly used vectors. Vectors that interact with endogenously expressed receptors on the apical surface significantly increase gene transfer efficiency. However, other endogenous components involved in host immunity may hinder virus-mediated gene transfer. We tested the effect of bronchoalveolar lavage liquid (BAL) from patients with cystic fibrosis (CF), BAL from subjects without CF (non-CF BAL), Pseudomonas aeruginosa-derived proteins, and an array of inflammatory proteins on gene transfer mediated by adeno-associated virus type 5 (AAV5) and adenovirus targeted to an apically expressed glycosylphosphatidylinositol-modified coxsackie-adenovirus receptor. We found that neither CF BAL nor its components had a significant effect on gene transfer to human airway epithelium by these vectors. Non-CF BAL significantly impaired adenovirus-mediated gene transfer. Removal of immunoglobulins in non-CF BAL restored gene transfer efficiency. As virus vectors are improved and mechanisms of humoral immunity are elucidated, barriers to successful gene therapy found in the complex environment of the human lung can be circumvented.
Collapse
Affiliation(s)
- C P Rooney
- Department of Internal Medicine, University of Iowa College of Medicine, Iowa City, IA 52242, USA
| | | | | | | | | | | |
Collapse
|
22
|
Yates EA, Philipp B, Buckley C, Atkinson S, Chhabra SR, Sockett RE, Goldner M, Dessaux Y, Cámara M, Smith H, Williams P. N-acylhomoserine lactones undergo lactonolysis in a pH-, temperature-, and acyl chain length-dependent manner during growth of Yersinia pseudotuberculosis and Pseudomonas aeruginosa. Infect Immun 2002; 70:5635-46. [PMID: 12228292 PMCID: PMC128322 DOI: 10.1128/iai.70.10.5635-5646.2002] [Citation(s) in RCA: 432] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In gram-negative bacterial pathogens, such as Pseudomonas aeruginosa and Yersinia pseudotuberculosis, cell-to-cell communication via the N-acylhomoserine lactone (AHL) signal molecules is involved in the cell population density-dependent control of genes associated with virulence. This phenomenon, termed quorum sensing, relies upon the accumulation of AHLs to a threshold concentration at which target structural genes are activated. By using biosensors capable of detecting a range of AHLs we observed that, in cultures of Y. pseudotuberculosis and P. aeruginosa, AHLs accumulate during the exponential phase but largely disappear during the stationary phase. When added to late-stationary-phase, cell-free culture supernatants of the respective pathogen, the major P. aeruginosa [N-butanoylhomoserine lactone (C4-HSL) and N-(3-oxododecanoyl)homoserine lactone (3-oxo-C12-HSL)] and Y. pseudotuberculosis [N-(3-oxohexanoyl)homoserine lactone (3-oxo-C6-HSL) and N-hexanoylhomoserine lactone (C6-HSL)] AHLs were inactivated. Short-acyl-chain compounds (e.g., C4-HSL) were turned over more extensively than long-chain molecules (e.g., 3-oxo-C12-HSL). Little AHL inactivation occurred with cell extracts, and no evidence for inactivation by specific enzymes was apparent. This AHL turnover was discovered to be due to pH-dependent lactonolysis. By acidifying the growth media to pH 2.0, lactonolysis could be reversed. By using carbon-13 nuclear magnetic resonance spectroscopy, we found that the ring opening of homoserine lactone (HSL), N-propionyl HSL (C3-HSL), and C4-HSL increased as pH increased but diminished as the N-acyl chain was lengthened. At low pH levels, the lactone rings closed but not via a simple reversal of the ring opening reaction mechanism. Ring opening of C4-HSL, C6-HSL, 3-oxo-C6-HSL, and N-octanoylhomoserine lactone (C8-HSL), as determined by the reduction of pH in aqueous solutions with time, was also less rapid for AHLs with more electron-donating longer side chains. Raising the temperature from 22 to 37 degrees C increased the rate of ring opening. Taken together, these data show that (i) to be functional under physiological conditions in mammalian tissue fluids, AHLs require an N-acyl side chain of at least four carbons in length and (ii) that the longer the acyl side chain the more stable the AHL signal molecule.
Collapse
Affiliation(s)
- Edwin A Yates
- School of Biosciences, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Weiss DJ. Delivery of gene transfer vectors to lung: obstacles and the role of adjunct techniques for airway administration. Mol Ther 2002; 6:148-52. [PMID: 12161180 DOI: 10.1006/mthe.2002.0662] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Affiliation(s)
- Daniel J Weiss
- Vermont Lung Center, University of Vermont College of Medicine, Burlington, Vermont, 05405, USA.
| |
Collapse
|
24
|
Pilewski JM. Gene therapy for airway diseases: continued progress toward identifying and overcoming barriers to efficiency. Am J Respir Cell Mol Biol 2002; 27:117-21. [PMID: 12151301 DOI: 10.1165/ajrcmb.27.2.f244] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Affiliation(s)
- Joseph M Pilewski
- Department of Medicine, University of Pittsburgh, PIttsburgh, Pennsylvania, USA.
| |
Collapse
|
25
|
Abstract
In the last decade adenovirus (AdV) vectors have emerged as promising technology in gene therapy. They have been used for genetic modification of a variety of somatic cells in vitro and in vivo. They have been widely used as gene delivery vectors in experiments both with curative and preventive purposes. AdV vectors have been used in the experimental and in some extent in the clinical gene therapy of a variety of cancers. The combination of recombinant AdV technology with chemotherapy (pro drug system) seems to be promising, too. AdV vectors offer several advantages over other vectors. Replication defective vectors can be produced in very high titers (10(11) pfu/ml) thus allowing a substantially greater efficiency of direct gene transfer; they have the capacity to infect both replicating and nonreplicating (quiescent) cells from a variety of tissues and species. Several important limitations of adenovirus mediated gene transfer are also known, such as the relatively short-term (transient) expression of foreign genes, induction of the host humoral and cellular immune response to viral proteins and viral infected cells, which may substantially inhibit the effect of repeated treatment with AdV vectors, the limited cloning capacity and the lack of target cell specificity. However, the well-understood structure, molecular biology and host cell interactions of AdV-s offer some potential solutions to these limitations.
Collapse
Affiliation(s)
- I Nász
- Institute of Medical Microbiology, Faculty of General Medicine, Semmelweis University, Nagyvárad tér 4, H-1089 Budapest, Hungary
| | | |
Collapse
|
26
|
Sanders NN, Van Rompaey E, De Smedt SC, Demeester J. On the transport of lipoplexes through cystic fibrosis sputum. Pharm Res 2002; 19:451-6. [PMID: 12033379 DOI: 10.1023/a:1015139527747] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
PURPOSE The aim of this study was to examine the extent to which plasmid DNA (pDNA) complexed to cationic liposomes diffuse through cystic fibrosis (CF) sputum. The influence of the physical and chemical properties of the sputa was evaluated. We further investigated whether degradation of the sputa by recombinant human DNase I (rhDNase I) enhances the transport. METHODS The transport of lipoplexes was studied through layers of CF sputa placed between the donor and acceptor compartment of vertical diffusion chambers. The content of the acceptor compartment was analyzed by confocal fluorescence microscopy, gel electrophoresis and Southern blotting. The influence of linear DNA present in the CF sputa on the size, surface charge and gene expression of the lipoplexes was evaluated by dynamic light scattering, particle electrophoresis and transfection experiments. RESULTS Lipoplexes were observed in the acceptor compartments. However, the percent of diffused lipoplexes was low: 0.05/% +/- 0.01%. It was found that both steric obstruction by the sputa as well as the long" distance the lipoplexes have to travel were responsible for this low transport. Surprisingly, the transport occurred better through more viscoelastic sputa. The DNA in the CF sputa also retarded the transport, which was attributed to aggregation of the lipoplexes by the DNA. Finally, rhDNase I moderately enhanced the diffusion of lipoplexes. CONCLUSIONS CF sputum drastically retards the diffusion of lipoplexes. DNA in the sputa aggregates the lipoplexes. This may lower the transport of lipoplexes through the sputa and gene expression. Pretreatment of CF patients with rhDNase I may enhance the efficiency of CF gene therapy, as it allows a better transport of the lipoplexes through the sputum and as it partly removes the sputum which will result in a thinner sputum layer on top of the epithelial cells.
Collapse
Affiliation(s)
- Niek N Sanders
- Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmacy, Ghent University, Belgium
| | | | | | | |
Collapse
|
27
|
Köping-Höggård M, Tubulekas I, Guan H, Edwards K, Nilsson M, Vårum KM, Artursson P. Chitosan as a nonviral gene delivery system. Structure-property relationships and characteristics compared with polyethylenimine in vitro and after lung administration in vivo. Gene Ther 2001; 8:1108-21. [PMID: 11526458 DOI: 10.1038/sj.gt.3301492] [Citation(s) in RCA: 435] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2000] [Accepted: 04/19/2001] [Indexed: 12/16/2022]
Abstract
Chitosan is a natural cationic linear polymer that has recently emerged as an alternative nonviral gene delivery system. We have established the relationships between the structure and the properties of chitosan-pDNA polyplexes in vitro. Further, we have compared polyplexes of ultrapure chitosan (UPC) of preferred molecular structure with those of optimised polyethylenimine (PEI) polyplexes in vitro and after intratracheal administration to mice in vivo. Chitosans in which over two out of three monomer units carried a primary amino group formed stable colloidal polyplexes with pDNA. Optimized UPC and PEI polyplexes protected the pDNA from serum degradation to approximately the same degree, and they gave a comparable maximal transgene expression in 293 cells. In contrast to PEI, UPC was non toxic at escalating doses. After intratracheal administration, both polyplexes distributed to the mid-airways, where transgene expression was observed in virtually every epithelial cell, using a sensitive pLacZ reporter containing a translational enhancer element. However, the kinetics of gene expression differed - PEI polyplexes induced a more rapid onset of gene expression than UPC. This was attributed to a more rapid endosomal escape of the PEI polyplexes. Although this resulted in a more efficient gene expression with PEI polyplexes, UPC had an efficiency comparable to that of commonly used cationic lipids. In conclusion, this study provides insights into the use of chitosan as a gene delivery system. It emphasises that chitosan is a nontoxic alternative to other cationic polymers and it forms a platform for further studies of chitosan-based gene delivery systems.
Collapse
Affiliation(s)
- M Köping-Höggård
- Department of Pharmacy, Division of Pharmaceutics, Uppsala University, Uppsala, Sweden
| | | | | | | | | | | | | |
Collapse
|